
Copyright © 2009-2023. Cloud Software Group, Inc. All Rights Reserved.

TIBCO ActiveSpaces®
Concepts
Version 4.9.0 | August 2023

TIBCO ActiveSpaces® Concepts

2 | Contents

Contents
Contents 2

About This Product 6

Overview of TIBCO ActiveSpaces 8
Why ActiveSpaces? 8

What Is ActiveSpaces? 8

Benefits of ActiveSpaces 9

Attributes of ActiveSpaces 9

Redesigned from the Ground Up 12

Terminology Used to Address the TIBCO FTL Realm 13

Grid Computing in ActiveSpaces 14
What Is a Data Grid? 14

How Is the Data Stored in a Data Grid? 15

Replication 18

Processes in ActiveSpaces 19

The Workflow for a PUT Operation 22

Log Levels 23

Transaction Isolation 24

Checkpoints 25
Checkpoint Types 25

Disaster Recovery 27

TIBCO ActiveSpaces® Concepts

3 | Contents

Gridsets 27

Types of Data Grids 28

Mirroring 28

Best Practices for a Development Environment 30

Pre-Production Checklist 32

Best Practices for a Production Environment 34

Best Practices for Cloud Environments 35

Programming with ActiveSpaces 36
Structuring Programs 38

Task A: Initializing ActiveSpaces Objects 38

Task B: Performing Data Grid Operations 39

Task C: Cleaning up and Closing the Connection 39

Connection 40

Session 41

Table 42

Statement 47

SQL Identifiers 50

Column Data Types 51
tibDateTime 51

Querying a Data Grid Table 56
Table Iterator 56

Session Statement 57

Data Consistency for Queries 58

The SQL SELECT Statement 59

Modifying Data in a Table 76
The SQL INSERT Statement 76

The INSERT OR REPLACE Statement 80

The SQL DELETE Statement 81

TIBCO ActiveSpaces® Concepts

4 | Contents

The SQL UPDATE Statement 85

SQL Expressions 89
Operators 89

LIKE Operator 90

Negation 92

Compound Expressions 92

Order of Operations 93

CASE Expressions 93

SQL Functions 96
Aggregate Functions 96

Date and Time Functions 98

SQL String Functions 103

The ActiveSpaces JDBC Driver 106
Connecting to the Data Grid by Using ActiveSpacesJDBC Driver 106

Setting up the Environment 107

Registering the ActiveSpaces JDBC Driver with the Driver Manager 107

Creating the ActiveSpaces JDBC Connection 108

Using the ActiveSpaces JDBC Driver With Third Party Tools 115

JDBC Implementation Notes 115
JDBC Data Types 115

DatabaseMetaData Pattern Parameters 116

ResultSetMetaData and Function Return Values 117

JDBC Compliance 118

Sizing Guide 120
Example of a Sizing Calculation 120

Comparison Matrix 124

Error Codes 126

TIBCO Documentation and Support Services 133

TIBCO ActiveSpaces® Concepts

5 | Contents

Legal and Third-Party Notices 135

TIBCO ActiveSpaces® Concepts

6 | About This Product

About This Product
The TIBCO ActiveSpaces® software is a distributed in-memory data grid product. Some
features of ActiveSpaces® include the use of familiar database concepts, high I/O capacity,
and network scalability.

Product Editions

ActiveSpaces is available in two editions: Community Edition and Enterprise Edition.

Community Edition Enterprise Edition

Ideal for Getting started with ActiveSpaces for
implementing application projects,
including proof of concept projects, for
testing, and for deploying applications in
a production environment.

Production deployments running up to 5
nodes (a total of the copyset nodes or
proxies in your data grid)

For more information, see Terms used in
Community and Enterprise Editions.

All application development
projects, and for deploying
and managing applications in
the production environment of
an enterprise.

Production deployments with
more than 5 nodes (a total of
the copyset nodes or proxies
in your data grid)

For more information, see
Terms used in Community and
Enterprise Editions.

Features All features of the Enterprise Edition
except enterprise monitoring using
dashboards.

Includes all the features
presented in this
documentation set.

Limitations Run up to 5 nodes (a total of the copyset
nodes or proxies in your data grid).

Although the community license limits the
number of production instances, you can
easily upgrade to the enterprise edition as

No limitations on a total of the
copyset nodes or proxies in
your data grid.

TIBCO ActiveSpaces® Concepts

7 | About This Product

your use of ActiveSpaces expands.

Cost Free Paid

Compatibility Compatible with both the enterprise and
community editions of TIBCO FTL®

Depends on the enterprise
edition of TIBCO FTL for
monitoring and management
of data grid components and
secure communication.

TIBCO Support No access to TIBCO Support Access to TIBCO Support

Terms used in Community and Enterprise Editions
• Node - a copyset node or proxy where each copyset node or proxy is an operating

system process with a unique process ID.

• Process ID - For the purposes of the definition of Node, Process ID means a standard
computer industry term that uniquely identifies each operating system process.

• Copyset - For the purposes of the definition of Node, “Copyset” means a logical
grouping of nodes such that a portion of the data is shared uniformly by all the
nodes that form a copyset.

TIBCO ActiveSpaces® Concepts

8 | Overview of TIBCO ActiveSpaces

Overview of TIBCO ActiveSpaces
ActiveSpaces software is a distributed in-memory data grid product.

To lift the burden of big data, ActiveSpaces provides a distributed in-memory data grid that
can increase processing speed to reduce reliance on costly transactional systems.
ActiveSpaces provides an infrastructure for building highly scalable, fault-tolerant
applications. It creates virtual data caches from the aggregate memory of participating
nodes, scaling automatically as nodes join the data grid. By combining the features and
performance of databases, caching systems, and messaging software, it supports very
large, highly volatile data sets and event-driven applications.

Why ActiveSpaces?
A traditional RDBMS fails to keep up with the growing volume of data and the high rate of
I/O operations per second. This drawback of RDBMS can impact the performance and slow
down the system.

ActiveSpaces is ideal for enterprises that handle a large amount of data or have a high
volume of I/O activities per second. ActiveSpaces provides horizontal scalability, where you
have the flexibility to segregate the data across a group of computers. For example, if you
have 25000 operations per second, they can be divided across 10 computers that handle
2500 operations per second. Or, if your enterprise needs to store 10 TB of data, it can be
distributed across 5 computers that contribute 2 TB each to store the data.

What Is ActiveSpaces?
ActiveSpaces uses the concepts of grid computing to provide a scalable, distributed, and

durable data grid. The data grid serves as a system of record to store terabytes of data in
an enterprise. ActiveSpaces provides a fast, consistent, and fault-tolerant system that
supports a high rate of I/O operations in a scalable manner.

For more information about the ActiveSpaces concepts, see the Grid Computing in
ActiveSpaces section.

TIBCO ActiveSpaces® Concepts

9 | Overview of TIBCO ActiveSpaces

Benefits of ActiveSpaces
ActiveSpaces offers many advantages as compared with a traditional RDBMS.

The following list highlights the benefits of using ActiveSpaces:

l ActiveSpaces performance and customer experience

l Requires minimum investment because the system scales on low-cost commodity or
virtualized hardware

l Updates data and systems continually and provides immediate and accurate
response

l Supports many hardware and software platforms, so programs running on different
kinds of computers in a network can communicate seamlessly

l Scales linearly and transparently when nodes are added (An increase in the number
of nodes produces a corresponding increase in the memory and processing power
available to the data grid)

l Enables smooth and continuous working of your application without code
modification or restarts

l Provides location transparency without the hassles of determining where or how to
store data and search for it

l Notifies applications automatically as soon as data is modified

Attributes of ActiveSpaces
These attributes of ActiveSpaces set it apart from traditional RDBMS.

Scalability

The biggest advantage of using ActiveSpaces is scalability. You can scale up the system
horizontally to hold terabytes of data without bringing the system down. You also have
complete administrative control over data redistribution.

System of Record

ActiveSpaces serves as a distributed, large-scale system of record that spans across
nodes in an enterprise. The system of record uses the concepts of the traditional RDBMS

TIBCO ActiveSpaces® Concepts

10 | Overview of TIBCO ActiveSpaces

such as table, rows, and columns. In addition, every node saves a portion of the data
locally in a fault-tolerant and durable manner.

Faster Access to Data

ActiveSpaces support queries and indexes that improve performance. Queries run faster
because data is cached in-memory. Queries in ActiveSpaces are a subset of the SQL
language. The filtering and indexing capabilities offered by ActiveSpaces expedite the
execution of queries.

TIBCO FTL® for Secure Communication

ActiveSpaces uses the capabilities of TIBCO FTL® 6.1.0 or later. A specific FTL realm
contains configuration information and connectivity parameters for communication
between the ActiveSpaces data grid processes and client applications. ActiveSpaces uses
TIBCO FTL for the following key tasks:

l Communication between application programs and the data grid.

l Internal communication among data grid component processes

l Configuration, monitoring, and management of data grid components

Note: With TIBCO FTL 6.1.0 or later, ActiveSpaces uses the realm service
capabilities or processes of the TIBCO FTL server. In this documentation, the
term "realm service" is used to refer to TIBCO FTL 5.x realm server or TIBCO
FTL 6.x realm service.

For the versions of TIBCO FTL that are compatible with ActiveSpaces, see the readme.txt
file.

High-Performance ACID-Compliant Data Grid

The data grid provides atomicity, consistency, isolation, and durability (ACID) of data.
ACID-compliance is achieved by using transactions and concurrency control across
multiple tables.

Transaction Isolation

A transaction comprises a set of operations that can modify the content of the data grid.
Owing to transaction isolation, an ongoing transaction does not affect the queries that
are being run on the content. For example, if another system is trying to read a row that
you are trying to modify, that system either gets the data before the modification or it

TIBCO ActiveSpaces® Concepts

11 | Overview of TIBCO ActiveSpaces

gets the data after the modification. The system does not get partially committed
transactions. Even if the transaction is distributed over a network that involves multiple
rows and tables, transaction isolation ensures that there are no uncommitted reads
(dirty reads).

To achieve the highest level of transaction isolation, pessimistic transactions are used.
This guarantees that a row is consistently accessed by the operation that initially
accessed the row until the transaction commits or rolls back. This blocks any operation
that can violate database consistency or isolation. Transactions take care of rolling back
partially committed transactions.

Easy-to-Use APIs

ActiveSpaces provides tools for data definitions that are akin to the SQL language. You
can also define how data is distributed across a configurable number of nodes. The
support functions in the API are easy to use. You can use the functions to retrieve
metadata information about the data grid, a specific table, or a result set.

Real-Time Push Events

ActiveSpaces provides real-time push events over the network to servers and client
applications to change the data grid. Table listeners receive data change events through
callback notifications.

Cloud Ready

It is easy to deploy ActiveSpaces on cloud, on-premises, or hybrid environments. You
can easily build ActiveSpaces into microservices with container deployment products
such as Docker.

TIBCO ActiveSpaces® Concepts

12 | Redesigned from the Ground Up

Redesigned from the Ground Up
Since the 3.0 version of ActiveSpaces, ActiveSpaces software is completely redesigned and
reimplemented to make it more user-friendly for both end users and administrators.
ActiveSpaces 3.x is not backward compatible with the earlier versions of the product.
ActiveSpaces 3.x is faster because it relies on TIBCO FTL for the underlying communication.

ActiveSpaces 3.x and later use the terminology of a traditional RDBMS. See the
Comparison Matrix.

TIBCO ActiveSpaces® Concepts

13 | Terminology Used to Address the TIBCO FTL Realm

Terminology Used to Address the TIBCO
FTL Realm
With TIBCO FTL 6.1 or later, ActiveSpaces uses the realm service capabilities or processes
of the TIBCO FTL server. The following changes are made to the terminology to generically
address the components of TIBCO FTL 5.x and TIBCO FTL 6.x:

The Term Used
in the
Document

The Equivalent
Component in TIBCO
FTL 5.4.1

The Equivalent Component in TIBCO FTL 6.1 or
Later

Realm service Realm server Realm service running on the TIBCO FTL server

Realm service
URL

Realm server URL TIBCO FTL server URL

Backup realm
service

Backup realm server TIBCO FTL server that is a member of a cluster of
three or more TIBCO FTL servers

Primary Realm Primary Realm Server
and its Backup Realm
Server

A cluster of primary TIBCO FTL servers that
provide realm services for the data grid.

Satellite Realm Satellite Realm Server
and its Backup Realm
Server

A cluster of satellite TIBCO FTL servers that are
connected to a cluster of primary TIBCO FTL
servers.

TIBCO ActiveSpaces® Concepts

14 | Grid Computing in ActiveSpaces

Grid Computing in ActiveSpaces
ActiveSpaces uses grid computing to bring together computers in your network that can
contribute their processing power, memory, and storage to solve a complex problem.
ActiveSpaces uses grid computing concepts to store and process the contents of a data
grid.

What Is a Data Grid?
ActiveSpaces stores data in data grids. In a data grid, data is stored in the form of tables. A

data grid is equivalent to a database of a traditional RDBMS.

Tables

A table comprises multiple rows that are spread out in the data grid. The tables are
similar to the tables in a traditional RDBMS, made of rows and columns. Unlike the
traditional RDBMS where all the data in the table reside on one computer, a data grid
segregates the table row-wise and stores the rows in different ActiveSpaces processes
called nodes.

Rows

Like the traditional RDBMS, a row comprises a set of columns and is uniquely identified
by the primary index. A row becomes the unit of measurement for the data grid. Rows
are distributed across the data grid. When scaling up, the data grid controls where a
newly added row must be stored.

Columns

A row is made of a collection of columns. Every column uniquely identifies a piece of
information. Every column has a type and a value associated with it. For example, the
Employee Name column is of data type String and has the value "Joe Smith".

A column can be of the following data types:

l long

l double

TIBCO ActiveSpaces® Concepts

15 | Grid Computing in ActiveSpaces

l string

l datetime

l opaque

Primary Index

Uniquely identifies a row in a table. It is equivalent to a primary key in a traditional
RDBMS. You can have more than one column that forms a primary index.

Secondary Index

Is similar to a primary index but can refer to multiple rows in a table. A secondary index
comprises one or more columns of a table and is used to efficiently retrieve the rows of
a table by reducing the number of rows scanned for retrieval by queries. Without a
secondary index, this would involve a full table scan to identify which rows match the
query. With a secondary index, additional space is used to help speed up the query and
quickly identify matching rows without a full-table scan.

Note: Primary and secondary indexes can be of the data types: long, string, and
datetime.

How Is the Data Stored in a Data Grid?
Unlike traditional RDBMS, a data grid is not stored in one place. An ActiveSpaces data grid
leverages the storage capacity and computing power from multiple computers.

To understand how the data is stored, you must first familiarize yourself with the following
concepts:

Nodes

A node is an ActiveSpaces process running within a computer. The node holds a portion
of the data forming the data grid both in memory and on disk. The smallest unit of data
held by a node is a row. Other than storing data of a row, the node is also responsible
for handling requests to read or update the row. As a result, the data spanning across a
group of nodes collectively form a data grid.

Nodes can be run from a physical computer, a virtual machine, or a Docker container.

TIBCO ActiveSpaces® Concepts

16 | Grid Computing in ActiveSpaces

Persistence on Nodes ActiveSpaces supports the Shared Nothing mode of persistence
where every node saves its data locally to the disk.

Copysets

Copysets are a logical grouping of nodes such that a portion of the data is shared
uniformly by all the nodes that form a copyset. This ensures fault tolerance. Every node
in the copyset, also known as the replica, has an identical copy of the data. For
example, assume that a row (R1) comprises employee name, employee ID, and
department. There are nodes, N1, N2, and N3 in copyset1. N1, N2, and N3 store identical
copies of R1. When you add new data or request for an update on a row in a copyset,
the update is written to all the nodes in the copyset before acknowledging the success
of the operation. Keeping the nodes of a copyset on different computers helps prevent
data loss during system failures.

Copysets help you scale your data horizontally. When you add a new copyset to a data
grid, you can redistribute the existing data to the new nodes of that copyset, thereby
distributing the load on the data grid with the help of the newly added copyset.

The following image is a logical diagram showing how rows of three tables are
distributed across two copysets in the data grid.

Rows Distributed Across Copysets

In the following image, the rows of a table are broken down into four sets (each owned by
a different copyset). The nodes running in a given copyset are identical replicas of each
other.

TIBCO ActiveSpaces® Concepts

17 | Grid Computing in ActiveSpaces

How One Table is Distributed in a Data Grid with Four Copysets and Three Nodes

To understand more about sizing a copyset and a data grid, see Sizing Guide.

Primary Node

When a copyset has more than one node in a copyset, one of the nodes is the primary
node, which stores data and provides read access. The other nodes in the copyset are
secondary nodes that store backup copies of the data. The key role of the primary node
is to interact with the proxy process. The primary node receives the client operation and
replicates it to the other nodes in the copyset. The client operation is applied in parallel
at the primary node and all secondary nodes. The primary node is responsible for
sharing the result of the request with the proxy.

If the primary node goes down for some reason, one of the other nodes in the copyset
takes over as the primary node. Updates from client applications continue as usual
without any loss of data because all of the data has been replicated from the original
primary node to all of the other nodes in the copyset. The nodes of a copyset must

TIBCO ActiveSpaces® Concepts

18 | Grid Computing in ActiveSpaces

reside on different machines to ensure that one machine failure does not cause data
loss.

Reasons for Using Multiple Nodes

There are several reasons for using multiple nodes:

l Nodes in different copysets are created with the goal of scaling horizontally. Thus,
multiple copysets are created, each with a slice of the data.

l Nodes in the same copyset are created to provide multiple replicas for fault
tolerance. These contain identical copies of the data.

l In a production environment, you might decide to use multiple nodes for a
combination of reasons. For example, you might choose to have two replicas per
copyset and multiple copysets (say three) to scale horizontally. In this example,
your environment would have a total of six nodes.

To sum it up, the data is stored in copysets as described in the previous sections. The
copysets put together form a data grid.

Replication
To replicate data, you must configure the copysets in the data grid such that copyset_size is
greater than 1.

The copyset_size configuration setting applies to all copysets in the data grid. When the
copyset_size is greater than 1, one node in each copyset acts the primary node that stores
data and provides read access to that data. The other nodes in each copyset are secondary
nodes that store copies of the data on the primary node. Every time data is written to the
primary node, data is synchronized at the primary node and all secondary nodes in the
copyset.

When the primary node of a copyset is down, one of the secondary nodes in the copyset
takes over as the primary node. As each secondary node of the copyset contains copies of
the same data that resides on the primary node, no data loss occurs and data grid
operations continues as long as at least one node of the copyset remains running.

TIBCO ActiveSpaces® Concepts

19 | Processes in ActiveSpaces

Processes in ActiveSpaces
The following processes are involved in creating, maintaining, and querying the data grid:

l ActiveSpaces Client Applications

l Proxy

l Realm Service

l State Keeper

l Node

TIBCO ActiveSpaces Client Applications

The client applications use the API libraries shipped with the product to build custom
applications. Client applications interact with the data grid by using the proxy process.

Proxy

A proxy is a mediator between a client request and the data grid. Based on the client
request, the proxy identifies the primary node in a copyset and interacts with the
primary node till the request is processed and shared with the client. You can have
many proxies in a data grid.

Realm Service

A data grid is run inside a TIBCO FTL realm. A TIBCO FTL realm serves as a repository for
data grid configuration information and provides communication services that enable all
data grid processes to communicate with each other.

A client application accesses the data grid by using the realm service URL. In TIBCO FTL
6.0.0 or later, the realm service URL is the URL of the TIBCO FTL server. The realm
service offers the following capabilities:

l Stores data grid definitions

l Communicates with the administrative tools to store and retrieve data grid
definitions

l Communicates with all the processes running in the data grid and updates the
internal configuration if anything changes

TIBCO ActiveSpaces® Concepts

20 | Processes in ActiveSpaces

l Collects monitoring data from all processes

Fault Tolerance in Realm Services Used in TIBCO 6.0.0 or Later

TIBCO FTL 6.1.0 or later uses a quorum-based fault tolerance mechanism. A cluster of at
least three TIBCO FTL core servers must be run. Each core server provides a realm
service. Those realm services all cooperate to provide fault tolerance for the data grid.
Fault tolerance is assured as long as a quorum of servers is always running. Each core
server must be run on a separate machine. Clients receive a list of URLs at which they
can connect to those TIBCO FTL core servers.

State Keeper

A state keeper runs internally in the data grid and tracks all the data in the data grid.
Each state keeper saves the data locally on the disk. When you start the realm service,
the state keeper receives the data grid configuration information from the realm service.
State keepers are responsible for the following functions:

l Tracking and managing all the copysets in a data grid

l Tracking the proxies in a data grid

l Identifying a primary node in each copyset

l Promoting one of the secondary nodes as primary, in case the primary node of a
copyset goes down

l Ensuring consistency as the data grid scales up

Fault Tolerance in State Keepers

It is good practice to have three state keepers running in a production environment.
A set of fault-tolerant state keeper processes protects the data grid's run time state
information and ensures nonstop access to it. One of the state keepers is designated
the lead state keeper and supplies this information to the proxies and copyset nodes.
If the lead state keeper goes down, one of the secondary state keepers takes over as
the lead. In a fault-tolerant set of three state keepers, a quorum of two state keepers
must always be running to ensure data consistency in split brain scenarios. If a state
keeper is restarted while a quorum is running, one of the running state keepers
updates the state of the restarted state keeper. If the number of running state
keepers falls below the quorum and the state of a copyset changes (for example, a
node goes down), operations on the data grid fails. When this happens, the

TIBCO ActiveSpaces® Concepts

21 | Processes in ActiveSpaces

remaining state keepers must be brought down and then all state keepers must be
restarted.

Node

For more information on nodes, see the "Nodes" section in How Is the Data Stored in a
Data Grid?.

Fault Tolerance in Nodes

To prevent data loss, you can run up to three nodes per copyset. For production
deployments, TIBCO recommends using at least two nodes per copyset.

TIBCO ActiveSpaces® Concepts

22 | The Workflow for a PUT Operation

TheWorkflow for a PUT Operation
A client application initiates a PUT request. The request reaches the proxy. Like all the
ActiveSpaces processes, the proxy identifies the data grid by the data grid name and the
realm service URL (In TIBCO FTL 6.0.0 or later, the realm service URL is the URL of the
TIBCO FTL server). The proxy forwards the request to the appropriate primary node. The
primary node handles the processing of the data. After all the secondary nodes are
updated with the changes, the result is returned to the proxy and the proxy then shares the
result with the client application. The realm service and the state keeper run outside of the
operation datapath.

The Workflow

TIBCO ActiveSpaces® Concepts

23 | Log Levels

Log Levels
The log level determines the level of detail and the quantity of log statements. Typically,
log levels must not be adjusted because producing excess log output can affect
performance. However, there are situations such as debugging an issue where different log
levels must be configured.

ActiveSpaces uses the logging mechanism provided by TIBCO FTL. For more information,
see "Log Levels" in TIBCO FTL® Development.

The tibdg client library as well as the tibdgkeeper, tibdgproxy, and tibdgnode process can all be
configured with nondefault log levels. The client library has an API used to set the log level.
The data grid processes can be configured by using the -t command-line parameter. The
log levels are set by using one of the following forms:

element:level

or

element:level;element:level;element:level

Often, additional debug log statements can be gathered by using tibdg:debug as the log
level. The output of this command shows more log statements than the default log level
(tibdg:info). The specific syntax when used with the tibdgproxy data grid process would be:

tibdgproxy -r http://realm_url:port -t tibdg:debug -n p_01

Other log levels or elements might be requested to be set when investigating specific
issues as needed.

You can use the logs to trace client API calls on a thread basis. To trace the calls, use the
client API to set the log level to tibdgapi:debug3. This triggers the client library to produce log
statements for calls to API functions.

TIBCO ActiveSpaces® Concepts

24 | Transaction Isolation

Transaction Isolation
ActiveSpaces enforces the highest level of transaction isolation: serializable. As a result,
serialization can delay database operations as transactions wait for other transactions to
commit or roll back.

ActiveSpaces uses a pessimistic transaction model: blocking any operations that can
violate database consistency or isolation. For example, when an operation in transaction A
refers to table row R, and an operation in a second transaction B also refers to row R, then
the second operation blocks until transaction A either commits or rolls back. Similarly, an
operation within a transaction can block operations in non-transacted sessions.

TIBCO ActiveSpaces® Concepts

25 | Checkpoints

Checkpoints
ActiveSpaces checkpoints provide the ability to save the state and data of a running data

grid. A checkpoint can then be used to restore a complete data grid on the same computer,
to move the entire data grid, or to replicate a data grid to another data grid for disaster
recovery.

The data collected by a checkpoint is guaranteed to be logically consistent across the
entire data grid. A checkpoint does not contain the data from a partially committed
transaction.

On creation, ActiveSpaces checkpoint performs the following activities:

l The realm database is saved.

l The configuration of the data grid in the realm is saved.

l Each state keeper's internal governing state information is saved.

l The relevant files needed to restore each node of a data grid are saved in the
checkpoints subdirectory of each node's data directory.

Creating a checkpoint fails in the following scenarios:

l A realm is not reachable.

l A quorum of state keepers is not running.

Checkpoint Types
A manual checkpoint is created manually by using the tibdg administrative tool and a
periodic checkpoint is created automatically by configuring the data grid to create periodic
checkpoints.

Manual Checkpoints

l Initiated by using the tibdg administrative tool.

TIBCO ActiveSpaces® Concepts

26 | Checkpoints

l Are given a unique name to help with checkpoint identification

Periodic Checkpoints

l Configured at the data grid level.

l Taken at a fixed interval while the data grid is running.

l Cannot be given a name.
Both manual and periodic checkpoints can be manually removed, and are subject to

removal based on the retention setting.

TIBCO ActiveSpaces® Concepts

27 | Disaster Recovery

Disaster Recovery
Disaster Recovery is a situation where a set of running systems must be replaced by
another set of running systems due to failure, damage, loss of connectivity, or other
traumatic event. Disaster Recovery is a large scale event and is not intended to replace
fault tolerance where the failure of individual components can be recovered or otherwise
accommodated without stopping a running system.

In a disaster recovery scenario, running systems are not expected to seamlessly or
automatically failover to backup or alternative systems. Recovering from a disaster
scenario implies a substantial and potentially large scale system stoppage and a restart of
an entirely new instance of the previously running system. It is not intended for short term
outages such as normal maintenance operations.

Note: The replacement systems activated during disaster recovery are designed
to remain in operation for days, weeks, or even months depending on the
severity of the disaster.

ActiveSpaces supports disaster recovery by creating a gridset.

Gridsets
The purpose of gridsets is to help set up the disaster recovery process. A group of data
grids that share the same set of consistent data is referred to as a gridset. Each gridset has
a name, which exists in the same namespace as data grid names (For example, you cannot
have a data grid named “prod” and a gridset named “prod”). Each gridset also has a single
primary data grid. Within a gridset, there is a single authoritative schema, which is owned
by the primary data grid of the gridset.

Each data grid might belong to at most one gridset. Data grids in a gridset do not need to
have the same replication factor, number of copysets, or number of state keepers, but care
must be taken to ensure that a mirror data grid has sufficient capacity to handle the
required load if administrators choose to make it the primary data grid.

TIBCO ActiveSpaces® Concepts

28 | Disaster Recovery

Types of Data Grids
The following list differentiates the types of data grids in ActiveSpaces:

Stand-Alone Data Grids

Any data grid that does not belong to a gridset is a stand-alone data grid. All operations
included in the ActiveSpaces API are permitted on stand-alone data grids.

Primary Data Grids

Any data grid that is listed as the primary of a gridset is a primary grid. All operations
included in the ActiveSpaces API are permitted on primary grids. Primary grids are
responsible for supplying mirror grids with data on request.

Mirror Data Grids

Any data grid that is included in a gridset, but is not currently the primary of that gridset
is a mirror grid. Only read operations are allowed on mirror grids (For example, GET,
queries, iterators, and so on). Read operations are executed against the most recent
checkpoint that has been mirrored from the primary grid. Mirror grids are responsible
for requesting updates from the primary grid.

Mirroring
The process by which data is copied from one data grid to another is called mirroring.

Data mirrored between data grids is a logical copy of the user data available on the
primary grid and is copied to the mirror grid only if a checkpoint has been taken at the
primary grid (either a user-created checkpoint or a periodic checkpoint causes mirroring).
Until all copysets in the primary grid have confirmed that their data has been mirrored,
data in the checkpoint being mirrored is not available.

Bulk Mirroring

If a mirror grid has no previous checkpoints available or if the primary grid has
insufficient information to identify the rows that changed since the last mirrored

TIBCO ActiveSpaces® Concepts

29 | Disaster Recovery

checkpoint, bulk mirroring is used. During bulk mirroring, all rows present in the
checkpoint being mirrored are sent to the mirror grid.

Incremental Mirroring

ActiveSpaces attempts to minimize the data sent between grids whenever possible by
using incremental mirroring. When a mirror grid has a previous checkpoint as the
starting point, and the primary grid has sufficient information to identify all rows that
changed, only rows that were updated or deleted are sent to the mirror grid.

TIBCO ActiveSpaces® Concepts

30 | Best Practices for a Development Environment

Best Practices for a Development
Environment
In many enterprises, programmers act as administrators during the development and test
phases of a project.

To develop and test application programs that use ActiveSpaces software, deploy the
following processes:

Processes Numbers

Realm service One

State keeper One

Node One

Proxy One

Your application programs Your application programs appropriate

In a development environment, you can run all of these processes on the same host
computer.

Sample Scripts

Refer to the TIBCO_HOME/as/<version>/samples/readme.md before using the sample scripts.

The following scripts are available:

TIBCO_HOME/as/<version>/samples/scripts/as-start defines a simple data grid and starts its
component processes.

TIBCO_HOME/as/<version>/samples/scripts/as-stop stops those component processes.

TIBCO ActiveSpaces® Concepts

31 | Best Practices for a Development Environment

Sample Docker Environment

The docker-compose sample environment is provided to demonstrate how to deploy an
ActiveSpaces data grid in Docker. For more information, see TIBCO_
HOME/as/<version>/samples/docker/README.md.

Note: The installation environment of ActiveSpaces is referenced as TIBCO_
HOME. For example, on Microsoft Windows, TIBCO_HOME might be C:\tibco.

When you are ready use ActiveSpaces to scale your data beyond one computer, you can
create additional copysets and nodes in the data grid and run the nodes on separate
computers.

TIBCO ActiveSpaces® Concepts

32 | Pre-Production Checklist

Pre-Production Checklist
While developing or testing a new ActiveSpaces application, TIBCO recommends to
evaluate each item in the following checklist to confirm expected behavior prior to moving
the application to production. Some of these items may include simply understanding how
to perform the specific activity while others may involve evaluating how specific failure
scenarios may then lead to timeouts or other errors being returned to the application.

l Rolling Upgrade - At some point, an upgrade to a newer version of FTL and
ActiveSpaces is needed. Either the grid can be stopped and all grid processes
upgraded at the same time or the grid can be upgraded one process at a time in a
rolling fashion as described in the steps in the documentation.

l Monitoring - The messaging monitoring stack (InfluxDB/Grafana) provides dashboards
and stats collection for the different grid processes. This should be deployed and
connected to the FTL server used by the grid. The FTL server pushes grid stats it
collects through the tibmongateway to InfluxDB.

l Single Node Failure - A test should be done to stop the primary node in a copyset
while live ops (gets/puts/deletes) are happening. The expected behavior would be
that another node (an alive secondary node) takes over for the primary node that
stopped. Client ops may be delayed or may experience a timeout exception during
this transition period, which must be handled in the application as appropriate.

l Proxy Failure - A test should be done to stop a proxy while live ops
(gets/puts/deletes) are happening. The expected behavior would be that the client
application re-binds to a different proxy that should also be running. Client ops may
be delayed or may experience a timeout exception during this transition period,
which must be handled in the application as appropriate.

l Client Application Error Handling - Timeouts and other types of errors can occur in a
distributed system and the client application should have error handling in place to
address these scenarios (either by retrying, returning the error, etc).

l Secondary Node Sync/Catchup - At times a node may need to be stopped for an
extended amount of time (due to host maintenance, etc) and that node is considered
a dead secondary in the copyset as the primary node continues processing live
operations. When the secondary node is restarted, it needs to complete a

TIBCO ActiveSpaces® Concepts

33 | Pre-Production Checklist

sync/catchup process where it is sent any data that was missed while it was stopped.
This can involve more read or write activity (disk, network, CPU) than is typical when
just processing live operations (it also happens in parallel with ongoing live ops) so
this scenario should be exercised on representative hardware prior to production.

l Redistribution To New Copysets - As a grid grows in size, it is often necessary to
create a new copyset, which will then be given some of the existing data in the grid.
An administrative command is used to begin the redistribution of data to the new
copyset. This can involve more read and write activity (disk, network, CPU) than is
typical when just processing live operations (it also happens in parallel with ongoing
live ops). You must handle this scenario on representative hardware prior to
production.

l Live Backup/Restore or DR/Mirroring - Exercise features like live backup and restore
or DR/mirroring on representative hardware prior to production.

l Log/Status Collection - Collecting tibdg status, tibdg proxy status <proxy_name>,
tibdg node status <node_name>, all log files for grid process and the FTL server, and
the LOG file from the node data directory is often required to diagnose unexpected
behavior. Automating this collection and exercising it prior to production is
recommended.

TIBCO ActiveSpaces® Concepts

34 | Best Practices for a Production Environment

Best Practices for a Production Environment
To use ActiveSpaces software in a production environment, deploy the following processes.

Processes Minimum
Required

Description

Realm service Three (You
need at least
three
processes to
run a full
quorum.)

TIBCO recommends that you run a fault-tolerant set of
realm services. Run a quorum of realm services. Each realm
service must be run on separate host computers.

State keeper Three state
keeper
processes

To ensure high availability during a network partition or
hardware failure, each state keeper process must run on a
separate host computer. Not doing so might result in grid-
wide data loss. At any given time, you must maintain a
quorum of running state keepers. To run more than one
state keeper, configure three state keepers and ensure you
have at least two running state keepers.

Node Two nodes per
copyset

For greater data protection you can run three nodes per
copyset. In a fault tolerant setup, if there are more than
one node, one node acts as a primary node and the other
nodes are secondary nodes.

Note: Additional copies can become expensive in two
ways: Increasing the node count by one adds one
complete copy of all the data.

Every node process must run on a separate host computer.
Usually this requirement determines the number of host
computers you must maintain. For example, a data grid
with three copysets and two nodes per copyset requires six
nodes, all on separate hosts. Increasing to three nodes per
copyset would require nine nodes, all on separate hosts.

TIBCO ActiveSpaces® Concepts

35 | Best Practices for Cloud Environments

Processes Minimum
Required

Description

Proxy One proxy
process

You can run additional proxies to increase the capacity for
client programs and to improve response time. For best
results, run proxy processes on a separate host computer.

Your
application
programs

Run as many
processes as
appropriate.

Components Sharing a Host Computer

You can reduce number of host computers in a production environment by running more
than one component per host.

For example, you can run a realm service, a state keeper, a node, and a proxy, all on one
host. (In contrast, do not run two state keepers on the same host.) For effective fault
tolerance, run the nodes of each copyset on separate host computers.

Warning: Combining component processes on a host computer increases the risk
that a single point of failure on the host can disrupt all those processes
simultaneously. Assess the risk tolerance of your enterprise.

Best Practices for Cloud Environments
For cloud environments, TIBCO recommends using a persistent, local Solid-State Drive
(SSD) type that provides consistent performance and does not artificially throttle the Input
Output Operations per Second (IOPS). An example of throttling IOPS is the burst throttling
done by gp2 SSD types on AWS. For more information on different EBS volume types
provided by Amazon, look for "Amazon EBS Volume Types" on
https://docs.aws.amazon.com. For information on monitoring the performance of your EBS
volume, look for "EBS Performance - I/O Characteristics and Monitoring" on
https://docs.aws.amazon.com.

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/

TIBCO ActiveSpaces® Concepts

36 | Programming with ActiveSpaces

Programming with ActiveSpaces
These concepts and definitions pave the way to a more detailed understanding of
applications programming with ActiveSpaces software.

Data Grid

A distributed database, including all the component processes that implement it.

Connection

An application program connects to a data grid. A Connection object is analogous to a
traditional database connection.

Session

An application program interacts with a data grid through one or more Session objects.
Each session insulates the data grid interactions within one program thread from the
interactions in other threads.

A session can be transacted or non-transacted. GET, PUT, and DELETE operations in a
transacted session occur within a transaction, and do not take effect until the program
explicitly commits the transaction.

A session can be used to define the tables and indexes of the data grid by using SQL
Data Definition Language (DDL) statements such as CREATE TABLE, DROP TABLE,
CREATE INDEX, and DROP INDEX.

Table

An ActiveSpaces data grid organizes and presents data as rows in tables, like a
traditional relational database.

Administrators define tables within the data grid.

Programs can GET a row from a table, PUT a row into a table, and DELETE a row from a
table.

Programs can query a table for the rows that match a filter.

TIBCO ActiveSpaces® Concepts

37 | Programming with ActiveSpaces

Primary Key

Each table distinguishes a primary key, or more briefly, the key.

Values of the key are unique: no two rows in a table have the same key value.

Secondary Index

A table can have zero or more secondary indexes, which facilitate queries. The tibdg tool
can be used to create a secondary index on a table by using the index create command.

Iterator

An iterator is associated with a single table. An application can use an iterator to
perform queries on a table. An iterator always returns entire rows from a table for its
results.

Statement

A Statement is used to execute SQL statements. A Statement is not tied to a particular
table. The table to act on is obtained from the SQL string used to create the Statement
object. Statements can be used to execute SQL Data Manipulation Language (DML)
statements. SQL DML statements include SELECT, INSERT, and so on.

ResultSet

A ResultSet contains the results of a SQL SELECT statement executed by using a Statement
object. A ResultSet is used to iterate over the rows that satisfy the conditions of the
SELECT statement. The columns of the rows in ResultSet are determined by the select list
specified in the SQL SELECT statement.

Metadata

Metadata contains descriptive information about the data grid. There are two types of
metadata: GridMetadata and ResultSetMetadata.

GridMetadata is retrieved from a Connection object. GridMetadata can be used to
programmatically retrieve ActiveSpaces version information, the data grid name, and
information about the tables that have been defined in the data grid. The table
information includes the names of the tables that have been defined and also the
information about the columns and indexes defined for each table.

ResultSetMetadata is retrieved from a ResultSet object. ResultSetMetadata can be used to find
information about the columns in each row of a ResultSet. This column information
includes the number of columns in a row, the labels and data types of the columns,
whether or not a column can contain or return NULL values, and so on.

TIBCO ActiveSpaces® Concepts

38 | Programming with ActiveSpaces

Structuring Programs
These steps outline the main structural components of most application programs that
access an ActiveSpaces data grid. The steps assume that a table has already been
configured for the data grid. When updating and querying data in ActiveSpaces, you can
use Table objects or Statement objects or both in your application. Table objects provide a
key/value interface to the data grid and Statement objects provide a SQL interface to the
data grid.

An Overview of the Tasks

The following procedure summarizes the tasks ActiveSpaces application programs perform.

Procedure
1. Initialize the ActiveSpaces objects as listed in Task A: Initializing ActiveSpaces

Objects.

2. On a specific table in the data grid, perform the appropriate operations as listed in
Task B: Performing Data Grid Operations .

3. After you are done, clean up the objects as listed in Task C: Cleaning up and Closing
the Connection.

Task A: Initializing ActiveSpaces Objects

Procedure
1. Initialize the ActiveSpaces library, if required.

l C API - call tibdg_Open()

l Java API - not required

l Go API - not required

2. Connect to a data grid. For details, see Connection.

3. Create Session objects.

See Session.

4. Create objects that stay open for the duration of the Connection.

TIBCO ActiveSpaces® Concepts

39 | Programming with ActiveSpaces

a. Open Table objects to execute key/value ops on the table. See Table.

b. Create TableListener objects to monitor events corresponding to changes in the
table. See Table Listener.

c. Create Statement objects to support executing the same SQL more than once
(commonly known as a prepared statement). See Statement.

Task B: Performing Data Grid Operations

Procedure
1. Access the data grid by using the appropriate APIs.

a. Use key/value or iterator methods of a table object. See the "Table
Operations" section in Table.

b. Query the data grid by executing queries from SQL SELECT statements. See
Statement.

c. Modify the data grid by executing updates from SQL DML statements. See
Statement.

2. Close any object created when accessing the data grid.

a. Destroy all Row objects.

b. Close all Iterator objects.

c. Close all ResultSet objects.

Task C: Cleaning up and Closing the Connection

Procedure
1. Close all Statement objects.

2. Close all TableListener objects.

3. Close all Table objects.

TIBCO ActiveSpaces® Concepts

40 | Programming with ActiveSpaces

4. Close all Session objects.

5. Close the data grid Connection object.

Connection
Programs begin their interactions with an ActiveSpaces data grid by first creating a
Connection object. The Connection object can then be used to retrieve grid metadata or to
create Session objects.

From the Connection object, a program can create one or many Session objects.

Grid Metadata

Grid metadata is retrieved from a Connection object by calling the get grid metadata API.
Each time the GridMetadata is retrieved, the information returned reflects the current table
information in the data grid.

A program must destroy the GridMetadata object after it has finished using it and before
making any subsequent calls to retrieve updated GridMetadata.

To learn more about grid metadata, see the section on "Metadata" in Programming with
ActiveSpaces.

Table Metadata

Table information is retrieved from the GridMetadata object as a TableMetadata object. A
TableMetadata object is retrieved by using the table's name.

If the application program does not know the names of the tables that have been defined
in the data grid, the GridMetadata object provides a method to get an array of all table
names that have been defined. This array can then be used to get a single TableMetadata
object.

A column name or index name is used to get information about a particular column or
index from a TableMetadata object. If the application program does not have the names of
the columns or indexes of a table, the TableMetadata object provides methods to get an
array of the column names or index names.

A separate method to get the name of the primary index is provided by the TableMetadata
object. The name of the primary index is then used to retrieve information about the

TIBCO ActiveSpaces® Concepts

41 | Programming with ActiveSpaces

columns of the primary index. The columns of the primary index make up the primary key
of the table.

The TableMetadata object and strings retrieved from it do not have to be destroyed as these
objects are owned by the GridMetadata object and are destroyed when the grid metadata is
destroyed.

Session
Programs use sessions to insulate data grid operations within program threads and to
group operations into atomic transactions.

Sessions and Threads

It is good practice to create a separate session for each program thread that accesses the
data grid.

Programs must use sessions in a thread-safe way. That is, two threads must not
simultaneously access the same session. Violating this constraint can yield unpredictable
results.

Sessions and Transactions

Each session can be either transacted or non-transacted. Programs determine this
semantic property when creating each session.

In a transacted session, all GET, PUT, UPDATE and DELETE operations occur within a
transaction, which is bound to the session. The session implicitly starts the transaction.
Programs explicitly call the session's commit and rollback methods. (As these methods
complete, they automatically start a new transaction in the session.)

If a program operates within several open transactions simultaneously, use a separate
session and thread for each transaction.

In a nontransacted session, GET, PUT, UPDATE, and DELETE operations are immediate: that
is, when the method completes, the effect of the operation is also complete.

However, operations in a transacted session can block operations in a non-transacted
session. For further explanation, see Transaction Isolation.

Only GET, PUT, UPDATE and DELETE operations are affected by a transacted session, the
corresponding commit, and rollback APIs. Other commands such as iterators, queries, and

TIBCO ActiveSpaces® Concepts

42 | Programming with ActiveSpaces

DDL updates do not have different behavior when running on a transacted session versus a
non-transacted session.

Sessions and Defining Tables

After a session has been created, it can be used to define tables programmatically. For
more information, see "Defining a Table by Using SQL DDL Commands" in TIBCO
ActiveSpaces® Administration.

Table
Table objects represent data grid tables within an application program.

Tables and Sessions

A program opens a table object by calling a session's open table method. The program can
use the table object's methods to operate on the corresponding table in the data grid.

Opening a table object does not lock the table in the data grid.

If the session is transacted, then table operations occur within the session's transaction.
Within a transaction you can interact with multiple tables.

If the session is non-transacted, then table operations are not transacted.

Table Operations

Tables support the following data grid operations:

l PUT a row into the table

l GET a row of the table

l UPDATE a row in the table.

l DELETE a row from the table

l Create an iterator to present the results of a table query

TIBCO ActiveSpaces® Concepts

43 | Programming with ActiveSpaces

Primary Key

Every table requires a primary key, which can consist of one or more columns. The data
type of primary key columns can be long, string, or datetime.

Examples of primary keys include employee number, invoice number, or MAC address.

The value of the primary key always remains unique across all the rows of the table. That
is, database operations can never create two rows with the same key value; instead, they
overwrite data in the existing row with that key value.

Creating Tables

Before a program can use a table or its rows for operations, the table must first be defined.
A table can be defined programmatically by using a Session object or an administrator can
define a table by using the ActiveSpaces administration tool. For details, see "Defining a
Table" and "Defining a Table by Using SQL DDL Commands" in TIBCO ActiveSpaces®
Administration.

PUT
The PUT operation adds a row to a data grid table.

Before calling the put() method, your program must first create a row object and set its
columns with values.

The row object must contain a value in all columns of the primary key. The value of the key
is unique. If the table already contains a row with that key value, then the PUT operation
replaces the existing row within the table. The PUT operation overwrites any unchanged
columns in the row. The columns that are not part of the primary key can either contain
data or be NULL.

GET
The GET operation retrieves a row of a data grid table.

Before calling the get() method, your program must first create a row object and set a value
in all columns of the primary key. The value of the key is unique.

TIBCO ActiveSpaces® Concepts

44 | Programming with ActiveSpaces

If the table contains a row with that key value, then the GET operation returns the contents
of that row in a new row object. If the table does not contain a row with that key value,
then the method returns null.

UPDATE
The UPDATE operation modifies rows that already exist in a data grid table. Before calling
the update() method, you must first create a row object and set the primary key columns to
uniquely identify the row that is going to be updated. Next, set any non-primary key
columns that must be updated. Columns that are not set are not modified in the existing
row.

Note: You cannot use the UPDATE operation to modify the primary key fields.

If a row with the primary key exists in the table, the update() method returns 1 whether or
not any columns are updated. If a row with the primary key does not exist in the table, no
update is done and 0 is returned.

DELETE
The DELETE operation deletes a row from a data grid table.

Before calling the delete() method, your program must first create a row object and set a
value in all columns of the primary key. The value of the key is unique.

If the table contains a row with that key value, then the DELETE operation deletes that row
from the table.

If the table does not contain a row with that key value, then the method returns without
changing the table.

Iterator
A table iterator is used to iterate over all of the rows or a specific subset of the rows in the
table. The create iterator operation submits a query on a data grid table and creates an
iterator object to present the query results.

Supply a filter string as an argument to the create iterator operation. The filter string
follows the syntax of the WHERE clause of a SQL SELECT statement excluding the WHERE

TIBCO ActiveSpaces® Concepts

45 | Programming with ActiveSpaces

keyword. All rows in the table for which the filter string evaluates to true are returned by
the iterator.

An iterator object receives batches of matching rows from the data grid. The prefetch
property of the iterator determines the batch size.

Properties can be set when an iterator is created thereby affecting the query behavior. For
more information, see Data Consistency for Queries.

The iterator object presents the program with the individual rows that match the query
one at a time.

To release resources within the data grid component processes, the program must close
the iterator object and close each row object retrieved by using the iterator.

An implicit timeout limits the lifespan of iterator objects. Program calls that access an
iterator after that timeout elapses return an error.

Avoid queries that result in full table scans, which can be resource-intensive and time-
consuming.

Table Listener
A table listener is used to monitor events corresponding to changes in a table. A table
listener is created from a specific table.

When you use a table listener, you can either monitor the contents of a specified table or a
subset of rows in a specific table. For example, by using a filter, your application can track
a table containing customer data and more specifically, can track the activity in a
particular region to know when new customers are added or deleted, or when customers
move to another region.

Events

An event indicates that the data in a table has changed.

An event can be of the following types:

l PUT: Indicates that new data has been added to the table. PUT is also used to
indicate that existing data in the table has been updated.

PUT events have a current value, which is a copy of the row that was added to or

TIBCO ActiveSpaces® Concepts

46 | Programming with ActiveSpaces

updated in the table. If the PUT operation replaces an existing row, or the UPDATE
operation modifies an existing row, the event additionally has a previous value. The
previous value is a copy of the row before the PUT or UPDATE operation.

l DELETE: Indicates that a row has been deleted from the table. DELETE events have a
previous value, which is a copy of the row before the DELETE operation.

l ERROR: Indicates that something has happened in the system that indicates that the
flow of events is disrupted. ERROR events have an error code and an error
description. The application must destroy the table listener. Depending on the error
code, it might or might not make sense for the application to re-create the table
listener. The ActiveSpaces API documentation provides more details on the specific
error codes that are possible.

l EXPIRED: Indicates that a row has expired. When rows are removed from a table due
to expiration, table listeners on the table receive EXPIRED events when the expired
rows match the table listeners’ filters.

When creating a table listener, you must specify the table that is the source of the events
of interest and a callback function that is invoked when events are delivered to the
application. The callback function executes in a thread that is internal to the ActiveSpaces
client library and is expected to complete in a timely fashion. The client library retains
ownership of the events and the rows they contain so any data that is required outside of
the callback must be copied and managed by the application itself.

Filtering Events
When the table listener is being created you can optionally specify a filter string to further
narrow the scope of events received.

The filter string specifies the criteria that events must match in order for them to be
delivered to the table listener. The filter is equivalent to the WHERE clause of a SQL SELECT
statement, excluding the WHERE keyword, and is applied to both the current and previous
values for the row that has changed.

For example, in a table containing customer data with a column called state, the filter state
= “CA” limits the events delivered to only those involving customers in California.

Listening to Specific Event Types
When the table listener is being created, you can optionally provide a Properties object
containing a list of event types that restrict the listener to only receiving events of those

TIBCO ActiveSpaces® Concepts

47 | Programming with ActiveSpaces

types. This feature is commonly used to listen to expired events, but to ignore any PUT or
DELETE events that occur on the table.

The property name is TIBDG_LISTENER_PROPERTY_STRING_EVENT_TYPE_LIST and the
property value must be a comma separated list of string event types. The valid choices are
any combination of "put", "delete", and "expired". For example, to listen to only expired events,
you would use a property value of "expired". To listen to both expired events and delete
events, you would use a property value of "delete,expired".

Statement
Statement objects are used to run SQL commands on the data grid. Queries (SELECT
statements) and data manipulation language (DML) SQL commands can be run by using
Statement objects. Statement objects are created by invoking the createStatement() method on
the Session object.

A Statement object is created for each individual SQL command. A Statement can be run
multiple times and must be closed when it is no longer needed.

You can create a query by using a SELECT statement. Rows in a table can be updated by
using an UPDATE, an INSERT, or an INSERT OR REPLACE statement. Rows can be removed
from a table by using a DELETE statement.

The INSERT statement is supported for both, transacted and non-transacted sessions. For
more information about the INSERT statement, see The SQL INSERT Statement.

For more information about INSERT OR REPLACE statement, see The INSERT OR REPLACE
Statement.

The DELETE statement is supported for non-transacted sessions only. For more information
about the DELETE statement, see The SQL DELETE Statement.

The UPDATE statement is supported for non-transacted sessions only. For more
information about the UPDATE statement, see The SQL UPDATE Statement.

Properties
Statement properties affect the behavior of the statement. Statement properties can be set
when a statement is first created or when a Statement is executed.

TIBCO ActiveSpaces® Concepts

48 | Programming with ActiveSpaces

Examples of the properties that can be set are:

l Query prefetch - Number of rows to return in a batch when a query is first executed
and each time more rows are requested while iterating through the results.

l Query fetch timeout - Number of seconds to wait for a batch of rows to be returned
before the method waiting for the rows time out.

For specific information about Statement properties, see each language API's
documentation for the following tasks:

l Creating a Statement from a Session object

l Executing a query by using a Statement object

l Executing a DML command by using a Statement object

Parameters
Parameters serve as placeholders for values in a SQL command. Parameters are used to
separate the data of a SQL command from the command itself. This can be useful when
the same command can be run multiple times by just varying the data of the command
thereby increasing the performance of the data grid. Parameters can be used to prevent
SQL injection attacks in queries.

Parameters in a SQL command are specified by using '?' (question mark). For SELECT and
DELETE statements, parameters are supported for the values of comparisons in WHERE
clauses. For the INSERT statements, parameters are supported for column values. For
UPDATE statements, parameters are supported for the values in SET clauses and for the
values in WHERE clauses.

The Statement interface provides methods for setting the values of any parameters used in a
SQL command. Separate methods for setting parameter values are provided for each data
type supported by ActiveSpaces. The setNull() method is provided to specify that a
parameter's value must be empty (SQL NULL). All parameter values must be specified
before running the statement or an error is returned. Parameters are numbered starting
with 1.

Executing Statements
The Statement interface provides two methods for executing the statement. The executeQuery
() method is used to execute statements, which have been created by using a SELECT

TIBCO ActiveSpaces® Concepts

49 | Programming with ActiveSpaces

command. The executeQuery() method returns a ResultSet object that contains the resulting
rows of a query.

The executeUpdate() method is used to execute statements that have been created by using
a DML command. The executeUpdate() method returns the number of rows that were
successfully processed. If the wrong method is used to execute a statement, an error is
returned. For information about the current DML commands supported, see Modifying Data
in a Table.

ResultSet
A ResultSet contains the set of rows that make up the result of a query. A ResultSet object is
returned when executeQuery() is invoked on a Statement created for a SELECT statement. The
ResultSet object must be closed when it is no longer needed. A ResultSet object is returned
even if no rows were found for the query.

The ResultSet object contains methods that allow you to iterate over the rows of the query
result. A ResultSet object can be iterated over only once. The hasNext() method is used to
check if there is a row that can be retrieved. The next() method is used to retrieve the next
row object of the result.

Row Objects
A Row object retrieved from ResultSet contains the columns specified in the select list of a
query. Each Row object retrieved from ResultSet must be closed when it is no longer
needed. A Row object contains the methods to find out the data type of each of its
columns, whether a column has a value, and the methods to retrieve a column's value by
its data type.

The label of a column in the select list is used to access the data for each column. The
columns of a row are accessed by using the label specified for the column in the select list
using ActiveSpaces. For example,

SELECT col1 AS myname FROM table1

where myname is used as the column label.

If a label was not specified for a column in the select list, the column's name from the
table is used as the label. For example,

TIBCO ActiveSpaces® Concepts

50 | Programming with ActiveSpaces

SELECT col1 FROM table1

where col1 is used as the column label.

If a label was not specified and the column of the select list is an expression, the
expression string is used as the label. For example,

SELECT col1, date('now') FROM table1 WHERE col1 <= 10

where the expression string, date('now'), is used as the column label.

When a label is specified for a column, or the column is an expression, the label or
expression must be used exactly as it was specified in the original query string and is case-
sensitive. If a label was not specified for a column and the column is from the table, the
label is not case-sensitive.

ResultSet MetaData
ResultSetMetadata can be used to discover information about the columns that comprise the
rows of a query result. The ResultSetMetadata for a SELECT statement can be retrieved by
invoking the getResultSetMetadata() method of the Statement object.

The ResultSetMetadata information includes the number of columns in a result row, each
column's data type, the label given to the column, the name of the column from the table,
and the name of the table for each column.

If a label was not specified for a column, the name of the column from the table is used as
the label. If a label was not specified for a column and the column is not from a table, but
is an expression that is calculated as part of the result, the entire expression string is used
as the label. It is always safest to access a column of a ResultSet by its label as a ResultSet
column always has a label but might not necessarily have a name from a table.

SQL Identifiers
TIBCO recommends administrators to define table and column names that follow the SQL
identifier rules. For details, see "Column Names" in TIBCO ActiveSpaces® Administration.

In some situations, a data grid might contain non-standard table or column names. For
example, a table copied from a legacy database might have columns with names that
contain a space character or there might be a table or column name with a SQL keyword.

TIBCO ActiveSpaces® Concepts

51 | Programming with ActiveSpaces

If you must refer to a non-standard identifier in a SQL statement, surround the identifier
with any of the following escape characters:

Technique Example

Double quotes "column name"

Escaped double quotes \"column name\"

Square brackets [column name]

Back ticks (accent grave) `column name`

Column Data Types
All data is stored in tables within the ActiveSpaces data grid. The columns of a table can be
defined by using the following data types only:

l long

l double

l string

l datetime

l opaque

When using table operations to store data into the data grid, the Row API provides methods
for setting each of these data types into the columns of a row before sending that row to
the data grid.

When using SQL statements, for information on how these data types map to SQL data
types, see the section "SQL Data Type Mapping" in TIBCO ActiveSpaces® Administration.

tibDateTime
Date and time information can be stored in ActiveSpaces as a tibDateTime type as an
alternative to storing a date as a string, long, or double value. tibDateTime consists of two 64-
bit integers; one for the number of seconds since January 1, 1970 (Unix epoch), and one for

TIBCO ActiveSpaces® Concepts

52 | Programming with ActiveSpaces

the number of nanoseconds after the time that the sec component denotes.

Note: ActiveSpaces does not support time zone information as a part of date
and time values. In ActiveSpaces, tibDateTime values are UTC time. When
inserting a date or time string into a column defined with datetime data type, an
error occurs if a non-UTC time zone is used.

Using tibDateTime Columns with tibdg and the Client API
ActiveSpaces tables can be defined by using tibdg with columns of the datetime type that are
mapped internally to a tibDateTime object for storing data into rows of the table as shown in
the following example:

tibdg table create mytable empid long
column create mytable startdate datetime

Columns that are mapped internally to tibDateTime can also be used as primary keys or
secondary indexes. For example, to define a secondary index using the startdate column
created in the previous tibdg command, use the following command:

tibdg index create mytable myindex startdate

For more information on using tibdg to define tables and indexes, see the topic "Defining a
Table" in TIBCO ActiveSpaces® Administration.

After the table and indexes are defined, you can use the ActiveSpaces Client API to store
values into and retrieve values from columns defined as datetime. For example, to use the
Client API to store values into a row of a table, use the following C API function:

void tibdgRow_SetDateTime(tibEx e, tibdgRow row, const char *columnName, const tibDateTime
*value)

To use the Client API to retrieve values from a row of a table, use the following C API
function:

tibDateTime* tibdgRow_GetDateTime(tibEx e, tibdgRow row, const char* columnName)

TIBCO ActiveSpaces® Concepts

53 | Programming with ActiveSpaces

Populating tibDateTime

Windows and Unix platforms use different structures for retrieving date/time data. The
following are examples of how you can get the current date and time on each platform and
populate a tibDateTime object:

Unix platforms

#include <sys/types.h>
#include <sys/time.h>
#include “tibdg/tibdg.h”

struct timeval timebuffer;
(void) gettimeofday(&timebuffer, NULL);

tibDateTime dt;
dt.sec = timebuffer.tv_sec;
dt.nsec = timebuffer.tv_usec * 1000;

Windows

#include <sys/timeb.h>
#include “tibdg/tibdg.h”

truct __timeb64 timebuffer;
ftime64_s(&timebuffer);

ibDateTime dt;
t.sec = timebuffer.time;
dt.nsec = timebuffer.millitm * 1000000;

The ActiveSpaces API can then be used to store the tibDateTime object into a row that is
then stored into a table in the data grid.

Using tibDateTime Columns with SQL Commands
You can use tibDateTime columns with SQL commands.

The SQL CREATE TABLE command can be used to define a table with columns that map
internally to a tibDateTime object by using the following SQL data types:

TIBCO ActiveSpaces® Concepts

54 | Programming with ActiveSpaces

l DATETIME

l DATE

l TIME

l TIMESTAMP

The following SQL CREATE TABLE command is an example of creating a table with a
column of DATETIME type:

CREATE TABLE IF NOT EXISTS mytable (empid BIGINT PRIMARY KEY, startdate DATETIME)

The following SQL CREATE INDEX command is an example of defining a secondary index for
a table that includes a DATETIME column:

CREATE INDEX IF NOT EXISTS myindex ON mytable (startdate)

Populating tibDateTime Columns

After you have created a table and defined its indexes, you can store data into a DATETIME
column as follows:

INSERT INTO mytable (empid, startdate) VALUES (1, '2020-09-20 00:00:00.000000000Z')

YYYY-DD-MM HH:MM:SS.SSSSSSSSSZ is the default format of a date or time string that is
used with SQL commands.

To facilitate inserting data, ActiveSpaces also provides support for a subset of ISO 8601
date or time strings. These strings are in the following format:

YYYY-MM-DD[Thh.mm.ss[.s][TZD]]

where

T is used to delimit the date from the time.

.s indicates fractional seconds and can be up to nine digits long.

A ".'' by itself is not valid.

TZD is the time zone designator.

TIBCO ActiveSpaces® Concepts

55 | Programming with ActiveSpaces

ActiveSpaces supports storing time only in UTC, so TZD can be one of the following values:

l Z

l +00:00

l +0000

l +00

Note: A space is not allowed between the time and TZD.

Therefore, the following INSERT statement is equivalent to the previous one mentioned in
this topic:

INSERT INTO mytable (empid, startdate) VALUES (1, '2020-09-20')

Query tibDateTime Columns

Data stored in tibDateTime columns can be queried using a SQL SELECT statement as
follows:

SELECT * FROM mytable WHERE startdate='2020-09-20 00:00:00.000000000Z'

When querying tibDateTime columns, you must always use the default date or time string
format. The only exception to this rule is when you are trying to directly retrieve a single
row of a table by using only its primary key. In such a case, you can use a date/time string
in the ISO 8601 format mentioned in the tibDateTime section. For example, if you had
defined your table using the following command:

CREATE TABLE mytable (empid BIGINT, startdate DATETIME, PRIMARY KEY (empid, startdate))

then in the WHERE clause of your SELECT statement, you can use ISO 8601 formatted
date/time string as shown in the following example:

SELECT * FROM mytable WHERE empid=1 AND startdate='2020-09-20'

or

TIBCO ActiveSpaces® Concepts

56 | Programming with ActiveSpaces

SELECT * FROM mytable WHERE empid=1 AND startdate='2020-09-20T00:00:00+00:00'

Querying a Data Grid Table
Application programs have two options available for querying the data in the data grid:

l Table iterator

l Session statement

A table iterator is useful for basic queries on a table where all of the columns of a table are
expected in each row of the query results.

A Session statement is used to execute SQL SELECT statements. Therefore, you have more
control over the columns in the query results and also on whether the results must be
aggregated or sorted. Using the statement, you can optionally set parameters in a WHERE
clause as opposed to specifying an entire string for the filter in a table iterator.

Table Iterator
A table iterator is used when you have created a table object and you have to iterate over
all the rows or a specific subset of the rows in the table.

You can create a table iterator to query the contents of the table and then iterate over the
query results. Using a NULL filter string when creating the table iterator returns all of the
rows of the table. Providing a non-NULL filter string when creating a table iterator controls
the rows of a table that are included in the query results for the iterator.

The filter string format follows the syntax of the WHERE clause of a SQL SELECT statement
excluding the WHERE keyword as shown in the following example:

column_name > 100

When applied to a row of the table, the filter string results in a boolean value indicating
whether or not a row must be included in the results of a query. See The WHERE Clause.

The results of a query using a table iterator contain all columns of a table rather than a
subset of specific columns. That is, all queries using a table iterator implicitly begin with

TIBCO ActiveSpaces® Concepts

57 | Programming with ActiveSpaces

SELECT * FROM table_name WHERE. Nonetheless, programs do not specify this string, they
specify only the filter that would follow the WHERE keyword.

Application programs cannot influence the order of the results.

Session Statement
A Statement is created from a Session object and is not tied to a particular table object. A
Session statement is created by using a SQL SELECT string and the table for the query is
determined by parsing the SELECT string.

The SQL SELECT string supported has the form:

SELECT <select list> <from clause> [<where clause>] [<group by clause>] [<order by clause>]
[<limit clause>]

For a complete description of each component of the SELECT syntax, see the subsections
under The SQL SELECT Statement.

For more information about statements, see Statement.

Advantages of a Session Statement over a Table Iterator

Using a Session statement to execute SQL SELECT statements has the following advantages
over using a table iterator:

l You do not have to create a Table object before you can query a table.

l The same query can be run multiple times using a single Statement object.

l To aid with data security, you can use parameters to decouple the query from the
data values used in the query.

l Parameters can be used to vary the result of your query each time it is run.

l You can specify a subset of the columns of a table to be returned in the rows of the
query results.

l Aggregation functions can be applied to the query results.

l A GROUP BY clause can be used to aggregate the results of a query.

l An ORDER BY clause can be used to sort the results of a query.

TIBCO ActiveSpaces® Concepts

58 | Programming with ActiveSpaces

l A LIMIT clause can be used to set an upper bound to the number of rows a query can
return.

Data Consistency for Queries
When querying a table, the query processes the data in the table at the time the query is
initiated.

As the table data is distributed across the nodes in a data grid, ActiveSpaces provides
properties that affect whether or not the table data used for the query is consistent, with
respect to partially committed transactions, across all nodes of the data grid. There are
two data consistency levels that can be applied to queries:

Global Snapshot (default level)

Data retrieval is synchronized across copysets to ensure that the data accessed by the
query is from committed transactions.

Snapshot

This consistency level makes no guarantee that the data accessed by the query is not
from partially committed transactions. With snapshot level consistency it is possible that
data from a committed transaction has not been written to all copysets when the query
executes. Therefore, the rows of the query result can contain data from a partially
committed transaction.

For both table iterators and session statements, you can specify a consistency property
when the objects are first created. If a consistency property is not specified, the default
consistency level of global snapshot is used.

For statements, you can override the consistency level each time the query is run by
specifying a consistency property when the method to execute the query is invoked.

Query snapshots are inexpensive if the table data changes slowly, but can become
expensive if the data changes rapidly. To limit memory growth within data grid
components, administrators can limit the number of concurrent snapshots.

Regardless of the data consistency level used, rows returned for a query are not locked by
the session.

For more information about setting statement properties, see Properties.

For more information about setting table iterator properties, see Table Iterator.

TIBCO ActiveSpaces® Concepts

59 | Programming with ActiveSpaces

The SQL SELECT Statement
A SQL SELECT statement is used to query data in the data grid. The table to query is
determined by parsing the SELECT string when creating the Statement object. The rows
that satisfy the query are returned in a ResultSet. A WHERE clause can be used in the
SELECT statement to control which rows of a table must be used in the query result. An
ORDER BY clause can be appended after the WHERE clause to sort the resulting rows of the
query. A LIMIT clause can be appended as the last clause of the SELECT string to control
the number of rows ultimately returned by the query.

SQL keywords, table, and column identifiers are not treated as case sensitive when used in
a SQL SELECT statement. However, string values are treated as case sensitive and must be
surrounded by single quotes.

The Syntax of a SELECT Statement
The SELECT syntax supported has the following format:

SELECT <select list> <FROM clause> [<WHERE clause>] [<GROUP BY clause>] [<ORDER BY
clause>] [<LIMIT clause>]

Notice that <FROM clause> is not optional. Use of a SELECT statement with ActiveSpaces is
always intended to query data in the data grid and the table to query must always be
specified by including <FROM clause>.

The order of rows returned for a query is non-deterministic unless an ORDER BY clause is
included in the SELECT statement.

Unsupported SQL Features
ActiveSpaces does not support the following SQL features:

l GLOB operator

l UNIQUE

l EXISTS

l ALL

l DISTINCT (except with GROUP_CONCAT function)

TIBCO ActiveSpaces® Concepts

60 | Programming with ActiveSpaces

l HAVING

l Nested queries

l Joins

l Window functions

The FROM Clause
The FROM clause specifies the table to query. When using ActiveSpaces, a FROM clause is
required in a SELECT statement. The FROM clause syntax supported by ActiveSpaces is the
following:

FROM <table name> [[AS] <correlation name>]

A correlation name is an identifier that is associated with the specified table and can be
used in place of the table name anywhere within the SELECT statement. The following
code snippet serves as an example:

SELECT t.* FROM mytable AS t WHERE t.col1 = 100

The Select List
The select list specifies the columns of the rows in the query result. These columns are not
necessarily columns from a table, but may be columns whose value is derived by applying
a function or equation to the rows of the table selected for the query.

ActiveSpaces uses the following select list syntax:

[<identifier>.]<asterisk> | <value expression> [[AS] <label>]

Asterisk
An asterisk, '*', used in the select list refers to all columns of the table that is specified in
the FROM clause. Each column of the table is included exactly once in each row of the
query results.

TIBCO ActiveSpaces® Concepts

61 | Programming with ActiveSpaces

To select all the columns of a table or correlation, use ".*' (dot asterisk) as the suffix as
shown in the following example:

SELECT mytable.* FROM mytable

When an asterisk is used in the select list, the names of the columns as defined for the
table are used as the label when accessing the columns in the rows of the query result.

Value Expression
A value expression specifies the value returned by a particular column for each row of the
query results.

A value expression can consist of the following items:

l Column Identifiers

l Functions

l Literals (For example, 1234, 'somestring')

l Expressions (For example, x+y, x AND y)

A value expression can be given a label to use when accessing the data for each column in
a row of the query results as shown in the following example:

SELECT col1 AS c1 FROM mytable

If a value expression is not given a label, the entire string used to specify the value
expression is used as the label as shown in the following example:

SELECT col1, col2 + col3, ‘row totals’ FROM mytable

To access the columns in the rows of the query result for the SELECT statement above, the
following labels would be used:

l 'col1'

l 'col2 + col3'

l 'row totals'

For more information about expressions, see SQL Expressions.

TIBCO ActiveSpaces® Concepts

62 | Programming with ActiveSpaces

Restrictions on Using a Value Expression
A value expression can be composed of any of the items described in Value Expression, but
with the following restrictions:

l Functions must be supported by ActiveSpaces.

l A value expression cannot contain an aggregate function.

l A select list that contains an aggregate function cannot also contain a value
expression.

l A value expression cannot contain parameters.

l A value expression cannot contain SELECT statements.

l Nested expressions are limited to a depth of 100.

Expressions are parsed into a tree for processing. If you reach the expression depth limit,
consider using parentheses to reduce the depth of your expression

For information about the limitations of using value expressions that are aggregate
functions, see the section on "Aggregate Functions" in Functions Used in The Select List .

CASE Expressions used in the Select List
You can use CASE expressions in the select list of SELECT statements.

For more details on CASE Expressions, see CASE Expressions.

Using a CASE expression in the select list of a SELECT statement can either help categorize
results based on their values or help apply different calculations to a result based on its
value. For example, the following query can be used to find out the number of employees
that are in 'in-state' versus 'out-of-state':

SELECT empid, CASE state WHEN ‘IL’ THEN ‘in-state’ ELSE ‘out-of-state’ END AS location FROM
employee

Case Expression Restrictions
In addition to the restrictions on value expressions listed in Restrictions on Using a Value
Expression, the use of a CASE expression in a select list has the following additional
restrictions:

TIBCO ActiveSpaces® Concepts

63 | Programming with ActiveSpaces

l CASE expressions cannot contain functions that use the DISTINCT keyword.

l All resulting values of the CASE expression must be of the same data type. The
resulting data types are not evaluated until the query is executed. Therefore, it is
possible that a bad SELECT statement can be created, which later causes an
exception to be returned after executing the query.

l CASE expressions that contain subexpressions are parsed, but do not return an error.

Additionally, an internal limit is applied to nested CASE expressions to prevent the
exhaustion of resources. This limit is different from the expression depth limit and can vary
based on the composition of the query. The limit is applied during the parsing of the
nested CASE expression. When the limit is reached, the following error is returned:

Error Code = Resource limit reached
Description = SQL parser stack overflow

Functions Used in The Select List
ActiveSpaces supports the use of aggregate functions, date and time functions, and string

functions as a value expression or as part of a value expression.

When used as the value expression, the result of the function is used as the value for
columns in the select list.

Date and Time Functions

Date and time function usage is supported for value expressions as shown in the following
example:

SELECT date(dtmcol) FROM mytable

For more information on date and time functions, see Date and Time Functions.

When using a timevalue of now with a date and time function in a value expression, now is
converted to the current date and time by each node of the data grid as the query is
executed and rows are found to use in the query results. Carefully analyze your use of now
to ensure the query returns the results you expect. The same holds true for using the SQL
variables CURRENT_DATE CURRENT_TIME and CURRENT_TIMESTAMP in a value expression.

TIBCO ActiveSpaces® Concepts

64 | Programming with ActiveSpaces

String Functions

String functions can be used in value expressions. For example, to return the id column's
value and the uppercase value of the lastname column from all rows of a table you can use
the following query:

SELECT id, UPPER(lastname) FROM mytable

For more information on the string functions supported by ActiveSpaces, see SQL String
Functions.

Aggregate Functions

Aggregate functions as value expressions use the column values from multiple rows to
calculate a single value. Aggregate functions are applied to column values of the rows
selected to be used for the query results.

Depending on the syntax used for the SELECT statement, these rows can be the result of
the GROUP BY clause or the WHERE clause. Rows from the GROUP BY clause take
precedence over rows from the WHERE clause. If both the GROUP BY and WHERE clauses
are omitted, values from all rows of the table are used for the aggregation.

Aggregate functions ignore NULL values. If all the values are NULL or cannot be converted
to the appropriate data type for the function, the result of the function is NULL. The
aggregate functions supported are listed in the following table:

Function Description

AVG(<column>) Computes the arithmetic mean of the non-NULL values in
the column. The type of the result is always a Double,
regardless of the data type of the underlying column. If
the data type of the underlying column is String, the
value is converted to a Double. If the data type of the
underlying column is Opaque, the data is treated as a
String and then converted to a Double.

COUNT(<column>) COUNT(*) Computes the number of non-NULL values in the column,
or the number of rows. The result is always of type Long.

Note: Note: COUNT() is not supported.

TIBCO ActiveSpaces® Concepts

65 | Programming with ActiveSpaces

Function Description

MIN(<column>) The minimum non-NULL value in the column. The type of
the result matches the type of the underlying column.

MAX(<column>) The maximum non-NULL value in the column. The type of
the result matches the type of the underlying column.

SUM(<column>) Computes the sum of the non-NULL values in the
column. The type of the result is Long if the data type of
the underlying column is Long, otherwise it is Double. If
the data type of the underlying column is String, the
value is converted to a Double. If the data type of the
underlying column is Opaque, the data is treated as a
String and then converted to a Double.

GROUP_CONCAT(DISTINCT
<column>)

Concatenates the unique values for a column in the
group into a comma separated list. The DISTINCT
keyword is required. The order of the values in the list is
not defined. The type of the result is always a String,
irrespective of the data type of the underlying column. If
the data type of the underlying column is Long or
Double, the value is converted to a String. If the data
type of the underlying column is Opaque, the data is
treated as String.

For more information about the aggregate functions supported by ActiveSpaces, see
Aggregate Functions.

The WHERE Clause
A WHERE clause is used to determine whether a row of a table must be used when
composing the results of a query.

When applied to the row of a table, the WHERE clause must result in a boolean value
indicating whether or not a row must be used when calculating the results of a query. The
WHERE clause syntax supported by ActiveSpaces is the following:

WHERE [NOT] <predicate> [AND | OR [NOT] <predicate>] . . .

TIBCO ActiveSpaces® Concepts

66 | Programming with ActiveSpaces

A predicate is a condition expression that evaluates to true or false. If the predicate
evaluates to true for a row, that row is used when calculating the results of the query. For
example:

city='Chicago'
percent<=75.0

The AND and OR operators are used to filter rows based on more than one condition. For
example:

city='Chicago' AND lastname='Dailey'

The NOT operator includes a row if the condition is not true. For example:

NOT city='Chicago'

When you create an SQL statement, the efficiency of the SQL statement depends on how
well you construct a WHERE clause. For example, a WHERE clause must be used to prevent
a full table scan from being done. For more information about constructing an efficient
WHERE clause, see Tips on Constructing an Efficient WHERE Clause.

Tips on Constructing an Efficient WHERE Clause
When you create a SQL statement, it is important to construct an efficient WHERE clause.

Indexes and WHERE Clauses

The performance of a SQL statement that includes a WHERE clause depends partly on the
way you construct your WHERE clause and partly on the definition of table indexes by the
data grid administrator. In general, you want to construct a WHERE clause that results in
the primary key or a secondary index to be selected for evaluating the WHERE clause
predicates against a subset of the rows of a table.

Omitting the WHERE clause or using a WHERE clause that results in no key or index being
selected might end up in a full table scan. Full table scans iterate over every row in a table
to see if the row must be used by the SQL statement thereby making them inefficent.
Therefore, TIBCO recommends that you avoid using full table scans.

For example, if the primary key for a table is defined on the empid column, the following
query can directly access one row of the table:

TIBCO ActiveSpaces® Concepts

67 | Programming with ActiveSpaces

SELECT * FROM mytable WHERE empid=’ID-1234’

If there are no secondary indexes defined for the table, the following query performs a full
table scan:

SELECT * FROM mytable WHERE lastname LIKE ‘B%’

However, if there is a secondary index defined on the lastname column, then the query
above would reduce the number of rows scanned to only those rows that begin with a 'B'
or 'b'.

Programmers: consult your data grid administrator for information about the definition of
indexes.

Programmers and administrators can use the rules of thumb in the following sections to
help promote efficiency and high performance of queries.

Primary Key and Secondary Indexes

Rule of Thumb: Construct WHERE clauses in which every predicate refers to columns of the
primary key or a secondary index.

A WHERE Clause is composed of one or more predicates. A predicate is a condition
expression that evaluates to either true or false. Each predicate must be composed of
columns from the primary key or a secondary index. This allows the primary key or a
secondary index to be selected to find the rows of the table to use for evaluating the
predicate. If a primary key or secondary index cannot be selected for even one predicate in
the WHERE clause, a full table scan is performed even if the primary key or a secondary
index is selected for all of the other predicates in the WHERE clause.

Left-Most Columns

Rule of Thumb: Construct WHERE clauses that reference the left-most columns of a primary
key or secondary index using the operators =, ==, <=, >=, <, >, IN, IS, or BETWEEN.

Not all columns of the primary key or secondary indexes have to be referenced by a WHERE
clause predicate. When a primary key or secondary index includes more than one column,
the administrator has defined them from left to right. For the primary key or a secondary
index to be considered for use in evaluating a predicate, at least the left-most column of
the key or index must be referenced by the predicate. The primary key or a secondary

TIBCO ActiveSpaces® Concepts

68 | Programming with ActiveSpaces

index is not selected, if the WHERE clause skips the left-most column but refers only to
columns defined further to the right.

Similarly WHERE clauses that refer to the left-most two columns can be even more
efficient. Queries can achieve maximum efficiency when they use WHERE clauses that refer
to all of the columns of the primary key or a secondary index.

When a WHERE clause does not contain the left-most column of the primary key or any of
the secondary indexes, a full table scan results. A query that does a full table scan is least
efficient and must be avoided.

The order in which columns appear in the WHERE clause does not affect query efficiency.
Only the order of columns when defining the index matters.

Avoid Left-Most NOT

Rule of Thumb: Do not construct WHERE clauses that reference the left-most columns of
the primary key or secondary index using the operators NOT, IS NOT, !=, <>, ISNULL, IS
NULL, NOTNULL, NOT NULL, and IS NOT NULL.

In contrast to the rule of left-most columns, a WHERE clause that references the left-most
columns with these operators have the opposite effect: to guarantee a full table scan,
which is the least efficient.

This rule does not imply that operators in the NOT family are always inefficient. For
example, a query can still be efficient if it obeys the left-most columns rule and also tests
columns further to the right using NOT. For example, if the administrator defined an index
on the columns lastname and firstname, then this WHERE clause can be efficient:

WHERE lastname='Smith' AND firstname IS NOT
'Dan'

Limit Range Queries From Both Ends

Rule of Thumb: When using the operators > or >=, which specify a lower limit on a
column's value, also include the opposite operators, < or <=, to specify an upper limit on
the same column.

A query searches an index from its lower limit to its upper limit. If you omit the upper limit,
the query continues searching to the end of the index. If you omit the lower limit, the
query begins with the first row of the index.

TIBCO ActiveSpaces® Concepts

69 | Programming with ActiveSpaces

Operators Used in the WHERE Clause
A predicate can use the operators as described in Operators. For detailed information
about using the LIKE operator, see LIKE Operator.

The following sections contain additional information about using the LIKE operator in the
predicate of a WHERE clause.

Indexed Columns with LIKE Operator

If the left operand of the LIKE operator is the name of an indexed column of type string,
ActiveSpaces converts the LIKE operator into a range query using >= and <. This enables
the ActiveSpaces index selection algorithm to select the index and use it for scanning rows
when processing the query. For example, take a look at the following statement:

SELECT * FROM mytable WHERE lastname LIKE ‘Long’

Internally this statement is converted to the following statement and the index on lastname
can be used to perform a range scan.

SELECT * FROM mytable WHERE lastname >= ‘Long’ AND lastname < ‘long’

However, the index for lastname cannot be used if <character sequence pattern> is a long value
or starts with a wildcard (%, _) or digit.

Pattern Matching with LIKE Operator

When using the LIKE operator in a WHERE clause, using a character sequence pattern that
begins with a wild card results in a full table scan.

It is also important to be aware that you might end up scanning more rows than you would
expect because of the way pattern matching works when matching is not case sensitive.
For example, if you have an index defined for lastname and you run the following query:

SELECT * FROM mytable WHERE lastname LIKE
'm%'

The index is used, but all the rows are scanned where the value of lastname start with "M"
through "Z" and "a" through "m".

TIBCO ActiveSpaces® Concepts

70 | Programming with ActiveSpaces

Using Date and Time Functions in the WHERE Clause
Date and time information can be stored in the data grid as date and time strings, Julian
Day long or double values, or as tibDateTime values.

Date and time functions can be used in the WHERE clause for querying these different
types of columns as shown in the following example:

SELECT * FROM mytable WHERE date(dtmcol)=’2016-12-24’

For more information about date and time functions, see Date and Time Functions.

Function Usage on Index Columns
When using date and time functions on primary key or secondary index columns in a
WHERE clause or table iterator filter string, the application of the function to the column, in
the left side of an equation, does not reduce the number of rows being examined for a
query. Indexes are used based on comparisons to the actual value of a column and not the
value that is the result of conversion by functions.

You can use the date and time functions in comparisons with key or index fields and still
get the benefit of the key or index, if you use the function on the right-hand side of the
equation. For example, if the dtm column is of type datetime (holds tibDateTime objects) and
dtm is defined as a secondary index, the following query only scans those rows with a date
less than '2018-06-01 00:00:00':

SELECT * FROM mytable WHERE dtm < datetime('2018-06-01')

WHERE Clause Examples
Using the date() function always returns a date of the form:

l YYYY-MM-DD

Where:

YYYY [0000-9999]

MM [01-12]

DD [01-31]

TIBCO ActiveSpaces® Concepts

71 | Programming with ActiveSpaces

Given a table with the following columns and values for 2016-12-24 00:00:00:

Columns Data Type Values

dtm datetime [1482566400, 0]

dtmstr string “2016-12-24T00:00:00”

dtmlong long 1482566400

julianday double 2457746.50000

Assuming all columns of a row are loaded with a date or time value that contains the date
2016-01-01, the following are the examples of using the Date() function in a WHERE clause:

SELECT * FROM mytable WHERE date(dtm)=’2016-12-24’
SELECT * FROM mytable WHERE date(dtmstr)=’2016-12-24’
SELECT * FROM mytable WHERE date(dtmlong,’unixepoch’)=’2016-12-24’
SELECT * FROM mytable WHERE date(julianday)=’2016-12-24’

Querying tibDateTime Columns
To perform a SQL query on a tibDateTime column, the value of the tibDateTime column is
internally converted to a string of the form:

YYYY-MM-DD HH:MM:SS.SSSSSSSSSZ

Where the ' SSSSSSSSS ' following ' SS. ' represent nanoseconds and 'Z' represents
Coordinated Universal Time (UTC).

ActiveSpaces internally converts tibDateTime column values to strings in this format. As a
result, the SQL date and time functions, which normally only work on ISO 8601 formatted
strings can also be used on the converted tibDateTime values. The date and time functions
are lenient with respect to the number of digits following the decimal in the fractional
seconds, so the nine places of precision in the string representation of a tibDateTime value
does not cause any issues.

The following are examples of queries, which can be run on a column of type datetime that
contains a tibDateTime object:

TIBCO ActiveSpaces® Concepts

72 | Programming with ActiveSpaces

SELECT * FROM mytable WHERE dtm=’2016-01-01 00:00:00.000000000Z’
SELECT * FROM mytable WHERE date(dtm)=’2016-01-01’
SELECT * FROM mytable WHERE datetime(dtm)=’2016-01-01 00:00:00’

For more information about using the SQL SELECT statement to query tibDateTime columns,
see tibDateTime.

Error Conditions
Using a date or time function on a column that does not contain an appropriate date or
time value does not cause an exception. In most cases, a SQL NULL is the result of the
function and the query is processed accordingly.

Using String Functions in the WHERE Clause
String functions can be used in WHERE clause predicates.

For more information about string functions, see SQL String Functions.

Using Multi-Argument MIN, MAX Functions in the WHERE
Clause
When the functions MIN() and MAX() are used in a WHERE clause, the multi-argument forms
of these functions must be used.

In a WHERE clause, the following functions do not perform aggregation as they would if
they were used in a select list:

l MAX(x, y, …): The multi-argument MAX function returns the argument with the
maximum value.

l MIN(x, y, …): The multi-argument MIN function returns the argument with the minimum
value.

The GROUP BY Clause
A GROUP BY clause is used to arrange rows with identical values in columns into groups.

TIBCO ActiveSpaces® Concepts

73 | Programming with ActiveSpaces

The GROUP BY clause immediately follows the WHERE clause of a SQL SELECT statement.
For more information about the syntax of a SQL SELECT statement, see The Syntax of a
SELECT Statement. The following code snippet is an example of the syntax of the GROUP
BY clause:

GROUP BY <grouping term>[, <grouping term>] . . .

A grouping term is a reference to a value expression from the select list. The following
query is invalid because the state is not in the select list:

SELECT AVG(salary) FROM employees GROUP BY state

A GROUP BY clause is most often used with aggregation functions in the select list to
provide summary information about each group of rows. For example, the following query
returns a set of rows - one for each state, with each row containing two columns, the state
and the mean salary for employees in that state:

SELECT state, AVG(salary) FROM employees GROUP BY state

A value expression, which is not an aggregate function, must normally be included as a
grouping term in the GROUP BY clause. However, this is not a requirement.

Limitations

Currently, the GROUP BY clause can only be applied to value expressions that are column
identifiers. Expressions and functions in the select list cannot be used as grouping terms.
For example, the following query is invalid as it refers to the label of a function in the
select list:

SELECT date(dtm) AS Year, COUNT(dtm) FROM mytable GROUP BY Year

Performance

When using a GROUP BY clause, the performance of the aggregation depends on how many
rows are used in the aggregation. A query that includes aggregation but does not contain a

TIBCO ActiveSpaces® Concepts

74 | Programming with ActiveSpaces

WHERE clause performs aggregation using all the rows from the table and must be
avoided, if possible.

For the best aggregation performance, the column used as an argument to your GROUP BY
clause must have an index defined that uses that column. Your query must include a
WHERE clause that causes the index to be selected for the query. For example, if you have
a secondary index named lastname_idx defined for the lastname column, the following queries
use lastname_idx to reduce the number of rows in the query on which aggregation is
performed:

SELECT lastname FROM mytable WHERE lastname LIKE 'B%' GROUP BY lastname

For more information about query performance, see Tips on Constructing an Efficient
WHERE Clause.

The ORDER BY Clause
An ORDER BY clause is used to sort the results for the query.

The ORDER BY clause follows both the WHERE clause and GROUP BY clause, if present.

For more information about the syntax of the SELECT statement, see The Syntax of a
SELECT Statement. The syntax of the ORDER BY clause is:

ORDER BY <ordering term> [ASC | DESC][, <ordering term> [ASC | DESC]] ...

An ordering term can be a column in the select list, an alias specified in the select list, or a
column index number in the select list. Each ordering term can optionally be followed by
ASC or DESC. ASC indicates that the query results must be sorted on the ordering term
column in ascending order. DESC indicates that the query results must be sorted on the
ordering term column in descending order. The default sort order is ascending.

TIBCO recommends using columns in the ORDER BY clause, which are columns of a
primary or secondary index defined for the table. Using columns of a primary or secondary
index increases the efficiency and speed of the query. ORDER BY clauses with columns that
match the order of defined indexes exactly or match the order of defined indexes in the
reverse order are usually more efficient than other types of ORDER BY clauses.

When the SELECT statement includes a WHERE clause, the ordering terms used in the
ORDER BY clause must match the columns of the primary or secondary index selected for
processing the WHERE clause to achieve the best performance.

TIBCO ActiveSpaces® Concepts

75 | Programming with ActiveSpaces

If you do not use columns from a primary or secondary index in the ORDER BY clause,
there is a per-query limit on the amount of allowed memory by default (128MB) that can be
used to buffer results when attempting to order them.

Example

For example, there is an index defined for the table by the name of index1 that is indexed
on lastname, firstname, and city. The following queries use index1 because the columns match
the index column in the same order and the sorting is in a single direction (either in the
ascending order or in the descending order):

SELECT * FROM t1 ORDER BY lastname ASC, firstname ASC, city ASC

SELECT * FROM t1 ORDER BY lastname DESC, firstname DESC, city DESC

The following query cannot use index1 because some columns are sorted in the ascending
order and some in the descending order:

SELECT * FROM t1 ORDER BY lastname DESC, firstname ASC, city ASC

SELECT * FROM t1 ORDER BY lastname ASC, firstname DESC, city ASC

LIMIT Clause
The LIMIT clause is used to specify the maximum number of rows to return for a query.

The following code shows the syntax of the LIMIT clause supported by ActiveSpaces:

LIMIT <rowcount expression>

The LIMIT clause affects the number of result rows for the query. The LIMIT clause, if
specified, must be the last clause of the SELECT statement and is the last clause applied to
a query. In other words, the LIMIT clause is applied after the WHERE clause is applied, the
GROUP BY clause is applied, and the ORDER BY clause is applied. The LIMIT clause does not
affect the number of rows scanned for a query.

LIMIT Clause and Full Table Scan Property

When the WHERE clause of a SELECT statement does not refer to the primary key or
secondary indexes of a table, the entire table must be scanned to find the rows of the table

TIBCO ActiveSpaces® Concepts

76 | Programming with ActiveSpaces

that is returned for a query. This process of scanning the entire table is known as a full table
scan. When a LIMIT clause is appended to a SELECT statement, it does not affect whether
or not a full table scan is performed. However, the LIMIT clause affects the number of
results returned for the query, but not how many rows are scanned for a table. The rows
resulting from the scan might then also have to be grouped with a GROUP BY clause and
then sorted with ORDER BY clauses. The final set of result rows are then limited by the
count specified for the LIMIT clause.

Modifying Data in a Table
Application programs have the following options to add, update or delete data in tables in
a data grid:

l Table PUT operation: PUT

l Table UPDATE operation: UPDATE

l Table DELETE operation: DELETE

l SQL INSERT: The SQL INSERT Statement

l SQL INSERT OR REPLACE: The INSERT OR REPLACE Statement

l SQL DELETE: The SQL DELETE Statement

l SQL UPDATE: The SQL UPDATE Statement

The SQL INSERT Statement
A SQL INSERT statement writes new rows of data into a table. If the INSERT activity is
successful, it returns the number of rows inserted into the table. If the row already exists, it
returns an error. Multiple rows can be inserted into a table. Multi-row inserts treat the
insertion of rows equivalent to being in a transaction whether or not a transacted session
is used. If the INSERT statement is embedded in a transaction or if you are trying to insert
multiple rows, the failure to insert a row results in a rolled back transaction.

TIBCO ActiveSpaces® Concepts

77 | Programming with ActiveSpaces

Syntax

INSERT INTO <table_name> [(<column_name_list>)] VALUES (<column_value_list>)[,(<column_
value_list>)]...

where

l table_name: Name of the table in which the rows are inserted.

l column_name_list: Each column name in column_name_list that identifies a column of
table_name.

l VALUES: Values for the columns in column_name_list.

l column_value_list: A comma separated list of values.

The following table shows the syntax for inserting rows in a table:

Number of Rows Syntax

Single Row Insert
INSERT INTO <table_name> [(column1 [,
column2, column3 …])] VALUES (value1 [, value2,
value3 …])

Multi-Row Insert
INSERT INTO <table_name> [(column-a, [column-b,
…])]
VALUES (‘value-1a’, [‘value-1b’, …]),
(‘value-2a’, [‘value-2b’, …]),
. . .

Rules for the column_name_list
l Each of the named columns of the new row is populated with the results only after

evaluating the corresponding VALUES expression.

l If column_name_list is omitted, the number of values inserted into each row must be
the same as the number of columns in the table.

o Values are populated into the row in the order the columns were defined for in

TIBCO ActiveSpaces® Concepts

78 | Programming with ActiveSpaces

the table.

l All columns in column_name_list must be writable.

l No column name can be listed more than once.

l Not all columns of a table have to be listed. The value of any unlisted column is NULL
(empty).

o If a value is not provided for a primary key column, an error is reported.

Rules for the column_value_list
l The data type of each value must match the data type of the column as configured

for the table.

l If column_name_list is given, the number of values must match the number of columns
in column_name_list.

l If column_name_list is given, the nth column in column_name_list is assigned the nth value
of column_value_list.

l If column_name_list is omitted, the number of values must match the number of
columns in the table with an implied ascending sequence of the ordinal positions of
columns in the table.

l A value can be the result of an expression.

l A value can be a parameter marker that requires a value to be bound to the
parameter before the statement is run.

o The maximum length of a SQL statement is 1,000,000 bytes.

o Parameters must be used to insert data that can cause the statement to reach
the maximum length.

o The parameter type must match the column type exactly. Call the appropriate
setParameter() method - the type of the parameter passed to this method must
match with the column type.

For more information about using the SQL INSERT statement to store values in a
tibDateTime column, see tibDateTime.

TIBCO ActiveSpaces® Concepts

79 | Programming with ActiveSpaces

Adding Rows to a Table by Using the SQL INSERT
Statement

Procedure
1. Formulate a SQL INSERT string for adding rows of data to a table.

2. Call the createStatement() method of the Session object. Pass the SQL INSERT string as
an argument.

3. If the SQL INSERT string contains parameter markers, call the Statement methods to
set the parameter values.

4. Run the INSERT statement by calling the executeUpdate() method of the Statement
object.

5. Check the result of the executeUpdate() method to verify that the correct number of
rows have been inserted into the table.

6. Set different parameter values and rerun the INSERT statement by repeating steps 3
to 5.

7. Close the Statement object.

Errors for INSERT Statement
By default, when an error occurs for an INSERT statement, changes made by the statement
are undone. If the INSERT statement is called from within an existing transaction, the
entire transaction is rolled back. ActiveSpaces does not impose a limit to the number of
rows in a multi-row insertion. However, the number of rows must be processed within the
time specified by the client request timeout property of the data grid (The default is 5 seconds).

If the insert values list does not match the column list, a SQL command error is returned.
Errors due to a conflict with the following constraints:

Constraints Error Description

PRIMARY KEY Values are not provided for all primary key columns

TIBCO ActiveSpaces® Concepts

80 | Programming with ActiveSpaces

INSERT Statement and Expressions
INSERT statements can contain expressions for the values to be inserted for a column. For
example, the following INSERT statement can be used to add a timestamp as the primary
key for each row being added:

INSERT INTO mytable (col1, col2) VALUES (datetime(‘now’), ‘some string’)

Note: The expressions that can be used as values are limited and cannot contain
column names that must be dynamically evaluated.

Parameter Binding with INSERT Statements
When you use parameter binding, you use "?" (question mark) instead of actual values in a
SQL statement. The "?" parameter must be used in place of a value for that column and
not in arbitrary expressions.

The current parameter bindings are used whenever executeUpdate() is invoked for an INSERT
statement. Parameter bindings can also be used with multi-row inserts.

Example of parameter binding:

INSERT INTO mytable (col1, col2) VALUES (?,?),(?,?),(?,?)

Note: The maximum number of parameters on a given INSERT statement is 999.

The INSERT OR REPLACE Statement
You can use the INSERT OR REPLACE statement to write new rows or replace existing rows
in the table. The syntax and behavior of the INSERT OR REPLACE statement is similar to the
INSERT statement. Unlike the INSERT statement, the INSERT OR REPLACE statement does
not generate an error if a row already exists.

For information about the INSERT statement, see The SQL INSERT Statement.

Syntax

TIBCO ActiveSpaces® Concepts

81 | Programming with ActiveSpaces

INSERT OR REPLACE INTO <table_name> [(<column_name_list>)] VALUES (<column_value_
list>)[,(<column_value_list>)]...

where

l table_name: Name of the table in which the rows are inserted.

l column_name_list: Each column name in column_name_list identifies a column of table_
name.

l column_value_list: Values for the columns in column_name_list.

The SQL DELETE Statement
A SQL DELETE statement removes rows of data from a table. If the DELETE activity is
successful, it returns the number of rows removed from the table.

If the DELETE activity is not successful, 0 is returned as the number of rows removed from
the table.

Transactions are not supported for DELETE statements and you cannot create a DELETE
statement from a transacted session.

Since transactions are not supported with DELETE, if an error occurs while performing row
deletion, any rows already deleted remain deleted and the delete is not rolled back.

Syntax

DELETE FROM <table_name> [AS <alias>] [<WHERE clause>]

Where

l table_name: Name of the table in which the rows are removed.

l alias: A temporary name for the table used to make the table name more readable.

l WHERE clause: An expression which starts with the keyword 'WHERE' and results in a
boolean value that indicates whether a row should be removed. If omitted, all rows
of the table are removed. For more information, see The WHERE Clause.

TIBCO ActiveSpaces® Concepts

82 | Programming with ActiveSpaces

Warning: If a WHERE clause is omitted from a DELETE statement, all rows in the
table are removed. For information on how to prevent the inadvertent removal
of rows by DELETE statements without a WHERE clause, see the full_table_
delete table and grid properties.

Removing Rows From a Table Using the SQL DELETE
Statement

Procedure
1. Formulate a SQL DELETE string for removing rows of data from a table.

2. Call the createStatement() method of the Session object. Pass the SQL DELETE string as
an argument.

3. If the SQL DELETE string contains parameter markers, call the Statement methods to
set the parameter values.

4. Run the DELETE statement by calling the executeUpdate() method of the Statement
object.

5. Check the result of the executeUpdate() method to verify that the correct number of
rows have been removed from the table.

6. Set different parameter values and rerun the DELETE statement by repeating steps 3
to 5.

7. Close the Statement object.

Deleting large number of rows

Warning: When removing a large number of rows from a table, TIBCO
recommends to remove batches of rows versus the entire set of rows.

To delete a large number of rows from a table, design a SQL DELETE statement as follows:

1. Design a range query which is bounded on both ends to select a subset of rows to be

TIBCO ActiveSpaces® Concepts

83 | Programming with ActiveSpaces

removed from the table.

2. Avoid unbounded range queries to reduce the number of rows scanned. For example,
use a WHERE clause similar to the following:

WHERE key >= 0 AND key <=1000

WHERE key BETWEEN 0 AND 1000

3. Use parameters in the range query which results in a subset of rows being removed
each time executeUpdate() is invoked. For example,

WHERE key BETWEEN ? AND ?

4. Design the WHERE clause so that an index is used for finding the rows and prevent
full table scans.

5. Set the statement property TIBDG_STATEMENT_PROPERTY_DOUBLE_UPDATE_
TIMEOUT so the executeUpdate requests do not timeout.

Note: The SQL LIMIT clause is not part of the syntax for SQL DELETE.

Errors for DELETE Statement
By default, when an error occurs for a DELETE statement, rows already deleted remain
removed and their removal cannot be undone.

When removing a large number of rows from a large table, it is recommended to remove
rows in smaller batches which can be processed before the executeUpdate() method times
out.

Authentication for Deleting Rows
When authentication is used with an ActiveSpaces data grid, a user must have write
permission for a table to be able to delete rows from a table.

Properties to Control the Removal of Rows From a Table
To help in the successful removal of rows from a table, there are several ActiveSpaces
properties which can be used.

TIBCO ActiveSpaces® Concepts

84 | Programming with ActiveSpaces

Statement Properties

Statement properties are defined when a SQL statement is first created or when a
statement is executed. For more information, see Properties.

TIBDG_STATEMENT_PROPERTY_DOUBLE_UPDATE_TIMEOUT - When an executeUpdate() is
invoked, it does not return until all rows satisfying the WHERE clause are removed. This
property can be used to increase the client's timeout (in seconds) of an executeUpdate()
request for a DELETE statement. This property overrides the grid's client_req_timeout setting.

Table Properties

Table configuration properties are specified when you define a table in the data grid. See
the sections "Defining a Table" and "Defining a Table by Using SQL DDL Commands" in
TIBCO ActiveSpaces® Administration.

The following table configuration properties can be used to control the ability to remove
all rows from a table:

full_table_delete - When set to other than inherited this property can be used to override the
grid's full_table_delete configuration setting. tibdgproxy enforces the full_table_delete setting.
Log messages resulting from this setting are stored in the tibdgproxy logs.

Grid Properties

Grid configuration properties are specified when you define a data grid and are applied to
all relevant objects in the data grid. See the section "Defining a Data Grid" in TIBCO
ActiveSpaces® Administration.

The following grid configuration properties can be used to control the ability to remove all
rows from a table for SQL DELETE statements:

l full_table_delete - Used to control the ability to remove all rows from any table in the
data grid when a DELETE statement does not contain a WHERE clause. tibdgproxy
enforces the full_table_delete setting. Log messages resulting from this setting are
stored in the tibdgproxy logs.

l full_table_scans - Used to control the ability to remove all rows from any table in the
data grid when a DELETE statement contains a WHERE clause but an index could not
be found for the WHERE clause resulting in a full table scan being done to find the
rows to delete. tibdgnode enforces the full_table_scans setting. Log message results

TIBCO ActiveSpaces® Concepts

85 | Programming with ActiveSpaces

from this setting are stored in the tibdgnode logs.

The following grid configuration properties can be used to control the amount of time
before a client request times out.

client_req_timeout - The default client request timeout is 5 seconds. When an executeUpdate()
method is invoked, it does not return until all rows satisfying the WHERE clause are
removed. If the client_req_timeout occurs before the executeUpdate() method is finished, the
executeUpdate() method is canceled by the client. When the executeUpdate() for a DELETE
statement is canceled, 0 is returned as the number of rows removed and any rows
removed prior to the DELETE being canceled remain deleted.

Note: client_req_timeout is applied to all requests from a client to the data grid.
See the statement property TIBDG_STATEMENT_PROPERTY_DOUBLE_UPDATE_
TIMEOUT for information on controlling the timeout for individual DELETE
statements.

The SQL UPDATE Statement
An SQL UPDATE statement changes the values of columns in the existing rows of a table. If
the UPDATE activity is successful, it returns the number of rows changed in the table.

If the UPDATE activity is not successful, 0 is returned as the number of rows changed in the
table.

Transactions are not supported for UPDATE statements and you cannot create an UPDATE
statement from a transacted session.

Since transactions are not supported with UPDATE, if an error occurs while performing a
row update, any rows already updated remain changed and the update is not rolled back.

Syntax

UPDATE <table_name> [AS <alias>] <SET clause> [<WHERE clause>]

Where

l table_name: Name of the table containing the rows to be updated.

l alias: A temporary name for the table used to make the table name more readable.

TIBCO ActiveSpaces® Concepts

86 | Programming with ActiveSpaces

l SET clause: Begins with the keyword 'SET' and contains a comma separated list of
assignments where column names are set to value expressions. For example,

o SET column1 = value1

o SET column1 = value1, column2 = value2

o SET (column1, column2) = (value1, value2)

l WHERE clause: An expression which starts with the keyword 'WHERE' and results in a
boolean value that indicates whether a row should be updated. If omitted, all rows of
the table are updated. For more information, see The WHERE Clause.

Modifying Rows in a Table Using the SQL UPDATE
Statement

Procedure
1. Formulate a SQL UPDATE string for modifying the rows of a table.

2. Call the createStatement() method of the Session object. Pass the SQL UPDATE string as
an argument.

3. If the SQL UPDATE string contains parameter markers, call the Statement methods to
set the parameter values.

4. Run the UPDATE statement by calling the executeUpdate() method of the Statement
object.

5. Check the result of the executeUpdate() method to verify that the correct number of
rows have been changed in the table.

6. Optionally, set different parameter values and rerun the UPDATE statement by
repeating steps 3 to 5.

7. Close the Statement object.

Updating Large Number of Rows

Warning: When updating a large number of rows in a table, TIBCO recommends
updating batches of rows versus the entire set of rows.

TIBCO ActiveSpaces® Concepts

87 | Programming with ActiveSpaces

To update a large number of rows from a table, design a SQL UPDATE statement as
follows:

1. Design a range query which is bounded on both ends to select a subset of rows to be
updated in the table.

2. Avoid unbounded range queries to reduce the number of rows scanned. For example,
use a WHERE clause similar to the following:

WHERE key >= 0 AND key <=1000

WHERE key BETWEEN 0 AND 1000

3. Use parameters in the range query which results in a subset of rows being updated
each time executeUpdate() is invoked. For example,

WHERE key BETWEEN ? AND ?

4. Design the WHERE clause so that an index is used for finding the rows and prevent
full table scans.

5. Set the statement property TIBDG_STATEMENT_PROPERTY_DOUBLE_UPDATE_
TIMEOUT so the executeUpdate requests do not timeout.

Note: The SQL LIMIT clause is not part of the syntax for SQL UPDATE.

Errors for UPDATE Statement
By default, when an error occurs for an UPDATE statement, rows already modified remain
modified and their modification cannot be undone.

When updating a large number of rows from a large table, it is recommended to update
rows in smaller batches which can be processed before the executeUpdate() method times
out.

Table Permissions for Updating Rows
When table permissions are used with an ActiveSpaces data grid, a user must have write
permission for a table to be able to update rows in a table. For more information, see "The
tibdg Commands to Set Permissions on a Table" section in the TIBCO ActiveSpaces®
Administration Guide.

TIBCO ActiveSpaces® Concepts

88 | Programming with ActiveSpaces

Properties to Control the Update of Rows in a Table
To help in the successful modification of rows in a table, there are several ActiveSpaces
properties which can be used.

Statement Properties

Statement properties are defined when a SQL statement is first created or when a
statement is executed. For more information, see Properties.

TIBDG_STATEMENT_PROPERTY_DOUBLE_UPDATE_TIMEOUT - When an executeUpdate() is
invoked, it does not return until all rows satisfying the WHERE clause are modified. This
property can be used to increase the client's timeout (in seconds) of an executeUpdate()
request for an UPDATE statement. This property overrides the grid's client_req_timeout
setting.

Grid Properties

Grid configuration properties are specified when you define a data grid and are applied to
all relevant objects in the data grid. See the section "Defining a Data Grid" in TIBCO
ActiveSpaces® Administration guide.

The following grid configuration properties can be used to control the ability to modify all
rows of a table with SQL UPDATE statements:

l full_table_scans - Used to control the ability to update all rows from any table in the
data grid when an UPDATE statement contains a WHERE clause but an index could
not be found for the WHERE clause resulting in a full table scan being done to find
the rows to update. tibdgnode enforces the full_table_scans setting. Log message
results from this setting are stored in the tibdgnode logs.

l client_req_timeout - Used to control the amount of time before a client request times
out. The default client request timeout is 5 seconds. When an executeUpdate() method
is invoked, it does not return until all rows satisfying the WHERE clause are removed.
If the client_req_timeout occurs before the executeUpdate() method is finished, the
executeUpdate() method is canceled by the client. When the executeUpdate() for an
UPDATE statement is canceled, 0 is returned as the number of rows updated and any
rows updated prior to the UPDATE being canceled remain modified.

TIBCO ActiveSpaces® Concepts

89 | Programming with ActiveSpaces

Note: client_req_timeout is applied to all requests from a client to the data grid.
See the statement property TIBDG_STATEMENT_PROPERTY_DOUBLE_UPDATE_
TIMEOUT for information on controlling the timeout for individual
UPDATE statements.

SQL Expressions
Expressions can be used in the select list and WHERE clause of SELECT statements. An
expression used in a select list is called a value expression. An expression used in a WHERE
clause is called a predicate.

This section contains information that is common between both types of expressions. For
specific information about value expressions, see Value Expression. For specific information
about predicates, see The WHERE Clause.

Operators
Operators are used in expressions to compare a column's value against another value.

Expressions can be composed with the operators from the following table:

Operator Description

=

==

IS

Tests what is on each side of the operator for equality.

!=

<>

IS NOT

Tests what is on each side of the operator for inequality.

>

TIBCO ActiveSpaces® Concepts

90 | Programming with ActiveSpaces

Operator Description

<

>=

<=

ISNULL

IS NULL

Tests that the row does not contain a value in this column.

NOTNULL

NOT NULL

IS NOT NULL

Tests that the row contains a value in this column.

BETWEENvalue_1
and value_2

Requires two values, separated by the keyword and. The range includes
the end values.

IN(value [,value]*
)

Requires a set of values, separated by commas, surrounded by
parentheses.

value_1 LIKE
value_2

Searches the left operand for the pattern specified by the right operand.
For details about the LIKE operator, see LIKE Operator.

Value

value can be any value of the same data type as the column's data type.

LIKE Operator
The LIKE operator is used to search the left operand for a character sequence pattern
specified by the right operand.

Syntax:

<left operand> LIKE <character sequence pattern> [ESCAPE <char>]

Two wildcard characters can be as specified in the following patterns:

TIBCO ActiveSpaces® Concepts

91 | Programming with ActiveSpaces

l % (percent) - matches 0, 1, or multiple characters

l _ (underscore) - matches a single character
If the character sequence pattern needs to include one of the wildcard characters as one

of the characters to match, you can specify an escape character to use by specifying the
optional ESCAPE clause after your LIKE pattern as shown in the following example.

completed LIKE ‘100\%’ ESCAPE ‘\’

Pattern Matching

The pattern matching is not case sensitive for upper or lowercase ASCII characters. For
example:

lastname LIKE ‘long’

searches the lastname columns for values of LONG, lONG, loNG, lonG, long, LoNG, LonG,
and so on.
The pattern matching is case sensitive for Unicode characters that are beyond the ASCII

range. For example:

lastname LIKE ‘Ünder’

searches the lastname column for values of ÜNDER, ÜNDEr, ÜNDer, ÜNder, Ünder. It does
not search for lastname column values that start with üNDER, üNDEr, and so on.

Pattern matching that is not case sensitive works according to the order of characters in
the ASCII table. Uppercase characters sort before lowercase characters. In the ASCII table,
A=65 and a=97. Therefore, 'A' sorts before 'a'.

The following table contains examples of character sequence patterns.

Pattern Finds Values That...

'a%' start with 'a' or 'A'

'%a' end with 'a' or 'A'

'a%o' start with 'a' or 'A' and end in 'o' or 'O'

TIBCO ActiveSpaces® Concepts

92 | Programming with ActiveSpaces

Pattern Finds Values That...

'a_' start with 'a' or 'A' and are two characters long

'_a%' have 'a' or 'A' as the second character

'%at%' contain 'AT', 'At', or 'at'

'a_%_%' start with 'a' or 'A' and are at least 3 characters long

'_____' are exactly 5 characters long

For more information about using LIKE in a WHERE clause, see Operators Used in the
WHERE Clause.

Negation
NOT can be used in an expression to reverse the boolean value of a logical expression.

For example:

NOT lastname=’Brown’

You can also precede an operator with NOT to negate the operator. For example:

num NOT BETWEEN 1 and 100
num NOT IN (1, 100)

Compound Expressions
Compound expressions can be created by joining multiple individual expressions by using
the AND or OR operators.

These operators have the following behavior:

l AND: The overall expression is true if and only if every individual expression is true.

l OR: The overall expression is true if at least one of the individual expressions is true.

TIBCO ActiveSpaces® Concepts

93 | Programming with ActiveSpaces

Order of Operations
Operator precedence is the order in which an operator is executed.

In SQL the operator precedence is as follows:

1. Parentheses

2. Multiplication or division

3. Addition or subtraction

4. NOT

5. AND

6. OR
Parentheses can be used to override these rules of precedence as shown in the following

example:

A + B * C

Performs B * C and then adds A to the result.

(A + B) * C

Performs A + B first and then multiply the result by C.

CASE Expressions
A CASE expression is used like an if-then-else construct to conditionally return a value. There
are two forms of syntax for CASE expression, the simple form and the searched form. The
simple form is used to test a single operand for equality against multiple expressions. The
searched form of a CASE expression is more flexible and allows for testing multiple
conditions.

For more information about using CASE expressions in the select list of SELECT statement,
see The Select List.

Simple CASE Expression

The simple CASE expression implies equality (=) is used for comparisons. One <common_
operand> is tested against multiple values. It is frequently used to transform one set of

TIBCO ActiveSpaces® Concepts

94 | Programming with ActiveSpaces

values to another longer form.

Syntax:

CASE <common_operand>
WHEN <expression> THEN <result>
[WHEN <expression> THEN <result>
. . .]

[ELSE <result>]
END

For example:

SELECT lastname,
CASE gender

WHEN ‘M’ THEN ‘Male’
WHEN ‘m’ THEN ‘Male’
WHEN ‘0’ THEN ‘Male’
WHEN ‘F’ THEN ‘Female’
WHEN ‘f’ THEN ‘Female’
WHEN ‘1’ THEN ‘Female’
ELSE ‘Unknown’

END
FROM employees

Equality expressions cannot be used to test for NULL so you cannot use a simple CASE
expression to test for NULL. You must use a searched CASE expression with IS NULL or IS
NOT NULL when testing for NULL.

Searched CASE Expression

The searched CASE expression is good to use when you want to work with a greater range
of tests. Any boolean expression qualifies as a WHEN <expression>.

Syntax:

CASE
WHEN <condition> THEN <result>
[WHEN <condition> THEN <result>
. . .]

[ELSE <result>]
END

The result of the first true boolean expression is returned. For example, the following
SELECT statement uses a searched CASE expression to prevent division by zero:

TIBCO ActiveSpaces® Concepts

95 | Programming with ActiveSpaces

SELECT ProductID, Name, ProductNumber, Cost, ListPrice,
CASE

WHEN ListPrice = 0 THEN NULL
ELSE Cost / ListPrice

END AS CostOfGoodSold
FROM Product

The searched CASE expression can also be used to test a result column for NULL whereas
a simple CASE expression cannot. The following simple CASE expression is invalid:

SELECT
CASE middle_name

WHEN NULL THEN ‘<NULL>’
ELSE

middle_name
END

In SQL you cannot use equality to test if a column is NULL (empty). Instead you must use
'IS NULL' as follows:

SELECT
CASE

WHEN middle_name IS NULL THEN ‘<NULL>’
ELSE

middle_name
END

CASE Comparisons

When you use a simple CASE expression or a searched CASE expression, the following
behavior of comparisons is true:

l WHEN clauses are evaluated in the order they are defined.

l When an ELSE clause is provided and none of the previous WHEN clause evaluations
match, the ELSE result is returned.

l If an ELSE clause is omitted and none of the previous WHEN clause evaluations
match, NULL (SQL NULL) is returned.

TIBCO ActiveSpaces® Concepts

96 | Programming with ActiveSpaces

SQL Functions
ActiveSpaces provides support for many functions that can be used in SQL statements,

such as the aggregate functions, date and time functions, and string functions.

For information about using a function in a particular type of SQL statement, see The SQL
SELECT Statement. If it does not include information on using a function in the section,
then its use is not supported with that statement type. Aggregate functions are only used
in the select list of SELECT statements. For more information about aggregate functions,
see Aggregate Functions.

Aggregate Functions
Aggregate functions are used in the select list of SELECT statements and use the values of
multiple rows to calculate a single value.

ActiveSpaces supports the following aggregate functions:

l COUNT

l SUM

l MIN

l MAX

l AVG

l GROUP_CONCAT
For more information about aggregate functions, see the section on "Aggregate Functions"

in Functions Used in The Select List.

Performance of Aggregate Functions

When using an aggregate function as a value expression, the performance of the
aggregation depends on how many rows are used in the aggregation. A query that includes
aggregation, but does not contain a WHERE clause performs aggregation using all the rows
from the table but must be avoided, if possible.

For the best aggregation performance, the column used as an argument to your
aggregation function must have an index defined, which uses that column, and your query
must include a WHERE clause that causes that index to be selected for the query. For
example, if you have a secondary index named lastname_idx defined for the lastname

TIBCO ActiveSpaces® Concepts

97 | Programming with ActiveSpaces

column, the following queries use lastname_idx to reduce the number of rows in the query
on which aggregation is performed:

SELECT COUNT(lastname) FROM mytable WHERE lastname LIKE 'B%'
SELECT lastname, COUNT(lastname) FROM mytable WHERE lastname LIKE 'B%' GROUP BY
lastname

For more information about query performance see Tips on Constructing an Efficient
WHERE Clause.

Timeouts

On large data sets, calculating the aggregate results can take a long time because large
numbers of rows must be processed before the computation can be completed. In such
cases, when creating or executing the statement, it is advisable to set TIBDG_
STATEMENT_PROPERTY_DOUBLE_FETCH_TIMEOUT to a value that prevents timeouts. For
example, if the client request timeout is 5 seconds, a more complex query can set the
fetch timeout to a value larger than 5 seconds to prevent a timeout.

For more information about Statement properties, see Properties.

Floating Point Calculations in Aggregate Functions

By default, floating point calculations are inexact and the order in which they are
carried out can subtly affect the results. When executing queries involving aggregate
functions, ActiveSpaces processes the data from the different copysets in parallel
leading to slight variations in the results of floating point calculations. Even if the
variations might be very small, they can be amplified by rounding the decimal value. For
example, the average of a column can be calculated as 80.2849999999999966 one time
and 80.2850000000000108 another time. This variation is clearly very small (1.4e-14), but
if the results are rounded to 2 decimal places, that is 80.28 and 80.29, the variation
appears greater than that.

Proxy Binding

Applications that run large queries that use aggregation must work with their
administrator to determine the best approach for binding to proxies in the system. Your
administrator can recommend a proxy binding strategy that keeps computation
intensive queries from interfering with queries that have to run more quickly by either
isolating or distributing your queries across the proxies available to you.

TIBCO ActiveSpaces® Concepts

98 | Programming with ActiveSpaces

Limitations of the Aggregate Functions

The current support for aggregate functions requires that the argument to each
aggregate function must be a column name. For example:

AVG(col1)

The aggregate function argument cannot be an expression or function. For example,
the following function arguments are invalid uses of aggregate functions:

AVG(col1 + col2)
MIN(trim(col1))

For SQL keywords that cannot be used with aggregation functions, see Unsupported
SQL Features.

Date and Time Functions
ActiveSpaces provides support for several date and time functions. The date and time
functions return either a string or a double.

The following is the list of date and time functions supported.

Date and Time Function Returns

date(timevalue[, modifier[,
modifier, …]])

The date as a string in the format YYYY-MM-DD

time(timevalue[, modifier[,
modifier, …]])

The time as a string in the format HH:MM:SS

datetime(timevalue[, modifier[,
modifier, …]])

The date and time as a string in the format YYYY-MM-DD
HH:MM:SS

julianday(timevalue[, modifier[,
modifier, …]])

The number of days since noon in Greenwich on November 24,
4714 B.C as a double.

The date and time functions can act on the values of columns that have been defined as
one of the following data types: string, double, long, and datetime. The following table shows
how each of the data types represent date and time:

TIBCO ActiveSpaces® Concepts

99 | Programming with ActiveSpaces

Data Type Representation of Date and Time

string ISO_8601 strings. For example, "YYYY-MM-DD HH:MM:SS.SSS"

double Julian day numbers, the number of days since noon in Greenwich on November
24, 4714 B.C. according to the proleptic Gregorian calendar

long (default) as Julian day numbers. See type double in the earlier row.

long Unix Time, the number of seconds since 1970-01-01 00:00:00 UTC

datetime two 64-bit integers; one for the number of seconds since January 1, 1970 (Unix
epoch), and one for the number of nanoseconds after the time that the sec
component denotes.

By default, a column of type long is treated as a Julian day number. A column of type long
can also be used to hold Unix time values (e.g. the number of seconds since 1970-01-01
00:00:00 UTC). When using a date and time function on a column of type long that holds
Unix time values, the ‘unixepoch’ modifier must follow the column name in the parameters
passed to the function otherwise the column value is interpreted as a Julian day. See
Modifiers.

The following are examples of using the date 2016-12-24 00:00:00 as values in the different
column types:

l string - "2016-12-24T00:00:00". For details, see timevalue Format.

l double - 2457746.50000

l long - 1482566400 (Unix time)

l datetime - [1482566400, 0]

timevalue Format
The timevalue parameter represents a date/time in a format understood by the date and
time functions.

timevalue can be in any of the following formats:

1. YYYY-MM-DD

2. YYYY-MM-DD HH:MM

TIBCO ActiveSpaces® Concepts

100 | Programming with ActiveSpaces

3. YYYY-MM-DD HH:MM:SS

4. YYYY-MM-DD HH:MM:SS.SSS

5. YYYY-MM-DDTHH:MM

6. YYYY-MM-DDTHH:MM:SS

7. YYYY-MM-DDTHH:MM:SS.SSS

8. HH:MM

9. HH:MM:SS

10. HH:MM:SS.SSS

11. D[D..][.D..]

12. now

When timevalue is the name of a column in a table, the value of the column is substituted
for the timevalue parameter. As per ISO-8601, a date and time can be combined using the
literal character T. The T can also be omitted by mutual agreement. Both ways of
combining dates and times into a single string are supported.

Formats 2 through 10 can optionally be followed by a timezone indicator. The timezone
indicator can have the following formats:

l [+-]HH:MM

l Z

Z represents UTC time and is the timezone used to store dates and times in the data grid. If
HH:MM is non-zero, it is subtracted from the date and time and is intended to be used to
convert to UTC time.

The fractional seconds value SS.SSS can have one or more digits following the decimal
point but only the first three digits are considered. Therefore, support for full nanosecond
precision of tibDateTime values stored into ActiveSpaces datetime columns must not be
expected for queries.

Format 11 is the Julian day number expressed as a long or floating point number. This
format can accept any number of digits as required to represent the Julian day number.
Format 11 can also be a long, which represents Unix time. By default long values are
interpreted as Julian days. The unixepoch modifier must follow the column name in the
parameters passed to the date and time functions for the value of the column to be
interpreted as Unix time. See the section Modifiers.

TIBCO ActiveSpaces® Concepts

101 | Programming with ActiveSpaces

now is converted into the current date and time.

Note: The SQL variables CURRENT_DATE, CURRENT_TIME, and CURRENT_
TIMESTAMP can be used instead of specifying date('now'), time('now'), and datetime
('now'), respectively.

Modifiers
Each date and time function accepts zero or more modifier parameters that can be used to
alter the date or time returned by the function. Modifiers are applied from left to right in
the order specified.

The following modifiers can be used to add to the date/time:

l NNN day[s]

l NNN hour[s]

l NNN minute[s]

l NNN.NNNN second[s]

l NNN month[s]

l NNN year[s]
The following modifiers shift the date or time backward:

l start of month

l start of year

l start of day
The weekday modifier can be used to shift the date forward to the next date when the
weekday number is N. Sunday starts at 0, Monday is 1, and so on.

l weekday N
The following modifiers can be used to convert the timevalue immediately preceding it to
something else. For each of these modifiers, the results are undefined if the timevalue
preceding it is not of the proper type.

l unixepoch

l localtime

l utc
The unixepoch modifier causes the timevalue preceding it to be interpreted as Unix Time

https://en.wikipedia.org/wiki/Unix_time

TIBCO ActiveSpaces® Concepts

102 | Programming with ActiveSpaces

(the number of seconds since January 1, 1970). The localtime and utc modifiers can be
used to convert the timevalue immediately preceding it from UTC time to localtime or
localtime to UTC time respectively.

Result Column Examples
The date and time functions supported by ActiveSpaces can be used in the list of result
columns for a SELECT statement. The date and time functions cannot be used with table
iterators.

Given a table with the following columns and values for 2016-12-24 00:00:00:

Columns Data Type Values

dtm datetime [1482566400, 0]

dtmstr string “2016-12-24T00:00:00”

dtmlong long 1482566400

julianday double 2457746.50000

The following are examples of SELECT statements that use the date and time functions in
the select list of the SELECT statement:

SELECT key, date(dtm) FROM mytable WHERE key<=10
SELECT key, datetime(dtm) FROM mytable WHERE key<=10
SELECT key, time(dtm) FROM mytable WHERE key<=10
SELECT key, julianday(dtm) FROM mytable WHERE key<=10
SELECT key, datetime(now), date(dtm) FROM mytable WHERE key <=10

TIBCO ActiveSpaces® Concepts

103 | Programming with ActiveSpaces

SQL String Functions
ActiveSpaces includes the following SQL String functions:

Function Description

|| (concat operator) Concatenates two strings and returns a single string. The ||
operator joins together the two strings of its operands.

char(X1,X2,...,XN) Returns a string composed of the characters represented by
the Unicode code points specified by X1, X2, and so on.

instr(X,Y) Finds the first occurrence of string Y in string X. If a match
is found, the function returns a Long value, which is the
starting position of string Y in string X. Otherwise, it returns
0. If either X or Y is NULL, then the result is NULL, which in
SQL means no value is returned. Remember that in SQL,
the first character is considered position 1 and not 0.

For example:

SELECT instr(FIRST_NAME, 'jo') FROM t1

If the FIRST_NAME is 'john', the function returns the starting
position of the string "jo " in the string "john". In this case,
the function returns 1.

ltrim(X) Returns a string formed after removing space characters, if
any, from the left of string X.

ltrim(X.Y) Returns a string formed by removing the characters that
appear in Y from the beginning of X. For example,

SELECT ltrim(FIRST_NAME, 'j') FROM t1

In this case the function returns "ohn" since it removes the
'j' character from the left of the string.

rtrim(X) Returns a string formed after removing space characters, if

TIBCO ActiveSpaces® Concepts

104 | Programming with ActiveSpaces

Function Description

any, from the right of string X.

rtrim(X.Y) Returns a string formed by removing the characters that
appear in Y from the end of X.

SELECT rtrim(FIRST_NAME, 'n') FROM t1

In this case the function returns "joh" if the value in the
column was "john".

trim(X) Returns a string formed after removing space characters, if
any, from both sides of string X.

trim(X,Y) Returns a string formed by removing the characters that
appear in Y from the beginning and the end of X.

SELECT trim(FIRST_NAME, 'n') FROM t1

In this case the function returns "atha" if the value in the
column was "nathan".

lower(X) Returns a string formed after converting the characters in
string X to lower case.

upper(X) Returns a string formed after converting the characters in
string X to upper case.

length(X) Returns a long that is the length of the string X. If X is
NULL, the function returns NULL.

substr(X,Y) Returns all characters through the end of the string X
starting from position Y. The left-most character of X is at
position 1. If Y is negative then the first character of the
substring is found by counting from the right rather than
the left. Characters indices refer to actual UTF-8 characters.

For example:

TIBCO ActiveSpaces® Concepts

105 | Programming with ActiveSpaces

Function Description

substr('Hello World', 7)

Returns "World".

substr(X,Y,Z) Returns a substring of input string X that begins at the
position Y character and is Z characters long. The left-most
character of X is at position 1. If Z is negative then the abs
(Z) characters preceding the position Y are returned.

For example:

substr('Hello World', 2, 4)

Returns 'ello'.

unicode(X) Returns the numeric Unicode code point corresponding to
the first character of the string X. If X is not a string, the
result is undefined.

regexp(<pattern>, <column>) Returns 1 if the pattern matches the column value and 0
otherwise

regexp_extract(<column>,
<pattern>)

Returns the substring that matches the pattern.

regexp_extract(<column>,
<pattern>, n)

Returns the nth matching group.

json_extract(X,P1,P2,...) Returns one or more values from the well-formed
JSON string X.

TIBCO ActiveSpaces® Concepts

106 | The ActiveSpaces JDBC Driver

The ActiveSpaces JDBC Driver
Developers can use the ActiveSpaces JDBC driver to connect to an ActiveSpaces data grid.
The ActiveSpaces JDBC driver implements the Java Database Connectivity (JDBC) API. The
driver provides ActiveSpaces data grid connectivity for Java applications and third-party
tools by using JDBC.

The ActiveSpaces JDBC driver is a Type 2 driver and makes native library calls for
communicating with the data grid. The Java sample, TIBCO_
HOME/as/<version>/samples/src/java/com/tibco/datagrid/samples/ASandJDBCClient.java, demonstrates
the interaction between the ActiveSpaces JDBC driver and the data grid. A sample client
application is provided that demonstrates using the JDBC driver to interact with an
ActiveSpaces data grid in the Java samples shipped with ActiveSpaces.

The ActiveSpaces JDBC driver is not a fully compliant implementation of JDBC.

For more information about JDBC compliance, see JDBC Compliance.

For more information about the JDBC API, see TIBCO ActiveSpaces® Java API Reference.

Connecting to the Data Grid by Using
ActiveSpacesJDBC Driver
Java applications can connect to the ActiveSpaces data grid by using the ActiveSpaces
JDBC Driver.

Before you begin
Complete the steps in Setting up the Environment.

Procedure
1. Register the ActiveSpaces JDBC driver with the JDBC Driver Manager. For more

information, see Registering the ActiveSpaces JDBC Driver with the Driver Manager.

2. Connect with an ActiveSpaces data grid by using the appropriate JDBC URL. For

TIBCO ActiveSpaces® Concepts

107 | The ActiveSpaces JDBC Driver

more information, see Creating the ActiveSpaces JDBC Connection.

Setting up the Environment
The ActiveSpaces JDBC driver is bundled with the ActiveSpaces Java client API and
included in tibdg.jar. To use the ActiveSpaces JDBC driver from a client application, follow
the same steps for setting up your application that you used for the Java API. For
information about setting up your environment to build and run the ActiveSpaces samples,
refer to the TIBCO_HOME/as/<version>/samples/src/Java/README.md file.

You can use the same environment for developing Java client applications. The
ActiveSpaces JDBC driver is a Type 2 driver and uses native code for communicating with a
data grid. When using the ActiveSpaces JDBC driver with client JDBC tools, you must
configure the location of the ActiveSpaces native libraries.

On Linux/Mac, you can start the tool by either using the OS environment variable to specify
the search path for native libraries (ex: LD_LIBRARY_PATH pointing to the AS lib directory)
or by specifying that path with the following Java command-line options:

-Djava.library.path=${TIBDG_ROOT}/lib

On Windows, the java.library.path is not sufficient to find the dependent native libraries. You
must include the paths to all native libraries (both AS and FTL bin directories) in the PATH
environment variable and can avoid using the java.library.path.

After setting up the environment, Registering the ActiveSpaces JDBC Driver with the Driver
Manager.

Registering the ActiveSpaces JDBC Driver with the
Driver Manager
Use the class name, com.tibco.datagrid.jdbc.DriverImpl when registering the ActiveSpaces JDBC
driver or configuring other software to use the ActiveSpaces JDBC driver.

Before you begin
Complete the steps listed in Setting up the Environment.

TIBCO ActiveSpaces® Concepts

108 | The ActiveSpaces JDBC Driver

Procedure
1. Use the following code snippet to register the ActiveSpaces JDBC driver with the

JDBC DriverManager:

// Register the ActiveSpaces JDBC Driver with the JDBC DriverManager
try
{

Class.forName("com.tibco.datagrid.jdbc.DriverImpl");
}
catch (ClassNotFoundException ex)
{

// handle exception
}

What to do next
After registering the driver, the next step is Creating the ActiveSpaces JDBC Connection.

Creating the ActiveSpaces JDBC Connection
After registering the ActiveSpaces JDBC driver, the next step is to make the ActiveSpaces
JDBC connection.
The DriverManager interface supports the following methods for creating a connection:

Connection getConnection(String url);
Connection getConnection(String url, Properties info);
Connection getConnection(String url, String user, String password);

The url parameter is the JDBC URL to connect to a database, or in our case a data grid.
Ensure that the url adheres to the format specified in JDBC URL Format. The info parameter
is optional and can contain a set of Java properties that are required for connecting to the
data grid. To understand these properties, see ActiveSpaces Properties .

Note: Properties passed to the connect() method override the properties specified
in the JDBC URL. The names of the properties follows the same rules for
property names in the JDBC URL.

TIBCO ActiveSpaces® Concepts

109 | The ActiveSpaces JDBC Driver

Before you begin
First complete the steps listed in Registering the ActiveSpaces JDBC Driver with the Driver
Manager.

Procedure
1. After registering the driver, create a JDBC connection to the data grid. To connect to

the data grid, you can use any of the getConnection() methods. The following code
snippet uses Connection getConnection(String url) :

// create a JDBC connection to the data grid
String jdbcURL = "jdbc:tibco:tibdg:_default;realmurl=
http://localhost:8080";
java.sql.Connection jdbcConnection =
java.sql.DriverManager.getConnection(jdbcURL);

An Example of Registering and Connecting to the Data
Grid
This example shows the code snippet to be inserted to your Java code to register and
connect to the data grid. The following example uses the Connection getConnection(String url,
Properties info) method to create a connection.

public java.sql.Connection getConnection (Properties props) throws SQLException
{

// Register the ActiveSpaces JDBC Driver with the JDBC
DriverManager
try
{

Class.forName("com.tibco.datagrid.jdbc.DriverImpl");
}
catch (ClassNotFoundException ex)
{

// handle exception
}

// Establish a JDBC connection to the data grid
String jdbcURL = "jdbc:tibco:tibdg:_default";
Properties props = new Properties();
props.setProperty(

TIBCO ActiveSpaces® Concepts

110 | The ActiveSpaces JDBC Driver

com.tibco.datagrid.Connection.TIBDG_CONNECTION_PROPERTY_STRING_REALMURL,
"http://localhost:8080");

return java.sql.DriverManager.getConnection(jdbcURL, props)
}

JDBC URL Format
You specify a JDBC URL when you are establishing a JDBC connection to an ActiveSpaces
data grid.

The standard syntax for JDBC URLs is:

jdbc:<subprotocol>:<subname>

The variables in this syntax are as follows:

l subprotocol is the name of the driver or the name of a database connectivity
mechanism.

l subname is a way to identify the data source.
The ActiveSpaces JDBC URL has been extended from the standard JDBC URL syntax to

provide you the ability to specify the settings for connecting to an ActiveSpaces data grid.
The ActiveSpaces JDBC URL format is as follows:

jdbc:tibco:tibdg[:<data-source-name>][;<propertyName>=<propertyValue>]*

The <data-source-name> is optional and specifies the data grid name. The data grid name
can also be specified as a property as in the following example URL:

jdbc:tibco:tibdg;gridname=mygrid

If the data grid name is not specified as a property or as <data-source-name>, then _default
is used, which is the default data grid name. For example:

jdbc:tibco:tibdg

TIBCO ActiveSpaces® Concepts

111 | The ActiveSpaces JDBC Driver

ActiveSpaces Properties
The ActiveSpaces JDBC Driver makes invocations of the ActiveSpaces Java API. The
ActiveSpaces Java API provides several API methods where properties can be specified
which are needed to connect to the data grid or which affect the behavior of the data grid.
However, in the JDBC driver you can only specify properties when you first connect to the
data grid. Therefore, any properties that must be applied to Statements should also be
specified in the set of properties used to connect to the data grid. When the JDBC API
offers a method to set a value that can also be set using a property, the JDBC API's setting
takes precedence.

The following partial list describes the most frequently used connection properties that can
be specified. See the tables that follow to see other Connection, Session, and Statement
properties that can be included in the set of properties specified when connecting to the
data grid.

Property Description Default Value

com.tibco.tibdg.gridname Name of the data grid _default

com.tibco.tibdg.realmurl Realm Service URL. The Realm Service
URLs use the pipe character (|) as a
separator to provide a list of URLs.

http://localhost:8080

com.tibco.tibdg.connectwaittime The amount of time to wait for
connection to be established.

0.1 seconds

com.tibco.tibdg.timeout The amount of time to wait for
responses from the data grid.

5.0 seconds

When specifying properties as part of the JDBC URL, the full property name or the property
name without the com.tibco.tibdg prefix can be used. For example:

jdbc:tibco:tibdg:_default;com.tibco.tibdg.realmurl=http://localhost:8080

TIBCO ActiveSpaces® Concepts

112 | The ActiveSpaces JDBC Driver

Connection Property Description Default Value

com.tibco.tibdg.clientlabel Set the name used to refer to the
client in monitoring and
management components.

A string
containing the
grid name,
client instance
ID, and
ActiveSpaces
version.

com.tibco.tibdg.connectbindstrategy Specifies how a client must establish
a proxy connection.

0=choose a proxy at random

1=choose a proxy from the proxies
listed in the
com.tibco.tibdg.connectproxynames
property

2=choose the proxy with the lowest
load from the proxy responses
received. This is the balanced bind
strategy.

0

com.tibco.tibdg.connectnumresponses Specifies the number of responses to
receive from proxies before the
client stops looking for proxy
responses. Only used when
com.tibco.tibdg.connectbindstrategy has
been set to 0 (random) or 2
(balanced)

2147483647

com.tibco.tibdg.connectproxynames A pipe '|' delimited list of proxy
names for
com.tibco.tibdg.connectbindstrategy

None

com.tibco.tibdg.realmconnectretries Specifies the number of times the
underlying TIBCO FTL client library
attempts to connect to the Realm.

5

TIBCO ActiveSpaces® Concepts

113 | The ActiveSpaces JDBC Driver

Connection Property Description Default Value

com.tibco.tibdg.tporttype Specifies the type of FTL transport
that the client uses to connect to
proxies.

0=DTCP

1=AUTO

Connection type
determined by
the grid
configuration.

com.tibco.tibdg.trust.file Specifies the given file must be used
to verify the realm server's
certificate when
com.tibco.tibdg.trust.type is set to trust_
file

None

com.tibco.tibdg.trust.type Specifies the type of "trust" to use
when connecting to the realm
server.

trust_file=Use the trust file specified in
the com.tibco.tibdg.trust.file property to
verify the realm server's certificate.

trust_everyone=The application trusts
any realm server without verifying
the trust in the realm server's
certificate. Use for development
only.

None

com.tibco.tibdg.username Specifies the username to use when
connecting to a secure realm server.

None

com.tibco.tibdg.userpassword Specifies the password to use when
connecting to a secure realm server.

None

Session Property Description Default

com.tibco.tibdg.checkpointname Use the specified checkpoint as the data
source for this session's read operations.

None

TIBCO ActiveSpaces® Concepts

114 | The ActiveSpaces JDBC Driver

Session Property Description Default

com.tibco.tibdg.immutablerows Specifies whether rows returned in ResultSets
are immutable.

true=rows cannot be modified

false=rows can be modified

false

Statement Property Description Default

com.tibco.tibdg.statement.consistency When running queries, determines
whether to wait for any previous
transactions to be committed.

Possible string values: global_
snapshot, snapshot

global_
snapshot -
waits for
writes to be
committed

com.tibco.tibdg.statement.prefetch Indicates the number of result rows
to return to the client at a time for a
query being executed. Calling
Statement.setFetchSize() overrides this
property setting for the statement.

256

com.tibco.tibdg.statement.fetch.timeout Specifies how long (in seconds) the
application waits for the next batch
of query result rows before timing
out. Calling Statement.setQueryTimeout()
overrides this property and the
com.tibco.tibdg.statement.update.timeout
property for the statement.

If this
property is
not provided,
the current
timeout for
the parent
Connection is
used.

com.tibco.tibdg.statement.update.timeout Specifies how long (in seconds) the
application waits for a reply to an
ExecuteUpdate request, on a
statement, before timing out. Calling
Statement.setQueryTimeout() overrides
this property and the
com.tibco.tibdg.statement.fetch.timeout
property for the statement.

If this
property is
not supplied
the current
timeout for
the parent
Connection is
used.

TIBCO ActiveSpaces® Concepts

115 | The ActiveSpaces JDBC Driver

Using the ActiveSpaces JDBC Driver With Third
Party Tools
Date and time values stored in ActiveSpaces are stored in UTC time. By default, third party
JDBC clients use the default timezone of the JVM where the client was started when
retrieving date and time values. To see dates and times in a particular time zone when they
are retrieved from the data grid, you can use one of the JDBC methods that helps you
specify a time zone. Another alternative is to configure your JDBC client to display date
and time information in UTC time. For example, when using the SQuirreL JDBC client you
can modify the script file used to start SQuirreL and specify the following additional
command-line option where the SQuirreL executable is invoked:

-Duser.timezone=UTC

JDBC Implementation Notes
This section focuses on some important aspects to consider when using the ActiveSpaces
JDBC driver.

JDBC Data Types
ActiveSpaces uses a small set of data types for storing data in a data grid. When using the

ActiveSpaces JDBC driver, it is important to know how the JDBC data types map to the
ActiveSpaces data types.

The following table lists the JDBC data types and how they map to the ActiveSpaces data
types:

JDBC Data Type ActiveSpaces Data Type

CHAR, VARCHAR, LONGVARCHAR string

TIBCO ActiveSpaces® Concepts

116 | The ActiveSpaces JDBC Driver

JDBC Data Type ActiveSpaces Data Type

BIT, BOOLEAN, TINYINT, SMALLINT,INTEGER, BIGINT long

REAL, FLOAT, DOUBLE double

BINARY, VARBINARY, LONGVARBINARY,BLOB opaque

DATE, TIME, TIMESTAMP TibDateTime

Any JDBC data types not listed above are not supported by the ActiveSpaces JDBC driver.

A table defined in ActiveSpaces has the data types of its columns mapped to the following
JDBC data types when using the JDBC driver:

ActiveSpaces Data Type JDBC Data Type

string VARCHAR

long BIGINT

double DOUBLE

opaque VARBINARY

TibDateTime TIMESTAMP

DatabaseMetaData Pattern Parameters
Methods of the DatabaseMetaData interface that take arguments that are string patterns, it
must be noted that the pattern "%" are matched only when used by itself.

TIBCO ActiveSpaces® Concepts

117 | The ActiveSpaces JDBC Driver

Here is an example:

Code Snippet Returns

getTables(null, null, "%", null) a ResultSet containing all tables in the data grid

getTables(null, null, "table%",
null)

an empty ResultSet as "%" is not used by itself for the pattern
argument

ResultSetMetaData and Function Return Values
ActiveSpaces determines the data types of the return values of functions used in queries at
runtime. When the ResultSet for a query contains the return value of a function, VARCHAR is
always reported as the data type for the value in the ResultSetMetaData.

To retrieve a function return value from the ResultSet as its actual data type, you must wait
until the query is executed. After the query has been executed, the custom method
ResultSetImplDG.getColumnType() can be called, which returns the actual result value type.

For example, suppose you have the following query:

SELECT COUNT(key) FROM mytable

The ResultSetMetaData reports that the data type for column 1 is VARCHAR. To retrieve the
actual data type for column 1 of the query result do the following:

1. Unwrap the ResultSet object retrieved when the query is executed. For example,

ResultSetImplDG rsImpl = resultSet.unwrap
(com.tibco.datagrid.jdbc.ResultSetImplDG.class);

2. Retrieve the data type of column 1 in the ResultSet. For example,

int columnType = rsimpl.getColumnType(1);

The columnType must be set to a value from java.sql.Types to indicate the type of the
value in the column. The java.sql.Types.NULL value is returned for columns in the row,
which do not contain a value.

TIBCO ActiveSpaces® Concepts

118 | The ActiveSpaces JDBC Driver

JDBC Compliance
The ActiveSpaces JDBC driver is not a fully compliant implementation of JDBC.

SQL command support is provided by ActiveSpaces and the driver does not implement any
additional support. The following SQL commands are supported:

l CREATE TABLE

l CREATE INDEX

l DROP TABLE

l DROP INDEX

l SELECT

l INSERT

l INSERT OR REPLACE

l DELETE

l UPDATE

The following are the known limitations of the driver:

l Entry Level SQL92 is not fully supported.

l Transactions are not supported.

l Batch updates are not supported.

l javax.sql.DataSource is not implemented.

The following JDBC driver features are not supported:

l Connection Pooling

l Schemas

l Foreign Keys

l Procedures

l Functions

l Callable Statements

l Savepoints

TIBCO ActiveSpaces® Concepts

119 | The ActiveSpaces JDBC Driver

l Parameter Metadata

l Named Parameters

l Transactions

l Updatable ResultSets

l Multiple ResultSets From a Single Execute Call

l Joins

l Subqueries

TIBCO ActiveSpaces® Concepts

120 | Sizing Guide

Sizing Guide
Usually, the total data set is partitioned horizontally into copysets where each copyset
holds a fraction of the data. Since a copyset in production typically includes more than one
node for redundancy (where each node is an exact replica of the data in that copyset), let
us start with a simplifying assumption that the data resides on a single node per copyset.

The size of a copyset is determined by the following factors:

l The number of rows

l The size of a row in bytes (The size of a row is determined by number of columns,
the column data types, and the actual values placed in each column)

l Indexes
ActiveSpaces provides an Excel spreadsheet that can be used to calculate the size of your

data grid. Download the ActiveSpaces Sizing Guide from the TIBCO ActiveSpaces landing
page. Please review the spreadsheet for information about how the number of bytes in the
example used in this guide were determined.

Example of a Sizing Calculation
Consider a scenario where the purchasing details of a customer are stored in the purchase
table. There are around five million rows in this table with the following schema:

Name of the field Data Type An estimation of the disk space consumed (in
bytes)

customer_id (Primary
Index)

Long 8

purchase_id Long 8

customer_first_name String 10

https://docs.tibco.com/products/tibco-activespaces-enterprise-edition
https://docs.tibco.com/products/tibco-activespaces-enterprise-edition

TIBCO ActiveSpaces® Concepts

121 | Sizing Guide

Name of the field Data Type An estimation of the disk space consumed (in
bytes)

customer_last_name String 10

customer_post_code Long 8

payload String 10K

Size of Rows without Secondary Indexes

Size of Row (in bytes) = 8 + 8 + 10 + 10 + 8 + 10K = 10,044

Estimated Internal Overhead + Primary Index (Long) Overhead per Row = (32 + 27) = 59
bytes

Size of Row Including Overhead = 10,103

Size of All Rows with No Secondary Indexes = 5M x 10,103 = 50.5GB

Size of Rows with Secondary Indexes

Index Overhead per Row = 45 bytes (might vary depending on actual values being indexed)

purchase_id_idx = 5M x (45 + 8) = 0.27GB

customer_full_name_idx = 5M x (45 + 10 + 10) = 0.33GB

Size of Secondary Indexes = 0.6GB Total Size In Bytes

(All Rows + Secondary Indexes) = 51.1GB

Additional Factors That Affect Sizing

The purchase table with five million rows would be estimated to occupy 51.1GB on disk.
You must provision additional disk space to account for compactions and other internal
activity. Depending on the configuration options, you might need 10% to 100% additional
space on disk. The additional disk space needed depends on whether you opt for better
write performance by not using compaction and providing more disk space reducing the
amount of disk space required by using compaction. The different compaction levels can
be used to reduce the actual disk space requirements of a typical 10K XML string when
reducing performance. For better performance, apply the 100% Free Space Factor from the

TIBCO ActiveSpaces® Concepts

122 | Sizing Guide

Excel spreadsheet, which results in an estimated 51.1GB of additional free disk space
needed.

Determining the Allocation of Physical Computers to the Nodes

When we map the disk space needed to node processes running on the hardware, a
general guideline would be to start with two copysets. Each copyset would own half the
data (approximately 26GB) and each copyset would be configured with at least two nodes
for redundancy (where each node would have to hold the full amount of data owned by
that copyset). As a result, on each copyset, you would have two copies of the data for
redundancy.

Here is how this would map to four node processes (where each node process would be
run on a separate computer):

Copyset1

Node = 26GB

Node = 26GB

Copyset2

Node = 26GB

Node = 26GB

After adding a multiplier (Free Space Factor times node data size) = approximately 52GB.

Apply the multiplier to ensure that there is enough free disk space. A general guideline is to
double all of these numbers to have approximately 52GB on each node.

However, there is no strict guideline for the amount of RAM needed based on the amount
of data. If there is available RAM, it would be used for caching. In this case, given that
nearly all the data must be able to fit in RAM on each node, you can opt for 32GB or 64GB
of RAM on each of the nodes.

Similarly, you can opt for an SSD that can account for the data and free space such as
256GB SSD on each computer.

Remember that every node must be capable of holding the amount of data held by the
copyset. After determining the size of a node, the next step is to decide how many nodes
you want in a copyset. The number of nodes depends on how many replicas of data you
want to maintain and how many copysets you want to have in the data grid.

TIBCO ActiveSpaces® Concepts

123 | Sizing Guide

After you have an estimate about the number of nodes and replicas of data, you can use
the following formula to determine the number of nodes in a data grid:

Total number of nodes in the data grid = Number of copysets *
number of replicas in a copyset

Note: ActiveSpaces 4.0 and later does not require each node to have as much
RAM as the full amount of data.
However, you can provision them that way for optimal read performance
depending on read access patterns by the application.

TIBCO ActiveSpaces® Concepts

124 | Comparison Matrix

Comparison Matrix
This matrix lists the major differences in the terminology used in ActiveSpaces 2.x and 3.x
and later. This is not an exhaustive matrix and only highlights the salient differences.

ActiveSpaces 2.x or earlier ActiveSpaces 3.0 and later

Metaspace, cluster Data grid

Space Table

Tuple Row

Attribute Column

Key Primary Index

Seeder Node

Leech N/A

Remote clients ActiveSpaces clients

Functionality in ActiveSpaces 3.0 and Later That Is Different from Earlier
Versions

No Automatic Redistribution

When a new node is added to the data grid, redistribution of rows does not happen
automatically and thus prevents the system from slowing down. The Administrator is in
total control of manual redistribution.

Data Ownership

In ActiveSpaces 3.0 or later, data is organized into logical copysets and the nodes in a
copyset are all identical replicas. In ActiveSpaces 2.x, a consistent hashing algorithm is
used to determine which seeder in the cluster owns a given tuple.

TIBCO ActiveSpaces® Concepts

125 | Comparison Matrix

Supported Primitive Operations

ActiveSpaces 3.0 or later supports the following primitive operations: GET, PUT, and
DELETE.

ActiveSpaces 4.5 or later supports the following primitive operations: GET, PUT,
UPDATE, and DELETE.

No Shared All Mode of Persistence

Nodes in ActiveSpaces 3.0 or later store their data locally to the disk. Storing locally is
equivalent to Shared Nothing persistence with ActiveSpaces 2.x.

TIBCO ActiveSpaces® Concepts

126 | Error Codes

Error Codes
The following table lists the error codes used in ActiveSpaces:

ActiveSpaces relies on TIBCO FTL internally. TIBCO FTL generates error codes ranging
between -1 and 5000. For information about TIBCO FTL error codes, see TIBCO FTL Error
Codes.

Error
Code

Error Key Cause Solution

-1 TIB_NULL_
EXCEPTION

The program has supplied a
NULL value instead of an
exception object.

0 TIB_OK The TIBCO FTL call completed
successfully.

1 TIB_INVALID_
ARG

An invalid value has been
embedded as an argument.

2 TIB_NO_MEMORY An application could not
allocate sufficient memory to
process an operation.

4 TIB_TIMEOUT Internal timeout elapsed. In many cases the library
attempts to retry most
operations but stops once the
client’s timeout period is
reached. An application may
choose to retry the function a
certain number of times
before taking some other
course of action.

5 TIB_NOT_ The program has not yet In most cases the application

https://docs.tibco.com/pub/ftl/6.5.0/doc/html/api/c/except_8h.html
https://docs.tibco.com/pub/ftl/6.5.0/doc/html/api/c/except_8h.html

TIBCO ActiveSpaces® Concepts

127 | Error Codes

Error
Code

Error Key Cause Solution

INITIALIZED called tib_Open to start TIBCO
FTL or grid is offline.

must retry an operation,
maybe with a brief delay,
some number of times till the
grid is online again.

6 TIB_OS_ERROR An operating system call has
failed.

7 TIB_INTR An internal interrupt has
occurred in a thread.

8 TIB_NOT_
PERMITTED

An invalid operation has
occurred on a valid object.
You don't have a permission
to perform the operation.

To perform the operation, get
a permission either directly or
through a group of which you
are part of.

9 TIB_NOT_FOUND A client has requested a value
that is not in the database.

10 TIB_ILLEGAL_
STATE

The action has been
inconsistent with the internal
state.

11 TIB_NOT_
SUPPORTED

The data type or feature is not
supported.

12 TIB_END_OF_
BUFFER

Reached the end of buffer
when parsing an inbound
message.

13 TIB_VERSION_
MISMATCH

Incompatible versions of
TIBCO FTL components.

14 TIB_ALREADY_
EXISTS

There has been a conflict with
an existing object, value, or
definition.

TIBCO ActiveSpaces® Concepts

128 | Error Codes

Error
Code

Error Key Cause Solution

15 TIB_FILE_IO_
ERROR

I/O error occurred when
accessing shared memory or
when accessing the file
system.

16 TIB_INVALID_
VALUE

TIBCO FTL internal error has
occurred due to one of the
following malformed artifacts:
message, packet, or realm
definition.

17 TIB_INVALID_
TYPE

There has been a mismatch
between field and data type.

18 TIB_INVALID_
CONFIG

The property values have
been invalid or

contradictory.

19 TIB_INVALID_
FORMAT

The FTL client library has
encountered a message with
an invalid format.

20 TIB_CLIENT_
SHUTDOWN

The program has attempted
an operation on an unusable
realm object.

21 TIB_RESOURCE_
UNAVAILABLE

A resource required by the
client program was
unavailable.

22 TIB_LIMIT_
REACHED

A resource could not accept
data because it had reached a
specified upper limit.

23 TIB_FORMAT_ A format required by the

TIBCO ActiveSpaces® Concepts

129 | Error Codes

Error
Code

Error Key Cause Solution

UNAVAILABLE client program was
unavailable.

100 TIB_EXCEPTION An unclassified exception
occurred.

101 TIB_UNKNOWN_
SYSPROP

The client has detected a
corrupted message during
reassembly.

5000 TIBDG_INVALID_
BIN_EPOCH

Could have occurred after a
successful redistribution when
a stale operation was sent to
the old node, which
previously owned the row but
no longer has the ownership.
Retry the operation again so
that it goes to the new owner.

5002 TIBDG_INVALID_
RESOURCE

This error code is returned
when a specific resource is to
be recreated. If a Prepared
Statement exists before
redistributing a grid,
subsequent ExecuteQuery()
calls might fail.

In this case, the Prepared
Statement must be closed and
recreated before running any
more ExecuteQuery()
commands.

5003 TIBDG_GRID_IN_
MAINTENANCE

An invalid operation has been
submitted in maintenance
mode.

This error code is returned
when a client submits any
operation that modifies the
data on a disk while the grid
is in maintenance mode.

The application must retry the
operation until the grid is no
longer in maintenance mode
and the operation succeeds.

TIBCO ActiveSpaces® Concepts

130 | Error Codes

Error
Code

Error Key Cause Solution

TIB_INVALID_
ARG

One of the arguments
provided to the function is not
valid.

Call the function again with
same or different arguments.

SQL Error Codes

Error
Code

Error Key Cause Solution

5100 TIBDG_SQL_
SYNTAX_ERROR

An error is detected in the
syntax of a SQL statement.

Correct the SQL statement
before submitting it again.

5101 TIBDG_SQL_
NOT_
SUPPORTED

The string containing a SQL
statement has included the
syntax of an unsupported
feature.

Correct the SQL statement
before submitting it again.

5102 TIBDG_SQL_
INVALID_VALUE

The string containing an SQL
statement has included syntax
that cannot be used in a
particular scenario.

Correct the SQL statement
before submitting it again.

5103 TIBDG_SQL_
PARSER_ERROR

An unexpected error has
occurred during the parsing of a
SQL statement.

Correct the SQL statement
before submitting it again.

5104 TIBDG_SQL_
STMT_ERROR

An unexpected error has
occurred during the processing
of a SQL statement.

The statement should be
resubmitted as the
statement is most likely
valid.

5105 TIBDG_SQL_
SYSTEM_ERROR

An unexpected SQL system error
occurred during the processing
of a query.

The statement should be
resubmitted as the
statement is most likely
valid.

TIBCO ActiveSpaces® Concepts

131 | Error Codes

Error
Code

Error Key Cause Solution

5106 TIBDG_SQL_
QUERY_ERROR

An unexpected error occurred
during the processing of a query
by a tibdgnode.

The statement should be
resubmitted as the
statement is most likely
valid.

5107 TIBDG_SQL_
DDL_CMD_
ERROR

An unexpected error occurred
during the processing of a table
or index DDL command in the
data grid.

The statement should be
resubmitted as the
statement is most likely
valid.

5108 TIBDG_SQL_
QUERY_CMD_
ERROR

An unexpected error occurred
during the processing of a query
by the node.

Correct the SQL statement
before submitting it again.

5109 TIBDG_SQL_
DML_CMD_
ERROR

An unexpected error occurred
during the processing of an
INSERT or UPDATE command in
the data grid.

Correct the SQL statement
before submitting it again.

5110 TIBDG_SQL_
CMD_ERROR

A generic SQL command error
occurred during the processing
of a SQL command in the data
grid.

Running the command again
might result in it being
successfully processed.
Correct the SQL statement
before submitting it again.

5111 TIBDG_SQL_
NOT_
PERMITTED

A SQL statement tried to
perform an action that is not
permitted by the data grid.

Running the command again
is unlikely to be successful.
Correct the SQL statement
before submitting it again.

TIBDG_SQL_
BAD_BATCH

This error code is returned when
a batch of SQL commands could
not be successfully processed
due to one or more bad
commands in the batch.

When this happens, the
entire batch of commands is
rolled back.

TIBCO ActiveSpaces® Concepts

132 | Error Codes

Error
Code

Error Key Cause Solution

TIBDG_SQL_
RESOURCE_
UNAVAILABLE

when a SQL command could not
be successfully processed due to
a resource needed by the
command being unavailable.

Running the command again
might result in it being
successfully processed.

TIBCO ActiveSpaces® Concepts

133 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than
any other documentation included with the product.

Product-Specific Documentation

The following documentation for TIBCO ActiveSpaces® is available on the TIBCO
ActiveSpaces® Product Documentation page:

l TIBCO ActiveSpaces® Release Notes

l TIBCO ActiveSpaces® Installation

l TIBCO ActiveSpaces® Concepts

l TIBCO ActiveSpaces® Administration

l TIBCO ActiveSpaces® API Reference

l TIBCO ActiveSpaces® Security Guidelines

l TIBCO ActiveSpaces® ActiveSpaces4-Sizing-Guide

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

l For accessing the Support Knowledge Base and getting personalized content about
products you are interested in, visit the TIBCO Support website.

l For creating a Support case, you must have a valid maintenance or support contract
with TIBCO. You also need a user name and password to log in to TIBCO Support
website. If you do not have a user name, you can request one by clicking Register on
the website.

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activespaces-enterprise-edition
https://docs.tibco.com/products/tibco-activespaces-enterprise-edition
http://www.tibco.com/services/support
https://support.tibco.com/s/
https://support.tibco.com/s/

TIBCO ActiveSpaces® Concepts

134 | TIBCO Documentation and Support Services

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/

TIBCO ActiveSpaces® Concepts

135 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FTL, eFTL, and Rendezvous are either registered
trademarks or trademarks of Cloud Software Group, Inc. in the United States and/or other countries.

TIBCO FTL® is an embedded and bundled component of TIBCO ActiveSpaces® Enterprise Edition.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

https://scripts.sil.org/OFL
https://www.cloud.com/legal

TIBCO ActiveSpaces® Concepts

136 | Legal and Third-Party Notices

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2009-2023. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	About This Product
	Overview of TIBCO ActiveSpaces
	Why ActiveSpaces?
	What Is ActiveSpaces?
	Benefits of ActiveSpaces
	Attributes of ActiveSpaces

	Redesigned from the Ground Up
	Terminology Used to Address the TIBCO FTL Realm
	Grid Computing in ActiveSpaces
	What Is a Data Grid?
	How Is the Data Stored in a Data Grid?
	Replication

	Processes in ActiveSpaces
	The Workflow for a PUT Operation
	Log Levels
	Transaction Isolation
	Checkpoints
	Checkpoint Types

	Disaster Recovery
	Gridsets
	Types of Data Grids
	Mirroring

	Best Practices for a Development Environment
	Pre-Production Checklist
	Best Practices for a Production Environment
	Best Practices for Cloud Environments
	Programming with ActiveSpaces
	Structuring Programs
	Task A: Initializing ActiveSpaces Objects
	Task B: Performing Data Grid Operations
	Task C: Cleaning up and Closing the Connection
	Connection
	Session
	Table
	PUT
	GET
	UPDATE
	DELETE
	Iterator
	Table Listener
	Filtering Events
	Listening to Specific Event Types

	Statement
	Properties
	Parameters
	Executing Statements
	ResultSet
	Row Objects
	ResultSet MetaData

	SQL Identifiers
	Column Data Types
	tibDateTime
	Using tibDateTime Columns with tibdg and the Client API
	Using tibDateTime Columns with SQL Commands

	Querying a Data Grid Table
	Table Iterator
	Session Statement
	Data Consistency for Queries
	The SQL SELECT Statement
	The Syntax of a SELECT Statement
	Unsupported SQL Features

	The FROM Clause
	The Select List
	Asterisk
	Value Expression
	Restrictions on Using a Value Expression

	CASE Expressions used in the Select List
	Case Expression Restrictions

	Functions Used in The Select List

	The WHERE Clause
	Tips on Constructing an Efficient WHERE Clause
	Operators Used in the WHERE Clause
	Using Date and Time Functions in the WHERE Clause
	Function Usage on Index Columns
	WHERE Clause Examples
	Querying tibDateTime Columns
	Error Conditions

	Using String Functions in the WHERE Clause
	Using Multi-Argument MIN, MAX Functions in the WHERE Clause

	The GROUP BY Clause
	The ORDER BY Clause
	LIMIT Clause

	Modifying Data in a Table
	The SQL INSERT Statement
	Adding Rows to a Table by Using the SQL INSERT Statement
	Errors for INSERT Statement
	INSERT Statement and Expressions
	Parameter Binding with INSERT Statements

	The INSERT OR REPLACE Statement
	The SQL DELETE Statement
	Removing Rows From a Table Using the SQL DELETE Statement
	Errors for DELETE Statement
	Authentication for Deleting Rows
	Properties to Control the Removal of Rows From a Table

	The SQL UPDATE Statement
	Modifying Rows in a Table Using the SQL UPDATE Statement
	Errors for UPDATE Statement
	Table Permissions for Updating Rows
	Properties to Control the Update of Rows in a Table

	SQL Expressions
	Operators
	LIKE Operator
	Negation
	Compound Expressions
	Order of Operations
	CASE Expressions

	SQL Functions
	Aggregate Functions
	Date and Time Functions
	timevalue Format
	Modifiers
	Result Column Examples

	SQL String Functions

	The ActiveSpaces JDBC Driver
	Connecting to the Data Grid by Using ActiveSpacesJDBC Driver
	Setting up the Environment
	Registering the ActiveSpaces JDBC Driver with the Driver Manager
	Creating the ActiveSpaces JDBC Connection
	An Example of Registering and Connecting to the Data Grid
	JDBC URL Format
	ActiveSpaces Properties

	Using the ActiveSpaces JDBC Driver With Third Party Tools
	JDBC Implementation Notes
	JDBC Data Types
	DatabaseMetaData Pattern Parameters
	ResultSetMetaData and Function Return Values

	JDBC Compliance

	Sizing Guide
	Example of a Sizing Calculation

	Comparison Matrix
	Error Codes
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

