TIBCS

TIBCO BusinessEvents® Enterprise
Edition
Architect Guide

Version 6.3.1 | September 2024

@ CLOUd Copyright © 2004-2024. Cloud Software Group, Inc. All Rights Reserved.

2 | Contents

Contents

Contents . 2
Before You Begin ... 7
Rule Management Server Prerequisite ... 7
Third-Party Software Documentation References ... 8
Cloud Tools for TIBCO BusinessEvents ... 10
TIBCO BusinessEvents Contribution Repository 13
Complex Event Processing (CEP) ..., 16
Technical Requirements of @ CEP System ... 17
A Model-Driven Approach ... 18
Stateful Rule Engine ... 20
Object Management TYPeS 20
Main Product Components and Add-On ... 21
TIBCO BusinessEvents Design-time Components ... 21
TIBCO BusinessEvents Administration Components ... 22
Design-time Resource OVervieW ... 23
Channels and Events 24
CON PSS 25
SCOre CardS .. 25
RULES 26
Object Management and Fault Tolerance ... 26
State Modeler ... 27
Database CONCEPES ... o 27
Query Language and Framework ... 27
Pattern Language and Framework ... 28
Deploy-time and Runtime OVEerview ... 28

TIBCO BusinessEvents® Enterprise Edition Architect Guide

3| Contents

Cluster Deployment Descriptor (CDD) ... 29
TIBCO Hawk Application Management Interface ... 30
Hot Deployment 30
Channels Destinations and Events ... 31
Channel TYPES .o 31
Channel Serializers 33
Message Acknowledgement 34
BV NS 34
Simple BVeNts 35
Time EVENTS 36
AdVISOry BEVeNtS 38
Default Destinations and Default Events 38
Mapping Incoming Messages to Non-default Events ... 39
Time to Live and Expiry ACtIONS ... 39
Event Expiration and Expiry Actions 41
Event PreproCesSOrsS . 41
Preprocessor Usage Guidelines 43
CONC P 44
Concept Relationships ... 45
Concept Property History ... 45
Containment Relationships ... 47
Inheritance Relationships 50
Reference Relationships ... 51
SCOMECANAS .. 53
RULeS 54
Rule Priority and Rank 54
Rule FUNCHIONS ... 56
Runtime Inferencing Behavior 59
Rule Evaluation and Execution 59

TIBCO BusinessEvents® Enterprise Edition Architect Guide

4| Contents

Conflict Resolution and Run to Completion Cycles ... 60
How to Work with Rules 62

Order of Evaluation of Rule Conditions ... 64

Enforcing the Order of Condition Evaluation ... 65
Object Management (OM) 67
Cache and Store Object Management 68
In Memory Object Management ... 70
Object Management and Fault Tolerance Scenarios ... 71

Cache OM with Memory Only Mode on All Objects and Fault Tolerance 72

Cache or Store OM and Fault Tolerance ... 73
Distributed Cache OM 75
Characteristics of a Distributed Caching Scheme ... 76
Failover and Failback of Distributed Cache Data ... 77
Limited and Unlimited Cache Size 78
Distributed Cache and Multi-Agent Architecture ... 79
A ONtS 81

Inference AGeNtS 81

Cache AgeNts . . 82

QUEIY AGONTS 83

Dashboard Agentsl 83
Legacy ActiveSpaces Cluster Member Discovery ... 83
Load Balancing ... 84
Fault Tolerance of Agents .. . 85
Cache OM with a Backing Store 86
Backing Store Write Strategy 87
Storage and Retrieval of Entity Objects ... 89
Data Lookup Strategies ... 90
The Role of the Object Table ... 92
Domain Object Modes and Project Design ... 94

TIBCO BusinessEvents® Enterprise Edition Architect Guide

5 | Contents

Domain Object Modes For Individual Entities ... 94
Memory Only — Useful for Stateless Entities ... 95
Cache Only And Store Only Mode ... 95
Cache Only And Store Only Objects in the Rete Network ... 96
Concurrency and Project Design ... 98
Multi-Agent Features and Constraints 98
Event-Related Constraints 100
Multi-Agent Example Showing Event Handling 101
Use of Locks to Ensure Data Integrity Within and Across Agents ... 102
Locking in TIBCO BusinessEvents 102
When to Use Locking 103
Lock Processing Example Flow 104
Lock and Unlock Functions 105
Tips for LOCKS . 106
Multiple Keys Protect One Object ... 107
Lock Failures .l 107
Threading Models and Tuning 109
Event Preprocessor and Rete Worker Thread Options ... 111
Shared QUEUE ... 112
DEStINAtION QUEBU .o 113
Caller's Thread ... 114
RTC Options — Single-Threaded or Concurrent ... 115
Post-RTC and Epilog Handling and Tuning Options ... 117
Database Write Tuning OptioNns ... 119
Telemetry Data ..., 122
Appendix A: In Memory Performance Statistics Specifications ... 124
GlOS S aANY .o 130
TIBCO Documentation and Support Services ... 139

TIBCO BusinessEvents® Enterprise Edition Architect Guide

6 | Contents

Legal and Third-Party Notices

TIBCO BusinessEvents® Enterprise Edition Architect Guide

7 | Before You Begin

Before You Begin

To maintain uniformity, the following terms have been used in the TIBCO BusinessEvents
Studio Ul and the product documentation:

e TIBCO ActiveSpaces software version 2.x is referred to as Legacy ActiveSpaces.

e TIBCO ActiveSpaces software version 4.6.1 and later are referred to as ActiveSpaces.

For details about the supported versions, see the Readme.txt file available at the TIBCO
BusinessEvents® Enterprise Edition Product Documentation page.

Rule Management Server Prerequisite

In addition to Legacy ActiveSpaces as cluster and cache provider, you can also configure
TIBCO BusinessEvents Rule Management Server (RMS) with the following combinations:

Cluster Cache Store

Apache Apache None/Shared Nothing/RDBMS/Store Providers (TIBCO ActiveSpaces

Ignite Ignite and Cassandra)

TIBCO FTL Apache None/Shared Nothing/RDBMS/Store Providers (TIBCO ActiveSpaces
Ignite and Cassandra)

TIBCO FTL No cache TIBCO ActiveSpaces
By default, Apache Ignite is used as the cluster and cache provider.

For more information about configuring these for your RMS project, see
TIBCO BusinessEvents Configuration Guide.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://docs.tibco.com/products/tibco-businessevents-enterprise-edition
https://docs.tibco.com/products/tibco-businessevents-enterprise-edition

8 | Before You Begin

Third-Party Software Documentation

References

For complete details about the third-party software used in the project, see its

documentation.

o Note: When you obtain third-party software or services, it is your responsibility
to ensure you understand the license terms associated with such third-party
software or services and comply with such terms.

Third-Party Software Documentation

Software Used as

TIBCO ActiveSpaces 4.6.1 and Store provider
above

TIBCO ActiveSpaces 2.x Cluster and
Cache provider

Apache Kafka Channel
Confluent Schema Registry Schema Registry
TIBCO Messaging - Schema Schema Registry

Repository for Apache Kafka

Apache Pulsar Channel
Apache Cassandra Store provider
GridGain Data Center
Replication
TIBCO FTL Cluster provider

Documentation Reference URL

TIBCO ActiveSpaces documentation

TIBCO ActiveSpaces documentation

Apache Kafka documentation
Confluent documentation

TIBCO Messaging - Schema Repository
for Apache Kafka documentation

Apache Pulsar documentation
Apache Cassandra documentation

GridGain documentation

TIBCO FTL documentation

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://docs.tibco.com/products/tibco-activespaces-enterprise-edition
https://docs.tibco.com/products/tibco-activespaces-enterprise-edition
https://kafka.apache.org/documentation/
https://docs.confluent.io/home/overview.html
https://docs.tibco.com/products/tibco-messaging-schema-repository-for-apache-kafka-enterprise-edition
https://docs.tibco.com/products/tibco-messaging-schema-repository-for-apache-kafka-enterprise-edition
https://pulsar.apache.org/docs/
https://cassandra.apache.org/doc/latest/
https://www.gridgain.com/docs/latest/administrators-guide/introduction
https://docs.tibco.com/products/tibco-ftl-enterprise-edition

9 | Before You Begin

Software Used as Documentation Reference URL

Apache Ignite Cluster and Apache Ignite documentation
Cache provider

InfluxDB Metrics store InfluxDB documentation
provider

Grafana Application Grafana documentation
metrics

visualization

Ignite CDC Data Center Apache Ignite documentation
Replication

Control Plane Metrics store TIBCO® Platform Documentation
provider

Apache Maven Native Maven Apache Maven Documentation
projects

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://ignite.apache.org/docs/latest/
https://docs.influxdata.com/influxdb
https://grafana.com/docs/grafana/latest/
https://ignite.apache.org/docs/latest/
https://docs.tibco.com/products/tibco-platform-1-0-0
https://maven.apache.org/

10 | Cloud Tools for TIBCO BusinessEvents

Cloud Tools for TIBCO BusinessEvents

The TIBCO BusinessEvents (be-tools) GitHub repository provides different tools to work on
TIBCO BusinessEvents applications. The cloud folder provides tools that you can use to
containerize, deploy, and monitor your TIBCO BusinessEvents applications on different
cloud platforms by using containerization tools like Docker or buildah and orchestrator
tool like Kubernetes.

Containerization Tools

Use these tools to containerize TIBCO BusinessEvents applications and components.
Sample Dockerfiles are available that you can customize as per your requirement for
containerizing the application and other TIBCO BusinessEvents components. It also
provides configuration provider framework to configure and pull configurations during the
container startup. By default, two types of configuration providers are available:

» Global variable providers to pull global variables from various stores, such as Consul.

 Certificate providers to pull certificates from cert stores, such as CNCF cert-manager.

However, you can use this framework to add and implement your own configuration
provider as per your requirement. To validate the structure of the container image of your
application, test scripts are provided that uses container-structure-test framework provided
by Google.

Kubernetes Support

By using the cloud tools, you can leverage Kubernetes for the deployment of your
application containers in clusters by using different cloud platforms. The sample scripts for
different object management options are available in the repository for the following
supported cloud platforms:

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://github.com/TIBCOSoftware/be-tools
https://www.cncf.io/projects/cert-manager/

11 | Cloud Tools for TIBCO BusinessEvents

Amazon Web Services (AWS) - In the AWS based Kubernetes cluster, you can use the
following options to create an AWS container platform:

°© Amazon Elastic Kubernetes Service (Amazon EKS)
° kOps - Kubernetes Operations
°© AWS Fargate

* Microsoft Azure

e OpenShift Container Platform

» Pivotal Container Service (PKS)

e Oracle Container Engine

e Minikube

Note: You can run TIBCO BusinessEvents applications on these Kubernetes
clusters, and monitor them by using TIBCO BusinessEvents Enterprise
Administrator Agent.

Helm Charts Support

To ease the TIBCO BusinessEvents application deployment into a Kubernetes cluster and
its management, you can use the TIBCO BusinessEvents Helm chart. To test the Helm
Charts for TIBCO BusinessEvents applications, you can use the automated tests in the
repository based on the Terratest Go library.

Amazon ECS Support

Amazon Elastic Container Service (Amazon ECS) is a container orchestration service that
simplifies your deployment, management, and scaling of containerized applications.

The cloud tools help you to deploy TIBCO BusinessEvents application on Amazon ECS.
Cloud Foundry Support

Cloud Foundry is an open-source cloud app platform, providing a choice of clouds,
developer frameworks, and app services.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

12 | Cloud Tools for TIBCO BusinessEvents

The cloud tools help you to deploy your TIBCO BusinessEvents applications container
image on the Cloud Foundry certified distribution, such as VMware Tanzu Application
Service for VMs. It can be used on any of your preferred cloud providers.

For more details about the cloud tools for TIBCO BusinessEvents, see GitHub Wiki for
TIBCO BusinessEvents tools.

For more information about the third-party productsl, see their respective documentation.

1when you obtain third-party software or services, it is your responsibility to ensure you
understand the license terms associated with such third-party software or services and comply
with such terms.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://github.com/TIBCOSoftware/be-tools/wiki
https://github.com/TIBCOSoftware/be-tools/wiki

13 | TIBCO BusinessEvents Contribution Repository

TIBCO BusinessEvents Contribution
Repository

TIBCO BusinessEvents Contribution repository in GitHub provides different resources
needed to use the features other than the default features provided by TIBCO
BusinessEvents.

Repository Structure

The following is the structure of the TIBCO BusinessEvents Contribution Repository:

Directory Description
store Provides reference implementations of custom stores.
metric Provides JARs and resources to configure metric stores.
channel Contains JARs and other resources to add channels.
catalog Contains various Catalog functions.

Samples

All examples related to the contribution repository are available in the TIBCO
BusinessEvents Samples repository in GitHub. This repository also contains some
additional examples apart from the bundled examples with TIBCO BusinessEvents.

Channels

You can create the following channels by using the resources provided in the channel
directory.

AWS SQS Channel

AWS SQS channel converts incoming SQS messages into events consumed by
BusinessEvents and converts events to outgoing SQS messages.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://github.com/TIBCOSoftware/be-contribution
https://github.com/tibco/be-samples
https://github.com/tibco/be-samples

14 | TIBCO BusinessEvents Contribution Repository

Kafka Streams Channel

You can process input Kafka Streams by using the Kafka Streams channel. The Kafka
Streams channel destination can be configured to use stream processors to create
stream processing topologies. After the stream topology processes the incoming stream,
a stream record is converted to a SimpleEvent that triggers the relevant rules.

MQTT Channel

MQTT is a machine-to-machine connectivity protocol that enables remote connections
for loT applications. By using the MQTT channel, TIBCO BusinessEvents can receive
MQTT messages and transform them into TIBCO BusinessEvents events.

Kinesis Channel

Amazon Kinesis Data Streams helps in real-time collection and processing of data
records. By using the Amazon Kinesis channel, TIBCO BusinessEvents can convert
Kinesis data streams to TIBCO BusinessEvents events.

StreamBase Channel

Using the StreamBase Channel a BusinessEvents application (StreamBase client) can
connect to a StreamBase server. The BusinessEvents application can subscribe to
StreamBase streams to receive (dequeue) messages from the StreamBase server and
send (enqueue) messages to the StreamBase server.

Metric Store
You can configure and use the following metric stores:
Elasticsearch

Elasticsearch is an open source distributed, search, and analytics engine built on top of
Apache Lucene. This implementation publishes entity data to Elasticsearch on RTC
completion.

Catalog Functions
AWS Catalog Functions
* You can use the S3 catalog functions to manipulate S3 objects and buckets.

» Use the SNS catalog functions to send text or SMS messages to a pre-defined SNS
topic.

e Use the SQS catalog functions to interact with SQS Queues.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

15 | TIBCO BusinessEvents Contribution Repository

Cassandra Store Catalog Functions

You can use Cassandra Store catalog functions to perform different operations with
Cassandra Store.

Custom Store
Redis

By using this implementation, you can configure TIBCO BusinessEvents with Redis as a
direct or backing store.

MongoDB

By using this implementation, you can configure TIBCO BusinessEvents with MongoDB
as a direct or backing store.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

16 | Complex Event Processing (CEP)

Complex Event Processing (CEP)

Complex Event Processing (CEP) is a set of technologies that allows events to be processed
on a continuous basis.

Most conventional event processing software is used either for Business Process
Management (BPM), TIBCO ActiveMatrix® BPM for example, or for Service Oriented
Architecture (SOA), for example TIBCO ActiveMatrix® BusinessWorks software.

CEP is unlike conventional event processing technologies, however, in that it treats all
events as potentially significant and records them asynchronously.

Applications that are appropriate for CEP are event-driven, which implies some aspect of
real-time behavior. The typical CEP application area can be identified as having some
aspect of “situation awareness,” “sense and respond,” or “track and trace” aspects which
overlap in actual business situations.

Situation Awareness

Situation awareness is about "knowing" the state of the product, person, document, or
entity of interest at any point in time. Achieving this knowledge requires continuous
monitoring of events to do with the entity, events that indicate what situation or state
the entity is in, or about to be in. As an example, a dashboard indicates all performance
indicators for a runtime production process. All the production plant events are
monitored and the situation, or health, of the production process is determined via
some performance indicators that are shown in real-time to one or more operators.

Sense and Respond

This aspect is about detecting some significant fact about the product, person,
document or entity of interest, and responding accordingly. To achieve this result the
software does the following:

* Monitors events that indicate what is happening to this entity.
» Detects when something significant occurs.
e Executes the required response.

As an example, you may monitor cell phone or credit card usage, detect that a cell
phone or credit card is being used consecutively at locations that are too far apart for

TIBCO BusinessEvents® Enterprise Edition Architect Guide

17 | Complex Event Processing (CEP)

real-time person-to-business transactions. Detection of such transactions indicates that
an act of fraud is in progress. The system responds accordingly, denying the
transactions, and invoking the necessary workflow to handle the situation as defined in
standard procedures.

Track and trace

This aspect is about tracking the product, person, document or entity of interest over
time and tracing pertinent facts like location, owner, or general status. An example
would be tracking events from an RFID-enabled inventory control system where at any
point in time you need to know how many widgets are in what location.

M«

“Situation awareness,” “sense and respond,” and “track and trace” can all be classified as
types of activity monitoring, for which the continuous evaluation of incoming events is
suitable. For this reason, CEP is often described as a generalization of Business Activity
Monitoring (BAM), although the event processing task may be only indirectly related to
business, as in the case of an engine monitoring application or process routing task.

Technical Requirements of a CEP System

CEP systems must be able to receive and record events and identify patterns of these
events and any related data. CEP systems must also handle temporal or time-based
constraints, especially for handling the non-occurrence of events.

The following TIBCO BusinessEvents features satisfy these requirements:

» Arich event model, incorporating event channels (for different event mechanisms,
such as different types of messaging software) and destinations (for different types of
events).

» A pattern detection mechanism using a sophisticated, high performance, declarative
rule engine.

» A backing store for historical depth, and to enable use of more event data and entity
data that can be persisted using memory cache technologies.

The following advanced features enrich the functionality:

¢ A state model mechanism that allows entities to be described in terms of state and
modelling of time-out events to handle the non-occurrence of events.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

18 | Complex Event Processing (CEP)

e Query features that enable retrieval of specific data from the data store or from the
event stream as it arrives, using SQL-like object query language.

e Pattern matching features that enable you to, for example, specify and identify the
temporal order of event arrivals, and to correlate events across different event
streams.

e The ability to import and use entity data that is stored in various enterprise data
stores.

A Model-Driven Approach

The TIBCO BusinessEvents engine can be described not only as a CEP engine but also as an
event-driven rule engine or real-time rule engine. TIBCO BusinessEvents enables CEP
problems to be solved through a model-driven approach, in which the developer defines
the event, rule, concept (class) and state models which are then compiled so that at run-
time incoming events are processed as efficiently as possible.

The various models are as follows:

Event model

The event model describes the inputs into TIBCO BusinessEvents. Events provide
information through their properties and (optionally) through an XML payload.

The event model provides the primary interface between TIBCO BusinessEvents and the
outside world, for input as well as output. Typical event sources (or channels) are
messages from TIBCO Enterprise Message Service middleware, events generated
explicitly by TIBCO BusinessEvents, and other sources such as SOAP messages. Events
can be used to trigger rules.

Concept model

The concept model describes the data concepts used in TIBCO BusinessEvents, which
may be mapped from events or their payloads, or loaded by some other mechanism
into TIBCO BusinessEvents.

The concept model is based on standard UML Class and Class Diagram principles.

Rule model

TIBCO BusinessEvents® Enterprise Edition Architect Guide

19 | Complex Event Processing (CEP)

Rules provide one of the main behavioral mechanisms in TIBCO BusinessEvents. Rules
are defined in terms of declarations (events and concepts of interest), conditions (filters
and joins on and between the attributes of the events and concepts), and actions.

The underlying rule engine is based on an algorithm called the Rete algorithm, which
mixes all rules together into a type of look-up tree, so that any additional concept
instance or event can near-instantly cause the appropriate rule or rules to fire and
invoke the appropriate actions. Rules are almost always defined in general terms
(concepts or classes and events), so that they can apply to as many combinations of
those events and classes that exist in memory at any one time. The combination of rule
declaration and condition defines the event pattern required for CEP operation. Rule
actions that update other concepts may cause other rules to become available for firing,
a process called inferencing or forward chaining. These types of rules are generally
called Production Rules.

Rule functions

Algorithms, procedures or functions may be usefully defined as parameterized rule
functions and re-used as required in rule actions and other areas where a behavior can
be specified.

State model

An important item of metadata for a concept or object is its state. Typically a state
model describes the states that an entity can hold, and the transitions between states
that are allowed, and the conditions for such transitions. Internally the state model is
just additional metadata, but it is more useful to describe the state model as a visual
model of states and transitions.

The state transition rules can be viewed as special customizations of standard rules. The
state model is based on the standard UML State Model principles.

Query model

Queries can provide both snapshot and continuous views of the data in a TIBCO
BusinessEvents cache.

Queries can also provide continuous views of data arriving through channels. They are
constructed and executed from rule functions in a specialized agent (called a query
agent). Queries provide event stream processing or set operations to derive information
that can then be used in rule functions, or shared (via events or the cache).

TIBCO BusinessEvents® Enterprise Edition Architect Guide

20 | Complex Event Processing (CEP)

Stateful Rule Engine

At run-time, the rule engine executes rules based on new events and data sources on a
continuous basis.

The rule memory is never “reset” (unless by design), so that future events can always be
compared to past events. For this reason, the rule engine is described as a stateful rule
engine.

If required, the working memory can be cleared and a new set of data asserted for each
“transaction,” in which case the engine is operating as a stateless rule engine.

Object Management Types

TIBCO BusinessEvents offers an In Memory object management type, but for most use
cases, persistence of data is required.

To provide TIBCO BusinessEvents with its enterprise and extreme transaction processing
capabilities and to ensure resilience, TIBCO BusinessEvents provides a high performance
distributed cache. The cache allows data to be persisted in memory and removed from the
Rete network or returned to the Rete network, as required, to handle extremely large
problem domains (domains that would not typically fit into a runtime memory model). A
backing store can be added to provide additional reliability, and other functionality. Just as
data can be moved between the Rete network and the cache, so can less used data be
moved between the backing store and the cache, to balance storage, memory, and
performance requirements.

If you don't want to use cache, you can still use the backing store to persist data with the
store object management type.

Note that no rule operations are persisted. It is more efficient to simply rerun the rules and
recreate the appropriate actions, than it is to persist the internal workings of the rule
engine.

For details about all the supported cache and store providers, and object management
configurations, see TIBCO BusinessEvents Configuration Guide.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

21 | Complex Event Processing (CEP)

Main Product Components and Add-On

TIBCO BusinessEvents is a declarative, distributed event processing platform covering
multiple event processing use cases.

The core product provides essential features such as channels, events and concepts, rules
and rule functions, distributed cache, tester, and so on. In addition to the core
functionalities, TIBCO Businessevents also provides advanced components for different use
cases:

» Decision Manager enables business analysts to construct detailed business rules
using decision tables to represent actionable business rules, and a rules management
server for workflow management.

» Data Modeling provides entity lifecycle management using state machines, and
direct database interaction using JDBC database concepts.

* Query component to query the event streams and data caches and Pattern Matcher
framework for the pattern matching functionality in the event streams.

TIBCO BusinessEvents Design-time Components

Design-time activities performed using the TIBCO BusinessEvents resources include
building an ontology — a set of concepts, scorecards and events that represent the objects
and activities in your business — and building rules that are triggered when instances of
ontology objects that fulfill certain criteria arrive in events.

The output of the design-time activities is an enterprise archive (EAR) file, ready to deploy
(or configure for deployment as needed).

See tutorials in TIBCO BusinessEvents Getting Started to learn more.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

22 | Complex Event Processing (CEP)

e TIBCO BusinessEvents Studio: this is an Eclipse-based project building environment.
It organizes project resources and makes the project organization and the project
resources visible in graphical ways.

Perspectives: The Eclipse plug-ins for TIBCO BusinessEvents and for TIBCO
BusinessEvents add-ons provide these perspectives:

TIBCO BusinessEvents Studio Development

Provides resources for building TIBCO BusinessEvents projects.

TIBCO BusinessEvents Studio Debug

Provides resources for debugging rules and rule functions in TIBCO BusinessEvents
projects, as well as testing running engines without debugging.

TIBCO BusinessEvents Studio Diagram

Provides interactive graphical views of a project that allow you to see
relationships between project resources.

TIBCO BusinessEvents Studio Decision Table

Provides resources for building decision tables. (Available with TIBCO
BusinessEvents Decision Manager.)

TIBCO BusinessEvents Studio State Modeler

Provides resources for building state models. It allows you to model states of
ontology concept instances and use those states in rules. (Available with TIBCO
BusinessEvents Data Modeling.)

* Integration with TIBCO ActiveMatrix BusinessWorks: TIBCO BusinessEvents
communicates with TIBCO ActiveMatrix BusinessWorks through a provided plug-in
that contains a palette of ActiveMatrix BusinessWorks Activities. Details are provided
in TIBCO BusinessEvents Developer Guide.

TIBCO BusinessEvents Administration Components

Administration of a deployed system involves management of objects generated by the
inference engine, deploy-time configuration for tuning and other aspects of the system,
deployment, management, and monitoring.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

23 | Complex Event Processing (CEP)

Object Management

How you manage objects generated by the rules executing in the inference engine
depends on whether you want to keep them for later use. You can manage objects in
memory only, using a distributed cache, using a cache with a backing store, or using
only a backing store. The recommended way to manage objects for most production
needs is to use a cache and a backing store. When cache-based object management is
used, agents of different types cooperate to provide efficient object storage and access,
with options to use load balancing and fault tolerance of data and engine processes.

Object management is partly a design-time and partly an administration topic, because
your choice of object management type can affect how you design rules. For example,
you may have to retrieve objects if they are stored only in the cache or only in the
backing store, so they can be used in the Rete network. See Object Management Types
for an introduction to these topics.

Deploy-time Configuration Settings are in the Cluster Deployment Descriptor (CDD)

Using the Cluster Deployment Descriptor (CDD) editor, you edit the CDD file to specify all
the deploy-time properties for the entire cluster, from cluster-wide settings dealing with
object management, through processing unit settings (that is, those at the TIBCO
BusinessEvents engine level), to individual agent class settings.

To deploy any engine (processing unit) in the cluster, the only details needed are these:
the EAR file, which contains all the project resources, the CDD file, and the name of the
processing unit (a unit that deploys as an engine). You can change deploy-time
configuration settings in the CDD file, without having to rebuild the EAR file.

Design-time Resource Overview

In a rule engine, the things that the project works with such as employees, inventory, parts,
and so on are concepts in the ontology of the project, as are scorecards, which hold
metrics.

A database concept feature enables you to create concepts from database data, and a
state modeler feature enables you to model the behavior of concepts given certain
occurrences.

Events such as flight take-off, purchase of a mortgage, sale of stock, and so on are also part
of the ontology. Events can be created from messages arriving through channels. Events
can also be generated internally, for use in the engine and to send out messages to
external systems.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

24 | Complex Event Processing (CEP)

Rules are triggered by events and by changes in concepts and scorecards. For example,
rules might cause baggage to be rerouted if there is a certain problem at the airport. Rule
functions are functions written in the rule language that can be called from rules or other
rule functions. Some rule functions serve special purposes at startup, shutdown, and in
preprocessing events. The decision tables also provide rules which are business rules, and
are triggered only indirectly by the inferencing engine.

You can design complex queries that provide information on the event stream or on cached
objects that can in turn be fed into rules. You can also design event patterns to watch for,
and take certain actions when they occur or do not occur.

Designing the ontology and the rules well is key to a good CEP (complex event processing)
project.

Channels and Events

Channels (except for local channels which communicate between agents), represent
connections to a resource, such as a JMS server, HTTP server or client, Hawk domain, or a
space in Legacy ActiveSpaces.

A channel has one or more destinations, which represent listeners to messages from that
resource. Destinations can also be used to send messages to the resource.

Messages arriving through channels are transformed into simple events. Conversely, simple
events sent out of TIBCO BusinessEvents are transformed to the appropriate type of
message.

TIBCO BusinessEvents processes three kinds of events:

Simple Event

A representation of a single activity (usually a business activity) that occurred at a single
point in time.

Only simple events are used in channels.

Time Event

A timer. Generally created and used to trigger rules.

Advisory Event

A notice generated by TIBCO BusinessEvents to report an activity in the engine, for
example, an exception.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

25 | Complex Event Processing (CEP)

TIBCO BusinessEvents creates instances of simple events and time events based on user-
configured event definitions.

Concepts

A concept definition is a definition of a set of properties that represent the data fields of an
entity.

Concepts are equivalent to UML Classes: they represent class-level information, and at
runtime the instances of concepts are called objects.

Concepts can describe relationships among themselves. For example, an order concept
might have a parent/child relationship with an item concept. A department concept might
be related to a purchase_requisition concept based on the shared property, department_
id.

The concepts can also include a state model. Also, you can create concepts by importing
table and view data from databases, and you can update the database definitions using
RDBMS functions. These concepts are called database concepts.

Concept properties can be updated by rules and rule functions (including rule functions
whose implementation is provided by decision tables).

Score Cards

A score card serves as a static variable that is available throughout the project. You can use
a ScoreCard resource to track key performance indicators or any other information.

Use rules to view a scorecard value, use its value, or change its value. Note that unlike
concepts and event definitions, which describe types of instances, each scorecard is both
the description and the instance.

A score card is similar to a global variable, except that with multiple active inference
agents, the value is local to the agent, and you can update the value of a scorecard in
rules, but not the value of a global variable.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

26 | Complex Event Processing (CEP)

Rules

Rules define what constitutes unusual, suspicious, problematic, or advantageous activity
within your enterprise applications.

Rules also determine what TIBCO BusinessEvents does when it discovers these types of
activities. You can execute actions based on certain conditions which are defined using
simple events, concept instances, events, score cards, or a combination of these objects.

TIBCO BusinessEvents offers the following types of functions for use in rules:

Standard Function
These functions are provided with TIBCO BusinessEvents.

Standard functions include a set of temporal functions, which allow you to perform
calculations based on a sampling of a property’s values over time. These functions make
use of the history for that property.

Ontology Function

TIBCO BusinessEvents generates these functions based on the resources in your project.

Custom Function

You can write custom functions using Java and integrate them into TIBCO
BusinessEvents for use in rules.

Rule Function

In addition to Java-based custom functions, you can use rule function resources to write
functions using the TIBCO BusinessEvents rule language.

Object Management and Fault Tolerance

An important aspect of most TIBCO BusinessEvents applications is management of the
objects created and modified at runtime.

It is important to consider the effect of object storage options when designing projects.

Different projects have different object management requirements. For some, it is
acceptable to destroy the objects once the rule engine cycle that needs them has
completed. They require only memory-based object management. For others, the instances
have longer term value and need to be persisted.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

27 | Complex Event Processing (CEP)

Fault tolerance options are related to the object management type used. TIBCO
BusinessEvents supports a variety of object management and fault tolerance options.

State Modeler

State Modeler is based on the UML-standard definition for state models. It allows you to
model the life cycle of a concept instance — that is, for each instance of a given concept,
you can define which states the instance will pass through and how it will transition from
state to state.

States have entry actions, exit actions, and conditions, providing precise control over the
behavior of TIBCO BusinessEvents. Transitions between states also may have rules. Multiple
types of states and transitions maximize the versatility and power of State Modeler.

See TIBCO BusinessEvents Data Modeling Developer Guide.

Database Concepts

Database concepts are TIBCO BusinessEvents concepts with database behavior. They are
created using a utility that enables you to map tables or views from a database to TIBCO
BusinessEvents concepts.

See TIBCO BusinessEvents Data Modeling Developer Guide.

Query Language and Framework

The query language and framework enable you to perform set operations against cached
concepts as well as against incoming event streams. Queries that obtain information at a
point in time are called snapshot queries, and are available for cache queries only. Queries
that listen to a message stream and collect information continuously are known as
continuous queries.

Queries use an object-oriented SQL-like query language within rule functions. Query results
can then be passed using events, or can be shared in cached concepts to be used in other
rules or rule functions.

See TIBCO BusinessEvents Event Stream Processing Query Developer Guide.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

28 | Complex Event Processing (CEP)

Pattern Language and Framework

Pattern language and framework provides pattern-matching functionality, complementing
TIBCO BusinessEvents rule processing and query processing features. Pattern Matcher
consists of an easy-to-use language and a service that runs in a TIBCO BusinessEvents
agent. It addresses some of the simpler and more commonly occurring problems in
complex event processing such as patterns in event streams, correlation across event
streams, temporal event sequence recognition, duplicate event suppression, and
implementation of “Store and Forward” scenarios.

See TIBCO BusinessEvents Event Stream Processing Pattern Matcher Developer’s Guide.

Deploy-time and Runtime Overview

A TIBCO BusinessEvents design-time project is deployed as a TIBCO BusinessEvents
application. You can either have a unclustered or clustered deployment.

When the cluster management mode set to Clustered, the deployment can span across
multiple host servers.

You can use any of these deployment methods. It is recommended that you use only one
method for each cluster you are deploying:

* At the command-line. You specify the CDD file to use and the processing unit within
that CDD file.

e Using TIBCO Administrator. If you have been using this utility in your environment,
you can continue to do so. (See in Hot Deployment in TIBCO BusinessEvents
Administration.)

All of the deployment methods use two resources: an EAR file and a cluster deployment
descriptor, which is an XML file.

The Enterprise Archive Resource (EAR) is the deployable version of a TIBCO BusinessEvents
application. The EAR file contains runtime version of the project ontology, the channel
definitions, the state machines, and so on. When you are finished designing the project in
TIBCO BusinessEvents Studio, you simply choose a menu option to build the EAR.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

29 | Complex Event Processing (CEP)

Cluster Deployment Descriptor (CDD)

All methods of deployment require a cluster deployment descriptor (CDD).

Cluster Management
You can choose if you want to deploy your application in clustered environment or
unclustered environment.

Object Management

In the CDD, you configure the object manager you have chosen for the deployment.

Processing Units

Also in the CDD you configure the agents and processing units (engines) that will use the
rules and ontology types you designed in your project.

Each engine equates to one processing unit, which runs in one JVM (Java Virtual
Machine). One processing unit can host multiple agents, except in the case of a cache
agent. A processing unit that hosts a cache agent cannot host any other agents. Each
TIBCO BusinessEvents agent is a runtime component of the overall application.

Agent Configuration

Different kinds of agents play different roles in a large application. For example, inference
agents perform rule evaluation, and cache agents manage the object instances generated
and used by the inference agents (when the Cache object management type is used). To
include multiple agents in an engine instance you add multiple TIBCO BusinessEvents
agent classes in one processing unit.

Configuring an agent involves the following (depending on the type of agent you are
configuring):

» Selecting one or more sets of rules
e Selecting destinations

» Selecting event preprocessors for destinations, and thread settings to handle
preprocessing more efficiently

» Selecting functions that perform startup and shutdown actions

For more information about configuring the CDD see TIBCO BusinessEvents Configuration
Guide.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

30 | Complex Event Processing (CEP)

TIBCO Hawk Application Management Interface

TIBCO BusinessEvents includes a set of TIBCO Hawk microagent methods that allow you to
manage your TIBCO BusinessEvents deployment using TIBCO Hawk.

These functions are listed and described in TIBCO Hawk Microagent Methods in TIBCO
BusinessEvents Administration.

Hot Deployment

Depending on the changes made to your TIBCO BusinessEvents project, you may be able to
replace an EAR file for a TIBCO BusinessEvents project with an updated one, without
stopping the TIBCO BusinessEvents engine.

This feature is referred to as hot deployment. For more information about the TIBCO
BusinessEvents hot deployment feature, including the project changes that are supported,
see TIBCO BusinessEvents Administration.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

31 | Channels Destinations and Events

Channels Destinations and Events

Channels (except for local channels) represent physical connections to a resource, such as
a JMS server, HTTP server or client, Hawk domain, FTL realm server, or a metaspace in
TIBCO ActiveSpaces.

Destinations in a channel represent listeners to messages from that resource, and they can
also send messages to the resource. All destinations for a particular channel use the same
server. One project can have multiple channels of different types with multiple destinations
as needed.

Arriving messages are transformed into simple events, using message data and metadata.
Simple events sent out of TIBCO BusinessEvents are transformed to the appropriate type of
message.

In addition to simple events, which work with incoming and outgoing messages of various
sorts, TIBCO BusinessEvents uses a special-purpose event type called SOAPEvent, which
inherits from SimpleEvent. It is used for sending and receiving SOAP messages in an HTTP
channel.

Two other types of events are also used: time events and advisory events.

Channel Types

One project can have multiple channels of different types with multiple destinations.

You can either create an custom channel using the provided custom channel API or choose
from the following types of channels:

ActiveSpaces channel

TIBCO ActiveSpaces software is a distributed in-memory data grid product. It can notify
applications like TIBCO BusinessEvents of changes to the rows stored in a table which
can be transformed into TIBCO BusinessEvents events. For more information, see the
TIBCO ActiveSpaces documentation.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://docs.tibco.com/products/tibco-activespaces-enterprise-edition

32 | Channels Destinations and Events

Legacy ActiveSpaces channel

They connect TIBCO BusinessEvents to Legacy ActiveSpaces metaspace to enable it to
monitor the activities in the metaspace, receive events from Legacy ActiveSpaces and
convert them into events in TIBCO BusinessEvents. A set of catalog functions are
provided to control the type of the Legacy ActiveSpaces events.

FTL channel

TIBCO FTL® messaging product is used for sending messages from one point to another.
TIBCO BusinessEvents can send and receive events using TIBCO FTL as the medium.
Using the FTL channel, TIBCO BusinessEvents can receive incoming TIBCO FTL messages
and send TIBCO FTL messages across TIBCO BusinessEvents.

Hawk channel

They connect TIBCO BusinessEvents to TIBCO Hawk domain to enable it to receive
events from the Hawk monitor and transform them into events. A set of catalog
functions are also provided which are used to control the Hawk microagents through
Hawk APlIs.

HTTP channel, including SOAP support

An HTTP channel acts as an HTTP server at runtime. This enables TIBCO BusinessEvents
to serve requests from clients, and to act as a client of other servers. Support for SOAP
protocol is provided by these features (using SOAP over HTTP):

» A specialized event type with a payload is configured as a skeleton SOAP message.

» A set of functions for extracting information from SOAP request messages and
constructing response messages.

* A utility that constructs project resources based on the SOAP service’s WSDL file
(document style WSDLs with literal encoding are supported).

JMS channel

They connect TIBCO BusinessEvents to TIBCO Enterprise Message Service provider
sources and sinks.

o Note: Each JMS Input Destination Runs a Session. Every JMS destination that
is configured to be an input destination runs in its own JMS Session. This
provides good throughput on queues and topics for processing, and less
connections.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

33 | Channels Destinations and Events

Kafka channel

To send and receive messages from a Kafka broker TIBCO BusinessEvents uses Kafka
channel. The Kafka channel converts the incoming Kafka messages to the
BusinessEvents events and output BusinessEvents events to outgoing Kafka messages.

Pulsar channel

To send and receive messages from a Pulsar broker, use the Pulsar channel. The Pulsar
channel converts the incoming Pulsar messages to BusinessEvents events and
transforms BusinessEvents events as outgoing Pulsar messages.

Local channel
They connect co-located agents at runtime.

See TIBCO BusinessEvents Developer Guide for more information on how to create a custom
channel for your project.

Channel Serializers

For each type of channel (except local channels), TIBCO BusinessEvents uses a serializer to
convert events to messages and a deserializer to convert incoming messages to events.

Local channels do not require serializers. HTTP channels also provides you the option of
using action rule functions on the message instead of converting messages to event using
deserializer.

Serializer and Deserializer Behavior

Message Event
E » Desarialize » no
Message Event
E Seralize e -

When you configure a destination, you select the appropriate serializer. (It actually includes
the serializer and deserializer).

TIBCO BusinessEvents® Enterprise Edition Architect Guide

34 | Channels Destinations and Events

Message Acknowledgement

For each message type (that is, each type of channel), TIBCO BusinessEvents acknowledges
the receipt of messages according to the protocol of the messaging system.

Some messages do not require acknowledgement.

JMS messages might require acknowledgement, depending on the message
acknowledgement mode (see JMS Message Acknowledgement Mode in TIBCO
BusinessEvents Developer Guide for a list of modes).

An event is acknowledged as follows:
* In a preprocessor: Immediately after the event is consumed.
e During a run to completion (RTC) cycle:
° With Cache or Store OM, after the post RTC phase.

° With In Memory OM, after the post RTC phase, but only if the event has been
explicitly consumed.

Events

Arriving messages are transformed into simple events, using message data and metadata.
Simple events sent out of TIBCO BusinessEvents are transformed to the appropriate type of
message.

In addition to simple events, which work with incoming and outgoing messages of various
sorts, TIBCO BusinessEvents uses a special-purpose event type called SOAPEvent, which
inherits from SimpleEvent. It is used for sending and receiving SOAP messages in an HTTP
channel. Two other types of events are also used: time events and advisory events.

TIBCO BusinessEvents processes three kinds of events:

Simple Event

A representation of a single activity (usually a business activity) that occurred at a single
point in time. The SOAPEvent event type inherits from SimpleEvent.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

35 | Channels Destinations and Events

Time Event

A timer. Time events can be configured to repeat at intervals, or they can be scheduled
using a function in a rule or rule function.

Advisory Event

A notice generated by TIBCO BusinessEvents to report an activity in the engine, for
example, an exception.

TIBCO BusinessEvents creates instances of simple events and time events based on
user-configured event definitions.

Inheritance

You can use inheritance when defining simple events.

Attributes

In addition to user-defined properties, events have built-in attributes for use in rules and
rule functions. For example, simple events have these attributes: @id, @extId, @ttl, and
@payload. Concepts and scorecards also have built-in attributes. See TIBCO
BusinessEvents Developer Guide for details.

Simple Events

A simple event definition is a set of properties related to a given activity, while a simple
event is an instance of a simple event definition.

Simple Event Definition

The simple event definition includes information for evaluation by rules, meta-data that
provides context, and a separate payload — a set of data relevant to the activity. For
example, suppose you are interested in monitoring the creation of new employee
records. You might create a simple event definition that includes important fields from
the employee record, perhaps the social security number, department, and salary. You
could then write a rule to create an instance of this simple event each time a new
employee record is created.

Simple Event

The simple event is an instance of a simple event definition and a record of a single
activity that occurred at a single point in time.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

36 | Channels Destinations and Events

Just as you cannot change the fact that a given activity occurred, once an event is asserted
into the Rete network, you can no longer change it. (Before assertion you can use an event
preprocessor to enrich the event, however.) Simple events expire when their time to live
has elapsed, unless TIBCO BusinessEvents has instructions to consume them prior to that
time.

e Example 1: A temperature sensor records a reading that is above a predefined limit.
The payload might include the temperature-sensor ID, the reading, and the date and
time. This simple event might trigger a complex event that would immediately notify
a manager.

e Example 2: A customer purchases four airline tickets from San Francisco, California to
San Jose, Costa Rica. The payload might include the date and time of purchase, the
date and time of the flight, the purchase price, the credit card number, the flight
number, the names of the four passengers, and the seat assignments. This simple
event alone may include no exceptions. However, it is possible that when examined
within the context of other related events, an exception may arise. For example, one
or more of the passengers may have booked tickets on another flight during the
same time period.

Time Events

A time event is an event definition that triggers the creation of event instances based on
time.

There are two ways to configure a time event:
Rule based
A rule schedules the creation of a time-event instance at a given time.

Time-interval based (Repeat Every)

TIBCO BusinessEvents creates a time-event instance at regular intervals.

o Note: Time events do not go through an event preprocessor. If you are using
cache-only cache mode, ensure that any objects are properly loaded. Events
scheduled using scheduler functions, however, are sent through channels and
would therefore go through event preprocessors in the usual way.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

37 | Channels Destinations and Events

Scheduled Time Events

TIBCO BusinessEvents offers two kinds of time events, repeating and rule-based. In
addition you can schedule events using functions.

Note: Time events configured to repeat at intervals are not supported in
multiple-agent (multi-engine) configurations. Rule-based time events, however,
are supported.

You can configure a time event to repeat at a configurable time interval. For example, if
you configure a time event to repeat every thirty seconds, then every thirty seconds TIBCO
BusinessEvents creates a new time event of that type.

You can configure a repeating time event to create a specified number of events at each
interval. The time interval begins during engine startup. See Engine Startup and Shutdown
Sequence in TIBCO BusinessEvents Administration for specific details.

Rule-Based Time Events

A rule-based TimeEvent resource has only a name and description.

You can then use it in a rule to schedule a simple event to be asserted, using its ontology
function, ScheduleTimeEventName () in a rule. You can schedule the event to be asserted
after a period of time, and you can pass information to the event and specify its time to
live. You can call the ScheduleTimeEventName () function in different places with different
time delays.

You can use rule-based time events in various ways. For example, you might write rules
that check for delays in order fulfillment:

1. A new Order event is asserted, and Rule A (which has Order in its scope) creates a
time event T and configures it to be asserted in sixty minutes, and passes the order
ID as the closure parameter value. (Rule A also sends the order details to another
system.)

2. Sixty minutes after Rule A executes, timer event T is asserted.

3. The assertion of time event T triggers Rule B, which has T in its scope. Rule B checks
the order status. If the order is delayed, it sends out an alert.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

38 | Channels Destinations and Events

Advisory Events

Advisory events are asserted into the Rete network automatically when certain conditions,
for example, exceptions, occur.

Add the AdvisoryEvent event type to rules to be notified of such conditions. An advisory
event expires after the completion of the first RTC cycle (that is, the time to live code is set
internally to zero).

The TIBCO BusinessEvents engine automatically asserts an advisory event when it catches
an exception that originates in user code but that is not caught with the catch command

of the TIBCO BusinessEvents Exception type. For information on working with other kinds
of exceptions, see the "Exception Handling" section in the TIBCO BusinessEvents Developer
Guide.

Advisory events are also used in the container mode TIBCO BusinessEvents-ActiveMatrix
BusinessWorks integration feature invokeProcess () function. Such events are asserted
when the ActiveMatrix BusinessWorks process fails or times out (or is canceled).

An advisory event (engine.primary.activated) is asserted when an engine has finished
starting up and executing startup functions, if any (see Engine Startup and Shutdown
Sequence in TIBCO BusinessEvents Administration).

Default Destinations and Default Events

Using default destinations and default events simplifies project configuration for many
scenarios.

Incoming messages can be mapped to a default event that you specify when you configure
the destination. All messages arriving at that destination are transformed into the default
event type, unless they specify a different event.

A channel is configured to listen to the flow of messages on Rendezvous. The orders
destination directs TIBCO BusinessEvents to map messages coming in on the subject,
orders, to the new_order simple event.

You can map incoming messages to specified event types.

Outgoing messages can be sent to a default destination. When the destination is not
otherwise specified (for example in rules or rule functions), events are sent to the
destination you select as their default destination.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

39 | Channels Destinations and Events

The event credit_timeout is sent out through its default destination credit.

You can send an event to the default destination of its event type using the
Event.sendEvent() or Event.replyEvent() functions.

You can send an event to a specified destination using the Event.RouteTo() function.

Mapping Incoming Messages to Non-default Events

Incoming messages can be mapped to default events or to specified event types.

The fields in a message header instruct TIBCO BusinessEvents to map the incoming
message to a specified event type:

e The field named _ns_ takes a namespace as a value. The namespace points to the
event type, for example, www.tibco.com/be/ontology/Events/MyEvent

e The field named _nm_ takes the name of the event, for example, NewMyEvent

e The field named _extid_ takes the unique external id of the event.

These fields are added and filled automatically for events created using TIBCO
BusinessEvents rules. You can also add these fields to the incoming messages from other
sources if you have control of those messages. You can also use the Include Event Type
field in the destination of channel to suppress the original behavior of including _ns_ and _
nm_ fields during serialization and deserialization.

Time to Live and Expiry Actions

Events have a time to live (TTL) setting. Events cannot be modified after they are initially
asserted, but they can continue to trigger rules during their time to live.

Global Variables are supported for Simple Event, TTL and Timer Event, Repeat every
Values.

When Cache object management is used, events with a sufficiently long time to live (TTL)
setting are cached.

With Cache OM types, the TTL period is re-evaluated when an event is reloaded from
cache. For example, if the TTL is 60 minutes and the event is reloaded 30 minutes after it is
asserted, then its remaining TTL is 30 minutes.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

40 | Channels Destinations and Events

Set the event’s time to live so that it can trigger the rules you intend. If a rule correlates
different events, you must ensure that those event instances are all in the Rete network
concurrently. Time to live options are as follows:

e Zero (0): the event expires after the completion of the first RTC cycle. Do not set to 0
if you want to correlate the event with a future event or other future occurrences of
this event, as explained below.

* One or higher (>0): the event expires after the specified time period has elapsed. The
TTL timer starts at the end of the action block of the rule or preprocessor function in
which the event is first asserted.

» A negative integer (<0): the event does not expire, and must be explicitly consumed.

Note: Cache OM and Event Deletion with Cache OM, events are locally
consumed when Event.consumeEvent() is called, but the event is not removed
from cache until the post RTC phase.

Example
Consider the following example:
e A process sends eventA, eventB, and eventC.
e The TTL for all three simple events is 0.
e Rule 1 has the condition: eventA.id == eventB.1d.
e Rule 2 has the condition: eventC.id != null.
At runtime, TIBCO BusinessEvents behaves as follows:

e TIBCO BusinessEvents receives eventA. Because there is no eventB in the Rete
network, eventA doesn’t trigger any rules. TIBCO BusinessEvents consumes eventA.

e TIBCO BusinessEvents receives eventB, but eventA has been consumed — there is no
eventA in the Rete network. So eventB does not trigger any rules. TIBCO
BusinessEvents consumes eventB.

e TIBCO BusinessEvents receives eventC, which triggers Rule 2 because Rule 2 depends
only on eventC.

To trigger Rule 1, you must configure the time to live for eventA and eventB to ensure that
both events will be in the Rete network concurrently. You can trigger Rule 1 in these ways:

TIBCO BusinessEvents® Enterprise Edition Architect Guide

41 | Channels Destinations and Events

 If you know that eventA is sent before eventB, set the TTL for eventA to a time
greater than the maximum period that can elapse between sending eventA and
sending eventB.

 If you do not know the order in which eventA and eventB are sent, set the TTL for
both simple events to a time greater than the maximum time between the
occurrence of the two simple events.

Event Expiration and Expiry Actions

After the time to live (TTL) period, the event expires and is deleted from the Rete network.
Any expiry actions are taken.

With Cache object management, events TTL is evaluated when the event is retrieved from
the cache.

For each simple event definition, TIBCO BusinessEvents allows you to specify one or more
actions to take when the event expires, using the TIBCO BusinessEvents rule language. For
example, you can write an action that routes the simple event to a different destination,
sends a message, or creates a new event. This action can be anything that is possible with
the rule language.

An expiry action can be inherited from the event's parent.

Note: If an event is explicitly consumed in a rule, TIBCO BusinessEvents does not
execute the expiry action.

Event Preprocessors

Event preprocessors are rule functions with one argument of type simple event.
Event preprocessors are not used for time or advisory events, and they are multithreaded.

An event preprocessor is assigned to a destination and acts on all events arriving at that
destination. Event preprocessors perform tasks after an incoming message arrives at the
destination and is transformed into a simple event, but before it is asserted into the Rete
network (if it is — events can be consumed in the event preprocessor).

TIBCO BusinessEvents® Enterprise Edition Architect Guide

42 | Channels Destinations and Events

Note:
 If you are using Cache Only or Store Only mode, take care when designing
rules that execute as a result of a time event. For example, a rule that has
a join condition using a time event and a concept would not execute if the
concept is not loaded in the Rete network and so should not be used in an
event preprocessor if the concept is configured as Cache Only or Store
Only mode.

e Events consumed in a preprocessor are acknowledged immediately (and
not after the post RTC phase).

You can aggregate events, edit events, and perform other kinds of event enrichment in a
preprocessor. You can also use preprocessors as explained below.

You must set locks in the preprocessor when concurrency features are used to protect
concept instances during RTC. Locking ensures that updates to concept instances during
an RTC do not conflict with another set of updates to the same concept instances in
another RTC. Locks are released at the end of the RTC.

If you are using the Cache Only or Store Only mode for any entities, you must also load the
relevant entities from the cache or store using an event preprocessor.

You can also use preprocessors to improve performance by avoiding unnecessary RTCs in
the inference engine. For example you can consume events that are not needed. Another
way to use the preprocessor for efficient processing is to transfer an event’s contents to a
new concept that is not processed by the agent's set of locally active rules. Such a concept
is automatically asserted, and does not trigger rules. It is saved into the cache or store
(depending on OM configuration) where it is available for processing by any agent as
needed.

Preprocessor Usage Guidelines
Keep in mind several guidelines for using preprocessors.

Consuming events in a preprocessor is allowed

It can be useful in some applications and reduces the flow of messages into the Rete
network. Such events are acknowledged immediately (if they require
acknowledgement).

TIBCO BusinessEvents® Enterprise Edition Architect Guide

43 | Channels Destinations and Events

You can only modify events before they are asserted into the Rete network

Rule evaluation depends on event values at time of assertion, so values can be changed
only before assertion, that is, in the preprocessor.

You can create concepts but not modify existing concepts

Modifying concepts that already exist in the system could disrupt an RTC. You can
modify concepts that were created in the same preprocessor, however. You cannot add
a existing concept as a child to a newly created concept in preprocessor, as it modifies

the existing concept.

Note: Concepts created in a preprocessor are not asserted until the RTC
starts. So, for example, after one event preprocessor ends and before its RTC
begins, no other preprocessor can access the new concept.

Preprocessor Usage Guidelines
Keep in mind several guidelines for using preprocessors.

Consuming events in a preprocessor is allowed

It can be useful in some applications and reduces the flow of messages into the Rete
network. Such events are acknowledged immediately (if they require
acknowledgement).

You can only modify events before they are asserted into the Rete network

Rule evaluation depends on event values at time of assertion, so values can be changed
only before assertion, that is, in the preprocessor.

You can create concepts but not modify existing concepts

Modifying concepts that already exist in the system could disrupt an RTC. You can
modify concepts that were created in the same preprocessor, however. You cannot add
a existing concept as a child to a newly created concept in preprocessor, as it modifies

the existing concept.

Note: Concepts created in a preprocessor are not asserted until the RTC
starts. So, for example, after one event preprocessor ends and before its RTC
begins, no other preprocessor can access the new concept.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

44 | Concepts

Concepts

Concept types are descriptive entities similar to the object-oriented concept of a class.

Concept types describe a set of properties, such as one concept might be Department and
include department name, manager, and employee properties.

You can add concept definitions so that information that arrives in events or from other
sources can be organized and persisted as needed, and used in rules. You can add
definitions manually. You can also import database tables as concept definitions. Concept
instances are created in rules.

Rules at runtime can create instances of concepts. For example, when a simple event
arrives, a rule can create an instance of a concept using values present in the event. Rules
can also modify existing concept instance property values.

Concepts must be explicitly deleted from working memory when no longer needed or they
will steadily increase memory usage. Use the function Instance.deleteInstance() to
delete concept instances.

Depending on other factors, adding, modifying, and deleting concept instances can cause
TIBCO BusinessEvents to evaluate or re-evaluate dependent rules, as explained in Conflict
Resolution and Run to Completion Cycles.

o Note: Concepts are automatically asserted into the Rete network when created,
except in the following cases:

e Database concepts returned by database query operations.

e Concepts passed to a rule function in the context of ActiveMatrix
BusinessWorks integration projects.

Each concept property includes a history, the size of which is configurable. The history size
determines how many previous values TIBCO BusinessEvents stores for that property. See
Concept Property History.

o Note: Database concept properties do not support history tracking.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

45 | Concepts

Concept Relationships

Concepts can have inheritance, containment and reference relationships with other
concepts. See Inheritance Relationships.

Exporting Concepts to XSD Files

You can export concept and event types to XML Schema Definition (XSD) files. XML schemas
are used for interoperability between TIBCO BusinessEvents and third-party tools or SOA
platforms that use well-defined XML for message communication, transformation, and
validation.

Concept Serialization and Handling of Null Value Properties at Runtime

By default, when concept instance objects are serialized to XML, properties with null values
are excluded. You can change this behavior so that null values are included. You can also
change the XSD for a concept object to allow null values, using the nullable attribute.

Concepts and State Machines

You can also associate a concept with a state machine. See TIBCO BusinessEvents Data
Modeling Developer Guide for details.

Concept Relationships

You can learn more information about concept relationships, such as inheritance
relationships and reference relationships.

Concept Property History

Each concept property includes a history, the size of which is configurable.

The history size determines how many previous values TIBCO BusinessEvents stores for
that property. You can also set the history policy to record all values or only changed
values.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

46 | Concepts

o Note:

» ConceptReference Properties History is tracked when a contained or
referenced concept instance changes to a different concept instance.
History is not tracked, however, when a contained or referenced concept’s
properties change. See Inheritance Relationships for more on containment
and reference relationships.

» Database concept properties do not support history tracking.

If you set the history size to one or more, TIBCO BusinessEvents stores the property value
when the property changes, along with a date and timestamp, up to the number specified.
When the maximum history size is reached, the oldest values are discarded as new values
are recorded.

If you set the history size to 0, TIBCO BusinessEvents does not store historical values for
the concept. It stores the value without a time and date stamp.

For example, consider a Customer concept:

Customer Concept

Property Name History Comments

customer_name 1 These properties tend to be very stable
and you may have little interest in

customer_address 1 tracking a history for them.

city 1

state 1

zip 1

account_number 0 With history size 0, TIBCO BusinessEvents
does not record the timestamp when the
value is set.

credit_limit 4 Credit limit may change more frequently

and you may have an interest in tracking
the changes.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

47 | Concepts

Historical Values are Stored in a Ring Buffer

The historical values for a concept property are kept in a ring buffer. The ring buffer stores
both the value and the time at which the value was recorded. After the ring buffer reaches
maximum capacity, which is eight in this example, TIBCO BusinessEvents begins replacing
older values such that it always stores the n most recent values, where n is the history size.

TIBCO BusinessEvents can record values using either of these policies:

e Changes Only - TIBCO BusinessEvents records the value of the property every time it
changes to a new value.

e All Values - TIBCO BusinessEvents records the value of the property every time an
action sets the value even if the new value is the same as the old value.

Which you choose depends on what you are tracking. For example, if you are setting the
history for a property that tracks how many people pass a sensor every five minutes, All
Values might be the best policy. However, if you are setting the history for a property that
tracks the level of liquid in a coffee pot, Changes Only might be more appropriate.

o Note: The history policy affects how frequently TIBCO BusinessEvents re-
evaluates rules that are dependent on the property. Each time TIBCO
BusinessEvents records a value, it reevaluates rules that are dependent on that
property. If you track changes only, rules are re-evaluated less frequently than if
you track all values.

Containment Relationships

Containment relationships allow one concept to be contained inside another concept.

You can define a hierarchy of containment, where each concept in the hierarchy is
contained by the concept above it. The relationship is defined using a ContainedConcept
property in the container concept.

° Tip: When working with container and contained concepts in the rule editor, the
XSLT mapper and XPath builder show the entire hierarchy of properties. In the
rule editor, you can also use the @parent attribute to get the parent of a
contained concept instance.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

48 | Concepts

Deep containment relationships can cause memory issues. When TIBCO BusinessEvents
retrieves a concept from cache, its child concepts are also retrieved. When you modify a
child concept, its parent concepts are considered to be modified. It is recommended that
you keep concept relationships shallow.

Containment and Reference Concept Relationship Rules

Containment and Reference Concept Relationship Rules
Containment Reference
One concept is contained in another One concept points to another
Designtime Rules
One container concept can contain multiple different contained concepts, and a contained
concept can itself also act as a container concept.

One referring concept (that is, the concept that has the ConceptReference property) can have
a reference relationship with multiple referenced concepts, and a referenced concept can also
refer to other concepts.

A container concept can link to a contained A referring concept links to a referenced

concept using only one ContainedConcept concept using multiple ConceptReference
property. (Some other object-oriented properties. (That is, multiple

languages do allow you to reuse object ConceptReference properties can reference
types in parent object properties.) the same referenced concept.)

A contained concept can have only one A referenced concept can be referred to by
container concept. multiple referring concepts

Runtime Rules

When one contained instance is replaced When one referenced instance is replaced

with another: with another:
TIBCO BusinessEvents automatically TIBCO BusinessEvents does not delete the
deletes the instance that it replaced. You instance that it replaced automatically. It
do not have to delete the replaced may not be appropriate to delete the
instance explicitly. referenced instance. If you want to delete

the referenced instance, do so explicitly.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

49 | Concepts

Containment Reference

One concept is contained in another One concept points to another

When a contained instance is modified: When a referenced instance is modified:
The container instance is also considered The referring instance is not considered to
to be modified. The reasoning can be be modified. The reasoning can be seen by
seen by a simple example: a change to a simple example: a change to the support
the wheel of a car is also a change to the contract for a customer is not a change to
car. Rules that test for modified instances an order that references that customer.

would return the Car concept instance as
well as the wheel concept instance.

When a container instance is asserted or When a referring instance is asserted or

deleted: deleted:
The contained instance is also asserted or The referenced instance is not also
deleted, along with any other contained asserted or deleted.

instances at lower levels of the
containment hierarchy.

See the provided Containment Example.

Containment Example

This example shows how to configure a concept Car to contain a concept Wheel by adding
a ContainedConcept property Wheels, whose value is an instance of the concept Wheel.

The Wheels property provides the link between the container and contained concept:
Car (Concept) — Wheels (property) — Wheel (Concept)

The concept Car contains four instances of the contained concept Wheel, so you define the
property as an array. The concept Car could also contain other concepts, such as boor and
Engine, defined in a similar way using ContainedConcept properties.

However, the contained concepts — Wheel, Door, and Engine — cannot be contained by
any other concept type. They can only be contained by the Car concept. For example, the
concept Wheel cannot be contained in the concept Motorbike, if it is already contained by
the concept Car.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

50 | Concepts

° Tip: A container concept can link to a contained concept using only
oneContainedConcept property. You can use inheritance, however, to achieve a
result similar to that gained by the general programming technique of linking to
multiple contained class properties. Suppose you extend the concept Wheel by
creating child concepts CarWheel and MotorcycleWheel. You can then use
CarWheel as the concept contained by Car, and MotorcycleWheel as the concept
contained by Motorcycle. Rules that apply to Wheel also apply to CarWheel and
MotorcycleWheel, because of inheritance.

Depending on your needs, another option would be to use a reference
relationship instead of a containment or inheritance relationship.

Inheritance Relationships

Inheritance relationship provide that a concept inherits all the properties of another
concept, similar to Java, where a subclass inherits all the properties of the superclass that
it extends.

You can define a hierarchy of inheritance, where each concept in the hierarchy extends the
concept above it. The relationship is defined by the Inherits From field in the concept
resource editor. In Legacy ActiveSpaces cluster, the child concepts also inherit the indexes
defined in the parent concepts.

Concepts that are related to each other directly or indirectly by inheritance cannot have
distinct properties that share a common name. Therefore, the following restrictions apply:

 If two concepts are related by inheritance, you cannot create a new property in one
with a name that already exists in the other.

 If two unrelated concepts have properties that share a name, you cannot create an
inheritance relationship between the two concepts.

TIBCO BusinessEvents does not allow you to create an inheritance loop; for example, if
Concept A inherits from Concept B, Concept B cannot inherit from Concept A. At runtime, a
rule on a parent concept also affects all its child concepts. For example, suppose the
concept Coupe inherits from the concept Car. A rule on Car is therefore also a rule on
Coupe.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

51 | Concepts

Reference Relationships

In a reference relationship, one concept instance references another concept instance.

A concept that is the target of a reference can itself refer to one or more other concepts.
Reference relationships are not, however, hierarchical.

The relationship is defined by a ConceptReference property in the referring concept.

See Containment and Reference Concept Relationship Rules for rules governing the
behavior of concepts linked by containment or reference. The table also helps you to
choose which is the appropriate type of relationship for your needs.

o Note: Properties of concept references cannot be used in a condition.

Reference Example: Order with SalesRep and Customer

To configure a concept Order to reference a concept SalesRep, you add a
ConceptReference property, Rep for example, whose value is the ID of concept SalesRep.
The Rep property provides the link between the referring and referenced concepts:

e Order (Concept) — Rep (property) — SalesRep (Concept)

You can also define additional reference relationships such as:
e Order (Concept) — BackupRep (property) — SalesRep (Concept)
e Order (Concept) — Lines (property array) — LineItem (Concept)
e Order (Concept) — Cust (property) — Customer (Concept)

e Customer (Concept) — Orders (property) — SalesRep (Concept)

Reference Examples: Self Reference

A concept definition can have a reference relationship to itself. This is generally because
the instances of one concept definition can have reference relationships to other instances
of the same definition. For example:

e A ListItem concept has a next property which is a reference to a ListItem concept.

e A Person concept has a spouse property which is a reference to a Person concept.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

52 | Concepts

e A Person concept has a children property which is an array of references to Person
concepts.

When a Contained or Referred Concept Instance is Deleted

There is an important difference in behavior when history is tracked for an array property,
and when history is not tracked, or the property is not an array.

Effect of deleting a contained or referenced concept:

ContainedConcept Effect of deleting a Contained or Referenced Concept:
or ConceptReference
Property

Single value property, The value of the ContainedConcept or ConceptReference property
regardless of history becomes null.
setting.

Multiple-value The array entry that held the deleted concept is removed, reducing

property (array), with the array size by one.

History is setto O or 1

(historical values are Note: Delete higher position numbers before lower position

not tracked). numbers to ensure the correct entries are deleted. The array entry
that held the deleted concept is removed, reducing the array size
by one, and reducing by one the index of every entry in the array
at a higher index than the deleted one. (When deleting multiple
entries at once, delete higher position numbers before lower
position numbers to ensure the correct entries are deleted.)

Multiple-value The array entry that held the deleted concept remains and its value is
property (array), set to null, so that history can be tracked.

whose History is set

to 2 or more

(historical values are

tracked).

TIBCO BusinessEvents® Enterprise Edition Architect Guide

53 | Concepts

Scorecards

A scorecard is a special type of concept that serves as a set of static variables available
throughout the project.

You can use a scorecard resource to track key performance indicators or any other
information.

Unlike concepts and events, each scorecard resource is itself a single instance — it is not a
description for creation of instances. You create the scorecard at design time. Its values can
be viewed and updated using rules.

It is more accurate to say there is one instance of a scorecard per inference agent. Each
inference agent in an application has its own instance of the score card. Scorecards are not
shared between agents.

Any agent that uses scorecards, and also uses Cache OM, must be assigned a unique key so
that the correct scorecard can be retrieved from the cache. The key is set in the Processing
Unit tab of the CDD.

It is not necessary to add scorecards to the declaration of a rule. Because there is only one
instance of each scorecard in a deployed TIBCO BusinessEvents agent, any change causes
all rules that use the scorecard in their conditions to be evaluated.

o Note: The Instance.isModified() function works differently with scorecards
than with concepts. There is only one instance of a scorecard per agent, rather
than one per RTC. So after a scorecard is modified it will return true until the
agent is restarted.

(In the case of a concept instance, Instance.isModified() returns true after the
instance has been modified only for the rest of the RTC in which it is modified.)

TIBCO BusinessEvents® Enterprise Edition Architect Guide

54 | Rules

Rules

Most rules in TIBCO BusinessEvents are used for inferencing. However, regular business
rules also have a role to play.

A TIBCO BusinessEvents rule has three components:

Declaration

They declare which concepts and events the rule will depend on, and the names by
which instances of these entities can be referred to in the conditions and actions.
Aliases must be valid identifiers. Declaring multiple terms of the same type allows the
rule to consider multiple instances of the corresponding entity.

Conditions

Each statement in the condition must evaluate to a boolean value. All of these
statements must be true for the rule’s action to be executed. Assignments and calls to
certain functions are disallowed in the condition.

Actions

List of statements that will be executed, when the rule is fired, for each combination of
terms that matches all the conditions.

You can organize rules depending on your project and project maintenance needs. Rules
are organized in folders. At deploy time you can select folders of rules or individual rules
(or both) for deployment.

Inferencing rules are at the heart of TIBCO BusinessEvents. Inferencing rules are
declarative, and at runtime are executed based on the outcome of each conflict resolution
cycle. Statements in a rule action might create or modify concept instances, create and
send simple events, call functions and rule functions, and so on depending on need.

Rule Priority and Rank

For each RTC, the rule agenda is sorted by priority and then within priority by rank, for
those rules that use the same ranking mechanism.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

55 | Rules

Use of priority and rank is optional. You can also use priority without using rank.

TIBCO recommends that you use priority and rank features only as needed; that is, unless
there is reason to set priority (or priority and rank), let the rule engine determine the
sequence of execution. This lessens the complexity of rule maintenance, and takes
advantage of the power of the inferencing engine.

Rule Priority

Because TIBCO BusinessEvents rules are declarative rather than procedural, there is no
inherent order for processing. However, a priority property allows you to specify the
order in which rules in one RTC execute.

Rule Rank Within the Same Priority

If you want to also control the order in which rules with the same priority execute, you
can use the rule rank feature. The value for the Rank property is a rule function that
returns a double. The larger the return value, the higher the ranking. You can specify the
same rule function in different rules to perform ranking across tuples of those rules.

Other Rules

Not all rules in TIBCO BusinessEvents are inferencing rules. Rules in decision tables are
business rules, executed only when the table is invoked.

Form-based and Source Rule Editors
When you work with rules and rule functions, you can choose how to work:

» Using a form-based rule editor, similar to the rule editor in earlier versions of TIBCO
BusinessEvents

» Using a source editor, which is closer to a Java programming environment.

You can switch between editors and changes made in one editor are reflected in the other
one. You cannot switch from the source editor to the form editor if there are validation
errors in the code.

Effect of Cache Only Cache Mode

When using Cache Only cache mode for one or more entities, you must consider how to
handle the cache-only entities when you write rules and preprocessor rule functions. See
Working With Cache Modes and Loading Cache Only Objects into the Rete Network in
TIBCO BusinessEvents Architect’s Guide.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

56 | Rules

Rule Functions

A rule function is a function written in the TIBCO BusinessEvents rule language. All rule
functions created for a project are available project-wide.

Rule functions can take arguments and can return a value. The return type can be set to
void, indicating that the rule function does not return anything. Like other types of
functions, you can use rule functions in rule conditions and rule actions.

You can use project settings to use rule functions as preprocessors (see Event
Preprocessors and as startup and shutdown actions.

Virtual Rule Functions and Decision Tables

A Virtual Rule Function (VRF) has arguments but no body or return type. The
implementation of a virtual rule function is a decision table. Decision tables can also be
created in the TIBCO BusinessEvents user interface.

Users start by selecting a VRF. They drag and drop entities from an argument explorer to
form rows in a decision table. Each row forms a business rule, for example the condition
area might specify that age is less than 18, and the action area might specify that credit is
refused. More technical users can use the TIBCO BusinessEvents rule language to create
more complex rules.

One VRF can have multiple implementations. You can set a priority that determines the
order of execution for multiple implementations of a VRF. Functions are also available for
choosing an implementation to execute (and other actions specific to decision tables). If
there is just one implementation, you can call the virtual rule function in the same way you
call any other rule function.

Startup and Shutdown Rule Functions

Startup and shutdown rule functions are rule functions that are configured to execute
during normal system startup and shutdown, respectively.

Startup and shutdown rule functions take no arguments and their Validity setting must be
Action (meaning they cannot be used in conditions or queries).

Tip: See Engine Startup and Shutdown Sequence in TIBCO BusinessEvents
Administration. Understanding this sequence helps you understand what you
can do in startup and shutdown actions.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

57 | Rules

Startup Rule Functions

Startup rule functions are optional and are used to initialize the system. For example
they can provide initial values for scorecards. Startup rule functions can be used to
perform more "expensive" operations so that the system is more efficient at runtime.
For example, in a startup rule function you might load specified entities from the
backing store to the cache.

Startup rule functions may trigger rule actions. However, note that TIBCO
BusinessEvents executes all startup rule functions before it begins the first RTC cycle,
which completes when all rules eligible to execute have executed and no more actions
remain.

Shutdown Rule Functions

Shutdown rule functions are optional and are used to perform various actions during a
normal shutdown, for example, they can send events to external systems.

When Startup Rule Functions Execute
Startup rule functions execute on startup of an active node.

In recovery situations, startup rule functions execute on failback to a failed node that has
restarted. However, if recovery is from a situation that does not involve node failure, then
startup actions do not execute. For example, the network connection goes down. The
agent becomes inactive and fails over to another node. The connection is restored. The
agent becomes active again, but does not restart. Startup functions do not execute on the
node that became active again.

If you want to execute startup rule functions on only one node in a deployment, use
programming logic to do so.

Creating Entities With a Startup Action in a Multi-Engine Project

Startup (and shutdown) rule functions execute in all active agents. When multi-engine
(multi-agent) functionality is used, ensure that multiple agents do not attempt to create
the same entity.

ActiveMatrix BusinessWorks Containers

In ActiveMatrix BusinessWorks integration projects, if ActiveMatrix BusinessWorks is running
as the container, do not specify any startup actions that result in starting or invoking an

TIBCO BusinessEvents® Enterprise Edition Architect Guide

58 | Rules

ActiveMatrix BusinessWorks process.

Note that after the ActiveMatrix BusinessWorks engine is initialized, processes that invoke
TIBCO BusinessEvents rule functions will fail if the TIBCO BusinessEvents engine has not
finished starting up. For example, an ActiveMatrix BusinessWorks process that listens to a

JMS queue may attempt to invoke a TIBCO BusinessEvents rule function before the TIBCO
BusinessEvents engine has started up.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

59 | Runtime Inferencing Behavior

Runtime Inferencing Behavior

At runtime, one or more nodes (JVMs) running one or more TIBCO BusinessEvents inference
agents process the incoming events using a Rete network as the inferencing engine, and a
set of rules that are triggered by conditions in incoming events. One or more event stream
processing query agents can query incoming events.

TIBCO BusinessEvents has three layers of functionality:

Rules Evaluation and Execution

It is based on the state and value of objects and incoming events. This functionality is
achieved using one or more inference agents configured with the appropriate rules.
Each inference agent executes rules using one or more Rete networks to optimize
performance and provide rule inferencing capabilities.

Lifecycle Management of Objects and Events

This includes distribution, clustering, persistence and recoverability. Various options are
available to achieve the functionality appropriate for business needs: in-memory only
storage of objects, use of a cache, and addition of a backing store (database).

Queries and Pattern Matching

A query agent enables visibility into the event stream and cache data. Pattern matching
features enable actions to be taken on recognition of a pattern of events, or failure to
complete a pattern of events.

Rule Evaluation and Execution

Information from enterprise applications and other sources flows into TIBCO
BusinessEvents through channels as messages.

Messages represent the events that TIBCO BusinessEvents processes based on event
definitions (event types). Events can be filtered (ignored), preprocessed into concepts or
cached concepts, or asserted into the rule engine's working memory.

In an inference agent, all the rules whose conditions match information in the events (as
well as concepts, if specified in the rule conditions) are assembled into a rule agenda and

TIBCO BusinessEvents® Enterprise Edition Architect Guide

60 | Runtime Inferencing Behavior

the first rule executes. If a rule successfully executes, its rule actions create and modify the
objects in working memory. The rule agenda is derived from an internal runtime memory
structure known as a Rete network (because it uses a derivative of the Rete algorithm).

TIBCO BusinessEvents rule engine is a forward-chaining inferencing engine. Every time the
facts (concepts, score cards, and events) in its working memory change — due to rule
actions or the arrival of new events — the inferencing engine updates the rule agenda. As a
result, new rules are available to execute while others are now unavailable. The selection
of which rule to execute first from a choice of several is called conflict resolution. The
agenda process repeats until there is no more new information to process. This is known
as RTC, or run to completion.

Conflict Resolution and Run to Completion
Cycles

To design rules more effectively, you need to understand what triggers rules to execute,
and why a rule may not execute.

A run to completion, or RTC, cycle generally begins when an external action causes changes
to the Rete network. It ends when there are no more rule actions to execute as a result of
that initial change (and any subsequent changes caused by rule actions). This is also
known as forward chaining, or inferencing.

During one RTC, changes can occur in the Rete network, but no new external actions can
affect it.

One RTC is composed of one or more conflict resolution cycles. A conflict resolution cycle
begins when TIBCO BusinessEvents builds (or refreshes) a rule action agenda, a list of all
rules that are eligible to fire. The agenda is used to determine which rule action to execute
next. The agenda is built based on the following information:

* The scope and conditions of the rules in the project.
* The current contents of the Rete network.

One conflict resolution cycle ends when a rule action is executed (or the agenda is empty).
If the rule action changes the contents of the Rete network, another conflict resolution
cycle begins.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

61 | Runtime Inferencing Behavior

The Rete network changes

The first of the conflict resolution cycles is initiated by change in the Rete network,
caused by an external action such as a message arriving at a destination. All subsequent
changes to the Rete network during one RTC occur because of rule actions.

TIBCO BusinessEvents builds the agenda

To build the rule action agenda, TIBCO BusinessEvents examines all rules that are newly
true because of the change to Rete network and compares them with rule
dependencies. The agenda’s entries are ordered according to rule priority, rule rank, and
other criteria.

TIBCO BusinessEvents executes the first rule on the agenda and removes it from the
agenda

As a result, one of the following occurs:

e The rule action does not change the Rete network and TIBCO BusinessEvents
executes the next rule entry in the agenda (if there is one).

OR

e The rule action does change the Rete network and TIBCO BusinessEvents refreshes
the rule action agenda (see next section).

Note: Events created during an RTC are not sent to destinations until the
entire RTC is complete. Similarly, objects are not written to cache until the
entire RTC is complete.

Next conflict resolution cycle

TIBCO BusinessEvents refreshes the rule action agenda

If a rule action changes the contents of the Rete network, the agenda is refreshed,
beginning a new conflict resolution cycle. When the agenda is refreshed, any of the
following can occur:

e Rules that have become newly true are added to the agenda.

* Rules that have become false are dropped from the agenda.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

62 | Runtime Inferencing Behavior

Rules that were newly true at the last conflict resolution cycle and are still true
remain in the agenda. (In other words, rules are newly true for the duration of the
run to completion cycle unless they become false.)

As a result, either the agenda is empty and the RTC ends, or the first rule in the
refreshed agenda is executed, ending this conflict resolution cycle and beginning the
next one.

An empty agenda marks the end of one RTC

An empty agenda ends the RTC

At some point, no more actions remain to be executed. The conflict resolution has run
to completion. The RTC is over. Now begins the post RTC phase. At various points
during this phase the following actions happen (depending on how the project has been
configured):

Events are sent to destinations.
Cache OM: Changes are saved to the cache and written to the backing store.

Cache OM, Cache Only mode: All Cache Only objects are removed from the Rete
network.

Store OM: Changes are saved to the store.

Store OM, Store Only mode: All Store Only objects are remove from the Rete
network.

Profiler: profiler data is updated.

How to Work with Rules

Before any data enters the system, TIBCO BusinessEvents builds the Rete network, which
embodies all the rule dependencies, using the rule conditions (if any).

All the dependencies in a rule are called its dependency set.

For example, a rule has this condition:

c.name == "Bob";

TIBCO BusinessEvents® Enterprise Edition Architect Guide

63 | Runtime Inferencing Behavior

Where c is a concept of type /Customer. In this case, the dependency set of the rule
contains only the name property of the concept type /Customer.

As another example, suppose a rule has these conditions:

b.num<10;
hasAGoldMembership(c);

where b is another concept type and num is one of its properties. The dependency set for
this rule is b.num and c.

How to Test the Truth of a Rule’s Conditions Using the Dependency Set

During a conflict resolution cycle, TIBCO BusinessEvents tests each rule’s dependency set
against the new set of facts. If the facts match the rule dependencies, the rule conditions
are all true and the rule action is added to the rule action agenda. The structure of the
Rete network enables very quick matching between facts and rule dependency sets.

If TIBCO BusinessEvents cannot calculate dependencies on the properties of an entity from
the rule condition, for example if you pass an entity to a function, TIBCO BusinessEvents
evaluates the rule every time the entity or its properties changes.

How a Rule Becomes Newly True

A rule is true if objects in the rule scope exist in the Rete network and if all of the rule
conditions are met by objects in the Rete network. However when building the rule action
agenda, TIBCO BusinessEvents examines only rules that are newly true.

A rule is newly true if it has become true due to a change in the Rete network during the
current RTC.

In the case of a rule with no conditions, assertion of an object in the scope (declaration) of
the rule makes the rule newly true.

A rule that was false and becomes true because of the changes in the Rete network during
the RTC is newly true.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

64 | Runtime Inferencing Behavior

o Note: Less obviously, a rule that was already true can also become newly true.
For example, a rule may already be true because a condition that specifies a
range is satisfied. It becomes newly true if the property value in the Rete
network changes but is still within the range. For example, the condition
c.b<10; is true if the Rete network includes a c.b with value 9. It is newly true if
an action at the end of a conflict resolution cycle changes the value from 9 to 8.

A rule remains newly true until it is executed or it is removed from the agenda, or the RTC
ends.

A rule is removed from the agenda because a change in the Rete network during an RTC
means that the facts no longer satisfy its dependency set, for example because a concept
instance is deleted or a concept property changes value.

Order of Evaluation of Rule Conditions

The order in which conditions are evaluated is determined internally by TIBCO
BusinessEvents.

Using a rule’s dependency set, TIBCO BusinessEvents evaluates the following kinds of rule
conditions in the order shown, to perform the evaluation efficiently:

A. Filters

These are conditions that only involve one scope element (object). Filters are the least
expensive operations, in terms of processing cost. For example:

Customer.type == "gold";
Customer.numOrders > 50;

B. Equivalent join conditions

These are conditions that compare two expressions using == where each expression
involves one (different) object from the scope. Equivalent joins take more processing
than filters, but less than non-equivalent joins. For example:

Customer.accountMgr == AccountManager.1id;

TIBCO BusinessEvents® Enterprise Edition Architect Guide

65 | Runtime Inferencing Behavior

C. Non-equivalent join conditions

These are conditions involving two or more scope elements other than equivalent joins.
These are done last because they are the most expensive in terms of processing cost.
For example:

Customer.numOrders < AccountManager.threshold;
MyFunctions.match(Customer, AccountManager);

° Tip:

e If a rule uses multiple equivalent joins, a warning is printed to the engine
log file. The purpose of the warning is to draw your attention to the
situation so you can ensure that the order of the joins results in the most
efficient processing.

» To optimize performance, do as much filtering as possible, to reduce the
number of times TIBCO BusinessEvents evaluates a join condition.

e When using static variables, it is preferable to use Global Variables rather
than scorecards for optimum performance. Scorecards are special types of
concepts, which will create join conditions like any other concepts as
opposed to Global Variables. Global Variables are a part of filter
conditions, thus they yield greater performance.

Enforcing the Order of Condition Evaluation

To enforce the order of evaluation between two or more conditions, put them on the same
line (that is, in one statement ending in a semicolon) joined by the logical operator &&.

Be aware of some differences in execution when you combine conditions. For example,
consider the following separate conditions. A null pointer exception might be thrown if
concept.containedConcept is null, if the second condition was checked before the first:

concept.containedConcept != null;
concept.containedConcept.property == "test";

You can, however, combine the conditions as follows:

TIBCO BusinessEvents® Enterprise Edition Architect Guide

66 | Runtime Inferencing Behavior

concept.containedConcept != null && concept.containedConcept.property ==
"test";

In this case, a null pointer exception is not thrown when concept.containedConcept is null
because it is always checked first.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

67 | Object Management (OM)

Object Management (OM)

Object management refers to various ways that TIBCO BusinessEvents can manage the
ontology object instances created by TIBCO BusinessEvents.

Cache and store object management enables rich functionality and is generally chosen for
enterprise applications. In Memory object management can also play a useful secondary
role in testing, and as an event router.

o Note: You can’t mix different types of object management in one TIBCO
BusinessEvents application. For example, you cannot deploy one engine using
Cache or Store OM and another using In Memory OM.

The goals of object management are as follows:

Object Persistence

Enables objects to be available for reuse, either in memory caches or in stores. Objects
can also be recalled into the Rete network, thus extending the possible functionality of
your system.

Data Recovery

Ability to survive failures without loss of data.

Object Partitioning

Ability to partition the objects among multiple JVMs. and to handle notifications of
object additions, deletions, and changes to all the agents, enabling them to remain
synchronized.

Object Clustering

The ability to maintain multiple copies of each object in different nodes (JVMs) such
that if one node fails, another node can take over

Message Acknowledgement

TIBCO BusinessEvents® Enterprise Edition Architect Guide

68 | Object Management (OM)

For each message type (that is, each type of channel), TIBCO BusinessEvents
acknowledges the receipt of messages according to the protocol of the messaging
system.

Migrating to a Different Object Management Type

You can use In Memory object management in early phases of development. In later
phases, you can implement Cache or Store OM and take advantage of features it makes
possible. Perform tests after changing object management type.

As with any change in configuration, be sure to perform thorough testing before going into
production.

Summary of Object Management Features

The following table illustrates features supported for each OM type.

OM Type Persistence Data Partitioning Clustering Fault
Recovery Tolerance

In Memory No No No No No (use
Cache with
Memory Only
objects)

Cache Yes Yes Yes Yes Yes (at agent
level)

Store Yes Yes Yes Yes Yes

Cache and Store Object Management

Object data is kept in memory caches using cache clustering technology, with redundant
storage of each object for reliability and high availability.

Cache data is shared across all the engines participating in the cluster.

When using stores in clusters without cache, the data is stored in the databases with itself.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

69 | Object Management (OM)

For details on supported cluster, cache, and store providers, see TIBCO BusinessEvents
Configuration Guide.

Object Management Terminology

The following basic definitions apply:

Processing Unit

A processing unit deploys as a TIBCO BusinessEvents engine. One engine runs in one
JVM.

Agent

Each processing unit contains one or more agents of different types. The main types are
inference agents, which perform the inferencing work, and cache agents, which manage
the objects.

Agent Class

An agent class is a configured agent definition. Configuration specifies, for example,
what channels, startup rule functions, and rules the agent will use at runtime. You can
deploy multiple instances of the same agent class, and you can deploy instances of
different agent classes, depending on the work the application is designed to do.

Cache Agent

An agent that stores cache data. A processing unit can have one cache agent only.
(Processing units that run other types of agents can have cache storage enabled too,
which can be useful for demonstration purposes only, but not in production systems).

Data Recovery

Data recovery after total system failure is available if you implement a persistent backing
store. Recovery from failure of individual processing units (JVMs) is available with Cache
OM without a backing store (if at least one backup copy of each object is maintained in the
cache).

Object management features provide fine-grained controls for managing the memory
footprint of the cache, if you use a backing store.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

70 | Object Management (OM)

Fault Tolerance

Fault tolerance is provided at the inference agent level. Agents belonging to the same
agent class can act in a traditional fault-tolerant manner, where standby agents take over
for failed active agents. Fault tolerance can also be provided implicitly, because all active
agents in the same class share the workload. There may be no need to keep any agents as
standbys. It depends on your needs.

For implementation details, see TIBCO BusinessEvents Developer Guide.

In Memory Object Management

In Memory object management does not persist object instances, which are maintained in
local JVM memory only.

Objects are managed by standard JVM features. This is the only section on In Memory
manager, because of its simplicity.

In Memory OM does not provide data recovery in case of system failure. The working
memory on each system is not synchronized. Object state is not maintained. At startup
after a failure, object state is initialized to the application’s starting state.

o Note: The property be.stats.enabled allows you to turn on or off the
aggregation of the metrics collected by TIBCO BusinessEvents, and in turn
exposing them via JMX. It is honored only for in-memory mode and only if the
property com. tibco.be.metric.publish.enable is true.

The In Memory option is a good choice for development and testing environments. In
production environments, the In Memory option is best used for stateless operations and
transient objects. An independently deployed In Memory application can act as an event
router, directing events to agents in a cache cluster for processing.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

71 | Object Management (OM)

o Note: For Fault Tolerance: In Memory OM itself does not support fault tolerance.
If you require fault tolerance with an in memory system, then configure for
Cache or Store OM, but use the Memory Only mode for all objects. Because data
is not persisted, it is lost during failover and failback. However, the engine
process continues.

Another advantage of this approach is that the in memory processing units can
participate in the larger cluster, instead of being a separately deployed
application.

You can also control the performance of the statistics aggregators using the property
be.stats.threading.model. The values are:

* none - use the calling thread for doing the aggregation (not recommended, but is
useful in debugging).

 single - run all the aggregation in a single thread (default mode).

e multi - run the aggregations on multiple threads. There are four aggregators:
destinations, events, engine, and thread pool. Each aggregator runs on an individual
thread resulting in four new threads.

See Appendix A: In Memory Performance Statistics Specifications for detailed specifications.

Object Management and Fault Tolerance
Scenarios

Fault tolerance and object management options work in various deployment scenarios to
maintain data integrity.

The tables in this section help you understand how fault tolerance and object management
options work and explain what is possible in each type of object management given the
following conditions:

Processing Units (PUs)

One or multiple PUs, where a PU is a TIBCO BusinessEvents server running in one JVM.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

72 | Object Management (OM)

Agents

One or multiple inference agents running in a PU. Each inference agent is configured by
an agent class in the CDD. An inference agent has one or more Rete networks.

When implementing a recovery strategy you must take care to maintain the integrity of
stateful objects. Concepts and scorecards are stateful objects and must maintain state
across inference agents.

Cache OM with Memory Only Mode on All Objects
and Fault Tolerance

In Memory object management does not support fault tolerance.

This table presents options available if you use Cache OM with Memory Only mode set on
all objects, which provides fault tolerance for memory only objects.

Cache OM with Memory Only Mode on All Objects and Fault Tolerance Scenarios

PUs With Fault Tolerance Configuration No Fault
Agents Tolerance
Configuration

1PU (N/A) Data is isolated to
a single PU (JVM).
1 Agent
No recovery.
1PU (N/A) No recovery.
n Agents
n PUs Data is isolated in each PU. Failover and failback are Data is isolated to
allowed. Object state is not preserved or transferred. each PU. No
1 Agent .
Recommended only for stateless operations. recovery.
n PUs Data is isolated in each multi-agent PU. No recovery.

n Agents Object state is not maintained during failover and failback.
Recommended only for stateless operations.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

73 | Object Management (OM)

Cache or Store OM and Fault Tolerance

Fault tolerance of the engine process refers only to inference agents.

In all cases it is assumed that dedicated cache agents are also running.

If you use multi-engine (multi-agent) features, fault tolerance is implicit. When all agents in
an agent group (an agent group consists of instances of the same agent class) are active, if
any active agent fails, remaining agents in the group automatically handle the workload.

In all cases, in the event of total system failure, use of a backing store ensures recovery of
data written to the backing store.

Cache/Store and Fault Tolerance Scenarios

PUs
Agents

1PU

1 Agent

1PU

n Agents

n PUs

1 Agent

With Fault Tolerance Configuration

(N/A)

(N/A) Each agent in the same PU is a different agent,
not part of the same agent group.

Fault tolerance is at the agent level. If one or more
agents in a group fails, the load is distributed among
remaining agents in that group. All agents can be
active or some can be standbys. Configuration uses a
MaxActive property and a Priority property.

Cluster data is shared between agents across all PUs,
using the cache cluster.

If the number of cache object backups is one, one
cache agent (at a time) can fail with no data loss.
With two backups, two servers can fail, and so on.

Caches exist in memory only, so recovery is not
available in the case of a total system failure. In the
event of total system failure, use of a backing store
ensures recovery of data written to the backing store.

No Fault Tolerance
Configuration

(N/A)

(N/A)

N/A. Fault tolerance is
implicit.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

74 | Object Management (OM)

PUs With Fault Tolerance Configuration No Fault Tolerance

Agents Configuration

n PUs Same as n PUs 1 agent. Each of the agents in one PU Multi-agent mode: N/A.
Agent is fault tolerant with the agents in the same agent Fault tolerance is

nAgents group, which are deployed in other PUs. implicit.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

75 | Distributed Cache OM

Distributed Cache OM

Cache object management (OM) is the standard choice for most TIBCO BusinessEvents
Cache Object Management Feature Overview.

Cache-based object management is generally the best choice for a CEP system, and a
distributed cache is generally the most appropriate, especially when used with a backing
store (database). All the provided caching schemes use a distributed cache and are
configured for production as shipped.

Cache OM is a requirement for certain features such as multi-agent concurrency.

Object management is configured using the Cluster Deployment Descriptor (CDD), an XML
file that you edit in TIBCO BusinessEvents Studio using a provided editor. For more
information, see TIBCO BusinessEvents Configuration Guide.

Distributed Cache Characteristics

In a distributed cache, cached object data is partitioned between the PUs (JVMs) in the
cache cluster for efficient use of memory. By default one backup of each item of data is
maintained, on a different PU. You can configure more backups of each object to be kept
on different PUs to provide more reliability as desired, or to disable maintenance of
backups.

Distributed caching offers a good balance between memory management, performance,
high availability and reliability.

Scaling the System

Scaling is linear. To scale the system’s capacity to process more data, add more inference
agents. To scale the cache, add more cache servers .

In addition, each entity can have a different cache mode, to help you balance memory
usage and performance .

Reliability of Cache Object Management
When you use Cache object management without a backing store, objects are persisted in

memory only, and reliability comes from maintaining backup copies of cached objects in

TIBCO BusinessEvents® Enterprise Edition Architect Guide

76 | Distributed Cache OM

memory caches.

To provide increased reliability in the case of a total system failure, add a backing store.

Multi-Agent Concurrency Features

Multiple inference agents can run concurrently in either of two ways. In both cases the
agents share the same ontology and same cache cluster:

» Multiple instances of the same inference agent class, each running on different PUs,
form an agent group. This provides simple load balancing of messages arriving from
queues, as well as fault tolerance. You can also configure content-aware load
balancing for “session stickiness.” (See Load Balancer Configuration in T/BCO
BusinessEvents Developer Guide.)

 Different agents in different PUs work concurrently to distribute the load on the JVM
processes. This results in quicker conflict resolution and the ability to handle a heavy
incoming message load. For example, Agent X connects to Agents Y and Z to create
rule chaining across a set of PUs. Each agent uses different sets of rules, such as rules
for fraud, upsell and cross-sell. All agents operate against the same cluster and share
the same ontology. The output from one agent may trigger rules deployed in another
agent, causing forward chaining of the workload.

o Note: Concurrent RTC: You can also enable concurrency within a single
agent, using the multi-threaded Rete feature, known as concurrent RTC
(and in prior releases as concurrentwm). Within one agent, multiple RTC
cycles take place concurrently.

Concurrent RTC does not require cache.

Concurrency and Locking

With agent concurrency and concurrent RTC features, you must use locking: in both cases
multiple RTCs are being processed at the same time, and data must be protected as in any
concurrent system.

Characteristics of a Distributed Caching Scheme

The cache characteristics are defined by a caching scheme.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

77 | Distributed Cache OM

TIBCO BusinessEvents uses a distributed caching scheme, in which the cached object data
is partitioned between the storage PUs in the cache cluster for efficient use of memory.
This means that no two storage PUs are responsible for the same item of data.

A distributed caching scheme has the following characteristics:

Data is written to the cache and to one backup on a different JVM (replication count
can be set to none, one, or more backup copies, depending on configuration).
Therefore, memory usage and write performance are better than in a replicated
cache scheme. There is a slight performance penalty because modifications to the
cache are not considered complete until all backups have acknowledged receipt of
the modification. The benefit is that data consistency is assured.

° Tip: Each piece of data is managed by only one cluster node, so data
access over the network is a "single-hop" operation. This type of access is
extremely scalable, because it can use point-to-point communication and
take advantage of a switched network.

Read access is slightly affected because data is not local. The cache is distributed
between the cache agent nodes.

Data is distributed evenly across the JVMs, so the responsibility for managing the
data is automatically load-balanced across the cluster. The physical location of each
cache is transparent to services (so, for example, API developers do not need to be
concerned about cache location).

You can add more cache agents as needed for easy scaling.

The system can scale in a linear manner. No two servers (JVMs) are responsible for
the same piece of cached data, so the size of the cache and the processing power
associated with the management of the cache can grow linearly as the cluster grows.

Overall, the distributed cache system is the best option for systems with a large data
footprint in memory.

Failover and Failback of Distributed Cache Data

The object manager handles failover of the cache data on a failed cache agent and it
handles failback when the agent recovers.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

78 | Distributed Cache OM

o Note: It is not necessary to use fault tolerance for cache agents: the cluster
transparently handles failover of data to other cache agents if one cache agent
fails.

When a node hosting a cache agent fails the object manager redistributes objects among
the remaining cache agents, using backup copies, if the remaining number of cache agents
are sufficient to provide the number of backups, and if they have sufficient memory to
handle the additional load. However, because this is a memory-based system, if one cache
agent fails, and then another cache agent fails before the data can be redistributed, data
may be lost. To avoid this issue, use a backing store.

If redistribution is successful, the complete cache of all objects, plus the specified number
of backups, is restored. When the failed node starts again, the object management layer
again redistributes cache data.

Specifically, when a cache agent JVM fails, the cache agent that maintains the backup of
the failed JVM’s cache data objects takes over primary responsibility for that data. If two
backup copies are specified, then the cache agent responsible for the second backup copy
is promoted to primary backup. Additional backup copies are made according to the
configuration requirements. When a new cache agent comes up, data is again redistributed
across the cluster to make use of this new cache agent.

Because they store data in memory, cache-based systems are reliable only to the extent
that enough cache agents with sufficient memory are available to hold the objects. If one
cache agent fails, objects are redistributed to the remaining cache agents, if they have
enough memory. You can safely say that if backup count is one, then one cache agent can
fail without risk of data loss. In the case of a total system failure, however, the cache is
lost.

Limited and Unlimited Cache Size

Performance of the system is best when all the data is in cache, which can have unlimited
or limited size.

If the amount of data exceeds the amount of memory available in the cache machines, you
must limit the cache size and use a backing store to store additional data. Some
applications use the backing store as the main storage and retrieve objects from the
backing store as needed.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

79 | Distributed Cache OM

Note: Use of limited cache is supported only with the use of a backing store,
which retains entries in excess of the limit. Without use of a backing store the
following data inconsistencies could result:

e Entries for an object in the object table (an internally used cache) and in
the object cache itself could expire independently of each other.

» Domain object settings for limited cache apply at the object level. Related
concepts could have different settings. For example, a container concept
could have a limited cache setting and its container concept an unlimited
cache setting. Each could be evicted at different times.

Note: Only use an unlimited cache if you deploy enough cache agents to handle
the data. Otherwise out of memory errors may occur.

For backing store configuration, see JDBC Backing Store Setup in TIBCO BusinessEvents
Developer Guide.

Distributed Cache and Multi-Agent Architecture

Different TIBCO BusinessEvents processing units and agents within the processing units
have specialized roles in a Cache OM architecture.

The drawing below illustrates Cache OM architecture.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

80 | Distributed Cache OM

Figure 1: Cache Object Management and Fault Tolerance Architecture

Legend
PU1 | PU2 | PU3 || PU4
CA1 caz || caz || cas

PL: Processing Unit
L& Inference Agent
CA: Cache Agent
LE: Load Balanced

[Destinations

s slgn pagaes)

PUS PU 6 PUT

1A 1 -LB1—p A1 lellal TEE N
—> . —> : —» . Agent GT’;E !
.f‘{: «‘é .’f: |
A2 el 1p A 2 4 nacive In2| |0 o :
.13] ‘?] | ﬁ 1 A2
—— — 1 44444 -

D2 o 02 s 14 b2 o

L1 D1 = L D1 = L D1 =

F 1 Fy 3

w r h J
(_) Messaging :)

The drawing illustrates one possible configuration, and assumes destinations that are JMS
queues using basic load balancing (Content-aware load balancing is also available. See
Load Balancing).

Agent group IA1 has three active agents, and agent group IA2 has two load balanced agents
and one standby agent for fault tolerance. Each agent group is listening on a different
destination.

Agent classes and processing units can be configured at deploy time (within the constraints
of the project).

For more information about designing a project that uses multiple agents, see the
following sections:

* Load Balancing

» Fault Tolerance of Agents

TIBCO BusinessEvents® Enterprise Edition Architect Guide

81 | Distributed Cache OM

Cache Clusters
A cache cluster is a logical entity that provides the following services:

e Cache Management: Partitioning, replication, distribution and failure recovery (see
Reliability of Cache Object Management).

» Fault Tolerance (of data): Notifications to inference agents so that the state of each
agent’s working memory remains synchronized with the others, so any agent in the
cluster can take over in event of a JVM failure.

You define the cluster member machines, processing units, and agents in the Cluster
Deployment Descriptor (CDD) which is an XML file, configured in the CDD editor in TIBCO
BusinessEvents Studio. See Cluster Deployment Descriptor (CDD) in TIBCO BusinessEvents
Configuration Guide.

Processing Units

Each processing unit in a cache cluster runs in an instance of a Java virtual machine (JVM).
It hosts one or more TIBCO BusinessEvents agents. Each processing unit with storage
enabled participates in the distributed cache.

Processing units with inference agents also have an L1 Cache, a local cache that gives
inference agents quick access to recently used objects.

Agents

There are several types of agents: inference agents, cache agents, query agents, and
dashboard agents.

Inference Agents

An inference agent executes rules according to the rule agenda created using the Rete
network.

In Cache or Store OM systems, inference agents are connected to the cluster, enabling fault
tolerance of engine processes and cache data, as well as load balancing (with queues).

TIBCO BusinessEvents® Enterprise Edition Architect Guide

82 | Distributed Cache OM

At design time, you configure an inference agent class with a selection of rules from the
project, and a selection of destinations, and, as needed, a selection of shutdown and
startup functions.

Cache Agents

The purpose of cache agents is to store and serve cache data for the cluster.

Dedicated cache agent PUs are non-reasoning agents (one per PU). Cache agents are
responsible for object management. They participate in distribution, partitioning and
storage of the objects in the cluster.

° Tip: Other agent nodes functioning as cache agents. It is possible, but not
recommended, to enable inference and query agent nodes to store cache data in
addition to their other functions. Using dedicated cache agent nodes for data
storage is more efficient and more scalable for production scenarios. Enabling
storage on a different kind of agent can be convenient during testing.

When a backing store is used, you can balance what objects to keep in the cache and what
to keep in the backing store, until needed.

Memory and Heap Size Guideline for Cache Agents

Guidelines for memory and heap size depend on the cache provider.

With Legacy ActiveSpaces as The Cache Provider

The JVM can use much more memory than expected because it often defers garbage
collection. If the JVM uses a large percentage of the available physical memory, the Legacy
ActiveSpaces cluster might not perform well, due to swapping. The JVM and Legacy
ActiveSpaces run in the same process; therefore they compete for the same addressable
space in the RAM. If the JVM uses a large percentage of the addressable space, out of
memory errors can occur in the Legacy ActiveSpaces cluster. This situation is more likely to
occur on 32-bit systems, where the addressable space is 4GB or less. To avoid this
situation, set a heap limit to restrict the amount of memory used by the JVM, so that it
does not compete with Legacy ActiveSpaces. For example, you could use the command
line option -Xmx512m.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

83 | Distributed Cache OM

Query Agents

Query agents use an SQL-like query language. You can query data that is in the cache. You
can also query data arriving in events, known as event stream processing or ESP.

A query agent is a non-reasoning agent. It has read-only access to the underlying objects in
the cache cluster. A query agent can execute rule functions, but not rules. You can mix
query agents and inference agents within one node as desired.

TIBCO BusinessEvents Event Stream Processing Query Developer Guide explains how to work
with the query language.

Dashboard Agents

Dashboard agents are similar to a query agent in that their role is to generate information
based on queries. The information is made available to the TIBCO configured application
metrics store dashboard.

See TIBCO BusinessEvents Developer Guide for details.

Legacy ActiveSpaces Cluster Member Discovery

There are two methods you can use to configure how the members of the Legacy
ActiveSpaces cluster are discovered: multicast and well-known addresses.

By default, multicast is used, and in many cases default multicast values work without
additional configuration.

For more information on cluster configuration, see TIBCO BusinessEvents Configuration
Guide.

For TIBCO FTL cluster, the member discovery is handled internally by TIBCO FTL, see
TIBCO FTL Documentation.

Cluster Member Discovery Using Multicast Discovery

If multicast is used, the cluster membership is established using the multicast IP address
and port. When a TIBCO BusinessEvents processing unit (node) subscribes to this multicast
IP address it broadcasts information about its presence to the address.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

84 | Distributed Cache OM

Multicast is used to discover new processing units (nodes) and add them to the cache
cluster. Similarly when nodes are removed or moved to a different server, the multicast
protocol ensures that members are kept current without any additional configuration.

Default values provided mean you may not have to configure any discovery-related
properties. However, if you deploy multiple TIBCO BusinessEvents projects in your
environment, you must specify different multicast address and port settings for each
project.

Cluster Member Discovery Using Well-Known Addresses

When multicast is undesirable or unavailable, for example, if nodes are deployed to
different subnets and broadcast between the subnets is not enabled, use well-known
addresses (WKA) instead.

To use well-known-addresses you provide the IP addresses and ports of certain members
to all potential, using CDD settings.

The disadvantage of well-known addresses is that configuration is somewhat fixed, and at
least one of the well-known-address members must be running at all times so that new
members can join the cluster.

Load Balancing

Load balancing is available for messages arriving from queues. Do not use load balancing
for subject-based or other broadcast sources.

Two kinds of load balancing configuration are available: basic load balancing and content-
aware load balancing. They support messages arriving from TIBCO Enterprise Message
Service queue sources.

Every JMS destination that is configured to be an input destination runs in its own JMS
Session. This provides good throughput on queues and topics for processing, and less
connections.

Basic Load Balancing

Events from queue sources are automatically distributed between instances of an agent
class. To set up this kind of load balancing, you simply deploy multiple instances of an
agent class, where each agent runs in a different processing unit.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

85 | Distributed Cache OM

Certain aspects of the design have to be managed by the application. This method can be
useful when there is no relationship between the events that would require them to be
processed in a certain order. If the order or grouping of events received is important, use
content-aware load balancing. Content-aware load balancing has other benefits also, as
explained below.

Content-aware Load Balancing

With content-aware load balancing, all related events arriving from queues are routed to
the same agent. The events arriving at a destination are related by a routing key, which
uses the value of a selected event property. For example, if the event property values are
zip codes, then all messages relating to one zip code are routed (over TCP) to the same
receiver agent, providing “session stickiness.”

Use of content-aware load balancing simplifies project configuration, and makes runtime
behavior more efficient. For example, only local locking is generally required (whereas
basic load balancing requires cluster-wide locking). Also the L1 cache does not have to be
checked for version consistency.

Fault Tolerance of Agents

Inference and query agents in an agent group (that is, all agent instances of the same
agent class deployed in the same cluster) automatically behave in a fault tolerant manner.

o Note: Cache agents do not need or use fault tolerance features. Fault tolerance
of cache agents is handled transparently by the object management layer. For
fault tolerance of cache data, the only configuration task is to define the number
of backups you want to keep, and to provide sufficient storage capacity. Use of a
backing store is recommended for better reliability (see Reliability of Cache
Object Management).

All load is distributed equally within all active agents in the same group. If any agents fail,
the other agents automatically distribute the load between the remaining active agents in
the group.

You can optionally start a certain number of agents in a group and keep the rest as
standby agents. If an active agents fails, a standby agent is automatically activated. For
most situations, however, there is no need to maintain standby agents.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

86 | Distributed Cache OM

Note: Fault Tolerance Limitation in Inference Agents: Entities that use Memory
Only cache mode are not recoverable in failover or failback situations.

Behavior of Standby Agents

Query agents do not maintain stateful objects. When a standby agent becomes active, it
simply begins to take on work.

Standby inference agents maintain a passive Rete network. They do not listen to events
from channels, do not update working memory, and do not do read or write operations on
the cache.

o Note: Startup rule functions do not execute on failover: When a standby or
inactive node becomes active, it does not execute startup rule functions.

Cache OM with a Backing Store

To provide data persistence, you can implement a backing store for use with Cache OM.

During regular operation, cache data is written to the backing store. On system restart,
data in the backing store is restored to the cache cluster.

o Note: Database Disconnection Situations: In the event of a lengthy database
disconnection, no events are processed until the database connection is
restored. Depending on configuration, event processing may continue for some
time to avoid disruption from short disconnections. For example, engine
processes are blocked only when the database write queue is full. For more on
these options see Database Write Tuning Options .

Implementing a Backing Store

To implement a backing store, you provide a supported database product. Scripts are
provided to set up the database for your project’s ontology. If the ontology changes, scripts
help you adapt the backing store accordingly (though some manual work may be required
depending on the nature of the changes). Existing backing store data can be preserved.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

87 | Distributed Cache OM

For backing store configuration, see Backing Store Setup in TIBCO BusinessEvents
Administration Guide.

Configuring Backing Store Options

Various options are available for configuring the backing store for your needs, as explained
in this chapter. See Storage and Retrieval of Entity Objects for more information about
fine-grained controls over data storage and retrieval.

Backing Store Write Strategy

TIBCO BusinessEvents implements the cache-aside strategy for writing to the backing store,
in which the inference agent handles all writes simultaneously, and offers transaction
control.

With cache-aside database write strategy, inference agents manage writes to the cache, the
local L1 cache, and the backing store, simultaneously, in the post RTC phase. (The cache
agent reads from the backing store, but does not write to it.)

Cache-aside allows batching of writes to the backing store and provides thread and queue
size controls.

Starting a Minimum Number (Quorum) of Cache Agents

At system startup, one node in the cache cluster loads objects from the backing store to
the cache cluster, according to the preloading settings (see Storage and Retrieval of Entity
Objects). Any node in the cluster can perform the preloading.

Before preloading begins, you must ensure that enough cache agents have started to hold
the objects from the backing store. The cluster does not start processing incoming data
until the required objects have been loaded into the cache.

See TIBCO BusinessEvents Configuration Guide, for details about specifying the minimum
number of cache agents that must start before cache loading begins.

After the specified number of cache agents has started, the processing unit that acquires
the lock first performs the cache loading. Any processing unit can acquire the lock. All
agents wait until backing store data has finished loading before they start.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

88 | Distributed Cache OM

Note: This setting does not affect runtime operation of the deployed application.
Deployed applications continue to run even if one or more cache agents fails
and the quorum is no longer met. A warning message is written to the log file.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

89 | Storage and Retrieval of Entity Objects

Storage and Retrieval of Entity Objects

When you use Cache OM and a backing store, or just a backing store (Store OM), various
options help you manage where entity objects are stored, and how to retrieve them from
the backing store at startup to optimize system performance and memory management.

With Cache OM and Store OM, objects created by a running TIBCO BusinessEvents
application can be kept in any of these locations:

e The Rete network (JVM memory)
e The cache (Cache OM only)
* The backing store

You can manage where the object data is kept at the level of the entity type. The best
choice depends on how often the object changes, and how often it is accessed. The various
options balance the memory and performance characteristics of the system. Different
applications have different priorities and it is up to you to choose the options that suit your
needs.

Between Backing Store and Cache Preloading Options and Limited Cache
Size

Best performance is obtained when all objects are in the cache, but in practice there are
often more objects than you can or want to keep in the cache.

When the system demands an object that exists in backing store but not in cache, the
object is automatically loaded from the backing store into the cache, and then into the
Rete network. This takes time, but reduces the need to store so much data in the cache,
which uses up memory.

You can configure what objects to preload into cache on startup, and what objects to evict
from the cache when not needed. You can preload all, none, or entities of selected types.

You can also configure what object handles to preload into the object table. Again, you can
preload handles for all, none, or selected types. The first RTC does not occur until the
object table has been preloaded (with all the object handles configured for preloading). For
more details, see The Role of the Object Table.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

90 | Storage and Retrieval of Entity Objects

Restriction: The object table functionality is not available when the key-based
data lookup strategy is active. For details, see Data Lookup Strategies.

It is also important to start enough cache agents to handle the work.

Limiting Cache Size

When you use a backing store, you can limit the size of the cache by specifying the cache
size. This is helpful for large volumes of data that the available memory cannot hold. When
the number of objects in cache reaches the cache size limit, some of the objects are
automatically evicted from cache (they are still in the backing store).

See TIBCO BusinessEvents Configuration Guide.

Between Cache and Rete Network Cache Modes

Less frequently used objects can be stored only in the backing store, and retrieved into the
cache as needed.

In a similar way, you can define how to manage the instances of each object type by using
domain object modes, see Domain Object Modes and Project Design.

Data Lookup Strategies

To get improved performance of entity lookups in cache and stores, and to make the
lookup behavior more compatible with modern stores (databases), you can choose to use
the key-based lookup strategy.

Key-Based Lookup Strategy

The key-based lookup strategy is enabled by default. You can set a concept or event
property as primary key using the Present in Key metadata setting in the CDD in
DomainObject Overrides. You can also select more than one entity properties as Present
in Key to have a composite key. You can use the
Cluster.DataGrid.CachelLoadConceptByKeysByUri or Instance.getByKeysByUri catalog
functions to load the concept.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

91 | Storage and Retrieval of Entity Objects

If you do not mark an entity property as present-in-key then the extId becomes primary
key for that entity. If extId is not provided for an entity instance, an internal extId is
automatically generated for that instance.

You can also use the key-based lookup strategy and load a concept using external key or
composite key then use the following settings:

e The Cluster.DataGrid.CachelLoadConceptByKeysByUri () and
Instance.getByKeysByUri catalog function to load concepts using composite keys.

* The Present in Key column under Properties Metadata section of the entities
override (Cluster > Object Management > Domain Objects > Overrides) setting in
the CDD editor.

When you use the key-based lookup strategy, the Cluster.DataGrid. *Bytxtid catalog
functions are not available for use. You can use Cluster.DataGr1id.*Byuri functions instead.
Also, the Instance.getByIdByUri catalog function is not available. The object table is not
used for store or cache lookups. Thus, in the CDD editor, the Preload Handles setting
(Cluster > Object Management > Domain Objects > Overrides) is also not available.

Legacy Lookup Strategy

The legacy (object table based) lookup strategy is disabled by default. The legacy lookup
strategy is the entity lookup strategy where an entity instance can be fetched or loaded
into working memory by specifying its Long ID or extld with or without specifying its URI.

For more details about object tables, see The Role of the Object Table.

Difference Between Legacy and Key-Based Lookup Strategies

Difference Between Legacy And Key-Based Lookups

Legacy Lookup Strategy Key-Based Lookup Strategy

Object Table is required to maintain No object table is required.
index for cache and stores.

The auto generated Long Id is always Concept or event properties can be made the primary
the primary key. key.

Composite keys are not available for You can use composite keys as primary key for data

TIBCO BusinessEvents® Enterprise Edition Architect Guide

92 | Storage and Retrieval of Entity Objects

Legacy Lookup Strategy Key-Based Lookup Strategy
data lookups. lookups.
Less compatible with modern stores. More compatible with modern stores.

Use of Id is restricted as the primary No such restriction. Default is extId, but you can
key. define any property as the primary key.

The Role of the Object Table

@ Restriction: The object table functionality is not available when the key-based
data lookup strategy is active. For details, see Data Lookup Strategies.

Preloading controls are available for entity objects, and for entries (handles) in the object
table (objectTable) cache relating to entity objects.

The objectTable cache is a large cache that provides mappings for all entities in the
cache. The object table contains the object id and information about the object such as its
extld, class name, type, backing store table name and cache name. The object table is used
to find the actual object either in the cache or in the backing store. The object table is also
written to the backing store.

The object table can grow become very large, up to hundreds of millions of rows in
extreme cases. You can preload the cache cluster’s object table at system startup to
improve performance after the system has started up. (See Domain Objects Configuration
in TIBCO BusinessEvents Configuration Guide for details.)

The following figure shows how the object table in cache is used at runtime.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

93 | Storage and Retrieval of Entity Objects

Figure 2: Use of ObjectTable at Runtime

Rete netwark .,."4 Instance .getById (X)

£

L1 (local) Cache |——|

Cache (cluster) u

objeciTable Cache or DB Table

Backing Store -

objeciTable !

1. Arule requests an object X to be fetched using its internal ID. The object is not in the
Rete network.

2. The object is not in the local cache.

3. TIBCO BusinessEvents looks up the ID in the object table and gets its cache name. Its
cache table is not found in the cache cluster.

4. TIBCO BusinessEvents gets the name of the object’s backing store table from the
object table, locates the object’s table in the backing store, and returns the object to
the calling function.

Note: If the object table is not preloaded with the entry for object X, then an
additional processing step is required, to load the object table in the cache for
that object’s entry.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

94 | Domain Object Modes and Project Design

Domain Object Modes and Project Design

The Rete network consumes a large amount of the available memory in the JVM.

You can use domain objects modes to tune the performance of your application, and
reduce its footprint in memory. You can keep memory objects in the cache or store or Rete
network using the following modes:

Cache Only (Cache OM only)

Only in the cache.

Memory Only

Only in the Rete network, depending on your need.

Store Only (Store OM only)
Only in the store.

This section describes the domain object modes available in more detail, and explains how
to use them appropriately. For configuration details, see TIBCO BusinessEvents
Configuration Guide.

Domain Object Modes For Individual Entities

You can set domain object modes at the level of individual entity types in your project.

This fine granularity allows you to tune performance and memory usage based on the size
and usage of the concepts, scorecards, and events in your project ontology.

For example, you can use the memory only mode so that frequently used stateless entities
are kept in memory (and are not cached or stored). Objects kept in memory are highly
available to the application.

Using Cache Only or Store Only mode reduces the memory footprint. You must explicitly
load the objects (in rules or rule functions) so they are available to the Rete network.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

95 | Domain Object Modes and Project Design

A Warning: Do not mix memory only with domain object modes in related
concepts!

Memory Only — Useful for Stateless Entities

When you select memory only mode for an entity type, instances of that entity are available
only in the engine’s local JVM memory only.

These entities and their properties are not recoverable, or clustered or shared. For this
reason, it is recommended that you use this mode for stateless entities only.

Memory only mode is typically used for static reference data that can be created in the rule
functions on startup. It can be used also for transient utility entities that created and
deleted within a single processing, and are not needed across RTC cycles.

Entities configured in memory only mode do not persist objects to the cluster and
correspondingly the objects are not recovered from the cluster.

This cache mode works the same as the In Memory object management option (but is set
for individual objects).

o Note: Setting scorecards to memory only mode: In a cache-based project,
setting scorecards to memory only mode can improve performance.

Fault tolerance limitation: Entities that use memory only cache mode are not
recoverable in fault tolerance failover or failback situations.

Cache Only And Store Only Mode

When you choose the cache only mode for selected entities, the entity objects are serialized
and are always available in cache. Similarly, when you select the store only mode for
selected entities, the entity objects are always available in store.

For only and store only modes, at the end of the RTC, the objects and their references are
removed from the Rete network, thus freeing memory.

The cache only and store only mode is stateless between RTCs. You must explicitly load the
objects needed by rules in an RTC, and you must ensure proper locking is used.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

96 | Domain Object Modes and Project Design

Various functions are available for loading the entities into the Rete network. They are
generally used in an event preprocessor.

Cache Only And Store Only Objects in the Rete
Network

When you use cache only or store only mode for an entity type, objects of that type behave
normally when they are created during an RTC (see Conflict Resolution and Run to
Completion Cycles for more details). At the end of an RTC, however, they are removed from
the Rete network and written to the cache or store.

o Note: Ensure you use correct locking before loading objects.

Cache Load Functions

You must explicitly load Cache Only objects into the Rete network when they will be
needed during an RTC, using an appropriate cache load function in the DataGrid function
category, within the Cluster category.

For details about the catalog functions, see TIBCO BusinessEvents Functions Reference.

The functions that load concepts by ExtID or ID have a parameter to control whether
contained concepts are also loaded. The CacheLoadParent() function, which loads a given
concept’s parents, has the option to return all parents or the immediate parent. (Parents
are concepts related to the given concept by a containment relationship).

o Note: Referenced Concepts:

* If the referenced concept will be used in a rule agenda in working memory,
you must explicitly load all referenced concepts as needed since only
containment relationships can be handled automatically.

* If the referenced concept will not be used in a rule agenda in working
memory and only the concept's property will be referenced, then it is not
necessary to explicitly load the concept.

A general best practice is to use these functions in an event preprocessor. Event
preprocessors are multithreaded so performance is better. Also, if you load the objects in

TIBCO BusinessEvents® Enterprise Edition Architect Guide

97 | Domain Object Modes and Project Design

the preprocessor, then the rules themselves do not have to take account of the need to
load the objects during execution. For example, in the preprocessor, you could preload an
order concept using an ExtID available in the event as follows:

Concepts.Order order = Cluster.DataGrid.CacheLoadConceptByExtId
(orderevent.Order_Id, false);

Loaded Objects
Loaded objects do not behave like newly arrived entities and do not trigger rules.

The loaded objects are not asserted: their presence alone does not trigger rules. They are
simply restored to the Rete network. They behave as if they had never been removed. For
example, rules do fire if there is a join condition between the entity loaded from cache and
another entity that is asserted or modified in the same RTC.

Also if you modify the object that you reloaded, it can trigger the rule.

o Note: Limited Use of getByExtId(): Only use this function to retrieve cache only
or store only objects that have already been loaded into the Rete network by a
preprocessor. The getByExtId() function does not load the object into the Rete
network.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

98 | Concurrency and Project Design

Concurrency and Project Design

You can use multiple concurrently active inference agents to achieve load balancing,
scaling, and performance.

You can also enable concurrent RTC cycles within one agent, known as the concurrent RTC
feature.

The number of possible concurrent RTCs is determined by the number of available threads.

Both multi-agent and concurrent RTC features provide concurrent RTC functionality —
across agents in the case of multiple agents, and within agents, in the case of concurrent
RTC. As with any concurrent system, care must be taken to ensure that two agents or RTCs
do not attempt to update the same instance at the same time, and to ensure that reads
return a valid and up-to-date instance of an object.

Multi-Agent Features and Constraints

Concurrency affects the way events and objects are processed in a multi-agent
configuration, or with concurrent RTC.

Multi-agent features can be used in two ways:

» Deployment of instances of the same agent, each in a different processing unit, for
load balancing and fault tolerance. (A processing unit is one JVM, also known as a
node.)

» Deployment of instances of different agents, to achieve rule-chaining for high
distribution of the workload and high performance.

In both multi-agent cases, the agents are in the same cache cluster and work on the same
ontology objects and, to provide performant systems.

Concepts are Shared Across Agents Asynchronously

All concepts are shared between agents in the cluster in an asynchronous manner. For
instance, an Agent X receives an event E, fires a rule R1 that creates a concept C1. An agent
Z receives an event E2, fires a rule R2 that joins concept C1 and event E2.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

99 | Concurrency and Project Design

Therefore, there is inherent latency between an object change in an agent, and reception
of the notification by the other agents in the cluster.

o Note: Because of the asynchronous sharing of objects between agents, ensure
that events have a long enough time to live setting so that they do not expire
before all actions pertaining to the event are done.

It is recommended that you explicitly consume events when their work is done
so that they do not cause any unwanted (unforeseen) actions to occur by their
presence in the Rete network.

Scorecards are Local to the Agent

Scorecards are not shared between agents. (This is true in all OM types.) Each inference
agent maintains its own set of scorecards and the values in each agent can differ. This
enables scorecards to be used for local purposes and minimizes contention between the
agents.

Any agent that uses scorecards, and also uses Cache or Store OM, must be assigned a
unique key so that the correct scorecard can be retrieved from the cache or store. The key
is set in the Processing Unit tab of the CDD.

o Note: By default the key is empty. When you start multiple InferenceAgents with
same key, the scorecard will be shared by those agents.

As an analogy consider a bank ATM scenario. Money can be drawn from the same account
using different ATMs. However, each ATM maintains a "scorecard" indicating only how
much money it dispenses.

An agent key property (Agent.AgentClassName.key) is available for tracking scorecards. It
identifies an agent uniquely so that its scorecard can be restored from the cache.

Note: Do not use scorecards as a mechanism to share data between multiple
agents. Consider using concepts instead.

Events are Owned by the Agent that Receives Them

In a load balanced group of agents, events (messages) received by an agent are owned by
that agent. Even when the event is retrieved from cache (for example for a join condition),

TIBCO BusinessEvents® Enterprise Edition Architect Guide

100 | Concurrency and Project Design

the ownership is maintained. No other agent can work with that event, unless the owning
agent fails.

In the event of engine failure, cache cluster services provide for reassignment of ownership
of clustered events to other agents in the same agent group, so there is no single point of
failure. (Of course, if the event’s time-to-live period expires during this transition, the event
expires and is not reassigned.)

Events from Queues

Events received from a queue are each taken up by one agent or another. For example,
when an agent X receives an Event E1 from a queue, agent B in the same agent group does
not see the event. To set up load balancing of events arriving from a queue, you enable the
same destination in the agents you want to use. Agents used for load balancing are
generally agents in the same group (class) but do not have to be.

Events from Topics

Unlike messages received from a queue, messages sent on a topic are received by all
agents that actively listen to the topic. Each agent generates its own event instance (with
its own ID) when receiving the message. While it could be useful for multiple agents to
receive events sent on a topic, this often leads to undesirable results. Care must be taken
to ensure that just one agent receives topic-based messages.

Event-Related Constraints

There are some concurrency constraints, which are related to particular events.

Constraints are as follows:

Repeating Time Events Not Supported

Time events configured to repeat at intervals are not supported in multi-agent
configurations. Rule-based time events, however, are supported.

State Machine Timeouts

State machines can be configured to have state timeouts. The agents in the cluster
collaborate to take ownership of management of the state machines, thereby providing
automatic fault tolerance.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

101 | Concurrency and Project Design

Multi-Agent Example Showing Event Handling

In a load balancing group shown in the example, concepts are shared and events are not
shared .

Example Scenario

Agent A has the following rules:

Rule Scope Condition Action
R1 Event E1 None Create concept
C1
R2 Event E2, Concept E2.x == Cl.x; Send event E3
C1

Agent A listens to destinations on which events E1 and E2 arrive.

You start two instances of agent A called Al and A2. Both are active, therefore they both
listen to the destinations on which events E1 and E2 arrive. At runtime, the arrival of two
events illustrates the expected behavior.

Agent Al receives an instance of Event E1:

1. Rule R1 executes and creates an instance of concept C1.
2. During the post RTC phase, the instance of C1 is written to cache.

3. Event E1 has a Time to Live of 30 seconds. It is acknowledged and then moved to the
cache.

4. With cache only mode, Agent A2 has to explicitly load the concept when it will be
needed for an RTC.

Note that the event E1 is in the cache, but Agent A2 does not load the event in its Rete
network. However, if the node (JVM) containing Agent Al fails, then Agent A2 moves the
pending events to its Rete network.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

102 | Concurrency and Project Design

Agent A2 receives an instance of Event E2:

1. Rule R2 executes because agent A2 is aware of the instance of C1. (With cache only
mode the instance of C1 is in the Rete network only if it has been explicitly loaded.)

2. In the post-RTC phase, Agent A2 sends out event E3.

Use of Locks to Ensure Data Integrity Within
and Across Agents

Objects are managed in a concurrent configuration so that multiple agents can read from
and write to the same cache cluster and at times operate on the same set of objects.

Multiple threads in one agent can also behave in a similar manner, to enable concurrent
RTCs.

Locking is one of the necessary costs of tuning inference agents for higher performance
when concurrency features are used.

Locking is used to ensure the data you read is up-to-date, and to ensure that no other RTC
is updating the same data concurrently.

Locking in TIBCO BusinessEvents

The goal of locking is to ensure consistency across concurrent RTCs.

If one RTC has a rule condition that includes a concept, and another RTC updates that
concept, then the results could be undefined. Or if two RTCs update the same object at the
same time, then different properties of the object could be set by different threads leaving
an overall object with incorrect property values.

Locking protects the thread of executing when multiple threads in an agent can cause
conflicts by trying to write to the same concept at the same time during concurrent RTCs.
The same type of issue can occur across inference agents operating concurrently.

Locking is also necessary to ensure that stale data - data that has been modified in
another RTC but not yet written to cache - is not read.

Lock operations do not operate a lock on the object you want to protect itself. They set a
common flag that represents a lock — it is up to the developer to ensure that all accesses

TIBCO BusinessEvents® Enterprise Edition Architect Guide

103 | Concurrency and Project Design

and updates to a concept subject to locking are enforced, and that only necessary
concepts (including concepts that are written to as well as those used in conditions) are
locked

The typical lock operation is: in the event preprocessor set the lock, using any unique
string as a key. For example, you can use the object extld as the lock string. If a
preprocessor cannot acquire the lock (because another event’s preprocessor has acquired
it) then it waits until either the lock is released OR some timeout occurs.

Note: If an exception occurs after the lock is acquired in the preprocessor and
before the RTC completes, the lock is released automatically.

Locking code needs to be prepared carefully. If two events try lock(A) then lock(B) and lock
(B) then lock(A) respectively, then a situation can arise where both are waiting on each
other’s thread. Locking should be used sparingly.

When to Use Locking

Depending on your application, locking may not be required in all cases. However it is
almost always needed.

For most applications, use locking in the following cases:

With all modes, for reads.

If you want to read the latest version of a concept in one agent at the same time that
another agent might create or update the same concept, mediate the reads through the
same global lock that was used when creating or updating the concept. This is done
using an event preprocessor.

With Cache Only and Store Only modes, for writes.

Global locking is done using an event preprocessor.

With Concurrent RTC (even with In Memory OM or Memory Only mode), for writes.

Multiple RTCs could use the same in-memory object, therefore it needs to be protected
using a lock. Use a local lock, not a global lock.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

104 | Concurrency and Project Design

With state modeler, for timeouts.

State modeler timeouts do not go through an event preprocessor, so locking is done a
different way. This is explained in TIBCO BusinessEvents Data Modeling Developer Guide.

Lock Processing Example Flow

The following example demonstrates common locking requirements.

Figure 3: Lock Processing Workflow

Change Change
Cust. 123 Cust. 123
Address ﬁddre7
{:) Messaging)
Node A ' Node B
= =
o= Oy
{lle] {lle]
Event
Preprocessor
(RTC)
Post RTC

Two agents receive messages that require changes to one Customer instance.

Note that event preprocessors are multi-threaded (see Event Preprocessors for more
details).

TIBCO BusinessEvents® Enterprise Edition Architect Guide

105 | Concurrency and Project Design

1. A message comes into a channel on Agent A: a change to a customer address. TIBCO
BusinessEvents dequeues the message from the queue, deserializes the message to
an event, and calls the event preprocessor function. The preprocessor acquires a lock
using the customer’s extID as the key:

Cluster.DataGrid.Lock(Customer@extId, -1, false);

This function causes the thread to stop until it gets the lock. In this example, the
thread gets the lock.

2. Only one thread handles the RTC. Other event preprocessor threads go into a queue.
During the RTC, a rule executes and modifies the customer address. After RTC
completes, the post RTC phase begins: the address change is written to L1 cache, the
cluster cache, and the backing store in parallel. Messages arising from the RTC are
sent.

3. After the post RTC actions are completed, the lock is released.

4. Agent B that contains the same function shown in Step 1 (hence the same locking
string) can now acquire the lock that is the function returns true. It proceeds with
rule execution and post RTC phase and finally releasing the lock.

Lock and Unlock Functions

TIBCO BusinessEvents provides lock and unlock functions.

Lock Function

The TIBCO BusinessEvents lock function has the following format:

Cluster.DataGrid.Lock(String key, long timeout, boolean LocalOnly)

If you want to acquire the lock only within the agent, set Localonly to true. Set the
LocalOnly parameter to false to acquire a cluster wide lock. For example if you are only
concerned about the preprocessor threads in one agent, you can use a local lock. The
worker thread that calls the lock() function is the only thread that gets blocked.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

106 | Concurrency and Project Design

Unlock Function

All the locks acquired during event processing are released automatically after all post RTC
actions, cache operations (and database writes in the case of cache-aside mode) are done.

The format of the unlock function is as follows:

Cluster.DataGrid.UnLock(String key, boolean LocalOnly)

You can use the corresponding UnLock() function for cases where the automatic unlocking
does not meet your needs.

o Note: The Cluster.DataGrid.Lock() and Cluster.DataGrid.UnLock()
functions are available in event and subscription preprocessors and in rules.
However, in general it is not a good idea to use lock() in rules as the order of
processing of rules is not guaranteed. You can call Cluster.DataGrid.UnLock()
in a rule only when concurrent RTC is used.

Tips for Locks

The example LockExample (in BE_HOME /examples/standard) demonstrates these points,
showing use of locks to prevent race conditions.

» Choose an appropriate key for lock(). Note that lock() does not lock any entity or
object as such. The purpose of lock() is to ensure sequential processing of related
set of objects, but yet ensure concurrent processing of unrelated objects. For
example, you want to process messages related to one customer sequentially across
the cluster, but want to process messages for different customers in parallel. In this
case you could use the customer ID as the key used for lock(). This ensures that all
messages for a given customer ID are processed sequentially.

* Do not use unchecked and infinite waits (-1) on the lock. The recommended
approach is to use the timeout argument, and then exit with an error.

» Always check the return value of lock() and if false, either retry or handle it as an
error. Don't let application logic proceed if it returns false. Doing so may result in lost
updates or stale reads or other such data inconsistencies.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

107 | Concurrency and Project Design

e Try to minimize the locks acquired in one thread. If you have to acquire multiple
locks in one thread, ensure that the locks are acquired in the same order of keys,
that is, sort the keys.

» Acquire locks before creating instances, to ensure that no other thread creates the
same instance.

» Use lock() even for read-only operations. If you do not you may get “Inconsistent
Database” messages, for example, if there are concurrent deletes elsewhere in other
threads or agents.

* In general, avoid using lock() in a rule. Since rule order of execution is not
guaranteed such usage may lead to deadlocks.

Multiple Keys Protect One Object

In the simplest cases you can use some unique feature of the object you want to protect as
the locking key, for example, a customer ID. However different events may point to the
same objects using different information. For example, from one channel, the object may
be identified using customer ID, and from another, using account ID. In such cases multiple
keys are used to identify the same object. When you acquire a lock to protect such an
object, you must first get the other key from your system, sort the keys and take a lock on
both keys. Sorting can be implemented using a custom function.

If the ordering of keys is not guaranteed, it may lead to a deadlock in a multi-agent or
concurrent RTC (multi-threaded) environment. For this reason, avoid use of lock() in a
loop, where the intention is to process multiple messages. There are other ways to achieve
this, for example, using the assertEvent_Async() function.

Lock Failures

Instead of throwing an exception after failing to acquire a lock after a few attempts, re-
route the event to a special destination that only handles errors (an "error queue"), so you
have control over which queue the message goes to.

Write a preprocessor on the “error queue” that does do one of the following for each
message:

e Consumes it

TIBCO BusinessEvents® Enterprise Edition Architect Guide

108 | Concurrency and Project Design

e Reports it and then consumes it

e Repairs it and then resends it

For example:

System.debugOut ("Attempting to lock..");
boolean result = false;
for(int i = 1; i <= 335 i =1 + 1){
result = Cluster.DataGrid.Lock("$lock@", 2000, false);
if(result == false){
System.debugOut ("Lock acquisition '$Slock®' failed. Attempts: " +

i);
+
else{
System.debugOut ("Lock acquisition '$lock®' succeeded. Attempts: "
+i);
break;
+
}
if(result == false)({
Event.consumeEvent (newevent) ;
Event.routeTo(newevent, "/Channel/LockErrorDestination", null);

}

TIBCO BusinessEvents® Enterprise Edition Architect Guide

109 | Threading Models and Tuning

Threading Models and Tuning

Event preprocessing is multithreaded, and for each destination you need to choose a
threading option: Shared Queue, Destination Queue, or the Caller’s Thread.

Figure 4: Threading Models Quick Reference

Thread
Single-threaded Destination Thinas Multi-threaded Destination
(JMS) {HTTP, Rendezvous)
B Bd—
Sharad Queus and Threads, Shiared Cueua and Threads,
Dedicated Workers, or Dedicated Workers, or
Caller's Thread Caller's Thread
o o
Shared thread
pool
L= Caller's Thread
= : o Shared Queue
resd
Bd— d‘%z Fool and Threads
:I Event preprocessor [E—' Shared
Acquire Rete Lock [if ot Lueue J Event pregrocessor
using concurrent Reta) -
P Acquire Rete Lock (if not
:I RTC gl using coneurrent Rate)
Post RTC & epilog RTC
Loops (sequentiial operations) :I
L Loops Post RTC & epilog (parallel
or saquantial opesations)
Destination 3's
thread pool
A rrread Dedicated Workers
== FPool
[c}—| Destination
Chueue

FJ Event pregrocessor

e, Acquire Rete Lock (if not
L using concurrent Rela)

] RTC

Loops Post RTC & epilog {parallal
:I or sequeantial operations)

A detailed example for the threading model.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

110 | Threading Models and Tuning

Figure 5: Agent threading example — shared threads, concurrent RTC, cache aside

Incoming 6= &= o= o=
Messages l

Event
Preprocessors

Fost RTC

- M I
== Mo 5.

L1 Cache uf

Epilog n_é—-Evarrtﬁ Acknowledged —s

I%i Lacks Relaasad

e Cache Writer

0 Database (Backing Store) Writer

e Other Actions

» Shared Queue and Destination Queue threads are released at the end of the RTC
(post-RTC phase uses different threads).

e For the RTC phase, you can choose single or concurrent RTC options.

e For the post-RTC phase, you have the cache-aside thread management strategy. It is
shown in the diagram above.

* You can use parallel operations or (for special cases) serial operations. Use of parallel
operations generally requires locking.

» Events that are to be sent out, for example using Event.sendEvent(), are actually
sent in the event preprocessor or in the post-RTC phase, depending where the
function is called.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

111 | Threading Models and Tuning

» Acknowledgements are sent out after the post RTC phase.

° The exception is events consumed in a preprocessor. In this case
acknowledgements are sent immediately.

Scaling Considerations
When you begin to scale up messaging the following are the potential bottlenecks:
» Messages are coming in too fast into the inference engine, or
* Inference engines are not handing off objects fast enough to the backing store , or
» Cache agents are not accepting the objects fast enough, or
» Backing store is not accepting the objects fast enough.

These points are related. You can add more inference agents and more cache agents to
address these issues, depending on where the bottlenecks are occurring.

Event Preprocessor and Rete Worker Thread
Options
Event Preprocessor and Rete Worker Thread Options deal with messages that arrive at
destinations.
For each destination you need to choose one of the threading model types:

e Shared Queue

e Destination Queue

 Caller’s Thread

A thread carries execution to the post RTC phase, at which point execution for the Shared
and Destination Queue thread is handed off to another set of threads for writing to cache
and backing store. In all threading models, event preprocessing is multi-threaded for high
performance.

Diagrams in this section use as an example EMS messages, arriving at JMS destinations.

Each JMS destination creates a separate JMS Session internally, and creates a JMS thread
for itself. All queues in all options are blocking, and follow FIFO (first in first out).

TIBCO BusinessEvents® Enterprise Edition Architect Guide

112 | Threading Models and Tuning

Additional tuning may be possible at the event level. For example, the Enterprise Message
Service server queue can be sized appropriately. This topic is outside the scope of TIBCO
BusinessEvents documentation.

Note that for events sent out in the event preprocessor phase messages are sent
immediately, and for events sent out during the RTC messages are sent in the post RTC
phase.

Shared Queue

All destinations that use the shared queue threading model share the processing unit’s
shared queue and threads.

The default and most straightforward option is when one pool of worker threads picks jobs
from the shared queue. Execution continues on a thread through to post-RTC.

Figure 6: Shared Queue

JIMS Session Dispatcher Threads
+ + + +

|
£ ;L :'l*

The configuration settings are as follows:

Sharad Clueue

Property Notes

CDD Editor > Collections > Specifies that the shared queue threading model is
Destinations > Threading Model: used.
Shared Queue

CDD Editor > Agents > Queue Specifies the size of the queue used for all destinations
Size in the processing unit that use the shared queue
threading model.

CDD Editor > Agents > Thread Specifies the number of threads used for all destinations

count in the processing unit that use the shared queue
threading model.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

113 | Threading Models and Tuning

Advantages Disadvantages

Good for multi-core machines, which e Too many threads create context switching.
can make good use of a heavily

e One single destination can become a
threaded set-up.

bottleneck in the case of a sudden increase in
incoming messages.

e Correlation of events arriving on different
queues at different rates can be problematic,
as can request-reply situations.

* It can be harder to tune performance with only
one queue and one set of threads for all
destinations.

Destination Queue

The Destination Queue option is similar to the Shared Queue option except that each
destination has a dedicated thread pool and set of threads to process messages.

Figure 7: Destination Queue

aIT-, &=y eT—'.
JIMS Session Dispatcher Threads
i 1

LI

Preprocessars .l‘ " " ?‘ ." 'f

The following table list the properties:

Property Notes

CDD Editor > Collections > Destinations > Specifies that the destination queue
Threading Model: Destination Queue threading model is used.

CDD Editor > Collections > Destinations > Specifies the number of dedicated

worker threads for each destination.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

114 | Threading Models and Tuning

Property Notes

Threading Model: Destination Queue: Thread
count

CDD Editor > Collections > Destinations > Specifies the size of the queue used
Threading Model: Destination Queue: Queue size for each destination.

Advantages Disadvantages
e Each destination can be configured differently, to deal with More complex to
correlation of events arriving at different rates in different manage multiple

destinations, or events that are correlated in different ratios, such queues and sets
as correlation of every tenth event from destination one with every of threads.
other event from destination two.

 If you use priority queues in Enterprise Message Service, you can
use dedicated queues to service them efficiently.

Caller’s Thread

The Caller’s Thread option uses the thread (and queue size) provided by the channel
resource client, such as the Enterprise Message Service client.

There is one caller’s thread per destination. The same thread executes the RTC phase.

Figure 8: Caller’s Thread

JMS Session Dispatcher Threads

L ||

Evant ’f "‘ ’f "‘

Preprocessors

This option has no tuning controls.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

115 | Threading Models and Tuning

Property Notes

CDD Editor > Collections > Destinations > Threading Specifies that the caller threading

Model: Caller’s Thread model is used.
Advantages Disadvantages
¢ |f the destination uses a e To scale up, many destinations have to be
single thread (JMS but not created in order to create that number of caller
HTTP), using this option threads. (And doing so is not always possible, for
ensures that the events are example, if you need to process messages in the
processed in the order order received.)
received. e Because each destination creates a JMS session,
e The messaging library's a session might be under use. On some
thread does the message operating systems, sockets and sessions could be
delivery, pre-processing and very under-used.

the Rete operations, so there
is less context switching.

e The messaging system cannot
push events faster than the
rate at which it can get
consumed, so the system is
self-throttling.

» Best option for request-reply
situations.

RTC Options — Single-Threaded or Concurrent

Depending on your needs, you can choose single threaded or concurrent RTC options, in
the CDD Agent settings Concurrent RTC field.

For reference documentation, see TIBCO BusinessEvents Developer Guide.
Concurrent RTC

In the option Concurrent RTC, one RTC executes simultaneously on each thread.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

116 | Threading Models and Tuning

All threads fill post RTC queues. As with any concurrency feature, locking is required.

Figure 9: Concurrent RTC

Event

Preprocessors *‘ (‘ *‘

Concurrent
RTC L F L F L F

Post RTC
Advantages Disadvantages

» Can confer performance benefits, e When many smaller CPUs are used, then
given correctly sized hardware and concurrent agents may give better
JVM configuration. Best on large performance than concurrent RTC.
h|gh-§apaC|ty, high-performance * Requires the same kind of locking as for
machines. . . .

multi-agent concurrency to protect integrity

¢ Does not require cache or store of the data. The cost of locking negates

OM. some of the performance benefits of

concurrency.

 If you also use concurrent agents, the
system can become complex.

Single-Threaded RTC

In the option Single-Threaded RTC, each thread waits to execute its RTC in turn.

Figure 10: Single-Threaded RTC

Ewvent $ 4
Praprocessors LA AN
Single- %
threaded RTC .A::

Post RTC

TIBCO BusinessEvents® Enterprise Edition Architect Guide

117 | Threading Models and Tuning

Advantages

It's simpler and does not require locking
(unless concurrent agents are used).

Disadvantages

Lesser performance than concurrent RTC
(depending on hardware used).

Post-RTC and Epilog Handling and Tuning

Options

Inference agents manage writes to the cache, to the local L1 cache, and to the backing

store in the post-RTC phase.

This can be used with parallel or sequential operations.

Figure 11: Cache-Aside Options

Post RTC

r F

T

o
W

o

£ -

Locks Releasad

e Database (Backing Store) Writer

e Other Actions

Use of parallel or sequential operations is set using the following boolean property in the

CDD file:

Agent.agentClassName . enableParallelOps

Parallel operations is an agent level property, so you can set it differently on each agent,
depending on the needs. For reference documentation, see TIBCO BusinessEvents Developer

Guide.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

118 | Threading Models and Tuning

Parallel Operations

When the enableParallelOps property is set to true, parallel operations are used. Parallel
operations is shown in the diagram for this section. It uses multiple threads and queues for
more efficient processing during the post-RTC phase.

Note: The parallel operations feature is used only with cache aside. It is enabled
by default when both cache aside and concurrent RTC features are enabled.

Sequential Operations

When the enableParallelOps property is set to false, sequential operations are used. This
means that all post-RTC phase operations are done on a single thread. Sequential
operations ensures that the system waits to send a reply event confirming that some work
has been done, until the result of the work can be seen in the cache.

Message Acknowledgment

With both parallel and sequential operations, message acknowledgement and releasing
locks (epilog actions) wait for the three post-RTC tasks to complete. Note the following
exceptions:

e Events consumed in a preprocessor. In this case acknowledgements are sent
immediately.

e JMS messages with acknowledgment types AUTO_ACKNOWLEDGE and DUPS_OK_
ACKNOWLEDGE.

Advantages
» The following advantages are available when parallel operations is used:
° Allows batching of RTC database write operations.
° Provides thread and queue size controls.

» Offers the ability to use the database as the primary storage, and to use cache
secondarily, to pass the objects between the Rete network and the database. This
strategy is useful in some usage scenarios.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

119 | Threading Models and Tuning

Other Tuning Properties

Tuning properties are set using CDD properties or settings at the appropriate level,
depending on the scope.

See TIBCO BusinessEvents Configuration Guide for reference details.

Cache Writer Thread Tuning
One cache writer property is available. It is set at the agent class level:
Agent.AgentClassName.threadcount

Database Writes Tuning

For details about database writer thread and queue tuning see Database Write Tuning
Options.

Database Write Tuning Options

Various properties affect how database operations in each RTC transaction are processed
and committed to the backing store.

These properties affect the way RTC actions are processed and written to the database
when the following property is used:

Agent.agentClassName . enableParallelOps=true

Figure 12: Cache Aside Tuning Options

e

(From RTC)

dhOpstusueSize

dhihreadcount dhOpsBatchSize
| i useDBBatching {cluster)

TIBCO BusinessEvents® Enterprise Edition Architect Guide

120 | Threading Models and Tuning

o Note: Tuning the parameters in this section can improve performance. However
larger values do not imply improved performance. For example, in heavy
workload situations, increasing dbOpsBatchSize and dbOpsQueueSize values
results in longer post-RTC times, which in turn delays release of cache locks —
which are not released until after the post-RTC

Database Write Queue and Thread Pool (Agent Level)

Actions for one or more RTCs are done in one or more batches, depending on tuning
options.

In each batch, TIBCO BusinessEvents does the following actions (as needed):

deleteConcepts
deleteEvents
insertConcepts
insertEvents
modifyConcepts
removeObjectTable
saveObjectTable

You can tune each agent’s database write behavior using the following options:

Agent.AgentClassName . dbOpsQueueSize
Agent.AgentClassName . dbOpsBatchSize
Agent.AgentClassName . dbthreadcount

The post-RTC database (backing store) transactions are queued into a database-operations
queue whose maximum size (set per agent) is defined by dbOpsQueueSize. Each slot in the
gueue contains all the actions from one RTC.

Database write threads process the RTC transactions from the queue. The number of
threads is defined by dbthreadcount.

A database write thread takes up to the dbOpsBatchSize number of RTC transactions,
processes them and commits them to the database. (When database write threads are idle,
they take available jobs from the database operations queue, even if there are less jobs
than dbOpsBatchSize.)

You can monitor JMX parameter AvgDBOpsBatchSize to see the effective value used in your
use case.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

121 | Threading Models and Tuning

Database Batching Option (Cluster Level)

All RTC transactions in one batch can be handled as one job (in agents that have the
property set to a number larger than one) depending on the cluster-level property setup.

To achieve that, the following cluster-level property has to be set to true:

be.engine.cluster.useDBBatching

and the following agent level property has to be set to greater than one:

Agent.AgentClassName . dbOpsBatchS-ize

In this case, all the RTC transactions in one batch are handled as one job (in agents that
have the property set to a number larger than one).

It is important to balance the cost of processing fewer, larger jobs against the gains. The
efficiencies gained by setting the useDBBatching property to true are greater if many
operations of the same kind apply to the same table. The database writing process has to
do an operation for each of update, insert and delete on each database table. So you don't
get any gain if only one RTC in the batch is updating, inserting, or deleting in a particular
table.

For reference documentation see TIBCO BusinessEvents Developer Guide.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

122 | Telemetry Data

Telemetry Data

TIBCO BusinessEvents integration with OpenTelemetry allows you to monitor the health
and performance of your application across all the services. OpenTelemetry provides
support for tracking the progression of a request across multiple services in the
application. This tracking is termed tracing. Tracing helps you to identify any bottlenecks in
your applications and monitor each request across the services.

The telemetry data collected from your TIBCO BusinessEvents application can be displayed
on data visualization software. Due to the vendor-agnostic design of the OpenTelemetry
specification, you can use one or more open-source or commercial visualization software
for the telemetry data.

For complete details about OpenTelemetry, see the OpenTelemetry documentation.

For more details about tracing in TIBCO BusinessEvents, see "TIBCO BusinessEvents
Application Tracing" in TIBCO BusinessEvents Configuration Guide.

Key Terms

The following terms are the key terms of OpenTelemetry implementation. A brief
introduction to these terms is given here. For complete details about OpenTelemetry
terminology, see the OpenTelemetry documentation.

Observability

Ability to understand and measure the state of a system by collecting data such as
traces, metrics, and logs.

Telemetry

Exporting monitoring data from an application to external analysis software.

Trace

Traces track the progression of a single request, as it is handled by services that make
up an application.

Span

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://opentelemetry.io/docs/
https://opentelemetry.io/docs/

123 | Telemetry Data

Span is a unit of work in a trace. A span has a start time, end time, attributes (key-value
pairs), and events.

Context

A span has a span context, which is a set of globally unique identifiers that identifies a
request. A context must be carried across threads and services to be able to trace a
transaction or request uniquely across process boundaries.

Propagator

In order to extend trace beyond a single process, a context propagation mechanism is
required and a propagator must be registered with the OpenTelemetry API. A context
when shared with a remote application, it is serialized or deserialized to the vendor-
specific protocol using propagators. An application should use one or more propagators
that are used by other applications in the ecosystem to be able to parse context.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

124 | Appendix A: In Memory Performance Statistics Specifications

Appendix A: In Memory Performance
Statistics Specifications

You can use different MBeans to gather statistics for different aggregators: destinations,

events, engine, and thread pool.

All Destinations Statistics

Use the [com.tibco.be.Agent.<AgentiD>.Stats.Destinations.Al1l] MBean for statistics of

all destinations.

Operation Name

getStats(nameOrExpression)

getStatsByEventsReceived
(nameOrExpression, boolean
ascending)

getStatsByEventsSent
(nameOrExpression, boolean

Return Type

String name

long
eventsReceivedPerSecond

String lastEventReceived
long totalEventsReceived

long totalEventsSent

String name

long
eventsReceivedPerSecond

String lastEventReceived
long totalEventsReceived

long totalEventsSent

String name

Notes

Search for statistics
using a full name or a
regular expression.

Use <blank> as argument
to get all known
destinations.

Search for statistics
using a full name or a
regular expression sorted
by events received
(ascending or
descending).

Use <blank> as argument
to get all known
destinations.

Search for statistics
using a full name or a

TIBCO BusinessEvents® Enterprise Edition Architect Guide

125 | Appendix A: In Memory Performance Statistics Specifications

Operation Name

ascending)

Destination Statistics

Return Type

long
eventsReceivedPerSecond

String lastEventReceived
long totalEventsReceived

long totalEventsSent

Notes

regular expression sorted
by events sent
(ascending or
descending).

Use <blank> as argument
to get all known

destinations.

Use the [com.tibco.be.Agent.<AgentID>.Stats.Destinations.<Destination Name>]
MBean for statistics of the specified destination.

Operation Name

getEventsReceivedPerSecond

getLastEventReceived

getTotalEventsReceived

getTotalEventsSent

Engine Statistics

Return

Type

long

long

long

long

Notes

The running events received per second (will
be revised every time an event is received). If
no event is received, then it shows the last
computed value.

Shows the time when the last "events received
per second" was calculated. Effectively, it
shows when the last event was received on a
destination.

The total number of events received after the
destination became active.

The total number of events sent after the
destination became active.

Use the [com.tibco.be.Agent.<AgentID>.Stats.Engine] MBean for statistics of the

engine.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

126 | Appendix A: In Memory Performance Statistics Specifications

Operation Name
getTotalRTCs

getAverageRTCTime

getRulePerformance
Stats
(nameOrExpression)

getRulePerformance
StatsBy-
ProcessingTime
(nameOrExpression,
ascending)

getRulePerformance
StatsByCondition
ProcessingTime
(nameOrExpression,
ascending)

Return Type

double

String uriOrSignature
long invocationCount
double averageProcessingTime

double
averageConditionProcessingTime

String uriOrSignature
long invocationCount
double averageProcessingTime

double
averageConditionProcessingTime

String uriOrSignature
long invocationCount
double averageProcessingTime

double
averageConditionProcessingTime

Notes
Total number of RTCs.

The average RTC time
(in msecs).

Search for rule
statistics using a full
name or a regular
expression.

Use <blank> as
argument to get all
known rules/rule
functions.

Search for statistics
using a full name or a
regular expression
sorted by processing
time (ascending or
descending).

Use <blank> as
argument to get all
known rules/rule
functions.

Search for statistics
using a full name or a
regular expression
sorted by condition
processing time
(ascending or
descending).

Use <blank> as
argument to get all
known rules/rule
functions.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

127 | Appendix A: In Memory Performance Statistics Specifications

Event Statistics

Use the [com.tibco.be.Agent.<AgentID>.Stats.Event] MBean for statistics of the event.

Operation Name Return Notes

Type
getAverageEventProcessingTime double The average processing time per event.
getEventsPerSecond long The running events received per second

(will be revised every time an event is
processed). If no event is processed, then
shows the last computed value.

getLastEventProcessedTime long Shows the time when the last "events per
second" was calculated. Effectively, it
shows when the last event was processed

getTimerEventsFired double The number of timer events fired.

getTotalEventsReceived long The total number of events processed
(includes timer events).

Scorecard Based Statistics

Use the [com.tibco.be.Agent.<AgentID>.Stats.UserDefinedStats] deployer MBean for
scorecard based statistics.

Operation Return Type Notes

Name

register Integer (count The MBean finds all the scorecards matching the name

(namepattern) of registered pattern and wraps them with a dynamic MBean. Each
ScoreCards) score card MBean is registered as

[com.tibco.be.Agent.
<AgentID>.Stats.scorecard.<ScoreCardName>]].

unregister Integer (count
(namepattern) of unregistered
ScoreCards)

TIBCO BusinessEvents® Enterprise Edition Architect Guide

128 | Appendix A: In Memory Performance Statistics Specifications

All Thread Pool or Job Queue Statistics

Use the [com.tibco.be.Agent.<AgentID>.Stats.tpool.All] MBean for statistics of all

thread pool.

Operation Name

getStats
(nameOrExpression)

getStatsByActiveThread
(nameOrExpression,
boolean ascending)

getStatsByQueueSize
(nameOrExpression,
boolean ascending)

Thread Pool Statistics

Return Type

String name
long activeThreads

long maximumThrea

long queueCapacity

long queueSize

String name
long activeThreads

long
maximumThreads

long queueCapacity

long queueSize

String name
long activeThreads

long
maximumThread

long queueCapacity

long queueSize

Notes

Search for statistics using a full
name or a regular expression.

Use <blank> as argument to get all
known thread pools.

Search for statistics using a full
name or a regular expression
sorted by active thread count
(ascending or descending).

Use <blank> as argument to get all
known thread pools.

Search for statistics using a full
name or a regular expression
sorted by queue size(ascending or
descending).

Use <blank> as argument to get all
known thread pools.

Use the [com.tibco.be.Agent.<AgentID>.Stats.tpool_jqueue.<Thread Pool Name>]
MBean for statistics of the specified thread pool.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

129 | Appendix A: In Memory Performance Statistics Specifications

Operation Name Return Notes
Type
getActiveThreads long The total number of active threads.
getMaximumThreads long The maximum number of threads in the thread pool.
getQueueCapacity long The capacity of the job queue associated with the
thread pool.
getQueueSize long The number of jobs in the queue associated with the
thread pool.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

130 | Glossary

Glossary

A

advisory event
A notice from TIBCO BusinessEvents about activity in the engine, for example, an
exception.

agenda
A prioritized list of rule actions that may execute. Also known as the rule agenda.
TIBCO BusinessEvents recreates the agenda each time a change in the Rete
network requires rules to be re-evaluated, for example, when a simple event is
asserted. A rule action in an agenda may disappear without firing when the agenda
is recreated, because conditions are no longer met.

agent
TIBCO BusinessEvents operates at runtime using one or usually several agents of
different types.

agent class
An agent type, defined in the CDD file, that deploys as an agent instance.

agent group
Multiple deployed instances of one agent class. Used for load balancing and fault
tolerance.

assert
Put facts into the Rete network. When object instances or events are asserted into
the Rete network, rules may fire as a result.

backing store
A disk-based database to provide persistence and a better level of reliability for
cache objects.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

131 | Glossary

o

cache
In TIBCO BusinessEvents, a type of object management. Generally refers to
distributed storage of facts (objects) in memory.

cache agent
A processing unit configured with a non-reasoning agent used as a storage node
only. Used with Cache object management.

cache cluster
A group of processing units each running one or more agents configured for use by
the cache-based object management type. Some agents are generally configured as
cache agents. They store cache data for use by other cluster members.

cache mode
Various cache mode options are available at the object level, for use with cache-
based object management. They enable you to tune the performance of your
application, and reduce its footprint in memory.

cache only
One of the cache modes, used at the object level. Instances of entity types that use
cache only are serialized and kept in the cache until needed. They must be
explicitly loaded into the Rete network when needed for rule processing.

cache server
See cache agent.

channel
A named configuration that allows TIBCO BusinessEvents to listen to a stream of
events from a given type of source, for example, JMS messages. A channel contains
one or more destinations.

cluster deployment descriptor
XML file containing properties to define the cluster, processing units, and agent
classes. Configuration done using TRA file properties in earlier releases is now done
using the CDD editor in TIBCO BusinessEvents Studio.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

132 | Glossary

complex event
An abstraction that results from patterns detected among simple events. Example:
A complex event might result from the following simple events that all occurred
within one week’s time: A stock broker buys shares of xyz stock. The same broker
submits a very large order for xyz stock on behalf of a customer. The same broker
sells shares of xyz stock at a profit.

complex event processing (CEP)
Correlation of multiple events from an event cloud, with the aim of identifying
meaningful events and taking appropriate action.

concept
An abstract entity similar to the object-oriented concept of a class. A concept is a
description of a set of properties that, when grouped together, create a meaningful
unit. Concepts can be organized in a hierarchical structure. Example: Department,
employee, purchase order, and inventory item are all concepts. The term concept
type refers to the definition and the term concept instance refers to the actual
object. Concepts are generally created using event data.

concept reference
A property within one concept that references the ID of another concept, known as
the referenced concept. A type of relationship between concepts.

conflict resolution cycle
A cycle of activities during which the engine executes one set of rule actions on the
currently asserted facts. One RTC may contain multiple conflict resolution cycles.

contained concept
A concept that exists entirely within another concept. A type of relationship
between concepts.

custom function
You can add Java-based custom functions as needed to supplement the library of
standard functions provided with TIBCO BusinessEvents.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

133 | Glossary

D

decision table
A tabular form presenting a set of conditions and their corresponding actions. A
graphical tool for building rules. Used in TIBCO BusinessEvents Decision Manager.

deserializer
A class that performs conversion tasks. In TIBCO BusinessEvents, a deserializer
converts messages to events. See also serializer

destination
A channel property that defines a contact point on a given channel. For example,
for a TIBCO JMS channel, the destination properties would specify the subjects on
which to listen.

distributed cache
In TIBCO BusinessEvents, a form of cache-based object management. In a
distributed cache, cached object data is partitioned between the processing units
(JVMs) in the cache cluster for efficient use of memory.

E

entity
A concept, simple event, or scorecard. Entity types are the definition of the entity.
Similar in meaning to object. The term “instance” generally refers to a concept
instance.

event
An object representing some occurrence or point in time.

evict

To remove an object or entry from a cache. An eviction policy defines when an
object is removed from the cache.

expires (event)
At the end of the event’s time to live period, the event is said to expire. It is
removed from the Rete network and (as needed) acknowledged. Other actions
depend on the type of object management used.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

134 | Glossary

F

fact
An instance of an event or concept or scorecard in the Rete network.

in memory
In TIBCO BusinessEvents, a form of object management. Refers to storage of facts
(objects) used by the runtime engine in JVM memory.

inference agent
In a deployed system, inference agents process incoming events using a Rete
network and a set of rules that are triggered by conditions in incoming events.
Inference agents in Cache OM systems allow fault tolerance and load balancing.

instance
Similar to the Java term “object instance.” By custom, applied only to concepts,
though event definitions have object instances also.

L

L1 Cache
Used with Cache OM, the L1 cache is a local cache that gives inference agents quick
access to recently used objects.

lambda transition
A transition without a condition. This term is used in state model configuration.

M

memory only (local only)
One of the cache modes, available for cache-based object management
configuration. Instances of entity types that use this mode are not stored in cache
or backing store and are available only in the processing unit’s local JVM memory.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

135 | Glossary

o

object management (OM)
The aspect of TIBCO BusinessEvents that deals with management of all the facts
used in the runtime engine. Often shortened to OM in documentation.

ontology function
TIBCO BusinessEvents generates ontology functions for each entity type in a
project. There are three types of ontology functions: constructors, to create a
simple event or concept instance; time events, to create and schedule time events,
and rule functions, to invoke rule functions.

P

payload
Similar to a JMS message, a simple event can contain properties and a payload.
The payload holds the content of the message. You can define the XML schema for
the payload when you configure the simple event definition. Payloads can also
contain strings and Byte arrays.

processing unit
Definition of a TIBCO BusinessEvents engine which runs in one JVM. Contains
agents and other properties.

Q

query agent
A query agent is a non-reasoning agent that and has read-only access to the
underlying objects in the cache cluster. A query agent has no Rete network.
Available only with TIBCO BusinessEvents Event Stream Processing add-on
software.

R

Rete algorithm
Dr Charles L. Forgy developed the Rete algorithm for expert systems.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

136 | Glossary

Rete network
An in-memory network of objects based on the Rete algorithm which enables fast
matching of facts with rule dependencies. “The word 'Rete’ is Latin for 'net' or
‘comb'. The same word is used in modern Italian to mean network. Charles Forgy
has reportedly stated that he adopted the term 'Rete' because of its use in anatomy
to describe a network of blood vessels and nerve fibers. . . . A Rete-based expert
system builds a network of nodes, where each node (except the root) corresponds
to a pattern occurring in the left-hand-side (the condition part) of a rule. The path
from the root node to a leaf node defines a complete rule left-hand-side. Each node
has a memory of facts which satisfy that pattern.”
(http://en.wikipedia.org/wiki/Rete_algorithm)

retract
Remove facts from the Rete network.

RMS
Rules Management Server. The server component of TIBCO BusinessEvents Decision
Manager add-on software. RMS manages the rules management repository.

rule
A declaration, with a set of conditions and actions. If all the conditions in the rule
are satisfied by facts in the Rete network (and the rule is at the top of the agenda),
TIBCO BusinessEvents executes the action.

rule based time event
See time event.

rule function
Custom functions written using the TIBCO BusinessEvents rule language and using
a provided user interface. Also used to refer to a type of ontology function.

rule session
An older term that has been replaced by the term inference agent.

Run to completion (RTC) cycle
A run to completion (RTC), cycle generally begins when an external action causes
changes to the Rete network. It ends when there are no more rule actions to
execute as a result of that initial change (and any subsequent changes caused by

TIBCO BusinessEvents® Enterprise Edition Architect Guide

137 | Glossary

rule actions). One RTC is composed of one or more conflict resolution cycles. Other
terms for RTC are forward chaining and inferencing.

S

serializer
A class that performs conversion tasks. In TIBCO BusinessEvents, a serializer
converts events to messages.

simple event
An object representing a business activity that happened at a single point in time. A
simple event includes information for evaluation by rules, metadata that provides
context, and a separate payload — a set of data relevant to the activity.

simple event definition
A description of the channel, destination, properties, and payload for a simple
event.

standard function
A library of standard functions is provided with TIBCO BusinessEvents for use in
rules and rule functions.

T

time event
A type of event definition, used as a timer. Two types are available: rule based, and
interval based.

time to live
A simple event property that defines the delay after which a simple event expires.

U

UML (Unified Modeling Language)
A language that asTIBCO BusinessEvents Architect’s Guidesists in building a
diagram of any complex entity. TIBCO BusinessEvents diagrams use the UML. The
TIBCO BusinessEvents term, concept, is similar to a UML class.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

138 | Glossary

\'}

virtual rule function
A rule function whose signature is defined in a TIBCO BusinessEvents project and
whose implementation is defined using decision tables. For use by TIBCO
BusinessEvents Decision Manager add-on software.

W

working memory
The runtime processing area for rules, objects, and actions. Rules apply only to
data in the working memory. Often used to mean Rete network.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

139 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services

For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO BusinessEvents® Enterprise
Edition Documentation page.

To directly access documentation for this product, double-click the file at the following
location:

TIBCO_HOME/release_notes/TIB_businessevents—-enterprise_6.3.1_docinfo.html

where TIBCO_HOME is the top-level directory in which TIBCO products are installed. On
Windows, the default TIBCO_HOME is C:\tibco. On UNIX systems, the default TIBCO_HOME
is /opt/tibco.

Other TIBCO Product Documentation

When working with TIBCO BusinessEvents Enterprise Edition, you may find it useful to read
the documentation of the following TIBCO products:

e TIBCO ActiveSpaces®: It is used as the cluster, cache, or store provider for the
TIBCO BusinessEvents Enterprise Edition project.

e TIBCO FTL®: It is used as the cluster provider for the TIBCO BusinessEvents Enterprise
Edition project.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-businessevents-enterprise-edition-6-3-1
https://docs.tibco.com/products/tibco-businessevents-enterprise-edition-6-3-1

140 | TIBCO Documentation and Support Services

How to Access Related Third-Party Documentation

When working with TIBCO BusinessEvents® Enterprise Edition, you may find it useful to
read the documentation of the following third-party products:

e Apache Ignite

» Apache Kafka

» Confluent Kafka Schema Registry
e TIBCO Messaging - Schema Repository for Apache Kafka
e Apache Pulsar

e GridGain

e Apache Cassandra

e Grafana

e InfluxDB

e OpenTelemetry

e Control Plane

e Apache Maven

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

» To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

» To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://support.tibco.com/
https://support.tibco.com/

141 | TIBCO Documentation and Support Services

gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://ideas.tibco.com/
https://community.tibco.com/

142 | Legal and Third-Party Notices

Legal and Third-Party Notices

SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, TIBCO BusinessEvents, ActiveMatrix, ActiveMatrix
BusinessWorks, ActiveSpaces, TIBCO Administrator, TIBCO Designer, Enterprise Message Service,
TIBCO FTL, Hawk, and TIBCO Runtime Agent are either registered trademarks or trademarks of Cloud
Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://www.cloud.com/legal
https://scripts.sil.org/OFL

143 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2004-2024. Cloud Software Group, Inc. All Rights Reserved.

TIBCO BusinessEvents® Enterprise Edition Architect Guide

https://www.cloud.com/legal

	Contents
	Before You Begin
	Rule Management Server Prerequisite
	Third-Party Software Documentation References

	Cloud Tools for TIBCO BusinessEvents
	TIBCO BusinessEvents Contribution Repository
	Complex Event Processing (CEP)
	Technical Requirements of a CEP System
	A Model-Driven Approach
	Stateful Rule Engine
	Object Management Types
	Main Product Components and Add-On
	TIBCO BusinessEvents Design-time Components
	TIBCO BusinessEvents Administration Components

	Design-time Resource Overview
	Channels and Events
	Concepts
	Score Cards
	Rules
	Object Management and Fault Tolerance
	State Modeler
	Database Concepts
	Query Language and Framework
	Pattern Language and Framework

	Deploy-time and Runtime Overview
	Cluster Deployment Descriptor (CDD)
	TIBCO Hawk Application Management Interface
	Hot Deployment

	Channels Destinations and Events
	Channel Types
	Channel Serializers
	Message Acknowledgement
	Events
	Simple Events
	Time Events
	Scheduled Time Events
	Rule-Based Time Events

	Advisory Events

	Default Destinations and Default Events
	Mapping Incoming Messages to Non-default Events

	Time to Live and Expiry Actions
	Event Expiration and Expiry Actions

	Event Preprocessors
	Preprocessor Usage Guidelines

	Concepts
	Concept Relationships
	Concept Property History
	Containment Relationships
	Containment and Reference Concept Relationship Rules
	Containment Example

	Inheritance Relationships
	Reference Relationships

	Scorecards

	Rules
	Rule Priority and Rank
	Rule Functions

	Runtime Inferencing Behavior
	Rule Evaluation and Execution
	Conflict Resolution and Run to Completion Cycles
	How to Work with Rules
	Order of Evaluation of Rule Conditions
	Enforcing the Order of Condition Evaluation

	Object Management (OM)
	Cache and Store Object Management
	In Memory Object Management
	Object Management and Fault Tolerance Scenarios
	Cache OM with Memory Only Mode on All Objects and Fault Tolerance
	Cache or Store OM and Fault Tolerance

	Distributed Cache OM
	Characteristics of a Distributed Caching Scheme
	Failover and Failback of Distributed Cache Data
	Limited and Unlimited Cache Size
	Distributed Cache and Multi-Agent Architecture
	Agents
	Inference Agents
	Cache Agents
	Memory and Heap Size Guideline for Cache Agents

	Query Agents
	Dashboard Agents

	Legacy ActiveSpaces Cluster Member Discovery
	Load Balancing
	Fault Tolerance of Agents
	Cache OM with a Backing Store
	Backing Store Write Strategy

	Storage and Retrieval of Entity Objects
	Data Lookup Strategies
	The Role of the Object Table

	Domain Object Modes and Project Design
	Domain Object Modes For Individual Entities
	Memory Only — Useful for Stateless Entities
	Cache Only And Store Only Mode
	Cache Only And Store Only Objects in the Rete Network

	Concurrency and Project Design
	Multi-Agent Features and Constraints
	Event-Related Constraints
	Multi-Agent Example Showing Event Handling
	Use of Locks to Ensure Data Integrity Within and Across Agents
	Locking in TIBCO BusinessEvents
	When to Use Locking
	Lock Processing Example Flow
	Lock and Unlock Functions
	Tips for Locks
	Multiple Keys Protect One Object
	Lock Failures

	Threading Models and Tuning
	Event Preprocessor and Rete Worker Thread Options
	Shared Queue
	Destination Queue
	Caller’s Thread

	RTC Options — Single-Threaded or Concurrent
	Post-RTC and Epilog Handling and Tuning Options
	Database Write Tuning Options

	Telemetry Data
	Appendix A: In Memory Performance Statistics Specifications
	Glossary
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

