
Copyright © 2023-2024. Cloud Software Group, Inc. All Rights Reserved.

TIBCO ActiveMatrix BusinessWorks™
Maven Plug-in
Version 6.10.0 | November 2023

Document Updated: January 2024

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

2 | Contents

Contents
Contents 2

Installing Maven Plug-in 4

Post Installation tasks 5

Unit Testing 7
Running Test Assertions 7
Adding Unit Test Assertions 7

Unit Test Reports and Test Coverage Reports 19

Limitations for Unit Test Assertions 21

Running Activity Assertions 21
Using Gold Input From File 23

Working with a Test Suite 28
Adding a Test Suite 28

Running a Test Suite 30

Adding Mock Support for Activities 31
Running Unit Tests in TIBCO Business Studio for BusinessWorks 35

Generating Mock Output File 37

Limitations for Mock Support 39

Adding Mock Fault to an Activity 39
Generating Mock Fault File 42

Limitations for the Mock Fault Support 43

Adding Mock Support to SOAP and REST Service Binding 43
Generating Mock Input File 46

Limitations for the Mock Support to SOAP and REST Service Binding 47

Adding Mock Support for Process Starter 48
Generating the Mock Input File 51

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

3 | Contents

Limitations for Mock Process Starter 51

Running ActiveMatrix BusinessWorks Design Utility Goal 52

Using Custom Xpath Functions with TIBCO ActiveMatrix BusinessWorks Plug-in
for Maven 53
Using External Custom XPath Function with TIBCO ActiveMatrix BusinessWorks Plug-
in for Maven 54

Using Shared Modules with TIBCO ActiveMatrix BusinessWorks Plug-in for Maven 57
Using External Shared Modules with TIBCO ActiveMatrix BusinessWorks Plug-in for
Maven 59

Running Test Cases from an External Shared Module 60

Dependency Exclusions 61

Deploying EAR Using Maven 63
Adding Process Diagram in EAR 66

Deploying EAR Using Configuration File 67

Maven Goals 70

Running Continuous Integration/Continuous Deployment (CI/CD) using
Jenkins 76

Troubleshooting 78

TIBCO Documentation and Support Services 80

Legal and Third-Party Notices 82

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

4 | Installing Maven Plug-in

Installing Maven Plug-in
You can install the Maven plug-in using the GUI, Console, or Silent mode.

Before you begin
If you want to install TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in, install Apache
Maven from https://maven.apache.org/download.cgi and set MAVEN_HOME in the
Environment Variables.

For more information on how to install maven plug-in, see the "Installation Modes and
Procedures" in the ActiveMatrix BusinessWorks Installation.

https://maven.apache.org/download.cgi

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

5 | Post Installation tasks

Post Installation tasks
Post installation tasks are additional tasks that you might have to perform after
installation.

Before you begin
Complete the installation before running the post installation tasks.

Note: In case Apache Maven is not installed before installing ActiveMatrix
BusinessWorks Maven Plug-in, install Apache Maven and then run
install.sh/install.bat from <TIBCO-HOME>\bw\6.x\maven to install Maven
Plug-in.

Maven Plug-in versions compatible with ActiveMatrix BusinessWorks

The following table shows the maven plug-in versions compatible with ActiveMatrix
BusinessWorks.

ActiveMatrix BusinessWorks Version Maven Plug-in Version

6.8.0 2.9.0

6.8.0 HF-001 2.9.1

6.8.1 2.9.2

6.8.1 HF-001 2.9.3

6.9.0 2.9.4

6.9.0 HF-001 2.9.5

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

6 | Post Installation tasks

ActiveMatrix BusinessWorks Version Maven Plug-in Version

6.9.1 2.9.6

6.9.1 HF-001 2.9.7

6.10.0 2.9.8

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

7 | Unit Testing

Unit Testing
Unit testing in ActiveMatrix BusinessWorks consists of verifying whether individual activities
in a process are behaving as expected. While you can run unit tests on processes at any
time during the development cycle, testing processes before you push the application to
the production environment might help you to identify issues earlier and faster.

Note: To get familiarized with the Unit Testing Samples, see "Unit Testing" in
the TIBCO ActiveMatrix BusinessWorks™ Samples.

Running Test Assertions
Unit tests focus on testing small units of work, which in ActiveMatrix BusinessWorks maps
to individual processes or subprocesses. Ideally this is done in a standalone manner, with
no touchpoints or dependencies on other components or interfaces. This is distinct from
interface or system testing that would test the service or operation as a whole. Interface
tests are run using other tools such as SOAP UI.

Adding Unit Test Assertions
To add unit test assertions in TIBCO Business Studio for BusinessWorks, follow these steps:

Before you begin
l The UnitTestDemo.zip file must be present in an accessible location.

Procedure
1. In TIBCO Business Studio for BusinessWorks, on the demo project, right-click the

Tests folder and select New > Add Test File.

The New Test File wizard displays with the Test File page.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

8 | Unit Testing

Note: You can also create a Test file in the subfolder created under the
Tests folder.

2. In the New Test File wizard, change the file name to GetDistanceUnit-NAM.bwt and
keep the Tests folder as default. Click Next.

3. Add the GetDistanceUnit.bwp to the process and click Finish.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

9 | Unit Testing

4. In the Project Explorer, open GetDistanceUnit.bwp and click the
distance.GetDistanceUnit process (green box) and select the Properties tab. Since
this process is added to the Tests file, the Tests tab appears on the Process panel.
Click the Tests tab and the created file is selected in the Available Tests dropdown.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

10 | Unit Testing

Note: Clicking the red cross-mark Delete selected bwt file deletes the
test file permanently.

5. Right-click the Start activity and select Add Test > Add Input. Click the Tests tab
under Properties and add NAM in the Content column for the region field.

Note: NAM should not contain any double quotes ("").

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

11 | Unit Testing

Note: The process does not need to be saved after adding the test inputs
and assertions.

6. Right-click the End activity and select Add Test > Add Input. Click the Tests tab
under Properties and expand AssertType+ and $End-input, which is both the sides of
the mapper.

7. Drag the string|boolean|… element from the right-hand side to any element on the
left-hand side of the mapper underneath $End-input. The Drop wizard opens to
select a data type. Select the "String" data type and click Finish.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

12 | Unit Testing

The testInput and goldInput fields are displayed.

8. In the Data Source tab, drag "unit" to the testInput field. This is the value that you
are evaluating in the assertion. Add miles as an input to the goldInput field.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

13 | Unit Testing

9. Right-click the AssertType and choose Duplicate. Right-click on Primitive-Assertion
and choose Expand All. Under the second AssertType element, right-click the
AssertType and choose Remove Mapping. Drag the string | boolean… element from
the right-hand side to any element under $End-input on the left and choose the
"boolean" data type. Drag the "metric" element from the left onto the testInput field
under Boolean and enter false() in the goldInput field.

10. In a similar way as above, complete the mappings so that you also assert
"subUnitType" and "numberOfSubUnits"

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

14 | Unit Testing

11. To add a new test file, right-click the Tests folder and select New > Add Test File. In
the File field, add the name of the file as GetDistanceUnit-EMEA.bwt and click Next.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

15 | Unit Testing

12. Select GetDistanceUnit.bwp and click Finish.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

16 | Unit Testing

13. In the Project Explorer, open GetDistanceUnit.bwp and click the
distance.GetDistanceUnit process (green box) and select the Properties tab. Since
this process is added to the Tests file, the Tests tab appears on the Process panel.
Click the Tests tab and the demo/Tests/GetDistanceUnit-EMEA test file is selected in
the Available Tests dropdown. If not, select it manually.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

17 | Unit Testing

14. Right-click the Start activity and select Add Test > Add Input. Click the Tests tab
under Properties and add EMEA in the Content column for the region field.

15. Right-click the End activity and select Add Test > Add Input. Click the Tests tab
under Properties and expand AssertType+ and $End-input, which is both the sides of
the mapper.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

18 | Unit Testing

16. Repeat steps 7, 8, 9, and 10 to set the assertions for GetDistanceUnit-EMEA with
"unit", "metric", "subUnitType", and "numberofSubUnits".

The output looks as follows:

To run Unit tests in TIBCO Business Studio for BusinessWorks, see Running Unit Tests
in Studio.

Running Maven from Command Line
To run Maven plug-in from command line, perform the following steps:

Procedure
1. Open your command prompt and navigate to the location where your demo project

is present.

2. Run the command clean initialize site package on your command prompt
terminal.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

19 | Unit Testing

This produces the same result as running Debug within TIBCO Business Studio for
BusinessWorks.

Unit Test Reports and Test Coverage Reports
The "site" goal that is included in the Maven debug configuration in TIBCO Business Studio
for BusinessWorks and on the command line produces unit test reports and test coverage

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

20 | Unit Testing

reports. These test reports are located at \demo.application\target\site.

Procedure
1. Open the index.html using the browser.

2. Select Project Reports > bwtest.

This shows a summary of the tests that were run and whether they passed or failed.

3. From the same folder, open bwcoverage.html.

This shows a summary of which processes and activities are covered by unit tests, for
the entire project and as a breakdown for each process.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

21 | Unit Testing

Limitations for Unit Test Assertions
The following are the limitations for the Unit Test Assertions:

l ActiveMatrix BusinessWorks must be installed on the same server where the tests are
to run.

l Unit Tests can currently only be invoked with Maven.

Running Activity Assertions
To run activity assertions in ActiveMatrix BusinessWorks, follow these steps:

Procedure
1. Right-click on the activity from the process or subprocess and select Add Test > Add

Assertion.

It adds the Test tab to the activity.

2. On the Tests tab, navigate to the Assertion Mode dropdown.
The Assertion Mode dropdown has two modes:

l Primitive: In this mode, only the primitive types of elements are tested.

l Activity: In this mode, the complete activity outputs are tested.

3. Select the Activity option from the Assertion Mode dropdown. The complete activity

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

22 | Unit Testing

output schema gets loaded with an editable value field under the Assert Type node.
Map the activity variable from the datasource section (in Image you can see it is
Mapper) to activityTestInput field.

4. Provide the gold input to all the elements of an activity schema that is under the
assert node.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

23 | Unit Testing

Note: You do not have to save the process after adding test inputs and
assertions. Also if the schema having the fields with data type decimal,
double, float then add the value in the decimal format, for example, 1.2 or
4.3234.

Using Gold Input From File

Procedure
1. Right-click the activity from the process or subprocess and select the Add Test > Add

Assertion option.

The Test tab is added.

The Assertion Mode dropdown list has two options: Primitive and Activity.

Use the Primitive option to test only the primitive type elements.

Use the Activity option to test the complete activity output that can contain a
complex schema.

2. Select the Activity option.

The Gold Input From File checkbox is displayed.

3. To provide the gold input through an XML file, select the Gold Input From File

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

24 | Unit Testing

checkbox.

The AssertType and testFilePath fields are displayed.

4. Map the activity variable from datasource section to activityTestInput field.

5. Browse the gold input file from the workspace and select the gold input file. This
modifies the testFilePath file in XML.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

25 | Unit Testing

6. Alternatively, in the testFilePath field, use the doc function from the URI function
and provide the input file path in the format file:///inputFilepath. In the case of
Unix systems, please provide the absolute path preceding with an extra forward
slash.

Example: doc(file:////home/Test/Mock_files/)

7. Provide the relative gold input file path in the testFilePath field.

You can create a separate folder for gold input files under the "Tests" folder. The
relative path has a value like doc file:///Tests/UnitTestingsComplex.xml. It is
mandatory to provide the Tests folder name also in the relative path. In case of Unix,

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

26 | Unit Testing

provide the relative path as file:////Tests/Mock_files/Activity_Assetion_IP_
File.xml .

Note: This feature is available with TIBCO ActiveMatrix BusinessWorks™
Maven Plug-in 2.5.0 and above.

8. To create a gold input file, run the activity for which you want to add the assertions.

9. Observe the Tests tab > Data Source section schema. Right-click the activity name
on the Debug console and select Generate Gold Input File either from the Input job
data or Output job data.

This opens a dialog where you can select a folder in which the Gold input file is to be
created.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

27 | Unit Testing

Note: Linearize the copied XML data if required.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

28 | Unit Testing

Working with a Test Suite
The Test Suite feature provides a functionality to run set of test cases when running the
test goal.

Adding a Test Suite

Before you begin
l Ensure you have added Unit Test Assertions. For more information, see Adding Unit

Test Assertions.

Procedure
1. Right-click the Test folder and select the New > Add Test Suite option.

The Test Suite wizard is displayed.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

29 | Unit Testing

Note: You can also create a Test Suite in the subfolder created under the
Tests folder.

2. In the Test Suite wizard. Provide the name in the Test Suite Name field. Click Finish.

The test suite is added to the Test folder.

3. Open the test suite in the Test Suite Editor window.

4. To add test cases in the test suite, click Add.

5. Select the test case. Click Ok.

To add multiple test cases, use the Ctrl key and click multiple test cases.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

30 | Unit Testing

6. To remove a test case from a test suite, select the test case and click Remove.

Running a Test Suite

Procedure
1. To run a test suite, use the property testSuiteName to pass the test suite name while

running the test goal.

For example:

test -DtestSuiteName=%Test Suite Name%

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

31 | Unit Testing

test -DtestSuiteName=ActivityAssertionTestSuite.bwts

2. To run multiple test suites in a sequence, provide the test suite names separated by
";".

For example:

test -DtestSuiteName=%TestSuiteName1%;%TestSuiteName2%

test -
DtestSuiteName=ActivityAssertionTestSuite.bwts;FaultTestSuite.bwts

Note: If you are running a test-suite present under the sub-folder of the
Tests folder, then you need to provide a path of the suite from the sub-
folder.

Adding Mock Support for Activities
This section provides steps for adding mocking support for ActiveMatrix BusinessWorks
activities with TIBCO ActiveMatrix BusinessWorks™ Plug-in for Maven. You can skip

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

32 | Unit Testing

execution of an activity (usually activities that are based on external service) whose process
is under Unit Testing. Mocking support functionality is required mainly for the ActiveMatrix
BusinessWorks activities that are based or dependent on some external Cloud Service or
Database systems, which are eventually under Unit Testing. To run Unit Testing
successfully on processes that contain the ActiveMatrix BusinessWorks activities, we need
to mock the ActiveMatrix BusinessWorks activities. Now a dummy output can be added to
mock activities that can be used in Unit testing for successful execution. The mocking
support can be used to mock the activities from processes or sub-processes.

Adding Mock Output to an Activity

To add mock output to an activity in ActiveMatrix BusinessWorks, follow these steps:

Procedure
1. Right-click on the module project and select New > Tests Folder.

The Tests folder is added in the module project.

2. In Project Explorer, right-click on the Tests folder and choose New > Add Test File.
If needed, change the name of the Test file. Click Next.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

33 | Unit Testing

The New Test File wizard is displayed with a list of processes and subprocesses.

3. Select the process or subprocess having the activities to be mocked.

4. Right-click on the activity to mock and select the Add Mock To Activity option.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

34 | Unit Testing

The new Tests tab is added in the property section of the activity.

5. The new Tests tab has a file selector to select the output file. Select the output file
using File Selector.

6. In the Mock Output File field, browse and select the file from the workspace. The
path of the Mock output file can also be set using Module properties.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

35 | Unit Testing

Running Unit Tests in TIBCO Business Studio for
BusinessWorks
Follow these steps to run unit tests in TIBCO Business Studio for BusinessWorks.

Procedure
1. In TIBCO Business Studio for BusinessWorks, right-click the.application file and

select Generate POM for Application.

2. Verify the TIBCO_HOME value and click Finish.

For example, C:\tibco\bw651 for Windows. Set BW Home as the relative path to the
version-specific BW folder under TIBCO_HOME (with a leading slash and no trailing
slash), for example \bw\6.5 for Windows.

It converts the existing projects to Maven type and adds a new project called
*.application.parent, then creates pom.xml files in all projects.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

36 | Unit Testing

3. Right-click the parent project and run a "test" goal.

4. To run the Maven goals, right-click the .parent application, and select Run As >
Maven build.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

37 | Unit Testing

5. Provide the Maven goal in the Goals field that is to be executed, then click Run.

Generating Mock Output File
To generate the mock output files in TIBCO Business Studio for BusinessWorks, follow
these steps:

Procedure
1. Run the application in Debug mode from TIBCO Business Studio for BusinessWorks.

The Debug perspective is displayed.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

38 | Unit Testing

2. In the Debug perspective, select the Output tab from Job Data view for an activity
whose mock output file is to be generated.

3. Right-click the activity name on the Output tab and select Generate Mock Output
File.

This opens a dialog where you can select a folder in which the Mock output file is to
be created.

4. Services like REST and SOAP can have multiple variables. So in the job data, the
output is shown for multiple variables. In this case, append the file for each variable
data.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

39 | Unit Testing

Limitations for Mock Support
The following are the limitations for Mock Support in TIBCO Business Studio for
BusinessWorks.

l ActiveMatrix BusinessWorks needs to be installed on the same server where the tests
are to be run.

l Unit Tests can currently only be invoked with Maven.

Adding Mock Fault to an Activity
This document provides steps to add Mock Fault for activities in ActiveMatrix
BusinessWorks with the Maven Plug-in. You can also mock faults generated by activities
and test the exception handling logic, and test all the transitions.

Before you begin
l Activities to be mocked must be present in a process or subprocess included under

Unit testing.

l Generate a valid Mock Fault file. For more information on generating the mock fault
file, see Generating Mock Fault File.

Make sure the demo project with the process or subprocess that has faults to be mocked,
is created.

To add a mock fault to an activity in ActiveMatrix BusinessWorks, follow these steps:

Procedure
1. Right-click on a module project and select New > Tests Folder.

The Tests folder is added in the module project.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

40 | Unit Testing

2. In Project Explorer, right-click on the Tests folder and choose New > Add Test File.
If needed, change the name of the Test file and click Next.

The New Test File wizard with a list of processes or subprocesses.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

41 | Unit Testing

3. Select the process or subprocess which having the activities fault to be mocked.

4. Right-click on the activity to mock fault and select the Add Mock Fault To Activity
option.

The new Tests tab is added in the Properties section of the activity.

5. The new Tests tab has a file selector to select the mock fault file. Select the mock
fault data file using the file selector.

You can provide the relative mock fault file in the Mock Fault File field.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

42 | Unit Testing

To run Unit Tests in TIBCO Business Studio for BusinessWorks, see Running Unit
Tests in Studio.

Generating Mock Fault File
To generate the mock fault files in TIBCO Business Studio for BusinessWorks, perform the
following steps:

Procedure
1. Run the application in debug mode from TIBCO Business Studio for BusinessWorks.

The Debug perspective is displayed.

2. In the Debug perspective, select the Fault tab in the Job Data view for a faulted
activity for which the mock fault file is to be generated.

3. Right-click on the activity name on the Fault tab and select Generate Mock Output
File.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

43 | Unit Testing

This opens a dialog where you can select a folder in which the Mock fault file is to be
created.

Limitations for the Mock Fault Support
The Mock input feature has the following limitations in TIBCO Business Studio for
BusinessWorks.

l ActiveMatrix BusinessWorks must be installed on the same server where the tests are
to be run.

l Unit Tests can currently only be invoked with Maven.

Adding Mock Support to SOAP and REST
Service Binding
This document provides steps to add Mock Input to SOAP and REST Service Binding in
ActiveMatrix BusinessWorks with the Maven Plug-in. To mock a Service Binding, mock the
respective operation and then the corresponding job flow gets run with mock input while
running the test case. If a Service has multiple operations, a test file must be created for
each operation and then add the mock input accordingly to test each flow associated with
the operation.

Before you begin
l Service Binding to be mocked must be present in a process under Unit testing.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

44 | Unit Testing

l Generate a valid Mock Input file. For more information on generating the mock input
file, see Generating Mock Input File.

Ensure the demo project that has the service to be mocked, is created.

To add mock input for service binding in ActiveMatrix BusinessWorks, follow these steps:

Procedure
1. Right-click a module project and select New > Tests Folder.

The Tests folder is added in the module project.

2. In Project Explorer, right-click on the Tests folder and choose New > Add Test File.
If needed, change the name of the Test file and click Next.

../app-dev-guide/generating-mock-faul.htm

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

45 | Unit Testing

3. Select the process or subprocess having the service to be mocked.

4. Right-click on the operation to mock and select the Add Input option.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

46 | Unit Testing

The new Tests tab is added in the Properties section of the activity.

5. The new Tests tab has a file selector to select the mock input file. Use the Input XML
File field to select the mock input data file using the file selector.

To run Unit Tests in TIBCO Business Studio for BusinessWorks, see Running Unit
Tests in Studio.

Generating Mock Input File
To generate the mock input files in TIBCO Business Studio for BusinessWorks, perform the
following steps:

Procedure
1. Run the application in debug mode from TIBCO Business Studio for BusinessWorks.

The Debug perspective is displayed.

2. In the Debug perspective, select the All tab in the Job Data view for the operation for

../app-dev-guide/running-unit-tests-i.htm
../app-dev-guide/running-unit-tests-i.htm

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

47 | Unit Testing

which the mock input file is to be generated.

3. Right-click on the operation name on the All tab and select the Select All option.
Then select Generate Mock Output File.

This opens a dialog where you can select a folder in which the Mock input file is to be
created.

Limitations for the Mock Support to SOAP and REST
Service Binding
The Mock input feature has the following limitations in TIBCO Business Studio for
BusinessWorks.

l ActiveMatrix BusinessWorks must be installed on the same server where the tests are
to be run.

l Unit Tests can currently only be invoked with Maven.

Note: For mocking SOAP Service Binding with HTTP transport, the HTTP
connection must be pointed to an unoccupied port or localhost.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

48 | Unit Testing

Adding Mock Support for Process Starter
Now you can add the Mock Input to the Process Starter in ActiveMatrix BusinessWorks 6.8.0
with Maven Plug-in 2.9.0. You can skip the execution of a Process Starter by adding the
Mock Input to the Process Starter, whose process is under Unit Testing. The Assertion
support is not provided to the Process Starter, because Process Starter creates ActiveMatrix
BusinessWorks jobs continuously and they are dependent on the third party. The Unit
Testing is specific with a single job only, so there is no need to add the assertion to the
Process Starter. Hence, only the Mock Input support to the Process Starter is provided.

Note: When you want to test the activities from the Main Process, it is
recommended to mock the Input of Process Starter.

Before you begin
l Process Starter to be mocked should be present in the process, which is under Unit

Testing.

l Generate a valid Mock Input XML file. For more information, see Generating the Mock
Input File.

Procedure
1. Right-click the module project and select New > Tests Folder. This adds the Tests

folder in the module project.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

49 | Unit Testing

2. Right-click the Tests folder in the Project Explorer pane and select New > Add Test
File. Change the test file name if required and click Next. This shows the New Test
File wizard with a list of available processes.

3. Select the process having the Process Starter to be mocked.

4. Right-click the Process Starter to mock, click Add Test > Add Input.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

50 | Unit Testing

The Tests tab is added in the Properties section of the activity. The Tests tab
contains the Input XML File option to select the path of the Mock Input XML file. The
path of the Mock input file can also be set using Module properties.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

51 | Unit Testing

Generating the Mock Input File
To generate the Mock input file, perform the following steps:

Procedure
1. Run the application in the debug mode from TIBCO Business Studio for

BusinessWorks.

2. Select the Output tab from the Job Data for Process Starter for which the Mock input
file is to be generated.

3. Right-click the activity name in the Output tab and select the Select All option to
select all the data. Then select Generate Gold Input File.

This opens a dialog where you can select a folder in which the Mock input file is to be
created.

Limitations for Mock Process Starter
The Mock Support for Process Starter feature has the following limitations in TIBCO
Business Studio for BusinessWorks:

l ActiveMatrix BusinessWorks must be installed on the same server where the tests are
to be run.

l Unit Tests can currently only be invoked with Maven.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

52 | Unit Testing

Running ActiveMatrix BusinessWorks Design
Utility Goal
The bwdesignUtility Maven goal provides a command-line interface to validate the
ActiveMatrix BusinessWorks project and generate the process diagram.

Assuming that the user already has the ActiveMatrix BusinessWorks Unit Test Project with
POM generated and includes a valid TIBCO_Home and BW_Home, follow these steps to run the
bwdesignUtility goal:

Procedure
1. Navigate to the ActiveMatrix BusinessWorks unit test parent project workspace and

open the command prompt or Git Bash.

2. To validate the ActiveMatrix BusinessWorks project, run the bwdesignUtility goal by
passing the commandName argument with value validate in the following way:

mvn com.tibco.plugins:bw6-maven-plugin:bwdesignUtility -
DcommandName=validate

This validates the project.

3. To generate the process diagram for the project, enter the bwdesignUtility goal by
passing the commandName argument with value gen_diagrams in the following way:

mvn com.tibco.plugins:bw6-maven-plugin:bwdesignUtility -
DcommandName=gen_diagrams

This generates a process diagram in the Resources folder of the ActiveMatrix
BusinessWorks application project.

4. To generate the Manifest JSON file from the project whose deployment target is
TibcoCloud, enter the bwdesignUtility goal by passing the commandName argument
with a value generate_manifest_json in the following way:

mvn com.tibco.plugins:bw6-maven-plugin:bwdesignUtility -
DcommandName=generate_manifest_json

This generates the manifest JSON file in the ActiveMatrix BusinessWorks application
project.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

53 | Unit Testing

Note: This goal is available from Maven Plug-in version 2.8.1 onwards.

5. To validate the ActiveMatrix BusinessWorks project, generate the process diagram
and the manifest JSON file for the project sequentially, run the bwdesignUtility
command without passing an argument commandName.

mvn com.tibco.plugins:bw6-maven-plugin:bwdesignUtility

Using Custom Xpath Functions with
TIBCO ActiveMatrix BusinessWorks Plug-in for
Maven
To use custom XPath function with TIBCO ActiveMatrix BusinessWorks Plug-in for Maven,
perform the following steps:

Procedure
1. Create a custom XPath function project with ActiveMatrix BusinessWorks. For more

information, see "Creating Custom XPath Functions" in ActiveMatrix BusinessWorks
Bindings and Palette Reference.

2. Create a sample BW application using the custom Xpath function created in Step 1.

3. In the Project Explorer, ensure that the custom xpath function project is added in the
Includes application.

4. To generate the POM files, right-click the project and select Generate POM for
application. The parent pom.xml project must list down all the modules as below:

<modules>
<module>../CXFDemo</module>
<module>../CXFTest.module</module>
<module>../CXFTest</module>

</modules>

5. Add the cxf common extension dependency in the custom XPath function pom.xml
project.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

54 | Unit Testing

<dependencies>
<dependency>

<groupId>com.tibco.plugins</groupId>
<artifactId>com.tibco.xml.cxf.common</artifactId>
<version>${cxf.common.version}</version>
<scope>provided</scope>

</dependency>
<dependencies>

Note: Replace the ${cxf.common.version} with version available in the
BW_HOME. For example, 1.3.400.

6. Create a maven run configuration. Select the BW application parent project as the
base directory.

7. Provide the maven goal clean Test.

8. To generate the EAR, provide the Maven goal clean package.

The BW application must have unit tests defined. For more information, see Unit Testing.

Using External Custom XPath Function with
TIBCO ActiveMatrix BusinessWorks Plug-in for
Maven
To use an external custom XPath function with ActiveMatrix BusinessWorks, perform the
following steps:

Procedure
1. Create a custom XPath function project with ActiveMatrix BusinessWorks. For more

information, see "Creating Custom XPath Functions" in ActiveMatrix BusinessWorks
Bindings and Palette Reference.

2. Right-click on the created project and select Generate POM for CXF Project. This
mavenizes the project and generates a pom.xml for the custom XPath function
project.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

55 | Unit Testing

3. Create a Run or Debug Configuration for Maven. Select the custom Xpath function
project and run the clean install goal. This installs the custom XPath function
project in the local .m2 repository.

4. Open a new eclipse workspace. Create an application project and to generate the
POM for the application, right-click the application and select Generate POM for
Application.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

56 | Unit Testing

5. Open the Application Module pom.xml and add the custom XPath function project
dependency, which is present in the local Maven repository, and save the pom.xml.

The CXF project is displayed in the Project Explorer.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

57 | Unit Testing

Note: The icon changes for the custom XPath function project indicating
the project is referenced and is not in the workspace.

6. To start using the custom functions in the BW project, right-click the CXF project and
select the Install CXF Project option.

7. The BW application must have unit tests defined. For more information, see Unit
Testing.

8. Create a maven run configuration. Select the BW application parent project as the
base directory.

9. Provide the maven goal clean Test.

10. To generate the EAR, provide the Maven goal clean package.

Using Shared Modules with TIBCO ActiveMatrix
BusinessWorks Plug-in for Maven
To use shared modules with the TIBCO ActiveMatrix BusinessWorks Plug-in for Maven,
perform the following steps:

Before you begin
Ensure that a shared module project is created in the workspace.

Procedure

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

58 | Unit Testing

1. Create an application project Sample and a shared module Logging and refer the
subprocess from the shared module in the application module.

2. To generate the POM files, right-click on the project and select Generate POM for
application. The wizard lists down all the shared modules referenced by the
application.

The parent pom.xml project lists down all the below modules:

<modules>
<module>../Logging</module>
<module>../Sample.module</module>
<module>../Sample</module>

</modules>

If a new shared module is added after mavenizing the project, open the Generate
POM for application wizard again to regenerate the pom.xml files.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

59 | Unit Testing

Using External Shared Modules with
TIBCO ActiveMatrix BusinessWorks Plug-in for
Maven

Note: The following steps are also applicable for using Binary Shared Modules
with ActiveMatrix BusinessWorks Plug-in for Maven.

To use external shared modules with ActiveMatrix BusinessWorks, perform the following
steps:

Procedure
1. Create a shared module project with ActiveMatrix BusinessWorks.

2. Right-click the created project and select Generate POM for Shared Module. This
mavenizes the project and generates a pom.xml for the shared module.

3. Create a Run or Debug Configuration for Maven. Select the shared module project
and run the clean install goal. This installs the shared module project in the local
.m2 repository.

4. Open a new eclipse workspace. Create an application project and to generate the
POM for the application, right-click the application and select Generate POM for
Application.

5. Open the Application Module pom.xml and add the shared module dependency,
which is present in the local Maven repository, and save the pom.xml.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

60 | Unit Testing

The shared module project is displayed in the Project Explorer.

Note: The icon changes for the shared module project indicating the
project is referenced and is not in the workspace.

Running Test Cases from an External Shared Module
To run test cases from an external shared module, perform the following steps:

1. Right-click the parent project in which the module is added as a POM dependency
and select Run As > Maven Build.

2. In the Edit Configuration wizard, configure the goals to achieve the following
scenarios:

Scenarios Using Studio Using Command Line

Run Test
Cases from
the External
Shared
Module that
are added
as

test -DrunESMTest=true mvn test -DrunESMTest=true

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

61 | Unit Testing

Scenarios Using Studio Using Command Line

POM depen
dencies

Run Test
Suites from
the
External Sha
red Module

test -DrunESMTest=true -
DESMtestSuiteName=”testSuite1.b
wts”

mvn test -DrunESMTest=true-
DESMtestSuiteName="testSuite1.b
wts"

Run Multiple
Test Suites
from the
External
Shared
Module

test -DrunESMTest=true -
DESMtestSuiteName=”testSuite1.b
wts;testSuite2.bwts”

mvn test -DrunESMTest=true-
DESMtestSuiteName="testSuite1.b
wts;testSuite2.bwts"

Generate
BusinessWo
rks
Coverage
report

site -DrunESMTest= true mvn site -DrunESMTest=true

Limitation

If the Test Case from the External Shared Module fails while using the above mentioned
method, you should import the Shared Module Project into the Workspace. Then change
the fault data and publish it in the .m2 repository and run the test case again.
It is expected that you should test the External Shared Module while it is being developed,
by creating a dummy application and adding the shared module dependency in it. Run the
test goal on the parent project that can run the test cases from the Shared Module as well.

Dependency Exclusions
To exclude dependencies that are not used in the project, Maven supports dependency
exclusions. You can set exclusions on a specific dependency in your POM file. For example,

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

62 | Unit Testing

Note:
l Dependency exclusions are to be used when you generate an EAR using

the Maven install or package goals.

l Support for dependency exclusions is provided on the top-level POM.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

63 | Deploying EAR Using Maven

Deploying EAR Using Maven

Before you begin
l Ensure that the TIBCO® Enterprise Administrator is up and running with the

registered BWAgent.

To deploy EAR on AppSpace via TIBCO Business Studio for BusinessWorks, perform the
following steps:

Procedure
1. Right-click a .parent application and select Generate POM for Application. The

Generate POM for Application dialog opens.

2. To set Deploy Options, select AppSpace from the dropdown list while generating
pom.xml. Then click Next.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

64 | Deploying EAR Using Maven

3. Update the required configuration details (Agent, AppNode, and so on) in the
Deployment Details for TIBCO BusinessWorks™ wizard and select the appropriate
Profile.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

65 | Deploying EAR Using Maven

Here,

l The Skip upload of Archive checkbox must be selected for using the existing
EAR to be deployed on AppSpaces with different profiles, else, the profile
change is updated for all the instances of EAR deployed across AppSpaces.

l The Start on Deploy option can be used to deploy and start the application.

l The Stop Application option can be used to stop the application (version
mentioned in the pom.xml file).

l The Start Application option can be used to start the application (version
mentioned in the pom.xml file).

Note: If you are unable to see the above checkboxes, maximize your
window.

4. Click Finish. Right-click the .parent folder and run the mvn clean install goal.

The application is now deployed on AppSpace.

Deploying Multiple EARs on the Same AppNode with Different Versions

For the application to have an updated version, you must update the version in the POM
and Manifest files of the module, the parent, and the application respectively.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

66 | Deploying EAR Using Maven

When deploying for the first time, select only the Start on Deploy option in pom.xml, which
can deploy and start the application (here, you can use the Maven > install goal). If you
want to stop or start the application explicitly, then you must regenerate the pom.xml file
and select the Start Application or Stop Application options as per the requirement. Then
run the Maven > install goal again.

Important: Do not apply the Start on deploy and Start/Stop Application
options at the same time. The Start Application option must be used for apps
that are deployed and not started, or for apps that have been stopped
previously, and vice versa.

Adding Process Diagram in EAR
To add a resource folder with process diagrams in EAR, perform the following steps:

Procedure
1. In TIBCO Business Studio for BusinessWorks, go to Window > Preferences.

2. On the Preferences page, select BusinessWorks > Process Diagram. Then select the
Enable generation of process diagram checkbox on the Process Diagram page.

3. In TIBCO Business Studio for BusinessWorks, right-click the application project and

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

67 | Deploying EAR Using Maven

select Generate Process Diagrams.

4. Run the "package" goal on the parent project.

This generates the EAR file with a resource folder having process diagrams.

Deploying EAR Using Configuration File

Before you begin
Ensure that a dummy POM file and a configuration file are present in the EAR file location.

l The following is a sample POM file:

<?xml version="1.0" encoding="UTF-8"?>

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd"
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<modelVersion>4.0.0</modelVersion>

<groupId>com.tibco.dummy</groupId>

<artifactId>dummy-pom</artifactId>

<version>1.0</version>

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

68 | Deploying EAR Using Maven

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-dependency-plugin</artifactId>

<version>2.8</version>

</plugin>

</plugins>

</build>

</project>

The following is a sample deploymentconfig.properties file:

earUploadPath=test
externalProfileLoc=https://raw.githubusercontent.com/vpawar-
ai/temp/master/test.substvar
appSpace=RestApp.module-AppSpace
restartAppNode=false
keystorePath=
profile=default.substvar
backup=true
truststorePath=
domainDesc=
bw.Home=\bw\6.6
agentPort=8079
truststorePassword=
agentAuth=BASIC
agentHost=localhost
httpPort=8454
appNode=RestApp.module-AppNode
osgiPort=
appSpaceDesc=
redeploy=true
tibco.Home=C:\tibco_bw6.6.1
externalProfile=false
keystorePassword=
backupLocation=C:\\Users\\vpawar\\Downloads\\backup
agentPassword=admin
skipTests=false
appNodeDesc=
project.type=AppSpace

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

69 | Deploying EAR Using Maven

failIfNoTests=false
agentSSL=false
agentUsername=admin
domain=RestApp.module-Domain
deployToAdmin=true
startOnDeploy=true
stopOnly=false
startOnly=true

To deploy the EAR file of BusinessWorks Enterprise application, perform the following
steps:

Procedure
1. Open the Terminal from the path containing the EAR file, configuration file, and

dummy POM file.

2. By assuming the path as \EAR, run the following goal by providing the EAR file and
configuration file locations.

mvn com.tibco.plugins:bw6-maven-plugin:bwdeployer -
DearLocation="\EAR" -DdeploymentConfigfile="\EAR\configFile.txt"

The EAR file is deployed successfully.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

70 | Maven Goals

Maven Goals
The Maven plug-in in ActiveMatrix BusinessWorks simplifies the build process and enhances
project management by providing a structured approach. It helps streamline the process of
building, managing, and deploying software projects by automating tasks such as
compiling source code, managing project dependencies, and creating distributable
artifacts.

Lifecycle
Phases

Description

clean Removes all files generated by the previous build ex-target folder.

generate-
sources

Generates any source code for inclusion in compilation.

install Installs the package into the local repository, for using as a dependency in
other projects locally.

Note: When you configure the POM file to be deployed on AppSpace, the
EAR is deployed on the respective AppNode.

test Tests the compiled source code using a suitable unit testing framework. These
tests do not require the code to be packaged or deployed.

site To generate a report (target > site > bwcoverage.html/bwtest.html).

validate To validate whether a project is correct, and all the necessary information is
available.

package Takes the compiled code and packages it in its distributable format, such as a
JAR. The EAR is generated in the same workspace.

compile Compiles the source code of the project.

Maven goals

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

71 | Maven Goals

Lifecycle
Phases

Description

verify Runs the checks if any on the results of integration tests to ensure quality
criteria are met.

deploy Run in the build environment. It copies the final package to the remote
repository for sharing with other developers and projects.

The default Maven lifecycle consists of multiple phases. Some of them are mentioned in
the above table that are executed in a sequential order to complete the project build
process.

Considering the lifecycle phases above, the Maven plug-in performs the following steps
when a default lifecycle is used:

1. Maven validates the project first.

2. Tries to compile the sources.

3. Runs those against the tests.

4. Packages the binaries (for example, jar/ear).

5. Runs integration tests against that package.

6. Verifies the integration tests.

7. Installs the verified package to the local repository.

8. Deploys the installed package to a remote repository.

Here, the Maven > install command follows the default lifecycle.

Maven Plug-in Properties

Property Descriptio
n

Values

disableMocking To disable
mocking
for all

l true: Disables mocking for all mocked
activities of the BusinessWorks application.

l false: Enables mocking for all mocked

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

72 | Maven Goals

Property Descriptio
n

Values

mocked
activities
of the
BusinessW
orks
applicatio
n.

activities of the BusinessWorks application.

This property can be used along with "test" and
"site" goals.

Example:

mvn test -DdisableMocking=true

disableAssertions To disable
assertions
added for
all
activities
of the
BusinessW
orks
applicatio
n.

l true: Assertions cannot run for all activities
that are under unit testing in the
BusinessWorks application.

l false: Assertions are run for all activities that
are under unit testing in the BusinessWorks
application.

This property can be used along with "test" and
"site" goals.

Example:

mvn test -DdisableAssertions=true

showFailureDetails To show
provided
input and
Gold input
in case of
test failure.

l true: It shows the failure details in the
console logs and BusinessWorks execution
report for the activities that are under unit
testing in the BusinessWorks application.

l false: It does not show the failure details in
the console logs and BusinessWorks
execution report for the activities that are
under unit testing in the BusinessWorks
application.

This property can be used along with "test" and
"site" goals. It is set to "true" by default from
BusinessWorks Maven Plug-in 2.7.1 and above.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

73 | Maven Goals

Property Descriptio
n

Values

Examples:

mvn test -DshowFailureDetails=true

mvn site -DshowFailureDetails=true

testSuiteName To run the
Test suite.
Provide
the test
suite name
as a value
to the
property
while
running
the "test"
goal.

This property can be used along with "test" and
"site" goals.

Example:

mvn test -
DtestSuiteName=ActivityAssertionTestSui
te.bwts

You can also run multiple test suites in sequence by
providing the test suite names separated by a
semicolon ";".

mvn test -
DtestSuiteName=ActivityAssertionTestSui
te.bwts;FaultTestSuite.bwts

customArgEngine To pass
the custom
argument
property
file when
starting
the
BWEngine,
create a
.properti
es file that

This property supports Absolute path, Relative path,
and URL-based file path.

Note: In case of relative path, you must keep the
"properties" file in the Application Project.

Example:

mvn test -
DcustomArgEngine="D:\Issues\customArgEn
gine\sample.properties"

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

74 | Maven Goals

Property Descriptio
n

Values

has the list
of custom
arguments
in the form
of -
Dkey=valu
e. The path
of the
same
.properti
es file
must be
passed to
the
customArg
Engine
property.

where, sample.properties file has the list of
custom arguments.

skipInitMainProcessAct
ivities

To skip
init for all
main
process
activities.

l true: It skips init for all main process
activities.

l false: It initiates the main process activities.

Examples:

mvn test -
DskipInitMainProcessActivities=true

mvn site -
DskipInitMainProcessActivities=false

skipInitAllNonTestProc
essActivities

To skip
init for all
non-unit
test
process

l true: It skips init for all non unit test
process activities.

l false: It initiates all non unit test process
activities.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

75 | Maven Goals

Property Descriptio
n

Values

activities. Examples:

mvn test -
DskipInitAllNonTestProcessActivities=tr
ue

mvn site -
DskipInitAllNonTestProcessActivities=fa
lse

startOnDeploy To restrict
an
application
to auto-
start after
deploymen
t. By
default the
value of
startOnDe
ploy is
"true".

l true: It auto-starts the application after
deployment.

l false: It does not auto-start the application
after deployment.

Example:

mvn install -DstartOnDeploy=false

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

76 | Running Continuous Integration/Continuous Deployment (CI/CD) using Jenkins

Running Continuous Integration/Continuous
Deployment (CI/CD) using Jenkins
To run CI/CD using Jenkins, perform the following steps:

Procedure
1. On the Jenkins Dashboard, go to Manage Jenkins > Manage plugins > Available

and download the following plug-ins:

l Maven Integration

l Git Plug-in

2. On the Jenkins Dashboard, click New Item and add a name for the Maven Project,
for example BWSampleProject. Then click OK.

3. On the Configure page, set the following attributes:

a. On the General tab, add a description for the project if needed.

b. On the Source Code Management tab, select Git and add the GitHub
repository URL where the project is present.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

77 | Running Continuous Integration/Continuous Deployment (CI/CD) using Jenkins

c. On the Build tab, provide the value in the Root POM field, then provide the
Maven goal in the Goals and options field to execute.

You can pass the environment variables, such as, -
Dmaven.repo.local=C:\Users$username.m2\repository so that Jenkins can
refer to a user local .m2 repository where all the dependencies are present.

4. Click Apply and Save.

5. Go to Project Window and click Build Now.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

78 | Troubleshooting

Troubleshooting
This section provides information on how to solve some commonly observed issues.

Issue Description Cause and Resolution

If a jar/artifact/plugin is missing in the Problems tab
after importing a project. For example, the
"com.tibco.plette.shared.jar" jar is missing whose
dependency is present in autogenerated pom.xml file.

Cause: The palette shared jar
is located under <TIBCO-
HOME>\bw\6.x\system\share
d\ . Before BW 6.8.0 it was
packaged with the Maven
plug-in installer. After BW 6.8.0
, the Maven plug-in is provided
out-of-box with BW, the
palette shared jar gets
installed in the local .m2 repo
during product installation.
You can install it again by
running the script at <TIBCO-
HOME>\bw\6.x\maven\install
.bat . Ensure the mvn --
version command works on
your machine before you run
install.bat command.

Resolution: Update the
project. Right click ->Maven-
>Update Project

When the maven project with the assertion is executed with
Maven Goals, the following error occurs Failed to execute
goal com.tibco.plugins:bw6-maven-plugin:2.9.1:bwtest
(default-bwtest) on project ERROR [qtp811813182-94]
com.tibco.bw.thor.management.bw.tests.rest.BWUnitTes
tResource - null

Cause: It is caused due to the
missing latest maven plug-in
jar at .m2 repository.

Workaround:

1. Place the updated jar
at TIBCO-

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

79 | Troubleshooting

Issue Description Cause and Resolution

HOME\bw\6.x\maven\bw
6-maven-plugin
location.

2. At the same location,
update the
Install.bat and POM
file with the correct jar
version (change 2.9.1 to
2.9.2 in the script)
which is supposed to
be used.

3. Run install.bat which
updates and places the
latest maven plug-in jar
at .m2 repository.

Intermittently assertion or mocking icons are missing on
activities.

Resoution: Select the Tests
tab again to see the icons.

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

80 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO ActiveMatrix
BusinessWorks™ page:

l TIBCO ActiveMatrix BusinessWorks™ Release Notes

l TIBCO ActiveMatrix BusinessWorks™ Installation

l TIBCO ActiveMatrix BusinessWorks™ Application Development

l TIBCO ActiveMatrix BusinessWorks™ Bindings and Palettes Reference

l TIBCO ActiveMatrix BusinessWorks™ Concepts

l TIBCO ActiveMatrix BusinessWorks™ Error Codes

l TIBCO ActiveMatrix BusinessWorks™ Getting Started

l TIBCO ActiveMatrix BusinessWorks™ Migration

l TIBCO ActiveMatrix BusinessWorks™ Performance Benchmarking and Tuning

l TIBCO ActiveMatrix BusinessWorks™ REST Implementation

l TIBCO ActiveMatrix BusinessWorks™ Refactoring Best Practices

l TIBCO ActiveMatrix BusinessWorks™ Samples

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activematrix-businessworks
https://docs.tibco.com/products/tibco-activematrix-businessworks

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

81 | TIBCO Documentation and Support Services

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://support.tibco.com/s/
https://support.tibco.com/s/
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

82 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix BusinessWorks, ActiveSpaces, Business Studio,
TIBCO Business Studio, TIBCO Designer, TIBCO Enterprise Administrator, Enterprise Message Service,
Rendezvous, and TIBCO Runtime Agent are either registered trademarks or trademarks of Cloud
Software Group, Inc. in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO ActiveMatrix BusinessWorks™ Maven Plug-in

83 | Legal and Third-Party Notices

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2023-2024. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Installing Maven Plug-in
	Post Installation tasks
	Unit Testing
	Running Test Assertions
	Adding Unit Test Assertions
	Running Maven from Command Line

	Unit Test Reports and Test Coverage Reports
	Limitations for Unit Test Assertions

	Running Activity Assertions
	Using Gold Input From File

	Working with a Test Suite
	Adding a Test Suite
	Running a Test Suite

	Adding Mock Support for Activities
	Running Unit Tests in TIBCO Business Studio for BusinessWorks
	Generating Mock Output File
	Limitations for Mock Support

	Adding Mock Fault to an Activity
	Generating Mock Fault File
	Limitations for the Mock Fault Support

	Adding Mock Support to SOAP and REST Service Binding
	Generating Mock Input File
	Limitations for the Mock Support to SOAP and REST Service Binding

	Adding Mock Support for Process Starter
	Generating the Mock Input File
	Limitations for Mock Process Starter

	Running ActiveMatrix BusinessWorks Design Utility Goal
	Using Custom Xpath Functions with TIBCO ActiveMatrix BusinessWorks Plug-in fo...
	Using External Custom XPath Function with TIBCO ActiveMatrix BusinessWorks Pl...

	Using Shared Modules with TIBCO ActiveMatrix BusinessWorks Plug-in for Maven
	Using External Shared Modules with TIBCO ActiveMatrix BusinessWorks Plug-in f...
	Running Test Cases from an External Shared Module

	Dependency Exclusions

	Deploying EAR Using Maven
	Adding Process Diagram in EAR
	Deploying EAR Using Configuration File

	Maven Goals
	Running Continuous Integration/Continuous Deployment (CI/CD) using Jenkins
	Troubleshooting
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

