
TIBCO ActiveMatrix BusinessWorks™

Application Development

Software Release 6.6
November 2019

Document Updated: January 2020, February 2020, March 2020

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

ANY SOFTWARE ITEM IDENTIFIED AS THIRD PARTY LIBRARY IS AVAILABLE UNDER
SEPARATE SOFTWARE LICENSE TERMS AND IS NOT PART OF A TIBCO PRODUCT. AS SUCH,
THESE SOFTWARE ITEMS ARE NOT COVERED BY THE TERMS OF YOUR AGREEMENT WITH
TIBCO, INCLUDING ANY TERMS CONCERNING SUPPORT, MAINTENANCE, WARRANTIES,
AND INDEMNITIES. DOWNLOAD AND USE OF THESE ITEMS IS SOLELY AT YOUR OWN
DISCRETION AND SUBJECT TO THE LICENSE TERMS APPLICABLE TO THEM. BY PROCEEDING
TO DOWNLOAD, INSTALL OR USE ANY OF THESE ITEMS, YOU ACKNOWLEDGE THE
FOREGOING DISTINCTIONS BETWEEN THESE ITEMS AND TIBCO PRODUCTS.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, TIBCO ActiveMatrix BusinessWorks, TIBCO Rendezvous,
TIBCO Enterprise Message Service, TIBCO Business Studio for BusinessWorks, TIBCO Enterprise
Administrator, TIBCO ActiveSpaces, TIBCO Runtime Agent, and TIBCO Designer are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. Please see the readme.txt file for
the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

2

TIBCO ActiveMatrix BusinessWorks™ Application Development

https://www.tibco.com/patents

Copyright © 2001-2020. TIBCO Software Inc. All Rights Reserved.

3

TIBCO ActiveMatrix BusinessWorks™ Application Development

Contents

Figures . 8

TIBCO Documentation and Support Services .9

Changing Help Preferences . 10

Application Development Overview .11

Application Design Considerations .13

Process Design Considerations . 16

Service Design Considerations . 19

Memory Saving Considerations . 20

TIBCO Business Studio™ for BusinessWorks™ Essentials . 22

Outline . 24

Module .24

File Explorer . 25

API Explorer . 25

Process Editor . 28

Palette Library .28

Entity Naming Conventions . 29

Importing an Existing Project into Workspace . 30

Developing a Basic Process . 32

Creating an Application Module . 32

Creating a Shared Module . 33

Reconfiguring Deployment Target .34

Generating the manifest.json File Using the bwdesign Utility . 35

Generating the manifest.yml file .36

Exporting a Shared Module as a Binary Shared Module . 36

TIBCO Business Studio for BusinessWorks .36

CLI . 37

Using Binary Shared Modules in your Project . 38

Referencing Shared Modules . 41

Creating a Process . 42

Working with Process Properties .43

Creating a Subprocess . 49

Creating an Activator Process . 51

Adding Activities .54

Working with Transitions . 55

Working with Standard Activity Features . 56

Input and Output . 57

4

TIBCO ActiveMatrix BusinessWorks™ Application Development

Creating a Module Property .61

Editing a Module Property . 62

Promoting Module Properties for Visibility at the Application Level . 62

Deleting a Promoted Property . 63

Importing WSDLs .63

Using Additional Features . 64

Using Scopes . 64

Adding Scope Variables .64

Defining and Using Shared Variables . 67

Retrieving and Assigning a Value of a Shared Variable .69

Working with Critical Section Groups . 69

Using Fault Handlers . 70

Using Conversations . 71

Using Checkpoints . 72

Using Coercions .72

Adding a Single Coercion .73

Adding Multiple Coercions . 74

Coercing a Specific Data Type .74

Editing Coercions . 75

Removing Coercions .75

Configuring Database for the Engine .76

Configuring the Engine for Group Persistence Mode .78

Configuring EMS as the Group Provider for Engine . 78

Configuring TIBCO FTL® as the Group Provider for Engine .80

Creating Process Diagrams Explicitly . 82

Displaying Individual Element Mappings . 83

Removing Groups . 84

Configuring the Ungroup Preferences .84

Ungrouping a Local Transaction Group .84

Ungrouping Groups with Scopes . 85

Overview of Policies . 87

Managing Policy Resources . 88

Creating a Folder for Policies .88

Creating an Authentication Resource .88

Associating Policies . 89

Removing a Policy . 89

HTTP Security . 91

Enforcing Basic Authentication .91

Enforcing Basic Credential Mapping .93

5

TIBCO ActiveMatrix BusinessWorks™ Application Development

SOAP Security . 97

Enforcing WSS Consumer . 97

Enforcing WSS Provider . 100

Building Projects Automatically . 104

XPath . 105

XPath Basics .105

XPath Expression . 107

XPath Builder . 110

Developing a SOAP Service . 113

Consuming SOAP Services . 116

Developing a RESTful Service . 118

Implementing a REST Service Provider .118

Discovering API Models from TIBCO Business Studio™ for BusinessWorks™ .120

Importing an API Model into your Workspace . 121

Creating an XML Schema for a Swagger 2.0 File Imported in TIBCO Business Studio™ for BusinessWorks™ 123

Synchronizing the Imported REST API Models in TIBCO Business Studio™ for BusinessWorks™ . 124

Developing Java Applications .125

Using a Simple Java Invoke Activity .125

Accessing Module Properties from Java Global Instance . 126

Accessing Module Properties from Java Invoke Activity . 126

Accessing Module Properties in User-Defined Java Code Referenced in JavaProcessStarter . 127

Creating an Application . 128

Working with Application Properties .129

Creating an Application Property . 129

Exporting an Application Profile .130

Tokenizing Application Properties for exporting in the Properties file . 130

Importing an Application Profile .133

Generating Deployment Artifacts .135

Deploying an Application . 138

Refactoring a Shared Resource or Policy Package .141

Renaming a Resource or a Policy Package . 141

Changing the Location of a Resource or a Policy . 141

Working with Multiple Component Processes .142

Adding Multiple Component Processes . 142

Deleting Multiple Component Processes . 142

Enabling Auto Start of Component Process . 143

Analyzing Dependencies and References . 144

Unused Resources .146

6

TIBCO ActiveMatrix BusinessWorks™ Application Development

Repairing TIBCO ActiveMatrix BusinessWorks™ Projects . 150

Using the Debugger . 152

Configuring the Debugger . 153

Testing an Application in TIBCO Business Studio™ for BusinessWorks™ . 155

Remote Debugging .155

Unit Testing . 158

Running Test Assertions .158

Using Demo Projects .158

Adding Unit Test Assertions .160

Running Maven from Command Line . 169

Unit Test Reports and Test Coverage Reports . 170

Limitations for Unit Test Assertions . 171

Running Activity Assertions .171

Adding Mocking Support for Activities .173

Running Unit Tests in TIBCO Business Studio™ for BusinessWorks™ . 175

Generating Mock Output File .176

Limitations for Mock Support . 178

Collaborative Application Development .179

Configuring TIBCO Business Studio™ for BusinessWorks™ with Git . 179

Generating gitignore Files . 179

Generating gitignore Files at Application Module Level .181

Synchronizing Module Properties .182

Using the bwdesign Utility . 184

Best Practices . 190

Troubleshooting . 193

Mapping and Transforming Data . 193

7

TIBCO ActiveMatrix BusinessWorks™ Application Development

Figures

Approaches to Application Development .12

TIBCO Business Studio for BusinessWorks Workbench . 23

Parent Process .51

Sub Process .51

Drag-and-Drop a Resource .54

Drag-and-Drop a Resource .55

Input Tab . 58

Input Editor Tab . 58

Output Tab .61

Output Editor Tab . 61

Fault Handler Attached to an Inner Scope . 70

Schema Elements in Data Source . 106

XPath Builder . 110

8

TIBCO ActiveMatrix BusinessWorks™ Application Development

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly
in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than any other
documentation included with the product. To access the latest documentation, visit https://
docs.tibco.com.

Product-Specific Documentation

Documentation for TIBCO products is not bundled with the software. Instead, it is available on the
TIBCO Documentation site. To directly access documentation for this product, double-click the
following file:

TIBCO_HOME/release_notes/TIB_BW_<version>_docinfo.html

Access the following TIBCO ActiveMatrix BusinessWorks™ guides on the TIBCO Documentation site:

● Concepts

● Installation

● Getting Started

● Application Development

● Administration

● Bindings and Palettes Reference

● Business Works Samples

● Error Codes

● Migration

● Performance Benchmarking and Tuning

● REST Reference Guide

How to Contact TIBCO Support

You can contact TIBCO Support in the following ways:

● For an overview of TIBCO Support, visit http://www.tibco.com/services/support.

● For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support portal at https://support.tibco.com.

● For creating a Support case, you must have a valid maintenance or support contract with TIBCO.
You also need a user name and password to log in to https://support.tibco.com. If you do not have a
user name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
https://community.tibco.com.

9

TIBCO ActiveMatrix BusinessWorks™ Application Development

https://docs.tibco.com
https://docs.tibco.com
http://www.tibco.com/services/support
https://support.tibco.com
https://support.tibco.com
https://ideas.tibco.com/
https://community.tibco.com

Changing Help Preferences

By default, documentation access from TIBCO Business Studio™ for BusinessWorks™ is online, through
the TIBCO Product Documentation site that contains the latest version of the documentation. Check the
website frequently for updates. To access the product documentation offline, download the
documentation to a local directory or an internal web server and then change the help preferences in
TIBCO Business Studio for BusinessWorks.

Prerequisites

Before changing the help preferences to access documentation locally or from an internal web server,
download the documentation from https://docs.tibco.com/.

1. Go to https://docs.tibco.com/

2. In the Search field, enter and press Enter.

3. Select the TIBCO ActiveMatrix BusinessWorks™ product from the list. This opens the product
documentation page for the latest version.

4. Click Download All.

5. A zip file containing the latest documentation downloads to your web browser's default download
location. Copy the zip file to a local directory or to an internal web server and unzip the file.

To point to a custom location:

Procedure

1. In TIBCO Business Studio for BusinessWorks, click Window > Preferences. On Mac OS X, click
TIBCO Business Studio > Preferences.

2. In the Preferences dialog, click BusinessWorks > Help.

3. Click Custom Location. Then, Browse and select the html directory in the folder where you
extracted the documentation, or provide the URL to the html directory on your internal web server.

4. Click Apply, and then click OK.

10

TIBCO ActiveMatrix BusinessWorks™ Application Development

https://docs.tibco.com/
https://docs.tibco.com/

Application Development Overview

TIBCO ActiveMatrix BusinessWorks™ applications can be developed using either the traditional phases
of waterfall development, or using an incremental and iterative approach such as Scrum.

The TIBCO ActiveMatrix BusinessWorks™ Application Development guide explains the following:

● Approaches to application development.

● Considerations to be made when building an application.

● Information on how to work with various software components and how to generate the
deployment artifact.

Application development consists of the following phases:

● Analysis - Analyze the business problem and identify the applications, modules, services, and
processes that need to be created to solve the problem.

● Application Creation/Design - Create one or more applications identified during the analysis
phase. TIBCO Business Studio™ for BusinessWorks™ provides the design-time environment to
design an application and its components that implement the business logic.

● Service Design - Create the services identified in the analysis phase. The services can be accessed by
processes that are used to implement the business logic.

● Process Design - Create the processes that implement the business logic. These processes can access
the services configured.

● Generating Deployment Artifacts - Create a deployment artifact — an archive file, after creating
and configuring the processes and services.

If any changes to the design or configurations are made, the archive file must be
regenerated.

There are two main approaches to application development: top-down and bottom-up.

Top-down is a design approach that begins with a holistic view of the application, specifying the major
functions or interfaces it will need before the next level of details. This process is repeated until the
most granular pieces are designed and implemented. The application is then ready for testing. Top-
level services and processes can be designed and developed first before moving to the lower levels.

In the bottom-up approach, the basic elements of the application are first specified and developed as
building blocks. These reusable parts are then connected to form functional units that serve a higher
purpose. This process is repeated until the design grows in complexity and completeness to form an
application. The building blocks can be created as layers of services, subprocesses, and shared
resources. These building blocks are assembled together to form application modules or shared
modules. These modules are then assembled together to form an application.

In practice, even a new application can have existing services to leverage from. As a result, a problem
can be approached from both top and bottom, resulting in a hybrid approach. The bottom part can start
creating reusable shared modules to encapsulate existing system services that are well defined. The top
part can start with the business requirements and break it down to intermediate layers, until the
reusable modules are reached.

Either top-down or bottom-up approaches can be used with service-driven or process-driven design
patterns. Service-driven means the service contract or interface of each functional component is
formalized first. The processing logic behind the service simply becomes an implementation detail that
is encapsulated. This is where these SOA design principles can be followed: standardized service
contract, loose coupling, service abstraction, service reusability, service statelessness, and service
composability.

11

TIBCO ActiveMatrix BusinessWorks™ Application Development

Process-driven means the business processes or integration flows are first realized and captured.
Service contracts may or may not be applicable in a process-centric application, especially for batch or
EAI-type automation scenarios.

Approaches to Application Development

Each of these approaches can be followed in conjunction with the waterfall or Scrum development
methods.

The generation of the deployment artifact indicates that the application can be deployed to the run
time. Any further changes to the design-time configurations require the deployment artifact to be
regenerated. For deployment and administration details, see TIBCO ActiveMatrix BusinessWorks™
Administation guide.

12

TIBCO ActiveMatrix BusinessWorks™ Application Development

Application Design Considerations

Applications help solve integration problems of varying complexity. This section describes some
important factors to consider when designing an application.

Choosing Between Integration Styles

The table, Salient features of integration styles, provides guidelines to choose a high-level integration
style for your applications.

Salient features of integration styles

Speed of
Integration

Data
Abstraction

Richness of
Orchestration
Primitives

Typical
Endpoints

Batch-oriented Non-real time Record Low Databases, files,
and so on

Application-
oriented

Real-time Message Medium Application APIs,
Adapters, and so
on

Service-oriented Real-time Service,
Operation

High Web services and
APIs

Resource-
oriented

Real-time Resource Medium Mobile/Web
Applications and
APIs

In an application-oriented integration style, each operation in a process can be invoked by a call to the
process. Invoking multiple operations requires multiple calls to the process, that are then executed
sequentially.

A service-oriented style exposes multiple operations available in a process and each of the operations
can be called directly. These operations are not related and can be executed independently. However,
you can use conversations to correlate the related messages between two or more parties.

Choosing the Modularity

An application module is the smallest unit of resources that is named, versioned, and packaged as part
of an application, and then executed in the ActiveMatrix BusinessWorks runtime environment. It
cannot provide capabilities to other modules.

A shared module is the smallest unit of resources that is named, versioned, and packaged as part of an
application and can be used by other modules that are part of the same application. Shared modules
export their functionality (process, shared resources, and schema namespaces) to application modules
or to other shared modules. When creating a new module, select a shared module if the business logic
needs to be shared across multiple applications. Shared modules can also be used if XML collisions
exist.

13

TIBCO ActiveMatrix BusinessWorks™ Application Development

Differences between Application and Shared Modules

Runtime Reusability Encapsulation

XML
Namespace
Restrictions

Application
Modules

Can be executed
by the run time
when packaged
as part of an
application.

Can be used by
one or more
applications.

Processes within
an application
module are
visible to each
other. However,
the processes are
not visible
outside of the
module.

Namespace can
be provided by
multiple
documents.

Shared Modules Cannot be
executed by the
run time unless
utilized by an
application
module.

Can be used by
one or more
application
modules or
shared modules.

Processes within
a shared module
are visible to each
other. However,
only the
processes defined
as public are
visible outside of
the shared
module.

Only one
document can
provide the
namespace; that
is two documents
cannot have the
same namespace.

All schemas and
WSDL files are
visible to other
modules that
depend on the
shared module.

Choosing Implementation Technologies for the Modules

When implementing the business logic, ActiveMatrix BusinessWorks provides flexibility ranging from
developing applications graphically without coding, to using existing Java classes (or libraries), to
writing custom code. Application modules or shared modules typically consist of one or more business
processes that define the business logic. Create an application or shared module using the GUI to
leverage the rich orchestration capabilities provided by ActiveMatrix BusinessWorks.

Choose to create (or use) a Java module (or a Java OSGi bundle), if multiple calls from a process to other
Java libraries are needed to compute the result. Java modules provide a high degree of customization.
To use the enhanced Java development tooling such as source folders, JRE libraries, and so on, select the
Use Java Configuration check box in TIBCO Business Studio for BusinessWorks when creating an
application module. Alternatively, create a module that contains existing Java code or custom code.

14

TIBCO ActiveMatrix BusinessWorks™ Application Development

Differences between Process Modules and Java Modules

Orchestration
Capabilities Visibility Granularity Examples

Process Modules High High visibility of
process flow
logic, services,
and bindings.

Better suited for
coarse-grained
functionality that
consists of more
discrete
functionality and
process
constructs.

Account opening,
mortgage loan,
and so on.

Java Modules Low Low Better suited for
fine-grained
functionality that
has a very
specific function,
and often
requires very
little or no
process
constructs.

Query flight
status, update
product
description, and
so on.

15

TIBCO ActiveMatrix BusinessWorks™ Application Development

Process Design Considerations

In process-driven design, the business processes or integration flows are first realized and captured.
Service contracts might be applicable in a process-centric application, especially for batch or EAI-type
automation scenarios. This topic describes some important factors to be considered when using a
process-driven approach.

Choosing Between Stateful and Stateless Processes

Stateful processes maintain the state across multiple operations. They are better suited when you need
the server to maintain the state across operations. For processes that involve related message exchanges
between the same or different consumers, conversations can be used to maintain state across
operations.

Stateless processes do not maintain state. They are better suited when you need to process higher loads
of requests as each operation is executed independently. They do not require correlation or
conversations between multiple operations in a process, thus allowing the server to process each
operation without maintaining any state information. The client can choose to maintain the state
information, if needed.

Process Maintains State Data Sharing Conversations

Stateful Processes Across multiple
operations and
interfaces.

Data can shared by
activities across
operations that
executing as part of
the same job.

Uses conversations to
enable correlation.

Stateless Processes Does not maintain
state.

Data is not shared. No conversations.

Choosing Between Properties and Variables

Properties are used to save configuration data at different levels. They can be classified into application
properties, module properties, and process properties. For more information, see Choosing Between
Process Properties, Module Properties, Shared Module Properties, and Application Properties.

Variables are used to save the state at different levels. They can be classified into process variables,
scope variables, and shared variables. For more information, see Choosing Between Process Variables,
Scope Variables, and Shared Variables.

Choosing Between Process Properties, Module Properties, Shared Module Properties, and
Application Properties

Properties can be classified into application properties, module properties, shared module properties,
and process properties. Properties follow the layered configuration model where configuration is
pushed from top to the bottom as seen in the illustration:

16

TIBCO ActiveMatrix BusinessWorks™ Application Development

Properties defined in the inner layer can reference a property defined at the parent layer. For example, a
process property can reference a module property instead of providing a literal value. Public properties
are visible to the encapsulating layers.
Choosing the right level ensures an easier to maintain list of properties in your application and keeps
the number of properties at the application level to a minimum.

Comparing Process, Module, Shared Module and Application Properties

Property Scope/Visibility Datatype Values
Additional
Information

Process
Properties

Visible within a
process.

Literal or shared
resource reference.

Literal, shared
resource
reference, or a
module
property
reference.

Literal values
cannot be
modified at the
module or
application
level.

Module
Properties ● Visible

within the
module.

● Private
module
properties
cannot be
viewed from
the Admin
UI.

● Not visible
or
changeable
from
Administrat
or.

Literal or shared
resource reference. ● Literal or a

shared
resource
reference.

● Private
module
property
values
cannot be
edited from
the Admin
UI.

Cannot be
assigned to an
activity directly.
You need to
reference a
module
property from a
process
property, and
then reference
the process
property from
the activity.

17

TIBCO ActiveMatrix BusinessWorks™ Application Development

Property Scope/Visibility Datatype Values
Additional
Information

Shared Module
Properties ● Visible

within the
module.

● Visible
within
projects that
contain
dependencie
s to the
Shared
Module that
the Shared
Module
Property
came from.

● Private
module
properties
cannot be
viewed from
the Admin
UI.

● Not visible
or
changeable
from the
Admin UI.

Literal or a shared
resource reference. ● Literal or a

shared
resource
reference.

● Private
module
property
values
cannot be
edited from
the Admin
UI.

● Shared
Module
Properties
are module
properties
that come
from a
Shared
Module.

● Cannot be
assigned to
an activity
directly. You
need to
reference a
module
property
from a
process
property,
and then
reference the
process
property
from the
activity.

● Can be used
for activities,
process
properties,
shared
resources,
and SOAP
Bindings.

Application
Properties

Displays all the
module
properties in the
application.
These properties
are visible in
Administrator.

Literal.
● Literal.

● Profiles can
be used to
provide a
new set of
values for
the
application.

Overrides
module
properties, thus
enabling you to
use different
values for the
same module.

Choosing Between Process Variables, Scope Variables, and Shared Variables

A process variable saves the state at the process level and a scope variable saves the state within the
scope.

18

TIBCO ActiveMatrix BusinessWorks™ Application Development

Variables defined within a scope are visible only within the scope. If the scope variable name is the
same as a process variable name, then the scope variable takes precedence over the process variable
within the scope.

Shared variables are used to save the state. There are two types of shared variables:

● Module shared variable - saves the state at a module level.

● Job shared variable - saves the state for the duration of a job.

For more information on sharing variables, see Using Shared Variables topic and the TIBCO
ActiveMatrix BusinessWorks™ Concepts guide.

Handling Exceptions

Errors can occur when executing a process. The potential runtime errors in your process can be handled
in one of the following ways:

● Catch Specific: Used to catch a specific kind of fault at either activity, scope, or process levels.

● Catch All: Used to catch all error or faults thrown at the selected level.

You can add an error transition to an activity or a group to specify the transition to take in case of an
error.

Service Design Considerations
In service-driven design, the service contract or interface of each functional component is formalized
first. The processing logic behind the service simply becomes an implementation detail that is
encapsulated. This section describes some important factors to consider when using the service-driven
approach.

Choosing Between Abstract Process Starters, Services, and Service Subprocesses

Choose a process starter activity to start a process when an event occurs. There can be only one process
starter in a process.

Do not create a process with a technology specific process starter such as an HTTP or JMS process
starter.

Choose a service if you want to expose the operations available in a process outside the application
module.

Choose a service subprocess to make your business process easier to understand and debug. A
subprocess is invoked by a parent process and the output of the subprocess is used in the main process.
A parent process calls a subprocess in two ways: in-line and non-in-line. At run time, an in-line
subprocess executes as part of the parent process' job, while a non-in-line subprocess spawns a new job.

Choosing between REST and SOAP Bindings

A process service is exposed to external consumers by configuring bindings such as REST or SOAP.

Service Data Abstraction State Information

Overhead of
Additional
Parameters

(Headers or other
SOAP elements)

REST Services Resources Stateless Less

19

TIBCO ActiveMatrix BusinessWorks™ Application Development

Service Data Abstraction State Information

Overhead of
Additional
Parameters

(Headers or other
SOAP elements)

SOAP Services Operations Stateful High

You can use multiple Web Service Definition Language (WSDL) files with an identical target namespace
in a shared module, and an application module.

Memory Saving Considerations
This is to outline the variables which are not used for a specific activity so that the items corresponding
to the variables are freed (set to null) after an activity is executed at the run time. When Memory Saving
Mode option is selected, the memory saving variables are calculated and an activity frees up the
unused variables at the run time. In case of new projects, you can select the Save information to
support memory saving mode check box available at Window > Preferences > BusinessWorks >
Process Diagram in the Memory Saving Mode section.

For the process that already has the memory saving variables, the memory saving variables must be re-
calculated when that process is saved to keep all the memory saving variables in sync with the usage of
the variables in that process.

20

TIBCO ActiveMatrix BusinessWorks™ Application Development

To know more about the memory saving feature for existing projects, see "Enabling Memory Saving
Mode at Design Time" in the TIBCO ActiveMatrix BusinessWorks™ Performance Benchmarking and Tuning
guide.

21

TIBCO ActiveMatrix BusinessWorks™ Application Development

TIBCO Business Studio™ for BusinessWorks™ Essentials

TIBCO Business Studio for BusinessWorks is an Eclipse-based integration development environment
that is used to design and test TIBCO ActiveMatrix BusinessWorks™ applications.

If you are familiar with the TIBCO Business Studio for BusinessWorks user interface, skip to the section
Developing a Basic Process.

Using TIBCO Business Studio for BusinessWorks, designers implement an executable application that
can be deployed to ActiveMatrix BusinessWorks.

Starting TIBCO Business Studio for BusinessWorks

To start TIBCO Business Studio for BusinessWorks on Windows, select Start > All Apps >
TIBCO_HOME > Studio for Designers. On Linux or Mac OS, select the TIBCO Business Studio for
BusinessWorks executable located at <TIBCO_HOME>/studio/<version>/eclipse/.

On the Workspace Launcher dialog, accept the default workspace or browse to create a new workspace,
and then click OK. TIBCO Business Studio for BusinessWorks starts and the default development
environment, called a workbench, is displayed. A welcome screen is displayed in the window when a
workspace is opened for the first time. For more information TIBCO Business Studio for
BusinessWorks, see the section Accessing Samples in the ActiveMatrix BusinessWorks™ Samples guide.

On Mac OS, TIBCO Business Studio for BusinessWorks displays the Subversion Native Library Not
Available dialog box if the SVN interface is set to JavaHL (default) and the JavaHL libraries are not
available. To ensure that the dialog box is not displayed each time you start TIBCO Business Studio for
BusinessWorks, perform one of the following:

● Install the JavaHL libraries. See http://subclipse.tigris.org/wiki/JavaHL for instructions.

● Update the SVN interface to use SVNKit instead of JavaHL. Select Window > Preferences and in the
Preferences dialog box, select Team > SVN. For the SVN interface Client field, select SVNKit
(Pure Java) interface from the drop-down list.

TIBCO Business Studio for BusinessWorks Development Environment

TIBCO Business Studio for BusinessWorks provides a workbench that is used to create, manage, and
navigate resources in your Eclipse workspace. A workspace is the location on your machine where the
artifacts related to your ActiveMatrix BusinessWorks™ projects are stored.

22

TIBCO ActiveMatrix BusinessWorks™ Application Development

http://subclipse.tigris.org/wiki/JavaHL

TIBCO Business Studio for BusinessWorks Workbench

The TIBCO Business Studio for BusinessWorks workbench has features such as:

● Menu: Contains menu items such as File, Edit, Navigate, Search, Project, Run, Window, and Help.

● Toolbar: Contains buttons for the frequently used commands such as:

— New

— Save

— Enable/Disable Business Studio Capabilities

— Create a new BusinessWorks Application Module

— Create a new BusinessWorks Shared Module

— Debug

— Run

● Perspectives: Contain an initial set and layout of views that are needed to perform a certain task.
TIBCO Business Studio for BusinessWorks launches the Design perspective by default. Use the
Design perspective when designing a process and the Debug perspective when testing and
debugging a process. To change the perspective, select Window > Open Perspective >

perspective_name from the main menu. Or, you can click the icon at the top right-hand side of the
workbench and select the perspective to open.

● Views: Display resources and allow for navigation in the workbench. For example, the Project
Explorer view displays the ActiveMatrix BusinessWorks applications, modules, and other resources
in your workspace, and the Properties view displays the properties for the selected resource. To
open a view, select Window > Show View > view_name from the main menu.

● Editors: Provide a canvas to configure, edit, or browse a resource. Double-click a resource in a view
to open the appropriate editor for the selected resource. For example, double-click on a process
(MortgageAppConsumer.bwp) in the Project Explorer view to open the process in the editor.

23

TIBCO ActiveMatrix BusinessWorks™ Application Development

Explorers

The TIBCO Business Studio for BusinessWorks consists of the following tabs in the left pane:

● Project Explorer

● API Explorer

● File Explorer

● Outline tab

● Module tab

● Deployment Servers

Creating an Application and Designing a Process

Create an application and design one or more process(es) within the application in TIBCO Business
Studio for BusinessWorks to implement the business logic. See Developing a Basic Process.

Testing and Debugging an Application

Using TIBCO Business Studio for BusinessWorks you can test and debug your application from the
design-time.

To run the selected application, select Run > Run from the main menu, or click on the toolbar.

To execute and debug the application, select Run > Debug from the main menu, or click on the
toolbar.

By default, the project displayed in the Process Editor launches. You can run or debug an application
using a specific configuration. Create one or more configurations for your application by selecting Run
> Run Configurations from the main menu and specifying the following:

● Bundles to be executed.

● Program arguments such as the target operating system, target architecture, and VM arguments.

● Settings that define the Java Runtime Environment including the Java executable, runtime JRE,
configuration area, and so on.

● Tracing criteria for the OSGi JAR file, if needed.

● Common options such as saving the results either as local files or as shared files, displaying them in
the menus (Debug and/or Run), and defining encoding for the result files.

Outline
The Outline view displays the details of a currently selected process or artifact in a tree like structure. It
shows a more in-depth view of the selected artifact as compared to the Project Explorer.

Use this view while you are actively editing a process to select an artifact and see its properties right
away.

Module
The Module tab displays the module properties and shared variables for the selected module. It
displays the variables in the module.

Click the module name in the Project Explorer to view the default values of the module properties
defined in the module and/or the shared variables that exist in the module. This tab is useful as it saves
to the additional step of having to open the Module Descriptor editor to view the default values of the

24

TIBCO ActiveMatrix BusinessWorks™ Application Development

selected module. You can also drag and drop a shared variable from the Module tab into a process that
is open in the Process Editor.

File Explorer
The File Explorer displays a view of selected folders in your local file system.

By default, the File Explorer displays the samples directory.

Click the Open Directory to Browse button () to open your file system and navigate to the
directory that you want to view in the File Explorer. The File Explorer can display one directory at any
given time.

To revert to the samples directory, click the Go to Default Samples Directory button ().

Click the back arrow to go to a previous location or the forward arrow to go to the next location in case
you had navigated to a previous location.

You can also open the directory in your Windows file system by right-clicking on the path in the File
Explorer and selecting Open Location from the resulting menu. Select Create Folder to create a new
folder under that directory. The Import Selected Projects option allows you to open the projects in the
Project Explorer.

API Explorer
Displays a connected view of the TIBCO ActiveMatrix BusinessWorks™ API Modeler residing in the
cloud. This view shows abstract APIs that were created in API Modeler. You can also view the APIs
residing on your local machine from the API Explorer.

When you open TIBCO Business Studio™ for BusinessWorks™ for the very first time, enter your
credentials for the registry site by opening the Settings dialog box and double-clicking on the registry
name and entering your username and password for the site in the resulting dialog box. To open the
Settings dialog, click the () button on the upper right corner of the API Explorer view and click
Settings. This populates the API Explorer view with the APIs that are available in the registry.

Adding a new registry to the API Explorer view

Use the Settings dialog in the API Explorer to add a new registry (location) from where you want to
view the APIs. To open the Settings dialog box, click the () button on the upper right corner of the
API Explorer view, and click Settings.

25

TIBCO ActiveMatrix BusinessWorks™ Application Development

By default, the Settings dialog box is configured with a Cloud registry which is set to the URL for the
API Modeler.

To create a new registry:

1. Click the New button.

2. Enter a name for the registry Name field.

3. Select whether the registry is pointing to a local folder on your machine (Local Folder) or to a URL
in the cloud (Cloud).

4. Provide the location of the registry in the URL field. If the registry points to a location on the cloud,
you need to provide the authentication details for it in the Username and Password text boxes.

5. Click Finish.

To edit an existing registry entry:

1. Click the name of the registry and click Edit.

2. Make your edits to the entry. You can change the name of the registry, delete the registry
configuration by clicking Remove, or changing the order in which the registries show up in the API
Explorer by using the Up and Down button.

3. Click Finish when you are done with your edits.

Select a specific registry entry check box to display the registry in the API Explorer view. For more
information, see Filtering the APIs in the API Explorer View.

Setting the presentation of the APIs in the API Explorer view

In this dialog box, you can specify how the discovered APIs appear in the API Explorer view:

● API Presentation - specifies how the APIs appear in the API Explorer view

26

TIBCO ActiveMatrix BusinessWorks™ Application Development

Flat - displays the APIs as a flat list with each API's version number displayed next to its name in
parenthesis. If there are multiple versions of the same API, each version is shown as a separate API,
hence multiple APIs with the same name but different version numbers.

Hierarchical - displays every API as a hierarchy of API name label with version number folder
under it and the actual API under the version folder. If there are multiple versions for an API, each
version is listed in its own separate folder under the API name label.

Latest Version - displays only the latest version of the API, even though there might be multiple
versions available.

● Group by API registry - groups the APIs according to the registry from which they were
discovered. You also have the option to display the URL of the APIs next to the registry name by
selecting the Show API Registry URL check box.

● Group apps by sandbox - If you have multiple sandboxes that contain apps, the Cloud
Applications view displays the sandboxes and groups the apps under their respective sandbox.

● Check Supported Plugins - If your application uses plug-ins, you must verify that the plug-ins are
supported in ActiveMatrix BusinessWorks before you push the application to the cloud. You can do
so by clicking this button.

You should now see the APIs displayed in the API Explorer in the format that you specified in the
Settings dialog. Expanding an API shows you its version, the resource path, and the operations you can
perform on that resource.

The API Explorer view has the following quick-access buttons that you can use to format the way the
APIs are listed:

● Refresh

● Expand All

● Collapse All

● Group by API Registry

● API Presentation

● API Registries. Selecting a registry from this drop-down list toggles between displaying and
hiding the registry in the API Explorer.

Searching for APIs in API Explorer

Use the search filter that appears at the bottom of the API Explorer view to search for API names that
match the string that you enter in the Filter text box. You can search by typing in the version number,
the full API name, or a full word within an API name. Wildcards is not supported. The search is case
insensitive.

Filtering the APIs in the API Explorer view

If your APIs reside in multiple locations and you have set up the API registries in the Settings dialog of
the API Modeler view, you can filter the APIs in API Modeler such that it shows you only the APIs
available in a certain registry.

To do so, click the () button on the upper right corner of the API Modeler view and select the registry
whose APIs you want to view.

27

TIBCO ActiveMatrix BusinessWorks™ Application Development

Process Editor
Process Editor is the canvas in which you design and create your process.

You can click an activity in the activities palette located to the right of the Process Editor and drop it in
the Process Editor by clicking anywhere within the process boundary or you can add an activity from
the right-click menu accessible from within the Process Editor. Use Transitions to create a flow between
the activities.

To open an existing process in the Process Editor, double-click the <process>.bwp in the Project
Explorer. The process diagram opens in the Process Editor.

Palette Library
TIBCO Business Studio for BusinessWorks comes with a variety of Palettes each of which contain
multiple activities relevant to the Palette.

Click the Palette name to see which activities are available for the palette. To use an activity in your
process, click the activity, then move your cursor anywhere within the process boundary in the Process
Editor and click again.

28

TIBCO ActiveMatrix BusinessWorks™ Application Development

Entity Naming Conventions

Most of the ActiveMatrix BusinessWorks named entities are modeled as NCNames (or as a subset of an
NCNames). These include activity names, service names, reference names, binding names, and
component names.

Process names and shared resource names are represented as a subset of an NCName as they do not
allow the use of a dot (.) character in their names. A small set of named entities are modeled as OSGi
symbolic names. This set includes application names, module names, process package names, and
shared resource package names.

NCName stands for XML "non-colonized" name. See http://www.w3.org/TR/xmlschema-2/#NCName
for the W3C definition of NCName. NCName represents the set of characters that conforms to the
following restrictions:

● Can include letters or numbers A-Z, a-z (lower case letters), 0-9, -, _ (underscore)

● Cannot include the following characters: @, :, $, %, &, /, +, ,, ;,), A-Z (uppercase letters), - (hyphen)
and white space characters.

● Cannot begin with a number, dot (.), or minus (-) character. However, these characters can appear
later in an NCName.

The OSGi symbolic name is defined as part of the OSGi Specification, which is available at http://
www.osgi.org/download/r5/osgi.core-5.0.0.pdf. OSGi symbolic names are represented using the
following syntax:
symbolic-name ::= token('.'token)*
token ::= (alphanum | ’_’ | ’-’)+
alphanum ::= alpha | digit
digit ::= [0..9]
alpha ::= [a..zA..Z]

29

TIBCO ActiveMatrix BusinessWorks™ Application Development

http://www.w3.org/TR/xmlschema-2/#NCName
http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf
http://www.osgi.org/download/r5/osgi.core-5.0.0.pdf

Importing an Existing Project into Workspace

To import existing projects into workspace from TIBCO Business Studio™ for BusinessWorks™, follow
these steps.

Procedure

1. Navigate to File and click Import....
The Import wizard is displayed with the Select page.

2. Select the Existing Studio Projects into Workspace option available under General category. Or
type the source name text as Existing Studio Projects into Workspace in the Select an import
source: input field.

3. Click the Next button.
The Import wizard displays the Import Projects page.

4. Select the Select root directory: option to select the path of the directory, where the required project
is stored.

5. Click the Browse button next to the Select root directory input field. Or copy and paste the path of
the required project directory in the Select root directory: input field.
Browse For Folder wizard is displayed.

If you want to import the projects in a .zip file, select the Select archive file option, and
then click the Browse button next to the Select archive file: option. Or copy and paste the
path of the required .zip file in the Select archive file: input field.

6. Navigate to the required directory, where the required project is stored.

7. Click the Ok button on the Browse For Folder wizard.
The projects available under the selected directory are displayed in the Projects area of the Import
Projects wizard.

8. Select the required project(s) to import.

9. Select the Copy projects into workspace option.

30

TIBCO ActiveMatrix BusinessWorks™ Application Development

10. Click Finish.
The green color status bar indicates the status of the import process and imported projects are
displayed in the Project Explorer pane.

● You can also import the projects by right-clicking in the Project Explorer and
navigating to Import > Existing Studio Projects into Workspace. In this way of
importing a project, the Import wizard is displayed with the Import Projects page, and
the Select page is skipped.

● The import functionality is also available from the command line interface. For more
information, see Using bwdesign.

31

TIBCO ActiveMatrix BusinessWorks™ Application Development

Developing a Basic Process

Using processes you can implement business logic that obtains and manages the flow of information in
an enterprise between a source and different destinations.

TIBCO Business Studio™ for BusinessWorks™ Workbench provides a design environment to develop
and test a process. Developing a simple process consists of the following phases:

1. Creating an Application Module to contain the processes and shared resources.

2. Creating a Shared Module (optional).

3. Creating a Process that implements the business logic.

4. Working with Process Properties to define the runtime behavior of the process.

5. Adding activities to the process that describe the tasks in the business logic.

6. Connecting Activities with Transitions to describe the business process flow between activities in a
process.

7. Configuring the input and output data for the activities. For more information, see Working with
Standard Activity Features.

At run time, the process engine executes the process definition and creates an instance of the process
definition called a job. A job automates your business process by executing what is described in the
process definition.

Conceptual information about processes and their use is provided in the TIBCO ActiveMatrix
BusinessWorks™ Concepts guide.

Creating an Application Module
Application modules are packages containing one or more processes, shared resources, and metadata
such as name, version, dependencies, and so on.
The New BusinessWorks Application Module wizard helps create an application module. There are
multiple ways to launch the wizard:

● From the main menu, select File > New > BusinessWorks Resources and then select
BusinessWorks Application Module.

● Right-click in the Project Explorer view and choose New > BusinessWorks Application Module.

Specify the values for the following fields in the wizard:

1. Project name: Name of the application module.

2. Use default location: Specifies the location on disk to store the application module's data files. By
default, this value is set to the workspace. To change, clear the check box and browse to select the
location to be used.

3. Version: Version of the application module.

4. Deployment Target: Select the required deployment platform(s).

Optional.You can set the default deployment profile to create applications, and migrate the
existing TIBCO ActiveMatrix BusinessWorks™ 5.x projects with the set preference.
Navigate to Window > Preferences > BusinessWorks > Deployment Profile.

5. Depending on the deployment platform selected by user, the project name will be followed by the
target platform names. For example, tibco_bw_sample_palette_http_requestresponse [Container,
Tibco Cloud, AppSpace].

32

TIBCO ActiveMatrix BusinessWorks™ Application Development

6. Create empty process: Selected by default to create an empty process with the specified name
(default: Process). Clear the check box if you do not want to create an empty process.

7. Create Application: Selected by default to create an application with the specified name. Clear the
check box if you do not want to create an application.

8. Use Java Configuration: Select to provide the Java tooling capabilities in your module. Selecting this
option creates a Java module.

9. Click Finish.

You can add identical package names in 2 different shared modules

Result

An application module with the specified name is then created and opens in the workbench. If the
option to create an empty process and an application were selected, the process and application with
the specified names are also created.

Creating a Shared Module
Shared modules are the smallest unit of resources that are named, versioned, and packaged as part of
an application and can be used by other modules that are part of the same application.

The New BusinessWorks Shared Module wizard helps create a shared module. There are multiple ways
to launch the wizard:

● From the main menu, select File > New > BusinessWorks Resources and then select
BusinessWorks Shared Module.

● Right-click in the Project Explorer view and select New > BusinessWorks Shared Module.

Specify the values for the following fields in the wizard:

1. Project name: Name of the shared module.

2. Use default location: Specifies the location on disk to store the shared module's data files. By
default, this value is set to the workspace. To change, clear the check box and browse to select the
location to be used.

3. Version: Version of the shared module.

4. Deployment Target: Select the required deployment platform(s).

Optional. You can set the default deployment profile to create applications, and migrate
the existing TIBCO ActiveMatrix BusinessWorks™ 5.x projects with the set preference.
Navigate to Window > Preferences > BusinessWorks > Deployment Profile.

Deployment target support for dependency modules when refactoring the platform
support for dependent modules adds the target support instead of overwriting it. For
example,

Application1 : Configured to AppSpace and uses SharedModule1

Application2 : Configured to AppSpace and uses SharedModule1

SharedModule1 : Configured to AppSpace

If the deployment target platform for Application2 is reconfigured to Container, then
SharedModule1 will now configured to both AppSpace and Container.

5. Depending on the deployment platform selected by user, the project name will be followed by the
deployment target names. For example, tibco_bw_sample_palette_http_requestresponse
[Container, Tibco Cloud, AppSpace].

33

TIBCO ActiveMatrix BusinessWorks™ Application Development

6. Use Java Configuration: Select to provide the Java tooling capabilities in your module. Selecting this
option creates a Java module.

7. Click Finish.

Result

A shared module with the specified name is created and opened in the workbench.

Reconfiguring Deployment Target
Applications can be reconfigured to be run on a different platform or can be configured to more than
one platform at the same time. Using the Configure Deployment Target option, applications can be
developed and run on the Enterprise edition (AppSpace), Container or the TIBCO Cloud edition.

Procedure

1. To reconfigure an application to a different deployment targets for an application, navigate to
Configure > Configure Deployment Target.

2. In the Update deployment target window, select the taget platform(s) to configure or reconfigure
the application.

34

TIBCO ActiveMatrix BusinessWorks™ Application Development

3. The Update Nested Shared Modules check box refactors all the nested shared modules in the
application and is selected by default.

4. Once the deployment target is updated, export the EAR file and deploy it to the selected platform.
Options such as Push to Cloud and Deploy Application are displayed.

5. On opening the projects, only the palettes and activities supported by the target platform(s)
configured for a project will be displayed.

You can also set the default deployment profile to create applications, and migrate the
existing BusinessWorks 5.x projects with the set preference. Navigate to Window >
Preferences > BusinessWorks > Deployment Profile.

Generating the manifest.json File Using the bwdesign Utility
In order to push an application created in TIBCO ActiveMatrix BusinessWorks™ or to TIBCO Cloud
Integration, there must be a manifest.json file that defines your application. Applications that were
built with versions before TIBCO Business Studio for BusinessWorks 1.1.0 do not have the
manifest.json file generated and bundled with their EAR file and hence are not enabled for the
TIBCO Cloud Integration environment. If you would like to push such applications to TIBCO Cloud
Integration, you must generate a manifest.json file for them.
The manifest.json file can be generated from the bwdesign utility as follows:
generate_manifest_json ear_location manifest_location

Procedure

1. Open a command prompt or terminal window.

35

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. Navigate to <BW_HOME>\bin directory.

3. Enter the following command:
bwdesign

4. Enter the following command:

Use a new fresh clean workspace for manifest_location when running the following
command for generating the manifest.json file.

generate_manifest_json ear_location manifest_location

where ear_location is the path to the EAR file and manifest_location is the location where you
would like to save the generated manifest.json file.

For more information on using the utility, see Using the bwdesign Utility.

Generating the manifest.yml file
To push an application created in TIBCO ActiveMatrix BusinessWorks™ or TIBCO Cloud™ Integration
to Pivotal Platform the application manifest (manifest.yml) file is required. In ActiveMatrix
BusinessWorks™ the manifest.yml file can be created from the Context menu option, Create Manifest
YML for an application in the Project Explorer view.

Exporting a Shared Module as a Binary Shared Module
You can create a binary shared module from a shared module. However, you cannot convert a binary
shared module to a regular shared module.

To export a shared module as a binary shared module, begin by implementing the process you want to
share. The process must have a descriptive name and a description. Next, test the process by calling it
from a test application. Once satisfied, you create a zip archive file for the project which contains the
process and distribute that zip using a mechanism such as email, FTP, or a web page, that is external to
TIBCO Business Studio for BusinessWorks.

Back up the shared module by exporting the project as an archive file. To do this, select Export > Studio
Projects to Archives.

TIBCO Business Studio for BusinessWorks
To export a shared module as a binary shared module from TIBCO Business Studio for BusinessWorks,
follow these steps.

Procedure

1. In Project Explorer, right-click the shared module folder, and choose one of the following options to
begin exporting the shared module as a binary shared module:

● Select Export > Export. In the Export dialog, expand the General node, select Binary Shared
Modules to Archive, and click Next.

● Select Export > Binary Shared Modules to Archive.

36

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. Select the check box of the shared module to convert to a binary shared module.
3. In the To Archive File field, navigate to the folder where you want it created and enter a name for

the binary shared module you want to create and click Save.
4. Click Finish in the Export Project dialog.

Result

The shared module is exported as a binary shared module.

To confirm the shared module was successfully exported as a binary shared module, import the binary
shared module into a new workspace, and expand the project. All application folders and details, with
the exception of the folders under the Module Descriptors folder, are hidden. Optionally, check the
MANIFEST.MF file, and confirm the TIBCO-BW-SharedModuleType header is set as follows:
TIBCO-BW-SharedModuleType: binary

CLI
To export a shared module as a binary shared module from the command line, follow these steps:

Prerequisites

● Start the bwdesign utility. To do this, follow these steps:

1. Open a terminal and navigate to BW_HOME\bin.
2. Type bwdesign -data <TIBCO_BusinessStudio_workspace_absolutePath>. For example,

bwdesign -data C:\myWorkspace.
● Back up the shared module by exporting the project as a zip or EAR file. To do this, type -export

[options] [projects] [outputfolder]

Type export -binary <shared_module> . For example, export -binary shared_petstore.
Optionally, type export -bin <shared_module>. For more details about the -binary and -bin
commands, type export --help .

Result

The shared module is exported as a binary shared module.

To confirm the shared module was exported as binary shared module, import the binary shared
module into a new workspace by typing bwdesign -data

37

TIBCO ActiveMatrix BusinessWorks™ Application Development

<TIBCO_BusinessStudio_workspace_absolutePath>. After doing this, expand the project in the
Project Explorer to verify that all application folders and details, with the exception of the folders under
the Module Descriptors folder, are hidden. Optionally, check the MANIFEST.MF file, and confirm the
TIBCO-BW-SharedModuleType header is set as follows:
TIBCO-BW-SharedModuleType: binary

Using Binary Shared Modules in your Project
To use a binary shared module, you begin by importing the archive into your workspace where it
appears like any other shared module, except that the internal details of the shared module are not
visible. You use a binary shared module in the same way as you would use any other shared module.
You can see the processes in the Project Explorer but cannot view their diagrams in the Process Editor
or open them with a text editor to decipher their models.

You can see the following artifacts associated with a binary shared module:

● Process and package name

● XML schema files associated with the module

Because the schema files are in plain text, you will be able to modify them. Keep in mind
though that if and when you import a newer version of the module into your workspace,
your modifications to the schema files will be overwritten.

● Shared resources - you can reference them, but cannot edit them

● Module Descriptor folder - only the Overview item is available under this folder

● Module Descriptor editor will be able to display the Overview page only. All other fields will be
disabled

You can implement a Call Process activity that invokes the functionality in the binary shared module.
When deploying your application, the binary shared modules are included in the application like any
other shared module.

Difference between a Shared Module and a Binary Shared Module

This section describes the difference between a shared module and a binary shared module.

In Project Explorer

The image below shows you the difference between a shared module (shared5, in the image below) and
a binary shared module (shared4). Notice that almost all the editable artifacts (such as Module
Properties, Dependencies and Shared Variables) are missing from the binary shared module tree. This
is one way to prevent the binary shared module from being edited.

38

TIBCO ActiveMatrix BusinessWorks™ Application Development

Menu Items

At the project level some of the context menus items are disabled in the binary shared modules. At the
resource level all the menu items except for Show Properties View are disabled.

Context
Menu Shared Module Binary Shared Module

At the
project
level:

Right-click
menu from
process
name

39

TIBCO ActiveMatrix BusinessWorks™ Application Development

Context
Menu Shared Module Binary Shared Module

Repair
BusinessW
orks Project
dialog

Context
menus at
Processes,
Service
Descriptors
, Resources,
and
Schemas
level

Public Processes and Internal Processes

A binary shared module can contain two types of processes - public processes and private (internal or
inline) processes. While a public process in a binary shared module can be called by an application, a
private process within the module is meant for consumption by the public processes within that binary
shared module only. By default, the private processes are not visible in the Project Explorer.

To view the private processes in the Project Explorer, do the following:

1. In the Project Explorer, click the View Menu button () and select Customize View.

40

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. In the Available Customizations dialog, deselect the BW binary private processes check box and
click OK.

Referencing Shared Modules
You can import shared modules from an external location to a shared location where other users can
reference them. The shared modules that you import are read-only.

Procedure

1. To reference external shared modules, navigate to Window > Preferences > Plug-in Development >
Target Platform. Using the target platform option you can add, delete, or edit target definitions. The
exported definitions are stored locally and can be moved to a project and shared with other users.

2. On the Target Content dialog box, click Add.

3. On the Add Content dialog box, select the option BW Shared Module and click the Next.

4. On the Add BusinessWorks Shared Module dialog box, browse to the location of the external
shared module ZIP folder to add the shared module to the target definition.

41

TIBCO ActiveMatrix BusinessWorks™ Application Development

5. In the Application Module, navigate to Module Descriptors > Dependencies and click the Add
button to view all the available external shared modules. To add the required external shared
module, select the shared module and click Ok.
The external shared module can then be opened in the read-only mode.

Creating a Process
Processes are always contained in a process package. When creating a process, either create a new
process package or select an existing package in which the new process is to be created.

Prerequisites

A module must exist to which processes can be added. If a module does not exist, create a new module
before creating a process.

The BusinessWorks Process Creation wizard helps create a generic business process. By default, it is
configured to create a process with name Process. There are multiple ways to launch the wizard:

● From the main menu, select File > New > BusinessWorks Resources and then select
BusinessWorks Process.

● From the Module Descriptors > Overview getting started area, click Create a BusinessWorks
Process.

42

TIBCO ActiveMatrix BusinessWorks™ Application Development

● Right-click the Processes folder in the Project Explorer view, and then select New > BusinessWorks
Process.

Specify the values for the following fields in the New BWProcess Diagram wizard:

Field Description

Process Folder Name of the module and the Process special
folder where the process will be located. You can
add multiple folders in Project Explorer and
then update this field to select the new folder.
For example: bw.test.app/Processes.

Package Name of the package in the module where the
new process is added. Accept the default
package, or browse to select a different package
name. For example: bw.test.app.main.

Process Name Name of the new process. For example:
MainProcess

Modifiers Designate whether the process will be public or
private. This can be changed later.

Patterns Choose the pattern Empty Process when
creating a process.

To create a subprocess, choose the
pattern Subprocess. For more
information, see Creating Sub-
Processes on details for creating a
subprocess.

Click Finish to create a new empty process. A process with the specified name is created and opened in
the Process Editor.

What to do next

After creating the process proceed to:

● Configure the process as described in Working with Process Properties

● Add activities to the process as described in Adding Activities

Working with Process Properties
Process configuration defines the behavior of a process at runtime. You can specify, or edit, the
modifiers, mode, and activation type for a process. You can also define process properties and process
variables, add or remove services and references, and configure the process dependencies. Open a
process in TIBCO Business Studio™ for BusinessWorks™ if it is not already open and go to the
Properties view. Configure the properties for a process by selecting the appropriate tab in the
Properties view.

43

TIBCO ActiveMatrix BusinessWorks™ Application Development

General

Property Name Description

Package Displays the name of the package containing the
process. This field is not editable. To rename the
package name, select the bulb icon on the right
side. It open a Rename Package dialog box.
Change the package name using the Rename
Package dialog box.

Name Name of the process. This field is not editable.
To rename the process name, select the bulb icon
on the right side. It open a Rename Process
dialog box. Change the process name using the
Rename Process dialog box.

Description

Property Name Description

Description Description of the process.

Advanced

Property Name Description

Target Namespace Target namespace for the process.

You can specify a different target namespace.

Modifiers Modifiers define the visibility of the process
outside its package:

● Public: can be invoked by processes that are
defined either inside or outside the package.

● Private: can be invoked only by processes
that are part of the same package.

44

TIBCO ActiveMatrix BusinessWorks™ Application Development

Property Name Description

Mode Mode defines whether the process depends on
the engine to maintain its state:

● Stateful: Stateful processes maintain the state
across multiple operations. They are better
suited when you need the server to maintain
the state across operations. For processes that
involve related message exchanges between
the same or different consumers,
conversations can be used to maintain state
across operations.

● Stateless: Stateless processes do not maintain
state. They are better suited when you need
to process higher loads of requests as each
operation is executed independently. They do
not require correlation or conversations
between multiple operations in a process ,
thus allowing the server to process each
operation without maintaining any state
information. The client can choose to
maintain the state information, if needed.

Activation Activation mode for a process defines the way in
which processes are activated at runtime.

● Multiple AppNodes: At runtime, the
application is distributed and activated on all
the AppNodes in the AppSpace. In the event
of a failure on one of the AppNodes, the
application continues to run with fewer
AppNodes.

● Single AppNode: At runtime, the
application is activated on only one
AppNode in the AppSpace. In the event of a
failure, another AppNode will be activated
and any check pointed data can be recovered.

This feature requires the engine
persistence mode to be set to group
and the database and group provider
to be configured. See Configuring
Database for the Engine and
Configuring Group Provider for the
Engine for details.

45

TIBCO ActiveMatrix BusinessWorks™ Application Development

Property Name Description

Activity Error Variable By default, this check box is selected for
migrated processes. During migration, activity
error variables are created for activities in the
process that contain error transitions. Additional
activity error variables are also created for
activities with fault types, and or, if new
activities with fault types are added to the
process.

If you are configuring a process created in
ActiveMatrix BusinessWorks 6.x, and you select
this check box, activity error variables are
created for activities in the process that have
fault types. If new activities with fault types are
added to process, additional activity error
variables are created.

Clear the check box removes activity error
variables created for activities with fault types.
Global error variables and activity error
variables for activities with error transitions are
not affected.

46

TIBCO ActiveMatrix BusinessWorks™ Application Development

Property Name Description

Namespace Registry Namespaces and prefixes can be configured at
the Process level. Click the Configure namespace
registry link field from the Advance tab of the
Process configuration to view, add, change or
delete prefixes for namespaces used in the input
bindings of the activities in the process
definition. Process namespace registry applies to
the current process.

Namespaces and prefixes can also be configured
at the Module level. To add a new prefix for a
namespace or to change the current namespaces
and prefix configurations, from the Module
Descriptors > Overview getting started area,
click the Configure namespace registry link.
Module namespace registry applies to all the
processes in the module.
If you have defined both, Process level and
Module level configurations for a namespace,
the Process level registry takes precedence over
the Module namespace registry.

When namespace registry is applied, prefixes in
the activity input bindings are updated using the
prefixes defined in the namespace registry
where the namespaces are referred to.

A list of namespaces and their prefixes is
automatically populated when an input or
output binding is created or modified. This list is
populated at the Process level or at the Module
level, depending on the preference set at
Windows > Preferences> BusinessWorks >
Namespace Registry.

Process Properties

Add or delete process properties variables in the following format:

Property Name Description

Property Name Provide a property name.

47

TIBCO ActiveMatrix BusinessWorks™ Application Development

Property Name Description

Data Type Supported Data Types are:

● Boolean

● DateTime

● Integer

● Long

● PassWord

● String

● Data Format

● FTP Resource

● HTTP Client

● HTTP Connector

● Identity Provider Resource

● JDBC Connection

● JMS Connection

● JavaGlobalInstanceResource

● KeyStoreprovider Resource

● LDAP Authentication

● Notify Configuration

● Proxy Configuration

● Rendezvous Transport

● SMTP Resource

● SSL Client

● Subject Provider Resource

● TCP Resource

● ThreadPool Resource

Data types may vary depending on the
additional plug ins installed.

Default Value Provide the Default value based on a data type.

Process Variables

Process variables are used to store temporary data that are used by the process to store values other
than simple output from an activity. Simple type or Complex Type variables can be created.

Services

Use the Services tab to create additional services.

References

Use the References tab to create additional references that are consumed by the process.

48

TIBCO ActiveMatrix BusinessWorks™ Application Development

Dependencies

The Dependency tab can be used for troubleshooting any unresolved element-namespace issues in
your process. This tab provides a view of what WSDL & XSD namespaces are currently being imported,
and it also provides a way to add a new namespace import that will resolve a specific Element. If you
choose the Element, the appropriate namespace import is then added to make sure that the element
resolves.

Creating a Subprocess
Subprocesses are designed for complex business processes to make the main process easier to
understand and debug. Subprocesses are called inside the main process and their output is used in the
main process.

The BusinessWorks Process Creation wizard helps create a subprocess. There are multiple ways to
launch the wizard:

● From the main menu, select File > New > BusinessWorks Resources and then select
BusinessWorks Sub Process.

● From the Module Descriptors > Overview getting started area, click Create a BusinessWorks
Sub Process.

● Right-click the Processes folder in the Project Explorer view, and then select New >
BusinessWorks Sub Process.

Specify the values for the following fields in the New Subprocess wizard:

Field Description

Process Folder Name of the module and the special folder
where the subprocess will be located.

Package Name of the package in the module where the
new subprocess is to be added. Accept the
default package, or browse to select a different
package name.

Process Name Name of the subprocess.

Modifiers Designate whether the process will be public or
private. This can be changed later.

49

TIBCO ActiveMatrix BusinessWorks™ Application Development

Field Description

Interface Mechanism Select either Direct or Service

● Direct: Select this option to create a non-
WSDL-based subprocess. When you select
this option, a new subprocess, containing a
Start and End activity, is created.

● Service: Select this option to create a WSDL-
based subprocess. Next, choose one of the
following options:

— Default: Select Inline to create an inline
subprocess. Select Standalone to create a
standalone subprocess.

— Custom: Select this option and click Next
to create a new WSDL interface or use an
existing WSDL interface for the
subprocess.

● Right-click the Processes folder in the Project Explorer view, and then select New >
BusinessWorks Process.

Specify the values for the following fields in the New BWProcess Diagram wizard:

Field Desscription

Process Folder Name of the module and the special folder
where the subprocess will be located.

Package Name of the package in the module where the
new subprocess is to be added. Accept the
default package, or browse to select a different
package name.

Process Name Name of the subprocess.

Modifiers Designate whether the process will be public or
private. This can be changed later.

Patterns Select Standard Patterns > Process and then
select one of the following options:

● Direct Subprocess

● Service Subprocess

See the preview of the selected subprocess.

Click Finish to create a subprocess.

Result

A subprocess with the specified name, and containing a Start and End activity, is created and opened in
the Process Editor.

50

TIBCO ActiveMatrix BusinessWorks™ Application Development

Parent Process and a SubProcess Example

Consider an example that illustrates how a parent process is designed to call a subprocess and
collect data from that subprocess.

The parent process consists of a getEvent activity that calls the subprocess.

Parent Process

The subprocess implements the interface getEvent and returns the output back to the parent
process. The parent process then logs the output received from the subprocess in a log file.

Sub Process

Creating an Activator Process
An activator process consists of two service operations, On StartUp and On ShutDown, which can be
used to perform tasks when an application starts or after an application stops.
An application module can contain only one activator process. The following steps describe how to
create an activator process for an application module.

Procedure

1. From the Module Descriptors > Overview > General Information area, click the icon in front of
the Activator Process input field.

51

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. Review the fields in the Create Activator Process wizard and click Finish to create an activator
process. The New BWProcess Diagram wizard is displayed as follows.

Result

An activator process with the service operations On StartUp and On ShutDown is created.

52

TIBCO ActiveMatrix BusinessWorks™ Application Development

● You can change the activator process any time after its selection.

● You can choose the activator only from the module for which the Overview editor is opened, and
locate anywhere within the module.

● To open the list of existing activator processes, click the icon in front of the Activator Process
input field. As you start typing the name of the existing process in the Select an item to open (?=any
character, *=any string): input field, the matching results are displayed. The Select a Business
works Process window is displayed as follows.

53

TIBCO ActiveMatrix BusinessWorks™ Application Development

Adding Activities
Activities are the individual units of work in a process.

There are multiple ways to add activities in a process: from the right-click menu on the Process Editor,
from the palettes, and from the File Explorer or Project Explorer.

Adding Activities from the Palettes

To add an activity to a process using the palette:

1. In the Palette view, select a palette from the library. All the activities available in the palette are
displayed.

2. Select the activity that you want to add and drop it onto the process in Process Editor.

3. Configure the activity by specifying the values for the properties in the Properties view. The
configuration properties are grouped under different tabs such as General, Description, Input,
Output, Conversation, and so on. For example, upon adding a Log activity, you can configure it by
specifying the values for the properties under the tabs: General, Description, and Input. See
Working with Standard Activity Features for details.

General and Description tabs are available for all activities to enter their name and a short description.
Depending on the activity, these tabs may include additional fields such as variables, time, shared
configurations, and other values that are required by the activity. Activities can also contain additional
tabs such as Input, Output, Conversation, Fault, and so on.

Adding Activities From the Project Explorer

You can add pre-configured activities to a process by dragging-and-dropping a selected resource such
as a schema (XSD) or WSDL file from the Project Explorer. To do so, follow these steps:

1. In the Project Explorer, select a file such as a WSDL file that you want to use to create an activity.

2. Drag and drop the resource onto an existing process. The software parses the resource and provides
a menu consisting of a list of pre-configured activities.

3. From the menu, select the activity you want to add to the process.

In the example, drag and drop the file HelloWorld.wsdlEcho.wsdl from the Project Explorer onto the
process. A menu with a list of activities is presented. Select an activity to be added to the process.

Drag-and-Drop a Resource

An activity is connected to another activity by dragging the [+] symbol, positioning and dropping it,
and then selecting the next activity from the menu selection. See Working with Transitions for details.

54

TIBCO ActiveMatrix BusinessWorks™ Application Development

Adding Activities From the File Explorer

You can add pre-configured activities to a process by dragging-and-dropping a selected file such as an
XML file from the File Explorer. To do so, follow these steps:

1. In the File Explorer, select a file you want to use to create an activity.

2. Drag and drop the resource onto an existing process. The software parses the resource and provides
a menu consisting of a list of pre-configured activities from the File palette.

3. From the menu, select the activity you want to add to the process.

In the example, drag and drop the file Book-0001.xml from the File Explorer onto the process. A menu
with a list of activities is presented. Select an activity to be added to the process.

Drag-and-Drop a Resource

An activity is connected to another activity by dragging the [+] symbol, positioning and dropping it,
and then selecting the next activity from the menu selection.

Working with Transitions
Transitions are used to connect two activities to represent the flow of process execution from one
activity to the other.

Transitions are added between activities in a process and are configured to fit the process goal.

Adding a Transition

You can choose to add a transition in one of the following ways:

● Click the Create a Transition icon in the Palette view's toolbar and draw a line between two
activities that are to be connected.

● Select the beginning activity of the transition, click the icon and drag and drop it on to the
ending activity of the transition.

55

TIBCO ActiveMatrix BusinessWorks™ Application Development

Configuring a Transition

After creating a transition specify the configuration information on the General tab of the Properties
view:

1. Label: Add a label for the transition that will be available in the diagram. This label can be changed
later.

2. Fill Color: Select Color for the transition from the basic colors or define a custom color. Color coding
helps you distinguish among different transitions based on the conditions that are defined for them.
The default color for Error is red, while the default color for other transition types is black.

3. Condition Type: Select the type of the condition for the selected transition: Success, Success with
condition, Success with no matching condition, and Error.

You can define several types of conditions for a transition:

Success

Take this transition unconditionally. If the activity completes successfully, always transition to the
activity the transition points to. This is the default condition for transitions.

Success with Condition

Specify a custom condition using XPath. If the activity completes successfully, and the condition
evaluates to true, take the transition to the pointed-to activity.

Success with no Matching Condition

Take this transition when the activity completes successfully but only if no other transitions are taken.
This is useful when multiple transitions with conditions are drawn to other activities. This condition
type can be used to handle any cases not handled by the conditions on the other transitions.

Error

Take this transition if there is an error during the activity processing.

Error Transitions

Error transitions are taken if there is an error during the processing of an activity or group. When an
activity or group throws an error or fault, none of the success conditions are taken; only the error
transition is executed. An error transition can be added to process starter activities, signal-in activities,
regular activities, and groups.

Activities and groups only support one error transition at a time.

Working with Standard Activity Features
Specify the required configuration elements to make the activity work. These configuration elements
are available in the Properties view.

Each activity usually has two or more of the following tabs for specifying the characteristics of the
activity:

General
This tab is available for all activities. In addition to the name of the activity, it also sets other
parameters such as questions about directories and overwriting for file activities, class name for Java
activities, host name, and port number for mail activities, modifiers, mode, and activation settings.

Description

56

TIBCO ActiveMatrix BusinessWorks™ Application Development

This tab is available for all activities. You can write down any information you need to preserve for the
activity.

Statement
This tab is available for query activities; used to define, validate, and execute a query.

Advanced
You can specify any advanced configuration parameters here.

Event
For activities that wait for incoming events, such as incoming TIBCO Rendezvous™ messages, this tab
specifies the timeout for the incoming event.

Conversations
Used to add new conversations. For more information about conversations, see Using Conversations .

Input Editor
Used to edit an output element by adding a complex anonymous type, complex element, primitive
element, and so on. Not all activities have this option enabled. For more details see Input and Output.

Input
Using the tab you can map and transform output data from the previous activities in the process
(including the event that starts the process) to input data for Input the activity. For more details see
Input and Output.

Output Editor
This tab is used to choose or configure the output header element. Not all activities have this option
enabled. For more details see Input and Output.

Output
This tab displays the output of the activity’s data to the activities that follow in the process definition.
For more details see Input and Output.

Fault
Lists the activity faults or various exceptions that might occur with this activity, such as
FileNotFoundException or IllegalCopyException.

Input and Output
The Input tab is used to enter the data for an activity and the Output tab displays the output schema of
an activity.

Configuring the Input Tab

The Input tab is available in the Properties view and is used to enter data for an activity. Input data for
an activity can be any of the following:

● Constant/Literal specified using numbers or strings enclosed in quotes.

● Regular Expression specified using an existing schema item or by keying in a constant expression in
the field.

● Mapping the output from previous activities to the current activity's input. Using the mapper, you
can choose functions or constants from the Functions and Constants tabs with the mapped data.

57

TIBCO ActiveMatrix BusinessWorks™ Application Development

Input Tab

To create a mapping:

1. Click on the desired item in the available schema in the Data Source panel. Drag the item to the
desired item in the Activity Input panel.

2. To type in a constant or expression, click on the schema item in the Activity Input panel and type
the constant or expression into the field.

Right-Click Menu

When you select an element in the Activity Input schema and right-click, a popup menu appears. The
Surround With menu item contains several sub-items that are useful shortcuts for creating XSLT
statements.

● Surround with Choose — a shortcut for adding a choice statement and its associated conditions or
otherwise statements around the currently selected element.

● Surround with If — a shortcut for adding an if statement and placing the currently select element
as the sub-element of the if.

● Surround with ForEach — a shortcut for moving the current element into a For-Each statement.

● Surround with ForEach Group — a shortcut for moving the current element into a For-Each-Group
statement and adding a Group-By grouping statement. The current-group() is not provided on
source side. When you create for-each binding under a for-each-group, it adds current-group()
by default. The Grouping statement creates the list grouped by the desired element, and the
current-group() function allows you to access the items in the requests repeating element that
correspond to the group that is currently being processed.

Configuring the Input Editor Tab

Using the Input Editor tab you can configure the input data for an activity.

Input Editor Tab

Instead of specifying a constant or an expression for the schema item, you can first configure the
sequence in which this message will appear by setting up the element it is contained in.

You can define the sequence of an element using the icons on the right:

58

TIBCO ActiveMatrix BusinessWorks™ Application Development

1. Add Complex Anonymous Type: Adds an element sequence that is defined by the following:

a. Schema type definition or creating a new type definition.

b. Number of Minimum Occurs (default is 1).

c. Number of Maximum Occurs (1 or unbounded).

d. Number of references to this resource (generated, in this case it is 0).

e. Initiate Rename Schema Element: rename the schema element by entering the New Name and
choosing the option whether to update the references to this element.

f. The remaining icons are Go To , Accept Changes , and Delete , which invoke the
general editing tools.

2. Add Complex Element: This option adds a complex element that you can further define by the
following:

a. The schema type definition or a new type definition (default is anyType)

b. Number of Minimum Occurs (default is 1).

c. Number of Maximum Occurs (1 or unbounded).

d. Number of references to this resource (generated, in this case it is 0).

e. Initiate Rename Schema Element: rename the schema element by entering the New Name and
choosing the option whether to update the references to this element.

f. The remaining icons are Go To , Accept Changes , and Delete , which invoke the
general editing tools.

3. Add Primitive Element: This option adds a primitive element that you can further define by
the following:

a. Choosing by the Primitive Types: String, Integer, Decimal, Boolean, Date&Time, Binary, URI or
Any.

b. Choosing by the Primitive Sub Types: String, Normalized String, Token, Language, Name. NC-
Name, Q-Name, Name Token, Name Tokens, ID, ID ref, ID refs, Entity, and Entities.

c. Number of Minimum Occurs (default is 1).

59

TIBCO ActiveMatrix BusinessWorks™ Application Development

d. Number of Maximum Occurs (1 or unbounded).

e. Number of references to this resource (generated, in this case it is 0).

f. Initiate Rename Schema Element: rename the schema element by entering the New Name and
choosing the option whether to update the references to this element.

g. The remaining icons are Go To , Accept Changes , and Delete , which invoke the
general editing tools.

4. Add Reference Element: This option adds a reference element that you can further define by
the following:

a. The schema type definition or a new type definition.

b. Specifying the Minimum Occurs number (default is 0).

c. Selecting from the drop-down list the Maximum Occurs number (1 or unbounded.)

d. The remaining icons are Go To , Accept Changes , and Delete , which invoke the
general editing tools.

5. Add Attribute: This option adds an attribute that you can further define by the following:

a. Choosing by the Primitive Types: String, Integer, Decimal, Boolean, Date&Time, Binary, URI or
Any.

b. Choosing by the Primitive Sub Types: String, Normalized String, Token, Language, Name. NC-
Name, Q-Name, Name Token, Name Tokens, ID, ID ref, ID refs, Entity, and Entities.

c. Use Optional/Required (default is Optional).

d. The remaining icons are Go To , Accept Changes , and Delete , which invoke the
general editing tools.

6. Add Any Element: This option adds an element that you can further define by the following:

a. Wildcard Namespace (a space-delimited list of the namespaces can be entered).

b. Entering the Minimum Occurs number (default is 0).

c. Selecting from the drop-down list the Maximum Occurs number (1 or unbounded.)

60

TIBCO ActiveMatrix BusinessWorks™ Application Development

d. The remaining icons are Go To , Accept Changes , and Delete , which invoke the
general editing tools.

Viewing the Output Tab

The Output tab is available in the Properties view and is used to display the activity output schema.
The output of an activity is displayed for informational purposes only and cannot be modified or
altered.

The output tab displays the activity output schema. This name appears in subsequent activities input
tabs. The activity output data is displayed for informational purposes only and cannot be modified or
altered.

Output Tab

Configuring the Output Editor Tab

Input Editor allows for GUI based approach in configuring the output data.

Output Editor Tab

Using the icons on the right, additionally define the Name in element. The icons have same meaning as
when used for the Input Editor.

Creating a Module Property
Module properties can be used to define configuration for shared resources, policy resources, and
activities. Activities can use process properties or module properties. When a module property is
referenced directly in an activity, a new process property is created automatically and mapped to
module property with same name as the module property.
To create a module property, follow these steps:

Procedure

1. Expand the module in Project Explorer.

61

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. Expand Module Descriptors.

3. Double-click Module Properties.
This opens the Module Properties page in the right pane.

4. Click New Property to create a new module property.

5. Edit the name of the property by clicking its default name in the Groups/Properties column.

6. Optional. Change the property type by clicking in its Type column and selecting a type from the
drop-down list.

7. Enter a value for the property by clicking in its default column.
You can organize the related properties into various groups. To create a group, click New Group
and then move the property under the group using the Move Up or Move Down buttons.

Editing a Module Property
You can edit a module property from the Module Properties page or override its value from the
Properties page that is accessed from the application. Before you edit a module property, keep in mind
that the change will be propagated to any activity, binding, or shared resource that uses or references
the property.

To edit the value of a module property, do the follow these steps:

Procedure

1. In Project Explorer, expand the application module completely and double-click Module
Properties to open the Module Properties page in the right pane. Alternatively, to open the
Properties page, expand the application completely and double-click Properties.

2. Double-click in its [default] column and enter a new value or edit the existing value.

3. Save the application.
The value of the property changes color from black to blue. If you edit the module property value in
the Properties page accessed from the application, it will override the original value of the property
that was defined in the Module Properties page.

Promoting Module Properties for Visibility at the Application Level
Module properties in an application module are visible and applicable only to the module in which
they were created. They are internal to the application module and are not available at the application
level.

To promote a module property to the application level, do the following:

Procedure

1. In Project Explorer, fully expand the application and double-click Properties under Package Unit.
This opens the Properties editor in the right pane which displays both application properties as well
as the module properties.

2. Expand the application module name, select the module property, and double-click its value
column ([default]) to reveal the edit buttons.

3. Click the button to promote the module property to the application level and save the
application.
The property should appear under Application. Also, the value of the original module property
will change color to blue and enclosed in %% indicating that the property has been promoted. The
property will now be visible at the application level.

62

TIBCO ActiveMatrix BusinessWorks™ Application Development

To revert the promotion, double-click the [default] column and click the button. This removes
the mapping of the promoted application property from its source module property but will not
delete the promoted property appearing under Application. Make sure to manually delete the
promoted property under Application in order to clean up unwanted properties.

If you edit a module property on this page, its color changes to blue indicating that the value of this
property was overridden.

Deleting a Promoted Property
To delete a promoted property, select it under Application and click Delete.

Importing WSDLs
Follow these steps to import WSDL files from the internet into TIBCO Business Studio for
BusinessWorks.

Procedure

1. Right-click the Service Descriptors folder, and select Import > Import WSDL from URL

2. Enter the URL of the WSDL in the Resource URL field.
The Import Location field is automatically populated with the import location of the WSDL and
XSD files being imported. By default, WSDL file are imported to the Service Descriptors folder and
XSD files are imported to the Schemas folder. You can update these import locations in the wizard.

If you enter a remote WSDL URL, and the WSDL contains dependencies, these
dependencies will be listed in the Dependencies section of the Import WSDL from URL
wizard.

3. Optional. Unselect the Update import location attribute and include location attribute to reference
WSDL and XSD files imported locally check box if you do not the import location to be
automatically updated with the relative locations of corresponding and already imported WSDL
and XSD files.

63

TIBCO ActiveMatrix BusinessWorks™ Application Development

Using Additional Features

Complex business processes make use of additional features such as process scopes, fault handlers,
conversations, checkpoints, and so on.

The sections that follow describe how to use the specified feature when developing a process.

Using Scopes
A scope is a group without any conditions that is used to encapsulate activities and variables from the
outer scope.

Prerequisites

Select the activities you want to add to a Scope.

Procedure

1. Right-click on the selection and select Create Group > Scope .
The selected activities will be encapsulated in a new scope.

2. Configure the new scope from the Properties view.
a) General tab

● Name: Specify a name for the scope.

● Group Type: Default is set to Scope, which is a group of activities without any conditions.
Change the group type to create a group with conditions.

b) Description tab

● Description: Enter a description for the new scope.
c) Variables tab

You can add local variables to the group from the Variables tab. See Adding Scope Variables for
details on adding variables.

A scope variable can override a process variable if they have the same name. Use the Assign activity
to override a process variable with the scope variable.

Adding Scope Variables
A scope variable saves the state within the scope.

To add scope variables, select the scope in the Process Editor and then select the Variables tab on the
Properties view.

Adding a Complex Type Variable

Click the icon Add complex type Variable and select an existing schema or create a new schema to
be added from the Select Schema Element Declaration dialog box.

Select Schema Element Declaration

Field/Action Description

Workspace When selected, the variable is valid only during the design-
time.

64

TIBCO ActiveMatrix BusinessWorks™ Application Development

Field/Action Description

Current and Dependent Modules When selected, the variable is valid for the current module and
the modules that are dependent on it.

Current Module When selected, the variable is restricted to the current module.

Display all XSD Elements Select the check box to display all the XSD elements in the
module. This check box is selected by default.

Include Process Inline Schemas Select the check box to display the process inline schemas in
the module.

Include WSDL Inline Schemas Select the check box to display the WSDL inline schemas in the
module.

If you chose an existing schema, click OK to select it. If you choose to create a new schema, click Create
New Schema to create a new XML schema.

Create XML Schema

Field/Action Description

Resource Name Specify a name for the new schema.

Workspace Location Specify a location to store the new schema. The wizard
displays the default location for the particular module. You
can choose to keep the default or browse to select a different
location.

Choose a Root Element Add a primitive element to the new schema using the icon

Add Primitive Element .

The new primitive element will appear listed under the root
element. Double-click the element to configure it.

Primitive Types Select the primitive type for the element from the drop-down
list:

● String

● Integer

● Decimal

● Boolean

● Date & Time

● Binary

● URI

● Any

65

TIBCO ActiveMatrix BusinessWorks™ Application Development

Field/Action Description

Subtypes Select the subtypes for the element from the drop-down list:

● String

● Normalized String

● Token

● Language

● Name

● NC-Name

● Q-Name

● Name Token

● Name Tokens

● ID

● ID ref

● ID refs

● Entity

● Entities

Number of references to this
resource

Displays the number of references to this resource.

 Initiate Element Rename
Refactoring

Use to rename the schema element. You can choose to
preview and update all references to the element.

 Accept Changes
Accept the changes entered for the new schema element.

 Cancel Changes Cancel the changes accepted for the new schema element.

Remove Selected Element
Any of the elements added to the schema can be deleted
using this option.

Click OK when you are done editing the XML schema.

Adding a Simple Type Variable

Add a simple variable by clicking the icon Add simple type Variable. Select the variable type from
the drop-down list and specify a default value.

Variable Type Default Value

String None.

Integer 1

Decimal 1

66

TIBCO ActiveMatrix BusinessWorks™ Application Development

Variable Type Default Value

Boolean true (You can select false from the drop-down
list.)

Date & Time None. Enter a date and time.

XSD Element To select an XSD element, follow the instructions
provided in Adding Scope Variables

Defining and Using Shared Variables
Shared variables are defined at a module level.

Defining a Shared Variable

Procedure

1. In the Project Explorer view, double-click Shared Variables under the Module Descriptors to open
the Shared Variables tab.

Two panes are displayed:

● Module Shared Variables

● Job Shared Variables

For more information, see "Shared Variables" section in the TIBCO ActiveMatrix BusinessWorks™
Concepts guide.

2. Click one of the following icons in the respective sections to define a module shared variable or a
job shared variable:

● - Add a complex element. You can choose from an existing schema declaration or create a
new schema.

● - Add a simple element.

● - Select the Shared Module where the reference to the shared variable needs to be
updated.

3. In the Properties view, provide the information as described in the following table.

67

TIBCO ActiveMatrix BusinessWorks™ Application Development

Tab Field Name Description

General Variable Name Name of the shared variable

Type After adding a complex or simple element, specify
the Module Data type for the shared variable to
use by selecting one of the following options from
the drop-down menu:

● String

● Integer

● Boolean

● Date&Time

● Complex Element...

Persistent By default, the value of a module shared variable
is stored in memory and the current state of the
module shared variable would be lost in case the
engine (or the AppNode) crashes.

Select the check box to persist the current value of
the module shared variable. The current state of
the variable in the engine's persistent storage is
only updated when the value of the variable
changes. Also, a persistent module shared variable
can be made visible across AppNodes in an
AppSpace when the engine persistent mode is set
to "group".

The engine persistence must be
configured for the current value of the
module shared variable to persist.

This check box only displays when
configuring module shared variables.
Job shared variables cannot be
configured to be persistent.

Description Description Description for the shared variable.

68

TIBCO ActiveMatrix BusinessWorks™ Application Development

Tab Field Name Description

Initial Value Initial Value Enter an initial value for the shared variable. Select
one from the following options:

● None: Specifies that no initial value is set for
the shared variable. Ensure that you set the
value using the Set Shared Variable activity in
the business process before you retrieve the
value of the variable using the Get Shared
Variable activity.

● Select Value: Select this option to browse and
select a file containing the initial value for the
shared variable.

● Build Value: Select this option to enter an
initial value for the shared variable.

Retrieving and Assigning a Value of a Shared Variable

To retrieve the value of a shared variable, use the Get Shared Variable activity in the General

Activities palette. To assign a value to a shared variable, use the Set Shared Variable activity in
the General Activities palette.

Working with Critical Section Groups
Critical Section groups and shared locks can be used to synchronize access to shared variables.

A Critical Section group allows only one process instance to execute the Critical Section group and its
contents at a time. Use a Critical Section group to contain the activities that access the shared variables,
Set Shared Variable and Get Shared Variable. Once a process instance begins executing a Critical
Section group, other concurrently running process instances that are associated with that Critical
Section group wait at the start of the group until the currently running process instance exits the
Critical Section group. This ensures that the value of the shared variable is not modified while another
process instance is accessing it. See Bindings and Palettes Reference > Basic Activities Palette > Critical
Section for more information about using Critical Section groups and shared locks.

Best Practices

Critical section groups cause multiple process instances to wait for one process instance to execute the
activities in the group. As a result, there may be performance implications when using these groups.
When creating critical section groups, use the following guidelines to avoid potential performance
issues:

● Keep the duration of a Critical Section group as short as possible. That is, put only a very few
activities in a Critical Section group, and only use activities that execute very quickly.

● Avoid nesting Critical Section groups. If you must use nesting, ensure that Lock shared
configuration resources are used in the same order in all process definitions. Deadlocks can occur if
you do not specify the Lock resources in the same order in nested Critical Section groups for all
process definitions.

69

TIBCO ActiveMatrix BusinessWorks™ Application Development

● Do not include any activities that wait for incoming events or have long durations, such as Request/
Reply activities, Wait For, Sleep, or other activities that require a long time to execute.

Using Fault Handlers
Fault handlers are used to catch faults or exceptions and create fault-handling procedures to deal with
potential errors.

Fault handlers are defined at the scope level allowing you to catch faults or exceptions thrown by
activities within a scope. There are two types of fault handlers: Catch Specific Fault and Catch All
Faults.

Fault handlers can be defined at the process level, or at a scope level within a process. The diagram
below shows two fault handlers - one defined at the process level and the other defined at an inner
scope level.

Fault Handler Attached to an Inner Scope

Procedure

1. Select the activities inside the process where the exception is expected to occur and select Create
Scope > Scope from the right-click menu.

2. Move the cursor right underneath the scope's lower border to view the icons to create fault
handlers.

3. Click one the following:

70

TIBCO ActiveMatrix BusinessWorks™ Application Development

● Create Catch to create a fault handler for a specific exception.

● Create Catch All to create a fault handler to catch all exceptions.

A new fault handler is added under the scope.

4. Add activities and configure the fault handling procedure inside the fault handler area. For
example, add a Log activity inside the fault handler area to record messages from the exception.

Using Conversations
Conversations are used for stateful business processes, which means that for completion, processes
require correlation of message exchanges. Such processes can be reentrant and so the previous process
context is maintained for continuity.

Conversations are always initiated by one activity and joined by other activities. All operations that are
part of the stateful process must generate a conversation ID and reply to the original client that contains
the conversation ID.

For example, an operation Submit Purchase Order in a stateful process gets the Purchase Order ID in
response. If the client wishes to cancel the purchase order, the client must use this correlation ID
(Purchase Order ID) to invoke the Cancel Purchase Order operation.

Building a Conversation

Procedure

1. Right-click the activity that needs to initiate the conversation and select Conversation > Create New
Conversation.
The Conversations tab in the Properties view displays the conversation name and action 'Initiate'.

2. Right-click the activity that needs to join the conversation and select Conversation > Join
Conversation > Conversation_Name.
The Conversations tab in the Properties view displays the conversation name and action 'Join'.

The Conversations tab of any activity that participates in conversations lists all the conversations it
is participating in.

3. Click on the conversation name to specify the key data.

71

TIBCO ActiveMatrix BusinessWorks™ Application Development

The initiating key is returned as a part of the response, and the client must provide the same key
when calling a related operation the next time. This ensures that the first and second operations are
called by the same client and the two operations are part of the same conversation.

Using Checkpoints
A Checkpoint activity saves the state and data of a process instance so that it can be recovered at a later
time, in case of a failure.

If an ActiveMatrix BusinessWorks engine fails, all processes that have a Checkpoint activity can be
recovered and resume execution from the last checkpoint executed in the process instance.

Only the most recent state is saved by a checkpoint. If you have multiple checkpoints in a process, only
the state from the last executed checkpoint is available for recovering the process.

Checkpoints save the state of the entire process instance. A process (parent process) can call another
process (sub-process) in two ways: in-line and non-inline. An in-line sub-process is executed as part of
the parent process job, while the non-inline sub-process spawns a new job. When a Checkpoint activity
is executed in an in-line sub-process, the checkpoint saves the state of the current process instance,
including the state of the parent processes. However, when a checkpoint occurs in a non-in-line sub-
process, the checkpoint saves the state of the spawned process instance only.

Checkpoints require the engine persistence mode to be either datastore or group. To configure the
persistence modes, see:

● For Datastore : Configuring Database for the Engine

● For Group : Configuring Database for the Engine and Configuring the Engine for Group Persistence
Mode

If the engine persistence mode is not configured with the correct value, an application with Checkpoint
activity encounters an error at deployment.

Recovering After a Failure

Following a crash, when the engine is restarted, the process instances are recovered from the last
checkpoint automatically. That is, all process instances that were check pointed will continue processing
from the last executed Checkpoint activity.

Ensure that the process has all of the data required to continue processing following a recovery. When
placing your checkpoint in a process, be careful with certain types of process starters or incoming
events, so that a recovered process instance does not attempt to access resources that no longer exist.
For example, consider a process with an HTTP process starter that takes a checkpoint after receiving a
request but before sending a response. In this case, when the engine restarts after a crash, the recovered
process instance cannot respond to the request since the HTTP socket is already closed. As a best
practice, place the response activity before the checkpoint so that any response is sent before a
checkpoint is taken. Also, do not place the Checkpoint activity in a critical section or an event handler.

Test checkpoints in your applications through the Admin UI or with bwadmin.

Using Coercions
In some scenarios, the datatype of a Data Source element might be undefined. If you know the datatype
of an element, you can coerce the element into a specific type using the Add/Edit Coercion... option in
TIBCO Business Studio for BusinessWorks. Additionally, you can use the Add/Edit Coercion... option
to create, modify, or delete coercions for any element in the Data Source schema.

72

TIBCO ActiveMatrix BusinessWorks™ Application Development

Adding a Single Coercion
To add a single coercion to an element, follow these steps.

Procedure

1. From the Data Source tab, select the element type of an element, right-click on the element and
select Add/Edit Coercion....

2. In the Coercion window, click the icon to add a coercion for the selected element.

3. Accept the default option for the Component Type field.

4. Select a schema for the Namespace field by choosing an option from the drop-down menu, or click

the browse icon to view a list of available schemas in the application module.

5. Click the Type field, to select an element type.

Ensure that the Type you select is an extension of the base type.

6. Optional. Select the Cardinality check box, and choose one of the following options from the drop-
down menu:

● Optional (?): Selecting this option sets the cardinality to zero to 1.

● Exactly one: Selecting this option sets the cardinality to 1.

● Repeating (*): Selecting this option sets the cardinality to 0 to infinity.

● At least one (+): Selecting this option sets the cardinality to 1 to infinity.

7. Click OK to coerce the element type to be the datatype of the selected schema element.

Result

In the Data Source tab, the element of the selected datatype is replaced with the schema you specified.
The coerced element can be mapped to any element in the Activity Input panel.

In the image below, the coerced element displays with the icon in front of the element name, and the
type you selected in parenthesis.

73

TIBCO ActiveMatrix BusinessWorks™ Application Development

Adding Multiple Coercions
To add a single coercion to an element, follow these steps.

Procedure

1. From the Data Source tab, select the element type of an element, right-click on the element and
select Add/Edit Coercion....

2. In the Coercion window, click the icon to add a coercion.

3. Accept the default option for the Component Type field.

4. Select a schema for the Namespace field by choosing an option from the drop-down menu, or click

the browse icon to view a list of available schemas in the application module.

5. Click the Type field, to select an element type.

Ensure that the Type you select is an extension of the base type.

6. Optional. Select the Cardinality check box, and choose one of the following options from the drop-
down menu:

● Optional (?): Selecting this option sets the cardinality to zero to 1.

● Exactly one: Selecting this option sets the cardinality to 1.

● Repeating (*): Selecting this option sets the cardinality to 0 to infinity.

● At least one (+): Selecting this option sets the cardinality to 1 to infinity.

7. Click OK.

Result

In the Data Source tab, the coerced element displays two types. Either type can be mapped to an
element in the Activity Input panel.

Coercing a Specific Data Type
Use the Substitution... option to coerce an element type. This is useful if you want to specify that the
input data use a specific datatype. Element, Type, Model group, and Attribute can be substituted.

Procedure

1. Select an element on the right side of the mapper, and select the Substitution... option.

2. Configure the Component Type field by selecting one of the following options:

74

TIBCO ActiveMatrix BusinessWorks™ Application Development

● Element: The element, if not an AnyElement, can only be substituted by other members in its
substitution group.

● Type: An AnyType or abstract type can also be substituted by other types.

● Model Group: Select this option to insert the contents of a selected model group into the mapper
tree. The selected element in the Activity Input Schema is replaced by the contents of the model
group you select.

● Attribute: Select this option to coerce an attribute to the anyAttribute type. This option is useful
if you are using attributes not specified in the schema.

3. Select a schema for the Namespace field by choosing an option from the drop-down menu, or click

the browse icon to view a list of available schemas in the application module.

4. Click the Type field, to select an element type.

Ensure that the Type you select is an extension of the base type or within the same
substitution group.

Result

After the substitution, the corresponding data type becomes the coerced one.

Editing Coercions
To edit a coerced element, follow these steps.

Procedure

1. From the Data Source tab, select the element type of an element, right-click on the element and
select Add/Edit Coercion....

2. In the Coercion window, select the Type to coerce the element to use.

3. Modify the ComponentType, Namespace,Type and Cardinality fields as needed.

4. Click OK.

Result

In the Data Source tab, the coerced element displays the new type you selected.

Removing Coercions
You can remove individual coercions from an element, or you can remove all coercions and return the
element to its original state.

Removing Individual Coercions

1. From the Data Source tab, select the element type of an element, right-click on the element and
select Add/Edit Coercion....

2. In the Coercion window, select the Type to remove, and click the icon.

In the Data Source tab, the element no longer displays the type you removed.

Removing All Coercions

To remove all coercions from an element, select the Add/Edit Coercion... option, and click the icon
in the Coercion window. Optionally, you can right-click on the coerced element, and select Remove

75

TIBCO ActiveMatrix BusinessWorks™ Application Development

Coercion to remove all coercions. Once all coercions are removed from the selected element, and the
element returns to its original state.

Configuring Database for the Engine
Checkpoint activity and other persistence features require the engine persistence mode
(bw.engine.persistenceMode) to be configured for a datastore or group mode. When the engine
persistence mode property is configured for datastore or group mode, the engine requires a database
configuration.

Procedure

1. Scripts for creating the engine database for various database types are located at BW_HOME/config/
dbscripts/engine. Based on whether the engine persistence mode property is configured for
datastore mode or group mode, complete one of the following steps:
a) If the engine persistance mode property is set to datastore mode, run the bundled scripts

create.sql and create-scp.sql to create the engine database.
b) If the engine persistance mode property is set to group mode, run the bundled scripts

create.sql and create-dcp.sql to create the engine database.
2. To change the engine persistence mode, run the utility to set the persistence mode property

bw.engine.persistenceMode to datastore or group, and then configure the engine database
connection details.
bw.engine.persistenceMode=[datastore | group]

Before updating the AppSpace configuration, you must stop the AppSpace if it is
running.

The database connection configuration can be specified at the AppSpace or the AppNode level. The
database connection details specified at the AppSpace level will apply to all AppNodes within the
AppSpace. The configuration specified at the AppNode level takes precedence over the
configuration specified at the AppSpace level.

When the engine persistence mode property is set to group, the database connection configuration
must be specified only at the AppSpace level.

When the engine persistence mode property is set to datastore, the database connection
configuration cannot be shared by two or more AppNodes in the same AppSpace. As a result, the
database connection configuration can be specified at the AppSpace level only if the AppSpace
contains a single AppNode. For an AppSpace that contains two or more AppNodes, each AppNode
requires a unique database and the database connection configuration must be specified at the
AppNode level.

3. To set database configuration properties at the AppSpace level, follow these steps:

Ensure you are using a different database instance for each AppSpace. To do this with a
single database, create a tablespace or schema for each AppSpace.

a) Copy the existing AppSpace config.ini file (located in the root of the AppSpace folder), or the
AppSpace config.ini template file appspace_config.ini_template (located in BW_HOME/
config/) to a temporary location.

b) Edit the engine persistence mode property, bw.engine.persistenceMode, and set it to
datastore or group.
bw.engine.persistenceMode=[datastore | group]

c) Configure the following database connection properties in the BW Engine datastore
configuration section of the config.ini file:
#--
Section: BW Engine Database Configuration.
#
The properties in this section are applicable to the BW Engine database.
All properties in this section are required when the BW Engine

76

TIBCO ActiveMatrix BusinessWorks™ Application Development

property "bw.engine.persistenceMode" set to "datastore" or "group".

--
BW Engine Database Driver.
bw.engine.db.jdbcDriver=org.postgresql.Driver

BW Engine Database URL.
bw.engine.db.url=jdbc:postgresql://<servername>:<portnumber>/<dbname>

BW Engine Database User Name.
bw.engine.db.userName=user1

BW Engine Database User Password.
bw.engine.db.password=

BW Engine Database Connection Pool Size.
bw.engine.db.maxConnections=15

When setting the password property (bw.engine.db.password), the default format is plain text.
Execute the command bwadmin obfuscate, or the command bwobfuscator, from the command
line to encrypt the password; use the generated encrypted text as the password.

The bwadmin bwenginedb command will display BW engine datastore configuration
settings.

4. To set the database for datastore mode at the AppNode level, follow these steps:
a) Copy the existing AppNode config.ini file (located in the root of the AppNode folder) to a

temporary location.
b) Set engine persistence mode property bw.engine.persistenceMode to datastore and
configure engine database connection details.
bw.engine.persistenceMode=[datastore]

c) Configure the engine database connection properties in the BW Engine datastore configuration
section of the config.ini file. By default, the AppNode config.ini file does not contain these
properties. Copy these properties from the AppSpace config.ini template file ,
appspace_config.ini_template, located in BW_HOME/config to the AppNode config.ini file
and provide the database connection details.

5. Use one of the following config admin commands to push the configuration to the AppSpace or
the AppNode:

● AppSpace:
bwadmin[admin] > config -d myDomain -a myAppSpace -cf <temporaryLocation>/
config.ini

● AppNode:
bwadmin[admin]> config –d myDomain –a myAppSpace -n myAppnode –cf
<temporaryLocation>/config.ini

6. Restart the AppSpace.

7. Before you clean the engine database, ensure that you have backed up all important data.

To clean the engine database that is configured for datastore mode, run the drop.sql and drop-
scp.sql scripts. If the engine database is configured for group mode, run the drop.sql and drop-
dcp.sql scripts.

Result

You used the bwadmin command line to set the database configuration property. You can also use the
Admin UI to set this property. See the following topics from the TIBCO ActiveMatrix BusinessWorks™
Administration guide.

● Editing an AppSpace Configuration

77

TIBCO ActiveMatrix BusinessWorks™ Application Development

● Editing an AppNode Configuration

Configuring the Engine for Group Persistence Mode
The managed fault tolerance feature requires the engine persistence mode to be configured for the
group mode. The group mode also supports the Checkpoint activity and other persistence features.
When configured for the group persistence mode, the engine requires both a database and a group
provider, such as TIBCO Enterprise Message Service™ (EMS) or TIBCO FTL®, to be configured.

Refer to the following topics for instructions about setting TIBCO EMS or TIBCO FTL as the group
provider technology for the engine:

● Configuring EMS as the Group Provider for Engine
● Configuring FTL as the Group Provider for Engine

Configuring EMS as the Group Provider for Engine
Follow these steps to configure the engine for group persistence mode, and to set TIBCO EMS as the
group provider technology.

Procedure

1. Create the engine database by executing the bundled scripts create.sql,create-scp.sql and
create-dcp.sql. Scripts for creating the engine database for various database types are located in
BW/Home/config/dbscripts/engine. The engine directory contains folders for the supported
database types, and scripts for each database can be found in the respective folders.

2. Set engine persistence mode property (bw.engine.persistenceMode) to group and configure the
engine group configuration.
a) Copy the existing AppSpace config.ini template file appspace_config.ini_template

(located in BW_HOME/config) to the root of the AppSpace folder, or a temporary location, and
rename the file as config.ini.

b) Edit the ActiveMatrix BusinessWorks engine persistence mode property,
bw.engine.persistenceMode, and set it to group.

Follow these steps to configure the engine for group persistence mode, and to set TIBCO
Enterprise Message Service™ (EMS) as the group provider technology.
bw.engine.persistenceMode=group

c) Specify the group name and group provider technology in the config.ini file. The group name
is optional and it defaults to domain and AppSpace names separated by an underscore (_). Only
TIBCO Enterprise Message Service (EMS) is supported by the group provider technology.

You can use a different database instance for each AppSpace. Alternatively, you can use
a single database instance for multiple AppSpaces if you create a tablespace or schema
for each one.

--
Section: BW Engine Group Configuration.

The properties in this section are applicable to the BW Engine group.
Some of the properties in this section are required when the BW Engine
property "bw.engine.persistenceMode" is set to "group".

--
BW Engine Group Name. This is an optional property and it specifies name of
the BW engine group. If this property is not specified, then the group name
defaults to "Group_<DomainName>_<AppSpaceName>".
#bw.engine.groupName=mytestgroup

BW Engine Group Connection Provider Technology. This is a required
property

78

TIBCO ActiveMatrix BusinessWorks™ Application Development

when the persistenceMode is set to "group"
(bw.engine.persistenceMode=group)
and it specifies the BW Engine group communication technology. The only
supported values are "ems" and "ftl". The group connection provider
technology property
requires additional configuration. See section "Configuring the Engine for
Group Persistence Mode"
for additional configuration.
bw.engine.groupProvider.technology=ems

d) Specify the group provider configuration:

--
Section: BW Engine Group Connection Provider EMS Configuration.
#
Some of the properties in this section are required when the BW Engine Group
Connection Provider Technology property
"bw.engine.groupProvider.technology"
value is set to "ems".

--
BW Engine Group Connection Provider EMS URL. This property is required if
the group provider technology is "ems".
bw.engine.groupProvider.qin.EMSServerUrl=tcp://localhost:7222

BW Engine Group Connection Provider EMS User Name. This property is
required
if the group provider technology is "ems".
bw.engine.groupProvider.qin.EMSUserName=admin

BW Engine Group Connection Provider EMS User Password. This property is
required if the group provider technology is "ems".
bw.engine.groupProvider.qin.EMSPassword=

BW Engine Group Connection Provider EMS Member Prefix. This property is
optional and the default value is "EMSGMS".
#bw.engine.groupProvider.qin.EMSPrefix=EMSGMS

BW Engine Group Connection Provider EMS Recovery Timeout in ms. This
property is optional and the default value is "5000" ms.
#bw.engine.groupProvider.qin.EMSRecoveryTimeout=5000

BW Engine Group Connection Provider EMS Recovery Attempt Delay in ms. This
property is optional and the default value is "500" ms.
#bw.engine.groupProvider.qin.EMSRecoveryAttemptDelay=500

BW Engine Group Connection Provider EMS Recovery AttemptCount. This
property is optional.
#bw.engine.groupProvider.qin.EMSRecoveryAttemptCount=

BW Engine Group Connection Provider EMS Connect Attempt Count. This property
is optional.
#bw.engine.groupProvider.qin.EMSConnectAttemptCount=

BW Engine Group Connection Provider EMS Connect Attempt Delay in ms. This
property is optional.
#bw.engine.groupProvider.qin.EMSConnectAttemptDelay=

When setting the password property (bw.engine.groupProvider.qin.EMSPassword), the
default format is plain text. Execute the command bwadmin obfuscate, or the command
bwobfuscator, from the command line to encrypt the password; use the generated encrypted
text as the password.

3. Optional. The following properties are available for EMS SSL configuration.
EMS SSL Configuration
#client identity consisting of the certificate,
#private key and optionally extra issuer certificates can be included into a
single data block using PKCS12.
#KeyStore or Entrust Store encodings
#bw.engine.groupProvider.ems.ssl.trust.identity=

79

TIBCO ActiveMatrix BusinessWorks™ Application Development

#The set of Trusted Certificates represents all trusted issuers of the server
certificate.
#It must be specified by the client application unless the host certificate
verification is completely disabled.
#bw.engine.groupProvider.ems.ssl.trust.certlocation=

#EMS SSL connection trust password. This
#property is required if the JMS server protocol is ssl. The password may
#be clear text or supplied as an obfuscated string.
#bw.engine.groupProvider.ems.ssl.trust.password=

#trusted certificate commonname must match the ems server hostname if set to
false
#bw.engine.groupProvider.ems.ssl.disable.verifyHostName=

#client and server certificates must match if set to false
#bw.engine.groupProvider.ems.ssl.trust.disable.verifyHost=

4. Optional. If you have saved the config.ini file to a temporary location, ensure you copy it to the
AppSpace root folder located in BW_HOME/domains/defaultdomain/appspaces/
defaultappspace.

5. Use the config admin command to push the configuration to the AppSpace: bwadmin[admin] >
config -d myDomain -a myAppSpace -cf <temporaryLocation>/config.ini.

Configuring TIBCO FTL® as the Group Provider for Engine
Follow these steps to configure the engine for group persistence mode, and to set TIBCO FTL as the
group provider technology.

Use of TIBCO FTL with TIBCO ActiveMatrix BusinessWorks™ for configuring bwagent and for
configuring group provider for engine does not require TIBCO FTL licenses.

Prerequisites

● See the ActiveMatrix BusinessWorks™ readme for the version of TIBCO FTL that is supported with
the version of ActiveMatrix BusinessWorks 6.x you are using.

● Ensure you have installed FTL client libraries. For more information, see Integrating with TIBCO
FTL in theTIBCO ActiveMatrix BusinessWorks™ Installation guide.

● These steps are only applicable if you are not using TIBCO FTL as the bwagent transport.

● If you are installing TIBCO FTL after you have already installed ActiveMatrix BusinessWorks, set
the tibco.env.FTL_HOME variable in the bwcommon.tra file. You can find this file in the bin folder at
BW_HOME\bin for Windows, or ${BW_HOME}/bin for Unix.

1. Install TIBCO FTL. For instructions, see the TIBCO FTL® Installation guide.

2. Start the FTL Realm server by executing the ./tibrealmserver -ht <hostIP>:<port> FTL
command.
./tibrealmserver -ht <hostIP>:<port>

3. Execute the following FTL command to populate data in the bwadmin_ftlrealmserver.json template
file, located in the config folder at BW_HOME/config:
 ./tibrealmadmin -rs <realmserverurl> -ur <PATH of bwadmin_ftl_realmserver.json>

For instructions about how to configure an FTL backup server for high availability, see "Configuring
Backup Realm Servers for Fault Tolerance" in the TIBCO FTL® Administration guide.

Procedure

1. Create the engine database by executing the bundled scripts create.sql,create-scp.sql and
create-dcp.sql. Scripts for creating the engine database for various database types are located at

80

TIBCO ActiveMatrix BusinessWorks™ Application Development

BW_HOME/config/dbscripts/engine. The engine directory contains folders for the supported
database types, and scripts for each database can be found in the respective folders.

2. Set engine persistence mode property (bw.engine.persistenceMode) to group and configure the
engine group configuration.
a) Copy the existing AppSpace config.ini template file appspace_config.ini_template

(located in BW_HOME/config) to the root of the AppSpace folder, or a temporary location, and
rename the file as config.ini.

b) Edit the ActiveMatrix BusinessWorks engine persistence mode property,
bw.engine.persistenceMode, and set it to group.
bw.engine.persistenceMode=group

c) Specify the group name and group provider technology as ftl in the config.ini file. The
group name is optional and it defaults to domain and AppSpace names separated by an
underscore (_).

Ensure you are using a different database instance for each
AppSpace.

--
Section: BW Engine Group Configuration.

The properties in this section are applicable to the BW Engine group.
Some of the properties in this section are required when the BW Engine
property "bw.engine.persistenceMode" is set to "group".

--
BW Engine Group Name. This is an optional property and it specifies name of
the BW engine group. If this property is not specified, then the group name
defaults to "Group_<DomainName>_<AppSpaceName>".
#bw.engine.groupName=mytestgroup

BW Engine Group Connection Provider Technology. This is a required
property
when the persistenceMode is set to "group"
(bw.engine.persistenceMode=group)
and it specifies the BW Engine group communication technology. The only
supported values are "ems" and "ftl". The group connection provider
technology property
requires additional configuration. See section "Configuring the Engine for
Group Persistence Mode"
for additional configuration.
bw.engine.groupProvider.technology=ftl

d) Specify the group provider configuration:

--
Section: BW Engine Group Connection Provider FTL Configuration.
#
Some of the properties in this section are required when the BW Engine Group
Connection Provider Technology property
"bw.engine.groupProvider.technology"
value is set to "ftl"

--
BW Engine Group Connection Provider FTL Realm Server. This property is
required if
the group provider technology is "ftl".
bw.engine.groupProvider.ftl.realmserver=http://localhost:8080

BW Engine Group Connection Provider FTL Realm client user name
This property is required if the group provider technology is "ftl".
bw.engine.groupProvider.ftl.username=

BW Engine Group Connection Provider FTL Realm client password
This property is required if the group provider technology is "ftl".
bw.engine.groupProvider.ftl.password=

BW Engine Group Connection Provider FTL application identifier

81

TIBCO ActiveMatrix BusinessWorks™ Application Development

This property is required if the group provider technology is "ftl".
bw.engine.groupProvider.ftl.appinstance.id=bwadmin-endpoint

BW Engine Group Connection Provider FTL secondary realm server
This property is optional.
#bw.engine.groupProvider.ftl.secondaryserver=

BW Engine Group Connection Provider FTL group name
This property is required if the group provider technology is "ftl".
bw.engine.groupProvider.ftl.groupname=

BW Engine Group Connection Provider FTL application name
This property is required if the group provider technology is "ftl".
bw.engine.groupProvider.ftl.appname=bwadmin

BW Engine Group Connection Provider FTL publish endpoint
This property is required if the group provider technology is "ftl".
bw.engine.groupProvider.ftl.publish.endpoint=bwadmin-endpoint

BW Engine Group Connection Provider FTL application name
This property is required if the group provider technology is "ftl".
bw.engine.groupProvider.ftl.subscribe.endpoint=bwadmin-endpoint

When setting the password property (bw.engine.groupProvider.ftl.password), the default
format is plain text. Execute the command bwadmin obfuscate, or the command
bwobfuscator, from the command line to encrypt the password; use the generated encrypted
text as the password.

3. Optional. If you have saved the config.ini file to a temporary location, ensure you copy it to the
AppSpace root folder located in BW_HOME/domains/defaultdomain/appspaces/
defaultappspace.

4. Use the config admin command to push the configuration to the AppSpace: bwadmin[admin] >
config -d myDomain -a myAppSpace -cf <temporaryLocation>/config.ini.

Creating Process Diagrams Explicitly
Process design diagrams are not created in EAR files generated from third-party tools. In such cases,
process design diagrams can be created from TIBCO Business Studio™ for BusinessWorks™ or from the
command-line interface.

TIBCO Business Studio™ for BusinessWorks™

1. Navigate to Windows > Preferences > BusinessWorks > Process Diagram and select the Enable
generation of process diagrams check box.

2. Navigate to Project Explorer, right-click the application name, and select the Generate Process
Diagram option.

3. Expand your application and navigate to the Resources folder.

The Resources folder contains the Diagrams folder which contains the process diagrams for all the
processes in the application module and all the related shared modules.

When the application is deployed, the design diagrams that are generated are included in the EAR
file and can be viewed from the Admin UI.

Command line

1. Navigate to the bin folder and open the command prompt application.

2. At the command prompt, run the following command

bwdesign.exe -data pathOFWorkspace For example bwdesign.exe -data
D:\BW_Temp_Wrkspace\BW6.x\V.x

82

TIBCO ActiveMatrix BusinessWorks™ Application Development

3. Run the command, gen_diagrams where the first argument is the name of the application and the
second argument is the path where the diagram is to be exported. The second argument is optional.
For example, gen_diagrams TestingProcessDiagram.application

If the second argument is not provided, the process design diagrams are generated in the
workspace. If the argument is provided, the process diagram is created in the provided
path.

4. Deploy the application after the process diagram is generated.

Displaying Individual Element Mappings
Select the Show mapping for selected element only check box under Preferences > Mapper to only
display mappings for elements you select in the mapper.
In this example, the Show mapping for selected element only option has not been enabled. As a result,
all of the input schema mappings for the Mapper-input Mapper activity can be seen.

After enabling the Show mapping for selected element only check box, no mappings display.

Clicking on an element from the Data Source tab displays the input schema mapping for the element
you selected.

83

TIBCO ActiveMatrix BusinessWorks™ Application Development

Clicking on an element on the target side shows what element it was mapped from on the source side.

Removing Groups
Use the Ungroup option to remove a group. You can use this option to ungroup Local Transaction
groups and groups with scopes.

Configuring the Ungroup Preferences
Follow these steps to update the preferences for the Ungroup option.

Procedure

1. In TIBCO Business Studio™ for BusinessWorks™, click Window > Preferences. On Mac OS X, click
TIBCO Business Studio > Preferences.

2. In the Preferences dialog box, click BusinessWorks > Process Diagram.

3. Under Ungroup, configure the settings for how to move activities after ungrouping groups with
scopes.

4. Click Apply, and then clickOK.

Ungrouping a Local Transaction Group
Use the Ungroup option to remove a Local Transaction group.

To ungroup a Local Transaction group, click the icon, and select Ungroup.

84

TIBCO ActiveMatrix BusinessWorks™ Application Development

Result

When the group is removed, the GroupStart and GroupEnd elements are deleted, and the
activities move to the space that formerly contained the Local Transaction group. Activity transitions in
the process flow remain intact, and the activities become part of the flow in the container group, or the
process, it moved to.

Ungrouping Groups with Scopes
Groups with scopes are groups that contain group variables, event handlers, fault handlers, and
compensation handlers. To ungroup groups with scopes, click the icon and select Ungroup option.

When the group is removed, the GroupStart and GroupEnd elements are deleted, and the
activities move to the space that formerly contained the group. The contents of the group are re-located
based on the type of container that held the group. A group with a scope can be contained within a
local transaction group, a group with a scope, or a process.

Groups with Group Variables

Group variables, which can consist of activity input variables, activity output variables, or user-defined
variables, are moved out of the group to the nearest container that can be a group with a scope, or a
process. Global and local variables, including group counter variables, index variables, or other
variables that are part of the group, are deleted during the ungrouping process.

Groups with Event Handlers

If a group with event handlers is contained in a group with a scope, a Local Transaction group, or a
process, the activities and activity transitions are moved to the process flow of the container.

To ensure the activities are moved to an event handler, set the Ungroup preferences to Move Event
Handlers > To Event Handler of parent group. See Configuring the Ungroup Preferences for
instructions on how to do this. When this preference is selected, the following actions will occur after
ungrouping a group with event handlers:

● If the container is a group with a scope, an event handler with the same configurations is created for
the container, and activities are moved to the newly created event handler.

● If the container is a process, an event handler with the same configurations is created for the
process, and activities are moved to the newly created event handler.

● If the container is a local transaction group, an event handler with the same configurations is created
for the nearest group with a scope. If there is no nearby group, or parent group, with a scope, an
event handler is created for the process. In both cases, activities are moved to the newly created
event handler.

Groups with Fault Handlers

If a group with Catch fault handlers, or a Catch All fault handler, is contained in a group with a scope,
a Local Transaction group, or a process, the activities and activity transitions are moved to the process
flow of the container group or container process.

Only one Catch All fault handler can exist for a group or the process, so if a group or a process already
contains a Catch All fault handler the activities are moved to the existing Catch All fault handler. In
other words, a new Catch, or a Catch All, fault handler is only created if a similar fault handler does
not currently exist in the group or the process.

To ensure the activities in the Catch fault handler, or a Catch All fault handlers are moved to new
Catch fault handlers, or a new Catch All fault handler, set the Ungroup preferences to Move Catch
Activities > To Catch of parent group or Move Catch Activities > To Catch All of parent group. For

85

TIBCO ActiveMatrix BusinessWorks™ Application Development

more information, see Configuring the Ungroup Preferences . When this preference is selected, the
following actions will occur:

● If the container is a group with a scope, a Catch, or a Catch All, fault handler is created for the
container, and activities in the fault handlers are moved to the newly created fault handlers.

● If the container is a process, a Catch, or a Catch All, fault handler is created for the container, and
activities in the fault handlers are moved to the newly created fault handlers.

● If the container is a local transaction group, a Catch, or a Catch All, fault handler is created for the
nearest group with a scope, or is created for the process. Activities in the fault handlers are moved
to the newly created fault handlers.

Groups with Compensation Handlers

If activities in a group with compensation handlers is contained in a group with a scope, a Local
Transaction group, or a process, the activities and activity transitions in the group moved to the process
flow of the container.

To ensure the activities in compensation handlers are moved into new compensation handlers, set the
Ungroup preferences to Move Catch Activities > To Compensation Handler of parent group. For
more information, see Configuring the Ungroup Preferences . When this preference is selected, the
following actions will occur:

● If the container is a group with a scope, and the group does not have a compensation handler, a
compensation handler is created for the container, and activities are moved to the compensation
handler.

● If the container is a process, a compensation handler is not created for the container, and the
compensation handler activities are moved to the process flow.

● If the container is a local transaction group, a compensation handler is not created for the container.
Instead, a compensation handler is created for the nearest group with a scope.

86

TIBCO ActiveMatrix BusinessWorks™ Application Development

Overview of Policies

Policies are categorized under the following policy types:

HTTP Security

● Basic Authentication

The Basic Authentication policy secures the HTTP layer of REST, SOAP, and pure HTTP services by
validating user name and password credentials stored in HTTP headers. User name and password
credentials can be authenticated against an XML File Authentication provider or an LDAP
Authentication provider.

● Basic Credential Mapping

The Basic Credential Mapping policy enables authentication for specified users by automatically
attaching appropriate credentials to request messages before they reach services. You can choose to
enforce Fixed or Conditional credential mapping.

SOAP Security

● WSS Provider

Configure the WSS Provider policy to enforce and validate authentication, confidentiality, integrity,
and time stamping of service-side messages.

● WSS Consumer

Configure the WSS Consumer policy to enforce and validate confidentiality, integrity, time
stamping, and credential mapping of response messages.

87

TIBCO ActiveMatrix BusinessWorks™ Application Development

Managing Policy Resources

Manage policies and policy resources from the TIBCO Business Studio for BusinessWorks.

Creating a Folder for Policies
Policies are always stored in the Policies folder. The folder might not exist in projects you have
imported from previous versions of ActiveMatrix BusinessWorks™ 6.x. If you create a new policy to
add to an activity or binding, the Policies folder is automatically created. You can also create a special
folder to contain policies.

To create a special folder for policies, follow these steps:

Procedure

1. In the Project Explorer pane, right-click the application module and select New > Folder to launch
the BusinessWorks Application Folder wizard.
The Folder wizard opens.

2. Specify the following values in the New Folder window:

● Enter or select the parent folder: Type the name of the parent folder, or select an existing
folder to be the parent folder.

● Folder name: Type Policies.

3. Click Finish to create the Policies folder.
The new folder displays in the Project Explorer pane.

4. Right-click the Policies folder, and select Special Folders > Use as Policies Folder.

Result

The folder can now store policies.

Creating an Authentication Resource
Policies use authentication resources to verify credentials and provide appropriate credentials for users.
Follow these steps to create a policy authentication resource.

Procedure

1. In the Project Explorer, right-click the Resources Folder, and select a new shared resource. For
example, select New > XML Authentication .

2. Edit the following fields:

● Resource Folder: Name of the folder where the resource will be located.

● Package: Name of the package in the module where the new resource is added. Accept the
default package, or browse to select a different package name.

● Resource Name: Name of the resource. Accept the default name, or type a new name.

3. Click Finish.

Result

The authentication resource displays under the Resources folder in the Project Explorer.

88

TIBCO ActiveMatrix BusinessWorks™ Application Development

Associating a Policy
Enforce security on your ActiveMatrix BusinessWorks™ application, by associating a policy with an
existing activity or binding.

Associating a Policy with an Activity

1. In the Process Editor, select the activity to associate the policy with. Activities that support policies
display the Policy tab under the Properties tab.

2. From the Properties tab, select the Policy tab.

3. Click the Add Policy to Activity icon.

4. From the Select Policy window, perform one of the following actions:

● Click Create a New Policy to set up a new policy with resources. Policies you can add to the
activity are listed under Select the type of policy.

For more information about setting up policies and resources from the policy wizard, see
appropriate sections under HTTP Security and SOAP Security.

Click Finish to create the new policy.

● Select an existing policy under Matching Items and click OK.

The policy is associated with the activity.

Associating a Policy with a Binding

1. In the Process Editor, select the binding to associate the policy with.

2. From the Properties tab, select the Bindings tab.

3. Click the name of the binding under the Binding section.

4. Click the Bindings tab, and select the Policy field from the tree.

5. Click the Add Policy icon.

6. From the Select Policy window, perform one of the following actions:

● Click Create a New Policy to set up a new policy with resources. Policies you can add to the
activity are listed under Select the type of policy.

For more information about setting up policies and resources from the policy wizard, see the
appropriate sections under HTTP Security and SOAP Security.

Click Finish to create the new policy.

● Select an existing policy under Matching Items and click OK.

The policy is associated with the binding.

Removing a Policy
Follow these steps to remove a policy from an activity or a binding.

Removing a Policy From an Activity

1. Select the activity associated with the policy.

89

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. From the Properties tab, select the Policy tab.

3. Select the policy to remove, and click the Delete the selected policy icon.

The policy is no longer associated with the activity.

Removing a Policy From a Binding

1. Select the binding associated with the policy.

2. From the Properties tab, select the Binding tab.

3. Under the Policies field, select the policy to remove, and click the Delete the selected policy
icon.

The policy is no longer associated with the binding.

90

TIBCO ActiveMatrix BusinessWorks™ Application Development

HTTP Security

Apply security to the HTTP layer of REST, SOAP, and pure HTTP services.

Enforcing Basic Authentication
Implement the Basic Authentication policy to ensure user credentials in request messages are
authenticated.

First, set up a new Basic Authentication policy by creating and configuring the policy and its resources.
Next, associate the policy with an activity or binding in your application.

Setting Up a Policy with Resources

Follow these steps to set a new Basic Authentication policy with resources:

1. In the Project Explorer, right-click the Policies folder and select New > Policy.

The Policy Wizard opens.

91

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. Specify the following values in the Create New Policy Window:

● Policy Folder: Name of the folder where policies will be located. defualt
● Package: Name of the package in the module where the new policy is added. Accept the default

package, or browse to select a different package name.
● Policy Name: Name of the new policy. By default, the policy name is configured to match the

security policy you choose. For example, if you select the Basic Authentication policy, the
default name of the policy is Basic Authentication.

3. Under Select the type of Policy, click Basic Authentication.
4. From the Policy Defaults drop-down menu, select one of the following options:

The Policy Defaults menu offers a list of commonly used policy configurations to choose
from. After you select a Policy Default, a policy with preconfigured settings and related
resources is created. If resources already exist in the module, the newly created policy
automatically refers them. However, if no resources exist, new resources with default
settings are created and referred to by the policy. To view policy configurations and new
resources that might be created, see the Default description at the bottom of the Policy
Wizard .

● Username/Password in workspace XML file: Select this option to verify user credentials
through an XML Authentication resource stored in your workspace. A new Basic
Authentication policy configured for XML authentication and the following resources are
produced in your workspace:

— A sample XML File containing user name and password credentials with the default file
name XMLUsers.xml

92

TIBCO ActiveMatrix BusinessWorks™ Application Development

— A new XML Authentication resource with the default file name
BasicAuthentication_AuthenticationProvider.authxml

● Username/Password in filesystem XML file: Select this option to verify user credentials
through an XML Authentication resource stored in your local file system. A new Basic
Authentication policy configured for XML authentication is produced in your workspace:

— A sample filesystem XML File the default file name
BasicAuthentication_AuthenticationProvider.authxml

● Username/Password in LDAP: Select this option to verify user credentials through an LDAP
Authentication resource. A new Basic Authentication policy configured for LDAP
authentication and the following resource is produced in your workspace:

— A new LDAP Authentication resource with the default file name
BasicAuthentication_AuthenticationProvider.ldapResource.

● Empty Policy (No Default) : Select this option to create a new Basic Authentication policy with
no preselected options and no resources.

5. Optional. Select Always create new shared resources to ensure new resources are generated for the
policy and referred to by the policy.

6. Optional. Select Create module properties for common fields to override default properties in
newly created resources with module properties. Resources with module properties for common
fields are generated after you select this option.

7. Select Finish to create the policy.

Configuring Resources and the Policy

For resource configurations, see the following topics under the "Shared Resources" topic in the TIBCO
ActiveMatrix BusinessWorks™ Bindings and Palettes Reference guide.

● XML Authentication
● LDAP Authentication

For policy configuration details, see the topic "Basic Authentication", under "Policy Resources" in the
TIBCO ActiveMatrix BusinessWorks™ Bindings and Palettes Reference guide.

Associating the Policy with an Activity or a Binding

You can associate the Basic Authentication policy with the following activities and bindings:

● HTTP Receiver Activity
● Wait for HTTP Request Activity

Credentials authenticated on this activity are not used for propagation during credential
mapping.

● SOAP Service Binding
● REST Service Binding

For instructions about how to enforce a policy on an activity, or a binding in your application, see
Associating Policies topic.

Enforcing Basic Credential Mapping
Map credentials for different types of users by enforcing the Basic Credential Mapping Policy.

First, create and configure new policy. Next, associate the policy, with an activity or a binding in your
application.

93

TIBCO ActiveMatrix BusinessWorks™ Application Development

Setting Up a Policy with Resources

Follow these steps to set up a new Basic Credential Mapping policy with resources:

1. In the Project Explorer, right-click the Policies folder and select New > Policy.

The Policy Wizard opens.

94

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. Specify the following values in the Create New Policy Window:

● Policy Folder: Name of the folder where policies will be located.

● Package: Name of the package in the module where the new policy is added. Accept the default
package, or browse to select a different package name.

● Policy Name: Name of the new policy. By default, the policy name is configured to match the
security policy you choose.

3. Under Select the type of Policy, select Basic Credential Mapping.

4. From the Policy Defaults drop-down menu, select one of the following options:

The Policy Defaults menu offers a list of commonly used policy configurations to choose
from. After you select a Policy Default, a policy with preconfigured settings and related
resources is created. If resources already exist in the module, the newly created policy
automatically refers them. However, if no resources exist, new resources with default
settings are created and referred to by the policy. To view policy configurations and new
resources that might be created, see the Default description at the bottom of the Policy
Wizard.

● Fixed Credentials: Select this option to ensure a fixed set of credentials are mapped for all
users. A new Basic Credential Mapping policy configured for Fixed Basic Credential Mapping
and the following resource is produced in your workspace:

— An Identity Provider resource with the default file name
BasicCredentialMapping_FixedIdentityProvider.userIdResource

● Authenticated & Anonymous Users : Select this option to enforce Basic Credential Mapping for
authenticated users and anonymous users. A new Basic Credential Mapping policy configured
for conditional basic credential mapping and the following resources are produced in your
workspace:

— An Identity Provider resource for authenticated users with the default file name
BasicCredentialMapping_AuthIdentityProvider.userIdResource

— An Identity Provider resource for anonymous users with the default file name
BasicCredentialMapping_AnonIdentityProvider.userIdResource

● Role Based Credentials: Select this option to enforce basic credential mapping for authenticated
users with roles. A new Basic Credential Mapping policy configured for conditional basic
credential mapping and the following resources are produced in your workspace:

— An Identity Provider resource for authenticated users with the default file name
BasicCredentialMapping_AuthIdentityProvider.userIdResource

— Two separate Identity Provider resources for authenticated users with roles. The default
file names of the resources are
BasicCredentialMapping_RoleIdentityProvider.userIdResource and
BasicCredentialMapping_RoleIdentityProvider1.userIdResource

● Empty Policy (No Default) : Select this option to create a new Basic Authentication policy with
no preselected options and no resources.

5. Optional. Select Always create new shared resources to ensure new resources are generated for the
policy and referred to by the policy.

6. Optional. Select Create module properties for common fields to override default properties in
newly created resources with module properties. Resources with module properties for common
fields are generated after you select this option.

95

TIBCO ActiveMatrix BusinessWorks™ Application Development

7. Select Finish to create the policy.

Configuring Resources and the Policy

For more information about resource configurations, see Identity Provider in the Shared Resources
topics in the TIBCO ActiveMatrix BusinessWorks™ Bindings and Palettes Reference guide.

For more information about policy configuration details, see Basic Credential Mapping, under Policy
Resources in the TIBCO ActiveMatrix BusinessWorks™ Bindings and Palettes Reference guide.

Associating the Policy with an Activity or a Binding

You can associate the Basic Credential Mapping policy with the following activities and bindings:

● SEND HTTP Request Activity

● Invoke REST API Activity

To enforce credential mapping on a SOAP reference, apply the WSS Consumer policy and select either
SAML Token based Credential Mapping or Username Token based Credential Mapping.

For instructions about enforcing a policy on an activity or binding in your application, see Associating
Policies.

96

TIBCO ActiveMatrix BusinessWorks™ Application Development

SOAP Security

Apply security to the SOAP layer of messages and services.

Enforcing WSS Consumer
Enforce the WSS Consumer policy to ensure that the confidentiality, integrity, and the time stamp of a
request remains secure.

First, create and configure the policy. Next, associate the policy with a binding in your application.

Setting Up a Policy with Resources

Follow these steps to set up a new WSS Consumer policy with resources:

1. In the Project Explorer, right-click the Policies folder and select New > Policy.

The Policy Wizard opens.

97

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. Specify the following values in the Create New Policy Window:

● Policy Folder: Name of the folder where policies will be located.

● Package: Name of the package in the module where the new policy is added. Accept the default
package, or browse to select a different package name.

● Policy Name: Name of the new policy. By default, the policy name is configured to match the
security policy you choose.

3. Under Select the type of Policy, select WSS Consumer.

4. From the Policy Defaults drop-down menu, select one of the following options:

The Policy Defaults menu offers a list of commonly used policy configurations to choose
from. After you select a Policy Default, a policy with preconfigured settings and related
resources is created. If resources already exist in the module, the newly created policy
automatically refers them. However, if no resources exist, new resources with default
settings are created and referred to by the policy. See default description at the bottom of
the Policy Wizard to view policy configurations and new resources that might be created.

● SAML Token with Sign SAML Assertion: Select this option to enforce SAML token-based
credential mapping. A WSS Consumer policy configured for SAML token-based credential
mapping and the following resources are produced in your workspace:

— A keystore resource with the default file name server.jks

— A Keystore Provider resource with the default file name
WssConsumer_IdentityStore.keystoreProviderResource

98

TIBCO ActiveMatrix BusinessWorks™ Application Development

— A Subject Provider resource with the default file name
WssConsumer_SAMLIdentityProvider.sipResource.

● UserName Token with Fixed Credentials: Select this option to enforce fixed user name token-
based credential mapping. A WSS Consumer policy configured for fixed credential mapping
with a user name token and the following resources are produced in your workspace:

— A Subject Provider resource, with the default file name
WSSConsumer_FixedIdentityProvider.userIdResource

● UserName Token with Authenticated and Anonymous Credentials: Select this option to
enforce conditional user name token-based credential mapping. A WSS Consumer policy
configured for conditional credential mapping with user name tokens and the following
resources are produced in your workspace:

— An Identity Provider resource for authenticated users, with the default file name
WssConsumer_AuthIdentityProvider.userIdResource

— An Identity Provider shared resource for anonymous users, with the default file name
WssConsumer_AnonIdentityProvider.userIdResource

● UserName Token with Roles and Authenticated Credentials: Select this option to enforce
conditional user name token-based credential mapping. A WSS Consumer policy configured for
conditional credential mapping with user name tokens and the following resources are
produced in your workspace:

— Two Identity Provider resources for authenticated users with roles, with the default file
names WssConsumer_RoleIdentityProvider.userIdResource and
WssConsumer_RoleIdentityProvider1.userIdResource

— An Identity Provider resource for authenticated users with the default file name
WssConsumer_AuthIdentityProvider.userIdResource

● Empty Policy (No Default) : Select this option to create a new WSS Provider policy with no
preselected options and no resources.

5. Optional. Select Always create new shared resources to ensure new resources are generated for the
policy and referred to by the policy.

6. Optional. Select Create module properties for common fields to override default properties in
newly created resources with module properties. Resources with module properties for common
fields are generated after you select this option.

7. Select Finish to create the policy.

Configuring Resources and the Policy

For more information on resource configurations, see to the following topics under Shared Resources in
the TIBCO ActiveMatrix BusinessWorks™ Bindings and Palettes Reference guide:

● Identity Provider

● Keystore Provider

● Subject Provider

For more information on policy configuration, see WSS Consumer in the Policy Resources section of the
TIBCO ActiveMatrix BusinessWorks™ Bindings and Palettes Reference guide.

Associating the Policy with a Binding

You can associate the WSS Consumer policy with the following bindings:

● SOAP-HTTP Reference Binding

99

TIBCO ActiveMatrix BusinessWorks™ Application Development

● SOAP-JMS Reference Binding

For instructions about how to enforce a policy on a binding in your application, see Associating
Policies.

Enforcing WSS Provider
Use the WSS Provider policy to enforce authentication, confidentiality, integrity, and the time stamping
of service-side messages.

First, create and configure the policy. Next, associate the policy with a binding in your application.

Setting Up a Policy with Resources

Follow these steps to set up a new WSS Provider policy with resources:

1. In the Project Explorer, right-click the Policies folder and select New > Policy.

The Policy Wizard opens.

100

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. Specify the following values in the Create New Policy Window:

● Policy Folder: Name of the folder where policies will be located.
● Package: Name of the package in the module where the new policy is added. Accept the default

package, or browse to select a different package name.
● Policy Name: Name of the new policy. By default, the policy name is configured to match the

security policy you choose.
3. Under Select the type of Policy, select WSS Provider.
4. From the Policy Defaults drop-down menu, select one of the following options:

The Policy Defaults menu offers a list of commonly used policy configurations to choose
from. After you select a Policy Default, a policy with preconfigured settings and related
resources is created. If resources already exist in the module, the newly created policy
automatically refers them. However, if no resources exist, new resources with default
settings are created and referred to by the policy. Refer to the Default description at the
bottom of the Policy Wizard to view policy configurations and new resources that might
be created.

● SAML Token Authentication: Select this option to authenticate credentials through SAML
assertion. A WSS Provider policy configured for SAML token-based authentication and the
following resources are produced in your workspace:

— A sample keystore file with the default file name truststore.jks.
— A Trust Provider resource with the default file name

WssProvider_TrustStore.trustResource

101

TIBCO ActiveMatrix BusinessWorks™ Application Development

— A KeyStore Provider resource with the default file name
WssProvider_KeystoreProvider.keystoreProviderResource

— A WSS Authentication resource with the default file name
WssProvider_WSSAuthProvider.wssResource

● UserName Token Authentication with LDAP: Select this option to authenticate credentials
through user name token authentication with LDAP. A WSS Provider policy configured for user
name token-based authentication with LDAP and the following resources are produced in your
workspace:

— An LDAP Authentication resource with the default file name
WssProvider_AuthenticationProvider.ldapResource

— A WSS Authentication resource with the default file name
WssProvider_WSSAuthProvider.wssResource

● UserName Token Authentication with Workspace XML: Select this option to authenticate
credentials through user name token-based authentication with an XML file authentication
resource stored in your workspace. A WSS Provider policy configured for XML file
authentication and the following resources are produced in your workspace:

— An XML Authentication resource with the default file name
WssProvider_AuthenticationProvider.authxml

— A WSS Authentication resource with the default file name
WssProvider_WSSAuthProvider.wssResource

— A preconfigured XML file with the default file name XmlUsers.xml is created if an XML file
does not already exist.

● UserName Token Authentication with Filesystem XML: Select this option to authenticate
credentials through user name token-based authentication with an XML file authentication
resource stored in your local file system. A WSS Provider policy configured for XML file
authentication and the following resources are produced in your workspace:

— An WSS Authentication resource with the default file name
WssProvider_WSSAuthProvider.wssResource

— An XML Authentication resource with the default file name
WssProvider_AuthenticationProvider.authxml

● Empty Policy (No Default) : Select this option to create a new WSS Provider policy with no
preselected options and no resources.

5. Optional. Select Always create new shared resources to ensure new resources are generated for the
policy and referred to by the policy.

6. Optional. Select Create module properties for common fields to override default properties in
newly created resources with module properties. Resources with module properties for common
fields are generated after you select this option.

7. Select Finish to create the policy.

Configuring Resources and the Policy

For resource configurations, refer to the following topics under the "Shared Resources" topic in the
TIBCO ActiveMatrix BusinessWorks™ Bindings and Palettes Reference guide:

● Identity Provider

● Keystore Provider

● Subject Provider

102

TIBCO ActiveMatrix BusinessWorks™ Application Development

● Trust Provider

● WSS Authentication

For policy configuration details, refer to the topic "WSS Provider" under "Policy Resources" in the
TIBCO ActiveMatrix BusinessWorks Bindings and Palettes Reference guide .

Associate the Policy with a Binding

You can associate the WSS Provider policy with the following bindings:

● SOAP-HTTP Service Binding

● SOAP-JMS Service Binding

For instructions on how to enforce a policy on a binding in your application, refer to Associating
Policies.

103

TIBCO ActiveMatrix BusinessWorks™ Application Development

Building Projects Automatically

The Auto Build option in TIBCO Business Studio™ for BusinessWorks™ builds projects automatically.

This option can be turned on or off from TIBCO Business Studio for BusinessWorks and can also be
configured from the config.ini file by setting the property bw.autobuild to true or false.

In TIBCO Business Studio for BusinessWorks, the Auto Build option which is enabled by default, can
be turned on or off from Project > Build Automatically.

From the config.ini file set the property bw.autobuild to true, to build projects automatically.

When the value of the bw.autobuild property is true, the Build Automatically feature is turned on
when TIBCO Business Studio for BusinessWorks is started. When the value of the property is false,
auto building is turned off.

If the value of this property is changed, restart TIBCO Business Studio for BusinessWorks for the
changes to be applied.

104

TIBCO ActiveMatrix BusinessWorks™ Application Development

XPath

XML Path Language (XPath) is used to navigate through elements and attributes in an XML document.
XPath uses path expressions to navigate through XML documents. XPath also has basic manipulation
functions for strings, numbers, and booleans.

ActiveMatrix BusinessWorks uses XPath as the language for defining conditions and transformations.

For a complete description of XPath, refer to the XPath specification (from http://www.w3.org/). This
section covers the basics of XPath and its use in the product.

XPath Basics
This product uses XPath (XML Path Language) to specify and process elements of data schema. These
data schema are either process variables or input schema for an activity. You can also use XPath to
perform basic manipulation and comparison of strings, numbers, and boolean.

To use XPath in the product, you need to be familiar with the basic XPath concepts. However, to learn
more about XPath when building complex expressions refer to the XPath specification from http://
www.w3.org/

Addressing Schema Elements

All data source and activity input are represented as an XML schema. The data is represented as a
schema tree regardless of where the data is derived from or its format. The data can either be simple
(strings, numbers, boolean, and so on), or it can be a complex element. Complex elements are structures
that contain other schema elements, either simple elements or other complex elements. Both simple and
complex elements can also repeat. That is, they can be lists that store more than one element of the type
specified.

XPath is used to specify which schema element you refer to. For example, the following schema might
be available for an activity’s input.

105

TIBCO ActiveMatrix BusinessWorks™ Application Development

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/

Schema Elements in Data Source

The data source area of the example Input tab shows the output schema of the activities in the process.
There are two output schema, each a root node in the data source area: Read-Shipping-Costs-file
and Parse-Shipping-Costs-file. Each of these schema has its own associated structure, for example,
Read-Shipping-Costs-file has a set of simple values and Parse-Shipping-Costs-file has simple
data and other complex data.

To reference a particular data item in any of these schema, start with the root node and then use slashes
(/) to indicate a path to the desired data element. For example, if you want to specify the region
attribute in the destination complex element that is in the Parse-Shipping-Costs-file node, use the
following syntax:

$Parse-Shipping-Costs-file/destination[<< Filter >>]/region

The path starts with a dollar ($) sign to indicate it begins with a root node and continues with node
names using slashes, like a file or directory structure, until reaching the desired location name.

Namespaces

Some schema elements need to be prefixed with their namespace. The namespace is automatically
added to elements that require this element when creating mappings on the Input tab of an activity or
when dragging and dropping data in the XPath builder.

Search Predicates

An XPath expression can have a search predicate. The search predicate is used to locate a specific
element in a repeating schema element. For example, the $Parse-Shipping-Costs-file/destination/region
item is a repeating element. To select only the first item in the repeating element, specify the following:

$Parse-Shipping-Costs-file/destination[1]

106

TIBCO ActiveMatrix BusinessWorks™ Application Development

The [1] specifies the first element of a repeating item. Sub-items can also be examined and used in a
search predicate. For example, to select an element whose destinationID is equal to "3A54", specify the
following:

$Parse-Shipping-Costs-file/destination["3A54"]

See the online documentation available in the XPath Builder for a list of the available operators and
functions in PATH.

You can also use the Custom XPath Function Wizard to create your custom XPath function group. For
more information, see Creating Custom XPath Functions in the TIBCO ActiveMatrix BusinessWorks™
Bindings and Palettes Reference guide.

XPath Expression
The XPath expression is used to creating transformations on the Input tab of any activity.

When the function is placed into the XPath Expression, placeholders are displayed for the function’s
parameters.

You can drag and drop schema elements from the Data Source tab into the function’s placeholders.

XPath Builder Formula Elements

The following table shows the different elements of XPath Builder.

Elements Description

Data Source Displays the data source schema tree. All elements in this tree are
available to drag and drop into the XPath Expression field.

107

TIBCO ActiveMatrix BusinessWorks™ Application Development

Elements Description

Functions Displays the available XPath functions. These are categorized into
groups and each function can be dragged from the function list
into the XPath Expression field.

When the function is placed into the XPath Expression,
placeholders are displayed for the function’s parameters. You can
drag and drop schema elements from the Data Source tab into the
function’s placeholders.

For more information about XPath functions, select XPath
functions in XPath builder. The description of the function is
displayed.

Filter Use this field for a refined function search in the mapper.

Clicking the Functions tab displays the Filter field.

For example, type "time" in the Filter field to obtain consolidated
results relating to "time" function.

108

TIBCO ActiveMatrix BusinessWorks™ Application Development

Elements Description

Constants Displays the constants available for use in XPath expressions.
These are categorized into groups and each constant can be
dragged from the constants list into the XPath Expression field.

Constants are useful for inserting special characters, such as
quotes, symbols, and so on, into XPath formulas. Constants are
also defined for commonly used items, such as date/time formats.

Constants can also be used for inserting the following TIBCO BW
Predefined Module Properties.

● Activity Name - returns the name of the activity on which the
module property is set.

● Application Name - returns the application name.

● Application Version - returns the version of the application
specified in the Version field under the Overview tab of the
application.

● Application Full Version- returns the three digit version of the
application in the form of <major>.<minor>.<micro>.

● AppNode Name - returns the name of the AppNode on which
the application is deployed.

● AppSpace Name - returns the name of the AppSpace on which
the application is deployed.

● Deployment Unit Name - returns the ID of the application
specified in the ID field under the Overview tab of the
application.

● Deployment Unit Type - returns the deployment unit type as
application.

● Deployment Unit Version - returns the deployment unit
version specified in the Version field under the Overview tab
of the application.

● Domain Name - returns the name of the domain in which the
application is deployed.

● Module Name - returns the name of the application module.

● Module Version - returns the version of the module specified
in the Version field under the Overview tab of the application
module.

● Process Name - returns the name of the process in which the
module property is used.

● Process Stack - returns the entire process path including the
nested subprocesses, and the parent process. For example
main.Process/SubProcess1->sm.SubProcess1/

SubProcess2->sm1.SubProcess2

● Engine Name - returns the name of the engine. By default, the
name of the engine is Main. You can change the engine name by
setting the property bw.engine.name=Main in the appspace
config.ini file.

109

TIBCO ActiveMatrix BusinessWorks™ Application Development

Elements Description

Documentation Panel Describes each selected function.

On clicking a function on the Function tab, the documentation
panel gives a brief description of the selected function with one or
more examples.

XPath Expression Displays the XPath formula you want to create.

You can drag and drop items from the Data Source tab or the
Functions tab to create the formula.

XPath Builder
Using XPath Builder, you can drag and drop schema elements and XPath functions to create XPath
expression.

Click the Transition in the process. On the General tab, select Success with condition option in the
Condition Type field. This displays the Expressions field. Click icon to open the XPath Builder
window.

XPath Builder is also available from Sequence Key field and Custom Job Id field of all process starter
activities (such as Timer, File Poller, and so on).

The following image shows how you can use XPath Builder to drag and drop schema elements into
function placeholders.

XPath Builder

See the following image for the displayed result of evaluating the formula shown in the XPath
Expression field. The errors in the formula are displayed here.

110

TIBCO ActiveMatrix BusinessWorks™ Application Development

For Group activities and transitions, you can see the new field XPath Version added in the dialog box
as follows:

TIBCO BW Functions

XPath Builder can be used to fetch process related information for any activity. These functions are
listed under the TIBCO BW Functions group.

● getModuleProperty: Returns the value of a module property. Also see TIBCO BW Predefined
Module Properties under the Constants section.

● getSystemProperty: Returns the value of a Java system property.

● restartedFromCheckpoint: Returns true if the process instance recovered from a checkpoint,
otherwise returns false.

● generateEPR: Returns an 'Endpoint Reference' as a string. This value can be used as an input to the
Set EPR activity.

● getHostName: Returns host name of the host machine.

111

TIBCO ActiveMatrix BusinessWorks™ Application Development

The XPath function xsd:string() saves double values in scientific notation if the double value has 7 or
more digits before the decimal point. For example, if the value is 1000000.333, the xsd:string()
function renders the value as 1.000000333E6.

112

TIBCO ActiveMatrix BusinessWorks™ Application Development

Developing a SOAP Service

A SOAP service makes a Process service available as a SOAP web service. You can achieve this by
applying a SOAP service binding on the target process service.

Implementing a SOAP Service Provider

Procedure

1. Click on the process package, for example, "HelloWorld", and then click on the Create a new

Business Works Process icon.

2. Select a process on which you want to add a service, and click the Create Service icon.

The New Service dialog opens.

3. In the New Interface section specify the Interface Name as HelloWorld and Operation Name as
sayHello. Click Finish.

113

TIBCO ActiveMatrix BusinessWorks™ Application Development

4. To implement the operation, drag and drop the sayhello operation, and select Implement
Operation.

Choose Implement Constructor Operation option, if there are multiple operations in a Port type.

The option Implement Operation implements a single operation and creates a single
Receive activity and a Reply. The option Implement Constructor Operation implements a
constructor. A constructor provides for multiple operations. Use this option if the
PortType has multiple operations which must be implemented by this process.

5. Click on the Reply activity (sayHelloOut) and under the Properties view, click the Input tab.
Configure Reply message.

114

TIBCO ActiveMatrix BusinessWorks™ Application Development

6. Right-click on green chevron and select Components > ComponentsProcess > Create SOAP
Binding. The Binding Configuration dialog displays.

7. To configure transport on the SOAPServiceBinding, select HTTP from the Transport Type drop-
down list in Transport Configuration.

8. Click on Create Shared Resource button and click Finish on the Create HttpConnResource
Resource Template.
The default port used by this shared resource is 8080. The service binding is now created.

9. To generate the concrete WSDL of the SOAP service created in the above steps, click Generate
Concrete WSDL link.

10. Click Workspace. In the Folder Selection window and select the Service Descriptor folder of the
current module and click OK.
The Generate Concrete WSDL screen will now show the specified location and the name of the
WSDL.

115

TIBCO ActiveMatrix BusinessWorks™ Application Development

To create the Concrete WSDL in a desired location other than the workspace location,
specify it by using File System button and click Finish.

11. To avoid namespace resolution error, click Next and clear the Embed Abstract WSDL and Embed
Schema check boxes and click Finish.

Click on the Advanced tab to override the Namespace URI, Service Name, Host, Port,
and Protocol fields.

The concrete WSDL is generated at the specified location.

Consuming SOAP Services
The request message is generated by the SOAP reference binding for a service and response message is
received by the reference binding from the service.

Creating a Consumer for SOAP Service

Procedure

1. Click on the process package, for example, "HelloWorld", and then click Create a new Business

Works Process icon.

2. Specify the process name as HelloWorldConsumer and click Finish.

3. Drag and drop the HelloWorldSOAP portType to the right of the process editor.

4. Add a Reference Binding to the SOAP service for the Reference Type field by selecting the required
reference from the drop down list.

5. Select and drop a Timer and a Log activity on the process and join it with the Invoke activity as
shown in the image. Also, configure the Log activity with a message.

116

TIBCO ActiveMatrix BusinessWorks™ Application Development

The SOAP reference binding is created.

6. Run the project.

117

TIBCO ActiveMatrix BusinessWorks™ Application Development

Developing a RESTful Service

Services are used to invoke a process and to call out of the process so that a process receives data from a
service and routes data to a service.

The key abstraction of information in REST is a resource. REST ignores the details of component
implementation and protocol details. TIBCO ActiveMatrix BusinessWorks™ currently allows the
following HTTP methods to be performed on resources: GET, PUT, DELETE, and POST. Both XML and
JSON are supported as data serialization formats along with support for definition of custom status
codes, path(URL) parameters, key-value parameters, query parameters, and custom HTTP headers.

General Restrictions

● No wildcards or attribute wildcards. For example, any element and any attribute is not supported.
● Complex types might not contain both an attribute and a child element with the same local name.
● Complex types might not be of the pattern "simple type plus attributes".
● Complex types might not contain mixed content.
● Attributes that are not part of the default (empty) namespace, cannot be used for Complex

Elements.
● The 'choice' and 'sequence' compositors might not have maxOccurs > 1 (same as the restriction on

'all' in the schema specification).
● Substitution groups are not supported.
● Element of simple type with an attribute is not supported.
● The elementFormDefault can only be qualified for schemas used by REST binding and JSON

activities.
● Schemas should not contain cyclic dependencies within same schema, or on the other schemas.
● Schemas should not have a type that has two child members with the same local name, but different

namespaces.
● For float and double values, XML schema always shows exponential values of type 1.0E0

Implementing a REST Service Provider
A REST service provider exposes the resources in a process definition that can be invoked by clients
using one of the following operations- POST, GET, PUT, PATCH, and DELETE.

Prerequisites

If a schema definition does not exist, create (or import) a schema definition in the process to which you
want to add the REST service.

Procedure

1. In the Project Explorer, select the process to which you want to add the REST service. There are
multiple ways to invoke the wizard to create a REST service.

● From the main menu, select File > New > BusinessWorks Resources > BusinessWorks REST
Resource.

● Right-click the menu, select New > BusinessWorks REST Resource.

● Click Create REST Service in the process editor area. (Note that REST services can only be
created in stateless BusinessWorks processes.)

118

TIBCO ActiveMatrix BusinessWorks™ Application Development

For more information, see "REST Binding" in the TIBCO ActiveMatrix BusinessWorks™ REST
Reference guide.

2. In the Create a New REST Service wizard, configure the REST service implementation by specifying
the values for Resource Service Path, Type of Resource, Operations, and Implementation Data.

● Summary about the new REST service.

● Resource Service Path: Specifies the URI that is used to access the REST service.

● Type of Resource: Select if the service works on a single resource or a collection.

● Operations: By default, the GET operation is selected. Select or deselect the operations as
needed.

● Resource Schema: Select a resource schema for the REST service, if needed.

● Implementation Data: Choose between structured and opaque implementation data.

3. Optionally, click Next to configure the selected operations individually to specify the nickname for
the operation (default nickname is of the format <operation><resource_name>), summary, and the
request and response elements and their data types.

4. Click Finish.
The wizard adds the REST service and the selected operations, and also creates a process definition
with the multiple operations.

The REST service always implements the constructor operator.

5. Add activities to the process and configure them appropriately. For example, update the POST
process to add a Log activity to log the requests and connect the postOut activity to Log activity.

6. Configure the input and output properties for the activities. For example, select postOut activity
and then select Properties > Input. Expand the data tree on the Data Source tab and map the post
element from the left to the post Response element on the right to echo the element. Similarly, for
Log activity, map the post element on the left to the ActivityInput message element on the right.

7. Save your changes.

119

TIBCO ActiveMatrix BusinessWorks™ Application Development

Result

The REST service is built and can be tested using the built-in tester Swagger UI. For more information
on Swagger UI, see "Testing the REST Service" in the TIBCO ActiveMatrix BusinessWorks™ Getting Started
guide.

Discovering API Models from TIBCO Business Studio™ for
BusinessWorks™

You can use the API Explorer view in the TIBCO Business Studio for BusinessWorks to view the APIs
that reside on your local machine or on a remote server.

Prerequisites

For the API Explorer to discover the APIs residing on a remote server, the remote server must be up
and running.

You can set up the locations to which you want the API Explorer to connect and look for the APIs. To
do so, follow the steps below.

Procedure

1. In TIBCO Business Studio for BusinessWorks, go to the API Explorer view.

2. In the button bar within the API Explorer tab, click the View Menu downward-facing triangle icon
() and select Settings.
The Settings dialog will open.

The registries for the ActiveMatrix BusinessWorks - API Modeler and the samples folder installed
on your local machine are configured and appear in the API registry configurations box by default.
In this dialog, you can specify how the discovered APIs will appear in the API Explorer:

● API Presentation - specifies how the APIs will appear in the API Explorer

Flat - displays the APIs as a flat list with each API's version number displayed next to its name
in parenthesis. If there are multiple versions of the same API, each version will be shown as a
separate API, hence multiple APIs with the same name but different version numbers.

Hierarchical - displays every API as a hierarchy of API name label with version number folder
under it and the actual API under the version folder. If there are multiple versions for an API,
each version will be listed in its own separate folder under the API name label.

Latest Version - displays only the latest version of the API, even though there might be multiple
versions available.

● Group by API registry - groups the APIs according to the registry from which they were
discovered

● API registry configurations - displays the list of API registries that are currently configured in
your TIBCO Business Studio for BusinessWorks installation.

Select the API registry check boxes to display the APIs.

You can edit an existing registry by clicking the Edit button, delete the registry configuration by
clicking Remove, or changing the order in which the registries show up in the API Explorer by
using the Up and Down button. These button get activated when you click on an API registry name.

3. Click New to add a new registry.

4. In the Create new API Registry client configuration dialog do the following:
a) Enter a name for the API registry that you will be mapping to in the Name text box.

120

TIBCO ActiveMatrix BusinessWorks™ Application Development

b) Select the Local radio button to map a location where the APIs are stored on your local machine's
hard drive and navigate to the location using the Browse button. Alternatively, select the Remote
radio button if you want to map to a remote server that contains the APIs and enter the URL for
the server in the URL text box.

5. Click Finish.
You should now see the APIs displayed in the API Explorer in the format that you specified in the
Settings dialog. Expanding an API will show you its version, the resource path, and the operations
you can perform on that resource.

Organizations can have multiple owners, and a list of owners is displayed in the Edit API
Registry client configuration page.

The API Explorer view has the following quick-access buttons that you can use to format the way
the APIs are listed:

● Refresh

● Expand All

● Collapse All

● Group by API Registry

● API Presentation

● API Registries. Selecting a registry from this drop-down list toggles between displaying
and hiding the registry in the API Explorer.

Use the search filter that appears at the bottom of the API Explorer view to search for API names
that match the string that you enter in the Filter text box. You can search by typing in the version
number, the full API name, or a full word within an API name. Wildcards are not supported. The
search is case insensitive.

Importing an API Model into your Workspace
The APIs that are discovered from local and remote servers are displayed in the API Explorer tab of the
TIBCO ActiveMatrix BusinessWorks™. You can use these APIs in your project by importing them into
the Service Descriptors folder of the project. The .json file for the API gets copied into the application
module.
To import the APIs from the API Explorer into your project follow these steps.

Procedure

1. Right-click on one or more API names in the API Explorer and select Import.
The Import API dialog opens.

121

TIBCO ActiveMatrix BusinessWorks™ Application Development

Every API you selected in the API Explorer is listed in this dialog. If an API has multiple versions,
all versions are listed. By default, all APIs listed here are selected. You can deselect APIs that you do
not want to import by clearing its check box.

2. Select the appropriate action and click Next.
Option Description

Import to project Select the radio button to import the API into an existing project and
browse to the project using the Browse button.

Create a new project and
import API to the new
project

To create a new project and import the API into that project select the
radio button.

API list to import Select the API or the appropriate version of the API when there are
multiple versions of the API available.

The Change Swagger name dialog box opens.

122

TIBCO ActiveMatrix BusinessWorks™ Application Development

Change the swagger file name if required. Click Next.

The New BusinessWorks Application Module dialog box opens.

3. Create a new application module with appropriate details and click Finish..
You should see the API(s) under the Service Descriptors folder of the project. You can create sub-
folders under the Service Descriptors folder and drag-and-drop APIs into them if you prefer to
organize the APIs into a meaningful folder structure.

As an alternative to the above procedure, you can also drag and drop the API from the API
Explorer into the project's Service Descriptors folder.

APIs that were created using a Swagger file must be implemented exactly as defined by
the Swagger file. TIBCO Business Studio for BusinessWorks allows you to only view the
parameters and operations that are defined in the Swagger file. You cannot create any new
parameters or operations for such applications.

Creating an XML Schema for a Swagger 2.0 File Imported in TIBCO
Business Studio™ for BusinessWorks™

TIBCO Business Studio for BusinessWorks supports the creation of an XML schema for an imported
Swagger 2.0 file.
You can create an XML schema for the Swagger 2.0 files in one of two ways described below.

Prerequisites

The Swagger 2.0 file must exist in the Service Descriptors folder of the project. Be sure to import the
Swagger file into the Service Descriptors folder before you follow these steps:

Procedure

1. Drag and drop the Swagger file on the right side of the canvas to create a REST service binding. This
action generates an XML schema for the Swagger file under the Schemas folder. The XML schema
file has the same name as the Swagger file.
Or

2. Right-click the Swagger file in the Service Descriptors folder and select Refactor > Generate XSD
Schema.

123

TIBCO ActiveMatrix BusinessWorks™ Application Development

● To see which XML schema is related to the Swagger file, right-click the Swagger file
and select Refactor > Open XSD Schema.

● If you have multiple Swagger files all of which contain a definition for the same object,
the definition for the object in all the Swagger files must be identical.

● If you have multiple Swagger files with one file (a master file) containing a super set of
definitions contained in the other files, generate an XSD file from the master Swagger
file that contains the super set, and create links to the other files in the master Swagger
file. If you create a link to the super set file in one of the subset files and then create an
XSD from the subset file, then the XSD will contain only those elements that are
common to both files. It will not contain elements for definitions that exist only in the
super set file.

Synchronizing the Imported REST API Models in TIBCO Business Studio™
for BusinessWorks™

If a REST service developer has made changes to the service API after creating the service, the changes
needs to be propagated to all the places where the service is used. You can check for updates to a
Swagger file that has been imported into TIBCO Business Studio for BusinessWorks. The icon to the left
of the Swagger file in the Project Explorer in the TIBCO Business Studio for BusinessWorks displays an
indication that the file has been modified in its original location and the local copy of the file is not in
synchronization with it source.
You can check for differences between the original Swagger file and its copy that was created when
importing it into the TIBCO Business Studio for BusinessWorks. You can also compare the differences
between the two and update your local copy if need be. To do so, follow these steps:

Procedure

1. Right-click the Swagger file under Service Descriptors in the Project Explorer.

2. Select Remote Interface.
The Check for Differences menu option checks for differences between the imported copy and its
original.

The Compare Differences menu option first checks for differences between the imported copy of
the Swagger file and its original. If there is a difference, the file will appear in the Synchronize tab
and if you double click it there it displays the two files side by side with the differences highlighted.

The Update Local Copy menu item updates the copy of the file in your workspace to match its
original. It also regenerates the schema.

No changes are performed for processes that have already been created.

124

TIBCO ActiveMatrix BusinessWorks™ Application Development

Developing Java Applications

The enhanced Java development tooling in TIBCO Business Studio™ for BusinessWorks™ can be used
to develop and debug the Java code. Using the software, you can develop applications graphically
(without coding), use existing Java classes, or write custom Java code.

Adding Java-Specific Behavior to Projects

Eclipse projects use the project nature definition to tag a project as a specific kind of project. By
configuring a project to use the Java nature, you can leverage on the enhanced Java development
tooling available in TIBCO Business Studio for BusinessWorks to develop Java application. A project
with Java nature contains a default source folder for Java classes, src, in addition to other folders.

You can choose a different source folder by configuring the specified folder as the source folder and
including the folder in the build path.

You can specify the project nature for an application module in one of the following ways:

● When creating a new application module, select the Use Java configuration check box.

● For an existing application module, right-click the project name in the Project Explorer view and
select Configure > Convert to Java project.

Accessing Java Classes or Libraries from an ActiveMatrix BusinessWorks™ Application

An ActiveMatrix BusinessWorks™ application can invoke Java classes or reference libraries containing
the Java code, using activities from the Java palette. Depending on the use case, the Java classes or
libraries can reside in one of the following locations:

● Within the same application module as the ActiveMatrix BusinessWorks™ process: when the Java
code need not be accessible from other applications, include the Java class within the same
application module. See Using a Simple Java Invoke Activity for details.

● In a shared module or Eclipse plug-in project : when the Java code must be shared by multiple
applications, use a shared module with Java nature or an Eclipse plug-in project to contain the Java
code.

● External to the ActiveMatrix BusinessWorks™ application: when you do not have access to the Java
source files and only the Java classes are available, you can invoke the Java methods stored in JAR
files.

Using a Simple Java Invoke Activity
The Java Invoke activity can invoke a Java method from a class that resides in the same application
module, a shared module or an eclipse Plug-in project.

Prerequisites

The project must be configured with Java nature. For more information, see "Adding Java Nature to a
Project" in the TIBCO ActiveMatrix BusinessWorks™ Bindings and Palette Reference guide.

Procedure

1. In the Project Explorer view, expand the application module project and right-click the Java source
folder, src (default), and select New > Class.

2. In the New Java Class wizard, specify the package name and name of the Java class, and click
Finish to create the Java class in the specified package. For example, type
com.tibco.myjavapackage for the package name and HelloWorld for the class name.

125

TIBCO ActiveMatrix BusinessWorks™ Application Development

3. Add one or more methods to the class. For example, add a static method, sayHello, which echoes a
message "Hello World!" when invoked.
public static String sayHello(String input){
}

You can invoke static or non-static methods using Java Invoke activity. For more
information about Java Invoke activity, see the TIBCO ActiveMatrix BusinessWorks™
Bindings and Palettes Reference guide.

4. Add the implementation for the methods. For example, add the following implementation code to
the sayHello method as shown:
public static String sayHello(String input){
 return "Hello " + input;
}

After implementing Java methods, you can proceed to design the process in the Process Editor.

5. Open the process in the Process Editor where you want to invoke the Java method and add a Java
Invoke activity from Java Palette. Add transitions to the activity as required.

6. Configure the Java Invoke activity from the Properties view of the activity as described.

● Click Browse in front of the Class Name field. In the Class Selection dialog, type the first few
letters of the class name to search for the class you want to access. From the list of matching
items, select the class you want to access. For example, select HelloWorld. Click OK.

● From the drop-down list, select the method you want to invoke. For example, select sayHello.
● If the method requires input parameters, provide the values for the input parameters from the

Input tab of Java Invoke activity. For example, in the sayHello method, add the string "World!"
to the input parameter.

7. Complete configuring your process and map the inputs for the activities as required. Then save the
process. You can run or debug the application module in TIBCO Business Studio™ for
BusinessWorks™ and verify the output of the Java Invoke activity.

Accessing Module Properties from Java Global Instance
You can access module properties from Java Global Instance so that at the time of deployment, these
properties can be configured.
To access the ActiveMatrix BusinessWorks 6.x Module Properties in a user-defined Java code referenced
in Java Global Instance, follow these steps:

Procedure

1. In the ActiveMatrix BusinessWorks 6.x module, specify a dependency on the package
"com.tibco.bw.palette.shared.java" using Import-Package.
a) Double-click Dependencies located under ActiveMatrix BusinessWorks 6.x Module > Module

Descriptors. This opens BW Manifest Editor.
b) In the Imported Packages section, click the Add tab to add the dependency on the
com.tibco.bw.palette.shared.java package.

2. Add the @ModuleProperties annotation to the method that accepts only one parameter of type
java.lang.HashMap.
Through this HashMap you can access the name or value pair of ActiveMatrix BusinessWorks 6.x
module properties.

Accessing Module Properties from Java Invoke Activity
You can access the ActiveMatrix BusinessWorks 6 module properties and Java system properties from
the user-defined code invoked from the Java Invoke activity and Java Event Source.

126

TIBCO ActiveMatrix BusinessWorks™ Application Development

Procedure

1. Under the ActiveMatrix BusinessWorks 6 module, click Module Descriptors , and then double-click
Dependencies.
This opens BW Manifest Editor.

2. In the Imported Packages section, click Add.
The Package Selection dialog opens.

3. Select the com.tibco.bw.palette.shared.java and com.tibco.bw.runtime package and click OK.

4. Add the @BWActivityContext annotation to the method which accepts only one parameter of type
com.tibco.bw.runtime.ActivityContext.
The module property can be accessed from ActivityContext class using the methods
"registerModuleProperty" and "getModuleProperty".

Accessing Module Properties in User-Defined Java Code Referenced in
JavaProcessStarter

Retrieve EventSourceContext from the getEventSourceContext() method of abstract Java class
"JavaProcessStarter". The module property can be accessed from EventSourceContext class using the
methods "registerModuleProperty" and "getModuleProperty".

127

TIBCO ActiveMatrix BusinessWorks™ Application Development

Creating an Application

An application is a collection of one or more modules and can be executed in the runtime.
Modules are packages containing one or more processes, shared resources, and metadata such as name,
version, dependencies, and so on. Package names must be unique within an application. If there are
two packages with the same name in an application, then you must either rename one of the packages
or remove one of the packages from the application.

An application created using TIBCO ActiveMatrix BusinessWorks Express can run in TIBCO
ActiveMatrix BusinessWorks Enterprise. However, an application created using ActiveMatrix
BusinessWorks Enterprise cannot run in ActiveMatrix BusinessWorks Express.

The New BusinessWorks Application wizard helps create an application. There are multiple ways to
launch the wizard:

● From the main menu, select File > New > BusinessWorks Resources and then select
BusinessWorks Application.

● From the Module Descriptors > Overview getting started area, click Create a BusinessWorks
Application.

● Right-click in the Project Explorer view and select New > BusinessWorks Application.

Specify the values for the following fields in the wizard:

1. Project name: Name of the application.

2. Use default location: Specifies the location on disk to store the application's data files. By default,
this value is set to the workspace. To change, clear the check box and browse to select the location to
be used.

3. Version: Version of the application.

4. Deployment Target: Select the required deployment platform(s).

Optional.You can set the default deployment profile to create applications, and migrate the
existing TIBCO ActiveMatrix BusinessWorks™ 5.x projects with the set preference.
Navigate to Window > Preferences > BusinessWorks > Deployment Profile.

5. Create Application Module: Selected by default to create an application module with the specified
name. Clear the check box if you do not want to create an application module.

6. Click Finish.

Result

An application with the specified name is created and opened in the workbench. If the option to create
an application module was selected, the application module with the specified name is also created.

128

TIBCO ActiveMatrix BusinessWorks™ Application Development

Working with Application Properties

Creating an Application Property
You create new application properties in the Properties page of an application in TIBCO Business
Studio™ for BusinessWorks™. The application properties editor can also be used to create and manage
custom profiles. You can also promote a module property to be an application property.

The application properties editor can be used to create and manage new application profiles. You can
add a new application property to a profile, rename a profile, and also delete a profile. Application
profiles can also be exported from an application, and used in a different application. Similarly,
exported profiles can be imported into a different application.

Follow these steps to create a new application property:

Procedure

1. In the Project Explorer, fully expand <application_name>.application.

2. Double-click Properties under Package Unit to open the application properties in the right pane.

3. Click Application in the Properties column and click New Property.
A new property gets created under Application.

4. Click the property name to edit it.

5. Click the corresponding default profile column (the default column is indicated with [] around it)
or another profile column in case you have multiple profiles set up for the property to enter a value
for the property.
For more information about setting an application profile as a default profile, see "Setting the
Default Application Profile" in the TIBCO ActiveMatrix BusinessWorks™ Samples guide.

6. Save your application.

Be sure to map a module property to the newly created application property. Keep in
mind that an application property can only be used when mapped to a module property.

For information on creating profiles see Creating an Application with Multiple Profiles.

129

TIBCO ActiveMatrix BusinessWorks™ Application Development

When a property value is same across all profiles, and you want to keep the property values
consistent across all profiles after updating a value for any one profile, select the Sync Values check
box .

For more information about editing application properties using bwadmin command line utility or
by using Admin UI, see "Editing Application and Application Instance Properties" in the TIBCO
ActiveMatrix BusinessWorks™ Administration guide.

Exporting an Application Profile
An application profile can be exported from the application. After an application is configured with a
profile, it becomes part of the application archive. The exported application profile can be used to
configure another application by importing it into that application.

To export an application profile:

Do the following to export an application profile:

1. Click the <Project>.application, expand Package Unit folder and double-click Properties to open
the Properties page.

2. Click the profile name of the profile you want to export to select it and click the Export Profile
button.

3. Select the application and use the Browse button to browse to a location where you want to
download the profile file.

4. Click Finish.

A <profile-name>.substvar file gets created in the location you specified. You can now import
this profile file into another application.

Tokenizing Application Properties for exporting in the Properties file
To tokenize application properties, a new button Tokenize the property is added in the Properties view
for application properties.

After tokenization, the property value is set in the format #property_name#. Once the user tokenizes a
property, the original default value for the property is lost.

130

TIBCO ActiveMatrix BusinessWorks™ Application Development

The Tokenize the property button is available only for applications with the Deployment Target set as
Container. When you open Export Profile wizard, the tokenized values are already selected.

For more information about how to export tokenized properties to Consul server, see "Exporting
Tokenized Properties to Consul Server from TIBCO Business Studio™ for BusinessWorks™" topic in the
TIBCO BusinessWorks™ Container Edition Application Development guide.

Follow the steps to tokenize the application or module properties and export them in properties files.

Procedure

1. Double click the application properties.

2. In the Properties view, select the profile, and click the Export Profile button.
The Export Profile wizard opens.

3. In the Export Profile wizard, select the properties to be exported.

4. Select the check box Export as properties file and browse the location to export the properties file.
The properties are available in the .properties file in the form of key-value pairs.

The properties that are selected while exporting the profile for Properties file will be generated as
key-value pairs in the .properties file. The keys in the Properties file is generated using the
names of the properties that are exported.

After the property is exported, it is auto-tokenized in TIBCO BusinessWorks™ Studio depending on
the deployment target selected for the application project.

● If the selected deployment target is Container, then the properties are auto-tokenized.

● If the selected deployment target is Tibco Cloud, then the properties are not tokenized.

● If the selected deployment target is both Container and Tibco Cloud, the Tokenize check box is
enabled in the Export Profile wizard. On selecting the Tokenize checkbox, the properties are
tokenized.

131

TIBCO ActiveMatrix BusinessWorks™ Application Development

This functionality supports properties of type boolean, string, integer, long, and password.

The following table lists the values of five different types of properties if the default values are
provided for all the properties

Data Type
Property
Name

Before
Tokenization

After
Tokenization

Before
Export

After Export in
the properties
file

Default Default Default Default

String Property1 test #Property1# test test

Integer Property2 26 #Property2# 26 26

Long Property3 18 #Property3# 18 18

Boolean Property4 true #Property4# true true

Password Property5 ***** #Property5# ***** <encrypted
value of the
password>

132

TIBCO ActiveMatrix BusinessWorks™ Application Development

The following table lists the values of five different types of properties if the default values are
not provided for all the properties

Data Type
Property
Name

Before
Tokenization

After
Tokenization

Before
Export

After Export in
the properties
file

Default Default Default Default

String Property1 #Property1# Property1

Integer Property2 #Property2# 0

Long Property3 #Property3# 0

Boolean Property4 #Property4# false

Password Property5 #Property5# <encrypted
value of the
password>

The following table lists the values of five different types of properties if there are all tokenized
properties provided for all the properties

Data Type
Property
Name

Before
Tokenization

After
Tokenization

Before
Export

After Export in
the properties
file

Default Default Default Default

String Property1 #Property1# #Property1# #Property1# Property1

Integer Property2 #Property2# #Property2# #Property2# 0

Long Property3 #Property3# #Property3# #Property3# 0

Boolean Property4 #Property4# #Property4# #Property4# false

Password Property5 #Property5# #Property5# #Property5# a String:
PASSWORD

Importing an Application Profile
After exporting an application profile you can import it into another application. Do the following to
import an application profile:

Procedure

1. Click the <Project>.application, expand Package Unit folder and double-click Properties to open the
Properties page.

133

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. Click the Import Profile button.
The Import Profile dialog box opens.

3. Use the Browse button to browse to a location of the <profile-name>.substvar profile file you
want to import.

4. To override existing profile values with the values in the imported profile, select the Override
existing profile values check box. To keep values from the imported profile only, select the Match
profile exactly (Deletes variables if required) check box.

5. Click Finish.
The imported profile is visible under Property Configuration.

134

TIBCO ActiveMatrix BusinessWorks™ Application Development

Generating Deployment Artifacts

A deployment artifact is an archive file that contains all the information required to deploy the
application to runtime. It is the only artifact that is handed from the design phase to the runtime as it
contains all the bundles and metadata that is required to deploy and run the application.

Applications are developed using the features available in TIBCO Business Studio™ for
BusinessWorks™ and can range from simple to very complex. An application consists of an application
module, which consists of one or more processes that define the business logic, and zero or more
shared modules. For more information, see "Application Modules" and "Shared Modules" in the TIBCO
ActiveMatrix BusinessWorks™ Concepts guide. Applications can also contain OSGi bundles that do not
contain ActiveMatrix BusinessWorks™ artifacts.

Applications are developed using the features available in TIBCO Business Studio™ for
BusinessWorks™ and can range from simple to very complex.

An application archive contains one or more OSGi bundles, one each for all the modules referenced
directly or indirectly by the application. It also contains application metadata which is used during
deployment.

If any further changes to the design or configurations are made, the deployment artifact (archive file)
must be regenerated.

When creating an archive file for an application, the application packager also generates the
ActiveMatrix BusinessWorks processes in SVG format, which can be rendered in the Admin UI.

By default, the diagram information is present when exporting a process. To remove diagram
information when exporting a process, navigate to the Window > Preferences > BusinessWorks >
Deployment and select the Exclude diagram information during packaging check box.

There are multiple ways to create a deployment artifact:

135

TIBCO ActiveMatrix BusinessWorks™ Application Development

● From the Project Explorer view in TIBCO Business Studio for BusinessWorks, open <Project>app >
Overview and click Export Application for Deployment link as shown below.

When importing projects created in a version of the software that is lower than
ActiveMatrix BusinessWorks™ 6.4.x, if the application module or shared module version
does not contain a .qualifier version, a design time validation error is thrown by
default. Preference options can be set to ignore this validation error. Navigate to Window
> Preferences > BusinessWorks >Validation >Missing .qualifier literal for module
version. Preferences can be set to one of the following options:

● Error: The validation error is displayed in the Problems tab.

● Warning: A warning is displayed in the Problems tab.

● Ignore: The validation error is not displayed in the Problems tab.

In the EAR Export window, specify the location for the archive file and provide a custom name to
the archive file, if needed, by clearing the Use Default EAR file name check box. Click Finish to
create the deployment artifact (archive file).

● By selecting the project application in the Project Explorer and dropping it in the File Explorer an
archive file for the application is created. If needed, change the default location in the File Explorer

by using the Open Directory to Browse option in the File Explorer and select a custom folder.
For example c:/tmp.

136

TIBCO ActiveMatrix BusinessWorks™ Application Development

Artifacts intended to be exported from a shared module must be contained in their respective special
folders. For example, schemas must be contained in the Schemas folder, WSDL files in the Service
Descriptors folder, and processes must be contained in a package under the Processes folder.

When you deploy an application, each application in an AppSpace is identified by its unique name and
a major.minor version number. The version number is important as it provides traceability and helps
troubleshoot in case of an error at run time. If any further modifications are made to the application, the
archive file must be regenerated with an updated version number and then deployed to the AppSpace.

When you deploy and start an application, if the archive file contains the SVG format of business
processes, you can view the process diagrams for the processes from the Admin UI. For more
information, see the TIBCO ActiveMatrix BusinessWorks™ Administration guide.

137

TIBCO ActiveMatrix BusinessWorks™ Application Development

Deploying an Application

You can deploy an application in TIBCO Business Studio™ for BusinessWorks™.

Prerequisites

The bwagent must be running. For information on runtime entities, see the TIBCO ActiveMatrix
BusinessWorks™ Administration guide. If no network exists, you can create one by entering values in the
Add Network dialog box and creating runtime entities in the Deploy Application dialog box.

Procedure

1. Connect to a deployment server.
a) In the Deployment Servers pane, right-click Deployment Servers and select Add Network.

b) In the Add Network dialog, specify the HTTP interface and port for the network. The default
HTTP interface is the name of the bwagent. The default port is 8079. The defaults might have
been changed by your administrator.

The selected network is displayed in the Deployment Servers pane:

138

TIBCO ActiveMatrix BusinessWorks™ Application Development

The Deployment Servers pane contains information related to a single bwagent. Unlike
the Admin UI, this pane does not have information about the other bwagents and hence
cannot be used to perform operations on other bwagents. For example, you cannot create
an AppNode in another bwagent within the existing domain.

2. Deploy and start your application. There are several ways to deploy:

● Drag an application project into an AppSpace in the Deployment Servers pane and drop it.

● Drag an archive file from the Project Explorer, from Mac Finder, or from Windows File
Explorer into an AppSpace in the Deployment Servers pane.

● Drag an archive file from the Archives folder (in the Deployment Servers pane) into an
AppSpace and drop it.

● Right-click the application and choose Deploy Application When the arget platform is
updated, export the EAR file and deploy it to the selected platform. Options such as

a) In the Deploy Application dialog box, choose:

● Network: The network to deploy to.

● Domain: The domain to upload to. If there are no domains in the network, a default value is
provided. Click New to create a new domain.

● AppSpace: The AppSpace to deploy to. The default AppSpace name is based on the
application name. Click New to create a new AppSpace in the selected domain.

If an AppNode does not exist, an AppNode is created. The AppNode is computed from the
AppSpace name and an HTTP management port value is assigned.

139

TIBCO ActiveMatrix BusinessWorks™ Application Development

The application is deployed.

3. Right-click the application in the Deployment Servers window and choose to Start it. Select it in the
Deployment Servers pane to view the status in the Properties pane:

4. Right-click the application in the Deployment Servers window and choose Stop to stop it.

140

TIBCO ActiveMatrix BusinessWorks™ Application Development

Refactoring a Shared Resource or Policy Package

Follow these steps to refactor a resource or policy.

Renaming a Resource or a Policy Package
Follow these steps to change the name of a resource, or a policy, package and to update its
corresponding references in the project.

Procedure

1. To rename a resource package, right-click the package under the Resources folder and select
Refactor > Rename Resource Package. To rename a policy package, expand the Policies folder,
right-click the policy package, and select Refactor > Rename Policy Package.

2. Enter a new name for the resource, or policy, package and select OK.

3. Optional. In the Rename Package Name dialog, confirm the changes that will happen, and the
resource references that will be updated, by ensuring the correct resources are selected.

4. Select OK.

Changing the Location of a Resource or a Policy
Follow these steps to change the location of a resource, or a policy, and to update its corresponding
references in the project.

Procedure

1. To update the location of a resource, right-click the package under the Resources folder and select
Refactor > Rename Resource Package. To update the location a policy, expand the Policies folder,
right-click the package containing the policy you want to rename, and select Refactor > Rename
Policy Package.

2. Enter a new location for the resource, or policy, and select OK. For example, to change the location
of a Basic Authentication policy residing in refactoringproject.TestPackage, modify the package
name to refactoringproject.NewPackage.TestPackage.

3. Optional. In the Rename Package Name dialog, confirm the changes that will happen, and the
resource references that will be updated, by ensuring the correct resources are selected.

4. Select OK .
A new folder structure under the Resources, or Policies, folder is created, and the resource is moved
to the newly created location.

141

TIBCO ActiveMatrix BusinessWorks™ Application Development

Working with Multiple Component Processes

Using the Components editor in TIBCO Business Studio™ for BusinessWorks™, perform tasks such as
selecting or deselecting components, adding or removing components.

Adding Multiple Component Processes
Follow these instructions to add more than one component process to an application.

Procedure

1. To open the Components editor in TIBCO Business Studio for BusinessWorks, in the Project
Explorer, navigate to the Module Descriptors folder, and double-click the Components folder.

2. Click the Create Process Component icon.
3. From the Select a BusinessWorks Process wizard, select a component process, hold down the Shift

button, and use the up or down directional buttons on your keyboard to select additional processes.

4. Click OK.

Result

The processes you specified are displayed in the Component Process editor.

Deleting Multiple Component Processes
Follow these instructions to remove more than one component process to an application.

Component processes with REST services cannot be deleted from the Components editor. Instead,
delete them from the Project Explorer.

Procedure

1. To open the Components editor in TIBCO Business Studio for BusinessWorks, in the Project
Explorer, navigate to the Module Descriptors folder, and double-click the Components folder.

142

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. Select a component process, hold down the Shift button, and use the up or down directional
buttons on your keyboard to select additional processes.

3. Click the icon to remove the component processes you selected.

4. Click OK.

Result

The processes you specified are removed, and no longer display in the Component Process editor.

Enabling Auto Start of Component Process
Select or clear the check boxes for each component process to decide whether to enable auto start of a
component process or not during execution. If you clear the check box, corresponding component
process is not executed during application startup.

Procedure

1. To open the Components editor in TIBCO Business Studio for BusinessWorks, in the Project
Explorer, navigate to the Module Descriptors folder, and double-click the Components folder.

2. Clear the check box for corresponding component processes.

3. Click Save.

For more information about how to enable or disable components from Admin UI, see
"Starting a component in an Application" and "Stopping a component in an Application"
in the TIBCO ActiveMatrix BusinessWorks™ Administration guide.

143

TIBCO ActiveMatrix BusinessWorks™ Application Development

Analyzing Dependencies and References

The Dependency Visualizer provides graphical visuals of all the direct and indirect dependencies and
references for an application. You can use this option to view the hierarchy of processes, shared
resources, WSDL files, XSD files and so on. Dependency Visualizer can also be used to explore the
dependencies and references for a selected resource and all the objects within a workspace.

The Dependency Visualizer provides information on how an application is organized and also helps
identify potential problems and possible improvements in the application.

Dependency and reference information can be viewed for the following:

● Applications

● Application Modules

● Shared Modules

● WSDL files

● XSD files

● Processes

● Shared Resources

All the information to be displayed can be configured as required by moving the nodes on the canvas.

These changes can also be restored to the original settings by selecting the Refresh icon .

The information can be configured using the Change Graph Layout option . The layout options
available are:

● Spring Layout

● Tree Layout

● Grid Layout

● Horizontal Tree Layout

● Radial Layout

Other additional options available are Take a Screenshot , Search a Node in graph , Highlight

Dependencies/References and Zoom In/Out .

Exploring Dependencies

To access the Dependency Visualizer option from TIBCO Business Studio™ for BusinessWorks™,
navigate from the right-click menu of the application or the shared resource to Dependency Visualizer
> Explore Dependencies. The dependency graph is displayed.

144

TIBCO ActiveMatrix BusinessWorks™ Application Development

The dependencies between application modules and shared modules can be viewed and analyzed. The
Project Dependency Graph shows the inter-dependency of modules for the selected Application,
Application Module and Shared Modules.

The viewer window displays all objects of the same type as the current selection. For example, for a
selected project, all the projects in the workspace are displayed and all the projects related to the current
selection are highlighted.

The dependencies for the selected resource is displayed in the following way:

In the above example, the Process Dependency Graph for Account.bwp is displayed. The root node,
Account.bwp is first highlighted in green. On selection, the root node highlights it's level 1
dependencies. The Levels dropdown option contains the level options 1, 2, 3, 4 and All. You can use

145

TIBCO ActiveMatrix BusinessWorks™ Application Development

this filter to limit the depth of the levels to be displayed. When any of the level 1 dependencies are
selected, the level 1 dependencies of that selected node are highlighted.

The required dependent nodes can also be highlighted using the option Highlight Dependencies.

When you click the root node or any of the level dependencies, the dependencies are displayed in the
categories listed below. You can use the Filter Resources filter to refine the view to display only the
required dependencies.

● WSDL Dependencies

● XSD Dependencies

● Subprocess Dependencies

● Shared Resource Dependencies

Exploring References

Navigate from the right-click menu of the application or the shared resource to Dependency Visualizer
> Explore References. The Reference Dependency Graph displays where the selected resources are
referred. In the example in the image below, the HTTP Connection shared resource is referenced by the
following processes.

The required referenced nodes can be highlighted using the option Highlight References.

When you click the root node or any of the level references, the references are displayed in the
following categories:

● WSDL References

● XSD References

● Sub process/processes References

● Shared Resource References

Unused Resources
The view displays unused resources from selected module and its dependent modules.

To display a module's unused resources, right-click the module and select Dependency Visualizer >
Find Unused Resources. The Unused Resources view is displayed.

146

TIBCO ActiveMatrix BusinessWorks™ Application Development

On the Unused Resources view, the total number of unused resources is displayed. This includes:

● Process
● Schemas
● WSDL
● Shared Resource
● Policy
● Job Shared Variables
● Module Shared Variables
The Include Application Modules check box is now removed from the Unused Resources view.
Implicitly, application modules are included during unused resources calculation. When calculating
unused resources for application modules, associated shared modules are also considered.

If you add, remove, or re-factor unused resources in the application and you need to find unused

resources again, use Refresh button in the Unused Resources view to get the updated unused
resources. Refresh operation takes some time when using with large projects.

If you remove or close any project from the Project Explorer view, the Unused Resources view is
cleared.

To delete unused resources by type, select the resource and right-click > Delete.

147

TIBCO ActiveMatrix BusinessWorks™ Application Development

When you try to delete an unused artifact which has dependencies as well as references on the other
unused artifacts, a new Delete unused resources dialog box opens.

It shows the list of selected resources. To see the list of corresponding dependencies, click Preview
button. To delete dependent resources, click Ok.

To delete all the unused resources together in one go, select all the resources and right-click > Delete.
However, you need to repeat this process more than once to remove all unused resources.

Generate EAR without unused resources

To generate an application archive file (.EAR) without unused resources, select the BusinessWorks >
Deployment > Exclude unused resources from packaging check box in the Preferences dialog box.

148

TIBCO ActiveMatrix BusinessWorks™ Application Development

When you create an .EAR file, preview of unused resources is displayed in the Create Application
Archive wizard.

An .EAR file is generated without unused resources.

From CLI, use -removeunused argument for export command in the bwdesign utility. For more
information, see Using bwdesign utility.

149

TIBCO ActiveMatrix BusinessWorks™ Application Development

Repairing TIBCO ActiveMatrix BusinessWorks™ Projects

Repairing the BusinessWorks projects is one of the refactoring activities available on right-clicking the
project in the Project Explorer pane, and clicking Refactor > Repair BusinessWorks Projects....

The Repair BusinessWorks Projects... option is used to update data models in the selected files. When a
repair tool is executing, its logic is applied to the selected files. If there is no data to update, the repair
tool does not make any changes. So, it is fine if you run the tool multiple times.

For the existing projects with data models in an old data format, the repair tool can upgrade the data
models with a new data format. For the existing projects with defects, for example, some data is
missing, the repair tool can recover or regenerate the missing data. When a new feature is added, the
existing projects do not have the serialization, which is provided by the new feature. In this scenario,
the repair tool can apply the new feature and generate the corresponding serialization in the existing
projects to enable the new features.

The term existing projects includes the projects which are migrated from ActiveMatrix BusinessWorks
5.x to 6.x , and the projects created in ActiveMatrix BusinessWorks and before ActiveMatrix
BusinessWorks 6.5.1.

Following is the Repair BusinessWorks Projects wizard.

The following table describes the options available in the Repair BusinessWorks Projects wizard.

150

TIBCO ActiveMatrix BusinessWorks™ Application Development

Field Description

Update the inline schemas of the Processes To update the Engine type inline schemas in the
existing projects with new format

Update activity error variables To create an extra error variable for the activities
in the existing projects

Update activity input copyOf variable To update the tibex:copyOf extension attribute for
the existing projects

Update memory saving variables To calculate the variables to be freed after an
activity is executed at the run time in the existing
projects

Remove memory saving variables To remove already serialized memory saving
variables from various activities

Refresh Project Cache and do Project Clean To reload the project cache and working copy of
resources in the projects. For such repair tool,
there is no validation error associated with the
projects and no changes can be made in the data
models.

151

TIBCO ActiveMatrix BusinessWorks™ Application Development

Using the Debugger

The debugger enables different configurations of an application to be run in design phase.

By default, the debugger lists all the process and sub processes of an application module, shared
module and nested shared module in the debug configuration window. You can select applications, and
processes in an application, to launch in the debugger.

The Debug perspective consists of set of views which are related to the debugging task. Some views, for
example the Project Explorer view, are not available in the Debug perspective, while others, such as
Debug and Breakpoints, are available in the Debug perspective. There are multiple ways to open the
Debug perspective:

● From the main menu, select Window > Open Perspective > Other and then select Debug.

● From the Module Descriptors > Overview Testing area, click Launch BusinessWorks Debugger.

The Debug perspective consists of the following views, starting from the upper left corner clockwise:

● Debug: Shows the list of debug launches and allows you to manage them using the icon bar as
follows:

— Remove All Terminated Launches

— Resume

— Suspend

— Terminate

— Disconnect

152

TIBCO ActiveMatrix BusinessWorks™ Application Development

— Step Into, Step Over, Step Return, Drop to Frame

— Use Step Filters

— Remove Completed Process

● BusinessWorks Jobs: shows all running jobs and allows you some basic management such as, to

Clear All Jobs .

● Servers: shows the servers that are available. You can also define a new server using the New Server
Wizard, which allows you to define a new server as well as to download additional server adapters.

● Variables: shows the variables associated with the process being debugged. The main management
tasks associated with the variables are:

— Show Type Names

— Show Logical Structure

● Breakpoints: shows the breakpoints used for debugging. The main management tasks associated
with the breakpoints are:

— Show Breakpoints Supported by Selected Target

— Go to File for Breakpoint

— Skip All Breakpoints

— Link with Debug View

— Add Java Exception Breakpoint

● Job Data: shows available information about the running process instances.

● Process Launcher: shows available sub-processes that can be launched. Inputs to the process
instance can be provided in the process launcher.

● Properties: shows available information about the properties in the process being debugged.

● Tasks: shows all debugging tasks listed by their resource, path, location, and type.

● Console: gives the output of the debugging task.

Configuring the Debugger
You can use Debug configuration to create, manage, and run configurations in TIBCO Business Studio™
for BusinessWorks™.

There are multiple ways to access Debug Configurations window:

● From the menu Run > Debug Configurations.

● From the Module Descriptors > Overview Testing area, click Launch BusinessWorks Debugger.

Using the Debug Configurations dialog box, you can select the following:

● Applications to debug.

● Advanced configurations such as logging configuration and engine debug port.

153

TIBCO ActiveMatrix BusinessWorks™ Application Development

● Arguments: program arguments such as the target operating system, target architecture, target web
services, working directory, and so on, and VM arguments such as TIBCO_HOME, port number, or
any engine properties that need to be set when running the application.

● Settings that define the Java Runtime Environment such as Java executable and runtime JRE,
configuration area, and so on.

● Tracing criteria for the available OSGi bundles. By default, tracing is disabled. When enabled, you
can choose among the available OSGi bundles, and then select the desired tracing criteria for each of
them.

● Environment variables such as PATH, LD_LIBRARY_PATH, and so on.

● Common settings where you can save the configuration either as a local or a shared file and display
them in the favorites menu (Debug and/or Run), define encoding for the files, and so on.

After selecting the options, click Apply to apply the changes or Debug to launch the debugger with
the selected debug configuration.

For components or main processes that have dependent subprocesses, the debug configuration
operation allows you to add required processes.

To add required processes:

1. Select Run > Debug Configurations... > BusinessWorks Application > BWApplication from the
main menu.

2. On the Applications tab, select the component application in the applications tree.

3. Click Add Required Processes.

If one of the required processes is missing, the following error message is displayed: BX-600018:
Process [test.SubProcess] not found.

154

TIBCO ActiveMatrix BusinessWorks™ Application Development

Testing an Application in TIBCO Business Studio™ for BusinessWorks™

Using TIBCO Business Studio for BusinessWorks, you can test your applications during design phase
using the debugger.
The debugger provides the runtime environment to test your application in TIBCO Business Studio for
BusinessWorks by starting the ActiveMatrix BusinessWorks engine, domain (BWEclipseDomain),
AppSpace (BWEclipseAppSpace), and AppNode (BWEclipseAppNode) from within TIBCO Business
Studio for BusinessWorks. When you run an application using the debugger, the Console view displays
all messages when executing the application.

Procedure

1. Open the application module in TIBCO Business Studio for BusinessWorks and select the
component process in the Project Explorer.
The selected process opens in the Process Editor.

2. From the menu, click Run > Debug Configurations.

3. In the Debug Configurations window, expand the tree under BusinessWorks Application and
select BWApplication.

4. Click the Applications tab. If multiple applications are selected, click Deselect All. Then select the
check box next to the application name you want to run.
If needed, specify additional information such as engine properties in the debug configuration. For
more information, see Configuring the Debugger.

5. Click Debug to run the application in Debug mode.
The engine and the runtime entities such as domain (BWEclipseDomain), AppSpace
(BWEclipseAppSpace), and AppNode (BWEclipseAppNode) are started and the selected
application deploys. The Console view displays a log of the execution.

6. After completing the execution, click the Terminate icon to stop the process.

Remote Debugging
You can debug an application running on a remote AppNode through TIBCO Business Studio™ for
BusinessWorks™.

Procedure

1. Enable the AppNode for debugging. (The AppNode must be running.)
a) Open the network in the Deploy pane and choose the AppNode. The AppNode properties are

displayed in the Properties pane.

b) Click the Enable Debug icon in the Properties pane to enable remote debugging.
c) Enter the interface and port for remote debugging on the selected AppNode in the Enable

Remote Debugging dialog box.

155

TIBCO ActiveMatrix BusinessWorks™ Application Development

● Debugger Interface: The interface for the debugger. This value is auto-generated.

● Debugger Port: The port to use for remote debugging. This is the same as the port number
you entered for the remote debug configuration. This port cannot be in use. If the port is in
use, the following message is displayed at the top of the dialog box: Internal server
error

The remote debugger can also be launched with the Debug icon in the Properties view.
The connection parameters on the Enable Remote Debugging dialog box will
automatically be entered based on the AppNode configuration.

2. In TIBCO Business Studio for BusinessWorks, create a Remote Debug launch configuration.
a) Choose Run > Debug Configurations.
b) In the Debug Configuration dialog box, choose Remote BusinessWorks Application >
New_configuration. Enter the following information:

● Name: The name of the configuration.

● Host: The name of the host. This is the agent name. To find the agent name, right-click the
network name in the Deployment Servers window and choose Edit. The agent name is
displayed in the Agent HTTP Interface field of the Add Network dialog box.

● Port: The remote debug port. The port cannot be in use.

156

TIBCO ActiveMatrix BusinessWorks™ Application Development

3. Deploy the application you want to debug to a network. For more information, see Deploying an
Application.

4. Launch the application using the Remote Debug launch configuration.
The application is launched in the debugger. Confirmation is displayed in the Debug window.

157

TIBCO ActiveMatrix BusinessWorks™ Application Development

Unit Testing

Unit testing in TIBCO ActiveMatrix BusinessWorks™ consists of verifying whether individual activities
in a process are behaving is expected. While you can run unit tests on processes any time during the
development cycle, testing processes before you push the application to the production environment
might help you to identify issues earlier and faster.

Running Test Assertions
Unit tests focus on testing small units of work, which in TIBCO ActiveMatrix BusinessWorks™ maps to
individual sub-processes. Ideally this is done in a standalone manner, with no touchpoints or
dependencies on other components or interfaces. This is distinct from interface or system testing which
would test the service or operation as a whole. Interface tests are run using other tools such as SOAP
UI.
By design, ActiveMatrix BusinessWorks™ test assertions don't test the top-level process - they only test
sub-processes. For example, if you had an EMS receiver as the start of a top-level process this would
require an interface to EMS to run the tests which creates a dependency.

While test assertions have been available in previous versions of ActiveMatrix BusinessWorks, these
instructions are specific to ActiveMatrix BusinessWorks 6.5.0 which introduced the ability to run unit
tests in isolation, i.e. just test individual sub-processes using Maven without having to start the whole
service. ActiveMatrix BusinessWorks 6.5.0 also introduces new capability around unit test reporting
and test coverage reporting.

Using Demo Projects
To open a demo project in TIBCO Business Studio™ for BusinessWorks™, follow these steps:

Procedure

1. Open TIBCO Business Studio™ for BusinessWorks™ and create a new Workspace.

2. From the main menu, selectFile-> > Import > General > Existing Studio Projects Into Workspace
and click Next.

158

TIBCO ActiveMatrix BusinessWorks™ Application Development

3. Select the Select archive file: option to import the projects in .zip file where the required project is
stored.

4. Click the browse button next to the Select archive file: option to import the projects in a .zip file or
copy paste the path of the required .zip file in the Select archive file: input field and click Finish.

159

TIBCO ActiveMatrix BusinessWorks™ Application Development

5. In Project explorer, select the UnitService.bwp process from the demo project.
This is a top level process which offers two REST calls to retrieve the distance and temperature
units.

Adding Unit Test Assertions
To add unit test assertions in TIBCO Business Studio™ for BusinessWorks™, follow these steps:

Prerequisites

● Apache Maven:
https://maven.apache.org/download.cgi

● TIBCO ActiveMatrix BusinessWorks™ Maven Plugin:
https://github.com/TIBCOSoftware/bw6-plugin-maven/releases

● The UnitTestDemo.zip must be present in an accessible location.

Procedure

1. In TIBCO Business Studio™ for BusinessWorks™, on the demo project right-click the Tests folder
and select New > Add Test File.
The New Test File wizard displays with the Test File page.

2. In the New Test File wizard, change the file name to GetDistanceUnit-NAM.bwt and keep the Tests
folder as default. Click Next.

160

TIBCO ActiveMatrix BusinessWorks™ Application Development

3. Add the GetDistanceUnit.bwp to the process and click Finish.

161

TIBCO ActiveMatrix BusinessWorks™ Application Development

4. In the Project Explorer, open GetDistanceUnit.bwp and click on the distance.GetDistanceUnit
process (green box) and select the Properties tab. Since this process is added to the Tests file, the
Tests tab appears on the Process panel. Click on the Tests tab and the created file is selected in the
Available Tests dropdown.

5. Right-click the Start activity and select Add Test > Add Input. Click on the Tests tab under
Properties and add NAM in the Content column for the region field.

162

TIBCO ActiveMatrix BusinessWorks™ Application Development

Note: NAM should not contain any double quotes ("").

The process does not need to be saved after adding the test inputs and assertions.

6. Right-click the End activity and select Add Test > Add Input. Click on the Tests tab under
Properties and expand AssertType+ and $End-input which is both the sides of the mapper.

7. Drag the string|boolean|… element from the right-hand side to any element on the left hand side
of the mapper underneath $End-input. The Drop wizard opens to select a data type. Select the
"String" data type and click Finish.

163

TIBCO ActiveMatrix BusinessWorks™ Application Development

The testInput and goldInput fields are displayed.

8. In the Data Source tab, drag "unit" to the testInput field. This is the value that you are evaluating in
the assertion. Add miles as an input to the goldInput field.

9. Right-click the AssertType and choose Duplicate. Right-click on Primitive-Assertion and choose
Expand All. Under the second AssertType element right-click the AssertType and choose Remove
Mapping. Drag the string | boolean… element from the right-hand side to any element under

164

TIBCO ActiveMatrix BusinessWorks™ Application Development

$End-input on the left and choose "boolean" data type. Drag the "metric" element from the left onto
the testInput field under Boolean and enter false() in the goldInput field.

10. In a similar way as above, complete the mappings so that you also assert "subUnitType" and
"numberOfSubUnits"

11. To add a new test file, right-click the Tests folder and select New > Add Test File. In the File field
add the name of the file as GetDistanceUnit-EMEA.bwt and click Next.

165

TIBCO ActiveMatrix BusinessWorks™ Application Development

12. Select GetDistanceUnit.bwp and click Finish.

166

TIBCO ActiveMatrix BusinessWorks™ Application Development

13. In the Project Explorer, open GetDistanceUnit.bwp and click on the distance.GetDistanceUnit
process (green box) and select the Properties tab. Since this process is added to the Tests file, the
Tests tab appears on the Process panel. Click on the Tests tab and the demo/Tests/
GetDistanceUnit-EMEA test file is selected in the Available Tests dropdown. If not, select it
manually.

167

TIBCO ActiveMatrix BusinessWorks™ Application Development

14. Right-click the Start activity and select Add Test > Add Input. Click on the Tests tab under
Properties and add EMEA in the Content column for the region field.

15. Right-click the End activity and select Add Test > Add Input. Click on the Tests tab under
Properties and expand AssertType+ and $End-input which is both the sides of the mapper.

16. Repeat steps 7, 8, 9, and 10 to set the assertions for GetDistanceUnit-EMEA with "unit",
"metric","subUnitType", and "numberof SubUnits".
The output should look as follows:

168

TIBCO ActiveMatrix BusinessWorks™ Application Development

To run Unit Tests in TIBCO Business Studio for BusinessWorks, see Running Unit Tests in Studio.

Running Maven from Command Line

To run Maven plug-in from command line, follow these steps

Procedure

1. Open your command prompt and navigate to the location where your demo project is present.

2. Run the command clean initialize site package on your command prompt terminal.
This produces the same result as running Debug within TIBCO Business Studio™ for
BusinessWorks™.

169

TIBCO ActiveMatrix BusinessWorks™ Application Development

Unit Test Reports and Test Coverage Reports
The "site" goal that is included in the Maven debug configuration in TIBCO Business Studio™ for
BusinessWorks™ and on the command line produces unit test reports and test coverage reports. These
test reports are located at \demo.application\target\site.

Procedure

1. Open the index.html using the browser.

2. Select Project Reports > bwtest.
This shows a summary of the tests that were run and whether they passed or failed.

3. From the same folder, open bwcoverage.html.
This shows a summary of which processes and activities are covered by unit tests, for the entire
project and as breakdown for each process.

170

TIBCO ActiveMatrix BusinessWorks™ Application Development

The top-level process is not included in this list as it cannot be unit tested. This could be
used within CI tools such as Jenkins to ensure that a certain percentage of tests are
covered in order to allow a build to proceed.

Limitations for Unit Test Assertions
The following are the limitations for the Unit Test Assertions:

● The top level processes are not supported for unit tests, only the sub processes are used for unit
testing.

● TIBCO Business Studio™ for BusinessWorks™must be installed on the same server where the tests
are to run.

● Mocking of outbound service calls is not currently supported. For example, Invoke REST API, DB
calls, EMS queue sender.

● Unit Tests can currently only be invoked with Maven.

Running Activity Assertions
To run activity assertions in TIBCO ActiveMatrix BusinessWorks™, follow these steps:

Procedure

1. Right-click on the activity from the subprocess and select Add Test > Add Assertion.
This will add the Test tab to the activity.

2. On the Tests tab, navigate to the Assertion Mode drop down.

The Assertion Mode drop down has two modes:

● Primitive: In this mode, only the primitive types of elements are tested.

● Activity: In this mode, the complete activity outputs are tested.

171

TIBCO ActiveMatrix BusinessWorks™ Application Development

3. Select the Activity option from Assertion Mode drop down. The complete activity output schema
gets loaded with editable value field Under Assert Type node. Map the activity variable from
datasource section (In Image you can see it's Mapper) to activityTestInput field.

4. Provide the gold input to all the elements of activity schema which is under the assert node.

172

TIBCO ActiveMatrix BusinessWorks™ Application Development

You don't have to save the process after adding test inputs and assertions. Also If the
schema having the fields with data type decimal, double, float then add the value in the
decimal format, for example1.2 or 4.3234.

Adding Mocking Support for Activities
This document provides steps for adding mocking support for BW activities in TIBCO ActiveMatrix
BusinessWorks™ with the Maven Plug-in. User can skip execution of activity (usually activities that are
based on external service) whose process is under Unit Testing. Mocking support functionality is
required mainly for the ActiveMatrix BusinessWorks™ activities that are based or dependent on some
external Cloud Service or Database systems which are eventually under Unit Testing. To execute Unit
Testing successfully on processes that contain the ActiveMatrix BusinessWorks activities, we need to
mock the ActiveMatrix BusinessWorks activities. Now a dummy output can be added to mock activities
that can be used in Unit testing for successful execution. Currently, Mocking Feature doesn't support
the main process - they only mock the activities from sub-processes.

Prerequisites

● Apache Maven:

https://maven.apache.org/download.cgi

● TIBCO ActiveMatrix BusinessWorks™ Plug-in for Maven Plugin 2.2.0 should be installed. Please
download the plug-in from:

https://github.com/TIBCOSoftware/bw6-plugin-maven/releases

● Activities to be mocked should be present in sub-process where sub-process should be under Unit
testing.

● Generate valid Mock Output XML file. For more information on generating the mock output file, see
Generating Mock Output File.

Adding Mock Output to an Activity

Make sure the demo project with the subprocess that has the activities to be mocked is created.

To add mock output to an activity in TIBCO ActiveMatrix BusinessWorks™, follow these steps:

Procedure

1. Right-click on module project and select New > Tests Folder.
This will add the Tests folder in the module project.

173

TIBCO ActiveMatrix BusinessWorks™ Application Development

2. In Project Explorer, right-click on the Tests folder and choose New > Add Test File. If needed,
change the name of the Test File and Click Next. This displays the wizard with a list of sub-
processes. Select the subprocess having the activities to be mocked.

3. Right-click on the activity to mock and select the Add Mock To Activity option.

4. The new Tests tab is added in the property section of the activity. The new Tests tab has file selector
to select the Output File. Select the output file using File Selector.

174

TIBCO ActiveMatrix BusinessWorks™ Application Development

5. In the Mock Output File field, provide the relative mock output file.
The mock output file should be present in the Tests folder of the project. The relative path will
have the value like "Tests/fileName.xml". It is mandatory to provide the Tests folder name also
in relative path.

Running Unit Tests in TIBCO Business Studio™ for BusinessWorks™

Follow the steps to run unit tests in TIBCO Business Studio for BusinessWorks

Procedure

1. In TIBCO Business Studio for BusinessWorks, right-click on .application file and select the
Generate POM for Application option. Set Tibco Home as the TIBCO Home for your BW
installation with no trailing slash, for example, C:\tibco\bw651 for Windows. Set BW Home as the
relative path to the version-specific BW folder under TIBCO Home (with a leading slash and no
trailing slash), for example \bw\6.5 for Windows and click Finish.

2. This will, now, convert the existing projects to Maven type and add a new project called
*.application.parent and create pom.xml files in all projects.

175

TIBCO ActiveMatrix BusinessWorks™ Application Development

3. Right-click on the parent project and run "test" goal

Generating Mock Output File
To generate the mock output files in TIBCO Business Studio™ for BusinessWorks™, follow these steps:

Procedure

1. Run the application in debug mode from TIBCO Business Studio for BusinessWorks.

2. Select the Output tab from Job Data for an activity for which we need to generate the mock output
file.

3. Right-click on the activity Name in Output tab and copy the data by selecting the Copy Variables
option

176

TIBCO ActiveMatrix BusinessWorks™ Application Development

4. Paste the copied data into the XML file and add opening and closing tag for variables.

5. Services like REST and SOAP can have multiple variables. So in Job Data, the output will be shown
for multiple variables. In this case, append the file for each variable data.

177

TIBCO ActiveMatrix BusinessWorks™ Application Development

Limitations for Mock Support
The following are the limitations for Mock Support in TIBCO Business Studio™ for BusinessWorks™.

● The top level processes are not supported for unit tests, only the sub processes are used for unit
testing.

● The Process Starter and SignIn activities does not provide mocking support.

● TIBCO ActiveMatrix BusinessWorks™ needs to be installed on the same server where the tests are to
be run

● Unit Tests can currently only be invoked with Maven

178

TIBCO ActiveMatrix BusinessWorks™ Application Development

Collaborative Application Development

Collaborative application development process helps multiple process designers to design a process
simultaneously.

To keep the track of collaborative development work, configure TIBCO Business Studio™ for
BusinessWorks™ with Git plug-in. For more information, see Configuring TIBCO Business Studio™ for
BusinessWorks™ with Git. Once you configure Git, you can commit special folders of an application
module by adding .gitignore files. For more information, see Generating gitignore files.

Configuring TIBCO Business Studio™ for BusinessWorks™ with Git

Prerequisites

Make sure that TIBCO Business Studio for BusinessWorks is open.

Procedure

1. From the menu, select Help > Install New Software... to open Eclipse Update Manager.

2. In the Install dialog box, click Add.
The Add Repository dialog box opens.

3. Add name and location as http://download.eclipse.org/egit/updates-4.4.1 and click Ok.

TIBCO Business Studio for BusinessWorks is compatible with egit version 4.4.1 only.

4. From the list of available components, select the components you want to install and click Next.

5. In the Review Licenses dialog box, review the licenses, and click I accept the terms of the license
agreement

6. Click Finish to start the installation of the plug-in.

After installing the software, restart TIBCO Business Studio for BusinessWorks. This restart is
necessary for the software to install completely.

Generating gitignore Files
By default, Git does not allow you to commit empty folders. To keep track of empty folders in the
repository, Git allows you to add .gitignore file in such folders and then commit into the repository.
In TIBCO Business Studio™ for BusinessWorks™ when you create an application module, it contains
Service Descriptors, Resources, Schemas, and Policies as empty folders. Once you configure EGit plug-
in with TIBCO Business Studio for BusinessWorks, you can generate .gitignore file.

179

TIBCO ActiveMatrix BusinessWorks™ Application Development

Generating gitignore Files in Special Folders

Prerequisites

EGit plug-in is configured with TIBCO Business Studio for BusinessWorks and you created an
application module.

Procedure

1. In the Project Explorer view, right-click on the project and select Team > Share Project....

2. In the Share Project dialog box, select Git and click Next.

3. In the Configure Git Repository dialog box, either create a new Git repository or select an existing
Git repository from a drop down list.

4. Click Finish to share the project.
As special folders are empty, you see warnings in the Problems tab.

5. Expand the warning header to display list of warnings. Select any one warning, right-click and
select Quick Fix.
The Quick Fix dialog box opens. In the Select a fix section, Create .gitignore file on empty folder
option is selected. List of Resource folders is displayed along with the Location in the Problems
section on the dialog box.

6. Click Select All to select all check boxes for the resources.

180

TIBCO ActiveMatrix BusinessWorks™ Application Development

7. Click Finish to generate .gitignore files in the special folders.

8. The .gitignore files generated in special folders are visible in the Navigator view only. To open
Navigator view, select Window > Show View > Other....
Show View dialog box is displayed.

9. Select General > Navigator and click Ok.

Generating gitignore Files at Application Module Level
You can generate .gitignore file when creating a new application module.

Procedure

1. Select Window > Preferences > BusinessWorks > Team Development menu.

2. Select the Create .gitignore file for new BW projects. check box. Click Ok.

181

TIBCO ActiveMatrix BusinessWorks™ Application Development

When you create a new application module, in the Navigator view, select the application module
name, right click and select Refresh to see the .gitignore file generated.

This method generates .gitignore file at the root level only.

Synchronizing Module Properties
When an application module has dependent shared modules and if module properties are added,
modified, or deleted in a shared module, push the shared module properties in a Git repository. When
you perform a Git Pull operation, the application properties are synchronized.

Consider the following scenario:

There are 2 developers collaborating over a Git repository and they are authoring a shared module.
Developer 1 adds, modifies or deletes module properties in a shared module in his or her workspace,
and then pushes the changes to the repository. When Developer 2 pulls these changes onto his or her

182

TIBCO ActiveMatrix BusinessWorks™ Application Development

workspace, TIBCO Business Studio™ for BusinessWorks™ detects those changes and synchronizes the
application properties automatically.

183

TIBCO ActiveMatrix BusinessWorks™ Application Development

Using the bwdesign Utility

The bwdesign utility provides a command line interface for creating, validating, importing or exporting
resources stored in a workspace.

Prerequisites

1. To use the bwdesign utility, open a terminal and navigate to BW_HOME\bin.

2. Type: bwdesign -data <TIBCO_BusinessStudio_workspace_absolutePath>. For example,
bwdesign -data C:\myWorkspace.

To view arguments and options for a command, open a terminal, navigate to the BW_HOME\bin folder,
and type bwdesign help command at the command line.

Command Name and Syntax Description

cd

SYNTAX:
cd path

Changes the current working directory to the
specified folder.

ARGUMENTS:

● path - The path of the new current working
directory

clear

SYNTAX:
clear

Clears the command line console.

diagram:gen_diagrams

SYNTAX:
diagram:gen_diagrams [project]

Save each process diagram of a project in a .sgv
format.

ARGUMENTS:

● outputfolder - Optional argument, It's used to
save the diagrams in a given path.

edition

SYNTAX:
edition

Prints out the edition of this BW Studio

execute

SYNTAX:
execute file

Executes a batch script file containing a set of
commands to execute in sequence.

ARGUMENTS:

● file - Script file which contains a set of
commands to be executed in sequence

exit

SYNTAX:
exit

Exits the command line console.

184

TIBCO ActiveMatrix BusinessWorks™ Application Development

Command Name and Syntax Description

generate_manifest_json

SYNTAX:
generate_manifest_json [options]
[ear_location] [manifest_location]

Creates manifest.json from an bw ear file.

ARGUMENTS:

● ear_location - The location of the BW EAR file

● manifest_location - The destination folder that
will contain the created manifest.json file.

ls

SYNTAX:
ls [-f|-p] [-a]

List the projects in current workspace or the files in
current working directory.

ARGUMENTS:

● a - List all the entities including hidden ones.

● f - List the files in file system

● p - List the projects in the current workspace

pwd

SYNTAX:
pwd

Prints the location of the current working directory.

quit

SYNTAX:
quit

Exits the command line console.

setedition

SYNTAX:
setedition -name -t

EXAMPLE:
setedition -name test.application -t
bwcf

Converts projects from their existing editions to this
edition of TIBCO Business Studio™ for
BusinessWorks™.
If the option -name is not selected this command
sets the edition of all the projects in the workspace
to the current edition of TIBCO Business Studio for
BusinessWorks.

Select the option -name, and provide the names of
the projects to be converted.

Provide comma separated values to convert
multiple projects. The -t tag changes the edition to
the specified edition. The values to be used for the
editions are bwcf, bwe and bwcloud.

185

TIBCO ActiveMatrix BusinessWorks™ Application Development

Command Name and Syntax Description

system:create

SYNTAX:
system:create [options]
[outputfolder]

Alternatively, you can use create command.

EXAMPLE:
create application test2.application
test

Note that this example generates
test2.application for the test application
module.

Creates resource(s) in the workspace.

ARGUMENTS:

● outputfolder - The destination folder that will
contain the created resource in the workspace.

Options:

● --help - Display this help message.

● application [name] [modules] -v [version] -

Create an application project with the given
name, including the given module(s).

Optionally, specify the application version using
the -v argument.

Version format - major.minor.micro.qualifier e.g.
'1.0.0.qualifier'.

186

TIBCO ActiveMatrix BusinessWorks™ Application Development

Command Name and Syntax Description

system:export

SYNTAX:
system:export [options] [projects]
[outputfolder]

Alternatively, you can use export command.

EXAMPLE:
export -ear test2.application -
removeunused D:\Samples

Exports BW artifacts from the specified projects in
the workspace to a folder. The artifacts can be ZIP
or EAR files.

ARGUMENTS:

● projects - The name of the project(s) to export,
separated by commas, e.g. project[,project]*.,
Must specify at least one project. BW
Applications can be exported as EAR files.

● outputfolder - The destination folder to contain
the exported module(s). Defaults to local folder.

Options:

● -e, -ear - Export application as a deployable ear
file (default). Can be used with application
projects. Cannot be used with module projects.

● force - Export the BW Application as an EAR file
even though there are validation errors. By
default, erroneous Applications can be
generated as ear files.

● -bin, -binary - Export shared model as binary
shared module. Can be used with -zip option.
Cannot be used with -ear option.

● -name [name] - Use the supplied name for the
exported module

● -pf, -profile name - Export the named profile of
the given module.

● -removeunused - Exclude unused resources
from the application when creating the EAR.

● -removediagraminfo - Removes process diagram
information when creating .EAR file.

● --help - Display this help message.

● -z, -zip - Export model as zip file. Cannot be
used with -ear option.

187

TIBCO ActiveMatrix BusinessWorks™ Application Development

Command Name and Syntax Description

system:import

SYNTAX:
system:import [options] files

Alternatively, you can use import command.

Imports flat or ZIP projects into the current
workspace.

ARGUMENTS:

● files - The names of the folders which contain
the target flat projects to import. All the flat
projects found in the sepcified folders will be
imported. The folders are separated by commas.
By default, zip files will be ignored. If the items
to import are zip archives, use -z, -zip, -fz, -fzip
options.

Options:

● -fz, -fzip - The specified items to import are zip
archives located in the folders specified by the
arguments. All the zip projects in these folders
will be imported, while flat projects will be
ignored. Multiple folders are separated by
commas.

● -z, -zip - The specified items to import are zip
archives specified by the arguments. Multiple
zip files are separated by commas.

Output:

file status

● file - Name of the project

● status - Result of the import, either "imported",
"ignored", or "failed {message}"

system:importpreferences

SYNTAX:
system:importpreferences [options]
file

Alternatively, you can use
importpreferences command.

Imports preferences set in the preferences file.

ARGUMENTS:

● file - Absolute path of the preferences file to be
imported.

Output:

file status

● file - Name of the project

● status - Result of the import, either "imported",
"ignored", or "failed {message}"

188

TIBCO ActiveMatrix BusinessWorks™ Application Development

Command Name and Syntax Description

system:validate

SYNTAX:
system:validate [options] [modules]

Validates BW modules in the current workspace. If
you don't provide any module name, by default, it
validates all modules.

ARGUMENTS:

● modules -

The name of the module(s) to validate,
separated by commas, e.g. module[,module]*.
Defaults to all modules in the workspace.

Options:

● -h,--help - Display help for this command.

● -d <Directory path>,--directory <Directory path>
- Path of the directory to store validation result.

189

TIBCO ActiveMatrix BusinessWorks™ Application Development

Best Practices

As the business requirements become more complex, so do the business processes that are designed to
implement them. TIBCO provides some best practices to help design processes that are readable,
reusable, and manageable.

Control Visibility with Scopes

A scope is similar to a block concept in programming languages and is useful to isolate or encapsulate
process variables, thus avoiding conflicts with variable names used elsewhere in the process. Use of
scopes helps reduce the number of module properties needed for the entire application, which must be
unique for all lexical scopes. When designing or viewing a process in TIBCO Business Studio for
BusinessWorks, scope constructs can be collapsed to enhance readability of the process and reduce
clutter.

Promote Reuse with Sub-processes

A sub-process is similar to a sub-routine in programming languages and is useful to keep a block of
code small and maintainable. Sub-processes, if declared public, can be called from other processes, thus
enabling the logic to be reused.

Consolidate Literal Values

Keep the number of literal values in process logic and activity configurations to a minimum by
consolidating them in the Process Properties tab at the process level. This makes it easier to view and
maintain the literal values. In addition, the process properties can be promoted to module properties,
which can then be controlled at the application level.

Externalize with Module Properties

Configuration parameters can be externalized as module properties. At runtime, the values from the
module properties are injected into process and activity configuration parameters upon application
startup. This allows environmental specific application properties to be set at the time of deployment or
in some cases, post deployment. Database password is a good example of a module property.

Use Profiles for Staging

You can group module properties with the current set of property values into a named profile. An
application can have multiple profiles, each having its own set of property values. At run time, you can
deploy the same application and stage it multiple times using different profiles.

Defining Service Contracts

When designing complex business processes, ensure that the service contracts on the interfaces are
well-defined.

Avoid XML Collisions

Avoid defining schema (XSD) or WSDL components with the same qualified names in the same
module. Doing so may result in XML collisions at the module level.

If, for some reason, you need to define schema or WSDL components with the same qualified names,
then define the schema or WSDL components in separate shared modules. Additionally, configure the
process to have unique namespace by specifying the location of the schema document in the
Dependencies section of the process.

190

TIBCO ActiveMatrix BusinessWorks™ Application Development

Close Unnecessary Projects in Workbench

Keep the number of open projects in your Eclipse workbench to a minimum by closing the unnecessary
projects. Having too many ActiveMatrix BusinessWorks projects open in the Eclipse workbench may
adversely affect the UI performance.

Use Project Clean

Sometimes TIBCO Business Studio for BusinessWorks reports incorrect validation errors that are not
related to design or development issues. It is recommended that you clean your project as it forces
Eclipse to discard all build problems and states, and rebuild the projects from scratch. This option can
be accessed from the menu Project > Clean.

Manage TIBCO Business Studio for BusinessWorks Workspaces

If you are working with multiple major, minor, or service pack levels of the product, use different
workspaces for different versions.

Increase Log Levels

When debugging issues at design-time, increasing the log levels can provide additional information on
the issues. You can customize the log levels for configurations like Debug and Run by editing the
respective logback.xml configuration files.

The logging configurations are accessible from Run > Debug Configuration > Advanced > Logging
Configuration. Permissible log level values are INFO, TRACE, DEBUG, WARN, and ERROR. These levels can
be applied to activities, shared resources, bindings, engine, and so on.

Change the Namespace or Name of a WSDL or XSD Definition

Renaming WSDL definition:

● Right-click the .wsdl file, and click Refactor > Rename WSDL Definition namespace....

Renaming XSD definition:

1. Right-click the .xsd file, and click Refactor > Rename XSD Schema namespace....

2. Right-click the .xsd file, and click Refactor > Repair BusinessWorks Projects..., select the Refresh
Project Cache and do Project Clean option, and then click OK.

Use Refresh (F5) and Project > Clean

Select the required or all the projects in the Project Explorer view by pressing Ctrl + clicking the project
folder, and press F5 on the keyboard to refresh the projects. Or select and right-click the required
projects and click Refresh. In the Menu bar, click Project > Clean.

Moving Resources

Avoid dragging and dropping the ActiveMatrix BusinessWorks resources that are used in SOAP
binding from one place to another.

Workspace Triggers a Rebuild Process after any Resource is Saved

It is a best practice to allow the rebuild operation to complete before making any additional project
changes. This is important when modifying the XSD or WSDL files, because TIBCO Business Studio for
BusinessWorks updates all processes that refer the affected files. Making the changes during this
progress may lead to workspace corruption and hang issues.

191

TIBCO ActiveMatrix BusinessWorks™ Application Development

Project > Clean is Recommended for XSD or WSDL Modifications

It is recommended to perform the Project > Clean operation in case of changes in the XSD or WSDL
files.

The Support for Undo-Redo Operations is Limited

It is suggested to avoid multiple recursive Undo-Redo on the resources like the WSDL and XSD files.
Recommended approach is to save the files (Ctrl+S), so you can close and reopen them.

Project > Build Automatically Option should be Enabled as and when Feasible

When a resource is changed, the project builders can perform cascading changes right away to update
the related resources when the Build Automatically option is selected.

Support for Copy/Paste Actions on ActiveMatrix BusinessWorks Activities and Processes is
Limited

To reuse the Copy/Paste functionality for ActiveMatrix BusinessWorks activities across different
modules, consider recreating the activities or using the Call Process activity.

Resolving Errors through Quick Fix Option

Right-click the errors in the Problems tab to check if the errors can be resolved through a Quick Fix
option. This helps to resolve errors faster than manually fixing them.

192

TIBCO ActiveMatrix BusinessWorks™ Application Development

Troubleshooting

This section provides information on how to solve some commonly observed issues when working
with ActiveMatrix BusinessWorks.

Mapping and Transforming Data
Some mapping issues and possible resolutions are explained below. This list is not complete but
provides examples of messages that might be returned.

For a complete list of error codes, see the TIBCO ActiveMatrix BusinessWorks™ Error Codes guide.

● Issue 1:"The expression refers to a variable name,variableName,that is not defined
in the static context".

Resolution: Delete the mapping and re-map. If the XSLT function Copy-Contents-Of is mapped
on the right hand side of the mapper, delete the mapping and re-map.

● Issue 2 :
"Caused by: org.genxdm.exceptions.GenXDMException: The prefix 'tns' is already
bound to http://NamespaceTest.com/Example Caused by:
org.genxdm.exceptions.GenXDMException: The prefix 'tns' is already bound to
http://NamespaceTest.com/Example and cannot also be bound to http://
xmlns.example.com/20150212141103"

Resolution: Select the element on the right side of the activity's mapper, navigate to the Edit
Statement panel and clear the copy-namespaces check box. See the following image.

193

TIBCO ActiveMatrix BusinessWorks™ Application Development

	Contents
	Figures
	TIBCO Documentation and Support Services
	Changing Help Preferences
	Application Development Overview
	Application Design Considerations
	Process Design Considerations
	Service Design Considerations
	Memory Saving Considerations

	TIBCO Business Studio™ for BusinessWorks™ Essentials
	Outline
	Module
	File Explorer
	API Explorer
	Process Editor
	Palette Library

	Entity Naming Conventions
	Importing an Existing Project into Workspace
	Developing a Basic Process
	Creating an Application Module
	Creating a Shared Module
	Reconfiguring Deployment Target
	Generating the manifest.json File Using the bwdesign Utility
	Generating the manifest.yml file
	Exporting a Shared Module as a Binary Shared Module
	TIBCO Business Studio for BusinessWorks
	CLI
	Using Binary Shared Modules in your Project

	Referencing Shared Modules
	Creating a Process
	Working with Process Properties
	Creating a Subprocess
	Creating an Activator Process
	Adding Activities
	Working with Transitions
	Working with Standard Activity Features
	Input and Output

	Creating a Module Property
	Editing a Module Property
	Promoting Module Properties for Visibility at the Application Level
	Deleting a Promoted Property

	Importing WSDLs

	Using Additional Features
	Using Scopes
	Adding Scope Variables

	Defining and Using Shared Variables
	Retrieving and Assigning a Value of a Shared Variable
	Working with Critical Section Groups

	Using Fault Handlers
	Using Conversations
	Using Checkpoints
	Using Coercions
	Adding a Single Coercion
	Adding Multiple Coercions
	Coercing a Specific Data Type
	Editing Coercions
	Removing Coercions

	Configuring Database for the Engine
	Configuring the Engine for Group Persistence Mode
	Configuring EMS as the Group Provider for Engine
	Configuring TIBCO FTL® as the Group Provider for Engine

	Creating Process Diagrams Explicitly
	Displaying Individual Element Mappings
	Removing Groups
	Configuring the Ungroup Preferences
	Ungrouping a Local Transaction Group
	Ungrouping Groups with Scopes

	Overview of Policies
	Managing Policy Resources
	Creating a Folder for Policies
	Creating an Authentication Resource
	Associating Policies
	Removing a Policy

	HTTP Security
	Enforcing Basic Authentication
	Enforcing Basic Credential Mapping

	SOAP Security
	Enforcing WSS Consumer
	Enforcing WSS Provider

	Building Projects Automatically
	XPath
	XPath Basics
	XPath Expression
	XPath Builder

	Developing a SOAP Service
	Consuming SOAP Services

	Developing a RESTful Service
	Implementing a REST Service Provider
	Discovering API Models from TIBCO Business Studio™ for BusinessWorks™
	Importing an API Model into your Workspace
	Creating an XML Schema for a Swagger 2.0 File Imported in TIBCO Business Studio™ for BusinessWorks™
	Synchronizing the Imported REST API Models in TIBCO Business Studio™ for BusinessWorks™

	Developing Java Applications
	Using a Simple Java Invoke Activity
	Accessing Module Properties from Java Global Instance
	Accessing Module Properties from Java Invoke Activity
	Accessing Module Properties in User-Defined Java Code Referenced in JavaProcessStarter

	Creating an Application
	Working with Application Properties
	Creating an Application Property
	Exporting an Application Profile
	Tokenizing Application Properties for exporting in the Properties file
	Importing an Application Profile

	Generating Deployment Artifacts
	Deploying an Application
	Refactoring a Shared Resource or Policy Package
	Renaming a Resource or a Policy Package
	Changing the Location of a Resource or a Policy

	Working with Multiple Component Processes
	Adding Multiple Component Processes
	Deleting Multiple Component Processes
	Enabling Auto Start of Component Process

	Analyzing Dependencies and References
	Unused Resources

	Repairing TIBCO ActiveMatrix BusinessWorks™ Projects
	Using the Debugger
	Configuring the Debugger
	Testing an Application in TIBCO Business Studio™ for BusinessWorks™
	Remote Debugging

	Unit Testing
	Running Test Assertions
	Using Demo Projects
	Adding Unit Test Assertions
	Running Maven from Command Line

	Unit Test Reports and Test Coverage Reports
	Limitations for Unit Test Assertions

	Running Activity Assertions
	Adding Mocking Support for Activities
	Running Unit Tests in TIBCO Business Studio™ for BusinessWorks™
	Generating Mock Output File
	Limitations for Mock Support

	Collaborative Application Development
	Configuring TIBCO Business Studio™ for BusinessWorks™ with Git
	Generating gitignore Files
	Generating gitignore Files at Application Module Level

	Synchronizing Module Properties

	Using the bwdesign Utility
	Best Practices
	Troubleshooting
	Mapping and Transforming Data

