TIBCO ActiveMatrix BusinessWorks™
ActiveAspects Plug-in

User’s Guide

Software Release 1.2
October 2011

WiTIBCO

TIBCO provides the two-second advantage™ The Power of Now?®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.

TIBCO, The Power of Now, TIBCO ActiveMatrix BusinessWorks, TIBCO Rendezvous, TIBCO Administrator,
TIBCO Enterprise Message Service, TIBCO InConcert, TIBCO Policy Manager, and TIBCO Hawk are either
registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

EJB, Java EE, J2EE, and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 2010 -2011 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

Contents

= - T vii
Changes from the Previous Release of this Guide e viii
Related Documentation iX
TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in Documentation iX
Other TIBCO Product Documentation s [
Typographical CoNVENIONSot e e e e e e e Xi
Connecting with TIBCO RESOUICESttt e e e e e e e e e e e e e xiii
How 10 Join TIBCOMMUNIY o oot e e e e e e e e e xiii
How to Access All TIBCO Documentationttt e e xii
How to Contact TIBCO SUPPOIt oottt e e e e e e e e e xiii
Chapter 1 OVerVieWottt ittt it is i saae et annnnneessannnnnnnesesnnnns 1
INtrOdUCHION . . . e 2
Aspect Oriented Programming (AOP) Terminology oot 3
OV BIVIBW . . oottt e e e e e 5
Roles and Responsibilities 6
Process Join Point 7
TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in 8
PrOCESS ASPECT. . o . oo 8
Advices, Advice Instances and Advice Implementation Instances i 11
Advice Configuration Properties. 12
AdVICE OFdBIING - . o ottt e e e e 14
Packaging and Deployment of ASPECESttt 22
Deploying Packaged Aspects in ActiveMatrix BusinessWorks Engine. 25
Advice Implementations. 26
Java Annotations for Advertising Advice Implementation Metadata. 26
Advice Implementation Properties 32
ST 0] o1 35
XML DOCUMENT ACCESS . . o ot vttt e 37
Packaging and Deployment of Advice Implementations. i 39
Chapter2 PointCut QueryLanguagec.iuuer i rnnnnrnnnnrnnnsrnnnsrnnns 41
INtrOdUCHION . . o 42
Query Language Primitiveso 43
Examples of Point Cuts Defined Using Query Languaget 49

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

iv | Contents

Chapter 3 Asynchronous Advice Implementations. i, 51
INtrOdUCHION . . .o 52
Asynchronous Advices in ActiveMatrix BusinessWorks Engine 53
Execution Model (Successful EXecution). i e 53
Execution Model (Imeout) o 53
Threading Model: Asynchronous Advice Implementations 54
Threading Model: Asynchronous Advice Implementations (Timeout) 55
Chapter 4 Hibernate Resume ittt ittt ininnae e eennnnnnannns 57
Features of Hibernate Resume. 58
Comparison between Checkpointing and Hibernate. 59
Defining a Hibernate Advice Implementation i e 60
Example of Hibernate Advice Implementation. 61
Execution of a Hibernate AdviCe 62
Resuming the Hibernated Job 62
Example of Resuming a Job 63
Using a Database for Hibernation. 65
Modifying the Hibernated Data o 66
Chapter 5 Object Sharing Between Java Activities and Advice Implementation........... 67
OV BIVIBW .« . ettt et e e e e e 68
USEI SCENAIIOS . .« . v e ittt ettt e e e e e e e e e e e e e e e 69
API's and New INterfaces o e 71
USE CaSS . . v v ittt e et e e e 71
Chapter6 BWAA Palettet i i ittt a et aaa e ananennnens 73
RESUME . o 74
CoNfigUrAtiON . . . e 74
INPUL. L 74
OUBPUL .« o e 74
Chapter 7 Monitoring and Management.ttt nnrnrannns 75
INtrOdUCHION . . .o 76
getAdVICEINSIANCES e 77
getAdvicelnstanceMetriCs 81
getRunningAdvicelnstancesCount 85
getRuNNiNQAdVICEINSIANCES L 86
Appendix A ActiVityTypescci it et et e 89

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Contents | v

AtV Ty DS . . oot e 90
Appendix B Developing gXML Applicationsot 97
OVBIVIBW . . o ottt e e e e e e 98
Developing gXML AppliCations o e 99
OXML RECIPES . . . oo 106
ParSINg . . . 106
Constructing a Data Model Tree Programmatically 108
Validatingo 117
Navigation. 119
MU ON . . 122
Serialization 124
XPath 125
RO o 128
KUY oot 135
Validation 140
3T = 145

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

Vi | Contents

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

vii

Preface

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in (BWAA) extends the
capabilities of TIBCO ActiveMatrix BusinessWorks by adding an Aspect Oriented
Programming capability. This allows you to modularize and inject crosscutting
concerns to enhance your ActiveMatrix BusinessWorks processes at deploy time
while keeping the original ActiveMatrix BusinessWorks processes intact. It
exposes a JAVA API to build jar files that can alter the execution of a
BusinessWorks application.

This preface gives some information on the TIBCO ActiveMatrix BusinessWorks
ActiveAspects Plug-in documentation set, related documentation, and on the
conventions used in TIBCO manuals.

Topics

¢ Changes from the Previous Release of this Guide, page viii
¢ Related Documentation, page ix
¢ Typographical Conventions, page xi

¢ Connecting with TIBCO Resources, page xiii

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

viii | Changes from the Previous Release of this Guide

Changes from the Previous Release of this Guide

This section itemizes the major changes from the previous release of this guide.

e No major updates in this release.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Preface | ix

Related Documentation

This section lists documentation resources you may find useful. The
documentation road map shows the relationships between the the books and
online references in this product’s documentation set.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in Documentation

The following documents form the TIBCO ActiveMatrix BusinessWorks
ActiveAspects Plug-in documentation set:

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in Installation and
Configuration Read this manual for information on product installation.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide Read
this manual to learn how to develop, build, and deploy aspects in
ActiveMatrix BusinessWorks.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in API Reference This
manual gives information about the JAVA APIs for creating advice
implementations in TIBCO ActiveMatrix BusinessWorks ActiveAspects
Plug-in.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in Getting Started Read
this manual for detailed information about creating and testing a
ActiveMatrix BusinessWorks project using TIBCO Designer, setting
development environment in Eclipse, advice development in Eclipse, and the
expected final output.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in Release Notes Read
the release notes for a list of new and changed features. This document also
contains lists of known issues and closed issues for this release.

Other TIBCO Product Documentation

TIBCO ActiveMatrix BusinessWorks is a pre-requisite for TIBCO ActiveMatrix
BusinessWorks ActiveAspects Plug-in and is used with other products. You may
find it useful to read the documentation for the following TIBCO products:

TIBCO ActiveMatrix BusinessWorks

TIBCO ActiveMatrix BusinessWorks Concepts Read this manual before reading
any other manual in the documentation set. This manual describes
terminology and concepts of ActiveMatrix BusinessWorks, and the other

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

X | Related Documentation

manuals in the documentation set assume you are familiar with the
information in this manual.

TIBCO ActiveMatrix BusinessWorks Getting Started This manual steps you
through a very simple example of designing, deploying, and monitoring a
ActiveMatrix BusinessWorks process.

ActiveMatrix BusinessWorks Process Design Guide This manual describes how
to create, edit, and test business processes using ActiveMatrix BusinessWorks.

ActiveMatrix BusinessWorks Palette Reference This manual describes each of
the palettes available in ActiveMatrix BusinessWorks.

TIBCO ActiveMatrix BusinessWorks Administration This manual describes how
to use TIBCO Administrator to deploy, manage, and monitor ActiveMatrix
BusinessWorks processes.

TIBCO ActiveMatrix BusinessWorks Installation Read this manual for
information on installing one or more components of ActiveMatrix
BusinessWorks and setting up ActiveMatrix BusinessWorks domain.

TIBCO ActiveMatrix BusinessWorks Error Codes This manual describes errors
returned by ActiveMatrix BusinessWorks.

TIBCO ActiveMatrix BusinessWorks Release Notes Read the release notes for a
list of new and changed features. This document also contains lists of known
issues and closed issues for this release.

Other TIBCO Products

TIBCO Designer™ software: TIBCO Designer is an easy to use graphical user
interface for design-time configuration of TIBCO applications.

TIBCO Administrator™ software: TIBCO Administrator is the monitoring
and managing interface for new-generation TIBCO products such as TIBCO
ActiveMatrix BusinessWorks.

TIBCO Adapter software

Third-Party Documentation

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Preface | xi

Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME Many TIBCO products must be installed within the same home directory. This
directory is referenced in documentation as TIBCO_HOME. The value of
TIBCO_HOME depends on the operating system. For example, on Windows
systems, the default value is C:\tibco.

Incompatible products and multiple instances of the same product can be
installed into different installation environments.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in installs into the
ActiveMatrix BusinessWorks directory within TIBCO_HOME. This directory is
referenced in documentation as BW_HOME. The value of BW_HOME depends on
the operating system. For example on Windows systems, the default value is
C:\tibco\bw\5.9.

BW_HOME

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code Bold code font is used in the following ways:
font e In procedures, to indicate what a user types. For example: Type admin.
e Inlarge code samples, to indicate the parts of the sample that are of
particular interest.

¢ In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

e Toindicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

* To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

¢ Toindicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

xii | Typographical Conventions

Table 1 General Typographical Conventions (Cont’d)

Convention Use
Key Key name separated by a plus sign indicate keys pressed simultaneously. For
combinations example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
% example, an additional action required only in certain circumstances.

Ve The tip icon indicates an idea that could be useful, for example, a way to apply

N the information provided in the current section to achieve a specific result.
The warning icon indicates the potential for a damaging situation, for example,
A data loss or corruption if certain steps are taken or not taken.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Preface | xiii

Connecting with TIBCO Resources

How to Join TIBCOmmunity

TIBCOmmunity is an online destinaton for TIBCO customers, partners, and
resident experts—a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http:/ /www.tibcommunity.com.

How to Access All TIBCO Documentation

After you join TIBCOmmunity, you can access the documentation for all
supported product versions here:

http:/ /docs.tibco.com/TibcoDoc

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

¢ For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http:/ /www.tibco.com/services/support
¢ If you already have a valid maintenance or support contract, visit this site:
https:/ /support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

http://www.tibcommunity.com
http://docs.tibco.com/TibcoDoc
http://www.tibco.com/services/support
https://support.tibco.com

Xiv | Connecting with TIBCO Resources

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Chapter 1

Topics

Overview

This chapter introduces TIBCO ActiveMatrix BusinessWorks ActiveAspects
Plug-in.

* Introduction, page 2

* Aspect Oriented Programming (AOP) Terminology, page 3

¢ Overview, page 5

* TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in, page 8

* Advices, Advice Instances and Advice Implementation Instances, page 11

* Advice Implementations, page 26

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

2 | Chapter 1 Overview

Introduction

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in (BWAA) extends the
capabilities of TIBCO ActiveMatrix BusinessWorks by adding an Aspect Oriented
Programming capability. This allows you to modularize and inject crosscutting
concerns to enhance your ActiveMatrix BusinessWorks processes at deploy time
while keeping the original ActiveMatrix BusinessWorks processes intact. It
exposes a JAVA API to build applications, which are called advice
implementations that can alter the execution of ActiveMatrix BusinessWorks
Application.

This chapter provides an overview of features of the TIBCO ActiveMatrix
BusinessWorks ActiveAspects Plug-in, TIBCO ActiveMatrix BusinessWorks
ActiveAspects Plug-in Concepts, TIBCO ActiveMatrix BusinessWorks
ActiveAspects Plug-in Resources, and AOP terminology.

Chapter 2 describes the Point Cut Query Language used for writing point cut
expressions.

Chapter 3 describes the Asynchronous Advice Implementations.

Chapter 4 describes the Hibernate /Resume feature of TIBCO ActiveMatrix
BusinessWorks ActiveAspects Plug-in.

Chapter 5 describes the JAVA Object sharing between ActiveMatrix
BusinessWorks Java activities and Advice implementations.

Chapter 6 provides information about the BWAA palette.
Chapter 7 describes the Monitoring and Management feature.

Appendix A, ActivityTypes provides information about the activity types of all
TIBCO ActiveMatrix BusinessWorks activities that are useful for the user to
generate expressions in Point cut query language.

Appendix B, Developing gXML Applications provides information for
developing gXML applications.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Aspect Oriented Programming (AOP) Terminology | 3

Aspect Oriented Programming (AOP) Terminology

It is important to understand the terms used in the document about the product.
Table 2 describes the AOP terminology used throughout this document.

Table 2 AOP Terminology

Name Description

Process Aspect An XML resource that can alter the behavior of a
TIBCO ActiveMatrix BusinessWorks application
by injecting user defined code at specific points
within a process. It contains the declaration of
most of the concepts in this list.

Advice Implementation =~ User developed JAVA class that executes one or
more cross-cutting concerns around an activity.

Advice Implementation =~ A JAVA object instance of an advice
Instance implementation.

Advice A configured advice implementation that is placed
around a given activity. Advices are defined in
aspect files.

Advice is a design-time concept.

Advice Instance A particular instance of an advice.

Advice instance is a run-time concept.

Process Join Point A specific point in a process that supports injection
of user defined advices.

Point Cut An expression or query that selects the join points
based on certain conditions.

Point cuts are defined in aspect files.

Target Activity An activity whose input, output, or exception
messages are intercepted by an advice.

Aspect Library A JAR file that contains one or more aspects.

Aspect Implementation A JAR file that contains one or more aspect
Library implementation files.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

4 |Chapter1 Overview

Table 2 AOP Terminology

Name Description

aspectPath Path where aspect libraries are located.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Overview

Overview |5

A Process-Oriented Aspect (POA) alters the execution of a process by injecting
Advices, which are user defined code, at specific points of the process called Join
Points. The selection of the Join Points is made based on the expressions called
Point Cuts.

An Aspect is the collection of Point Cuts and Advices. Aspects implement
features that cut across different layers of a BW application (that is, across
different BW processes). One of the key characteristics of the POA style
programming is that these features can be developed, packaged and deployed
independent of TIBCO ActiveMatrix BusinessWorks applications. This provides a
flexible model and allows a different user, that is, the Aspect Developer to
develop business logic that can alter post design-time, the behavior of a TIBCO
ActiveMatrix BusinessWorks application.

Figure 1 TIBCO ActiveMatrix BusinessWorks ActiveAspects Behavior

Advice Implementations

~-»| Logl.class

“-#l Awdit.class

Aspects are packaged in Aspect libraries, which are JAR files. These are different
from the JAR files that contain Advice Implementations. These JAR files must be
available in the aspect path in order to allow the aspects to be loaded by the
TIBCO ActiveMatrix BusinessWorks engine. The aspect injection process happens
at run-time through a process called In-Memory XML Weaving.

If the Aspect libraries are not available in the aspectPath, the ActiveMatrix
BusinessWorks engine executes the ActiveMatrix BusinessWorks application as is
(that is, without altering the behavior defined by the TIBCO ActiveMatrix
BusinessWorks developer). TIBCO ActiveMatrix BusinessWorks provides a
platform for developing both TIBCO ActiveMatrix BusinessWorks applications as
well as process-oriented aspects that can be injected in these applications.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

6 |Chapter1 Overview

Figure 2 TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in Process

Application Developer

Deployment Architect
Step 1: Develop.app

e | (]

[Depley Project with Aspets)

Step 2: Create EaR ‘

EAR
r_'___ S Y o
| ‘ — Engine
my |
“Step A: Develop Advics bmplementatiore Aspert ibrares /

‘Step B: Develop Aspedts -

i Adwice
L imglementsions

e ey

[Ampmcts
., DML} == .

Step O Craate the ampect libranes and

Advice Implementation
advice im plem entation libraries

libraries

Ardvice implemn entation
|ibrarias

Aspett libranes

Aspect Developer |

Roles and Responsibilities

Application
Developer

Advice
Implementation
Developer

Aspect Developer

Deployment
Architect

This developer of an TIBCO ActiveMatrix BusinessWorks application creates
processes and generates an EAR file for deployment. The application developer is
aware of the potential injection of POAs but is not responsible for developing
them.

This developer develops the JAVA code that gets injected into the TIBCO
ActiveMatrix BusinessWorks processes via the POAs. In general, this developer
may have very little information about the TIBCO ActiveMatrix BusinessWorks
application where the aspects are injected. This user's responsibility is to create a
robust piece of code that addresses a cross-cutting concern for the TIBCO
ActiveMatrix BusinessWorks application.

This developer creates the aspects that are applied to one or more TIBCO
ActiveMatrix BusinessWorks applications. An extensive knowledge about the
TIBCO ActiveMatrix BusinessWorks application as well as the available advices is
required. These advices can be injected in the TIBCO ActiveMatrix BusinessWorks
application. In some organizations the Aspect Developer may also play the role of
the Advice Implementation Developer. For simplicity, this document assumes
that there is only one user, the Aspect Developer, who plays both roles.

Deploys both a TIBCO ActiveMatrix BusinessWorks application and its
associated aspects.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Overview | 7

Process Join Point

A Process Join Point is a well defined point in a process flow where a special event
occurs. A special event could be the beginning of the execution of an activity or
the end of the execution of an activity. By inserting advices in join points, a TIBCO
ActiveMatrix BusinessWorks user can alter the execution of the process. Table 3
describes the join points supported by TIBCO ActiveMatrix BusinessWorks.

Table 3 TIBCO ActiveMatrix BusinessWorks Supported Join Points

Activity Functionality

Before Activity The advice runs before an activity is
executed.
After Returning Activity The advice runs after an activity is

successfully completed.

After Throwing Activity The advice runs after an activity throws
an exception.

After Activity The advice executes after an activity
either completes successfully or it
throws an exception.

This is equivalent to JAVA's finally
construct.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

8 | Chapter 1 Overview

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in consists of resources.

Process Aspect

Process Aspect is a new concept in TIBCO ActiveMatrix BusinessWorks that
provides a way to alter the execution of a process by injecting the user-defined
code in specific points of a process. In general, Aspects are defined, packaged, and
deployed completely independent of TIBCO ActiveMatrix BusinessWorks
applications (like EAR files).

Two main parts of an Aspect are:

* One or more Point Cuts - Provide the selection or the query logic for selecting
the join points where advices are inserted.

e One or more Advices - Provide a user-defined code that will be executed at a
specified point cut.

In TIBCO ActiveMatrix BusinessWorks, an Aspect is implemented with an XML
file that has a ".bwaspect" extension.

The following snippet shows the pseudo-schema of the TIBCO ActiveMatrix
BusinessWorks aspect:

<aspect xmlns="http://schemas.tibco.com/bw/poa"
targetNamespace="xsd:anyURI"

xmlns:xsi="xsd:anyURI" xsi:schemalocation="xsd:anyURI"

order=" xs:unsignedByte"?>
<documentation>..</documentation>?

<pointcut name="NCName"> +
<documentation>...</documentation>?

<query querylanguage="xsd:anyURI"?>...</query>
</pointcut>

<advice name="NCName" pointcut="NCName"> +
<documentation>...</documentation>?

<activity where="Before | AfterReturning | AfterThrowing | After"
exceptionType="xsd:string">

<implementation.java className="xsd:String">
</activity>
<properties>

<property name = "NCName'>..</property>

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in | 9

</properties>
</advice>

</aspect>

An aspect has a required @targetNamespace attribute, whose value must be
unique in the context of an ActiveMatrix BusinessWorks engine. At the
ActiveMatrix BusinessWorks engine initialization time, if two or more aspects are
found with the same targetNamespace, it throws a
BWAspectConfigurationException and exits. An aspect also has an optional
@order attribute, which is used to establish an execution order for advices that are
inserted in the same join point.

A point cut is used to select all the join points where advices are injected. The
selection is implemented by performing a query on the ActiveMatrix
BusinessWorks Project infoset. For details refer to Chapter 2, Point Cut Query
Language.

A point cut has a required @name attribute, whose value must be unique in the
context of an aspect. At the ActiveMatrix BusinessWorks engine initialization
time, if more than one point cuts are found with the same name, the ActiveMatrix
BusinessWorks Engine throws a BWAspectConfigurationException.

A common usage of an aspect is to contain more than one point cut. This is useful
especially when the aspect contains multiple advice definitions. At run-time,
when advices are injected in the business processes, only the point cuts that are
actually referenced by advices are used. Hence, all the point cuts not referenced
by advices are discarded by the engine at run-time.

An advice is a configured user-defined code that gets injected in a process at
run-time, thereby changing its behavior. The location of where the advice gets
injected is specified by referencing a point cut, via the required @pointcut
attribute.

An advice cannot be inserted anywhere in a process other than at the valid point
cuts.

Currently supported join points can only alter the activity behaviors. There are
four types of join points as given:

® Before
® AfterRunning
® AfterThrowing

e After

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

10 | Chapter 1 Overview

& |

¢

An AfterThrowing advice can also specify an exception type QName via the
@exceptionType attribute.

Use QName attribute to select a particular type of exception. If this attribute is not
set, any exception thrown by the activity triggers the execution of the advice.

An advice has a required @name attribute, whose value must be unique in the
context of an aspect. At run-time, the ActiveMatrix BusinessWorks engine throws
a BWAspectConfigurationException if it finds two or more advices with the
same name. An advice also has an implementation, which is the actual code that
gets executed at run-time.

Currently TIBCO ActiveMatrix BusinessWorks supports only JAVA for defining
advice implementations.

An advice implementation JAVA class, which is specified in the @className
attribute of the implementation element, must implement a specific contract. For
more information about this contract and the API that is available to advice
implementations, refer Advice Implementations on page 26.

The ActiveMatrix BusinessWorks engine does not halt its execution if an
exception such as a BWAspectConfigurationException, is thrown during its
initialization process.

Aspects, point cuts, and advices can have an optional documentation element that
can be used to store comments associated with these entities.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advices, Advice Instances and Advice Implementation Instances | 11

Advices, Advice Instances and Advice Implementation Instances

This section describes the difference between an advice and an advice instance.

E: ‘ Advice is a design-time concept whereas Advice Instance is a run-time concept.

An advice defined at design-time in an aspect XML file, has a configuration that
includes a reference to a point cut. At run-time, one advice instance is created for
every join point that is selected by the point cut. Unless Scoping is specified this is
the default behavior. For details refer to, Scopes on page 35.

The advice instance is actually the entity that is executed at run-time, not the
advice.

Figure 3 shows an advice that gets instantiated and injected before all activities.
Since the process has three activities, three advice instances are actually created at
run-time.

Figure 3 Advice Instances Created at Run-Time

<poiMCUt nema = "P*>
<quary quendanguage="hiip i'schemas tibco combwiacpipointCutSeleconlanguage™
=%

Activity (type = :

<lquery> Cne Advice
<fpaimcuts (Design-Time)
cadvice nam = "A" ="

<imphemantaion java classhame =
“com hibco bw poa samples DocumentL ogger>
<factivgy

<ladvice>

(- A1k

-‘ A2 } —- A3))
< e

. =

A ‘O W
+ 4 + Multiple Advice
- —————— Instances

(Run-Time)

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

12 |Chapter1 Overview

At run-time, the TIBCO ActiveMatrix BusinessWorks engine may not always
create three DocumentLogger instances. It depends on the scope attribute of the
DocumentLogger class.

If the scope is "Application", only one java object instance of DocumentLogger is
actually created at run-time per TIBCO ActiveMatrix BusinessWorks application.

This is very important to understand since it represents the key difference
between an advice instance and an advice implementation instance.

The instance of the advice implementation (such as the object of the JAVA class
that provides the implementation of the advice) is not the same as the advice
instance.

Three advice instances may in fact share the same advice implementation java
object instance.

Figure 4 shows two advice instances sharing the same advice implementation
instance.

Figure 4 Two Advices Sharing Same Advice Implementation Instance

Design-Time Run-Time
Advice Advice Instances
A
_ -~ " 7] <xml>
<Implemented-_ -~
by> 7
/
/ - Al 7
/ <instance-of> \ ——
/ \ -
1 \7
|)
. {
\
\ Impl | Impl ObjectiD="123...”
N <Java-Class>
@ scope="Application”
T <instance-of>
Advice Implementation Advice Implementation Instance

Advice Configuration Properties

Advice implementations (that is, Java classes) can define configuration properties.
These properties provide a way for advices to configure the execution of their
associated Java class. This is very useful especially when different advices that
share the same implementation, want to execute it using different parameter
values. For details about how advice implementations can define configuration
properties, refer Advice Implementation Properties on page 32.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advices, Advice Instances and Advice Implementation Instances | 13

For each configuration property defined in the advice implementation, there can
be a set of values in the advice configuration. If an advice implementation
property is not set in an advice, the default value that is specified in the java class,
if exists, is used.

Each advice has a <properties> element that contains these property values.

Advice implementation properties that are not required, do not need to be set in
%} the advice configurations. For details see Advice Implementation Properties on
page 32.

Example 1 An advice with two properties:
<advice name = "Advicel" ...>
<activity where = "Before">

<implementation.java className =
"com.tibco.bw.poa.samples.JMSPropertyChangerWithConfig" />

</activity>
<properties>

<property name = "propertyToModify'">Bar</property>

<property name = "propertyToModifyValue'">BarValuel</property>
</properties>

</advice>

In this case, the advice implementation (that is, the
JMSPropertyChangerWithConfig java class) defines two configurable member
variables:

® propertyToModify
® propertyToModifyValue

These two properties are visible and configurable from an advice. This is visible in
the case of Example 1 on page 13 which is Advicel. The @name attribute of the
<property> element must match the name of the advice implementation
property. If a match is not found, the ActiveMatrix BusinessWorks Engine throws
an AspectException at the time of its initialization.

Another advice could share the same implementation and configure it in a
different way.

Example2 Advice2 configures its implementation to mutate the same property "Bar" but
with a different value:

<advice name = "Advice2" ...>
<activity where = "Before">

<implementation.java className =
"com.tibco.bw.poa.samples.JMSPropertyChangerWithConfig" />

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

14 |Chapter1 Overview

Example 3

& |

</activity>

<properties>

<property name = "propertyToModify'">Bar</property>

<property name = "propertyToModifyValue">BarValue2</property>
</properties>

</advice>

Advice3 configures its implementation to mutate a different property
altogether:

<advice name = "Advice3" ...>

<activity where = "Before">

<implementation.java className =
"com.tibco.bw.poa.samples.JMSPropertyChangerWithConfig" />

</activity>

<properties>

<property name = "propertyToModify">Abc</property>
<property name = "propertyToModifyValue">Xyz</property>
</properties>

</advice>

The advices cannot share the same "advice implementation *instance*". However,
they can certainly share the same "advice implementation".

Advice Ordering

Advices get injected in processes based on the point cuts that are associated with
them. At run-time, multiple advices can be injected in the same join point.
Sometimes, the order in which these advices get executed is very important and
needs to be controlled by the Aspect Developer. The ActiveMatrix BusinessWorks
engine executes the advices in a specific order, which is computed based on a
priority order associated with each advice.

Execution of advices also depends on the process execution flow; which decides
the availability of input or output XML document that is to be used by the advice.

Since the advices that are injected in a specific join point can be specified either in
the same or in different aspect files, the priority order of an advice is computed
based on:

1. The value of the @order attribute that is specified on the aspect that defines
the advice.

2. The location (such as the position) of the advice element inside the aspect
definition (such as the location inside the XML file). An advice with a position

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advices, Advice Instances and Advice Implementation Instances | 15

that is closer to the root element <aspect> has a higher priority than an advice
that is located farther than the root element.

The optional eorder attribute that can be specified on an aspect is used to
establish a priority order between different aspects that are applied to a BW
project. All advices defined in the same aspect share the same @order attribute
value.

This value can range between 1 and 255. The lower the number, the higher the
priority of the aspect. If the @order attribute is not specified, 255 is used by
default, which means that the aspect has the lowest priority.

Although the @order attribute is xsd:unsignedByte, 0 is an invalid value. If 0 is
used, a validation error is thrown.

The order in which the advices are specified in an aspect file is very important.
The ActiveMatrix BusinessWorks engine uses this order to execute the advices
that are run when a specific event occurs. This is true regardless of the event (for
example, before executing an activity, after an activity returns successfully, and so
on). For example, if a target activity throws an exception and there are "after"
advices as well as "after throwing" advices injected after the target activity, the
order in which these advices execute is influenced by the order in which they
appear in the aspect file.

Figure 5 shows two aspect definitions - Aspect-1 and Aspect-2, each one defining
a few "Before" advices. The order of Aspect-1is "2" and the order of "Aspect-2" is
1, which means that Aspect-2 has a higher priority order than Aspect-1.

Figure 5 Aspect Definitions

Aspect 1 Aspect 2
Order="2" Order="1"
Advice: A [before] Advice: C [before]

Advice: D [before]
Advice: B [before] Advice: E [before]

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

16 |Chapter1 Overview

Assume that the order in which these advices appear in the aspect definitions is
exactly the order in which they are shown in this diagram (For example, A is
before B, C is before D, and D is before E).

Figure 6 shows that after evaluating the point cuts associated with these advices,
the ActiveMatrix BusinessWorks Engine injects these two aspects before a specific
activity of a process.

Figure 6 Injecting Two Aspects Before Specific Activity in a Process
Process X

HTTPSendReceive

L O—— ——0O ...

| |

Aspect-1
Aspect-2

Since Aspect-2 has a higher priority than Aspect-1, all its "Before" advices will
execute before the advices defined in Aspect-1. The order of execution of the
advices defined in the same aspect is given by the order in which they appear in
the aspect XML file. Therefore, the order in which these advices get executed is
shown in Figure 7.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advices, Advice Instances and Advice Implementation Instances | 17

Figure 7 Sequence of Execution of the Advices
Process X

HTTPSendReceive

I'f_ : ‘;I’_ } ’lz—\ﬁl
anm = /' < s T

If two aspects have the same order, their corresponding advices execute in an
A order that is not deterministic.

Advice Execution Model

The advices that are injected in a specific join point execute always in sequence.
As shown in Advice Ordering on page 14, the order in which these advices
execute is computed based on the way the aspects are configured as well as the
type of the join point.

Here are the details about how these aspects get executed by focusing on other
characteristics that are not related to ordering.

It is important to note that an advice always has access to the XML Document as
well as the Process Context that is available in the join point where it is injected.
The Process Context can provide access to other XML documents that were
contributed by the previous activities (such as activities that executed before the
join point).

Adpvices do not contribute to the Process Context’s new XML documents that are
% visible to TIBCO ActiveMatrix BusinessWorks activities. Only activities can do
that. XML documents contributed by advices are visible only to other advices that
execute downstream in the process.

Do not alter this way of sharing data between advice instances that execute in the
A same process.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

18 |Chapter1 Overview

The information available to an aspect for each of the supported join point is:

¢ The XML document that is passed to a "Before" advice is the same XML
document that had been passed to the target activity, if the advice was not
injected in the process.

%} ‘ The advice can alter the document but it cannot change its structure.

* The XML document that is produced by the advice must be valid against the
same schema (such as the schema of the input element), which is defined by
the target activity. The same rule applies to all the subsequent advices that are
inserted in the same join point. This means that all the XML documents that
flow through all the "Before" advices that are injected in the same join point
share the same schema. This is shown Figure 8.

Figure 8 XML Document Passed to a "Before” Advice
Process X

File-Read-Activity
Doc g
) y N

h Y
e A Input-Type = T1)

'}
I."”\\ \“»-_.___J-f"/

N

%

Doc Docl Doc?
{11} (T1) {1

In Figure 8, the File-Read-Activity's input type is T1. The advices at run-time
that are injected before this activity receive the XML documents, that are valid
against the same schema (such as, they are instance of T1).

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advices, Advice Instances and Advice Implementation Instances | 19

¢ The XML document passed to an "After Returning"advice is the XML
document that is generated by the target activity, if the activity has an output
type or it is a null object otherwise.

%} ‘ The advice can alter the document but it cannot alter its structure.

* The XML document that is produced by the advice must be valid against the
same schema (such as, the schema of the output type), which is defined by the
target activity.

* The same rule applies to all the subsequent advices that are inserted in the
same join point. This implies that all the XML documents that flow through all
the "After Returning" advices that are injected in the same join point, share
the same schema. This is shown in Figure 9.

Figure 9 XML Document Passed to An " After Returning” Advice

Process X

File-Read-Activity

ri}ocz
p T - T}

|--|"r Output-Type=T1 o
'_ ,."&.

— | g o
Dac Docl e Dac2
(T1)))

e The XML document that is passed to an "After Throwing"advice, is the XML
document that represents the exception thrown by the target activity.

The advice can alter the document (for example, change the exception message,
add more information to the exception, and so on) but cannot alter its structure.

A

e The XML document that is produced by the advice must be valid against the
schema of the output exception type, which basically means that the advice
cannot change the exception type that is thrown by the activity.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

20 |Chapter1 Overview

S

Since an activity can report multiple exception types, an "After Throwing"
advice has to support multiple XML schema types, which usually makes it
difficult to develop. If an advice is interested in a particular exception type, it
can use the @exceptionType attribute to specify its QName. The value of this
attribute has the following format:

<exceptionType> ::= <exceptionTypeQName> (", "
<exceptionTypeQName>)*

<exceptionTypeQName> ::= "{" <exceptionTypeNamespace> "}"
<exceptionTypeLocalName>

where,

— <exceptionTypeNamespace> is the target namespace of the XML Schema
that defines the exception type.

— <exceptionTypeLocalName> is the name of the exception type.

This syntax supports multiple QName values in-case an advice may want to
register its interest in more than one exception type.

To provide a flexible way to select a wide range of exception types, both the
exception type namespace as well as the exception type name support " *"
wildcards. This is the only wildcard supported.

In such cases, the advice is executed only when an exception instance of that
type is thrown by the target activity. All the subsequent advices that are
inserted in the same join point follow these rules. The "After Throwing"
advices should not throw back the exception that is passed to them. Instead,
they should return the exception message when they finish executing. If an
exception is thrown by an "After Throwing" advice, the engine treats it as
any other exception thrown by other types of advices. Figure 10 shows an
example of two "After Throwing" advices.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advices, Advice Instances and Advice Implementation Instances | 21

Figure 10 Example of Two "After Throwing” Advices
Process X

File-Read-Activity
/,/’ ““\

P 5
.{ output-Type = T1 \(,\
e n

Emor-Types = E1, - e
\ il
7 I\

Doc2 (T1
o1 E1 01
E2 o1 E3

EZ, E3

“H__‘___‘_'___/' y, \

Doct (T1

or E1 or
E2 or E3)

¢ The XML document that is passed to an "After" advice represents either the
output of the target activity or one of its exceptions. The advice can alter the
document (for example, change the output message, change the exception
message, and so on) but it cannot alter its structure. The XML document
produced by the advice must be valid against either the schema of the output
XML document or the schema that describes the exception thrown by the
activity. This basically means that the same type of document that is passed to
an "After" advice is passed to any other subsequent "After" advices that
might run in the same join point. While writing an "After" advice, a
developer should be careful since it needs to handle different semantics (for
example, successful returns as well as multiple exception types).

An "After" advice cannot use the @exceptionType attribute to register its
interest in a particular exception type. If an exception is thrown by an "After"
advice, the ActiveMatrix BusinessWorks engine treats it as any other
exception thrown by other types of advices. Figure 11 shows an example of
two "After" advices.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

22 |Chapter1 Overview

Figure 11 Example of Two "After” Advices
Process X

File-Read-Activity
4'/_‘-'_'__-\---\‘\--\ \

i Output-Type = T1

nen \ Error-Types = E1,
"-\ E2, E3 5
1 \"‘ﬂ-ﬁ___ __.;/

Any exception thrown by an advice is propagated as a RuntimeException and
handled by the ActiveMatrix BusinessWorks engine as thrown by the target
activity. The engine processes it based on the business logic defined in the process
containing the target activity.

Packaging and Deployment of Aspects

‘-

This section describes the structure of an aspect JAR and the deployment process
of aspect libraries.

Aspects are packaged together in JAR files, that are referred to as "aspect JARs".

An aspect JARis a JAR file that contains a file with the ". AMF" (Aspect Manifest
File) extension in the META-INF folder.

There can be only one file with the ". AMF" extension in that folder.

The Aspect Manifest File contains information about where all the aspects are
located inside the aspect JAR file. These locations can be specified in two ways:

* By specifying a folder name inside the JAR file, all aspects that are part of that
folder are loaded by the ActiveMatrix BusinessWorks engine. The
ActiveMatrix BusinessWorks engine does not locate aspects in the subfolders.
The root folder is specified using "" (which is an empty string).

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advices, Advice Instances and Advice Implementation Instances | 23

* By specifying the full name (such as, including the folder location) of an
individual aspect inside the JAR file.

The AMF file is an XML file that must be valid against the Aspect Manifest File

XML schema. When loading an aspect JAR file, the ActiveMatrix BusinessWorks
engine validates the Aspect Manifest File against this schema. If validation errors
are found, the ActiveMatrix BusinessWorks engine throws an AspectException.

The following snippet shows the Aspect Manifest File pseudo-schema:
<bwpoa xmlns = "http://schemas.tibco.com/bw/poa/manifest"” ...>
<aspects>

<aspectsFolder>...</aspectsFolder>*

<aspect>...</aspect>*

</aspects>

</bwpoa>

A JAR file that contains aspects but does not contain an Aspect Manifest File, is
not recognized by the ActiveMatrix BusinessWorks engine as an aspect JAR.
Hence none of the aspects defined in that JAR are loaded by the ActiveMatrix
BusinessWorks engine.

Examples of Aspect Manifest File

An aspect JAR with the following structure:

MyAspects.jar
META-INF
Aspects amf
AuditAspects
Aspect! bwaspect
Aspect? bwaspect
ExternalMessages
Aspecty bwaspect
Aspecty bwaspect
Aspect? bwaspect

If the aspects. anf file is the following:

<?xml version = "1.0" encoding = "UTF-8"7>

<bwpoa

xmlns = "http://schemas.tibco.com/bw/poa/manifest"”
xmlns:xsi = "http://www.w3.0org/2001/XMLSchema-instance"

xsi:schemalocation = "http://schemas.tibco.com/bw/poa/manifest
bwpoa.xsd">

<aspects>

<aspectsFolder>auditAspects</aspectsFolder>

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

24 |Chapter1 Overview

</aspects>

</bwpoa>
Then,

only Aspectl.bwaspect and Aspect2.bwaspect are loaded by the ActiveMatrix
BusinessWorks engine. The aspects specified in the s folder are not loaded.

However, if the aspects. anf file is the following:

<?xml version = "1.0" encoding = "UTF-8"7?>

<bwpoa

xmlns = "http://schemas.tibco.com/bw/poa/manifest"”
xmlns:xsi = "http://www.w3.0org/2001/XMLSchema-instance"”

xsi:schemalocation = "http://schemas.tibco.com/bw/poa/manifest
bwpoa.xsd">

<aspects>

<aspectsFolder>auditAspects</aspectsFolder>
<aspectsFolder>auditAspects/ExternalMessages</aspectsFolder>
</aspects>

</bwpoa>

Then,

all the aspects defined in this aspect JAR are loaded by the ActiveMatrix
BusinessWorks engine. The same behavior could be accomplished by specifying
some or even all of the aspects individually. For example, the following manifest
file would have the same result as the previous one:

<?xml version = "1.0" encoding = "UTF-8"?7>

<bwpoa

xmlns = "http://schemas.tibco.com/bw/poa/manifest"”

xmlns:xsi = "http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation = "http://schemas.tibco.com/bw/poa/manifest
bwpoa.xsd">

<aspects>

<aspect>auditAspects/Aspectl.bwaspect</aspect>
<aspect>auditAspects/Aspect?.bwaspect</aspect>
<aspectsFolder>auditAspects/ExternalMessages</aspectsFolder>
</aspects>

</bwpoa>

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advices, Advice Instances and Advice Implementation Instances | 25

Deploying Packaged Aspects in ActiveMatrix BusinessWorks Engine

Multiple aspect JARs can be deployed in a ActiveMatrix BusinessWorks Engine.
When the engine starts up, all these aspect JARs are loaded and their aspects are
weaved into the ActiveMatrix BusinessWorks Project.

All the aspect JARs loaded by the ActiveMatrix BusinessWorks engine at run-time
must be located in the same folder.

S

The name of the folder is specified through the following JAVA system property:
aspectPath

This property can be specified in the bwengine . tra. For example:
BW Aspect Definition Files

java.property.aspectPath
%BW_HOME%/examples/poa/Scenariol/Aspects

Similarly, in the case of folders specified inside aspect JARs, the ActiveMatrix
BusinessWorks engine does not look at sub-folders when loading aspect JARs.
The engine loads only the JARs that are part of this top level folder.

The engine writes out information about all advices that are integrated in the
TIBCO ActiveMatrix BusinessWorks project. For each process, the engine
analyzes the advices that are configured to be integrated and skips the ones that
cannot be integrated due to product limitations. After finishing weaving of a
process, the engine logs out all advices that were skipped.

For more information about the advices that cannot be skipped, read the TIBCO
ActiveMatrix BusinessWorks ActiveAspects Plug-in Release Notes or contact TIBCO
Support.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

26 | Chapter 1 Overview

Advice Implementations

‘-

‘-

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in provides support for
executing advices developed in JAVA. TIBCO ActiveMatrix BusinessWorks
defines both a JAVA API as well as a set of annotations that have to be used for
creating advice implementations.

Relationship between an advice and its implementation is very important.

An advice is a configured instance of an advice implementation.

Multiple advices can be implemented with the same implementation. Therefore,
there is a many-to-one relationship between advices and their associated java
implementation.

An advice implementation provides the business logic of an advice.

Multiple advices can be implemented with the same Java class.

Java Annotations for Advertising Advice Implementation Metadata

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in defines a couple of
java annotations that are used for advertising aspect specific metadata. These
annotations are defined in the package
com.tibco.bw.poa.runtime.annotation.

The following section describes these annotations.

The @Advicelmpl Java Annotation

This annotation is used for tagging java classes as advice implementations. This
annotation is specified on a class, in the following way:

@AdviceImpl
public class MyAdviceImplementation .. {

}

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advice Implementations | 27

Table 4 describes the 5 optional parameters.

Table 4 @Advicelmpl Java Annotation Optional Parameters

Name Type Description

scope String Specifies the instantiation scope of the
advice implementation.

dataAccess String Advertises the data access mode (for
example, read-only vs. read-write).

hibernatesJobs Boolean Advertises whether the advice
implementation hibernates jobs

targetKind String Advertises the kind of the target or join
point where the advice implementation
gets instantiated.

targetFilter String Advertises an activity type name,
which can be used to further narrow
down the scope of the target.

scope

Advice implementations get instantiated in different scopes, which can be
controlled using the scope parameter. The valid values of this parameter are the
following:

Values Description

ADVICE The advice implementation is instantiated once for every
advice instance that is using it.

APPLICATION One instance of the advice implementation is created for an
application. In TIBCO ActiveMatrix BusinessWorks 5.9, the
application equals to a BW Project, which means that one
instance of the advice is created in a ActiveMatrix
BusinessWorks engine.

If the scope parameter is set to a different value than the one mentioned above,
the ActiveMatrix BusinessWorks engine throws an AspectException at
run-time, when the engine gets initialized.

This example of an advice implementation that uses the application scope:
@AdviceImpl (
scope = "APPLICATION"

)

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

28 |Chapter1 Overview

public class MyAdviceImplementation .. }

}

The default value of this parameter, which is used when the parameter is not
explicitly set by the user, is "ADVICE".

&

dataAccess

Advice implementations access the data in a way that can be classified in two
categories:

® Advice implementations that need read-only access to the data
¢ Advice implementations that need read-write access to the data

An advice implementation advertises the category it belongs to by setting the
dataAccess parameter. The valid values of this parameter are the following:

Values Description

READ-WRITE The advice implementation mutates the data,
hence needs read or write access to it.

READ-ONLY The advice implementation does not mutate the
data, hence needs read-only access to it.

If the dataAccess parameter is set to a different value than the ones mentioned
above, the ActiveMatrix BusinessWorks engine throws an AspectException at
run-time, when the engine gets initialized.

Following is an example of an advice implementation that mutates the XML
document:

@AdviceImpl (

dataAccess = "READ-WRITE"

)

public class MyAdviceImplementation .. {

public void execute(N input, AspectProcessContext context) {
// the advice implementation mutates the data here..

¥

}

The default value of this parameter, which is used when the parameter is not
% explicitly set by the user, is "READ-ONLY".

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advice Implementations | 29

Hence, an advice implementation that mutates the data must explicitly set the
dataAccess parameter to "READ-WRITE". If an advice implementation that
mutates the data does not set this parameter appropriately, a
ClassCastException is thrown at run-time, when the advice implementation
tries to use a mutable XML processing context.

hibernatesJobs

Advice implementations can hibernate and resume jobs. If an advice
implementation uses this feature, then it must explicitly declare that it is done
through the hibernatesJobs parameter. The valid values of this parameter are:

Values Description

true The advice implementation calls an API to
hibernate a job.

false The advice implementation does not call an API
to hibernate a job.

Following is an example of an advice implementation that hibernates jobs:
@AdviceImpl (

hibernatesJobs = true

)

public class MyAdviceImplementation .. {

public void execute(N input, AspectProcessContext context) {

if (need_to_hibernate_job) {
context.setHibernateJobEnabled(0);
¥

}

}

The default value of this parameter, which is used when the user doesn't explicitly
set it, is false.

By default, advice implementations do not hibernate jobs.
If an advice implementation attempts to call the API to hibernate a job without
explicitly setting the hibernatesJobs parameter to true, an AspectExceptionis

thrown at run-time. This exception may result in the job to be terminated
abnormally, depending on how exceptions are handled at the process level.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

30 |Chapter1 Overview

When accessing the incoming XML document, advice implementations may or
may not be dependent on a particular schema. For example, an advice
implementation that changes the value of a JMS property in a JMS message sent
by the JMSQueueSendReceive activity is dependent on the format (like XML
schema) of the JMSQueueSendReceive activity's input message.

For this advice implementation to work, it has to be hardcoded to expect the XML
document in this specific format.

Activities that are hardcoded to a specific XML schema can only be instantiated
and executed in a context where the incoming document conforms to that
particular schema.

A way is provided to the advice implementation developer to declare a
dependency of a particular instantiation context through the use of two
parameters defined as part of the @AdviceImpl annotation: targetKind and
targetFilter.

targetKind

This is used for specifying the kind of the target or join point where the advice is
instantiated. This parameter can have one of the following values:

Values Description

ACTIVITY-BEFORE The advice implementation must be
instantiated only before activities.

ACTIVITY-AFTER-RETURNING The advice implementation must be
instantiated only after an activity, on the path
that executes when the activity returns
successfully.

ACTIVITY-AFTER-THROWING The advice implementation must be
instantiated only after an activity, on the path
that executes when the activity throws an
exception.

ACTIVITY-AFTER The advice implementation must be
instantiated only after an activity, on the path
that executes regardless on whether the
activity returns successfully or throws an
exception

(empty string) The advice implementation is not dependent
on a particular context .

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advice Implementations | 31

If the targetKind parameter is set to a different value than the ones mentioned
above, the ActiveMatrix BusinessWorks engine throws an AspectException at
run-time, when the engine gets initialized.

The default value of this parameter, which is used when the user doesn't explicitly
set it, is "". By default, advice implementations do not depend on a particular
context (can be executed anywhere).

targetFilter

When the targetKind parameter is set, the developer of the advice
implementation can also specify a target filter, using the targetFilter
parameter, which is used to further narrow down the scope of the instantiation
context. Using this parameter, the developer can specify the type of the activity
around which the implementation can be instantiated. For example, the
developer can specify the advice implementation that can only be instantiated in
the context of a FileReadActivity. The value of the parameter (the filter) is the
same as the value of the activity() primitive's "type" parameter that is defined
as part of the Point Cut Query Language.

The default value of this parameter, which is used when the advice
implementation developer does not explicitly set it, is "". By default, advice
implementations can be executed in any context.

Following is an example of an advice implementation that must be instantiated
and executed before JMSQueueSend activities.

@AdviceImpl(

targetKind = "ACTIVITY-BEFORE",
targetFilter = "bw.JMSQueueSendActivity"
D)

public class JMSPropertyChanger ... {

¥

When the Aspect engine gets initialized, the engine checks these two parameters
and uses them to validate the aspect configurations. If an advice is about to be
instantiated in a context that is not valid, the engine throws an exception.

An exception is thrown at engine initialization time and not at run-time during
the processing of an incoming request.

Important: It ensures that the engine failure is fast when aspects are not properly
configured.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

32 | Chapter 1 Overview

A more complicated example shows how all these parameters can be used
together. The following is a singleton advice implementation that requires
read-write access to the data to hibernates jobs. It must be instantiated and
executed before JMSQueueSend activities.

@AdviceImpl(
scope = "APPLICATION",
dataAccess = "READ-WRITE",

hibernatesJobs = true,
targetKind = "ACTIVITY-BEFORE",

targetFilter = "bw.JMSQueueSendActivity"
)

public class JMSPropertyChanger ... {

}

Enable Aspect Engine Logging

To enable tracing for Aspect Engine, set the AspectEngine.Trace property to
true in a cfg file. This file should be passed as an argument to the ActiveMatrix
BusinessWorks engine.

The @Property Java Annotation

This annotation is used for marking public member variables defined in advice
java implementations as properties (like, advice implementation properties).

Following is an example of an advice implementation property:
public class AdviceImplExample<I, U, N extends I, A extends I, S,
T, X>
extends SyncAdvice<I, U, N, A, S, T, X> {
@Property
public String currency = "$";

Advice Implementation Properties

Advice implementations can define configuration properties that are used for
configuring the behavior and execution of the java class. For example, an advice
implementation that changes the value of a JMS property may choose to define
the name of the JMS property using an advice implementation property.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advice Implementations | 33

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in makes these advice
implementation properties visible and configurable from advices. This means that
two advices that have the same implementation (that are implemented with the
same java class) can specify different values for the same property. In the example
in The @Property Java Annotation, there could be two or more advices that want
to mutate JMS properties. These advices can share the same implementation and
each one can configure it with a different JMS property name.

@Property Java Annotation Optional Parameters

required Boolean Whether the property is required to be
set in the aspect file.

required

The advice implementation developer can declare an advice property either
required or optional by setting this parameter.

A required advice property must be set in every advice that uses the
implementation class that defines it. The ActiveMatrix BusinessWorks engine
throws an exception at the time the engine gets initialized, if it finds a required
advice implementation property that is not set in an advice.

Values Description

true The advice property is required.

false The advice property is optional.

The default value, which is used when the "required" parameter is not set, is true.
Therefore, by default, advice properties are required to be set in the aspect files.

Advice implementations advertise configuration properties through the use of the
@Property annotation. The following example shows an advice implementation
with two properties:

® package com.tibco.bw.poa.samples

® import com.tibco.bw.poa.runtime.annotation.Property
@AdviceImpl(

dataAccess="READ-WRITE",

targetKind="ACTIVITY-BEFORE",

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

34 | Chapter 1 Overview

targetFilter="bw.JIJMSQueueSendActivity"

)

public class JMSPropertyChangerWithConfig<I, U, N extends I, A
extends I, S, T, X> extends SyncAdvice<I, U, N, A, S, T, X> {

@Property
public String propertyToModify ="foo";

@Property (required = false)
public String propertyToModifyValue = "defaultFooValue";

Restrictions Imposed by TIBCO ActiveMatrix BusinessWorks ActiveAspects
Plug-in for Advice implementation Properties

¢ Only properties of string type are supported. If the Aspect Engine detects a
property of a type different than string, it throws an exception at initialization
time.

¢ Member variables that are exposed as advice configuration properties must be
declared public. If the ActiveMatrix BusinessWorks Engine detects a property
that is not declared public, it throws an exception at initialization time.

At run-time, when an advice is instantiated, the ActiveMatrix BusinessWorks
engine injects in the advice instance, the property values that are specified in the
aspect XML file.

Setter and Getter methods do not have to be available in the java class to provide
access to the member variables.

The ActiveMatrix BusinessWorks engine can inject these property values by
accessing the member variables directly.

All advices that share the same implementation instance (for example, when
using an implementation configured with an APPLICATION scope) must have the
same property values. The ActiveMatrix BusinessWorks Engine configures the
implementation instance at the time the first advice that is using, it gets
instantiated. If a subsequent advice that uses the same implementation instance is

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advice Implementations | 35

instantiated, the ActiveMatrix BusinessWorks engine validates that all its
properties have the same values as the properties set on the advice
implementation instance. If a mismatch is found, the ActiveMatrix BusinessWorks
Engine throws an exception.

To avoid unnecessary null pointer exceptions at run-time, it is highly
% recommended that all advice implementation properties have default values
specified in the java class.

Refer Advice Configuration Properties on page 12 about how property values are
set in aspect files.

Scopes

At run-time, during its initialization process, the ActiveMatrix BusinessWorks
Engine integrates aspects into ActiveMatrix BusinessWorks processes. As part of
this process, the ActiveMatrix BusinessWorks engine instantiates advices and
injects them in different join points inside processes. Since each advice has an
implementation associated with it, which is represented as a Java class, the
ActiveMatrix BusinessWorks engine either creates an instance of this class or
takes one from a pool of already created object instances. ActiveMatrix
BusinessWorks 5.9 supports binding multiple advice instances to the same advice
implementation java class instance through the concept of scoping.

The two Advice Implementation Scopes supported are:
* Advice
¢ Application

Since scope is an attribute of the advice implementation, it is configured at the
java class level in an annotation. This means that all advices using the same
advice implementation java class, have the same scoping configuration.

Advice Scope Mode

The Advice scope is used when a new advice implementation object instance
must be created for every advice instance. This mode is usually used when
multiple advices that share the same implementation do not need to share any
state. Figure 12 shows this Advice Scope mode.

Figure 12 Advice Scope Mode

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

36 |Chapter1 Overview

Process1
T14 2
A < (3
Racaive Raply
-
@ LCHass: com.examplefdvicelmpl
Process2 lﬂ - (Scope="ADVICET)
e +01 Mulvleatmpl 1] (Object Instance)
ik 1 = +1 Advicelmpl [F] (Objoct Instance)
o 1
= ! * Advicelmpl [3] (Dbject Instance)

Receive

]

A1, A2, A3 - Advice Instances

Despite one advice implementation object instance being created for every advice
instance, the developer of the advice implementation java class will still have to
be aware of the data concurrency issues.

Since an advice instance runs in a multi-threaded environment, potentially
serving multiple process instances (such as, jobs) at the same time, each job is
executed in a different thread.

Application Scope Mode

The Application scope is used when the developer of the advice implementation
java class wants to ensure that only one advice implementation object instance is
created for the entire application. In TIBCO ActiveMatrix BusinessWorks
ActiveAspects Plug-in, it means that there is one object instance per engine.
Hence, all advice instances that are implemented with the same implementation
share the same advice implementation object instance. Figure 13 shows the
Application Scope mode.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advice Implementations | 37

Figure 13 Application Scope Mode

Processi
T4 T2
[S !] ! -
Recehe Reply
I0lass: com.example.Advicalmpl
1 /]
. " E loci] (Seope="APPLICATIONT
TOCEess |
= t: Achdicebmpl [1] [Object Insiance)
» ! L o

Recee % Reply

a

Al AZ, A3 - Advice Instances

XML Document Access

When it executes, an advice implementation has access to the XML document that
is available in a particular context (like, join point). This XML Document is build
based on a schema, which is again dependent on the context. For example, when
it runs before an activity, the XML Document must be valid against the XML
Schema that defines the input type of the activity.

In order to provide a deterministic behavior that allows the engine to fail fast
when configuration issues are detected, TIBCO ActiveMatrix BusinessWorks
ActiveAspects Plug-in provides a declarative way of specifying metadata about
advice implementations. This metadata is primarily driven by the following two
main questions, a developer of an advice implementation needs to answer.

* Whether the advice implementation mutates the XML document?

* Whether the advice implementation expects the document to be valid against
a particular XML schema?

Not all advice implementations mutate the incoming XML document. If the
engine knows that an advice does not mutate the XML document, it can perform
some optimizations, such as not requiring a revalidation of the document after the
execution of the advices.

In TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in, an advice cannot
mutate the incoming XML document unless it explicitly states that it does it, in
the advice implementation metadata. For details about how to configure an
advice to allow the mutation of the XML document, refer The @Advicelmpl Java
Annotation on page 26.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

38 |Chapter1 Overview

Figure 14 shows two advices, one that mutates the XML document and another
that does not mutate the XML document.

Figure 14 Read-Only vs. Read-Write Data Access
Advice with Read-Only Data Access

XMLDoc [— — E A j ——+ XMLDoc

ingnt ot

@hdvicelmpl {
datafccess="READ-ONL Y

public class Advicelmplementation ... {
}

Advice with Read-Write Data Access

iﬂ|ll:[. —E h j .n-umufl_* xMLDGC'z

@Advicelmpl {
datafccess="READWRITE”

]

public class Advcelmplementation ... {

}

XMLDoc-1
. F

The XML document is passed as an input parameter to the execute() method
that is defined as part of the Advice Implementation Java class. The following is
the signature of the method:

public N execute(N inputDoc, AspectProcessContext context)

throws AspectException;

The XML document is the first input parameter (like, "inputDoc"). TIBCO
ActiveMatrix BusinessWorks ActiveAspects Plug-in uses gXML (Generic XML) as
the data model, which allows it to support multiple underlying XML tree models
such as DOM, Axiom, and so on. For more information about gXML and general
information on how to manipulate an XML document with gXML, refer to
References in the TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in API
Reference.

In order to manipulate an XML document, the advice implementation must get
access to the gXML processing context object, which is an instance of
org.gxml.sa.GxProcessingContext. This object can be retrieved by an advice
implementation from the advice's context, in the following way:

GxProcessingContext<I,U,N,A,S,T,X> pContext =
getAdviceContext () .getGxProcessingContext();

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Advice Implementations | 39

This object is then used for traversing and pulling information from the XML
document. This object cannot be used for mutating an XML document, though. In
order to mutate an XML document, the advice implementation needs to get a
mutable gXML processing context, which is an instance of
org.gxml.sa.GxProcessingContextMutable. Since this class extends
GxProcessingContext, the way to retrieve a mutable processing context is very
similar to the way to retrieve the immutable processing context (like, note the
extra type casting):

GxProcessingContextMutable<I,U,N,A,S,T,X> pContext =

GxProcessingContextMutable)getAdviceContext() .getGxProcessingConte
xt();

If an advice implementation type casts the returned value of
getGxProcessingContext() to a mutable processing context without explicitly
setting the @AdviceImplementation or dataAccess parameter to "READ-WRITE",
the previous call throws a ClassCastException at run-time. That is since the
engine injects a mutable processing context in an advice instance only if its
implementation is mutable.

Packaging and Deployment of Advice Implementations

Advice implementations are packaged in JAR files and need to be available in the
CLASSPATH at run-time in order for the engine to properly instantiate advices. It
does not really matter how these advice implementations are packaged in JAR
files. What is important is that all the advice implementations (like, java classes)
are referenced by advices to be available in the CLASSPATH at run-time, at the time
the ActiveMatrix BusinessWorks engine gets initialized.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in does not support
loading a JAR file in the CLASSPATH at run-time, after the engine has been
initialized. Therefore, unless it gets restarted, the ActiveMatrix BusinessWorks
engine cannot execute an advice implemented with a java class that was not
available in the CLASSPATH at initialization time.

The TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in installer creates a
"1ib" folder under BWAA_HOME and adds it to the CLASSPATH. This folder can be
used for storing all the advice implementation libraries (that is, JAR files).

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

40 | Chapter 1 Overview

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Chapter 2

Topics

|41

Point Cut Query Language

This chapter defines Point Cut Query Language and provides the necessary
information needed to build complex expressions.

¢ Introduction, page 42
* Query Language Primitives, page 43
* Examples of Point Cuts Defined Using Query Language, page 49

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

42 | Chapter 2 Point Cut Query Language

Introduction

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in defines a simple
query language used for writing point cut expressions. This language consists of a
small set of primitives. Each one of these primitives is designed to narrow down
the scope of the search based on certain conditions (for example, search for all File
Read activities, search for all processes that have their namespace starting with
"http:/ /example.com/", and so on).

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Query Language Primitives | 43

Query Language Primitives

The query language defines the following four primitives:

* activity (selection-expression) - Selects all activities that match a specific
expression.

* process (selection-expression) - Selects all processes that match a specific
expression.

* project (selection-expression) - Narrows down the scope of the search to
projects that match a specific expression.

* engine (selection-expression) - Narrows down the scope of the search to
engines that match a specific expression.

These primitives can be combined to form complex expressions. The
selection-expression, which is specified as part of these primitives, has a generic
syntax that is not dependent on the actual primitive. Each primitive defines a set
of properties that can be used in the expression. For example, the activity()
primitive defines a type property that can be used to filer out activities based on
their type. The evaluation of the expression results in the selection of a set of join
points.

% ‘ If there are no join points selected, the application runs without executing any
advices.

Following is the Backus-Naur Form (BNF) definition of the point cut expression.

<point-cut-expression> :: = <primitive> ("&&" <primitive>
)7‘:
<primitive> ::= Tactivity(" <selection-expression> ")" |

"process(" <selection-expression> ")" |

"project(" <selection-expression> ")" | "engine("
<selection-expression> ")"

<selection-expression> ::= <selection-expression-part> (<and-or>
<selection-expression-part>)*

<selection-expression-part> ::=
<selection-expression-part-simple> |
<selection-expression-part-wrapped>

<selection-expression-part-simple> ::= (<propertyName> "="
<propertyValue>) |

(¢ "!I'(" <property-name> "=" <property-value> ")")
<selection-expression-part-wrapped> ::= "

<selection-expression-part-simple> ")"

<and-or> ::= "&&" | "||"

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

44 | Chapter 2 Point Cut Query Language
<propertyName> - see the tables
<propertyValue> - see the table

Despite all these primitives being optional, one of them must always be specified
in a point cut expression.

4

e Ifthe activity() primitive does not appear in the expression, the ActiveMatrix
BusinessWorks engine selects all activities that are defined as part of the
project. In this case the ActiveMatrix BusinessWorks Engine treats this as
having activity (name="+*") in the expression.

e If the process() primitive does not appear, the ActiveMatrix BusinessWorks
Engine treats this as having process (name="+") in the expression.

e If the project() primitive does not appear, the ActiveMatrix BusinessWorks
Engine treats this as having project (name="+") in the expression.

e If the engine() primitive does not appear, the ActiveMatrix BusinessWorks
Engine treats this as having engine (name="+*") in the expression.

Properties Defined for activity() primitive

name String The name of the activity.
type String The type of the activity.
kind String 'event-source”| The flavor of the activity (for
Zé%ggi;;n ! example, event-source,
signal-in or regular activity).
description String The description of the

activity.

type

"type" is an ID that uniquely identifies a particular type of activity. To get the ID of
a particular activity, refer to the table available in Appendix A, ActivityTypes. The
rest of this section describes the algorithm for building these IDs. This is useful to
know since there are activities that do not get shipped out of the box with TIBCO
ActiveMatrix BusinessWorks and therefore they are not mentioned in

Appendix A, ActivityTypes.

This ID is computed in the following way:

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Query Language Primitives | 45

<type> ::= "bw.<resource-type-suffix>"

where

the resource-type-suffix is given by the sequence of the characters that appear
after the last "." character in the <pd:resourceType> element, which is serialized
as part of every activity's configuration. To find the resource-type-suffix fora
specific activity, the user has to open a process definition that contains that
activity and check the <pd : resourceType> element that is serialized as part of its
configuration.

For example, here is the configuration XML of a File Read Activity that appears in
a process definition:
<pd:activity name="Read File">

<pd:type>com.tibco.plugin.file.FileReadActivity</pd:type>

<pd:resourceType>ae.activities.FileReadActivity</pd:resourceType>

<pd:x>224</pd:x>
<pd:y>173</pd:y>
<config>

<encoding>binary</encoding>
</config>
<pd:inputBindings>

<nsl:ReadActivityInputClass>

<fileName>

<xsl:value-of
select=""C:\test\foo.xml"" />

</fileName>
</nsl:ReadActivityInputClass>
</pd:inputBindings>
</pd:activity>
This example shows that the resource-type-suffix of the File Read Activity is

"FileReadActivity'". This means that this activity's type is
"bw.FileReadActivity" in Point cut query language.

kind

"kind" is used to filter out activities based on their flavors. There are three flavors
of activities, each one identified with a specific ID:

® event-source - An activity that is an event source or process starter (for
example, File Event Source, JMS Queue Receiver, and so on).

® signal-In- An activity thatis a signal-in (for example, File Signal-In, and so
on).

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

46 | Chapter 2 Point Cut Query Language

* activity - An activity that is neither an event-source nor a signal-in (for
example, File Read Activity, HI'TP Send Receive Activity, and so on).

Since these properties are defined for the activity() primitive, they can only be
used in the context of this primitive.

Properties Defined for process() primitive

name String The name of the process.

tns String The target namespace of the
process.

kind String "sub-process” | The flavor of the process.

"regular" |

description String The description of the

process.
kind

"kind" is used to filter out processes based on their flavors. There are two flavors
of processes, each one identified with a specific ID:

* sub-process - A process that does not have an event source or process starter.
® regular - A process that has an event source or process starter.

Like the properties defined for the activity() primitive, the properties defined
for the process() primitive can only be used in the context of this primitive.

Properties Defined for project() primitive

name String The name of the project.

This primitive is used for filtering out projects based on their name. This can be
useful in organizations where all aspects are developed, packaged, and deployed
together.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Query Language Primitives | 47

Properties Defined for engine() primitive

name String The name of the engine.

This primitive is used for filtering out engines based on their names. Similar to
project() primitive, this primitive can be useful in organizations where all
aspects are developed, packaged, and deployed together.

Use of Escape Character

While using double quote as part of the property value in a pointcut query, use
backward slash ("\') as an escape character.

For example, activity (description= "this is how \" is used as part of property
value").

Escape characters should be used for all the xml predefined entities (<, >, &, ' and
") in the aspect file.

Wildcard Support

In order to provide more flexibility and to simplify the writing of point cut
expressions, the query language supports wildcards (" *") in property values.
These can be used either to specify the entire property value (for example,
name="*") or to specify a part of it (for example, name = "JMS*").

E: ‘ Property names are case insensitive and property values are case-sensitive.

This means that activity (Name = "foo") evaluates the same as activity (name =
"foo"). However, activity (name = "foo") does not evaluate the same as activity (
name = "Foo").

Parentheses Support

Parentheses up to level two are supported in selection-expression of this query
language.

Correct Expression (level one):

activity ((name="JMSReceiver" || name= "HTTPReceiver") &&
(type="bw.JMSQueueEventSource" || type = "bw.httpEventSource"))

Invalid Expression (level three):

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

48 | Chapter 2 Point Cut Query Language

process (name = "Test*" || (name = "notify" || (name =
"waitnotifyprocess*" && tns = "http://waitnotifytns/*")))

Supported Operators

The following operators are supported.

“u__n

EQUAL Comparison operator (EQUAL) can be used while comparing
property values. For details, refer to Examples of Point Cuts Defined Using Query
Language.

NOT EQUAL Comparison operator “!=" (NOT EQUAL) can be used while
comparing property values. For details, refer to step 8 in the Examples of Point
Cuts Defined Using Query Language.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Examples of Point Cuts Defined Using Query Language | 49

Examples of Point Cuts Defined Using Query Language

1. Select all the FileEventSource activities.
<pointcut name = "allFileEvsActivities">

<query querylLanguage =
"http://schemas.tibco.com/bw/poa/pointCutSelectionLanguage">

activity (type = "bw.FileEventSource")
</query>
</pointcut>

2. Select all activities of type JMS.
<pointcut name = "allJMSActivities">

<query querylLanguage =
"http://schemas.tibco.com/bw/poa/pointCutSelectionLanguage">

activity (type = "bw.JMS*")
</query>

</pointcut>
3. Select all FileRead and FileWrite activities.

<pointcut name = "fileActivities">

<query querylLanguage =
"http://schemas.tibco.com/bw/poa/pointCutSelectionLanguage">

activity (type = "bw.FileReadActivity" || type =
"bw.FileWriteActivity")

</query>

</pointcut>

4. Select all the Event Source activities.
<pointcut name = "eventSourceActivities">

<query querylLanguage =
"http://schemas.tibco.com/bw/poa/pointCutSelectionLanguage">

activity (kind = "event-source")
</query>

</pointcut>

5. Select all activities that have "eToD0" in their description.
<pointcut name = "allTODOActivities">

<query querylLanguage =
"http://schemas.tibco.com/bw/poa/pointCutSelectionLanguage">

activity (description = "*@TODO*")

</query>

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

50 | Chapter 2 Point Cut Query Language

</pointcut>

6. Select all the activities that belong to processes that have their namespace
starting with "http://example.org/".
<pointcut name = "purchaseOrderActivities">

<query querylLanguage =
"http://schemas.tibco.com/bw/poa/pointCutSelectionLanguage">

process (tns = "http://example.org/*")
</query>

</pointcut>

7. Select all the File Write activities with name starting with "FileRead", that are
part of a process whose target namespace starts with http://example.org/.
Select only the processes that are part of projects whose names start with "HR".
<pointcut name = "complex'">

<query querylLanguage =
"http://schemas.tibco.com/bw/poa/pointCutSelectionLanguage">

activity (name = "FileRead*" && type =
"bw.FileReadActivity") && process (tns =
"http://example.org/*") && project (name = "HR*")

</query>
</pointcut>
8. Select all the activities with name starting with "file". Do not select all
"FileWrite" activities.
<pointcut name = "DoNotFileWriteActivities">

<query querylLanguage =
"http://schemas.tibco.com/bw/aop/pointCutSelectionLanguage">

activity (name = "file*" && type !=
"bw.FileWriteActivity")

</query>

</pointcut>

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

|51

Chapter3 Asynchronous Advice Implementations

This chapter describes the Asynchronous Advice Implementations.

Topics

* Introduction, page 52

* Asynchronous Advices in ActiveMatrix BusinessWorks Engine, page 53

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

52 | Chapter 3 Asynchronous Advice Implementations

Introduction

The asynchronous model is designed for advice implementations that take some
time to execute. These are usually advice implementations that communicate with
external systems, perform input or output operations, or perform tasks that can
potentially bring down the performance of an ActiveMatrix BusinessWorks
application.

An asynchronous advice implementation does not execute its business logic on
the engine job thread. In other words, the ActiveMatrix BusinessWorks engine
does not hold the job thread until an asynchronous advice completes its execution.
This allows the engine to execute advices and/or activities that might exist in the
process on parallel tracks, while the asynchronous advice is executing. However,
the engine does not continue to execute the next advice in the join point, or the next
activity on the same track before the asynchronous advice completes its
execution.

A typical asynchronous advice implementation gets a thread from a thread pool
in its execute () method and starts executing its business logic on it. Inmediately
after that, it calls AdviceController->setPending() with the appropriate
timeout and returns from its execute (). After its business logic completes and
before the advice thread finishes executing, the advice implementation calls
AdviceController->setReady() with the result object. Once the job thread is
available to execute the asynchronous advice, the engine calls its
postExecute()method by passing the result object received in the setReady ()
call. The advice implementation gets the opportunity to do any final job related
cleanup operations before returning the final result object back to the engine.

If the advice implementation does not complete its execution in the allotted time,
which is specified in the setPending() call, the engine times out the advice
implementation by calling its cancelled() method. An advice implementation
that does not communicate with external systems, does not perform input or
output operations and tasks that may take some time to execute can be
implemented as synchronous advice implementation.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Asynchronous Advices in ActiveMatrix BusinessWorks Engine | 53

Asynchronous Advices in ActiveMatrix BusinessWorks Engine

This section describes the various models of asynchronous advice working in the
TIBCO ActiveMatrix BusinessWorks engine.

Execution Model (Successful Execution)

Successful execution - execute () and postExecute()

The engine calls execute() to start the execution.
The advice gets a thread from a pool and runs its business logic on it.

The advice sends the signals back to the ActiveMatrix BusinessWorks engine,
when it finishes executing.

The engine calls postExecute () to finish executing the implementation.

The ActiveMatrix BusinessWorks engine’s job thread is not blocked until the
advice finishes executing and produces its result.

Parallel tracks, if available in the process, are executed on the jobs thread.

The engine does not execute the next advice in the pipeline.

Execution Model (timeout)

Timed out execution: execute() and cancelled()

The engine calls execute() to start the execution.
The advice gets a thread from a pool and runs its business logic on it.
Before the advice returns from execute(), it sets a timeout.

When a timeout occurs, the engine calls cancelled() to finish executing the
implementation.

The advice releases any outstanding resources.

AspectProcessContext cannot be used by asynchronous advices on the parallel
thread.

All the logic that requires access to this object should be moved to execute(),
postExecute() or cancelled().

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

54 | Chapter 3 Asynchronous Advice Implementations

Threading Model: Asynchronous Advice Imp
Figure 15 shows the threading model

Figure 15 Threading Model

lementations

Asynchronous
Advice

Engine Job
Thread

execute N, Azpect Process Contesd,
Bvice Controller]

Advice Thread

Advice
Controller

zetPerdingflorg]

The Jobv's
thread is
available to

=it Resd | Retumihimppe |

EXETLE
other
advices or

S, postExente| s ect Progess Cortext,
activities

Retum ik apper |

Asynchronous Advice Example

wekiin viase beyroTimedieepersl, ¥, N ewiends I,

public Froing wairTieeloks = *0%;

private Beshvabiecfrring, SimplelsinThiens uunstandisyThre

Er ssatenl

public weid doitAfviceSonteatad, ¥, 8, A.
thirows hspectfccaplics

wuper . init (eontext)

ndingThoeads = new Basbishledocing,

publie weid sercute (N ingus, AepectProcesmioacert oontext,
thies LepscnEvoaprion

———[ABYWY AMFICE EEECUTING]
fer = »

AYETER ST PUIES

System, sut.prim mibvign wiil wmin

e may
g wairTime = Lo, Faluedf vainTimeTnma))
contrallet . setfendimy(vaitTime » $000k:

SimplaUnitThorad thraad =
thowad. stazt i) s

erestaThrand [toatesi, ieput,

||.;Inr N popcExscuce (krpectFrocerstoniest aps, Peturnisapps
Iheows izpectErcagtics
Sywrem, sud, Brins bni"The sayno sdviee i Berki®ia
¢ e Thipsad [ape 1
[ARTIS AIVICE B

SpELEs, sl BEIBLLR|®

tElurn eswlt.gve imifode (]t

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

iy

0
2

bowwiends [5, T, T ewisnds bvynokdviges], U, W, & 8, T, ¥ |

Extends Asyncidvice

Fang LePaltTheoad> i 2

hdvageContgn] laa<lr ontrebies)

wairTomelnks + = miilines

contralles, wsitTissli

5oy FEmEit)

Implement postExecutel)

B TR eAnE i

Lhe engine TARER OVED. .

A different execute() signature

=i

Asynchronous Advices in ActiveMatrix BusinessWorks Engine | 55

Threading Model: Asynchronous Advice Implementations (Timeout)

Figure 16 Threading Model (Timeout)

Asynchronous
Advice

Engine Job Advice Thread Advice
Thread Controller

amecuts N, AepsetProces sContsst,
AdviceControllar)

wtPandingilong tm sout) !

= 7

The Jab's |7
threadis
=vzilable to
execUte <
other
advices or
activities

canc all ad{ srsctProce naContart) S top" e

thread

Summary
This can be summarized as:
* An advice that takes a long time to execute should probably be asynchronous.

* An advice that uses input or output operations should probably be
asynchronous.

¢ When implementing the cancelled() method, perform a graceful stop of the
advice thread.

¢ Anasynchronous advice should always use a thread pool.

* Anasynchronous advice should always use a timeout and must be configured
as property.

® Do not use AspectProcessContext on the advice (parallel) thread.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

56 | Chapter 3 Asynchronous Advice Implementations

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Chapter 4

Topics

57

Hibernate Resume

This chapter describes the hibernate resume feature of TIBCO ActiveMatrix
BusinessWorks ActiveAspects Plug-in.

* Features of Hibernate Resume, page 58

* Comparison between Checkpointing and Hibernate, page 59
* Defining a Hibernate Advice Implementation, page 60

* Using a Database for Hibernation, page 65

* Modifying the Hibernated Data, page 66

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

58 | Chapter 4 Hibernate Resume

Features of Hibernate Resume

The main features of hibernate resume are:
¢ An advice implementation can ‘Hibernate’ a process in its execute method.

* A process is said to be hibernated when the process state is written out to the
disk (or database) and the process is completely removed from memory.

¢ Hibernation internally uses the logic similar to checkpointing for TIBCO
ActiveMatrix BusinessWorks.

* A hibernated process can be started at a later stage in time using the
ResumeHibernatedProcess, a TIBCO Hawk command exposed by the
TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in on the
ActiveMatrix BusinessWorks engine.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Comparison between Checkpointing and Hibernate | 59

Comparison between Checkpointing and Hibernate

It is important to understand the comparison between Checkpointing and

Hibernate.

Table 5 shows the comparison between checkpointing (TIBCO ActiveMatrix
BusinessWorks) and Hibernate (TIBCO ActiveMatrix BusinessWorks

ActiveAspects Plug-in)

Table 5 Comparison between Checkpointing and Hibernate

Checkpointing

Hibernate

Stores Process State.

Stores process state.

Can only be used in the form of
Checkpoint Activity or implicit part
of Transaction.

Any advice implementation can
hibernate at any activity.

Job continues till completion.

Job stops executing and is removed
from the memory.

User cannot modify the checkpointed
data.

At the time when job is resumed, the
advice implementation that
hibernated the job, can modify the
XML document that is available in
the join point.

Only crashed or error jobs are
restarted.

User manually decides which jobs to
resume.

A restarted job will continue from the
next activity.

A resumed job will continue from the
same activity (or next activity
depending on which join point the job
was hibernated).

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

60 | Chapter 4 Hibernate Resume

Defining a Hibernate Advice Implementation

To define a hibernate advice implementation, you must:

¢ Advertise in the following annotation that it is using the hibernate feature.
@AdviceImpl (
hibernatesJobs=true

)

e Should call the setHibernateJobEnabled(<timeDelay>) on the
AspectProcessContext object.

timeDelay

Use <timeDelay> attribute to set a time after which the job will be hibernated.
This facility is provided for asynchronous activities on the parallel paths to
complete execution. A time delay set to zero (0) will hibernate the job
immediately without waiting.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Defining a Hibernate Advice Implementation | 61

Example of Hibernate Advice Implementation

fw‘i it
aflage oot ibed by, pon. Sekples)

#imgort org. gumlsn. Gxladeli[]

13

Advertise in
Baeiceinpl | ’_'_‘_'_'_'_7_,_—'—'_'_'_"_'- Y
R T e Annotation

i
public class 3rcckiuditcrsI, 0, K ewtends I, | ewtends I, 3, T, T+ ewtends SysclivicecI, U, N, &, 3, T, I |

Prapercy
public String restrigtedScacks

private String TEAT CONTENT NS = "%

private § taxElontantle;

private Steing TEXT CONTENT NANE ® “extContent®:
private 3 extlontestian:

Bivssride
4 pulilic void init{AdviceContewz<I, U, N, A&, 3, T, % oonvexr)
theows AspsctException |

migeEr. init iconterk) ;

OuProcksaingloncexc<l, 0, 4,5, T, & pox = (QuProcessingConcexc<, U, N, L, 3, T, Ir| context. geriuPraceaainglancest (i}
OuNameBridge<3> naweBridge = pox.gecHaseBridgel):

texcloncenties = nameBridgs aymoolize [TEXT_CONTENT NS):
textiontentisme = pamedridge. =ymbolize (TEXT CONTENT WARE] ;
Fivaeeida
| pililic N swscure (N Lnput, kspecrPeocessConcedt contést) throws AspectENception |

Sracet. okt pring (*Frockhuditor reselved! "))

Grlodel<N, 4,5, T model = achriceContess, qetiyProeosssingtancexs () getlodel(]:
N ficatChild = model, getFicatChild [input);

SEping stockleday &
GxnlTells. pabChildBl emapdSteing¥elan|fiearChild, teerConcencls; revedoncenclame, mdviceConcexr.getdyProceasingloncerc(]):

Syacem. ot print Lo (atoaklrder))

if [stockirder *= mull 6§ stockirder.starts@ith(restcictaditook)) |
System pub printin["Thiz 13 & restcicted stock. The job sill hibecnate to wit for manaperial approval”|:

context.metHibernatedablnshled D) ;
| T T Calingthe
- Hibernate API 4

Syaten. cut.priscle("This 23 & nen vestricted atock. The order will be execured™):

i
return 1nput) o

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

62 | Chapter 4 Hibernate Resume

Execution of a Hibernate Advice

The job may not get hibernated right after an advice calls
setHibernateJobEnabled(long). Hence, the engine must finish executing all
advices that are part of the same join point before initiating the hibernate
procedure. Even after that, the job may still not immediately get hibernated
correctly.

The advice that triggers the hibernation may choose to delay it, in order to give
chance to any asynchronous advice or any asynchronous activity that might exist
in the job on parallel tracks to finish executing. To accomplish that, the advice
implementation must call setHibernatedJobEnabled(long) method by passing
a timeDelay greater than 0 (zero). A 0 (zero) timeDelay ensures that the
hibernation is initiated right after the engine finishes executing all advices that are
running in that particular join point.

Figure 17 Hibernate Advice Execution

Hibernating
Advice

Actual
Hibernation

Resuming the Hibernated Job

S

TIBCO Hawk methods have been exposed for listing and resuming the
hibernated jobs. A job is resumed from the next point of execution. For example,
for a "Before" hibernated advice, the job will resume from activity execution.

The new 'Resume' activity also allows you to resume a hibernated job. Refer
Chapter 6, BWAA Palette for details.

The TIBCO Hawk methods are:

® GetHibernatedProcesses() - returns a Tabular Data with all hibernate jobs
information

® ResumeHibernatedProcesses(long jobId) —resume

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Defining a Hibernate Advice Implementation | 63

A job hibernated on one engine can be resumed on a different instance of the
engine. However, the engine must be running prior to calling the
ResumeHibernatedProcess().

Figure 18 GetHibernatedProcesses Dialog

Expand All | Collapsa all
@[t urer wamagemens
Elﬁ!| Resource Management

o
[-_E Application Darmaing
E’i—imulhd Softuars
[__‘. Machinas

Elﬂaa Application Managemant

E Al Applications

E“_,-iul Sanvica Instancas :'” e x:
- Ll
E]D BWAL

@ Y Mserejat
Configuration
@ Service Instar
B T e
(5] 'w baitSyEOut
@ Configuration
[T servee tnstr
m LODE Servers

B@ Monltaring Managament

All Alars

{? Moritoring Soneole

gunand &)l | Collapze all

Example of Resuming a Job

Figure 19 shows an example of resuming a job from TIBCO Administrator Hawk
console.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

64 | Chapter 4 Hibernate Resume

Figqure 19 Resuming a Job

Execute After Pipeline

Hibernating
Advice

Execute After
Returning or

After Throwing
Fipeline

BEFORE Aduce Plpslre

Actual
Hi‘:ernatiun

ResumeHibernatedProcess()

Figure 20 Resuming a Job (After Returning)

Hibernating
Advice

Afker Rz Lmirg Aduce Ppsine

Execute After Pipeline

FesumeHibernatedProcess()

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Using a Database for Hibernation | 65

Using a Database for Hibernation

A database can be specified similar as in checkpointing. A JDBC shared resource
needs to be in the project which has to hibernate jobs to a database.

Set the following ActiveMatrix BusinessWorks engine properties:
® Engine.Hibernate.UseDatabase — Set to true to use a database

® Engine.Hibernate.Database.Configuration — Path to JDBC shared
resource

Table names can be specifed using similar properties like Checkpointing. All
databases supported for TIBCO ActiveMatrix BusinessWorks Checkpointing can
be used for Hibernation.

If the database is not set, the job state is stored in a file under the
working/<hostname or enginename>/hibernate folder.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

66 | Chapter 4 Hibernate Resume

Modifying the Hibernated Data

The hibernating advice implementation can modify the hibernated data when the
job is resumed.

The advice implementation needs to override the following method:

public void resumeFromHibernate(N input, AspectProcessContext
context)

It should specify appropriate data-Access if it has to mutate the hibernated
document. The engine calls this method only on the advice that has triggered the
hibernation.

Figure 21 shows the user level view for resumefromHibernate()

Figure 21 User Level View for resumefromHibernate()

Al Activity

resumefromHibernate()

xecute After Pipeline

) : ResumeHibernateProcess()
After Returning Advice

Pipeline

Hibernating Advice

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

|67

Chapter5 Object Sharing Between Java Activities and
Advice Implementation

This chapter provides information about the new API's which will enable the user
to use this Object Sharing feature.

Topics

¢ Overview, page 68
e User Scenarios, page 69

* API's and New Interfaces, page 71

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

68 | Chapter 5 Object Sharing Between Java Activities and Advice Implementation

Overview

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in provides a feature for
the activities of the JAVA palette in TIBCO ActiveMatrix BusinessWorks and
advice implementations to pass objects between each other by means of defining
a "JAVA Object Reference" type for Input and/or Output schema of the activities
involved.

The feature enables you to pass JAVA objects between:
® Advice implementations and JAVA activities

* Anenhanced support for advice implementations with another advice
implementation

e JAVA activities with other JAVA activities in a TIBCO ActiveMatrix
BusinessWorks project

An Advice Implementation or a JAVA Activity can check-in and check-out objects
from the engine data structure by using API's. You have to pass a unique key
which will act as a unique identifier for the object in the engine data structure.

You must manually pass the key between advice implementations and activities.
It is not a part of this feature. You must also ensure that the activity or advice
implementation which needs to check-out the object, already has the key to it.

Also, the features provided by TIBCO ActiveMatrix BusinessWorks or TIBCO
ActiveMatrix BusinessWorks ActiveAspects Plug-in may or may not be used to
accomplish this.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

User Scenarios | 69

User Scenarios

This section summarises basic supported and unsupported user scenarios. Table 6
and Table 7 shows the user scenarios for activities and advices with
implementations.

Figure 22 Basic User Scenario
Al —> A2
Activity A Activity B

Following is the basic user scenario as shown in Figure 22.

* Activity A and Activity B are supported Java Activities

¢ Al and A2 are Advices (with Implementations) applied on Activity A and
Activity B respectively

* Activity A and Advice A1 will check-in JAVA objects.
* Activity B and Advice A2 can check-in and check-out JAVA objects.

Table 6 User Scenarios for Activities

Action 1 Key, Value Action 2 Key, Value Result
Supported

Activity A foo, objl Activity B foo objl returned by
Check-in Check-out Activity B.
Activity A foo, objl Advice A2 foo objl returned by
Check-in Check-out Advice A2.
Activity A foo, objl Activity B foo, obj2 objl is replaced by
Check-in Check-in obj2 in the map.
Unsupported

Activity A foo, obj1 Advice A2 foo, obj2

Check-in Check-out

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

70 | Chapter 5 Object Sharing Between Java Activities and Advice Implementation

Table 7 User Scenarios for Advices with Implementations

Table 7 shows the supported and unsupported scenarios for Advices with

implementations.

Action 1 Key, Value Action 2 Key, Value Result
Supported
Advice Al foo, objl Activity B foo objl returned by
Check-in Checkout Activity B.
Advice Al foo, obj1 Advice A2 foo objl returned by
Check-in Checkout Advice A2.
Advice Al foo, objl Advice A2 foo, obj2 objl is replaced
Check-in Check-in by obj2 in the
map.

Unsupported
Advice Al foo, objl Activity B foo, obj2
Check-in Check-in

Summary

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

* Any advice implementation or JAVA activity can check-in objects with a

unique-key.

* Any other advice implementation or supported JAVA activity with the

knowledge of this unique key can check-out that object.

Limitations

* When an object is checked-in with a unique-key and the same unique-key is
used to check-in a different object, it is only supported provided the original
entity that checked-in the object is of the same type. For example, an advice
implementation can overwrite an object checked-in by another advice
implementation but NOT by an activity.

® An activity can overwrite an object checked-in by another activity but NOT an
advice implementation.

API's and New Interfaces | 71

API's and New Interfaces

The following interface has been added in the TIBCO ActiveMatrix
BusinessWorks:

public interface JavaProcessContext

The public methods available in this interface are:

* public void storeProcessObject (String key, Serializable obj)
® public Serializable getProcessObject (String key)

® public Serializable removeProcessObject (String key)

Implement a setJavaProcessContext (JavaProcessContext object) in the Java
class in which you wish to use the feature. The engine will invoke this method
before any other methods are invoked on the JAVA class.

Advice Implementation developers need not use this interface for storing and
%} retrieving objects. They should continue to use similar methods defined on the
AspectProcessContext interface.

Use Cases
There are two cases that happen while retrieving:

e If an advice is trying to retrieve an object with the unique-key foo, the engine
first looks up if an advice which has been executed for the same process
earlier has checked-in an object with key foo. If it does not find an object, the
engine then looks up if an activity has checked-in an object with key foo. If the
engine does not find an object in both cases, it returns a NULL.

* Similarly, if an activity tries to retrieve an object with the unique-key foo, the
engine first looks up if an activity which has been executed in the same
process earlier has checked-in an object with key foo. If it does not find an
object, the engine then looks up if an advice has checked-in an object with key
foo. If the engine does not find an object in both cases, it returns a NULL.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

72 | Chapter 5 Object Sharing Between Java Activities and Advice Implementation

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

|73

Chapter 6 BWAA Palette

BWAA palette contains the activity to resume a previously hibernated job.

Topics

* Resume, page 74

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

74 | Chapter 6 BWAA Palette

Resume
Activity
This activity fetches the hibernated job from the files or database, loads
it into the memory, and continues to execute it from the point of
{# hibernation.
Resume
Configuration
The Configuration tab has the following fields.
Field Global Var? Description
Name No The name to appear as the label for the
activity in the process definition.
Description No Short description of the activity.
Input

4

Output

&

The input for the activity is the following.

Input Item Datatype Description
jobID Long This is the job id to resume a previously
hibernated job.

Note: There is no static configuration for
this activity as joblD is the only parameter
required.

The activity will throw an ActivityException (JobNotFoundException), if
there is no job with input job id to be resumed.

There is no output for this activity.

However, Output tab displays the stack trace of exception detail whenever
Resume activity throws an exception.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Chapter 7

Topics

75

Monitoring and Management

This chapter describes the TIBCO ActiveMatrix BusinessWorks ActiveAspects
Plug-in monitoring and management features.

¢ Introduction, page 76

¢ getAdvicelnstances, page 77

¢ getAdvicelnstanceMetrics, page 81

¢ getRunningAdvicelnstancesCount, page 85

e getRunningAdvicelnstances, page 86

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

76 | Chapter 7 Monitoring and Management

Introduction

The Monitoring and Management feature is provided by a monitoring interface,
which is implemented by a TIBCO Hawk microagent. This section describes the
monitoring interface methods. These methods can be called via:

e TIBCO Hawk AMI protocol and
e JMX
The TIBCO Hawk Display, the TIBCO ActiveMatrix BusinessWorks monitor
servlet, and any other TIBCO Hawk application can use the AMI protocol to
invoke the monitoring interface methods on a running engine.

% It is important to note that:
e Wild card characters are not supported.

e For each application the Advice Instance ID starts with zero (0).

e If there are no asynchronous advices running, the total elapsed and total
execution time will be same.

¢ In order to provide no value for the Long type, specify "-1" as the value. For
example, -1 as an input for AdviceInstanceID returns all the available
AdpvicelnstancelDs data.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

getAdvicelnstances | 77

getAdvicelnstances
Microagent Method

Description This method provides general information about all advice instances that are
created in the ActiveMatrix BusinessWorks engine.

Index Names ProcDefName, ActivityName, AdviceInstanceID

In Index
Name Type Default IsOpen Description ValueChoices ~L9alValue
Choices

AdvicelInstanceID Long null true The identifier of None None
the advice
instance.

ProcDefName String null true The name of the None None
process definition.

ActivityName String null true The name of the None None
activity adjacent to
the advice.

ActivityClass String null true The name of the None None
activity class.

Where String null true The location None ACT_BEFOR
where the advice E
instanceis running ACT_AFTER
(for example, —RET,
before activity, ACT_AFTER
after activity, after _THR,
returning activity, ACT_AFTER
after throwing
activity)

AdviceNs String null true The namespace of ~ None None
the advice.

AdviceName String null true The name of the None None
advice.

AdviceImpl String null true The advice None None
implementation
name.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

78 | Chapter 7 Monitoring and Management

_ . LegalValue

Name Type Default IsOpen Description ValueChoices Choices

Sync Boole null true Whether the None True, False

an advice
implementation is
synchronous.

DataAccess String null true The data access None READ-ONLY,
mode (for READ-WRITE
example,
read-only,
read-write)

HibernatesJobs Boole null true Whether the None True, False

an advice instance is
capable of
hibernating jobs.
Out Index
m Type Default IsOpen Description ValueChoices Il;g?caelzaluec

AdvicelInstanceID Long null true The identifier of None None
the advice
instance.

ProcDefName String null true The name of the None None
process definition.

ActivityName String null true The name of the None None
activity adjacent to
the advice.

ActivityClass String null true The name of the None None
activity class.

Where String null true The location None ACT_BEFORE
where the advice ACT_AFTER_
instance is running RET,

(For example, ACT_AFTER_
before activity, THR,
after activity, after ACT AFTER

returning activity,
after throwing
activity)

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

getAdvicelnstances | 79

m Type Default IsOpen Description ValueChoices hgigcael\slaluec

AdviceNs String null true The namespace of ~ None None
the advice.

AdviceName String null true The name of the None None
advice.

AdviceImpl String null true The advice None None
implementation
name.

Sync Boole null true Whether the None True, False
an advice
implementation is
synchronous.

DataAccess String null true The data access None READ-ONLY,
mode (for READ-WRITE
example,
read-only,
read-write)

HibernatesJobs Boole null true Whether the None True, False
an advice instance is
capable of
hibernating jobs.
Output Example
Name Output
AdviceInstanceID e 10000
e 10001
ProcDefName ¢ Folderl/Pl.process

e DP2.process

ActivityName * ReadActivity
e HttpSend
ActivityClass e bw.FileRead

e bw.HTTPSendReceive

Where « ACT_BEFORE
e ACT_AFTER_RET

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

80 | Chapter 7 Monitoring and Management

Name Output

AdviceNamespace e http://aspects.com/audit

* http://aspects.com/log

AdviceName e Audit
* Log
AdviceImpl ¢ com.example.AuditAdvice

e com.example.LogAdvice

Sync e True
e False
DataAccess e READ-WRITE

¢ READ-ONLY

HibernatesJobs e False

e False

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

getAdvicelnstanceMetrics | 81

getAdvicelnstanceMetrics

Microagent Method
Description This method provides various metrics for a particular advice instance.

Index Names AdviceInstanceID

In Index

LegalValue

Name Type Default IsOpen Description ValueChoices Choices

AdviceInstanceID Long null true The identifier of None None
the advice
instance.

Out Index

LegalValue

Name Type Default IsOpen Description ValueChoices Choices

AdviceInstanceID Long null true The identifier of None None
the advice
instance.

ExecutionCount Long null true The number of None None
times this advice
instance has been
executed by the
engine.

ErrorCount Long null true The number of None None
times this advice
instance has
thrown an
exception.

RunningCount Long null true The number of None None
times this
particular advice
instance is
currently running.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

82 | Chapter 7 Monitoring and Management

LegalValue

Name Type Default IsOpen Description ValueChoices Choices

TotEla Long null true Total wall-clock None None
time used by all
calls of this advice
instance
(milliseconds)
includeing the
waiting time for
asynchronous
advices.

TotExe Long null true Total wall-clock None None
time used by all
calls of this advice
instance
(milliseconds) not
including the
waiting time for
asynchronous
advices.

AvgEla Long null true Average elapsed None None
time of all
completed advice
instances
(milliseconds).

MinEla Long null true Minimum elapsed =~ None None
time of all
completed advice
instances
(milliseconds).

MaxEla Long null true Maximum elapsed ~ None None
time of all
completed advice
instances
(milliseconds).

LastEla Long null true The elapsed time None None
of the last
completed advice
instance
(milliseconds).

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Name

AvgExe

Type Default

Long null

IsOpen

true

Description
Average execution None
time of all

completed advice

instances

(milliseconds).

ValueChoices

getAdvicelnstanceMetrics | 83

LegalValue
Choices

None

MinExe

Long null

true

Minimum None
execution time of

all completed

advice instances

(milliseconds).

None

MaxExe

Long null

true

Maximum None
execution time of

all completed

advice instances

(milliseconds).

None

LastExe

Long null

true

Theexecutiontime None
of the last

completed advice

instance

(milliseconds).

None

Output Example

Name Output

AdviceInstanceID e 10000

e 10001
ExecutionCount e 3

e 1
ErrorCount e 3

e 0
RunningCount e 2

e 4
TotEla e 150090

e 104023

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

84 | Chapter 7 Monitoring and Management

Name Output

TotExe e 150090
e 13311
AvgEla e 50030
e 104023
MinEla e 50007
e 104023
MaxEla e 50075
e 104023
LastEla e 50008
e 50008
AvgExe e 50030
e 100011
MinExe e 50007
e 100011
MaxExe e 50075
e 100011
LastExe e 50008
e 50008

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

getRunningAdvicelnstancesCount | 85

getRunningAdvicelnstancesCount
Microagent Method

Description This method provides the number of synchronous and asynchronous advice
instances that are executing as part of the jobs that are currently running.

Note: This method requires no input.

Out Index
Name Type Default IsOpen Description ValueChoices (L:?‘%?cl:\éaslue
SyncCount Long null true The total number None None
of synchronous
advice instances
that are executing
in the jobs that are
currently running
AsyncCount Long null true The total number None None
of asynchronous
advice instances
that are executing
in the jobs that are
currently running.
Example Output
Name Output
SyncCount « 2
AsyncCount e 15

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

86 | Chapter 7 Monitoring and Management

getRunningAdvicelnstances

Microagent Method

Description This method provides metrics for the advice instances that are executing as part of
the jobs that are currently running.

Index Name AdviceInstanceID

In Index

LegalValue

Name Type Default IsOpen Description ValueChoices Choices

MinDuration Long null true Minimum elapsed =~ None None
wall-clock time
since the advice
instance started
(milliseconds).

JobID Long null true The Job identifier. None None

MaxReturnCount Long null true The maximum None None
number of advice
instances to be
returned.

Note: It is
important when
there are multiple
advice instances
running.

Out Index

LegalValue

Name Type Default IsOpen Description ValueChoices Choices

AdviceInstancelID Long null true The identifier of None None
the advice
instance.

ProcDefName String null true The name of the None None
process definition.

JobID Long null true The Job identifier. None None

ActivityName String null true The name of the None None
activity adjacent to
the advice.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

getRunningAdvicelnstances | 87

Name Type Default IsOpen Description ValueChoices I(.:?]%?‘I:\ézsalue
AdviceNamespace String null true The namespace of ~ None None
the advice.
AdviceName String null true The name of the None None
advice.
AdviceImpl String null true The advice None None
implementation
name.
Sync Boole null true Whether the None None
an advice
implementation is
synchronous.
StartTime Long null true Time at which the ~ None None
advice instance
started executing
in the current job
(milliseconds).
Duration Long null true The elapsed None None
wall-clock time
since the advice
instance started
(milliseconds)
executing in the
current job.
Output Example
Name Output
AdviceInstanceID e 0
o 1
ProcDefName . ProcessSynch.process
* ProcessAsynch.process
JobID e 34
e 36
ActivityName * SynchLog

e AsynchLog

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

88 | Chapter 7 Monitoring and Management

Name Output

AdviceNs e http://examples.org/One
¢ http://examples.org/One

AdviceName ¢ Loggerl
¢ Logger2
AdviceImpl e com.tibco.test.bwaa.SleepLogger

e com.tibco.testbwaa.AsynchTimeSleeper

Sync * true
e false
StartTime e 1303661907012

¢ 1303661907011

Duration e 43830
e 13831

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

|89

Appendix A ActivityTypes

Topics

e ActivityTypes, page 90

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

90 | Appendix A ActivityTypes

ActivityTypes

The tables contains the activity types of all TIBCO ActiveMatrix BusinessWorks
activities. Refer to this table in order to generate expressions in Point cut query
language.

Table 8 Active Enterprise Palette Activity Types

Activity Activity Description Activity Type

Active Enterprise

Palette

event-source Adapter bw.aeRRServer
Request-Response
Server

event-source Adapter Subscriber bw.aeSubstriction

signal-in Wait for Adapter bw.aeSubSignalInActivity
Message

signal-in Wait for Adapter bw.aeServerSignalInActivity
Request

activity Invoke an Adapter bw.aeOpClientRegActivity
Request-Response
Service

activity Respond to Adapter bw.aeOpServerReplyActivity
Request

activity Publish to Adapter bw.aePubActivity

activity Send Exception to bw.aeOpServerFaultActivity
Adapter Request

Table 9 Activity Types of Other ActiveMatrix BusinessWorks Palettes

Activity Kind Activity Description Activity Type

File Palette

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Activity Types | 91

Table 9 Activity Types of Other ActiveMatrix BusinessWorks Palettes

Activity Kind Activity Description Activity Type

event-source File Poller bw.FileEventSourceResource
signal-in Wait for File Change bw.FileSignalInUI

activity Copy File bw.FileCopyActivity

activity Create File bw.FileCreateActivity

activity List Files bw.ListFilesActivity

activity Read File bw.FileReadActivity

activity Remove File bw.FileRemoveActivity

activity Rename File bw.FileRenameActivity

activity Write File bw.FileWriteActivity

FTP Palette

activity FTP Change Default Directory bw.FTPChangeDefaultDirActivityUT
activity FTP Delete File bw.FTPDeleteFileActivityUI
activity FTP Dir bw.FTPDirActivityUI

activity FTP Get Default Directory bw.FTPGetDefaultDirActivityUT
activity FTP Get bw.FTPGetActivityUI

activity FTP Make Remote Directory bw.FTPMakeRemoteDirActivityUT
activity FTP Put bw.FTPPutActivityUTI

activity FTP Quote bw.FTPQuoteActivityUTI

activity FTP Remove Remote Directory =~ bw.FTPRemoveRemoteDirActivityUT
activity FTP Rename File bw.FTPRenameActivityUI

activity FTP SYS Type bw.FTPSysTypeActivityUI
General

Palette

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

92 | Appendix A ActivityTypes

Table 9 Activity Types of Other ActiveMatrix BusinessWorks Palettes

Activity Kind Activity Description Activity Type
event-source On Event Timeout bw.onEventTimeout
event-source On Notification Timeout bw.onNotificationTimeout
event-source On Shutdown bw.onShutdown
event-source On Startup bw.onStartup
event-source On Error bw.onErrorProcess
event-source Receive Notification bw.waitStarter
event-source Timer bw. timer

signal-in Catch bw.catch

signal-in Sleep bw.sleep

signal-in Wait bw.waitActivity
activity Assign bw.assignActivity
activity Call Process bw.subprocess

activity Checkpoint bw.checkpoint

activity Confirm bw.confirm

activity Engine Command bw.enginecommand
activity External Command bw.CmdExecActivity
activity Generate Error bw.throw

activity Get Shared Variable bw.getSharedVariable
activity Inspector bw.inspectorActivity
activity Label bw.label

activity Mapper bw.MapperActivity
activity Notify bw.notifyActivity
activity Null bw.null

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Activity Types | 93

Table 9 Activity Types of Other ActiveMatrix BusinessWorks Palettes

Activity Kind Activity Description Activity Type

activity Rethrow bw.rethrow

activity Set Shared Variable bw.setSharedVariable
activity Write To Log bw.log

HTTP Palette

event-source HTTP Receiver bw.httpEventSource
signal-in Wait for HTTP Request bw.httpSignalln
activity HTTP Send Request bw.httpRequest
activity HTTP Send Response bw.httpWebResponse

Java Palette

activity Java Code bw.javaActivity
event-source Java Event Source bw.JavaEventSource
activity Java Method bw.JavaMethodActivity
activity Java To XML bw.JavaToXmlActivity
activity XML To Java bw.XmlToJavaActivity

JDBC Palette

activity JDBC Call Procedure bw.JDBCCallActivity

activity JDBC Get Connection bw.JDBCGetConnectionActivity
activity JDBC Query bw.JDBCQueryActivity

activity JDBC Update bw.JDBCUpdateActivity

activity SQL Direct bw.JDBCGeneralActivity

JMS Palette

event-source JMS Queue Receiver bw.JMSQueueEventSource
event-source JMS Topic Subscriber bw.JMSTopicEventSource

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

94 | Appendix A ActivityTypes

Table 9 Activity Types of Other ActiveMatrix BusinessWorks Palettes

Activity Kind Activity Description Activity Type

signal-in Wait for J]MS Queue Message bw.JMSQueueSignalInActivity
signal-in Wait for JMS Topic Message bw.JMSTopicSignalInActivity
activity Get JMS Queue Message bw.JMSQueueGetMessageActivity
activity JMS Queue Requestor bw.JMSQueueRequestReplyActivity
activity JMS Queue Sender bw.JMSQueueSendActivity

activity JMS Topic Publisher bw.JMSTopicPublishActivity
activity JMS Topic Requestor bw.JMSTopicRequestReplyActivity
activity Reply to JMS Message bw.JMSReplyActivity

Mail Palette

event-source Receive Mail bw.MailEventSourceResource
activity Send Mail bw.MailActivityResource

Parse Palette

activity Parse Data bw.ParseActivity
activity Render Data bw.RenderActivity
RMI Palette

activity RMI Lookup bw.lookup

activity RMI Server bw.starter

RV Palette

event-source RV Subscriber bw.RVEventSource
signal-in Wait for RV Message bw.rvSignalInActivity
activity Publish RV Message bw.RVPubActivity
activity Reply to RV Request bw.RVReplyActivity
activity Send RV Request bw.RVRequestActivity

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Activity Types | 95

Table 9 Activity Types of Other ActiveMatrix BusinessWorks Palettes

Activity Kind Activity Description Activity Type

Service

Palette

activity Get Context bw.getContext

activity Invoke Partner bw.invokePartner
activity Set Context bw.setContext

SOAP Palette

event-source SOAP Event Source bw.SOAPEventSourceUI
activity Retrieve Resources bw.RetrieveResource
activity SOAP Request Reply bw.SOAPSendReceiveUI
activity SOAP Send Fault bw.SOAPSendFaultUI
activity SOAP Send Reply bw.SOAPSendReplyUTI
activity MIME Parse bw.MimeParserActivity
TCP Palette

event-source TCP Receiver bw.TCPEventSource
signal-in Wait for TCP Request bw.TCPSignalIn

activity Read TCP Data bw.TCPRead

activity TCP Close Connection bw.TCPCloseConnection
activity TCP Open Connection bw.TCPOpenConnection
activity Write TCP Data bw.TCPWrite
Transaction

Palette

activity Transaction State bw.TransactionStateActivity

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

96 | Appendix A ActivityTypes

Table 9 Activity Types of Other ActiveMatrix BusinessWorks Palettes

Activity Kind Activity Description Activity Type

XML

Activities

Palette

activity Parse XML bw.XMLParseActivity
activity Render XML bw.XMLRendererActivity
activity Transform XML bw.XMLTransformActivity

Manual Work

Palette

activity Assign Work bw.AssignWork

activity Download Document bw.DownloadDocument
activity Get Work Status bw.GetWorkStatus
activity Modify Work bw.ModifyWork
signal-in Wait For Completion bw.WaitForCompletion

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

|97

Appendix B Developing gXML Applications

Topics

¢ Overview on page 98
* Developing gXML Applications on page 99
¢ gXML Recipes on page 106

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

98 | Appendix B Developing gXML Applications

Overview

A Generic Java API for XQuery Data Model (XDM) and eXtensible Markup
Language (XML) Processing. gXML also provides, out-of-the-box, a cohesive suite
of XML processing implementations such as XPath, XSLT, XQuery, Serialization,
W3C XML Schema and Validation.

gXML is a new way of writing XML code in the Java language. The code that you
write to the gXML API can be run against any Data Model that supports the
gXML bridge.

This flexibility offers the following benefits:

* minimizes expensive conversion overhead

* greater opportunities for performance optimization

* greater code reuse

* minimize risks associated with locking into one Data Model

gXML currently supports Parsing, Serialization, XDM Data Model, XPath 2, XSLT
2 and XQuery, W3C XML Schema and Validation.

¢ A gXML bridge is provided for org.w3c.dom.Node.

e A gXML bridge for a high performance proprietary implementation is
complete but not yet released.

e A gXML bridge for a reference implementation is complete but not yet
released. A gXML bridge for AxiOM is in the works.

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Developing gXML Applications | 99

Developing gXML Applications

This section illustrates one way of using gXML. All gXML processors, including
custom processing, run within a GxProcessingContext instance that provides
necessary meta data. A GxProcessingContext instance in turn is created through a
GxApplication instance. It is your responsibility to write a class that provides an
instance of GxApplication. The best way to do this is to write an abstract class that
implements all but the newProcessingContext method of GxApplication. This
approach will allow you to write your application generically and then inject the
choice of parameterization as late as possible for maximum code reuse and
flexibility.

This, of course, is not the only way to use gXML. An existing architecture may
force the choice of parameterization and create silos of XML processing. The
degree of integration in this case may be less that is possible with a homogeneous
solution.

Whatever the approach, the best way to use gXML is to write generic,
parameterized, and XML processing code whenever possible.

Implementing GxApplication

001 package org.gxml.book.common;

002

003 import java.io.StringWriter;

004 import java.net.URI;

005 import java.net.URISyntaxException;

006

007 import junit.framework.TestCase;

008

009 import org.gxml.sa.GxApplication;

010 import org.gxml.sa.GxModel;

011 import org.gxml.sa.GxNameBridge;

012 import org.gxml.sa.GxProcessingContext;
013 import org.gxml.sa.GxSequenceHandler;
014 import org.gxml.xdm.Resolver;

015

016 import com.tibco.gxml.sa.api.common.util.PreCondition;

017 import
com. tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;

018 import
com.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;

019

020 public abstract class SampleApp<I, U, N extends I, A extends I, S,
T, X> extends TestCase implements GxApplication<I, U, N, A, S, T, X>

021 {
022 public Resolver getResolver()

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

100 | Appendix B Developing gXML Applications

023 {

024 try

025 {

026 return new SampleResolver(new
URI("../../plugins/org.gxml.book/resources/foo.xml"));

027 T

028 catch (final URISyntaxException e)

029 {

030 throw new AssertionError(e);

031 }

032 }

033

034 protected String serialize(final N node, final
GxProcessingContext<I, U, N, A, S, T, X> pcx)

035 {

036 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

037

038 // Configure for "pretty" printing.

039 sf.setIndent(Boolean.TRUE);

040

041 final StringWriter w = new StringWriter();

042

043 final GxSequenceHandler<A, S, T> handler =
sf.newSerializer(w);

044

045 final GxModel<N, A, S, T> model = pcx.getModel();
046

047 handler.startDocument(null);

048 try

049 {

050 model.stream(node, true, true, handler);

051 ¥

052 finally

053 {

054 handler.endDocument();

055 }

056

057 return w.toString();

058 ¥

059

060

061 * Some bridge implementations may use {@link String} directly
for symbols. They must make them behave according to

062 * symbol semantics (==, toString).

063 */

064 public void assertNodeSymbolSemantics(final N node, final
GxProcessingContext<I, U, N, A, S, T, X> pcx)

065 {

066 final GxModel<N, A, S, T> model = pcx.getModel();
067 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Developing gXML Applications | 101

068

069 switch (model.getNodeKind(node))

070 {

071 case ELEMENT:

072 {

073 assertSymbolSemantics(model.getNamespaceURI(node),
nameBridge) ;

074 assertSymbolSemantics(model.getLocalName (node),
nameBridge) ;

075 ¥

076 case TEXT:

077 case DOCUMENT:

078 {

079

080 ¥

081 break;

082 default:

083 {

084 throw new AssertionError(model.getNodeKind(node));
085 ¥

086 ¥

087 }

088

089 public void assertSymbolSemantics(final S symbol, final
GxNameBridge<S> nameBridge)

090 {

091 PreCondition.assertArgumentNotNull(symbol, "symbol");

092 PreCondition.assertArgumentNotNull (nameBridge,
"nameBridge") ;

093 assertSame(symbol, nameBridge.symbolize(symbol.toString()));
094 assertSame(symbol,
nameBridge.symbolize(copy(symbol.toString())));

095 }

096

097 VAR

098 * Do anything to manufacture a String that is equal, but not
identical (the same), as the original.

099 * <p>

100 * This method has the post-condition that the strings are equal
but not the same.

101 * </p>

102 *

103 * @param original

104 * The original.

105 * @return A copy of the original string.

106 */

107 private String copy(final String original)

108 {

109 final String copy = original.concat("junk").substring(O0,

original.length());

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

102 | Appendix B Developing gXML Applications

110 // Post-conditions verify that this actually works and isn't
"optimized" out.'

111 assertEquals(original, copy);

112 assertNotSame(original, copy);

113 // Be Paranoid

114 assertTrue(original.equals(copy));
115 assertFalse(original == copy);

116 // OK. That'll do.'

117 return copy;

118 }

119 }

Implementing GxCatalog

A catalog provides the means to isolate your application from the physical
location of file resources. Writing a catalog simply means implementing the
GxCatalog interface, so that it maps from the logical locations specified in code or
XML resources to the corresponding physical location.

001 package org.gxml.book.common;
002

003 public class SampleCatalog

004 {

005

006 }

Implementing GxResolver

A resolver takes a base-uri and an href and uses these two values to return a
stream.

001 package org.gxml.book.common;
002

003 import java.io.File;

004 import java.io.FileNotFoundException;
005 import java.io.IOException;

006 import java.io.InputStream;

007 import java.net.URI;

008 import java.net.URISyntaxException;
009 import java.net.URL;

010

011 import org.gxml.xdm.Resolved;

012 import org.gxml.xdm.Resolver;

013

014 import com.tibco.gxml.sa.api.common.util.PreCondition;
015

016 public final class SampleResolver implements Resolver
017 {

018 final URI baseURI;

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Developing gXML Applications | 103

019

020 public SampleResolver(final URI baseURI)

021 {

022 this.baseURI = PreCondition.assertArgumentNotNull (baseURI,
"baseURI");

023 }

024

025 VA

026 * Convert a URI relative to a base URI into an input source.
027 * <p/>

028 * This default implementation requires that neither parameter
be null, and performs the expected action to retrieve

029 * the input source (which may involve network access).

030 *

031 * @param baseURI

032 * the base URI against which the target is to be
resolved; must not be null

033 * @param location

034 * the URI to resolve; must not be null

035 * @return a pair of InputStream and resolved URI.

036 */

037 public Resolved<InputStream> resolveInputStream(final URI
location) throws IOException

038 {

039 PreCondition.assertArgumentNotNull(location, "uri");

040 if (location.isAbsolute())

041 {

042 return retrieve(location, location);

043 }

044 else

045 {

046 PreCondition.assertArgumentNotNull(baseURI, "baseURI");
047

048 final URI base = baseURI.normalize();

049 final URI resolved = base.resolve(location);

050

051 return retrieve(location, resolved);

052 ¥

053 ¥

054

055 private Resolved<InputStream> retrieve(final URI location, final
URI uri) throws IOException

056 {

057 PreCondition.assertArgumentNotNull (uri, "uri");

058

059 final URL toRetrieve;

060

061 if (luri.isAbsolute()) // assume local file

062 {

063 final File canonFile = new

File(uri.toString()).getCanonicalFile();

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

104 | Appendix B Developing gXML Applications

064 toRetrieve = canonFile.toURI().toURL();

065 ¥

066 else

067 {

068 toRetrieve = uri.toURL();

069 }

070

071 if (toRetrieve == null)

072 {

073 throw new FileNotFoundException(uri.toString());
074 3

075

076 final InputStream stream = toRetrieve.openStream();
077 if (stream == null)

078 {

079 throw new FileNotFoundException(toRetrieve.toString());
080 }

081 try

082 {

083 return new Resolved<InputStream>(location, stream,
toRetrieve.toURI());

084 }

085 catch (final URISyntaxException e)

086 {

087 throw new AssertionError(e);

088 }

089 }

090 }

Injecting DOM

The final task in providing a concrete GxApplication class is to implement the
newProcessingContext method on a derived class. This is where you get to choose
the tree, atomic values, meta data and symbols that your application will use. In
many cases, you will use an off-the-shelf processing context class, but it is also
possible to assemble your own variety or build one entirely from scratch.

If you are going to use gXML with org.w3c.dom.Node, you still have choices for
the atomic values that your system will use as well as the meta data
implementation. This example uses atomic values that are mostly Java Wrapper
types and the reference sequence type implementation, SmSequenceType.

001 package org.gxml.book.parsing;

002

003 import org.gxml.sa.GxMetaBridge;

004 import org.gxml.sa.GxNameBridge;

005 import org.gxml.sa.mutable.GxApplicationMutable;

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Developing gXML Applications | 105

006 import org.gxml.sa.mutable.GxProcessingContextMutable;

007 import org.gxml.xs.SmMetaBridge;

008 import org.gxml.xs.SmSequenceType;

009 import org.w3c.dom.Node;

010

011 import com.tibco.gxml.sa.api.common.datatype.StringNameBridge;
012 import com.tibco.gxml.sa.common.atom.AtomBridge;

013 import
com.tibco.gxml.sa.common.helpers.GxMetaBridgeOnSmMetaBridgeAdapter;
014 import
com.tibco.gxml.sa.common.helpers.SmAtomBridgeOnGxAtomBridgeAdapter;
015 import com.tibco.gxml.sa.xdm.dom.DomProcessingContext;

016 import com.tibco.gxml.xs.SmMetaBridgeFactory;

017

018 /**

019 * Demonstration of constructing a concrete GxApplication(Mutable)
implementation using the DOM processing context.

020 */

021 public final class DomValidatingParsingSample extends
BookValidatingParsingSample<Object, Object, Node, Object, String,
SmSequenceType<Object, String>, Object> implements
GxApplicationMutable<Object, Object, Node, Object, String,
SmSequenceType<Object, String>, Object>

022 {

023 public final GxProcessingContextMutable<Object, Object, Node,
Object, String, SmSequenceType<Object, String>, Object>
newProcessingContext ()

024 {

025 // The name bridge is created along with the processing
context for maximum concurrency.

026 final GxNameBridge<String> nameBridge = new
StringNameBridge();

027 final AtomBridge<String> atomBridge = new
AtomBridge<String>(nameBridge);

028 final SmMetaBridge<Object, String> cache = new

SmMetaBridgeFactory<Object, String>(new
SmAtomBridgeOnGxAtomBridgeAdapter<Object,
String>(atomBridge)) .newMetaBridge();

029 final GxMetaBridge<Object, String, SmSequenceType<Object,
String>> metaBridge = new GxMetaBridgeOnSmMetaBridgeAdapter<Object,
String>(cache, atomBridge);

030

031 final DomProcessingContext<Object, SmSequenceType<Object,
String>> pcx = new DomProcessingContext<Object, SmSequenceType<Object,
String>>(this, metaBridge, cache);

032

033 // Set the "owning" processing context on the atom bridge.
034 atomBridge.setProcessingContext(pcx) ;

035

036 // Return the newly constructed processing context.

037 return pcx;

038 T

039 }

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

106 | Appendix B Developing gXML Applications

gXML Recipes

Parsing

Parsing a Character Stream and a Byte Stream

001 package org.gxml.book.parsing;

002

003 import java.io.InputStream;

004 import java.io.Reader;

005 import java.io.StringReader;

006 import java.net.URI;

007

008 import org.gxml.book.common.SampleApp;

009 import org.gxml.sa.GxModel;

010 import org.gxml.sa.GxNameBridge;

011 import org.gxml.sa.GxProcessingContext;

012 import org.gxml.xdm.NodeKind;

013 import org.gxml.xdm.Resolved;

014 import org.gxml.xdm.Resolver;

015

016 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
017 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;

018 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;
019

020 public abstract class BookIntroParsingSample<I, U, N extends I, A
extends I, S, T, X> extends SampleApp<I, U, N, A, S, T, X>

021 {

022 public void testCharacterStreamParse() throws Exception
023 {

024 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

025

026 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

027

028 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();

029

030 final String xmlString = "<e>123</e>";

031 final URI systemId = new URI("e.xml");

032 final Reader characterStream = new StringReader(xmlString);
033 final N doc = builder.parse(characterStream, systemId);
034

035 final GxModel<N, A, S, T> model = pcx.getModel();

036

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 107

037 assertEquals(NodeKind.DOCUMENT, model.getNodeKind(doc));
038

039 final N e = model.getFirstChildElement(doc);

040 assertEquals(NodeKind.ELEMENT, model.getNodeKind(e));
041 assertEquals("e", model.getLocalNameAsString(e));

042 assertEquals("123", model.getStringValue(e));

043 }

044

045 public void testByteStreamParse() throws Exception

046 {

047 final Resolver resolver = getResolver();

048

049 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

050

051 final URI systemId = new URI("email.xml");

052 final Resolved<InputStream> source =
resolver.resolveInputStream(systemId);

053

054 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

055

056 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();

057

058 final N document = builder.parse(source.getResource(),
source.getSystemId());

059

060 final GxModel<N, A, S, T> model = pcx.getModel();

061

062 assertEquals(NodeKind.DOCUMENT,

model . getNodeKind(document));

063

064 final N email = model.getFirstChildElement(document) ;
065 assertEquals(NodeKind.ELEMENT, model.getNodeKind(email));
066 assertEquals("email", model.getLocalNameAsString(email));
067 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
068 final S namespaceURI =
nameBridge.symbolize("http://www.example.com");

069 final S localName = nameBridge.symbolize("from");

070 final N from = model.getFirstChildElementByName (email,
namespaceURI, localName);

071 assertEquals("Julie", model.getStringValue(from));

072

073 for (final N node : model.getDescendantOrSelfAxis(document))
074 {

075 assertNodeSymbolSemantics(node, pcx);

076 }

077 }

078 }

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

108 | Appendix B Developing gXML Applications

Constructing a Data Model Tree Programmatically

This example demonstrates constructing a tree directly using the fragment

builder.

001 package org.

002

003 import
004 import
005 import
006 import
007 import
008 import
009

010 import
011 import
012

013 import
014 import
015 import
016 import
017 import
018 import
019 import
020 import
021 import
022 import
023 import
024 import
025 import
026

027 import
028 import
029 import
030 import
031 import
032 import
033 import
034 import
035 import
036 import

java.
java.
java.
java.

java
java

.net.

URI;

gxml .book. snoopy;

io.IOException;
io.InputStream;
io.StringReader;
io.StringWriter;

.net.URISyntaxException;

javax.xml .namespace.QName;
javax.xml.parsers.ParserConfigurationException;

org.
org.
org
org.
org.
org
org.
org.
org.
org.
org.
org.
org

com.
com
com.
com.
com.
com.
com.
com.
com

com.tibco.gxml.

037 import

com. tibco.gxml.

038 import
039 import
040 import
041 import
042 import

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

com.
com.
com.
com.
com.

gxml .
gxml .

.gxml.

gxml.
gxml.

.gxml .

gxml .
gxml .
gxml .
gxml.
gxml.
gxml .

.gxml .

tibco.
.tibco
tibco.
tibco.
tibco.

tibco

tibco.
tibco.
.tibco

book.common.SampleApp;
sa.GxException;
sa.GxFragmentBuilder;
sa.GxMetaBridge;
sa.GxModel;
sa.GxNameBridge;
sa.GxProcessingContext;
sa.GxSequenceHandler;

sa.GxVariantBridge;

xdm.NodeKind;
xdm.Resolved;
xdm.Resolver;

xs.SmName ;

gxml .
.gxml.
gxml .
gxml .
gxml .
.gxml.
gxml .
gxml.
.gxml.

sa.

sa

sa.
sa.
sa.

sa

sa.
sa.

sa

api.
.api.
api.
api.
api.
.api.

common.

common

common.
common .
common.

common

lang.ExprException;

.lang.ExprResult;

lang.GXEXpr;
lang.GxExprContextDynamicArgs;
lang.GxExprContextStaticArgs;

.lang.GxLanguageToolKit;
common.helpers.DocumentBuilderFactory;
common.helpers.GxDocumentBuilder;

.common.helpers.GxDocumentBuilderFactory;

sa.processor.serialization.api.GxSerializerFactory;

sa.processor.serialization.impl.SerializerFactory;
xquery.LanguageToolKit;

tibco

tibco.
tibco.
tibco.
.gxml.

tibco

.gxml.
gxml .
gxml .

gxml .

sa

sa.
sa.
.processor.

sa

.processor.
sa.

processor.
processor.

processor.

xslt
xslt
xslt
xslt

.GxTransform;
.GxTransformBuilder;
.GxTransformer;
.XSLTransformBuilder;

gXML Recipes | 109

043 import
com.tibco.gxmlsa.processor.org.exslt.strings.ExsltStringsFunctionGroup;

044

045 public abstract class SnoopySample<I, U, N extends I, A extends I,
S, T, X> extends SampleApp<I, U, N, A, S, T, X>

046 {

047 public void testDocumentFromString()

048 {

049 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

050

051 final N document = documentFromString(pcx) ;

052

053 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

054

055 sf.setIndent(true);

056

057 final StringWriter sw = new StringWriter();

058

059 final GxSequenceHandler<A, S, T> serializer =
sf.newSerializer(sw);

060

061 final GxModel<N, A, S, T> model = pcx.getModel();
062

063 model.stream(document, true, true, serializer);
064

065 // System.out.println(sw.toString());

066 ¥

067

068 public void testFragmentBuilder()

069 {

070 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

071

072 final N document = documentFromEvents(pcx) ;

073

074 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

075

076 sf.setIndent(true);

077

078 final StringWriter sw = new StringWriter();

079

080 final GxSequenceHandler<A, S, T> serializer =
sf.newSerializer(sw);

081

082 final GxModel<N, A, S, T> model = pcx.getModel();
083

084 model.stream(document, true, true, serializer);
085

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

110 | Appendix B Developing gXML Applications

086 // System.out.println(sw.toString());

087 }

088

089 private N documentFromString(final GxProcessingContext<I, U, N,
A, S, T, X> pcx)

090 {

091 final String strval = "" + "<?xml version='1.0'

encoding="UTF-8'?>" + "<book isbn='0836217462"'>" + " <title>Being a Dog
Is a Full-Time Job</title>" + " <author>Charles M. Schultz</author>" + "
<character>" + " <name>Snoopy</name>" + " <since>1950-10-04</since>" + "
</character>" + "</book>";

092

093 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

094

095 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();

096

097 try

098 {

099 return builder.parse(new StringReader(strval), null);
100 }

101 catch (final IOException e)

102 {

103 throw new AssertionError();

104 }

105 }

106

107 private N documentFromEvents(final GxProcessingContext<I, U, N,
A, S, T, X> pcx)

108 {

109 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
110

111 final S NULL_NS_URI = nameBridge.empty();

112 final S BOOK = nameBridge.symbolize("book");

113 final S ISBN = nameBridge.symbolize("isbn");

114 final S TITLE = nameBridge.symbolize("title");

115 final S AUTHOR = nameBridge.symbolize("author");

116 final S CHARACTER = nameBridge.symbolize("character");
117 final S NAME = nameBridge.symbolize("name");

118 final S SINCE = nameBridge.symbolize("since");

119

120 final GxFragmentBuilder<N, A, S, T> builder =
pcx.newFragmentBuilder();

121

122 // Note: Using try...finally not only ensures that elements
get closed when errors

123 // occur, it also helps to remind you to end elements and
makes the levels in

124 // the XML more obvious.

125 builder.startDocument(null);

126 try

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 111

127 {

128 builder.startElement (NULL_NS_URI, BOOK, "", null);
129 try

130 {

131 builder.attribute(NULL_NS_URI, ISBN, "",
"0836217462");

132 builder.startElement (NULL_NS_URI, TITLE, "", null);
133 try

134 {

135 builder.text("Being a Dog Is a Full-Time Job");
136 }

137 finally

138 {

139 builder.endElement();

140 }

141 builder.startElement (NULL_NS_URI, AUTHOR, "", null);
142 try

143 {

144 builder.text("Charles M. Schultz");

145 3

146 finally

147 {

148 builder.endElement();

149 }

150 builder.startElement (NULL_NS_URI, CHARACTER, "",
null);

151 try

152 {

153 builder.startElement (NULL_NS_URI, NAME, "",
null);

154 try

155 {

156 builder.text("Snoopy");

157 ¥

158 finally

159 {

160 builder.endElement();

161 }

162 builder.startElement (NULL_NS_URI, SINCE, "",
null);

163 try

164 {

165 builder.text("1950-10-04");

166 }

167 finally

168 {

169 builder.endElement();

170 }

171 ¥

172 finally

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

112 | Appendix B Developing gXML Applications

173 {

174 builder.endElement();

175 }

176 }

177 finally

178 {

179 builder.endElement();

180 ¥

181 }

182 finally

183 {

184 builder.endDocument();

185 }

186

187 return builder.getNodes().get(0);

188 ¥

189

190 public void testExample() throws ParserConfigurationException,
IOException, GxException, ExprException, URISyntaxException

191 {

192 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

193

194 final Resolver resolver = getResolver();

195

196 final URI xmlSystemId = new URI("hotel.xml");

197 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId);

198

199 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

200

201 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
202

203 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

204

205 final URI xslSystemId = new URI("hotel.xsl");

206 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);

207

208 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

209

210 // poem.xsl uses version="2.0", but we want to use XPath 1.0
compatibility mode

211 // so that arguments to functions are converted etc.

212 compiler.setCompatibleMode(true);

213

214 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 113

215

216 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

217

218 // TODO: Extract the configuration?

219 // compiled.configure(sf);

220

221 sf.setIndent(true);

222

223 final StringWriter w = new StringWriter();

224

225 final GxSequenceHandler<A, S, T> handler =
sf.newSerializer(w);

226

227 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();

228

229 transformer. transform(document, pcx, handler);
230 ¥

231

232 public void testVariableBinding() throws

ParserConfigurationException, IOException, GxException, ExprException,
URISyntaxException

233 {

234 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

235

236 final Resolver resolver = getResolver();

237

238 final URI xslSystemId = new URI("email.xsl");

239 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);

240

241 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

242

243 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

244

245 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();

246

247 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
248 final SmName<S> varName = nameBridge.name(new QName("to"));
249 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();

250 final X value = valueBridge.stringValue("David");

251

252 transformer.bindVariableValue(varName, value);

253 transformer.bindVariableValue(nameBridge.name (new
QName("http://www.example.com", "from")),

valueBridge.stringValue("Julie"));

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

114 | Appendix B Developing gXML Applications

254

255 final N documentNode = transformer.transform(null, pcx);
256

257 final GxModel<N, A, S, T> model = pcx.getModel();

258

259 assertEquals(NodeKind.DOCUMENT,

model . getNodeKind(documentNode));

260 final N email = model.getFirstChildElement(documentNode);
261 final N to = model.getFirstChildElementByName(email,

nameBridge.symbolize("http://www.example.com"),
nameBridge.symbolize("to"));

262 assertEquals("David", model.getStringValue(to));

263 final N from = model.getFirstChildElementByName(email, null,
nameBridge.symbolize("from"));

264 assertEquals("Julie", model.getStringValue(from));

265 final N again = model.getFirstChildElementByName(email,
nameBridge.symbolize("http://www.example.com"), null);

266 assertEquals("David", model.getStringValue(again));

267 }

268

269 public void testExternalFunctions() throws
ParserConfigurationException, IOException, GxException, ExprException,
URISyntaxException

270 {

271 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

272

273 final Resolver resolver = getResolver();

274

275 final URI xmlSystemId = new URI("exslt.xml");

276 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId);

277

278 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

279

280 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
281

282 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

283

284 final URI xslSystemId = new URI("exslt.xsl");

285 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);

286

287 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

288

289 final String namespaceURI = "http://exslt.org/strings";
290 final ExsltStringsFunctionGroup<I, U, N, A, S, T, X>

functions = new ExsltStringsFunctionGroup<I, U, N, A, S, T,
X>(namespaceURI, pcx);

291 compiler.setFunctionSigns(namespaceURI, functions);

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 115

292 compiler.setFunctionImpls(namespaceURI, functions);
293
294 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

295

296 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

297

298 // TODO: Extract the configuration.

299 // compiled.configure(sf);

300

301 sf.setIndent(true);

302

303 final StringWriter w = new StringWriter();

304

305 final GxSequenceHandler<A, S, T> handler =
sf.newSerializer(w);

306

307 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();

308

309 transformer.transform(document, pcx, handler);

310

311 // System.out.println(w.toString());

312 }

313

314 public void testHotel() throws ParserConfigurationException,

TOException, GxException, ExprException, URISyntaxException
315 {

316 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

317

318 final Resolver resolver = getResolver();

319

320 final URI xmlSystemId = new URI("hotel.xml");

321 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId);

322

323 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

324

325 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
326

327 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

328

329 final URI xslSystemId = new URI("hotel.xsl");

330 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);

331

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

116 | Appendix B Developing gXML Applications

332 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

333

334 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

335

336 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

337

338 // TODO: Extract the configuration.

339 // compiled.configure(sf);

340

341 sf.setIndent(true);

342

343 final StringWriter w = new StringWriter();

344

345 final GxSequenceHandler<A, S, T> handler =
sf.newSerializer(w);

346

347 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer() ;

348 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
349 final SmName<S> varName = nameBridge.name(new

QName ("MessageData"));

350 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();

351 final X value = valueBridge.node(document) ;

352

353 transformer.bindVariableValue(varName, value);

354

355 transformer.transform(null, pcx, handler);

356

357 // System.out.println(w.toString());

358 }

359

360 public void testHelloWorld() throws Exception

361 {

362 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

363 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
364

365 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk = new
LanguageToolKit<I, U, N, A, S, T, X>(pcx);

366

367 final GxExprContextStaticArgs<I, U, N, A, S, T, X> senv =
xtk.newStaticContextArgs();

368 final String NAMESPACE = "http://www.peanuts.com";

369

370 senv.getInScopeNamespaces() .declarePrefix("nuts",
nameBridge.symbolize(NAMESPACE));

371

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 117

372 final SnoopyFunctionGroup<I, U, N, A, S, T, X>
peanutsFunctionGroup = new SnoopyFunctionGroup<I, U, N, A, S, T,
X>(NAMESPACE, pcx);

373 senv.setFunctionSigns (NAMESPACE, peanutsFunctionGroup) ;
374 senv.setFunctionImpls (NAMESPACE, peanutsFunctionGroup) ;
375

376 final GxMetaBridge<A, S, T> metaBridge =
pcx.getMetaBridge();

377

378 final ExprResult<I, U, N, A, S, T, X> prepared =

xtk.prepare("nuts:GetVariableProperty('foo', 'bar')",
metaBridge.emptyType(), senv);

379
380 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();
381

382 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> darg =
xtk.newDynamicContextArgs() ;

383

384 final String strval = expr.stringFunction(xtk.emptyFocus(),
darg, pcx);

385

386 assertEquals("Bingo!", strval);
387 }

388 }

Validating

001 package org.gxml.book.parsing;

002

003 import java.io.InputStream;

004 import java.net.URI;

005

006 import javax.xml.namespace.QName;

007

008 import org.gxml.book.common.SampleApp;
009 import org.gxml.sa.GxApplication;

010 import org.gxml.sa.GxAtomBridge;

011 import org.gxml.sa.GxModel;

012 import org.gxml.sa.GxNameBridge;

013 import org.gxml.sa.GxProcessingContext;
014 import org.gxml.xdm.Resolved;

015 import org.gxml.xdm.Resolver;

016 import org.gxml.xs.SmComponentBag;

017 import org.gxml.xs.SmExceptionCatcher;
018 import org.gxml.xs.SmMetaloadArgs;

019 import org.gxml.xs.SmName;

020

021 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

118 | Appendix B Developing gXML Applications

022 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;
023 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;

024 import
com.tibco.gxml.sa.common.helpers.SmAtomBridgeOnGxAtomBridgeAdapter;

025 import com.tibco.gxml.xs.W3cXmlSchemaParser;
026

027 public abstract class BookValidatingParsingSample<I, U, N extends I,
A extends I, S, T, X> extends SampleApp<I, U, N, A, S, T, X>

028 {

029 public void testValidatingParse() throws Exception

030 {

031 final GxApplication<I, U, N, A, S, T, X> app = this;
032

033 final Resolver resolver = app.getResolver();

034

035 final SmMetaloadArgs args = new SmMetalLoadArgs();
036

037 final SmExceptionCatcher errors = new SmExceptionCatcher();
038

039 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
app.newProcessingContext();

040

041 final Resolved<InputStream> resource =

getResolver() .resolveInputStream(new URI("email.xsd"));

042

043 final W3cXmlSchemaParser<A, S> parser = new

W3cXmlSchemaParser<A, S>(new SmAtomBridgeOnGxAtomBridgeAdapter<A,
S>(pcx.getAtomBridge()));

044

045 final SmComponentBag<A, S> components =
parser.parse(resource.getlocation(), resource.getResource(),
resource.getSystemId(), errors, args, pcxX);

046

047 pcx.register(components);

048

049 pcx.lock();

050

051 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
052

053 assertEquals(0, errors.size());

054

055 final URI xmlURI = new URI("email.xml");

056 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlURI) ;

057

058 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

059

060 // Enable validation of the XML input.

061 factory.setValidating(true, nameBridge.name (new
QName ("http://www.example.com", "email")));

062

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 119

063 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();

064

065 // TODO: Need to catch errors...

066 // builder.setExceptionHandler(errors) ;

067

068 final N doc = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

069

070 assertEquals(0, errors.size());

071

072 // System.out.println(serialize(doc, pcx));

073

074 final GxModel<N, A, S, T> model = pcx.getModel();

075 final GxAtomBridge<A, S> atomBridge = pcx.getAtomBridge();
076

077 final N email = model.getFirstChildElement(doc);

078 final S namespaceURI =
nameBridge.symbolize("http://www.example.com");

079 final N sent = model.getFirstChildElementByName (email,
namespaceURI, nameBridge.symbolize("sent"));

080 assertNotNull("model.getFirstChildElementByName", sent);
081 final SmName<S> typeName = model.getTypeName(sent);

082 assertNotNull("model.getTypeName", typeName);

083 assertEquals("dateTime", typeName.toQName().getLocalPart());
084 final A dateTime = model.getTypedValue(sent).get(0);

085

086 //
asiﬁrtTrue(metaBridge.sameAs(metaBridge.handle(pcx.getTypeDefinition(ty
pbe y

087 // metaBridge.getType(SmNativeType.DATETIME)));

088

089 assertEquals("2008-03-23T14:49:30-05:00",
atomBridge.getCl4NForm(dateTime));

090 }

091 }

Navigation
001 package org.gxml.book.parsing;
002
003 import java.io.InputStream;
004 import java.net.URI;
005
006 import org.gxml.book.common.SampleApp;
007 import org.gxml.sa.GxModel;
008 import org.gxml.sa.GxNameBridge;
009 import org.gxml.sa.GxProcessingContext;
010 import org.gxml.xdm.Resolved;
011 import org.gxml.xdm.Resolver;

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

120 | Appendix B Developing gXML Applications

012

013 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
014 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;

015 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;
016

017 public abstract class BookNavigationParsingSample<I, U, N extends I,
A extends I, S, T, X> extends SampleApp<I, U, N, A, S, T, X>

018 {

019 public void testBooksByNealStephenson() throws Exception
020 {

021 final Resolver resolver = getResolver();

022

023 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

024

025 final URI systemId = new URI("books.xml");

026 final Resolved<InputStream> source =
resolver.resolveInputStream(systemId);

027

028 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

029

030 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();

031

032 final N doc = builder.parse(source.getResource(),
source.getSystemId());

033

034 final GxModel<N, A, S, T> model = pcx.getModel();

035

036 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
037

038 final S namespaceURI =
nameBridge.symbolize("http://www.example.com/books");

039

040 final N inventory = model.getFirstChildElementByName(doc,
namespaceURI, nameBridge.symbolize("inventory"));

041

042 for (final N book : model.getChildElementsByName(inventory,
namespaceURI, nameBridge.symbolize("book")))

043 {

044 boolean found = false;

045

046 for (final N author : model.getChildElementsByName (book,
namespaceURI, nameBridge.symbolize("author")))

047 {

048 if (model.getStringValue(author).equals("Neal
Stephenson"))

049 {

050 found = true;

051 break;

052 ¥

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 121

053 }

054

055 if (found)

056 {

057 final N title =

model.getFirstChildElementByName (book, namespaceURT,
nameBridge.symbolize("title"));

058

059 System.out.println(model.getStringValue(title));
060 ¥

061 }

062 }

063

064 public void testPurchaseOrder() throws Exception

065 {

066 final Resolver resolver = getResolver();

067

068 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

069 final GxModel<N, A, S, T> model = pcx.getModel();

070 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
071

072 final URI systemId = new URI("PurchaseOrder.xml");

073 final Resolved<InputStream> source =
resolver.resolveInputStream(systemId);

074

075 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

076

077 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();

078

079 final N po = builder.parse(source.getResource(),
source.getSystemId());

080

081 final N root = model.getFirstChildElement(po);

082

083 final N items = model.getFirstChildElementByName(root, null,
nameBridge.symbolize("items"));

084

085 double total = 0;

086 for (final N item : model.getChildElementsByName(items,
null, nameBridge.symbolize("item")))

087 {

088 System.out.println("partNum:" +

model.getAttributeStringValue(item, nameBridge.empty(),
nameBridge.symbolize("partNum")));

089

090 final N price = model.getFirstChildElementByName(item,
null, nameBridge.symbolize("USPrice"));

091 total +=

Double.valueOf(model.getStringValue(price)).doubleValue();
092 }

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

122 | Appendix B Developing gXML Applications

093
094
095

Mutation

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

System.out.println("Grand total = " + total);

package org.gxml.book.mutable;

import java.math.BigDecimal;

import

import
import
import
import
import
import

/1‘: *

%/

javax.xml .XMLConstants;

org

org.
org.

org

org.
org.

@param
@param
@param
@param
@param
@param
@param

.gxml.
gxml.
gxml .
.gxml .
gxml .
gxml .

<I>
<U>
<N>
<A>
<S>
<T>
<X>

book.common.MutableApp;

sa.
sa.
.mutable.GxModelMutable;

.mutable.GxProcessingContextMutable;

sa
sa

GxAtomBridge;
GxNameBridge;

xdm.NodeKind;

@author dholmes

This sample illustrates the use of the optional mutability APIT.

027 public abstract class MutableSample<I, U, N extends I, A extends I,
S, T, X> extends MutableApp<I, U, N, A, S, T, X>

028
029
030

{
/**

* This

mutability

031
032
033
034
035
036
037

newProcessingContext();

038
039

*

*

=/

APT
Lin
Lin
Lin

e 2
e 3

e 4 // OK

is a test of basic mutability through the optional

public void testIntroduction() throws Exception

{

final GxProcessingContextMutable<I, U, N, A, S, T, X> pcx

final GxAtomBridge<A, S> atomBridge = pcx.getAtomBridge()
final GxNameBridge<S> nameBridge = pcx.getNameBridge();

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 123

040

041 /* // Create a new document. */

042 final N documentNode = pcx.newDocument();

043

044 final GxModelMutable<N, A, S, T> model = pcx.getModel();
045

046 assertEquals(NodeKind.DOCUMENT,

model . getNodeKind(documentNode)) ;

047

048 // Every node in the tree has an owner which is a document
node. /* OK */

049 final N owner = model.getOwner(documentNode);

050

051 assertTrue(model.isSameNode (documentNode, owner));

052

053 final S namespaceURI =
nameBridge.symbolize("http://www.example.com");

054 final S localName = nameBridge.symbolize("foo");

055 final String prefix = "x";

056 final N documentElement = model.createElement(owner,
namespaceURI, localName, prefix);

057

058 // Append the document element to the documentNode.

059 model . appendChild(documentNode, documentElement) ;

060

061 model .setNamespace(documentElement, prefix, namespaceURI);
062

063 model.setAttribute(documentElement, nameBridge.empty(),

nameBridge.symbolize("version"), XMLConstants.DEFAULT_NS_PREFIX,
atomBridge.wrapAtom(atomBridge.createDecimal (BigDecimal.valueOf(2.7))))

064

065 // Append four text nodes to the document element.

066 model . appendChild(documentElement, model.createText(owner,
"Hello"));

9?; model . appendChild(documentElement, model.createText(owner, "
068 model . appendChild(documentElement, model.createText(owner,
"World"));

069)) model . appendChild(documentElement, model.createText(owner,
WYy .

070

071 // Compress the four contiguous text nodes into a single text
node.

072 model .normalize(documentNode);

073

074 @SuppressWarnings("unused")

075 final String strval = serialize(documentNode, pcx);

076 //System.out.println(strval);

077 T

078 }

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

124 | Appendix B Developing gXML Applications

Serialization

001
002
003
004
005
006
007
008
009
010
011
012

013
com.
014
com.
ry;
015
com.
016
com.
Y
017
com.

018

package org.gxml.book.serialization;

import java.io.StringWriter;

import

import
import
import
import
import

import

tibco.gxml.

import

tibco.gxml.

import

tibco.gxml.

import

tibco.gxml.

import

tibco.gxml.

javax.xml.namespace.QName;

org.
org.
.gxml.sa.GxProcessingContext;

org

org.
org.

gxml .book.common.SampleApp;
gxml.sa.GxModel;

gxml . sa.GxSequenceHandler;

gxml.xdm.Emulation;

sa.processor

sa.processor.

sa.processor.

sa.processor.

sa.processor.

.serialization.

serialization

serialization

serialization

serialization

api.GxDocumentSerializer;

.api.GxDocumentSerializerFacto

.api.GxSerializerFactory;

.impl.DocumentSerializerFactor

.impl.SerializerFactory;

019 public abstract class IntroSerializationSample<I, U, N extends I, A

extends I,

020
021

022
023

024
025
026
027
028
029
030
031
032

033
034
035
036
037
038

{

S, T, X> extends SampleApp<I, U, N, A, S, T, X>

public void exampleUsingDocumentSerializer(final N node, final
GxProcessingContext<I, U, N, A, S, T, X> pcx)

{

final GxDocumentSerializerFactory<N, S> sf = new
DocumentSerializerFactory<I, U, N, A, S, T, X>(pcx);

// Configure for "pretty" printing.
sf.setIndent(Boolean.TRUE);
sf.setMethod(new QName("xml"));
sf.setOmitXmlDeclaration(false);

final StringWriter sw = new StringWriter();

final GxDocumentSerializer<N> serializer =
sf.newDocumentSerializer(sw);

serializer.serialize(node);

System.out.print(sw.toString());

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 125

039 public void exampleUsingSequenceHandler(final N node, final
GxProcessingContext<I, U, N, A, S, T, X> pcx)

040 {

041 final GxSerializerFactory<I,U,N,A, S, T,X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

042

043 // Configure for "pretty" printing.

044 sf.setIndent(Boolean.TRUE);

045 sf.setMethod(new QName("xml"));

046 sf.setOmitXmlDeclaration(false);

047 sf.setEmulation(Emulation.C14N);

048

049 final StringWriter sw = new StringWriter();

050

051 final GxSequenceHandler<A, S, T> serializer =
sf.newSerializer(sw);

052

053 final GxModel<N, A, S, T> model = pcx.getModel();
054

055 model.stream(node, true, true, serializer);

056

057 System.out.print(sw.toString());

058 ¥

059 }

XPath

001 package org.gxml.book.xpath;

002

003 import org.gxml.book.common.SampleApp;

004 import org.gxml.sa.GxMetaBridge;

005 import org.gxml.sa.GxNameBridge;

006 import org.gxml.sa.GxProcessingContext;

007 import org.gxml.sa.GxVariantBridge;

008 import org.gxml.xdm.Emulation;

009 import org.gxml.xs.SmName;

010 import org.gxml.xs.SmNativeType;

011

012 import com.tibco.gxml.sa.api.common.lang.ExprResult;

013 import com.tibco.gxml.sa.api.common.lang.GXExpr;

014 import com.tibco.gxml.sa.api.common.lang.GxExprContextDynamicArgs;
015 import com.tibco.gxml.sa.api.common.lang.GxExprContextStaticArgs;
016 import com.tibco.gxml.sa.api.common.lang.GxFocus;

017 import com.tibco.gxml.sa.api.common.lang.GxLanguageToolKit;

018 import com.tibco.gxml.sa.processor.xquery.LanguageToolKit;

019 import
com.tibco.gxmlsa.processor.org.exslt.math.ExsltMathFunctionGroup;

020

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

126 | Appendix B Developing gXML Applications

021 public abstract class XPathSample<I, U, N extends I, A extends I, S,
T, X> extends SampleApp<I, U, N, A, S, T, X>

022 {

023 public void testGettingStarted() throws Exception

024 {

025 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

026

027 // For demonstration purposes, register the language toolkit
with the processing context.

028 pcx.register("xyz", new LanguageToolKit<I, U, N, A, S, T,
X>(pcx));

029

030 @SuppressWarnings("unchecked")

031 // Immediately get back the registered processor.

032 GxLanguageToolKit<I, U, N, A, S, T, X> xtk =
pcx.getProcessor("xyz", GxLanguageToolKit.class);

033

034 final GxExprContextStaticArgs<I, U, N, A, S, T, X> sarg =
xtk.newStaticContextArgs();

035

036 final GxMetaBridge<A, S, T> metaBridge =
pcx.getMetaBridge();

037

038 final ExprResult<I, U, N, A, S, T, X> prepared =
xtk.prepare("concat('Hello', ', ', 'World', '"!')",
metaBridge.emptyType(), sarg);

039 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();
040

041 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> darg =
xtk.newDynamicContextArgs() ;

042

043 final String strval = expr.stringFunction(xtk.emptyFocus(),
darg, pcx);

044

045 assertEquals("Hello, World!", strval);

046 }

047

048 public void testBindingVariables() throws Exception

049 {

050 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

051

052 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk = new
LanguageToolKit<I, U, N, A, S, T, X>(pcx);

053

054 final GxExprContextStaticArgs<I, U, N, A, S, T, X> statArgs
= xtk.newStaticContextArgs();

055 statArgs.setEmulation(Emulation.MODERN) ;

056

057 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
058 final SmName<S> varName = new

SmName<S>(nameBridge.symbolize("x"), nameBridge);

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 127

059

060 final GxMetaBridge<A, S, T> metaBridge =
pcx.getMetaBridge();

061 statArgs.bindVariableType(varName,
metaBridge.getType(SmNativeType.STRING));

062

063 final String es = "concat('Hello', ', ', $x, '!'D";

064 final T sfocus = metaBridge.emptyType();

065

066 final ExprResult<I, U, N, A, S, T, X> prepared =
xtk.prepare(es, sfocus, statArgs);

067

068 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> dynArgs
= xtk.newDynamicContextArgs();

069 dynArgs.setEmulation(Emulation.MODERN) ;

070

071 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();

072 final X value = valueBridge.stringValue("World");

073 dynArgs.bindVariableValue(varName, value);

074

075 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();
076 final GxFocus<I> dfocus = xtk.emptyFocus();

077 final String strval = expr.stringFunction(dfocus, dynArgs,
pcx);

078

079 assertEquals("Hello, World!", strval);

080 ¥

081

082 public void testEXSLT() throws Exception

083 {

084 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

085 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
086

087 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk = new
LanguageToolKit<I, U, N, A, S, T, X>(pcx);

088

089 final GxExprContextStaticArgs<I, U, N, A, S, T, X> sarg =
xtk.newStaticContextArgs();

090 sarg.getInScopeNamespaces().declarePrefix("math",
nameBridge.symbolize("http://exslt.org/math"));

091 final ExsltMathFunctionGroup<I, U, N, A, S, T, X>

exsltMathFunctionGroup = new ExsltMathFunctionGroup<I, U, N, A, S, T,
X>("http://exslt.org/math", pcx);

092 sarg.setFunctionSigns("http://exslt.org/math",
exsltMathFunctionGroup) ;

093 // The function implementations can be provided now or just
prior to execution.

094 sarg.setFunctionImpls("http://exslt.org/math",
exsltMathFunctionGroup) ;

095

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

128|AmmnmxB Developing gXML Applications

096

097
098

xtk.prepare("math:exp(1)",

099
100
101
102

final GxMetaBridge<A, S, T> metaBridge =
pcx.getMetaBridge();

final ExprResult<I, U, N, A, S, T, X> prepared =

metaBridge.emptyType(),

sarg);

final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();

final GxExprContextDynamicArgs<T,

xtk.newDynamicContextArgs();

103

104

// Here we also (redundantly) provide the function
implementations just prior to execution.

darg.setFunctionImpls("http://exslt.org/math",

exsltMathFunctionGroup) ;

105
106

final String strval =

darg, pcx);

107
108
109
110
111
112
113

assertEquals("2.7182818284590455",

public void testExpressionType() throws Exception

{

final GxProcessingContext<I, U, N, A, S, T, X> pcx

newProcessingContext();

114
115

116
117

final GxLanguageToolKit<I, U, N, A, S, T, X> xtk = new
LanguageToolKit<I, U, N, A, S, T, X>(pcx);

final GxExprContextStaticArgs<I,

xtk.newStaticContextArgs();

118
119

120
121

xtk.prepare(" 'Hello'",

122

final GxMetaBridge<A, S, T> metaBridge =
pcx.getMetaBridge();

final ExprResult<I, U, N, A, S, T, X> prepared
metaBridge.emptyType(), sarg);

/* final GxExpr<I, U, N, A, S,

*/prepared.getExpr();

123
124
125

XSLT

001
002
003
004
005

/* final GxExprInfo<T> info

package org.

import java.
import java.
import java.

gxml .book.xslt;

io.IOException;
io.InputStream;
io.StringReader;

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

T, X> expr

strval);

*/prepared.getInfo();

U, N, A, S, T, X> darg

U, N, A, S, T, X> sarg

expr.stringFunction(xtk.emptyFocus(),

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

031
com

032
com

033
034
035
036
037

com.

038
039

gXML Recipes | 129

import java.io.StringWriter;
import java.net.URI;
import java.net.URISyntaxException;

import javax.xml.namespace.QName;
import javax.xml.parsers.ParserConfigurationException;

import org.gxml.book.common.SampleApp;
import org.gxml.sa.GxException;

import org.gxml.sa.GxMetaBridge;
import org.gxml.sa.GxModel;

import org.gxml.sa.GxNameBridge;
import org.gxml.sa.GxProcessingContext;
import org.gxml.sa.GxSequenceHandler;
import org.gxml.sa.GxVariantBridge;
import org.gxml.xdm.NodeKind;

import org.gxml.xdm.Resolved;

import org.gxml.xdm.Resolver;

import org.gxml.xs.SmName;

import org.gxml.xs.SmNativeType;

import com.tibco.gxml.sa.api.common.lang.ExprException;

import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;

import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;
import

.tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;

import

.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;

import com.tibco.gxml.sa.processor.xslt.GxTransform;

import com.tibco.gxml.sa.processor.xslt.GxTransformBuilder;
import com.tibco.gxml.sa.processor.xslt.GxTransformer;
import com.tibco.gxml.sa.processor.xslt.XSLTransformBuilder;

import
tibco.gxmlsa.processor.org.exslt.strings.ExsltStringsFunctionGroup;

public abstract class XSLTSample<I, U, N extends I, A extends I, S,

T, X> extends SampleApp<I, U, N, A, S, T, X>

040
041

{

public void testExample() throws ParserConfigurationException,

TOException, GxException, ExprException, URISyntaxException

042
043

{
final GxProcessingContext<I, U, N, A, S, T, X> pcx =

newProcessingContext();

044

pcx.

045
046
047
048
049

final GxMetaBridge<A, S, T> metaBridge =
getMetaBridge();

final GxNameBridge<S> nameBridge = pcx.getNameBridge();
final Resolver resolver = getResolver();

final URI xmlSystemId = new URI("hotel.xml");

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

130 | Appendix B Developing gXML Applications

050 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId);

051

052 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

053 f.setIgnoreComments(false);

054

055 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
056

057 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

058

059 final URI xslSystemId = new URI("hotel.xsl");

060 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);

061

062 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

063

064 compiler.setCompatibleMode(true);

065 // compiler.setRestrictedMode(true); // XSLT 2.0 subset for
mapper.

066

067 // Specify the static type for the context item:

068 // document-node(element(*,xs:untyped))

069 final T documentType =

metaBridge.documentType(metaBridge.elementType(new SmName<S>(null,
null, nameBridge), metaBridge.getType(SmNativeType.UNTYPED), false));

070 compiler.setFocus(documentType) ;
071
072 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

073

074 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

075

076 // TODO: Extract output configuration.

077 // compiled.configure(sf);

078

079 sf.setIndent(true);

080

081 final StringWriter w = new StringWriter();

082

083 final GxSequenceHandler<A, S, T> handler =
sf.newSerializer(w);

084

085 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer() ;

086

087 transformer.transform(document, pcx, handler);

088

089 @SuppressWarnings("unused")

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 131

090 final String s = w.toString();

091 // System.out.println(s);

092 ¥

093

094 @SuppressWarnings("unused")

095 private void bar(final GxProcessingContext<I, U, N, A, S, T, X>
pcx)

096 {

097 try

098 {

099 final GxTransformBuilder<I, U, N, A, S, T, X> builder =
new XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

100

101 final GxTransform<I, U, N, A, S, T, X> transform =

builder.prepareTransform(new StringReader("<x xsl:version='1.0'
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform'></x>"), new URI(""));

102

103 final GxTransformer<I, U, N, A, S, T, X> transformer =
transform.newTransformer();

104

105 final N document = transformer.transform(null, pcx);
106

107 final GxModel<N, A, S, T> model = pcx.getModel();

108

109 final N element = model.getFirstChild(document);

110

111 final String name = model.getLocalNameAsString(element);
112

113 // System.out.println("XSLT: " + name);

114 }

115 catch (final Throwable e)

116 {

117 e.printStackTrace();

118 }

119 }

120

121 public void skipVariableBinding() throws

ParserConfigurationException, IOException, GxException, ExprException,
URISyntaxException

122 {

123 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

124

125 final Resolver resolver = getResolver();

126

127 final URI xslSystemId = new URI("email.xsl");

128 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);

129

130 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

131

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

132 | Appendix B Developing gXML Applications

132 final GxTransform<I, U, N, A, S, T, X> compiled =
compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

133

134 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer() ;

135

136 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
137 final SmName<S> varName = nameBridge.name(new QName("to"));
138 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();

139 final X value = valueBridge.stringValue("David");

140

141 transformer.bindVariableValue(varName, value);

142 transformer.bindVariableValue (nameBridge.name (new
QName("http://www.example.com", "from")),
valueBridge.stringValue("Julie"));

143

144 final N documentNode = transformer.transform(null, pcx);
145

146 final GxModel<N, A, S, T> model = pcx.getModel();

147

148 assertEquals(NodeKind.DOCUMENT,

model . getNodeKind(documentNode));

149 final N email = model.getFirstChildElement(documentNode);
150 final N to = model.getFirstChildElementByName(email,

nameBridge.symbolize("http://www.example.com"),
nameBridge.symbolize("to"));

151 assertEquals("David", model.getStringValue(to));

152 final N from = model.getFirstChildElementByName(email, null,
nameBridge.symbolize("from"));

153 assertEquals("Julie", model.getStringValue(from));

154 final N again = model.getFirstChildElementByName(email,
nameBridge.symbolize("http://www.example.com"), null);

155 assertEquals("David", model.getStringValue(again));

156 ¥

157

158 public void skipExternalFunctions() throws
ParserConfigurationException, IOException, GxException, ExprException,
URISyntaxException

159 {

160 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

161

162 final Resolver resolver = getResolver();

163

164 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(new URI("exslt.xml"));

165

166 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

167

168 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 133

169

170 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

171

172 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(new URI("exslt.xsl"));

173

174 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

175

176 final String namespaceURI = "http://exslt.org/strings";
177 final ExsltStringsFunctionGroup<I, U, N, A, S, T, X>

functions = new ExsltStringsFunctionGroup<I, U, N, A, S, T,
X>(namespaceURI, pcx);

178 compiler.setFunctionSigns(namespaceURI, functions);
179 compiler.setFunctionImpls(namespaceURI, functions);
180

181 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

182

183 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

184

185 // TODO: Extract configuration.

186 // compiled.configure(sf);

187

188 sf.setIndent(true);

189

190 final StringWriter w = new StringWriter();

191

192 final GxSequenceHandler<A, S, T> handler =
sf.newSerializer(w);

193

194 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();

195

196 transformer.transform(document, pcx, handler);

197

198 // System.out.println(w.toString());

199 }

200

201 public void skipHotel() throws ParserConfigurationException,

TOException, GxException, ExprException, URISyntaxException
202 {

203 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

204

205 final Resolver resolver = getResolver();

206

207 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(new URI("hotel.xml"));

208

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

134 | Appendix B Developing gXML Applications

209 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

210

211 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
212

213 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

214

215 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(new URI("hotel.xsl"));

216

217 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

218

219 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

220

221 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();

222 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
223 final SmName<S> varName = nameBridge.name(new

QName ("MessageData"));

224 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();

225 final X value = valueBridge.node(document) ;

226

227 transformer.bindVariableValue(varName, value);

228

229 final N documentNode = transformer.transform(null, pcx);
230

231 final GxModel<N, A, S, T> model = pcx.getModel();

232

233 assertEquals(NodeKind.DOCUMENT,

model . getNodeKind(documentNode)) ;

234 final N searchHotelRequest =
model.getFirstChildElement (documentNode) ;

235 final N parameters =

model.getFirstChildElementByName (searchHotelRequest,
nameBridge.symbolize("http://xmlns.example.com/1189038295781"),
nameBridge.symbolize("parameters"));

236 final N searchHotel =

model.getFirstChildElementByName (parameters,
nameBridge.symbolize("http://www.Xxyzcorp/procureservice/QueryGDS_Europe
/"), nameBridge.symbolize("searchHotel"));

237 final N country =
model.getFirstChildElementByName(searchHotel,
nameBridge.symbolize("http://www.xyzcorp/procureservice/QueryGDS_Europe
/"), nameBridge.symbolize("country"));

238 assertEquals("USA", model.getStringValue(country));

239 }

240 }

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 135

XQuery

001 package org.gxml.book.xquery;

002

003 import java.io.StringWriter;

004 import java.math.BiglInteger;

005 import java.net.URI;

006

007 import javax.xml.namespace.QName;

008

009 import org.gxml.book.common.SampleApp;

010 import org.gxml.sa.GxAtomBridge;

011 import org.gxml.sa.GxNameBridge;

012 import org.gxml.sa.GxProcessingContext;

013 import org.gxml.sa.GxSequenceHandler;

014 import org.gxml.sa.GxVariantBridge;

015 import org.gxml.xs.SmName;

016

017 import com.tibco.gxml.sa.api.common.lang.GxXQConnection;
018 import com.tibco.gxml.sa.api.common.lang.GxXQDataSource;
019 import com.tibco.gxml.sa.api.common.lang.GxXQExpression;
020 import com.tibco.gxml.sa.api.common.lang.GxXQPreparedExpression;

021 import
com.tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;

022 import
com.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;

023 import com.tibco.gxml.sa.processor.xquery.XQEngine;
024 import com.tibco.gxml.sa.processor.xquery.XQErrorCatcher;

025

026 /**

027 * Introduction to XQuery.
028 */

029 public abstract class XQuerySample<I, U, N extends I, A extends T,
S, T, X> extends SampleApp<I, U, N, A, S, T, X>

030 {

031 public void testExample() throws Exception

032 {

033 // Obtain a new processing context from the application.
034 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

035

036 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);

037

038 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();

039

040 final String expression = "<x>{text{for $i in (1,2,3,4)
return $i * 2}}</x>";

041

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

136 | Appendix B Developing gXML Applications

042 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression) ;

043

044 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

045 sf.setMethod(new QName("xml"));

046 sf.setOmitXmlDeclaration(true);

047 final StringWriter sw = new StringWriter();

048 final GxSequenceHandler<A, S, T> handler =
sf.newSerializer(sw);

049

050 expr.executeQuery(Chandler);

051

052 final String actual = sw.toString();

053 assertEquals(expression, "<x>2 4 6 8</x>", actual);
054 }

055

056 public void testGettingStarted() throws Exception

057 {

058 // Obtain a new processing context from the application.
059 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

060

061 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);

062

063 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();

064

065 final GxXQExpression<I, U, N, A, S, T, X> expr =
conn.createExpression();

066

067 final String es = "for $n in fn:doc('catalog.xml')//item
return fn:data($n/name)";

068

069 final URI systemId = new URI("catalog.xml");

070

071 expr.setBaseURI(systemId);

072

073 @SuppressWarnings("unused")

074 final X value = expr.executeQuery(es);

075 }

076

077 public void testHelloWorld() throws Exception

078 {

079 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
this.newProcessingContext();

080

081 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);

082

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 137

083 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();

084

085 conn.setScriptingMode(true);

086

087 final String expression = "declare variable $x external;
concat('Hello, ',$x, '"!')";

088

089 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression) ;

090

091 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

092 sf.setOmitXmlDeclaration(true);

093 sf.setIndent(false);

094 sf.setMethod(new QName("xml"));

095 final StringWriter sw = new StringWriter();

096 final GxSequenceHandler<A, S, T> handler =
sf.newSerializer(sw);

097

098 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
099 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();

100

101 final SmName<S> varName = new
SmName<S>(nameBridge.symbolize("x"), nameBridge);

102 final X value = valueBridge.stringValue("World");

103

104 expr.bindVariableValue(varName, value);

105

106 expr.executeQuery(Chandler);

107

108 String actual = sw.toString();

109 assertEquals(expression, "Hello, World!", actual);

110 }

111

112 public void testMergeTextNodes() throws Exception

113 {

114 // Obtain a new processing context from the application.
115 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

116

117 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);

118

119 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();

120

121 // final String expression = "";

122 final String expression = "count((element elem {1, 'string',
1,2e3})/text())";

123

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

138 | Appendix B Developing gXML Applications

124 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression) ;

125

126 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

127 sf.setMethod(new QName("xml"));

128 sf.setOmitXmlDeclaration(true);

129 final StringWriter sw = new StringWriter();

130 final GxSequenceHandler<A, S, T> handler =
sf.newSerializer(sw);

131

132 expr.executeQuery(Chandler);

133

134 final String actual = sw.toString();

135 assertEquals(expression, "1", actual);

136 }

137

138 public void testProblem() throws Exception

139 {

140 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
this.newProcessingContext();

141

142 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);

143

144 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();

145

146 final XQErrorCatcher messages = new XQErrorCatcher();
147

148 conn.setErrorHandler(messages) ;

149 conn.setCompatibleMode(false);

150 conn.setScriptingMode(true);

151

152 final String expression =

"(xs:untypedAtomic('1l'),xs:untypedAtomic('2')) =
(xs:untypedAtomic('2.0'),2.0)";

153

154 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression) ;

155

156 final X value = expr.executeQuery();

157

158 final GxVariantBridge<I, N, A, X> variantBridge =
pcx.getVariantBridge();

159 switch (variantBridge.getNature(value))

160 {

161 case ITEMS:

162 {

163 @SuppressWarnings("unused")

164 final Iterable<I> items =

variantBridge.getItemSet(value);

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

165
166
167
168
169
170
171
172
173

gXML Recipes | 139

// System.out.println(items);
¥
break;
case ATOM:
{
@SuppressWarnings("unused")
final A atom = variantBridge.getAtom(value);
@SuppressWarnings("unused")
final GxAtomBridge<A, S> atomBridge =

pcx.getAtomBridge();

174
175
176
177
178
179
180
181
182
183
184
185
186
187

// System.out.println(atomBridge.getCl4NForm(atom)) ;
}
break;
case STRING:
{
@SuppressWarnings("unused")
final String strval = variantBridge.getString(value);
// System.out.println(strval);
}
break;
case INTEGER:
{
@SuppressWarnings("unused")
final BigInteger integer =

variantBridge.getInteger(value);

188
189
190
191
192
193

// System.out.println(integer);
¥
break;
default:
{

throw new

AssertionError(variantBridge.getNature(value));

194
195
196
197
198
199
200

3

public void testTyping() throws Exception

{

final GxProcessingContext<I, U, N, A, S, T, X> pcx =

this.newProcessingContext();

201
202

final GxXQDataSource<I, U, N, A, S, T, X> ds = new

XQEngine<I, U, N, A, S, T, X>(pcx);

203
204

final GxXQConnection<I, U, N, A, S, T, X> conn =

ds.getConnection();

205
206
207
208
209

conn.setScriptingMode(true);

final XQErrorCatcher messages = new XQErrorCatcher();

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

140 | Appendix B Developing gXML Applications

210 conn.setErrorHandler(messages) ;

211

212 final String expression = "declare variable $x external;
contains(string(number($x)), 'NaN')";

213

214 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression) ;

215

216 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

217 sf.setOmitXmlDeclaration(true);

218 sf.setIndent(false);

219 sf.setMethod(new QName("xml"));

220 final StringWriter sw = new StringWriter();

221 final GxSequenceHandler<A, S, T> handler =
sf.newSerializer(sw);

222

223 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
224 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();

225

226 final SmName<S> varName = new
SmName<S>(nameBridge.symbolize("x"), nameBridge);

227 final X value = valueBridge.doubleValue(5.0);

228

229 expr.bindVariableValue(varName, value);

230

231 expr.executeQuery(Chandler);

232

233 String actual = sw.toString();

234 assertEquals(expression, "false", actual);

235 ¥

236 }

Validation

001 package org.gxml.book.validation;

002

003 import java.io.InputStream;

004 import java.net.URI;

005 import java.util.LinkedList;

006 import java.util.List;

007

008 import org.gxml.book.common.SampleApp;
009 import org.gxml.sa.GxFragmentBuilder;
010 import org.gxml.sa.GxModel;

011 import org.gxml.sa.GxProcessingContext;
012 import org.gxml.xdm.Resolved;

013 import org.gxml.xdm.Resolver;

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 141

014 import org.gxml.xs.SmException;

015 import org.gxml.xs.SmExceptionCatcher;

016 import org.gxml.xs.SmExceptionHandler;

017 import org.gxml.xs.SmMetaloadArgs;

018

019 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
020 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;

021 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;

022 import
com.tibco.gxml.sa.common.helpers.SmAtomBridgeOnGxAtomBridgeAdapter;

023 import com.tibco.gxml.sa.processor.validation.GxContentValidator;
024 import com.tibco.gxml.sa.processor.validation.GxValidatorCache;

025 import
com.tibco.gxml.sa.processor.validation.GxValidatorCacheFactory;

026 import
com.tibco.gxml.sa.processor.validation.ValidatorCacheFactory;

027 import com.tibco.gxml.xs.W3cXmlSchemaParser;
028

029 public abstract class ValidationSample<I, U, N extends I, A extends
I, S, T, X> extends SampleApp<I, U, N, A, S, T, X>

030 {

031 public void testByteStreamValidation() throws Exception
032 {

033 // Load a top-level schema into the processing context.
034 final List<Resolved<InputStream>> resources = new
LinkedList<Resolved<InputStream>>();

035 resources.add(getResolver().resolveInputStream(new
URI("PurchaseOrder.xsd")));

036

037 final SmExceptionCatcher errors = new SmExceptionCatcher();
038 final SmMetaloadArgs args = new SmMetaloadArgs();

039

040 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

041

042 final W3cXmlSchemaParser<A, S> parser = new

W3cXmlSchemaParser<A, S>(new SmAtomBridgeOnGxAtomBridgeAdapter<A,
S>(pcx.getAtomBridge()));

043

044 for (final Resolved<InputStream> resource : resources)
045 {

046 pcx.register(parser.parse(resource.getLocation(),
resource.getResource(), resource.getSystemId(), errors, args, pPcCcx));
047 T

048

049 pcx.lock();

050

051 // Create a validator...

052 final GxValidatorCacheFactory<A, S, T> vcf = new
ValidatorCacheFactory<I, U, N, A, S, T, X>(pcx);

053 final GxValidatorCache<A, S, T> vc =

vcf.newValidatorCache();

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

142 | Appendix B Developing gXML Applications

054 final GxContentValidator<A, S, T> validator =
vc.newContentValidator();

055

056 // Set the downstream event handler which contains
annotations and typed content.

057 // validator.setGxContentHandler(/* ...*/null);

058 validator.setExceptionHandler(errors);

059

060 // The document node that we wish to validate.

061 final Resolved<InputStream> xmlInput =
getResolver() .resolvelInputStream(new URI("PurchaseOrder.xml"));
062

063 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

064

065 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();

066

067 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

068

069 // Stream the document into the validator.

070 final GxModel<N, A, S, T> model = pcx.getModel();
071

072 model.stream(document, true, true, validator);

073

074 if (errors.size() > 0)

075 {

076 // You've got errors.'

077 }

078 }

079

080 public void testTreeValidation() throws Exception

081 {

082 final Resolver resolver = getResolver();

083

084 // Load a top-level schema into the processing context.
085 final List<Resolved<InputStream>> resources = new
LinkedList<Resolved<InputStream>>();

086 resources.add(getResolver().resolveInputStream(new
URI("PurchaseOrder.xsd")));

087

088 final SmExceptionCatcher errors = new SmExceptionCatcher();
089 final SmMetaloadArgs args = new SmMetaLoadArgs();
090

091 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

092 final W3cXmlSchemaParser<A, S> parser = new

W3cXmlSchemaParser<A, S>(new SmAtomBridgeOnGxAtomBridgeAdapter<A,
S>(pcx.getAtomBridge()));

093 for (final Resolved<InputStream> resource : resources)
094 {

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

gXML Recipes | 143

095 pcx.register(parser.parse(resource.getLocation(),
resource.getResource(), resource.getSystemId(), errors, args, pcx));

096 }

097 pcx.lock();

098 // The document node that we wish to validate.

099 @SuppressWarnings("unused")

100 final URI xmlLocation = new URI("PurchaseOrder.xml");
101 final URI xmlSystemId = new URI("PurchaseOrder.xml");
102 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId);

103

104 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

105

106 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();

107

108 final N documentIn = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

109

110 @SuppressWarnings("unused")

111 final N documentOut = validate(documentIn, errors, pcX);
112

113 if (errors.size() > 0)

114 {

115 // You've got errors.'

116 for (@SuppressWarnings("unused")

117 final SmException error : errors)

118 {

119 // System.out.println(error.getlLocalizedMessage());
120 ¥

121 }

122 }

123

124 VA

125 * This static function illustrates a helper function for
validating a document tree.

126 * Note that we assume that the processing context is already
loaded with meta-data.

127 *

128 * @param node

129 * The input document.

130 * @param errors

131 * The error handler.

132 * @param pcx

133 * The processing context.

134 */

135 public static <I, U, N extends I, A extends I, S, T, X> N

validate(final N node, final SmExceptionHandler errors, final
GxProcessingContext<I, U, N, A, S, T, X> pcx)

136 {

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

144 | Appendix B Developing gXML Applications

137 final GxValidatorCacheFactory<A, S, T> vcf = new
ValidatorCacheFactory<I, U, N, A, S, T, X>(pcx);

138

139 // We already have a tree as input so we'll use the content
validator'

140 // and stream the document in as a bunch of events (a bit
like SAX, but not lexical).

141 final GxValidatorCache<A, S, T> vc =
vcf.newValidatorCache();

142

143 final GxContentValidator<A, S, T> validator =
vc.newContentValidator();

144

145 validator.setExceptionHandler(errors);

146

147 final GxModel<N, A, S, T> model = pcx.getModel();

148

149 // We want to produce a node so we'll need a fragment builder
at the output.'

150 final GxFragmentBuilder<N, A, S, T> builder =
pcx.newFragmentBuilder();

151

152 // Connect the pieces together so that the validation output
builds a tree.

153 validator.setGxContentHandler(builder) ;

154

155 // Make it so!

156 model.stream(node, true, true, validator);

157

158 // Practice safe coding: We don't know what might happen if
there are errors.'

159 final List<? extends N> nodes = builder.getNodes();

160 if (nodes.size() > 0)

161 {

162 return nodes.get(0);

163 }

164 else

165 {

166 return null;

167 }

168 }

169

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Index

Symbols

@Property Java Annotation Optional Parameters 33

A

Active Enterprise Palette 90

ActivityTypes 90

Adpvice Configuration Properties 12, 12

Advice Execution Model 17,17

Advice Implementation Properties 32, 32

Advice Implementations 26, 26

Adpvice Ordering 14, 14

Advice Scope Mode 35

Adpvices, Advice Instances and Advice Implementa-
tion Instances 11, 11

API Functionality 71

API's and New Interfaces 71

Application Scope Mode 36

argument, parameter, and option 89

Aspect Oriented Programming (AOP) Terminology 3,
3

Asynchronous Advice Example 54, 54

BusinessWorks Active Aspects Plugin Resources 8
BWAA Palette 73

Cc

Comparing Checkpointing and Hiberante 59
Comparing Checkpointing and Hibernate 59

| 145

Configuration 74

Connecting with TIBCO Resources xiii

Constructing a Data Model Tree
Programmatically 108

customer support xiii

D

dataAccess 28

Defining a Hibernate Advice Implementation 60, 60
Deploying Packaged Aspects in BW Engine 25, 25
Developing gXML Applications 99

E

Example of Hibernate Advice Implementation 61, 61

Example of Resuming a Job 63, 63

Examples of Aspect Manifest File 23

Examples of Point Cuts Defined Using Query
Language 49, 49

Execution Model (Successful Execution) 53, 53

Execution Model (timeout) 53, 53

Execution of a Hibernate Advice 62, 62

F

Features 58, 58
File Palette 90
FTP Palette 91

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

146 | Index

G L

General Palette 91 Limitations 70
gXML Recipes 106

M
H

Mail Palette 94
Hibernate Resume with Asynchronous Advices 66 Manual Work Palette 96
hibernatesJobs 29 Modifying the Hibernated Data 66, 66
How to Access All TIBCO Documentation xiii Mutation 122

How to Contact TIBCO Support xiii
How to Join TIBCOmmunity xiii
HTTP Palette 93
N

Navigation 119
| NoTitle 97, 97, 97

Implementing GxApplication 99
Implementing GxCatalog 102

Implementing GxResolver 102 (9]

Injecting DOM 104

Input 74 Object Sharing Between Java Activities and Advice
Introduction 2,2,42,42,52,52,76 Implementation 67

Other TIBCO Product Documentation ix
Other TIBCO Products x

Output 74

J Overview 1,5, 5, 68, 98

Java Annotations for Advertising Advice Implementa-

tion Metadata 26, 26

Java Palette 93 P

JDBC Palette 93

JMS Palette 93 Packaging and Deployment of Advice

Implementations 39, 39

Packaging and Deployment of Aspects 22, 22
Parentheses Support 47

K Parse Palette 94
Parsing 106

kind 45, 46 Parsing a Character Stream and a Byte Stream 106

Process Aspect 8,8
Process Join Point 7, 7
Properties Defined for activity() primitive 44

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

Properties Defined for engine() primitive 47
Properties Defined for process() primitive 46
Properties Defined for project() primitive 46

Q

Query Language Primitives 43

R

Related Documentation ix

required 33

Restrictions Imposed by TIBCO ActiveMatrix Busi-
nessWorks ActiveAspects Plug-in for Advice
implementation Properties 34

Resume 74

Resuming the Hibernated Job 62, 62

RMI Palette 94

Roles and Responsibilities 6

RV Palette 94

S

sample tables 90

scope 27

Scopes 35, 35
Serialization 124
Service Palette 95
SOAP Palette 95
Summary 55, 55, 70
support, contacting xiii
Supported 69,70
Supported Operators 48

T

tables 90

Index | 147

targetFilter 31

targetKind 30

TCP Palette 95

technical support xiii

terminology conventions 89

The @Advicelmpl Java Annotation 26, 26

The @Property Java Annotation 32, 32

Threading Model

Asynchronous Advice Implementations 54, 54
Asynchronous Advice Implementations
(Timeout) 55, 55

TIBCO ActiveMatrix BusinessWorks ix

TIBCO ActiveMatrix BusinessWorks ActiveAspects
Plug-in 8

TIBCO ActiveMatrix BusinessWorks ActiveAspects
Plug-in Documentation ix

TIBCO_HOME xi

timeDelay 60

Transaction Palette 95

type 44

Typographical Conventions xi

U

Unsupported 69, 70

Use of Escape Character 47

User Scenarios 69

Using a Database for Hibernation 65, 65

\'

Validating 117
Validation 140

w

Wildcard Support 47
Working of Asynchronous Activities in BW Engine 53
Working of Asynchronous Advices in BW Engine 53

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’s Guide

148 | Index

X

XML Activities Palette 96
XML Document Access 37, 37
XPath 125

XQuery 135

XSLT 128

TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in User’'s Guide

	TIBCO ActiveMatrix BusinessWorks™ ActiveAspects Plug-in
	Contents
	Preface
	Changes from the Previous Release of this Guide
	Related Documentation
	TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in Documentation
	Other TIBCO Product Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Overview
	Introduction
	Aspect Oriented Programming (AOP) Terminology
	Overview
	Roles and Responsibilities
	Process Join Point

	TIBCO ActiveMatrix BusinessWorks ActiveAspects Plug-in
	Process Aspect

	Advices, Advice Instances and Advice Implementation Instances
	Advice Configuration Properties
	Advice Ordering
	Packaging and Deployment of Aspects
	Deploying Packaged Aspects in ActiveMatrix BusinessWorks Engine

	Advice Implementations
	Java Annotations for Advertising Advice Implementation Metadata
	Advice Implementation Properties
	Scopes
	XML Document Access
	Packaging and Deployment of Advice Implementations

	Chapter 2 Point Cut Query Language
	Introduction
	Query Language Primitives
	Examples of Point Cuts Defined Using Query Language

	Chapter 3 Asynchronous Advice Implementations
	Introduction
	Asynchronous Advices in ActiveMatrix BusinessWorks Engine
	Execution Model (Successful Execution)
	Execution Model (timeout)
	Threading Model: Asynchronous Advice Implementations
	Threading Model: Asynchronous Advice Implementations (Timeout)

	Chapter 4 Hibernate Resume
	Features of Hibernate Resume
	Comparison between Checkpointing and Hibernate
	Defining a Hibernate Advice Implementation
	Example of Hibernate Advice Implementation
	Execution of a Hibernate Advice
	Resuming the Hibernated Job
	Example of Resuming a Job

	Using a Database for Hibernation
	Modifying the Hibernated Data

	Chapter 5 Object Sharing Between Java Activities and Advice Implementation
	Overview
	User Scenarios
	API's and New Interfaces
	Use Cases

	Chapter 6 BWAA Palette
	Resume
	Configuration
	Input
	Output

	Chapter 7 Monitoring and Management
	Introduction
	getAdviceInstances
	getAdviceInstanceMetrics
	getRunningAdviceInstancesCount
	getRunningAdviceInstances

	Appendix A ActivityTypes
	ActivityTypes

	Appendix B Developing gXML Applications
	Overview
	Developing gXML Applications
	gXML Recipes
	Parsing
	Constructing a Data Model Tree Programmatically
	Validating
	Navigation
	Mutation
	Serialization
	XPath
	XSLT
	XQuery
	Validation

	Index

