TIBCO ActiveMatrix®

C++ Component Development

Software Release 3.2.0
August 2012

WiTIBCO

The Power of Now?®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR
BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR ANY
OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT,
OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT
WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS
DUPLICATED IN LICENSE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP
END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE
HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and treaties. No part
of this document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIB, TIBCO, TIBCO ActiveMatrix, TIBCO Adapter, TIBCO Administrator, TIBCO AutoMeditate, TIBCO Enterprise
Message Service, ActiveMatrix, AutoMediate, Predictive Business, Information Bus, The Power of Now, and TIBCO
Rendezvous are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other
countries.

EJB, Java EE, J2EE, and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their respective owners and
are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT
ALL OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED
AT THE SAME TIME. PLEASE SEE THE README FILE FOR THE AVAILABILITY OF THIS
SOFTWARE VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 2008-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

Contents
L5 L ¢ 1= vii
Preface i e e e ix
Changes from the Previous Release of this Guide e X
Related Documentation Xi
TIBCO ActiveMatrix Implementation Type for C++ Documentation Xi
Other TIBCO Product Documentation e Xi
Typographical Conventions e Xii
Connecting with TIBCO RESOUICES oottt e e XV
How to Join TIBCOMMUNILYo e e e e e e e XV
How to Access All TIBCO Documentation e e XV
How to Contact TIBCO SUPPOIto e e e XV
Chapter 1 OVerVieW i ettt e ettt aa e eens 1
INtrOdUCHION . . o 2
Approaches to Component Development. 2
High-level Architecture. e 3
Chapter 2 Development Tutorials.ttt i e ettt s eaanneennnnn 4
Top-DoWn AppProach 5
Top-Down Approach Samples 6
Bottom-Up Approach 20
Bottom-Up Approach Samples 21
Chapter 3 CH++ CoOmMPONeNtSo ittt ittt et ettt s e aaa e e nnnnneeeennnn 23
Creating @ C++ COMPONENt. e e e e e 24
Configuring @ C++ COMPONENTot 26
Updating @ C++ COMPONENto e e e e e e 27
Updating a C++ Implementation 29
Using Services in @ C++ COMPONENL.ottt e e e 30
AddiNg @ SEIVICE . . . oot 30
RemMOVING @ SEIVICE oo 30
Using References in @ C++ COMPONENt e 32
Adding a Reference 32

TIBCO ActiveMatrix C++ Component Development

iv | Contents

Removing a Reference 33
Using Properties in @ C++ CompPonentt e e e 34
Adding @ Property e 34
RemoVvINg @ Property 35
C++ Component Reference 36
Specifying the Application Library Name and Library Path. 37
Using Environment Variables 39
Packaging C++ COMPONENTSot e e e e 41
Chapter 4 C++ Component Implementations. i iinnnnnnn 42
Opening a C++ Component Implementation. 43
Generating a C++ Component Implementation 44
Abstract Code Generation 45
Code Generation for Service, Reference, and Property i 46
Generate C++ Component Implementation Reference. 49
Completing a C++ Component Implementation 50
Handling Life Cycle EVents 50
Invoking a Reference Operation e 50
ACCESSING @ PropertY o 51
LOggING - o ottt 51
Building a C++ Component Implementation 53
C++ Component Implementation Options 53
Building a C++ Component Implementation in Microsoft Visual Studio. 53
Building a C++ Component Implementation Using GNUMake 54
Building a C++ Component Implementation Using Ant 55
Building a C++ Component Implementation UsingMake 55
Set Preferred Build Artifacts and Build Method 55
Generate C++ Artifacts 56
Reusing a C++ Component Implementation. 57
Debugging a C++ Component Implementation. 58
Debugging in Microsoft Visual Studio e 58
Debugging in UNIX Environment. 59
Debugging Init Life Cycle Method of C++ Component. e 59
Accessing Context Parameters. 60
Accessing Basic Context Parameters 61
Accessing Message Context Properties e 63
Accessing Bag Context Properties 65
Setting a Bag Context Parameterina Response 66
Customization of SOAPEXCEPtION.o i 67
SOAPEXCeption Schema. 67
Default SOAPException Received by SOAP Client. e 68

TIBCO ActiveMatrix C++ Component Development

Contents | v

Customized SOAPEXxception Received by SOAP Client e 69
Referencing External Libraries. 70
/=T o] 1 T S 71

WSDL 10 CH+ Mapping. . . .« oottt it e e e e 71

CH+ 10 WSDL Mapping. . .« . oottt e e e e e 71

Constraints on Header Files 72

Constraints on Data TypesSo e 73

XsA:iINteger USage 74
Troubleshootingo 76
Chapter 5 Deployand Run C++ Componentso ittt rnnnnnneeennnns 77
Deploying DAA Containing C++ COMPONENESottt et e e e e e e 78
Running DAA Containing C++ COMPONENTSo e e 79

Running the Application Using Rapid Application Development (RAD) Feature 79

Process Naming Conventions e 79

Specifying Profilers for Native Processes. 80

Specifying Socket Range 80

Specifying Custom Temporary Location e 80

Changing C++ Threadpool Configuration. e 80

Specifying At Least ONnce POlICY.o o 81
3T 1= 83

TIBCO ActiveMatrix C++ Component Development

vi | Contents

TIBCO ActiveMatrix C++ Component Development

Tables | vii

Tables

Table 1 General Typographical Conventions Xii
Table 2 Syntax Typographical Conventions e Xiii
Table 3 C++ Integer Type to XSD Type Mapping oottt e e e e 71

TIBCO ActiveMatrix C++ Component Development

viii | Tables

TIBCO ActiveMatrix C++ Component Development

Topics

ix

Preface

TIBCO ActiveMatrix® is a scalable and extensible platform for developing, deploying,
and managing applications that conform to a service-oriented architecture. TIBCO
ActiveMatrix Implementation Type for C++ conforms to the SCA specifications and
allows you to create C++ applications based on these specifications.

* Changes from the Previous Release of this Guide, page x
* Related Documentation, page xi
* Typographical Conventions, page xii

* Connecting with TIBCO Resources, page xv

TIBCO ActiveMatrix C++ Component Development

X | Changes from the Previous Release of this Guide

Changes from the Previous Release of this Guide

This section itemizes the major changes from the previous release of this guide.

Third Party Documentation

The Third Party Documentation section has been removed from the Guide.

TIBCO ActiveMatrix C++ Component Development

Preface | xi

Related Documentation

This section lists documentation resources you may find useful.

TIBCO ActiveMatrix Implementation Type for C++ Documentation

The following documents form the TIBCO ActiveMatrix Implementation Type for C++
documentation set:

e TIBCO ActiveMatrix C++ Component Development: Read the component
development to learn how to develop C++ components.

e TIBCO ActiveMatrix Implementation Type for C++ Installation: Read the installation
guide to learn how to install the product.

e TIBCO ActiveMatrix Implementation Type for C++ Release Notes: Read the release
notes for a list of new features. This manual also contains lists of known issues for this
release.

Other TIBCO Product Documentation
You may find it useful to read the documentation for the following TIBCO products:

« TIBCO ActiveMatrix® Service Bus
« TIBCO ActiveMatrix® Service Grid

TIBCO ActiveMatrix C++ Component Development

xii | Typographical Conventions

Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use
TIBCO_HOME Many TIBCO products must be installed within the same home directory. This
ENV NAME directory is referenced in documentation as 7/BCO_HOME. The default value of

TIBCO_HOME depends on the operating system. For example, on Windows

systems, the default value is C:\tibco.

Other TIBCO products are installed into an installation environment. Incompatible
products and multiple instances of the same product are installed into different
installation environments. An environment home directory is referenced in
documentation as ENV_HOME. The default value of ENV_HOME depends on the
operating system. For example, on Windows systems the default value is C:\tibco.

code font Code font identifies commands, code examples, filenames, pathnames, and output
displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code font Bold code font is used in the following ways:

In procedures, to indicate what a user types. For example: Type admin.

In large code samples, to indicate the parts of the sample that are of particular
interest.

In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:

MyCommand [enable | disable]

italic font Italic font is used in the following ways:

To indicate a document title. For example: See T/IBCO Business Works
Concepts.

To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

To indicate a variable in a command or code syntax that you must replace. For
example: MyCommand pathname

TIBCO ActiveMatrix C++ Component Development

Preface I xiii

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Key combinations Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

y The tip icon indicates an idea that could be useful, for example, a way to apply the
‘!’ information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 2 Syntax Typographical Conventions
Convention Use
[1 An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

A logical ’OR’ that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand paral | param2 | param3

TIBCO ActiveMatrix C++ Component Development

xiv | Typographical Conventions

Table 2 Syntax Typographical Conventions

Convention Use

0 A logical group of items in a command. Other syntax notations may appear within each
logical group.

For example, the following command requires two parameters, which can be either the
pair paraml and param2, OT the pair param3 and param4.

MyCommand {param] param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter can be
either param! or param2 and the second can be either param3 or param4:

MyCommand {paraml | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters. The first
parameter must be param1. You can optionally include param2 as the second parameter. And
the last parameter is either param3 or param4.

MyCommand param|1 [param2] {param3 | param4}

TIBCO ActiveMatrix C++ Component Development

Preface | xv

Connecting with TIBCO Resources

How to Join TIBCOmmunity

TIBCOmmunity is an online destination for TIBCO customers, partners, and resident
experts, a place to share and access the collective experience of the TIBCO community.
TIBCOmmunity offers forums, blogs, and access to a variety of resources. To register, go
to http://www.tibcommunity.com.

How to Access All TIBCO Documentation

After you join TIBCOmmunity, you can access the documentation for all supported
product versions here:

http://docs.tibco.com

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please contact
TIBCO Support as follows.

* For an overview of TIBCO Support, and information about getting started with
TIBCO Support, visit this site:

http://www.tibco.com/services/support
* If you already have a valid maintenance or support contract, visit this site:
https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user name, you
can request one.

TIBCO ActiveMatrix C++ Component Development

http://www.tibcommunity.com
http://docs.tibco.com
http://www.tibco.com/services/support
https://support.tibco.com

xvi | Connecting with TIBCO Resources

TIBCO ActiveMatrix C++ Component Development

Chapter 1

Topics

Overview

This chapter provides an overview of TIBCO ActiveMatrix Implementation Type for
C++, and its high-level architecture.

* Introduction, page 2

* High-level Architecture, page 3

TIBCO ActiveMatrix C++ Component Development

1

2 | Chapter 1 Overview

Introduction

TIBCO ActiveMatrix Implementation Type for C++ conforms to the SCA specifications
and allows the C++ code to be SCA-enabled.

The product provides two features: designtime and runtime that allow you to build C++
components from scratch. The designtime feature provides functionality to develop C++
components in TIBCO Business Studio. The runtime feature provides an ActiveMatrix
container to deploy and run services developed in C++ using TIBCO ActiveMatrix
Administrator.

Approaches to Component Development

TIBCO ActiveMatrix Implementation Type for C++ supports two approaches for
developing C++ components: WSDL-first (top-down) and code-first (bottom-up).

In top-down (WSDL-first) development, you start with WSDL files that define the
component’s services and references. When you add either a service, reference, or a
property to the component, the header files and an implementation skeleton file containing
fields and methods representing the service, reference, or property and stub code are
generated.

In bottom-up (code-first) development, you start with a C++ header file that defines the
component’s service and a class file that implements the service. When you drag and drop
the header file on to the canvas, a C++ component with a service defined by the header
file, a WSDL file representing the service and stub code is generated.

% ‘ In bottom-up development, you cannot add a reference or service to the component.

TIBCO ActiveMatrix C++ Component Development

High-level Architecture

High-level Architecture

The TIBCO ActiveMatrix Implementation Type for C++ is a C++ container running in
TIBCO ActiveMatrix. It is different from other TIBCO ActiveMatrix Java-based
containers. It has two parts: Java side and native process.

The Java side works as an adapter for the native process. It also manages the lifecycle of
the component and native process.

The native process hosts the service implementation and can also consume other
ActiveMatrix services. The native process is further divided into two sub parts:

e C++ container libraries: C++ container libraries contain the core logic for hosting the
user library.

» User library: User library is a platform-dependent library created from user code and
generated databinding code.

All communication between the Java side and the native process happens over TCP
sockets.

When an application containing C++ components is deployed and started, C++ container
in the node launches a separate operating system process per C++ component. This
process loads the corresponding C++ implementation shared library. For more details on
process name, see Process Naming Conventions, page 77.

I C++ Architecture
| —
y) = 7 !D
Service Ao S Refgren...
- Cpp
e g N
~
-~ AN
. N
- ~
- ~
e S
- N
~ ~
— | —
AMX Message N N‘? AMX Message
> -
‘ Process Launcher PC C++ Java Side
4| ? AMX Node

User Library Reference
[Loading J [Da‘as‘"‘j‘"gJ [mvocanm]

User Implementation C++ Native Process

ibrary
(User Code + Databinding
code)

OS Process

TIBCO ActiveMatrix C++ Component Development

3

4 |Chapter2 Development Tutorials

Chapter2 Development Tutorials

This chapter describes the samples distributed with TIBCO ActiveMatrix Implementation
Type for C++. The samples are located in the 7IBCO_HOME\amx_it_cpp\3.2\samples\ directory
and the compiled libraries are located in TIBCO _HOME\amx_it_cpp\3.2\samples\libraries.

Topics

* Top-Down Approach, page 5
— Hello World Application, page 6
— Purchase Order Application, page 7
— BasicContext, page 8
— BagContext, page 9
— MessageContext, page 10
— Environment, page 12
— Exception, page 14
— Fault, page 16
— No Message Loss, page 17
* Bottom-Up Approach, page 19
— Purchase Order Application, page 20

TIBCO ActiveMatrix C++ Component Development

Top-Down Approach | 5

Top-Down Approach

To develop a C++ component in the top-down approach:

TIBCO Business 1. Create an ActiveMatrix SOA project selecting the SOA Project from WSDL project
Studio type.

2. In the Component Details page of the wizard, select Cpp for the component
implementation type.

3. Specify code generation details as described in Generate C++ Component
Implementation Reference on page 48 and click Finish.

An ActiveMatrix SOA and C++ implementation projects are created. This project
contains the C++ component, the services and references defined in the WSDL, and
the binding selected during project creation.

C++ Design Time generates header files, abstract class, and implementation skeleton
classes according to the mapping described in Mapping on page 70 and stub code used
by the ActiveMatrix C++ container to invoke the classes and puts these in a separate

C++ project created during the process.

It also configures the C++ component implementation details such as Configuration
project, Library Name and Library Path.

4. At this point, optionally, add more services, references, and/or properties to the
component.

5. Update the C++ component as described in Updating a C++ Component on page 26.

C++ development 6. Double-click the C++ component, or select Open Implementation in the right-click
environment menu to open the C++ implementation project in your preferred development
environment (IDE). Set the IDE on Microsoft Windows platform as described in Set
Preferred Build Artifacts and Build Method on page 54.

7. Complete the C++ component implementation by adding user code to the
implementation.

8. Before building the project, ensure that the environment variable
TIBCOAMX_CPP_CONTAINER_HOME is set to the installation location of the C++
container.

TIBCOAMX_CPP_CONTAINER HOME=TIBCO_HOME\amx it cpp\3.2

Restart TIBCO Business Studio if you set the value of the environment variable when
TIBCO Business Studio is running.

&

9. On Windows, in Visual Studio, select Release solution configuration and build a C++
library.

TIBCO ActiveMatrix C++ Component Development

6 | Chapter 2 Development Tutorials

The platform specific library files are created under the C++ implementation
project\Release folder.

Top-Down Approach Samples

Hello World Application

The Hello World C++ application exposes a service that returns a greeting when it
receives a user name. The Hello World SOAP client sends requests to Hello World SOAP
service, which forwards them to the Hello World C++ component. When the Hello World
component receives the request, it constructs the response string and returns it to Hello
World SOAP service, which then forwards the response to the Hello World SOAP client.

Hello Warld
Component

Hello World
SOAF Service

W

Hello, Jans

e
Hello Warld
S0AP Client

The hello world sample files include an ActiveMatrix composite containing a C++
component and SOAP service, a Distributed Application Archive (DAA) for the
composite application, Eclipse CDT and Visual Studio projects containing the C++
implementation source. The hello world sample is available in the directory
TIBCO_HOME\amx_it_cpp\3.2\samples\cpp-service-helloWorld\.

The Hello World Application is also described in the cheat sheets provided with the
designtime. To access the cheat sheets:

1. Start TIBCO Business Studio.
2. Select Help > Cheat Sheets....
3. Expand the TIBCO SOA Development node and select C++.

TIBCO ActiveMatrix C++ Component Development

Top-Down Approach | 7

Purchase Order Application

[Project Explorer 5%

=E =%
1= 45 composite_purchaseorder_cpp
I Includes
src
21 build i

P
composite. purchassorder soa
1 [t Service Descriptors

& Compositss

* eployment ArtiFacts
- E2l Resource Templates

<

B% outline 52

B i~ - O- Q-

The Purchase Order sample includes an ActiveMatrix composite containing Java and C++
components, a SOAP service, a Distributed Application Archive, and Visual Studio
projects containing the C++ implementation source.

1 composite_purchaseorder_cpp_wes.wepro)

=@ composite.purchaseorder. s0a. composit
= I§ composite.purchaseorder.sos

{3 Deployment Server

= G
¥l ®|B I | A~ B g —- Bpi- o8- Z2 - == [100% > W [
=S e purchiassard — =0
composite purchaseorder.soa =
» 5 Component
= Reference
Purcahse.
. = Service
= n o Wire
25 A e [5] Property
G —=
Purchaseordercpp PurchaseOrderlava A E SompoipttiTypes e
G e
4 Mediation
g Composite
= Java
& webApp
 Spring
& |
= Properties ©2 - [20 Problems | #3 Data Source Explerer | & Console B T =0
- i Composite
= 0| General Mame: [composite.purchaseorder.so2)
— i I
u [Propertiss wersion! 1.0.0.qualifier
7 || | Mamespace: | http:fwin.example.com/composite. purchaseorder.soa |
References Description: |
Policies |
Rulers & Grid —
Appearance » validation Report

The sample is available at TIBCO_HOME\amx_it_cpp\3.2\samples\cpp-reference)\.

To run the purchase order service, follow the procedures whose details are available in
TIBCO ActiveMatrix Administration:

1. Upload the DAA.
2. Create and install the HTTP Connector resource instance.

3. In TIBCO ActiveMatrix Administrator enter the composite property for library path.
The library path must point to the location of the library on the file system (or
machine) to which the deployed assembly on the node is pointing.

4. Deploy and start the Process Order service DAA.

5. Open the project in TIBCO Business Studio. Right-click the PurchaseOrder_gen.wsdl from
the Service Descriptors folder and select Web Services > Test with Web Services
Explorer.

6. Inthe Web Services Explorer Navigator view, select the SOAP binding
soap.bindingBindingl. Click Operation under the WSDL Binding Details > Operations.

7. Enter the parameters of the WSDL operation and click Go to invoke the Purchase
Order service.

TIBCO ActiveMatrix C++ Component Development

8

Chapter 2 Development Tutorials

BasicContext

The Basic Context sample shows how basic context variables (boolean, integer, long) can
be configured, accessed, and propagated to reference in C++. The BasicContext sample
files include an ActiveMatrix composite containing a C++ component and SOAP service,
a Distributed Application Archive, and Visual Studio projects containing the C++
implementation source. For details about accessing Basic Context in C++ implementation,
refer Accessing Basic Context Parameters, page 60.

Modeling - cpp-basicContext-soa/Composites/cpp-basicContext-soa.composite - TIBCO Business Studio - D:\worksp_¥19_cppV8.1_RegenerateRecomp

File Edit Diagram Mawigate Search Project Run Window Help
b (- - Q- QI P
T e S = s - o — R
Tahoma Slw EB Fr | A-S- _F- —- = | B ==l too%e o =]
25 Profect Explorer 53 = O | [cpp-basicContext-soa;composits. 53 =n
B % P Al 53 palette B
e cop-basicContextsos s
=55 epp-basicContext-impl &~
1! Includes
o ‘ ° [£5 Companent
= == =5 Reference
FaultTes
53 cpp-basicContext-impl_ves.veproj =B Service
ZA cpp-basicCantext-impl_ved. veproj — o
[] cpp-basicContext-impl. GHUMakefile 2 L it
- |2 cpp-basicContesxt-impl. solMakefile [F=] Property
c Z
15 epp-basicCantext-proxy G&P
= Ci kT £®
il Includes i
€3 src Cpp2 G Crp
s buid sl &, Mediation
=3 cpp-basicContext-proxy_wcd.veproj 2 ’
A cpp-basicConkext-proxy_ved.veproj i Composite
2] cpp-basicCantext-praxy. GMUMakefile = Java
+ - [&] cpp-basicContext-proxy solMakefile ~ & webapp
= cpp-basicContext-soa w
5 Service Descriptors == > = 0 == g
= E properties ©2 (21 Problems | ¥ Data Source Explorer | B Conscle
= IF, Composites
= @ cpp-basicContext-soa.composite » Ccomponent Service
&) cpp-basicContext-soa —
i [Deployment artifacts General Haricy | itz estT —
=1 Resource Templates Policies WSDL Interface
< >
Appearance
= = Port Type: € FaultTestpT - http:fins theo.comiFaultTesti
2= outline 22 [T eployment Serv 8 E
= [P WSDL Location: frpp-basicContext-soafService DescriptorsiFaultTest,wsdl
~ Context Parameters CopyParamaters
= 2
® g i - Maarne Operations Direckion Tepe Definition
=1 pl GetAddress Input Basic string
o pz Getaddress Output Basic string ®
p3 GetAddress Fault ; Getddress_Fault Basic string
-] i |28
b Advanced B,

For details about BasicContext, refer TIBCO ActiveMatrix® Service Grid Component
Developer s Guide.

To run the BasicContext service, follow the procedures whose details are available in

TIBCO ActiveMatrix Administration:

1.
2.

Upload the DAA.

Create and install the HTTP Connector resource instance.

In TIBCO ActiveMatrix Administrator, enter the composite property for library path.
The library path must point to the location of the library on the file system (or
machine) to which the deployed assembly on the node is pointing.

Deploy and start the BasicContext service DAA.

TIBCO ActiveMatrix C++ Component Development

Top-Down Approach |9

5. Open the SOAP UI configuration cpp-basicContext/cpp-basicContext-test-soapui-project.xml in the
SOAP UI client.

6. If there is any change in service endpoint, update the endpoint location as per
deployed service endpoint.

7. Open the SOAP UI editor for sample requests provided in above configuration, and
submit the request to the specified service endpoint.

BagContext

Bag Context sample shows how to configure and access bag context in C++. In this
sample, the soap binding type sends http transport headers to C++ in bag context. The
BagContext sample files include an ActiveMatrix composite containing a C++ component
and SOAP service, a Distributed Application Archive, and Visual Studio projects
containing the C++ implementation source. For details about BagContext, refer Accessing
Bag Context Properties, page 64.

o ik - Q-G @ P RS o
: [Tahoma “io ¥|B 7 | A~ - g~ BWie od. o g e [1o v B -]
| [Project Explorer 52 Z-m} XN = (o
& o =
. . = & B | cpp-banContextsos b
= cpp-bagContext-impl i R I i =L
| g % ir:;:ludes A b * [component
i & @ application BagGort 3 Reference
(= SanpleNamespace | 2 | I——
(=2 wsdl_org_example_wim_bageonts o
= . oo e
| (= xsd_org_example_ww_bageonte| =
4] buid.xml Gr'{? [Property
4 cpp-bagContext-mpl_ves. vepraj Cppl = -
A cpp-bagContext-impl_ved. veproj g O ComporRok Tpe> 4
=] cpp-bagContext-impl.GNUMakefile G rp
i] cpp-bagCantext-impl solMakefile & Wediation
=12 cpp-bagContext-sna
{& Service Descriptors | @ Composits
' Composites < | & S —
& cppbagContext-soa.composie | 2 24 Probleme 18 : ST
R acoterestd rapetties 2. prablems | [Data Source Explorer &
& @Q Deployment: Artifacts 3B Component Service
& £ Resource Templates
General " Mame: | BagContextTest |
Policies | | WSDL Interface
< | 3| Appearance
== — z = | FPortType: 3 BaoContextTest - hitp:/jwww.example. orgiBanContext Test) E [E
2= outine 52 {9 Deployment Serv (i}
mt Gl i Deplovi I WSDL Location: fcpp-bagContext-soajService Descriptors/BagContext Test wsdl
il -
— | ~ Context Parameters ok aeters
Hame Operations Direction Type Definition
contextParameterl NewOperation Input Bag
contextParameter? MewOperation Output Bag %
Ll K L | B
+ Advanced

For details, refer TIBCO ActiveMatrix® Service Grid Component Developer s Guide.

To run the BagContext service, follow the procedures whose details are available in
TIBCO ActiveMatrix Administration:

TIBCO ActiveMatrix C++ Component Development

10

Chapter 2 Development Tutorials

MessageContext

Upload the DAA.
Create and install the HTTP Connector resource instance.

In TIBCO ActiveMatrix Administrator, enter the composite property for library path.
The library path must point to the location of the library on the file system (or
machine) to which the deployed assembly on the node is pointing.

Deploy and start the BagContext service DAA.

Open the SOAP UI configuration cpp-bagcontext/cpp-bagcontext-test-soapui-project.xml in
the SOAP UI client.

If there is any change in service endpoint, update the endpoint location as per
deployed service endpoint.

Open the SOAP Ul editor for sample requests provided in above configuration, and
submit the request to the specified service endpoint.

Message Context samples shows how, unbounded headers, and other message context can
be configured, propagated and accessed in C++. The MessageContext sample sends the
message defined in WSDL. The MessageContext sample files include an ActiveMatrix
composite containing a C++ component and SOAP service, a Distributed Application
Archive, and Visual Studio projects containing the C++ implementation source. You need

TIBCO ActiveMatrix C++ Component Development

Top-Down Approach | 11

to define the Context Parameter, Operation, Direction, Type, and Definition. You need to
define the message in WSDL For details, refer Accessing Message Context Properties,
page 62. For details about MessageContext, refer TIBCO ActiveMatrix® Service Grid
Component Developers Guide.

» Modeling - epp-messageContext-soa/Composiles/cpp-messageContext-soa.composite - TIBCO Business Studio - D:\worksp_¥19_cppVE.1_RepenerateRecomp
File Edit Disgram Mavigate Search Projeck Run Window Help

=kl | B-ix-0-QQ-i®™ F- & -
[Tahama ~[o =B 7| A~ Bz —~ Ho egle | =
[Project Explorer 52 = B ||| cpp-messageContext-soa.composits 53 !
== = = | 43 palette
- S o (E= cop-meseaneContetsns L
=5 = ——
552 com.cpp.messagecantext. java -~ i I & S
[Hello\WarldPT Feea70ad-service-intarfac, N =5 .
HelloWorldP T-Feea7ad-service-beans.j ' Comporen
5 sre Helldiito > Reference
B IRE System Library [Javase 1 6] e =oriice
= Plug-in Dependencies
&= lib N i
L@ = METATNE “T =L ¥ G [= Property
lexh build.properties — S = =
=525 cpp-messageContextimpl Jawval Cppl CIRGHERETYPey
&l Includes @ Crp
B src o Mediation
& build.xml - ’
T3 cpp-messageContest-impl_ves.vcpraj g compasice
A cpp-messageContext-mpl_ved.vcproj = Java
5] cpp-messageContext-impl. GNUMakefile & Webspp
[5 cpp-messagecontext-impl. solMakefile
pp-messageContext-soa &|| = spring

5 Service Descriptors

@, Compasites

& cpp-messageCantext-soa composite
o fh cpp-messageContext-soa || ™ component Service

3 Deployment Artifacts

[Properties &5 [Z1 Problems | [Data Source Explorer | E Console =]

T 1T
FET Decairee Temolabes b General Namie: | HellawordrT: 1
< >
= Policies WSDL Interface
5E Outline 3% 14 Deployment Server ~ O || appesrance
= Port Type @ HellovworldeT - hetp:fins. tibco. com/Hello &)
55
= WSDL Location: Jcpp on i P sl
B = ~ Contest Parameters Copy Phrameters
Tries TP,
Mame Operations Direction Type Definitian
contextParameter2 sayHello Input: Message OperationUnboundHeader fversi. ..
contextParameter3 sayHello Output: Message OperationUnboundHeader fversi... >

To run the MessageContext service, follow the procedures whose details are available in
TIBCO ActiveMatrix Administration:

1. Upload the DAA.
2. Create and install the HTTP Connector resource instance.

3. In TIBCO ActiveMatrix Administrator, enter the composite property for library path.
The library path must point to the location of the library on the file system (or
machine) to which the deployed assembly on the node is pointing.

4. Deploy and start the MessageContext service DAA.

5. Open the SOAP Ul conﬁguration cpp-messageContext/MessageContextTest-soapui-project.xml in
the SOAP UI client.

6. If there is any change in service endpoint, update the endpoint location as per
deployed service endpoint.

7. Open the SOAP UI editor for sample requests provided in above configuration, and
submit the request to the specified service endpoint.

TIBCO ActiveMatrix C++ Component Development

12 | Chapter 2 Development Tutorials

Environment

Environment Sample shows native process environment variables configuration in
TIBCO ActiveMatrix Implementation Type for C++. The sample demonstrates
configuration of environment variables in TIBCO ActiveMatrix Implementation Type for
C++ and their access in implementation. You can set various environments for each of the
components. On the Implementation tab, you can define the environment and component
specific variables. For more details, refer Using Environment Variables, page 38.

2 Modeling - cpp-environment-soa/Composites/cpp-environment-soa.composite - TIBCO Business Studio - D:Wworksp_V19_cppV8.1_RegenerateRecomp

File Edit Diagram Mawigate Search Project Run Window Help
BB @ (k- % O Qu- :
¢ | Tahoma v ¥ B I 2o | g AL —|mu=,,, ~| B8~
[Project Explorer 3% = B @ | cpp-environment-soa.compasite 53 = 5
(=R P 1= Al % palette B
= cRp-environmentsos =
=5 cpp-environment-mpl T @ &)~
i Includes =3
g 55 component
x 5 EE 52 Reference
build.scrnl Helldwo. =
24 cpp-ervironmment-impl_wves veproj == B Service
= cpp-environment-impl_wc3. vcproj “
|2 cpp-environment-impl. GHUMakefile GEE i
|2 cpp-environment-impl.solMaksfile Cppl [F=] Property
= cpp-environment-soa
[Service Descriptors | ComponenE YRS o
= T, Composites @, Cpp
| B @ cpp-environment-soa. composite ¥l s Madiation
& &) cpp-environment-soa e —
£ Deployment Artifacts - = - =
B erouron Fomplotis o Properties 52 [£1 Problems | i Data source Explorer =
& component
RhEE Cenfiguration Project: | fepp-envirorment-impl Browse..
Implementation o Name: [epp-environment-impl o]
Properties
Services Library path: [=
References
Policies
2 = Appearance
5= outine 52 3 Deployment server)| e
S
& [P | Enviranment Variables:
== |
wariable Mame wariable value
= simpleEny simpleErvyalus
T = dependentEny SasimpleEny
substvarEny SmnvSubstvarss
pathSeparstor 5
{home/user.pathSenar stor % foptimsoftuare
multipleSubstEtion fopt{Userapp, pathSep: A ervSUbstyar.
LD_LIBRARY_PATH GLrmulkipleSUbsHE ko
Fr

You can specify:

* Simple environment variable: These are applied to native process without any
modification. For example, simpleEnv = simpleEnvValue.

¢ Substitute environment variable: One environment can substitute value of other
environment variable. For example, dependentEnv = %simpleEnv% .

* Multi-level substitution environment variable: Multiple substitutions can be applied in
one environment variable. For example,

simpleEnv = simpleEnvValue
pathSeparator = :

multipleSubstitution =
/opt/userApp/lib%pathSeparator%/opt/mysoftware/lib%pathSeparator%%simpleEnv%

TIBCO ActiveMatrix C++ Component Development

Top-Down Approach |13

At runtime native process receives multipleSubstitution =
Jopt/userApp/lib:/opt/mysoftware/lib:simpleEnvValue (that is, substituted value of substitution
variables)

e Substitute variable are used in environment variables.

To run the Environment service, follow the procedures whose details are available in
TIBCO ActiveMatrix Administration:

1. Upload the DAA.
2. Create and install the HTTP Connector resource instance.

3. In TIBCO ActiveMatrix Administrator enter the composite property for library path.
The library path must point to the location of the library on the file system (or
machine) to which the deployed assembly on the node is pointing.

4. Deploy and start the Environment service DAA.

5. Open the project in TIBCO Business Studio. Right-click the Environment_gen.wsdl from
the Service Descriptors folder and select Web Services > Test with Web Services
Explorer.

6. Inthe Web Services Explorer Navigator view, select the SOAP binding
soap.bindingBindingl. Click Operation under the WSDL Binding Details > Operations.

7. Enter the parameters of the WSDL operation and click Go to invoke the Environment
service.

TIBCO ActiveMatrix C++ Component Development

14

Chapter 2 Development Tutorials

Exception

The Exception sample demonstrate how normal and soap detailed exception can be
handled and configured in C++. The Exception sample includes the throwRuntimeException
artifact for TIBCO ActiveMatrix Implementation Type for C++. You can specify
exceptions using the throwRuntimeException artifact for TIBCO ActiveMatrix Implementation
Type for C++.

Modeling - cpp-exception-soa/Com posites/cpp-exception-soa.composite - TIBCO Business Studio - D:Yworksp_¥19_cppV8.1_RegenerateRecomp (==

File Edt Diagram Navigate Search Project Run Window Help
e - - O -G B S &
V[=B 1| A~ H»- s —- HBi- o8- Ea - =~ [100% || - [
[Profect Explorer 53 = 5 ||| cpp-exception-soa,composite £3 =8
o % | ¢ = =
Ll 7 cRE-excentionsos b
= 5% cpp-exception-impl - e 1 =
[Includes N > =
Component
o2 e » &8 corne.
&1 build. xml Exceptio > Reference
3 epp-exception-impl_wc8 veproj = = = Service
- F3 cpprexception-impl_vc2 vcproj A K b i
oo wire
|2 epp-exception-impl. GHMUMakefile =8 A =
[2] cpp-exception-impl solMaksfile C: C- [2] Property
o
=55 cpp-exception-proxy Cpp2 Cppl
B Companent Types e
) Includes & P VP
2 G Trp
% build. e Mediation
28 cpp-esception-proxy_ves.veproj
3 cpp-axcaption: prosxy_ves.vepro] i onnosts
- [2] cpp-exception-proxy . GNUMaksfile = Java
|2 cppexception-prosy.solMakefile & websapn
= 2 cpp-exception-soa

- [E5; Service Descriptors A7 5pring
= g Composites

= @ cpp-exception-soa. composite:
g cpp-exception-soa -
Deployment Artifacts = Properties 2% [Z: Problems | 8 Data source Explorer | £l console w Y T 0O
£ Resource Templates N

[l

< [E3

& Composite

87 outhne 22 [Deployment Server| = O || General Pame: | cpp-excoption-soa]
- 1 7| | Preperties wersian: [1.0.0.qualfier]
[¥
= 5| Services e S e e e e e |
> VREfErEn(ES Description;
= = £ Policies
5 = B
it Rulers & Grid — |
Appearance + Walidation Report

You can refer to the following code sample:
XSD_COM_TIBCO_NS_EXCEPTIONTEST::InOutResponseElement* ExceptionImpl::inOut(const
XSD_COM_TIBCO_NS_EXCEPTIONTEST::InOutElement& parameters) throw
(TIBAMX_CORE_NAMESPACE::TibcoRuntimeException)

{

if(parameters.getIn()->compare("proxy-exception") == 0)

{

throwRuntimeException(MyRuntimeException, "This is my exception from proxy");

}

XSD_COM_TIBCO_NS_EXCEPTIONTEST::InOutResponseElement* result = new
XSD COM TIBCO NS EXCEPTIONTEST::InOutResponseElement();
result->setOut("Return from ExceptionTest proxy Service");

return result;

}

Where, throwRuntimeException 18 the artifact name. MyRuntimeException 1S the name of the
exception and "This is my exception from proxy" is the description.

For details on SOAPException, refer SOAPException Schema, page 66.

TIBCO ActiveMatrix C++ Component Development

Top-Down Approach | 15

To run the Exception service, follow the procedures whose details are available in 7/BCO
ActiveMatrix Administration:

1. Upload the DAA.
2. Create and install the HTTP Connector resource instance.

3. In TIBCO ActiveMatrix Administrator, enter the composite property for library path.
The library path must point to the location of the library on the file system (or
machine) to which the deployed assembly on the node is pointing.

4. Deploy and start the Exception service DAA.

5. Open the SOAP UI configuration cpp-exception/cpp-exception-test-soapui-project.xml in the
SOAP UI client.

6. If there is any change in service endpoint, update the endpoint location as per
deployed service endpoint.

7. Open the SOAP UI editor for sample requests provided in above configuration, and
submit the request to the specified service endpoint.

TIBCO ActiveMatrix C++ Component Development

16

Chapter 2 Development Tutorials

Fault

The Fault sample demonstrates WSDL fault handling in TIBCO ActiveMatrix
Implementation Type for C++. The Fault sample includes the implementation for
user-defined fault. The message for the fault needs to be defined in the WSDL. If you want
to throw a Fault from the C++ container, create an object of the fault.

Modeling - cpp-fault soa/Composites/cpp-fault-soa.composite - TIBCO Business Studio - D:\worksp_V19_cpp¥8.1_RegenerateRecomp

it e ([sf- s

(7 Praject Explarer: 532

[l Includes
src
(22 Debug_with_MinGw_GCC
2] build.xml
A cpp-Fault-impl_vca. vcproj
A cpp-Fault-impl_veS.veproj
|27 epp-Fault-impl.GRUMaksfile
|7 cpp-fault-impl.solMakefile
=55 cpp-Fault-prosy
&l Includes
2 src
1+ Debug_with_MinGwW _GCC
& build.xml
3 cpp-Fault-prosy_wvos.veproi
=3 cpp-fault-prosy_wes.veproj
[2] epp-fault-proxy. GHUMskefie
|27 cpp-Fault-praxy.solakefile
1= 8 cpp-Fault-soa
=g o

I ¢
3 Deployment Artifacts
E-l Resource Templates
ST — [R— tors

5 outline 55 14 Deployment Server

File Edt Disgram Mavigate Search Project Run Window Help

& | cpp-fault-soa composite

~O-G- S F-D
= = =i WS -
= B | @ cpp-fault-soa.composite 52 =0
= B
o cpp-faultsos Sl E
~ S o ae
[5 companent
Foulfles 5 Reference
= I Service
3 oo tiire
G G = Property
Eppi Eope & | Component Types o
G- Crr
& Mediation
g Composite
= dava
(@ WebApp
spring
= -
Sl Properties 23 [Z1 Problems | i Dats Source Explorer | El Console ~ =g
-
= avanced Property alue e
= & Infa
e derived false
L=} editable true
last modified April 15, 2011 1:03:53 PM
linked false
location DYAMY312_¥13_%8.1\amx_it_cppi3. Lisamplesicpp-faulticpp-fauit-so.
name cpp-fault-soa.composite i
path Jepp-Ffault-sos/Composites/cpp-fault-soa.compasite
size 14,825 bytes
= working Copy ~
=2 H
- Compositesicpp-Fault-soa. composite

You can refer to the following code snippet:
XSD_COM_TIBCO_NS_FAULTTEST::GetAddressResponseElement* FaultTest::getAddress(const
XSD COM TIBCO NS FAULTTEST::GetAddressElement& parameters) throw
(TIBAMX_CORE_NAMESPACE::TibcoRuntimeException
,XSD_COM_TIBCO_NS_FAULTTEST::GetAddress_faultFault)

{

std::cout << "WARN: Address requested for : "' << parameters.getIn()->c_str() << std::endl;
TIBAMX CPP_NAMESPACE::ComponentContext& context = getComponentContext();
TIBAMX_CPP_NAMESPACE::StringRequestContext* requestCtx = context.getRequestContext();

if((parameters.getIn()->compare("reference fault") == 0)) {

/* Optional : Setting of fault reason */

TIBAMX_CPP_NAMESPACE::StringReplyContext* replyCtx = requestCtx->getReplyContext();
TIBAMX_CORE_NAMESPACE::String str(" context invocation fault from impl");
replyCtx->setFault(&str);

// End of optional section.

XSD_COM_TIBCO_NS FAULTTEST::GetAddress_faultFault fault;

XSD COM TIBCO NS FAULTTEST::GetAddress_faultElement faultElement;
faultElement.setIn("Invalid address fault : impl");

fault.set_value(faultElement);

TIBCO ActiveMatrix C++ Component Development

No Message Loss

Top-Down Approach |17

throw fault;

}
XSD_COM_TIBCO_NS_FAULTTEST::GetAddressResponseElement* result = new

XSD COM TIBCO NS FAULTTEST::GetAddressResponseElement();
result->setOut("This is normal output from impl");

return result;
Where, GetAddress_faultFault is the fault that is thrown.

To run the Fault service, follow the procedures whose details are available in 7/BCO
ActiveMatrix Administration:

1. Upload the DAA.
2. Create and install the HTTP Connector resource instance.

3. In TIBCO ActiveMatrix Administrator, enter the composite property for library path.
The library path must point to the location of the library on the file system (or
machine) to which the deployed assembly on the node is pointing.

4. Deploy and start the Fault service DAA.

5. Open the SOAP UI configuration cpp-fault/cpp-fault-test-soapui-project.xml in the SOAP UI
client.

6. If there is any change in service endpoint, update the endpoint location as per
deployed service endpoint.

7. Open the SOAP Ul editor for sample requests provided in above configuration, and
submit the request to the specified service endpoint.

The No Message Loss sample includes the settings to configure the message redelivery for
exceptions. No Message Loss is achieved using redelivery of message on any exception.
This redelivery can be stopped for specific exceptions, by configuring them in No
Message Loss policy.

If the code throws an exception, then you have to explicitly catch the exception and use
following artifact in the catch block:

throwRuntimeException(ExceptionName,Reason);

For example: throwRuntimeException(DivideByZeroException,"Attemps to divide by zero.");

TIBCO ActiveMatrix C++ Component Development

18 | Chapter 2 Development Tutorials

Specify the minimum interval and set the exception. For details, refer 7IBCO
ActiveMatrix® Service Grid Component Developer s Guide.

|- [=]x]

9 [°2 Modeling |

(2 Project Explorer 52 = O8] cop.NoMessageLoss.soa.compasite 13 =0

=42 cop_HoMessageloss_cop
H ncludes
re
] build . xml
5 cop_NoMessageLoss_cpp_ved.veprof
7 cpp_MoMessagel oss_cpp_ved veproj
] cpp_MoMessageL oss_cpp GhUMakefile
2] cpp_momessageLoss_cpp.solakefile
1= 1 cpp.NoMessageLoss.soa
65} Service Descriptors
=g Camposites
= @ cpp MoMessageloss. soa.composite.
#-} cpp.MoMessageLoss.soa
& 5] Deploymert AvtiFacts
#-E2] Resource Templates

B outine £3 113 Deployment Server

(= sy) iodify the selected policy N[=163] A | s palette b

& B
Configure 'At Least Once’ Policy hRAL
\ o
Speciy the parameters of the polcy. 5 Compenent
k T Reference
NoMeksa... s
= D Service
Max redelivery count: | 3 | (use 0 For infinite redelvery)
o — e
Redelivery delay interval: |0 S hrs [0 3 imin |15 3 sec [Property
| Component Types @
Exceptions upon which to stop redelivery! (use* for &l exceptions) &
. Cpp
| & |
| Exceptiond dconpdts
‘ = Java
‘ 3 WiebApp
Spring
[JEnable error queue i
T s [2 problems | [Data Source xplorer | E console y ¥ =0
| = component Service |
| P = £ Intents 4
I -
| Policies P AtLesstOnee
Iz =-E31 Policy Sets -
il -9 atlsastonce_Cppl_NoMessageloss - - -
3 | o o |
e
E] Folicy:) At Least Once
Description: This indicates that a message set by a client is always delivered to the componen, Ho Message Loss, messages are
persisted, No Transaction involved in message delivery although companent can process the message under bransaction, Messages are
removed from persistent store orlly after surcessful processing. IF this policy s applied to any binding other than Yirtuaiization, then & wil
take effect on the virtuaization proxy between the binding and the romponent,
Operations:
+ Edt Policy Set v

For details, refer Specifying At Least Once Policy, page 78.

To run the NoMessageLoss service, follow the procedures whose details are available in
TIBCO ActiveMatrix Administration:

1. Upload the DAA.
2. Create and install the HTTP Connector resource instance.

3. In TIBCO ActiveMatrix Administrator enter the composite property for library path.
The library path must point to the location of the library on the file system (or
machine) to which the deployed assembly on the node is pointing.

4. Deploy and start the NoMessageLoss service DAA.

5. Open the project in TIBCO Business Studio. Right-click the NoMessageLoss_gen.wsdl
from the Service Descriptors folder and select Web Services > Test with Web Services
Explorer.

6. Inthe Web Services Explorer Navigator view, select the SOAP binding
soap.bindingBindingl. Click Operation under the WSDL Binding Details > Operations.

7. Enter the parameters of the WSDL operation and click Go to invoke the Fault service.

TIBCO ActiveMatrix C++ Component Development

Bottom-Up Approach

Bottom-Up Approach

C++ development
environment

TIBCO Business
Studio

C++ development
environment

To develop a C++ component in the bottom-up (code-first) approach, follow the
procedure:

1.

In a supported C++ development environment, create a C++ component
implementation. The implementation includes service class, implementation class,
and dependent header files, and implementation class source files. The header files
and data types must conform to the constraints described in C++ to WSDL Mapping
on page 70.

In TIBCO Business Studio, create a project to contain the C++ header and
implementation files.

Import the C++ service class and dependent header files created in step 1 into the
project.

Create an ActiveMatrix SOA project selecting the SOA Project from
Implementation project type.

In the Component Details page of the wizard, select C++ for the component
implementation type. Select an existing C++ class to use as implementation. The
selected class must be a pure virtual class. See Generate C++ Component
Implementation Reference on page 48 for details.

Click Next and then click Finish.

TIBCO Business Studio generates a WSDL file based on the service classes and C++
stub code used by the ActiveMatrix C++ container, to invoke the service classes.

Configure the component to expose the service defined by the C++ service classes.
Add a SOAP Binding to the configured composite service.

Double-click the C++ component to open the generated C++ implementation project
in your preferred development environment (IDE). Set the IDE preferences on
Microsoft Windows platform as described in Set Preferred Build Artifacts and Build
Method on page 54.

Copy the implementation files from the original folder into the src folder of the
generated project.

Before building the project, ensure that the environment variable
TIBCOAMX_CPP_CONTAINER_HOME is set to the installation location of the C++
container.

TIBCOAMX_CPP_CONTAINER HOME=TIBCO_HOME\amx it cpp\3.2

Build a C++ library containing the generated stub code and implementation class
header and source files.

TIBCO ActiveMatrix C++ Component Development

19

20 |Chapter2 Development Tutorials

Bottom-Up Approach Samples

Purchase Order Application

The purchase order sample files include an ActiveMatrix composite containing a C++
component and SOAP service, a Distributed Application Archive, and Visual Studio
projects containing the C++ implementation source.

Modeling - cpp. purchaseorder.soa/Composites/cpp. purchaseorder.soa.composite - TIBCO Business Studio - D:\worksp._ V19_cppVB.1_RegenerateRecomp
File Edit Disgram Mavigate Search Praject Run Swindow Help

[Tahoma

= &~ v =)

SRt pae B e | P rTR— =
Fic @B 1| A e Fe e i w2 Be | — - |[100% > & - [
[Praject Explarer 53 = O || | cpp purchasearder.soa composite. £2 =
= - i ~la
S o | i} cpp.pUrchaseorder.sos B Ralcits L2
=522 cpp_purchaseorder_cpp s RRa&I-
& 5 Includes =
& & H) [component
] build.xml Purchase. .. 5D Reference
=8 cpp_purchaseorder _cpp_vcs.veproj =2 Service
28 cpp_purchaseorder _cpp_ved. wcproj I
|27 epp_purchaseordsr_cpp.GHUMaksfile = | it
|=] epp_purchaseorder_cpp.solMakefile - [7=] Property
=1 cpp.purchaseorder.soa 25
&[5 service Descriptors T &}: 1 L SR =
=g, Composites cppl G oo
5@ | cpp.purchasearder.soa.composite & Mediation
cpp.purchaseorder.soa - .
75 Deployment Artifacts g Composite
#£=l Resource Templates = Jdawa
& Webnpp
#7 Spring
~
= Properties £2 [21 Problems | Data Source Explorer | E] Console == H

< >||| @ Component

B= outire. 32 - [4 Deployment serv | = 51

el Configuration Project: | fepp_purchaseorder_cpp
=i G -
2 rmptementation Library Name; [epp_purchaseorder_cop

A Froperties i —

Services Library Psth:

o Bofones Erviranment Variables:
Policies
Wariable Mame Variable Value
Appearance

The sample files to develop the purchase order application in the bottom-up approach are
available at TIBCO_HOME\amx _it_cpp\3.2\samples\cpp-bottom-up.

The bottom-up folder contains the subdirectories:

* ActiveMatrix SOA project cpp.purchaseOrder.soa, that you can open in TIBCO Business
Studio. The project contains the following subfolders:

Composites Contains a composite named cpp.purchaseorder.soa.composite:

Service Descriptors Contains the concrete WSDL file named PurchaseOrderService gen.wsdl
which can use to develop a SOAP client for the purchase order service.

Deployment Artifacts Will contain the generated distributed application archive which
you can deploy using ActiveMatrix Administrator

e C++ Project cpp_purchaseorder_cpp, that contains the C++ implementation files.

TIBCO ActiveMatrix C++ Component Development

Bottom-Up Approach | 21

To run the purchase order service, follow the procedures whose details are available in
TIBCO ActiveMatrix Administration:

1. Upload the DAA.

2. Enter the composite property for library path. The library path must point to the
location of the library on the file system (or machine) to which the deployed assembly
on the node is pointing.

3. Create and install the HTTP Connector resource instance.
4. Deploy and start the Process Order service DAA.

5. Open the project in TIBCO Business Studio. Right-click the PurchaseOrder_gen.wsdl from
the Service Descriptors folder and select Web Services > Test with Web Services
Explorer.

6. Inthe Web Services Explorer Navigator view, select the SOAP binding
soap.bindingBindingl. Click requestPriceSummary under the WSDL Binding Details >
Operations.

7. Enter the parameters of the WSDL operation and click Go to invoke the Purchase
Order service.

TIBCO ActiveMatrix C++ Component Development

22 | Chapter 3 C++ Components

Chapter3 ~ C++ Components

This chapter describes how to create and configure a C++ component. See TIBCO
ActiveMatrix Composite Development for information on how to perform the basic tasks
in TIBCO Business Studio.

Topics

* Creating a C++ Component, page 23

* Configuring a C++ Component, page 25

* Updating a C++ Component, page 26

« Updating a C++ Implementation, page 28

» Using Services in a C++ Component, page 29

* Using References in a C++ Component, page 31

» Using Properties in a C++ Component, page 33

e C++ Component Reference, page 35

* Specifying the Application Library Name and Library Path, page 36
* Using Environment Variables, page 38

* Packaging C++ Components, page 40

TIBCO ActiveMatrix C++ Component Development

Creating a C++ Component | 23

Creating a C++ Component

Choose an option and follow the relevant procedure.

Option Description

Wizard 1. Create a SOA project selecting the SOA Project from
WSDL project type.
2. Inthe Component Details page of the wizard, specify C++
for the component implementation type.
3. Specify the code generation details as described in
Generate C++ Component Implementation Reference on
page 48.
Wizard 1. Create a SOA project selecting the SOA Project from
Implementation project type.
2. Inthe Component Details page of the wizard, specify C++
for the component implementation type.
3. Select an existing pure virtual C++ class to use as
implementation.
4. Complete the wizard.
Manual

1. Create an SOA project of any type.
2. Open the composite created in the project.
3. Do one of the following:

— Click the C++ icon E}: in the Palette and click the
canvas.

— Click the canvas and click the C++ icon E}: in the
pop-up toolbar.

— Right-click the canvas and select ':E:'Add > E}JC++.

— Drag and drop an implementation file on to the canvas
(Bottom-up scenario).

4. Generate the C++ implementation as described in
Generating a C++ Component Implementation on page 43
or configure an existing implementation as described in
Reusing a C++ Component Implementation on page 56.

TIBCO ActiveMatrix C++ Component Development

24 | Chapter 3 C++ Components

A C++ component is added to the canvas and its implementation is configured.

TIBCO ActiveMatrix C++ Component Development

Configuring a C++ Component | 25

Configuring a C++ Component

When you generate a C++ component implementation or create a SOA project from a C++
implementation, the component’s Implementation field is configured automatically.

You can reuse an existing C++ implementation generated previously by reconfiguring the
component to use the existing component implementation.

1.
2.
3.

Click the C++ component.

In the Properties view, click the Implementation tab.
Click the Browse... button at the right of the Class field.
The Select C++ Configuration Project dialog displays.

Click a configuration project from the list of available C++ CDT projects in the
workspace and click OK.

The component is updated with the details from the newly selected C++ configuration
project.

TIBCO ActiveMatrix C++ Component Development

26 | Chapter 3 C++ Components

Updating a C++ Component

You can typically update a component after you have configured its implementation.

To update a component from its implementation, do one of the following:

Control Procedure

Canvas Right-click the component and select Refresh from
Implementation.
Canvas Right-click a component and select Quick Fixes > Update

Component from Implementation.

Properties View 1. In the Validation Report area on the General tab of the

component’s Property View click the fix... link.

2. Select Update Component from Implementation.

Problems View 1. In the Problems view, right-click an error of the form The

component "componentName" is out of sync with its implementation and

select Quick Fix.

2. In the Quick Fix dialog, select Update Component from
Implementation.

3. Click Finish.

The C++ component is updated and all the changes made to the component after the last
implementation generation are discarded.

To update the C++ implementation, do one of the following:

Control Procedure

Canvas Right-click the component and select Regenerate C++
Implementation.

Canvas Right-click a component and select Quick Fixes > Update C++
Implementation.

Properties View 1. In the Validation Report area on the General tab of the

component’s Property View click the fix... link.

2. Select Update C++ Implementation.

TIBCO ActiveMatrix C++ Component Development

Updating a C++ Component I 27

Control Procedure

Problems View 1. In the Problems view, right-click an error of the form The

component "componentName" is out of sync with its implementation and
select Quick Fix.

2. In the Quick Fix dialog, select Update C++
Implementation.

3. Click Finish.

The C++ component updates the abstract class, an implementation class and header files.

TIBCO ActiveMatrix C++ Component Development

28 | Chapter 3 C++ Components

Updating a C++ Implementation

Regenerate the component implementation to reflect any updates made to the component
services, references, or properties after the implementation has been generated. To
regenerate the implementation code, right-click the C++ component and click Regenerate
C++ Implementation.

While regeneration, all the files generated by C++ except <UserImplementation>.cpp are
deleted and then regenerated.

TIBCO ActiveMatrix C++ Component Development

Using Services in a C++ Component | 29

Using Services in a C++ Component

A service represents the port type provided by the component.

Adding a Service

1. Choose an option and follow the relevant procedure.

Control Procedure

Canvas 1. Hover over the component until the popup toolbar
displays.
2. Click the component service icon “2 in the toolbar.
Canvas Click the Service icon Z in the Palette and click the

component.

Properties View 1. In the Services tab of the Properties view, click ==

A service, Servicen, is added to the component and the Services tab in the Properties
view displays.

2. Click the -not set- link in the Port Type field of the WSDL Interface area.
3. Select a port type in the Select Port Type dialog and click OK.
The Port Type and WSDL Location fields are updated.

4. Update the component implementation by following the procedures described in
Updating a C++ Component on page 26.

Removing a Service

1. Choose an option and follow the relevant procedure.

Control Procedure

Canvas Right-click the component service % and select
3 Delete.

Properties View In the Services tab of the Properties view, select the service
and click €.

TIBCO ActiveMatrix C++ Component Development

30 | Chapter 3 C++ Components

2. Right-click the component and select Quick-Fixes >Update Component
Implementation.

The generated import statements, fields, methods, and code you have added to methods
are removed from the implementation source file.

TIBCO ActiveMatrix C++ Component Development

Using References in a C++ Component | 31

Using References in a C++ Component

A reference is a link to a consumed service. To use a reference in a C++ component:

1. Add the reference following the procedure described in Adding a Reference on
page 31.

2. Bind the reference to a component service or composite reference.

Adding a Reference

1. Choose an option and follow the relevant procedure.

Control Procedure

Canvas 1. Hover over the component until the popup toolbar
displays.
2. Click the component reference icon = in the toolbar.
Canvas Click the Reference icon == in the Palette and click the

component.

Properties View 1. In the References tab of the Properties view, click ==

A reference, Referencen, is added to the component and the References tab in the
Properties view displays.

2. Click the -not set- link in the Port Type field of the WSDL Interface area.
3. Select a port type in the Select Port Type dialog and click OK.
The Port Type and WSDL Location fields are updated.

4. Update the component implementation by following the procedures described in
Updating a C++ Component on page 26.

Removing a Reference

1. Choose an option and follow the relevant procedure.

Control Procedure

Canvas Right-click the component reference = and select

ﬂ Delete.

TIBCO ActiveMatrix C++ Component Development

32 | Chapter 3 C++ Components

Control Procedure

Properties View In the References tab of the Properties view, select the service
and click €.

2. Right-click the component and select Quick-Fixes >Update Component
Implementation.

The generated import statements, fields, methods, and code you have added to methods
are removed from the implementation source file.

TIBCO ActiveMatrix C++ Component Development

Using Properties in a C++ Component | 33

Using Properties in a C++ Component

A property is a variable whose value can be set outside the implementation. To use a
property in a C++ component:

1. Add a property to the C++ component as described in Adding a Property on page 33.
2. Set the value of the property.

Adding a Property

1. Choose an option and follow the relevant procedure.

Control Procedure

Canvas 1. Hover over the component until the popup toolbar
displays.
2. Click the component property icon =l in the toolbar.
Canvas Click the Property icon [=| in the Palette and click the

component.

Properties View 1. In the Properties tab of the Properties view, click =/=.

A new property is added to the table with the default name, Propertyn, and type, String.
2. To update the values of the newly added property:
* Click the Name column and type the name of the property.
* Click the Type column for the property and select the type: Boolean, Integer, or String.

* Click the Source column and click the Ellipsis button. In the Select Composite
Property dialog, select the source property.

The value of the property is set to the value of the composite property.
* Click the Value column and type the value of the property.

3. Update the component implementation by following the procedures described in
Updating a C++ Component on page 26.

TIBCO ActiveMatrix C++ Component Development

34 | Chapter 3 C++ Components

Removing a Property

1. Choose an option and follow the relevant procedure.

Control Procedure

Canvas Right-click the component property [=| and select
x Delete.
Properties View In the Properties tab of the Properties view, select the

property and click .

2. Right-click the component and select Quick-Fixes >Update Component
Implementation.

The generated import statements, fields, methods, and code you have added to methods
are removed from the implementation source file.

TIBCO ActiveMatrix C++ Component Development

C++ Component Reference

C++ Component Reference

Select the C++ component on the canvas and in the Properties view, click the
Implementation tab.

Field Description

Configuration The name and location of the project that contains the
Project implementation files relative to the workspace.
Library Name The name of the library file without the file extension.

If the library to be deployed is PurchaseOrder.dil (on Windows) and
PurchaseOrder.so (on UNIX), the Library Name will be
PurchaseOrder.

Library Path The absolute path of the library file.

The library path field is added as a component property,
componentName _libpath, wWhen you generate the implementation.

Default: %%libpath%%

The component level property is linked to a composite level
property. The composite level property is set to the location of
the library on the deployment machine while creating the
component.

You can link the composite level property to a substitution.The
user can further link the composite level property to a
substitution variable.

Environment Variables

Field Description

Variable Name The name of an environment variable.

Variable Value The value of the environment variable.

TIBCO ActiveMatrix C++ Component Development

35

36 | Chapter 3 C++ Components

Specifying the Application Library Name and Library Path

The C++ container uses the component’s application library name and path variables to
load the application library that implements the service.

TIBCO Business Studio generates the component property libpath and a composite
property, componentName_libpath, when you generate the component implementation.

To specify the library name:

1.
2.

Select the C++ component and go to the General tab of the Properties view.
Do one of the following:
— Type the library name in the Library Name field.

— Click the ellipsis button to the right of the Library Name field and select the
composite property for the library name.

A component property, libname, is added on the component if it is not present. The
Library Name field is updated to %%libname%%.

To customize the library name and path on each deployment machine, do the following:

1.

4.

Create substitution variables for the library name and path. See TIBCO ActiveMatrix
Composite Development for information on how to create and use substitution
variables.

Set their values to the name of and path to the implementation library archive. If the
library to be deployed is PurchaseOrder.dil (on Windows) and PurchaseOrder.so (on UNIX)
the value of Library Name variable will be PurchaseOrder. The Library Path variable
must be set to the location of the library on the deployment machine.

Select the Composite property associated with the component. In the General tab of
the Properties view, click the ellipsis button to the right of the Substitution Variable
field.

Select the substitution variable in the dialog box and click OK.

If the application library depends on other libraries, you can specify the path of the
libraries in the NativeTemplate.tra file by editing the platform specific PATH variables in the

file.

Platform Path Variable

Microsoft Windows tibco.env.PATH
Linux and Solaris tibco.env.LD_LIBRARY PATH
HP-UX tibco.env.LIBPATH

TIBCO ActiveMatrix C++ Component Development

Specifying the Application Library Name and Library Path | 37

If the component or composite property is deleted, an error marker "Default property for library
path not found" displays.

Right-click on the component and select Quick Fix > Create Default Property to
regenerate the missing property. The regenerated component property is not linked to the
composite property. You can manually link the property to the composite property.

TIBCO ActiveMatrix C++ Component Development

38 | Chapter 3 C++ Components

Using Environment Variables

An environment variable is a property of a C++ application’s execution environment that
can affect the application’s behavior. ActiveMatrix C++ Implementation Type allows you
to configure the value of environment variables at the component level and global level.

You can refer to the sample, for details refer Environment on page 12.

The environment variable can be set directly in a composite configuration or it can be
bound to substitution variable. If you bind the property to a substitution variable, you can
rebind the property at deployment time in ActiveMatrix Administrator (see Chapter 8,
Deploying Service Assemblies in 7IBCO ActiveMatrix Administration for details).

You can set values for properties at various levels:

* Specifying the parameter values in NativeTemplate.tra file makes the values applicable at
global level. Value set at global level applies to all C++ components.

» Setting environment variable sets the value at component level. Value set at
component level overrides the value defined at global level.

» Setting substitution variables allows you to change the value at runtime.
To add an environment variable:
1. Open the composite containing the C++ component and click the component.

2. In the Implementation tab in the Properties view of the component, click the b
button to the right of the Environment Variables table.

A row is created in the table.
3. Click the Variable Name column and type a name for the variable.
4. 1In the Variable Value column, set the variable value.
You can specify:

» Simple environment variable: These are applied to native process without any
modification. For example, simpleEnv = simpleEnvValue.

¢ Substitute environment variable: One environment can substitute value of other
environment variable. For example, dependentEnv = %simpleEnv% .

* Multi-level substitution environment variable: Multiple substitutions can be applied in
one environment variable. For example,

simpleEnv = simpleEnvValue

pathSeparator = :

TIBCO ActiveMatrix C++ Component Development

Environment Variables:

Variable Name
simpleEny
dependentEny
substvarEnv
pathSeparator
FATH
multipleSubstitution
LD_LIBRARY_PATH

Using Environment Variables

multipleSubstitution =
/opt/userApp/lib%pathSeparator%/opt/mysoftware/lib%pathSeparator%%simpleEnv
%

At runtime native process receives multipleSubstitution =
/opt/user App/lib:/opt/mysoftware/lib:simpleEnvValue (that is, substituted value of
substitution variables)

Substitute variable use in environment variables. multiple substitutions can be applied
in one environment variable. For details about configuration, refer to the 7TBCO
ActiveMatrix Composite Development guide.

To use substitute variable, perform the following steps:

1.

AN i

In TIBCO Business Studio, select the C++ component and create a component
property. For example, envSubstvar.

Create a composite property. For example, substvar_property.
Link the component property to the composite property.
Create a substitution variable. For example, string_svar.
Link the composite property to the substitution variable.

Use the component property name in the Environment Variable section. For example,
Environment Variable = substvarEnv, Value = %envSubstvar%.

Variable Value =1 |
simpleEmnvvalue
YsimpleEnvys

WenvSubstvarys 2

fhomejusertepathSeparatori/opt/mysoftware
foptfuserApp/lib¥pathSeparatorys/opt/mysoftware/lib%pathSeparator%®envsubstvarys
wmultipleSubstitution¥s

[D]

TIBCO ActiveMatrix C++ Component Development

39

40 | Chapter 3 C++ Components

Packaging C++ Components

See TIBCO ActiveMatrix Composite Development for details on how to create a
Distributed Application Archive (DAA) from a composite.

TIBCO ActiveMatrix C++ Component Development

Chapter 4

Topics

C++ Component Implementations | 41

C++ Component Implementations

This chapter describes how to generate and work with a C++ component implementation.

* Opening a C++ Component Implementation, page 42

* Generating a C++ Component Implementation, page 43
* Generate C++ Component Implementation Reference, page 48
* Completing a C++ Component Implementation, page 49
* Building a C++ Component Implementation, page 52

* Reusing a C++ Component Implementation, page 56

* Debugging a C++ Component Implementation, page 57
* Accessing Context Parameters, page 59

* Referencing External Libraries, page 69

* Mapping, page 70

* Troubleshooting, page 74

TIBCO ActiveMatrix C++ Component Development

42 | Chapter 4 C++ Component Implementations

Opening a C++ Component Implementation

Choose an initial control and follow the relevant procedure.

Canvas Double-click the component.

Canvas Right-click the component and select Open Implementation.

Project Explorer Right-click the implementation file and select Open With >
C/C++ Editor.

The implementation file opens in the C/C++ Editor.

TIBCO ActiveMatrix C++ Component Development

Generating a C++ Component Implementation | 43

Generating a C++ Component Implementation

1. Choose an initial control and follow the relevant procedure.

Control Procedure

Properties View 1. In the Validation Report area on the General tab of the

component’s Property View, click the fix... link.

2. Select Generate C++ Implementation.

Canvas Right-click the component and select Quick Fixes > Generate
C++ Implementation.

Canvas Right-click the component and select Generate C++
Implementation.

Problems View 1. In the Problems view, right-click an error of the form

Component "componentName" is not configured. and select Quick
Fixes.

2. In the Quick Fix dialog, select Generate C++
Implementation.

3. Click Finish.

The Code generation details dialog displays.

2. Complete the Generate C++ Component Implementation Reference on page 48
dialog.

3. Click Finish.

TIBCO Business Studio generates header files and an implementation skeleton file
containing fields and methods representing the service or reference and stub code. The
C++ project contains the following files and folders:

* A folder named src containing:

— A folder named application containing an implementation header and skeleton class
file and serialization class factory files. For information on contents of the header
and skeleton class files, see Using Services in a C++ Component on page 29, Using

TIBCO ActiveMatrix C++ Component Development

44 | Chapter 4 C++ Component Implementations

References in a C++ Component on page 31, and Using Properties in a C++
Component on page 33.

— A folder named ProjectNamespace, where ProjectNamespace is the namespace you
specified, containing the data binding classes for converting between C++ and
ActiveMatrix data types.

— A folder named npc1_npc2_npc3...npcn, where NPCi is a namespace path component
for the namespace defined in the WSDL file, containing the interface header file
that represents the service or reference defined in the WSDL file and for references
a proxy implementation class. If namespace comes from xsd, xsd_ is prefixed to
the generated namespace; and if namespace comes from WSDL, wsdl_ is prefixed
to the generated namesapce. For example if the namespace defined in the WSDL
file is ns.tibco.com.Hello, the folder is named wsdl ns_tibco_com_hello. The folder
names are equivalent to C++ namespaces in the generated code.

* Visual Studio project files named ProjectName_ve8.veproj or ProjectName_vc9.veproj and a
GNUMake Makefile named ProjectName.GNUMakefile, Where ProjectName is the project
name you specified in. For information on how to build with the files, see Building a
C++ Component Implementation on page 52.

Once a C++ component implementation has been generated, renaming projects,

A namespaces, classes, services, and references is not supported. Changing any names
results in loss of component to implementation class mapping, loss in connections to
other components, and so on.

Abstract Code Generation

When you generate the C++ component implementation, the abstract header file
AbstractSamplelmplLh is generated in the src\application folder. This file contains the property get
and set methods, and proxy methods for the references.

Concrete implementation is not regenerated if you change the component configuration.
Only abstract code section is regenerated, without affecting the user code after
regenerating code for any wsdl/xsd contract change.

TIBCO ActiveMatrix C++ Component Development

Generating a C++ Component Implementation | 45

Code Generation for Service, Reference, and Property

Service Code Generation

TIBCO Business Studio generates a folder named npcl_npc2_npc3...npcn, where npci is a
namespace path component for the namespace defined in the WSDL file, containing the
interface header file named ServicePortTypelnterface.h that represents the service defined in
the WSDL file. For example, if the namespace defined in the WSDL file is ns.tibco.com.Hello,
the folder is named wsdl_ns_tibco_com_hello. The folder names are equivalent to C++
namespaces in the generated code.

TIBCO Business Studio creates an implementation header file and a skeleton
implementation class and adds fields or methods or both that represent the operations
defined in the port type. The class declaration and type of the fields and methods depend
on the MEPs of the operations:

In-*

Namespace::responseType* ImplClass::operation(const Namespace::parameterType& parameters) throw
(TIBAMX CORE NAMESPACE::TibcoRuntimeException)

{
I8

return null;

}

TIBCO Business Studio also adds life cycle method skeletons. See Handling Life Cycle
Events on page 49.

Reference Code Generation

TIBCO Business Studio generates a folder named npcl_npc2_npc3..npcn, where npci is a
namespace path component for the namespace defined in the WSDL file, containing the
interface header file PortTypeReferenceNameProxy.h that represents the reference defined in
the WSDL file and a proxy implementation class named
ReferencePortTypeReferenceNameProxy.cpp. For example if the namespace defined in the
WSDL file is ns.tibco.com.Hello, the folder is named wsdl ns_tibco_com_hello. The folder
names are equivalent to C++ namespaces in the generated code.

TIBCO Business Studio creates an implementation header file and skeleton
implementation class and adds fields or methods or both that represent the operations
defined in the port type. The class declaration and type of the fields and methods depend
on the MEPs of the operations.

In-*

<referenceProxyGetterSetter generated="YES" name="ReferenceName_proxy">

<%/

Namespace::ReferencePortTypeReferenceNameProxy& getReferenceName_proxy()
{

TIBCO ActiveMatrix C++ Component Development

46

Chapter 4 C++ Component Implementations

ReferenceName_proxy.setComponentContext(&m_componentContext);
return ReferenceName_proxy;

}

J—

</referenceProxyGetterSetter>

TIBCO Business Studio also adds life cycle method skeletons. See Handling Life Cycle
Events on page 49.

Property Code Generation
TIBCO Business Studio adds the following to the implementation header file:
* Property declaration
* Property accessor methods

* Property initializer The property gets initialized during component initialization
through the setter method. You cannot use the setter method.
* >
<MemberVariables>
<referenceProxy generated="YES" name="ReferenceName_proxy">
<%/
Namespace::ReferencePortTypeReferenceNameProxy ReferenceName_proxy;
o>
</referenceProxy>
<propertyDefinition generated="YES" name="libpath">
<%/

std::string libpath;

[¥-->
</propertyDefinition>
</MemberVariables>
<l--*/

/¥ >

<privateSection>

<propertySetter generated="YES" name="libpath">
<I--*/

void setLibpath(const std::string & cx_value)

{

libpath = cx_value;

}

[*->
</propertySetter>
</privateSection>
<!--*/

<propertyGetter generated="YES" name="libpath">
<I--*/

const std::string & getLibpath() const

{

return libpath;

TIBCO ActiveMatrix C++ Component Development

Generating a C++ Component Implementation | 47

}

[*-->
</propertyGetter>

TIBCO ActiveMatrix C++ Component Development

48 | Chapter 4 C++ Component Implementations

Generate C++ Component Implementation Reference

Field

Code Generation Details

Description

Project

The name of the C++ project to contain the implementation.

Default: sample SOAProjectName.

Source Location

The name of the source folder in the C++ project.

Default: src.

Namespace The name of the namespace to contain the data binding classes.
Default: SampleNamesapce
Class The name of the implementation class.

Default: Samplelmpl

Use default location for the
generated super-class

Default: Checked

Super-class class

The name of the abstract superclass of the implementation class.

Default: AbstractSampleImpl

TIBCO ActiveMatrix C++ Component Development

Completing a C++ Component Implementation | 49

Completing a C++ Component Implementation

To complete the implementation of a C++ component you complete the generated
methods. This section describes the generated methods and how to log from a C++
component implementation.

Handling Life Cycle Events

The ActiveMatrix runtime exposes component life cycle events—Init and Destroy—to
component implementations. See TIBCO ActiveMatrix Composite Development for
details on handling life cycle events.

TIBCO Business Studio automatically adds the following life cycle methods to generated
C++ classes when you add a service or reference to a component developed in a top-down
manner:

void Samplelmpl::init() throw (TIBAMX CORE NAMESPACE::ApplicationException)
{
}

void SampleImpl::destroy() throw (TIBAMX_CORE_NAMESPACE::ApplicationException)

{

}

Invoking a Reference Operation

When you add an In-* reference to a C++ component, TIBCO Business Studio adds a field
and accessor methods to the component’s header file. To invoke the reference, add the
statement ReferenceName_proxy().operation, where ReferenceName is the name of the
reference and operation is the name of the operation. For example:

XSD_COM_TIBCO_MATRIX_QA_XSD_PURCHASEORDER::PurchaseOrderT*
PurchaseOrderImpl::operation(const XSD_COM_TIBCO_MATRIX_QA_XSD PURCHASEORDER::PlaceOrderT&
inPart) throw (TIBAMX_CORE_NAMESPACE::TibcoRuntimeException)

{

return getPurchaseOrderPort proxy().operation(inPart);

}

For more details, refer Purchase Order Application, page 7.

TIBCO ActiveMatrix C++ Component Development

50 | Chapter 4 C++ Component Implementations

Accessing a Property

Logging

When you add a property to a C++ component TIBCO Business Studio adds a field and
accessor methods to the component’s header file. To access the property in the component
implementation, invoke the accessor methods. For example:

XSD COM TIBCO MATRIX QA XSD PURCHASEORDER::PurchaseOrderT*
PurchaseOrderImpl::operation(const XSD_COM_TIBCO_MATRIX_QA_XSD PURCHASEORDER::PlaceOrderT&

inPart) throw (TIBAMX_CORE_NAMESPACE:: TibcoRuntimeException)

{
I8

std::cout << “Property value = ” << this->getProperty1() << std::endl;

return getPurchaseOrderPort_proxy().operation(inPart);

}

For more details, refer Purchase Order Application, page 7.

ActiveMatrix C++ Implementation Type supports logging to standard out and using a
logging API. For simple demonstration applications, you can log to standard out.
However, for product applications you should use the logging API.

Standard Output and Error Logging

&

To log messages from a C++ component implementation to the standard output stream
prepend a string representing the log level —INFO:, DEBUG:, WARN, ERROR:—to the
message. For example, to log a message at the INFO log level, the syntax is:

cout << "INFO: Show this message" << endl;

* No space is allowed between double quotes and the logging level. For example, " WARN: is not allowed.

¢ endl must be the final element in the stream.

A message with no log level string is logged at the DEBUG level:
cout << "Show this message" << endl;

To control where log messages are directed, you set the logging configuration for the C++
component that contains the component implementation. For information on logging
configurations, see Logging -> Logging Configurations in 7/BCO ActiveMatrix
Administration.

After you change the log level for a C++ component you must restart the DAA containing
the component.

TIBCO ActiveMatrix C++ Component Development

TIBCO ActiveMatrix Logging

Completing a C++ Component Implementation

TIBCO ActiveMatrix platform supports logging using the ActiveMatrix C++

Implementation Type logging APIs.

/**********************************

Include section
**********************************/

#include "tibamx/utils/Logger.h"

/**********************************

code section
**********************************/

TIBAMX_CORE_NAMESPACE::Logger m_logger;

if (m_logger.isDebugEnabled())

{
std::string logMessage("This is sample string message");
m_logger.debug(logMessage);

}

You can log messages to ERROR, WARN, INFO, and DEBUG level.

TIBCO ActiveMatrix C++ Component Development

51

52 | Chapter 4 C++ Component Implementations

Building a C++ Component Implementation

&

You can build a C++ component implementation in Microsoft Visual Studio or TIBCO
Business Studio. This section describes supported platforms, compilers, and preprocessor
options, how to build projects using the Visual Studio projects and makefile generated by
TIBCO Business Studio, and how to configure an empty Visual Studio project to build
C++ component implementations.

In Microsoft Visual Studio, you can build C++ component implementations in 32-bit or
64-bit. Select Win32 or X64.

C++ Component Implementation Options

This section describes options for compiling and packaging a C++ component
implementation. For details of the platforms and corresponding compilers that should be
used to build the library, refer TIBCO ActiveMatrix® Implementation Type for C++
Installation guide.

Building a C++ Component Implementation in Microsoft Visual Studio

For C++ components developed in a top-down manner, you use the Visual Studio project
files generated by TIBCO Business Studio to develop and build the component
implementations. TIBCO Business Studio generates project files for Microsoft Visual
Studio 2005 with Visual C++ 8.0 and Microsoft Visual Studio 2008 with Visual C++ 9.0.

Before compiling projects, right-click on the project and select Properties >
Configuration Properties > Linker > Input > Additional Dependencies and add

icuuc.lib.

Visual C++ 8.0 Project
To build a C++ component implementation in Visual Studio 2005 with Visual C++ 8.0:

1. Set TIBCOAMX_ CPP_CONTAINER_HOME t0 AMX_HOME/amx_it_cpp/3.2/ in System
environment variables.

2. If Visual Studio 2005 is the default system editor for veproj files, double-click the
projectname_ve8.veproj file. Otherwise, start Visual Studio, select File > Open >
Project/Solution, navigate to the project file, and click Open.

3. Build the project.

For C++ components developed in a bottom-up manner, you must manually configure as
follows:

TIBCO ActiveMatrix C++ Component Development

Building a C++ Component Implementation

1. If Visual Studio 2005 is the default system editor for vcproj files, double-click the
projectname_ve8.veproj file. Otherwise, start Visual Studio, select File > Open >
Project/Solution, navigate to the project file, and click Open.

2. Copy the abstract implementation .h files and implementation files to the generated
C++ project, and include the file in the MSVC++ 8.0 project file.

3. Build the project.

Visual C++ 9.0 Project
To build a C++ component implementation in Visual Studio 2008 with Visual C++ 9.0:

1. Set TIBCOAMX_CPP_CONTAINER_HOME t0 AMX_HOME/amx_it_cpp/3.2/ in system
environment variables.

2. If Visual Studio 2008 is the default system editor for veproj files, double-click the
projectname_ve9.veproj file. Otherwise, start Visual Studio, select File > Open >
Project/Solution, navigate to the project file, and click Open.

3. Build the project.

For C++ components developed in a bottom-up manner, you must manually configure as
follows:

1. If Visual Studio 2008 is the default system editor for vcproj files, double-click the
projectname_ve9.veproj file. Otherwise, start Visual Studio, select File > Open >
Project/Solution, navigate to the project file, and click Open.

2. Copy the abstract implementation .h files and implementation files to the generated
C++ project, and include the file in the MSVC++ 9.0 project file.

3. Build the project.

Building a C++ Component Implementation Using GNU Make
To build a C++ component implementation using GNU Make:
1. Set ccc to the path to the supported compiler. For example, CCC=g++ on Linux.

2. Set PORT to one of the supported platform types: w32, w64, s0132, so0l64, solx86 32,
solx86 64, linux32, linux64, hpuxia64.

On Windows, set environment variable DEBUG to true for building debug libraries.

3. Set TIBCOAMX_CPP_CONTAINER_HOME t0 AMX_HOME/amx_it cpp/3.2/ in system
environment variables.

4. Invoke gmake -f projectname.GNUMakefile OF make -f projectname.GNUMakefile.

TIBCO ActiveMatrix C++ Component Development

53

54 | Chapter 4 C++ Component Implementations

Building a C++ Component Implementation Using Ant
To build a C++ component implementation using Ant:

1. Set TIBCOAMX_CPP_CONTAINER_HOME t0 AMX_HOME/amx_it_cpp/3.2/ in system
environment variables.

2. Run Ant. By default, 32-bit release library are built. For 32-bit debug, use ant
buildWithDebug. For 64-bit release, use ant 64bit. For 64-bit debug, use ant
64bitDebug.

Building a C++ Component Implementation Using Make
To build a C++ component implementation using Solaris Make:

1. Set TIBCOAMX_CPP_CONTAINER_HOME t0 AMX_HOME/amx_it_cpp/3.2/ in system
environment variables.

2. Invoke make -f projectname.solMakefile.

Building a component implementation using Make is available only on Solaris.

&

Set Preferred Build Artifacts and Build Method

The build process generates the artifacts selected in the Windows > Preferences page. To
set the preferred build method and build artifacts:

1. In TIBCO Business Studio, click Window > Preferences.

TIBCO ActiveMatrix C++ Component Development

Building a C++ Component Implementation I 55

2. In the Preferences page, click TIBCO SOA Platform > C++ IT.

jtvpe Fiker text CEE a5 -

e Y 1 0
i ?pr'”g Al e artacts
- T eanm 7
- TIBCO Javascript ¥ ant v ‘makefile
- TIBCO S0& Platfarm IV wisual C++ 8.0 ¥ isual C++ 9.0

Bl Composite Diagram ¥ Solaris Make

..... '(_:|i||:|'IT & :

- Mediation IT =~ Build Method

f# RunDebug Composite £ eoT
- TIBCO ¥Path o

Wisual C++ 5.0
- TIBCOmmurity RSS =2 _
[Walidation " Wisual C++ 9.0
- Web Installation Birectory:
- \Web Services :
- ¥Doclet | C:YProgram Files\Microsoft Visual Studio 5 Browise |
- ML :
- Wbk —_
= -
: Restare Defaults Apply

4| 1 v | |
(7 o | concel |

3. Select the build artifacts that you require and choose a build method. The installation
directory field contains the installation location of the compilers.

4. Click OK.

Generate C++ Artifacts

To generate any of the artifacts at a later point, right-click the C++ component and select
Generate C++ Artifacts > C++-artifact, where C++-artifact is one of:

— Ant script

— MakeFile

— VC8 Project file
— VC9 Project file
— Solaris MakeFile.

TIBCO ActiveMatrix C++ Component Development

56 | Chapter 4 C++ Component Implementations

Reusing a C++ Component Implementation

You can reuse an existing C++ implementation generated previously by reconfiguring the
component to use the existing component implementation. Multiple components can then
be configured to share the same implementation.

See Configuring a C++ Component on page 25 for configuration details.

TIBCO ActiveMatrix C++ Component Development

Debugging a C++ Component Implementation | 57

Debugging a C++ Component Implementation

This section describes the procedures for debugging a C++ component implementations in
Visual Studio.

Debugging in Microsoft Visual Studio
To debug C++ component implementations:
1. Open the project containing the component implementation in Visual Studio.
2. Create a debug application library:
a. Inthe Active solution configuration drop-down list, select Debug and click Close.
b. Click OK.
c. Rebuild the application shared library.

3. On Microsoft Windows platform, edit the NativeTemplate.tra file located at
TIBCO_HOME\amx_it_cpp\3.2\bin as follows:

a. Comment the following lines in bold:
Windows C++ IT release shared library. Uncomment this and comment upper line for windows release version of
C++ container.
application.library=tibcoamx-native.dll
tibco.env.extensionLibraries=tibcoamx-cppit

b. Uncomment the following lines in bold:

Windows C++ IT debug shared library. Uncomment this and comment upper line for windows debug version of
C++ container.

#application.library=tibcoamx-nativeD.dll

#tibco.env.extensionLibraries=tibcoamx-cppitD

¢. Save and close the file.

4. In ActiveMatrix Administrator, undeploy the application and then redeploy. See
TIBCO ActiveMatrix Administration for details on how to deploy and redeploy
applications.

5. In Visual Studio, attach to the process
tibamx_EnvironmentName NodeName C++ImplementaionProjectName_ComponentName.exe

6. Set a breakpoint in the application.

Send a request to the service implemented by the application library. The debugger will
open at the breakpoint.

TIBCO ActiveMatrix C++ Component Development

58 | Chapter 4 C++ Component Implementations

Debugging in UNIX Environment

1. Attach to the process
tibamx_EnvironmentName_NodeName_C++ImplementaionProjectName_ComponentName

using preferred debugger.
2. Set a breakpoint in the application.

3. Send arequest to the service implemented by the application library. The debugger
will stop at the breakpoint.

Debugging Init Life Cycle Method of C++ Component
To debug the init() method on Windows or UNIX, you can:
1. Open the NativeTemplate.tra file from the TITBCO_HOME/amx_it_cpp/3.2/bin folder.
2. Set the value for the following property in msec:
tibco.env.WAIT_BEFORE_CPP_INIT
For example,
tibco.env.WAIT_BEFORE_CPP_INIT=60000

Setting the above property stops the container for 60 seconds before invoking the init()
method, and allows you to connect debugger to the process
tibamx_EnvironmentName NodeName C++ImplementaionProjectName_ComponentName.

Optionally, you can set the value of the WAIT_BEFORE_CPP_INIT property at component level
% by setting it as environment variable. See Using Environment Variables on page 38 for
details.

TIBCO ActiveMatrix C++ Component Development

Accessing Context Parameters | 59

Accessing Context Parameters

An abstract WSDL models an operation input, operation's output, operation's fault(s)
messages. It does not model the transport headers, security context, binding headers (for
example, SOAP headers). A component implementation may require access to such
information in addition to the values passed in the abstract WSDL operation messages.

TIBCO ActiveMatrix provides a mechanism for providing access to the information that
does not come from the abstract WSDL called a context parameter. A context parameter
maps information available to a binding to properties in a component implementation.

To access SOAP headers and transport information for a binding, you must configure the
context parameters on the binding and then update the component context.

See TIBCO ActiveMatrix Composite Development for details on working with context
parameters.

To add context parameters to a C++ component:
1. Select the component service and then click the General tab in the Properties view.
2. Click the ':::' Add button to the right of the table in the Context Parameters areca.

3. Enter the details for the context parameter.

Name The name of the context parameter

Operations The operations in the port type to which the parameter applies.
Direction The direction of the messages: Input, Output, Fault.

Type The type of the parameter: Basic, Message, Bag.

Definition Basic: String, Int, Double

Message: A message type in the operation.

TIBCO ActiveMatrix Implementation Type for C++ does not
support Date.

SOAPException The FaultCode and FaultMessage in responseContext.

C++ component does not generate any artifacts for the context parameters added to a
binding. You can use the context parameters in the implementation user code at runtime.

TIBCO ActiveMatrix C++ Component Development

60 | Chapter 4 C++ Component Implementations

Accessing Basic Context Parameters
Includes

Add the following include statements
#include "tibamxcpp/core/ComponentContext.h"

Retrieving a Context Parameter from a Request

1. Retrieve the component's request context:

TIBAMX CPP_NAMESPACE::ComponentContext& componentContext = getComponentContext();
TIBAMX_CPP_NAMESPACE::StringRequestContext* requestContext =componentContext.getRequestContext();

2. Retrieve the parameter from the request context:

std::string parameterName("parameterName");
out_variableType out_variable;
requestContext->getParameter(parameterName, out_variable);

where out_variable can take the values std::string, int, boolean, float, double and so on.

Example:

TIBAMX CPP_NAMESPACE::ComponentContext& componentContext = getComponentContext();
TIBAMX_CPP_NAMESPACE::StringRequestContext* requestContext= componentContext.getRequestContext();
std::string p1_param("p1");

std::string p1_value;

requestContext->getParameter(pl_param,pl_value);

std::cout << "INFO: Parameter value =" << pl value << std::endl;

Setting a Context Parameter in a Response
1. Retrieve a replycontext from the original request context:
TIBAMX_CPP_NAMESPACE::StringReplyContext* replyContext = requestContext->getReplyContext();
2. Set a parameter on the reply context:

std::string parameterName("parameterName");
replyContext->setParameter(parameterName, parmeterValue);

Example:

TIBAMX_CPP_NAMESPACE::ComponentContext& componentContext = getComponentContext();
TIBAMX_CPP_NAMESPACE::StringRequestContext* requestContext= componentContext.getRequestContext();

// Set the parameter on the reply context.

TIBAMX CPP_NAMESPACE::StringReplyContext* replyContext = requestContext->getReplyContext();
std::string p2_param("p2");

replyContext->setParameter(p2_param, "Value for outbound parameter");

Setting a Context Parameter in a Reference Request

1. Create a reference request context:

TIBCO ActiveMatrix C++ Component Development

Accessing Context Parameters | 61

TIBAMX_CPP_NAMESPACE::StringRequestContext* referenceRequestContext =
componentContext.createRequestContext(requestContext);

2. Set a parameter on the reference request context:

std::string parameterName("parameterName");
referenceRequestContext->setParameter(parameterName, parmeterValue);

3. Set the request context on the component's context to the reference request context:
componentContext.setRequestContext(referenceRequestContext);

4. Invoke a reference.

this->getReferenceName_proxy().operationName(parameters);

Example:

TIBAMX_CPP_NAMESPACE::ComponentContext& componentContext = getComponentContext();
TIBAMX_CPP_NAMESPACE::StringRequestContext* requestContext= componentContext.getRequestContext();

// Creating reference request context.
TIBAMX_CPP_NAMESPACE::StringRequestContext* referenceRequestContext=
componentContext.createRequestContext(requestContext);

std::string p4_param("p4");

referenceRequestContext->setParameter(p4 param,"p4 parameter value");
componentContext.setRequestContext(referenceRequestContext);

// Calling the reference.
this->getReferenceName_proxy().operationName(parameters);

Retrieving a Context Parameter from a Reference Response

1. Retrieve a reply context from the reference request context:

TIBAMX_ CPP_NAMESPACE::StringReplyContext* referenceReplyContext =
referenceRequestContext->getReplyContext();

2. Retrieve a parameter from the reply context:

std::string parameterName("parameterName");
out_variableType out_variable;
referenceReplyContext->getParameter(parameterName, out_variable);

Example:

TIBAMX_CPP_NAMESPACE::ComponentContext& componentContext = getComponentContext();
TIBAMX_CPP_NAMESPACE::StringRequestContext* requestContext= componentContext.getRequestContext();

// Creating reference request context.

TIBAMX CPP_NAMESPACE::StringRequestContext* referenceRequestContext=
componentContext.createRequestContext(requestContext);

std::string p4_param("p4");

referenceRequestContext->setParameter(p4 param,"p4 parameter value");
componentContext.setRequestContext(referenceRequestContext);

// Calling the reference.
this->getReferenceName_proxy().operationName(parameters);

TIBCO ActiveMatrix C++ Component Development

62 | Chapter 4 C++ Component Implementations

TIBAMX_CPP_NAMESPACE::StringReplyContext* referenceReplyContext =
referenceRequestContext->getReplyContext();

std::string p4_param("p4");

std::string p4_value;

referenceReplyContext->getParameter(p4_param, p4_value);

Accessing Message Context Properties

Includes

Add the following include statements
#include "tibamxcpp/core/ComponentContext.h"
#include "tibamx/databinding/cppdom/xml/XmlAny.h"

Retrieving a Message Context Parameter from a Request

1. Retrieve the component's request context:

TIBAMX_CPP_NAMESPACE::ComponentContext& componentContext = getComponentContext();
TIBAMX_CPP_NAMESPACE::StringRequestContext* requestContext =componentContext.getRequestContext();

2. Retrieve the parameter from the request context:

std::string parameterName("parameterName");
TIBAMX_CORE_NAMESPACE:: XmlAny* xmlAny = requestContext->getParameterXml(parameterName);

3. Accessing message Context using Xerces-c DOM APIs
XERCES CPP NAMESPACE::DOMNode* node = xmlAny->getDomNode();
Example:

TIBAMX_CPP_NAMESPACE::ComponentContext& componentContext = getComponentContext();

TIBAMX CPP_NAMESPACE::StringRequestContext* requestContext= componentContext.getRequestContext();
std::string p1_param("p1");

TIBAMX_CORE_NAMESPACE:: XmlAny* xmlAny = requestContext->getParameterXml(pl_param);

const XERCES CPP_NAMESPACE::DOMNode* node = xmlAny->getDomNode();

std::cout << "WARN: Root element = " << XmlUtils::transcode(node->getLocalName()) << std::endl;
DOMElementlterator itr(node->getChildNodes());

while(itr.hasNextElement()) {

std::cout << "WARN: Element = " << itr.getNextElementName() << std::endl;

itr.getNextElement();

}

4. Accessing Message Context through C++ Object serialization. If you know what
XML is in MessageContext, you can use the C++ object serializiation to retrieve the
message in C++ format.

Example:

TIBAMX CORE NAMESPACE::DeSerializerPtr deserializer =
ApplicationSerializerFactory::getDeserializerFromQName(const_cast<TIBAMX_ CORE_NAMESPACE::QName&>(
XSD COM TIBCO NS HELLO::HelloHeader::cx_type));

XSD_COM_TIBCO NS HELLO::HelloHeader* helloHeader =
(XSD_COM_TIBCO_NS_HELLO::HelloHeader*)requestCtx->getParameter(parameter, deserializer);

TIBCO ActiveMatrix C++ Component Development

Accessing Context Parameters | 63

Setting a Message Context Parameter in a Response
1. Retrieve a replycontext from the original request context:

TIBAMX_CPP_NAMESPACE::StringReplyContext* replyContext = requestContext->getReplyContext();
2. Set a parameter on the reply context:

std::string parameterName("parameterName");
TIBAMX_CORE_NAMESPACE:: XmlAny* outMessageContext = new
TIBAMX CORE NAMESPACE:: XmlAny(xmIMessage,xmlMessageLength);
replyContext->setParameter(parameterName, outMessageContext);

TIBCO ActiveMatrix C++ Component Development

64

Chapter 4 C++ Component Implementations

Accessing Bag

Example:

TIBAMX_CPP_NAMESPACE::ComponentContext& componentContext = getComponentContext();
TIBAMX_ CPP_NAMESPACE::StringRequestContext* requestContext= componentContext.getRequestContext();

/1
// Setting Message Context through C++ Object serialization.
/1
TIBAMX_CPP_NAMESPACE::StringReplyContext* replyContext = requestCtx->getReplyContext();

TIBAMX CORE NAMESPACE:: XmlAny* outMessageContext = new TIBAMX CORE NAMESPACE::XmlAny();

XSD COM TIBCO NS HELLO::HelloHeader* returnHelloHeader = new
XSD_COM_TIBCO_NS_HELLO::HelloHeader();
returnHelloHeader->setRevision("10.30");
returnHelloHeader->setVersion("1.1.30");
TIBAMX_CORE_NAMESPACE::SerializerPtr serializer =

ApplicationSerializerFactory::getSerializerFromQName(const_cast<TIBAMX_CORE_NAMESPACE::QName&>(XS
D_COM_TIBCO_NS_HELLO::HelloHeader::cx_type));
outMessageContext->setObjectAsAny("htns:helloHeaderElement", "http://ns.tibco.com/Hello/",serializer,
returnHelloHeader);replyContext->setParameter("contextParameter3", outMessageContext);

/I
// Setting Message Context through adding plain xml message.
/!
char outMessage[] = "<tns:helloHeaderElement
xmlns:tns=\"http://ns.tibco.com/Hello/\"><tns:version>1.1.30</tns:version><tns:revision>10.30</tns:revision></tns:he
lloHeaderElement>";

TIBAMX CORE NAMESPACE:: XmlAny* outMessageContext = new

TIBAMX_ CORE_NAMESPACE:: XmlAny(outMessage,strlen(outMessage));
replyContext->setParameter("contextParameter3",outMessageContext);

Context Properties

Includes

Add the following include statements
#include "tibamxcpp/core/ComponentContext.h"

Retrieving a Bag Context Parameter from a Request

1. Retrieve the component's request context:

TIBAMX_CPP_NAMESPACE::ComponentContext& componentContext = getComponentContext();
TIBAMX_CPP_NAMESPACE::StringRequestContext* requestContext =componentContext.getRequestContext();

2. Retrieve the parameter from the request context:

std::string parameterName("parameterName");
std::map<std::string,void*>* bagContext = requestContext->getParameterMap(parameterName);

TIBCO ActiveMatrix C++ Component Development

Accessing Context Parameters | 65

Setting a Bag Context Parameter in a Response
1. Retrieve a replycontext from the original request context:

TIBAMX_CPP_NAMESPACE::StringReplyContext* replyContext = requestContext->getReplyContext();

2. Set a parameter on the reply context:

std::string parameterName("parameterName");
TIBAMX_CORE_NAMESPACE:: XmlAny* outMessageContext = new
TIBAMX_CORE_NAMESPACE:: XmlAny(xmIMessage,xmlMessageLength);
replyContext->setParameter(parameterName, bagContextMap,parameterTypeQName);

TIBCO ActiveMatrix C++ Component Development

66 | Chapter 4 C++ Component Implementations

Customization of SOAPException

When C++ component is wired (directly or indirectly) to SOAP Binding, C++ service
implementor can customize the SOAPException. C++ container provides an API to build
the SOAPException structure. This needs to be set on the TibcoRuntimeException object.
This allows the C++ service implementor to achieve results similar to:

com.tibco.amf.platform.runtime.extension.SOAPException.

SOAPEXxception Schema

<schema xmlIns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://amxnative.tibco.com/xsd/soapexception”
xmlns:tns="http://amxnative.tibco.com/xsd/soapexception" elementFormDefault="qualified">

<complexType name="SOAPDetail">
<sequence>

<any processContents="skip" />
</sequence>

</complexType>

<complexType name="SOAPCodeType">

<sequence>

<element name="code" type="QName" minOccurs="0" nillable="true"/>
<element name="subcode" type="tns:SOAPCodeType" minOccurs="0"/>
</sequence>

</complexType>

<complexType name="SOAPExceptionDetail">

<sequence>

<element name="reason" type="string" minOccurs="0" maxOccurs="unbounded" />
<element name="node" type="anyURI" minOccurs="0" />

<element name="role" type="anyURI" minOccurs="0" />

<element name="detail" type="tns:SOAPDetail" minOccurs="0" />

<element name="code" type="tns:SOAPCodeType" minOccurs="0"/>

</sequence>

</complexType>

<element name="soapExceptionElement" type="tns:SOAPExceptionDetail" />

</schema>

Example

XSD_COM_TIBCO_NS_EXCEPTIONTEST::InOutResponseElement* ExceptionImpl::inOut(const
XSD COM TIBCO NS EXCEPTIONTEST::InOutElement& parameters) throw
(TIBAMX_CORE_NAMESPACE::TibcoRuntimeException)

{
if(parameters.getIn()->compare("exception") == 0)

{

throwRuntimeException(MyRuntimeException, "This is my exception from implementation");

}

TIBCO ActiveMatrix C++ Component Development

Customization of SOAPException | 67

else if(parameters.getIn()->compare("soapException") == 0)

{
I8

TibcoRuntimeException ex("This is soapExceptionTest from implementation");
TIBAMX CORE NAMESPACE::SOAPExceptionDetail detail;

TIBAMX_ CORE_NAMESPACE::SOAPCodeType& type=detail.addNewCode();
TIBAMX_CORE_NAMESPACE::QName& qname = type.addNewCode();
qname.set_namespace_prefix("pre");

qname.set_local part("local");

gname.set_namespace uri("http://svn.tibco.com");
TIBAMX_CORE_NAMESPACE::SOAPDetail& sdetail=detail.addNewDetail();
const char* anyPayload = "<nativeException>Exception Detail</nativeException>";
TIBAMX_ CORE_NAMESPACE:: XmlAny any(anyPayload,strlen(anyPayload));
sdetail.setValue(any);

TIBAMX CORE NAMESPACE::AnyURI& node=detail.addNewNode();
node.set_uri("http:/svn.tibco.com/myuri");

TIBAMX CORE NAMESPACE::AnyURI& role=detail.addNewRole();
role.set_uri("http://svn.tibco.com/myrole");

TIBAMX_ CORE_NAMESPACE::String& reason = detail.addNewReason();
reason.assign("This is my exception reason from implementation");
ex.setSOAPDetail(detail);

throw ex;

}

XSD_COM_TIBCO_NS EXCEPTIONTEST::InOutResponseElement* result = new
XSD_COM_TIBCO_NS_EXCEPTIONTEST::InOutResponseElement();
result->setOut("Return from ExceptionTest Service");

return result;

}

Default SOAPException Received by SOAP Client
The following output contains TIBCO ActiveMatrix stack trace.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Server</faultcode>

<faultstring>This is my exception from implementation</faultstring>
<faultactor>DefaultRole</faultactor>

<detail>

...ActiveMatrix stack trace here...
</detail>
</SOAP-ENV:Fault>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Customized SOAPException Received by SOAP Client

The following output contains customized SOAPException.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

TIBCO ActiveMatrix C++ Component Development

68 | Chapter 4 C++ Component Implementations

<SOAP-ENV:Fault>

<faultcode xmlns:pre="http://svn.tibco.com">pre:local</faultcode>

<faultstring>This is my exception reason from implementation</faultstring>
<faultactor>http://svn.tibco.com/myrole</faultactor>

<detail xmlns:ctxns="http://xsd.tibco.com/amx/native_context"
xmlns:ns2="http://amxnative.tibco.com/xsd/soapexception"
xmlns:soapexp="http://amxnative.tibco.com/xsd/soapexception">Exception Detail</detail>
</SOAP-ENV:Fault>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

TIBCO ActiveMatrix C++ Component Development

Referencing External Libraries | 69

Referencing External Libraries

To reference external libraries, you must specify the path of the external libraries in the
NativeTemplate.tra file by editing the library path variable for the required platform.

Microsoft Windows tibco.env.PATH
Linux and Solaris tibco.env.LD_LIBRARY PATH
HP-UX tibco.env.LIBPATH

TIBCO ActiveMatrix C++ Component Development

70 | Chapter 4 C++ Component Implementations

Mapping

&

If the use of Integer and Decimal values is limited to small values, you can use performant
way: long int and double. If you use values larger than long int or double, compile the
code with the USE_ XML DECIMAL flag. For details, xsd:Integer usage, page 72.

WSDL to C++ Mapping

When you add a service or reference defined by a WSDL file to a C++ component,
ActiveMatrix C++ Implementation Type generates C++ header and skeleton class files,
mapping types and operations defined in the WSDL file to C++ types and methods. The
mapping performed by ActiveMatrix C++ Implementation Type conforms to the OMG
WSDL to C++ specification available at http://www.omg.org/cgi-bin/doc?ptc/2006-08-01.

All basic data types in XML are defined under namespace
http://www.w3.0rg/2001/XMLSchema. For these types ActiveMatrix C++
Implementation Type generates C++ types in the namespace TIBAMX_CORE_NAMESPACE.

C++ to WSDL Mapping

When you add a service to a C++ component, ActiveMatrix C++ Implementation Type
generates a WSDL file, mapping types and methods defined in C++ header files to XSD
types and WSDL operations. The mapping performed by ActiveMatrix C++
Implementation Type conforms to the Service Component Architecture (SCA) C++ Client
and Implementation V1.00 specification available at
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-c-cpp.

ActiveMatrix C++ Implementation Type maps C++ integer types to XSD types according
to the mappings listed in Table 3.

Table 3 C++ Integer Type to XSD Type Mapping

C++ Type SCA Mapping Implementation Type for C++ Mapping
int xsd:short xsd:int

unsigned int xsd:unsignedShort xsd:unsignedInt

long xsd:int xsd:long

unsigned long xsd:unsignedInt xsd:unsignedLong

TIBCO ActiveMatrix C++ Component Development

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-c-cpp
http://www.omg.org/cgi-bin/doc?ptc/2006-08-01
http://www.w3.org/2001/XMLSchema
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-c-cpp

Mapping | 71

Constraints on Header Files

In addition to the mapping rules, the SCA specification specifies constraints on the classes
defined in C++ header files used for generating SCA-compliant components. The
following sections describe constraints on classes specified in C++ header files and the
data types you can use in the implementation of those services. Constraints on header files
fall into two groups: primary and secondary.

Primary Constraints

Classes violating any primary constraints cannot be exposed as services.
Header files must declare at least one class with:

* At least one public method

* All public methods must be pure virtual

The following keywords and constructs must not be used:

* Macros

* Inline methods

* Friend classes

» Structs

e Unions

Secondary Constraints

Classes violating secondary constraints can be exposed as services, but the methods that
violate constraints are omitted.

* Public methods inherited by a class are not exposed as service operations. If an
inherited method is required, it must be specified in the inheriting class.

* Protected and private methods are not exposed as service operations.
* Constructors and destructors are not exposed as service operations.

* Unnamed parameters are not supported.

+ Unnamed structures are not supported.

* Overloaded methods are not supported.

* Overloaded operators (==, >=, new, and so on) are not supported.

TIBCO ActiveMatrix C++ Component Development

72 | Chapter 4 C++ Component Implementations

Constraints on Data Types

ActiveMatrix C++ Implementation Type converts between ActiveMatrix native data
representation and C++ data types when passing method parameters. Due to this
conversion, which inherently requires data mapping, there are constraints on the types of
data you can use in your C++ applications. All C++ classes passed as return values or
parameters of the methods to be exposed as service operations, must satisfy the
constraints. Failure to do so may result in runtime exceptions, errors in generating stub
code, and incorrect reconstruction of the data.

Binary data Binary data, such as data passed via non-null-terminated char* or char
arrays, is not supported.

void* The void* type is not supported.

char* and char array Parameters and return types are always mapped to xsd:string,
and must be null-terminated. wstring t and wchar_t are not supported.

Unions Unions allow the same memory location to be used for different variables.
For portability, it is recommended that unions not be used in service interfaces.

Pre-processor directives C++ allows for the use of pre-processor directives in order
to control how a C++ header is parsed. For portability it is recommended that
pre-processor directives not be used in service interfaces.

User-defined types (UDT) When used as C++ method return types or parameters,
UDTs must define accessor methods for its member variables. The names of the
methods defined must be of the form set[Name] and get[Name]. A UDT must provide
a default constructor. For example, a C++ method prototype:

long myMethod(AnObject data);

requires the corresponding AnObject class:

class AnObject {

public:AnObject();

std::string getMyString() const;
double getMyDouble() const;
void setMyString(std::string data);

void setMyDouble(double otherData);

In addition, arrays within UDTs are not supported. Instead, classes should use STL
containers to represent collections. STL types should be introduced in a typedef statement.
For example, typedef vector<int> MyVector;

xsd:Integer usage

TIBCO ActiveMatrix Implementation Type for C++ supports two ways of xsd:integer
type usages:

TIBCO ActiveMatrix C++ Component Development

Mapping

Performant way:

Integer types are mapped to basic C++ type:
typedef long double Decimal;

typedef long int Integer;

typedef unsigned long int NonNegativelnteger;

typedef ULongHolder NonNegativelntegerHolder;
typedef LongHolder IntegerHolder;

These XSD data types values are truncated depending on the capacity of C++ datatype.

You can use this mapping, if values greater than these size of mapped C++ data type are
not used.

Support for longer data types: (similar to Biginteger and BigDecimal from
Java)

Integer types are mapped to generated types:
typedef XMLDecimal Decimal;

typedef XMLInteger Integer;

typedef XMLNonNegativeInteger NonNegativelnteger;
typedef XMLNegativelnteger Negativelnteger;

typedef XMLPositiveInteger Positivelnteger;

typedef XMLNonPositivelnteger NonPositivelnteger;
typedef XMLNonNegativeInteger NonNegativelntegerHolder;
typedef XMLInteger IntegerHolder;

typedef XMLDecimal DecimalHolder;

typedef XMLNegativelnteger NegativelntegerHolder;
typedef XMLPositivelnteger PositivelntegerHolder;

typedef XMLNonPositiveInteger NonPositiveIntegerHolder;

This supports for larger values specified in the xsd specifications. There is considerable
degradation of performance. Use this type only if application is using such longer values.

By default, performant way is enabled. You can switch to large values support by
providing USE XML DECIMAL preprocessor during code compilation.

TIBCO ActiveMatrix C++ Component Development

73

74 | Chapter 4 C++ Component Implementations

Troubleshooting

How can | test the libraries in a standalone mode?
To test the library in a standalone mode before deploying the node, do the following:
1. Edit the file NativeTemplate.tra and uncomment the parameters for:

— Container library testing

#tibco.env.AMX_CPP_USER_SHARED_LIBRARY_NAME=sampleCppProject.dll
#tibco.env.AMX_CPP_IMPLEMENTATION_CPP_CLASS=SampleImpl

— Extension ports

#tibco.env.AMX_TCP_CONSUMER_DATA_PORT=12347
#tibco.env.AMX_TCP_PRODUCER_DATA_PORT=12345

2. On UNIX, set the library path variable on the console.
— Solaris and Linux LD LIBRARY PATH
— HP-UX LIBPATH

3. Run the NativeTemplate executable.

On success, the following code is displayed:
TIBCO Native Core started successfully.

On failure, error messages depending on the reason for the failure are displayed.

TIBCO ActiveMatrix C++ Component Development

Deploy and Run C++ Components | 75

Chapter5 Deploy and Run C++ Components

This chapter describes how to develop C++ components in TIBCO Business Studio.

Topics

* Deploying DAA Containing C++ Components, page 76
¢ Running DAA Containing C++ Components, page 77

TIBCO ActiveMatrix C++ Component Development

76 | Chapter 5 Deploy and Run C++ Components

Deploying DAA Containing C++ Components

Before deploying a DAA containing a C++ component, provision the application template
once on every node on which you want to deploy the DAA.

Provisioning the Application Template

To provision the application template:

1.

2
3
4.
5

Start TIBCO ActiveMatrix Administrator.

In the Applications link, click Si*New. The Application Setup dialog appears.
Enter the Application Name.

Select the option An existing application template and click Next.

Select the application template TIBCO ActiveMatrix Cpp Implementation Type Application
Template and click Next.

Click Save and Exit.

The application template with its runtime state "Not Deployed" is added to the list of
applications.

In the application properties area, click the Distribution tab and select the nodes on
which you want to provision the application template.

Click Save and then click Deploy.

To deploy a DAA containing C++ components:

1.

Provision the application template by following the procedure described in
Provisioning the Application Template on page 76.

Upload the DAA containing C++ components by following the standard deployment
procedures. See TIBCO ActiveMatrix Administration for details.

Start or Stop the deployed application.

TIBCO ActiveMatrix C++ Component Development

Running DAA Containing C++ Components

Running DAA Containing C++ Components

Run the DAA containing C++ components by following the standard procedures. See
TIBCO ActiveMatrix Administration for details.

Running the Application Using Rapid Application Development (RAD) Feature

&

To run the C++ application using the rapid application development feature in Eclipse:
1. Create a Run configuration.

2. Configure the Run configuration and add a composite or DAA.

3. Save the run configuration.
4

Deploy and run the application.

You need not add the application template before deploying and running the application.

Process Naming Conventions

When you run a DAA containing C++ components, a new process for every C++
component is spawned. The fully qualified process name has the following default syntax:

%PREFIX% %CONTAINERNAMEY %ENVIRONMENTY %NODENAME% %APPLICATION
NAME%_%COMPONENTNAME%.exe, where PREFIX is set to tibamx.

For example, a project named cpp.helloworld.cpp containing a C++ component named
CppHelloWorldComponent deployed on the Integration Environment and Integration Node will have the
process name:

tibamx_IntegrationEnvironment_IntegrationNode_cpp.helloworld.cpp_CppHelloWorldComponent.exe

To modify the naming convention, edit the following properties in the NativeTemplate.tra file:

tibco.property.amxcpp.process.prefix=tibamx
tibco.property.amxcpp.process.format=2PREFIX% %ENVIRONMENT% %NODENAME% %APPLIC
ATIONNAMEY% %COMPONENTNAME%

You can modify the process naming format by adding or removing the keywords.

Specifying Profilers for Native Processes

You can specify any profilers for native processes by editing the NativeTemplate.tra file. The
profiler arguments can be used to create log files with the profiler name.

TIBCO ActiveMatrix C++ Component Development

77

78

Chapter 5 Deploy and Run C++ Components

For example, if you want to specify Valgrind as a profiler, uncomment and set the
following parameters in NativeTemplate.tra:

#tibco.property. NATIVE_PROFILER=valgrind

#tibco.property. NATIVE_PROFILER ARGS=--leak-check=yes,--log-file=/tmp/2%PROCESS%.log

Specifying Socket Range

You can specify socket range by editing the NativeTemplate.tra file. By default, the C++
container chooses any available socket from system.

If you want the C++ container to choose socket from any specific range, uncomment and
set the following parameters in NativeTemplate.tra:

#tibco.env.amxcpp.socketrange.minlimit=5000

#tibco.env.amxcpp.socketrange. maxlimit=6000

Specifying Custom Temporary Location

The default temporary folder is the system temporary folder. To override temporary folder
for C++, uncomment and set the following parameters in NativeTemplate.tra:

#tibco.property. TEMP_DIRECTORY_LOCATION=/tmp

Changing C++ Threadpool Configuration

&

The internal threading behavior can be modified by editing properties in the
NativeTemplate.tra file. Or these can be configured for each component in the environment
section of TIBCO ActiveMatrix Implementation Type for C++ .

tibco.env.PRODUCER_POOL_MAX_VALUE=1

tibco.env.THREAD POOL_MAX_VALUE=1

Condition should be:

tibco.env.THREAD POOL_MAX_VALUE >= tibco.env.PRODUCER_POOL_MAX_VALUE

While specifying these properties through environment variables, do not specify tibco.env
prior to these properties.

Specifying At Least Once Policy

On configuring the At Least Once policy, TIBCO ActiveMatrix redelivers message on any
exception. You can specify the exceptions for which redelivery should be stopped.

For more details about At Least Once policy, refer TIBCO ActiveMatrix® Service Grid
Component Developer s Guide.

TIBCO ActiveMatrix C++ Component Development

Running DAA Containing C++ Components

To stop message redelivery, perform the following:

1. Provide the name of exception in TIBCO Business Studio for which redelivery needs
to be stopped.

7 Modify the selected policy

Configure "At Least Once' Policy =
Specify the parameters of the palicy, ‘g

Max redelivery count: & - {use 0 For infinite redelivery)

Redelivery delay irterval: ,_D &

Exceptions upon which ko stop redelivery: {use * for all exceptions)

| |

| i';_ Exceptiond

[]Enable error queus

-

i
i

Back

[Finish H Cancel]

2. In C++ implementation, throw this exception after wrapping it with
TibcoRuntimeException.

The following code snippet wrapping and throwing native exception in
TibcoRuntimeException.

try

{

throw DivideByZeroException();

}

catch(DivideByZeroException &dbze)

{

// Retrive reply context.

TIBAMX CPP_NAMESPACE::ComponentContext& componentContext = getComponentContext();
TIBAMX_CPP_NAMESPACE::StringRequestContext* requestContext = componentContext.getRequestContext();
TIBAMX_CPP_NAMESPACE::StringReplyContext* replyContext = requestContext->getReplyContext();

TIBCO ActiveMatrix C++ Component Development

79

80 | Chapter 5 Deploy and Run C++ Components

// Throw exception by wrapping in 'TibcoRuntimeException' exception.

throwRuntimeException(DivideByZeroException,dbze.what());

}

TIBCO ActiveMatrix C++ Component Development

83

Index

A components 23
adding a property 34
accessing a property 51 adding a reference 32
approaches 2 adding a service 30
bottom-up 20, 21 component reference 36
top-down 5 configuring 26

creating 24
deploying 78
packaging 41

C removing a property 35
removing a reference 33
C++ component implementation options 53 removing a service 30
C++ to WSDL mapping 71 running 79
changes from the previous release x updating 27
code generation 46 using environment variables 39
property 47 using properties 34
reference 46 using references 32
service 46 constraints
component implementations 42 data types 73
abstract code generation 45 header files 72
building 53 context parameters
ant 55 accessing 60
GNU Make 54 customer support xv
make 55

Microsoft Visual Studio 53
completing 50

debugging 58 D
generate implementation reference 49
generating 44 debugging in Microsoft Visual Studio 58, 59, 59
opening 43
reusing 57
G

generate C++ artifacts 56

TIBCO ActiveMatrix C++ Component Development

84 | Index

H specifying application library path 37
specifying profilers for native processes 80

handling life cycle events 50 support, contacting xv

| T

invoking reference operation 50 technical support xv

TIBCO_HOME xii
troubleshooting 76

L
logging 51 VvV
Visual C++ 8.0 project 53
Visual C++ 9.0 project 54
o
overview 1
w
WSDL to C++ mapping 71
P

primary constraints 72
process naming conventions 79
provision C++ application template 78

R

referencing external libraries 70
run
C++ application using RAD 79
running DAA containing C++ components 79

S

secondary constraints 72
set build artifacts and build methods 55

TIBCO ActiveMatrix C++ Component Development

	Contents
	Tables
	Preface
	Changes from the Previous Release of this Guide
	Related Documentation
	TIBCO ActiveMatrix Implementation Type for C++ Documentation
	Other TIBCO Product Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Overview
	Introduction
	Approaches to Component Development

	High-level Architecture

	Chapter 2 Development Tutorials
	Top-Down Approach
	Top-Down Approach Samples

	Bottom-Up Approach
	Bottom-Up Approach Samples

	Chapter 3 C++ Components
	Creating a C++ Component
	Configuring a C++ Component
	Updating a C++ Component
	Updating a C++ Implementation
	Using Services in a C++ Component
	Adding a Service
	Removing a Service

	Using References in a C++ Component
	Adding a Reference
	Removing a Reference

	Using Properties in a C++ Component
	Adding a Property
	Removing a Property

	C++ Component Reference
	Specifying the Application Library Name and Library Path
	Using Environment Variables
	Packaging C++ Components

	Chapter 4 C++ Component Implementations
	Opening a C++ Component Implementation
	Generating a C++ Component Implementation
	Abstract Code Generation
	Code Generation for Service, Reference, and Property

	Generate C++ Component Implementation Reference
	Completing a C++ Component Implementation
	Handling Life Cycle Events
	Invoking a Reference Operation
	Accessing a Property
	Logging

	Building a C++ Component Implementation
	C++ Component Implementation Options
	Building a C++ Component Implementation in Microsoft Visual Studio
	Building a C++ Component Implementation Using GNU Make
	Building a C++ Component Implementation Using Ant
	Building a C++ Component Implementation Using Make
	Set Preferred Build Artifacts and Build Method
	Generate C++ Artifacts

	Reusing a C++ Component Implementation
	Debugging a C++ Component Implementation
	Debugging in Microsoft Visual Studio
	Debugging in UNIX Environment
	Debugging Init Life Cycle Method of C++ Component

	Accessing Context Parameters
	Accessing Basic Context Parameters
	Accessing Message Context Properties
	Accessing Bag Context Properties
	Setting a Bag Context Parameter in a Response

	Customization of SOAPException
	SOAPException Schema
	Default SOAPException Received by SOAP Client
	Customized SOAPException Received by SOAP Client

	Referencing External Libraries
	Mapping
	WSDL to C++ Mapping
	C++ to WSDL Mapping
	Constraints on Header Files
	Constraints on Data Types
	xsd:Integer usage

	Troubleshooting

	Chapter 5 Deploy and Run C++ Components
	Deploying DAA Containing C++ Components
	Running DAA Containing C++ Components
	Running the Application Using Rapid Application Development (RAD) Feature
	Process Naming Conventions
	Specifying Profilers for Native Processes
	Specifying Socket Range
	Specifying Custom Temporary Location
	Changing C++ Threadpool Configuration
	Specifying At Least Once Policy

	Index

