
| 1
Addendum to Readme for TIBCO 
ActiveSpaces 2.1.2 Add-On

This addendum describes new software features introduced with the TIBCO 
ActiveSpaces 2.1.2 Add-On.

Topics

• Setting Up ActiveSpaces Routing, page 2

• C Admin Commands, page 5

• TIBCO ActiveSpaces Hawk MicroAgent, page 7

• Cross-Site Replication, page 12
 Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



2 |   Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-On
Setting Up ActiveSpaces Routing

The ActiveSpaces routing feature is implemented by means of a callback function, 
similar to the callback function used with shared-all persistence. Using routing, 
your application forwards updates to another site, and receives a status message 
in return. The operation is blocked until the status is returned.

This section describes:

• Implementing ActiveSpaces Routing, page 2

• Freeing a Router, page 4

Implementing ActiveSpaces Routing
Implementing routing for a space consists of these steps:

1. Enabling Routing in the Space Definition, page 2

2. Creating the Router Object, page 3

3. Declaring a Callback Function, page 3

4. Setting the Router Object on the Space, page 4

Enabling Routing in the Space Definition

To enable routing for a specified space, connect to a metaspace, create a SpaceDef 
object, and then call the tibasSpaceDef_SetRouted() function (C API) or the 
setRouted method (Java API).

The tibasSpaceDef_SetRouted() function is defined as follows:

tibas_status tibasSpaceDef_SetRouted(
    tibasSpaceDef spaceDef,
    tibas_boolean routed);

where:

• spaceDef Specifies the SpaceDef object returned to your application by the 
tibasSpaceDef_Create() function.

• routed Specifies whether the node data is routed. To route data, specify 
TIBAS_TRUE; otherwise, specify TIBAS_FALSE.

A space does not require persistence to be enabled to enable routing. If 
persistence is also enable, both the persister and the router receive callbacks 
before completing an operation.
Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



Setting Up ActiveSpaces Routing | 3
Creating the Router Object

To create a Router Object using the C API, call the tibasRouter_Create() 
function. The tibasRouter_Create() function is defined as follows:

tibas_status tibasRouter_Create(
    tibasRouter* router,
    tibas_onRoute onOpen,
    tibas_onRoute onWrite,
    tibas_onRoute onClose,
    tibas_onRoute onAlter);

where:

• router Returns a router object that can be associated with a space.

• onOpen Specifies the function to be invoked when the 
tibasSpace_SetRouter() function is called to set the router for a space.Your 
application is responsible for making the necessary connections to the routed 
site.

• onWrite Specifies the function to be invoked when the there is a Put or Take 
operation on the node to which data is routed. You function is responsible for 
performing the Put or Take actions that take effect on the other site.

• onClose Specifies the function to be invoked when the connection to another 
node is terminated (the tibasRouter_Free() function is called).

• onAlter Specifies the function to be invoked when a space definition is 
altered.

Declaring a Callback Function

Declare a callback that conforms to the tibas_onRoute typedef (C API) or the 
Router interface (Java API).

The tibas_onRoute callback has the following function prototype:

typedef void (TIBAS_CALL_API *tibas_onRoute) (
    tibasRouter router,
    tibasAction action,
    tibasActionResult result);

where:

• router Specifies the router object returned by the 
tibasSpace_RouterCreate() function.

• action Returns the action that occurred over the routed connection.

The callback definition for a router does not provide an OnRead function. You 
cannot perform Get operations over a routed connection.
 Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



4 |   Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-On
• result Returns the result of the action.

In Java there is no need to declare a function prototype: the Router interface 
provides for methods referenced in the callback.

Setting the Router Object on the Space

After you have configured routing, you must set the Router object for the space. 

To set the Router object for the space, call the tibasSpace_SetRouter() function 
(C API) or the setRouter method (Java API).

The tibasSpace_SetRouter() function is defined as follows:

tibas_status tibasSpace_SetRouter(
    tibasSpace space,
    tibasRouter router);

where:

• space Is a valid space object.

• router Specifies the router object returned by the tibasRouter_Create() 
function.

Java Implementation:

The Java setRouter method has the following signature:
Router setRouter (Router router) throws ASException;

Freeing a Router
When the routed connection has been terminated, you should free the router 
object.

To free the router object using the C API, call the tibasRouter_Free() function. 
The tibasRouter_Free() function is defined as follows:

tibas_status TIBAS_COMMON_API TIBAS_CALL_API tibasRouter_Free(
    tibasRouter* router);

where router specifies the Router object that was used to create the router.

Java Implementation:

Using the Java API, you can free the router by calling the stopRouter method. The 
stopRouter method has the following definition:
void stopRouter (Router router) throws ASException;
Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



C Admin Commands | 5
C Admin Commands

ActiveSpaces 2.1.2 introduces a new C version of the as-admin utility—
as-admin.exe.

This utility is located in the AS_HOME/bin directory and can be invoked by 
navigating to the /bin directory and entering:

./as-admin

The C Admin commands can also be invoked programmatically by calling the 
tibasAdmin_Execute() C API function and specifying the command with the 
admin parameter.

The TibasAdminExecute() function is define as follows:

tibas_status tibasAdmin_Execute(

    tibasAdmin admin,

    char** result,

    tibasMetaspace metaspace,

    const char* cmd);

Command List
The following new commands have been added to the C Admin command set.

Metaspace Commands
• commit transaction  [all | member_name <string> | 

transaction_id <string>]

• rollback transaction [all | member_name <string> | 
transaction_id <integer>]

• (show | describe) metaspaces

• (show | describe) transactions [member_name <string>| state 
('uncommitted' | 'committed' | 'rolled_back')]

Space Commands
• join space <string>

• leave space <string>

• (show | describe) space <string> entries [filter <string>] 
[entry_scope ('all' | 'seeded')] [time_scope ('snapshot' | 
'current')] [prefetch <integer>] [query_limit <integer>]

• (show | describe) space <string> locks [count] [member_name 
<string>] [filter <string>]
 Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



6 |   Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-On
• (show | describe) space <string> size [filter <string>]

• unlock space <string> (entry_id <string>| all [member_name 
<string>] [filter <string>])

Admin Routing Commands:
• execute on member <string> <admin_command>

• execute on members <admin_command>

• execute on proxy <admin_command>

Logging Commands
• set event_log log_level <string> [log_file <string>]

• set file_log log_level <string> [log_file <string>]

• show console_log

• show event_log [log_file <string>]

• show file_log [log_file <string>]

Member Listen Port Connection Commands
• close

• open name <string> listen <string>
Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



TIBCO ActiveSpaces Hawk MicroAgent | 7
TIBCO ActiveSpaces Hawk MicroAgent

The TIBCO ActiveSpaces Hawk Microagent is an ActiveSpaces managed 
application instrumented with the TIBCO Hawk Application Management 
Interface (AMI) protocol and which exposes a set of methods that allow the 
connected Metaspace to be monitored and controlled by TIBCO Hawk tools. The 
ActiveSpaces Hawk Microagent communicates with the TIBCO Hawk Agent by 
using TIBCO Rendezvous as the transport for exchanges of monitored and 
management data to interact with the Metaspace.

With the TIBCO ActiveSpaces Hawk Microagent, you can perform interactive 
monitoring through the Hawk display or automate the execution of the methods 
by creating rulebases to raise alerts and actions performed by the TIBCO Hawk 
Agents. Refer to the Hawk documentation on the concept of a Hawk Microagent. 

You can use the TIBCO ActiveSpaces Hawk Microagent to capture:

• The size, throughput, and growth of a Space monitored by a Hawk rulebase.

• The event on definition or the drop of a Space.

• The joining and leaving of members to the Metaspace as well as member to a 
Space so alerts and corrective actions can be taken. 

Combining the Hawk rules with other TIBCO AMI instrumented applications 
allows you to build a monitoring and management system for all Spaces and 
Members of a Metaspace cluster.

Getting Started
The TIBCO ActiveSpaces Hawk Microagent application is packaged and installed 
as a jar file under the following lib folder:

<TIBCO_HOME>/as/2.1/lib/as-hawk-agent.jar

Before you start the TIBCO ActiveSpaces Hawk Microagent, ensure that the 
TIBCO Rendezvous daemon and the Hawk Agent have already been started on 
the machine. Refer to the TIBCO Hawk documentation for more details.

Start your TIBCO ActiveSpaces application before starting the TIBCO 
ActiveSpaces Hawk Microagent application to monitor your Metaspace cluster. 
The Hawk Microagent application primarily collects statistics information for 
Spaces and Members of your Metaspace by joining the System Spaces as Leech. 
There is no direct access to the data of the User Spaces. 
 Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



8 |   Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-On
To start the TIBCO ActiveSpaces Hawk Microagent, the classpath must include 
the lib folder of both the TIBCO Rendezvous and the Hawk installations. From 
the command line, it accepts the same set of Metaspace connection arguments as 
in the as-agent, such as Metaspace name, Discovery and Listen URL.

Additionally, it accepts parameters to establish connection to the TIBCO 
Rendezvous for communications with the Hawk Agent. The default is at 
port=7474 when it is not specified. Refer to the ActiveSpaces documentation for 
details on the command line arguments of the as-agent.

Here is a typical Unix shell script to start the TIBCO Hawk Microagent:

#!/bin/sh

export LD_LIBRARY_PATH=<AS_HOME>/lib:<RV_HOME>/lib

java -Djava.ext.dirs=<RV_HOME>/lib:<HAWK_HOME>/lib -jar 
as-hawk-agent.jar -metaspace <metaspace>

Help information can also be displayed by including with the -help argument:
java -jar as-hawk-agent.jar -help

Once TIBCO ActiveSpaces Hawk Microagent is successfully started, you can use 
the TIBCO Hawk Display to perform interactive monitor activities on the 
connected.

From the Hawk display, gather all Hawk Microagent registered and discovered 
on the machine. The TIBCO ActiveSpaces Hawk Microagent is displayed as:

ASRuntimeInfo:<metaspace>:<version>

Selecting the TIBCO ActiveSpaces Hawk Microagent displays all the methods 
exposed for this Metaspace connection. Note that you can monitor multiple 
Metaspaces by starting multiple instances of the TIBCO Actives Hawk 
Microagent. Unlike as-agent, where you can start multiple instances to perform 
seeding and operations on User Spaces, you should only have one instance of the 
TIBCO ActiveSpaces Hawk Microagent per Metaspace connection.

ActiveSpaces Hawk Microagent Methods Overview
The TIBCO ActiveSpaces Hawk Microagent provides the following categories of 
monitoring methods:

• Space and Member Statistics

• Space and Member Distributions

• Space Operation Throughput at Application Level

• Space Definition Events

• Metaspace Member and Space Member Events
Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



TIBCO ActiveSpaces Hawk MicroAgent | 9
From the TIBCO Hawk display, select a TIBCO Hawk Microagent. The 
microagent displays all the methods exposed for monitoring the Metaspace 
cluster. You can typically invoke for on-demand request to get the result 
interactively. You can also subscribe to the exposed methods specifying the data 
delivery polling interval. Data delivery interval for Space Definition and Member 
events are not required as it is instrumented based on ActiveSpaces Event 
Listener. In the case of a subscription, it allows you to create a monitoring rule for 
building a Hawk rulebase.

Space and Member Statistics Methods

The following table lists the space and member statistics methods.

The Space Member statistics methods return the result either on a single row or 
multiple rows.

The information reported is equivalent to the statistics information reported by 
the as-admin 'show space' command, which includes Entries, Puts, Gets, and etc. 
Subscribing on these methods from the Hawk console also allows you to chart the 
change history of all the reported attributes. 

Space Distribution Methods
s

Method Argument

getSpaceStatisticsByName SpaceName

getSpaceStatisticsAll    none

getSpaceStatisticsByFilter   SpaceNameFilter with wildcard matches

getMemberStatisticsAll none

Method   Argument

getSpaceDistributionByName SpaceName

getSpaceDistributionAll none

getSpaceDistributionByFilter SpaceNameFilter with wildcard matches

getMemberDistributionAll none
 Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



10 |   Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-On
The Space and Member Distribution methods return the percentage distribution 
of the data either grouped by the Space Members of a Space or grouped by Spaces 
of a Member. You can monitor the distribution of data across Members of a Space. 
Or you can monitor the distribution of Space entries stored grouped by Member.

Space Operation Throughput at Application Level Methods
s

The Space Operation Throughput methods provide the application level 
throughput based on the changes of the result attributes over the data delivery 
interval. For example, it reports the number of Puts per Second by collecting the 
number of Put operations performed on a Space and divided by the time elapsed 
over the subscription time interval. You can subscribe and create a rule to create 
an alert action when the Put throughput spikes or falls below a min/max 
threshold on a Hawk Rulebase.

Space Definition Events Methods 

There is one Space Member events method, as shown in the following table.
e.

The Definition Event methods provide an event driven subscription service that 
allows the monitoring of new Space defined or when a Space is dropped or 
altered. It reports all the Spaces Definitions in multiple result rows when any 
Space event. 

Method Argument

getSpaceThroughputByName SpaceName

getSpaceThroughputAll none

getSpaceThroughputByFilter SpaceNameFilter with wildcard matches

getMemberThroughputAll none

Method Argument

onSpaceDefEvent none
Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



TIBCO ActiveSpaces Hawk MicroAgent | 11
Metaspace Member and Space Member Events Methods

The following table lists the Metaspace Member and Space Member Events 
Methods

The Metaspace Member and Space Member Events methods provide an event 
driven subscription service that allows the monitoring of Members joining and 
leaving the Metaspace or a Space. It reports all the Members of the Metaspace or 
all the Space Members of a Space along with the attributes of the reported 
Members when any Member event happens. The additional member attributes 
also allows you to monitor when a Metaspace Member changes the Manager Role 
or when a Space Member changes its Distribution Role between Seeder and 
Leech.

Method Argument

onMemberEvent none

onSpaceMemberEvent SpaceName
 Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 



12 |   Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-On
Cross-Site Replication

The ActiveSpaces 2.1.2 Add-on release introduces a new feature called cross-site 
replication.  This feature lets you deploy ActiveSpaces across multiple data 
centers and have the data replicated between them.  Cross-site replication 
provides a single view of all the data, fault tolerance at the data-center level, and 
faster peformance through the reduction of round-trip times for clients located 
near the data centers.

To configure cross-site replication, you should configure each site with the other 
sites’ name and IP address.  Sites connect to each other through routers and 
receivers, where routers push updates out from the local site to the receivers on 
the remote sites.  Multiple routers and receivers can be registered for load 
balancing and fault tolerance.

Once configured, cross-site replication takes care of connecting and replicating 
updates from the local site to all remote sites.  Replication is guaranteed and 
automatic.  If a remote site is down, updates are recorded in a transaction log and 
later replayed when the site is back up.
Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-on 


	Addendum to Readme for TIBCO ActiveSpaces 2.1.2 Add-On
	Setting Up ActiveSpaces Routing
	Implementing ActiveSpaces Routing
	Freeing a Router

	C Admin Commands
	Command List

	TIBCO ActiveSpaces Hawk MicroAgent
	Getting Started
	ActiveSpaces Hawk Microagent Methods Overview

	Cross-Site Replication


