
Two-Second Adv
TIBCO ActiveSpaces®

Administration
Release 2.1.2 Add-On
January 2014
antage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIB, TIBCO, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now, TIBCO ActiveMatrix
BusinessEvents, and TIBCO ActiveSpaces are either registered trademarks or trademarks of TIBCO Software
Inc. in the United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
Copyright © 1999-2014 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

Related Documentation .viii
TIBCO ActiveSpaces Documentation. .viii

Typographical Conventions . ix

Connecting with TIBCO Resources . xii
How to Join TIBCOmmunity . xii
How to Access All TIBCO Documentation . xii
How to Contact TIBCO Support . xii

Chapter 1 Overview of ActiveSpaces Administration and Deployment .1

Overview of Administration . 2

Deployment Modes . 3
Clients (Leeches) and Servers (Seeders) . 3
Shared-All Persistence . 4
Shared-Nothing Persistence. 5
Host-Aware Replication . 5
Remote Client Architecture. 8

Best Practices for Node Discovery . 11
Specifying Discovery When Using ActiveSpaces Security . 11
Choosing the Right Discovery Point . 11
Specifying Multiple TCP Discovery Nodes for Fault Tolerance. 13

Chapter 2 Administering ActiveSpaces with the Admin CLI .15

Starting the Admin CLI. 17
Setting the Required Environment Variables . 17
Launching the Admin CLI . 17

alter space . 21

clear . 23

clear | set password . 24

connect . 26

define | create security_policy . 30

define | create security_token . 33

define | create space . 35

disconnect . 42

drop space . 43
 TIBCO ActiveSpaces Administration

iv | Contents
export metaspace . 44

help . 45

quit | exit | bye . 46

recover space . 47

resume space . 48

show | describe member . 49

show | describe members . 50

show | describe space . 51
Output . 51

show | describe spaces . 54

validate policy_file . 55

validate token_file . 56

validate truststore . 57

Chapter 3 Using the as-dump Utility. 59

Overview of as-dump . 60

as-dump Syntax . 61

Sample Output . 62

Chapter 4 Using as-agent . 65

Overview of as-agent . 66
Starting as-agent . 66
Starting as-agent with Security Enabled . 68
Command Parameters. 68

Chapter 5 Administering ActiveSpaces Security . 71

Main Tasks for Setting Up Security . 72

Creating a Security Policy File . 74

Editing a Security Policy File. 75

Setting up Data Encryption . 78

Validating a Security Policy File . 79

Creating a Security Token . 80

Validating a Security Token File . 82

Setting Up Authorization . 83

Starting Security Domain Controllers . 84

Starting Security Domain Requesters. 86
Starting a Security Domain Requestor with a Token File. 86
Starting a Security Domain Requestor Without a Token File. 87
TIBCO ActiveSpaces Administration

Contents | v
Chapter 6 Using ActiveSpaces Monitoring and Management .89

Starting ASMM and Connecting to a Metaspace. 90

Connecting and Disconnecting from a Metaspace . 91

Viewing Space Information . 92
Viewing a Space Definition . 93
Viewing the Space Schema . 93
Viewing the Space Members . 94
Viewing Indices. 94

Viewing Space Distribution . 95

Viewing Historical Statistics . 96

Using the Space Browser . 97
 TIBCO ActiveSpaces Administration

vi | Contents
TIBCO ActiveSpaces Administration

Preface | vii
Preface

TIBCO ActiveSpaces® is a distributed peer-to-peer in-memory data grid, a form
of virtual shared memory that leverages a distributed hash table with
configurable replication.

TIBCO ActiveSpaces® combines the features and performance of databases,
caching systems, and messaging software to support large, highly volatile data
sets and event-driven applications. It lets you off-load transaction-heavy systems
and allows developers to concentrate on business logic rather than the
complexities of developing distributed fault-tolerance.

TIBCO ActiveSpaces is available in three versions:

• TIBCO ActiveSpaces® Enterprise Edition—Provides C, Java, and .NET API
sets and enables full cluster functionality. To enable remote clients, you must
purchase licenses for the TIBCO ActiveSpaces Remote Client Edition.

• TIBCO ActiveSpaces® Remote Client Edition—Can be purchased in
addition to the Enterprise Edition. Allows you to set up remote clients.
Applications running on the remote clients can access the data grid and
perform most ActiveSpaces operations.

• TIBCO ActiveSpaces® Developer Edition—A developer version of the
product.. This version is downloadable from TIBCO Developer Network at
http://tap.tibco.com.

Topics

• Related Documentation, page viii

• Typographical Conventions, page ix
 TIBCO ActiveSpaces Administration

http://developer.tibco.com
http://developer.tibco.com

viii | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO ActiveSpaces Documentation
The following documents form the TIBCO ActiveSpaces documentation set:

• TIBCO ActiveSpaces Installation Read this manual for instructions on site
preparation and installation.

• TIBCO ActiveSpaces Administration Read this manual to gain an
understanding of the product that you can apply to the various tasks you may
undertake.

• TIBCO ActiveSpaces Developer’s Guide Read this manual for instructions on
using the product to develop an application that manages data grids.

• TIBCO ActiveSpaces C Reference Read this manual for reference information on
the C functions used to develop an application that manages data grids.

• TIBCO ActiveSpaces Release Notes Read the release notes for a list of new and
changed features. This document also contains lists of known issues and
closed issues for this release.
TIBCO ActiveSpaces Administration

Preface | ix
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME

ENV_HOME

AS_HOME

Many TIBCO products must be installed within the same home directory. This
directory is referenced in documentation as TIBCO_HOME. The default value of
TIBCO_HOME depends on the operating system. For example, on Windows
systems, the default value is C:\tibco.

Other TIBCO products are installed into an installation environment. Incompatible
products and multiple instances of the same product are installed into different
installation environments. An environment home directory is referenced in
documentation as ENV_HOME. The default value of ENV_HOME depends on the
operating system. For example, on Windows systems the default value is
C:\tibco.

TIBCO ActiveSpaces installs into a directory within TIBCO_HOME. This directory
is referenced in documentation as AS_HOME. The default value of AS_HOME
depends on the operating system. For example on Windows systems, the default
value is C:\tibco\as\2.0.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]
 TIBCO ActiveSpaces Administration

x | Typographical Conventions
italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand para1 | param2 | param3
TIBCO ActiveSpaces Administration

Preface | xi
{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}

Table 2 Syntax Typographical Conventions

Convention Use
 TIBCO ActiveSpaces Administration

xii | Connecting with TIBCO Resources
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access All TIBCO Documentation
After you join TIBCOmmunity, you can access the documentation for all
supported product versions here:

http://docs.tibco.com/TibcoDoc

How to Contact TIBCO Support
For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
TIBCO ActiveSpaces Administration

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com/TibcoDoc
http://www.tibcommunity.com

Overview of ActiveSpaces Administration and Deployment | 1
Chapter 1 Overview of ActiveSpaces Administration
and Deployment

This chapter provides an overview of the TIBCO ActiveSpaces® administration
tools and guidelines for deploying ActiveSpaces in the network.

Topics

• Overview of Administration, page 2

• “Deployment Modes” on page 3

• “Best Practices for Node Discovery” on page 11
 TIBCO ActiveSpaces Administration

2 | Chapter 1 Overview of ActiveSpaces Administration and Deployment
Overview of Administration

ActiveSpaces provides three administrative tools:

• as-admin The main administration utility for ActiveSpaces. Provides a
command line interface (CLI) that allows you to deploy and manage nodes in
the ActiveSpaces data grid. Provides commands that you use to:

— Connect to a metaspace

— Create a space

— Join a space

— Display information about existing spaces and members

• as-agent A pre-built agent process that you can run on any host to connect to
a metaspace, join all distributed spaces in the specified metaspace as a seeder,
and keep the space active.

• ASMM ActiveSpaces Monitoring and Management (ASMM) provides a GUI
that lets you connect to a metaspace, display information about various
ActiveSpaces system resources, for example, metaspaces, metaspace
members, spaces, entry statistics, and so on, and browse space entries.

In addition, ActiveSpaces provides an as-dump utility that you can use to display
information about shared-nothing persistence data files.
TIBCO ActiveSpaces Administration

Deployment Modes | 3
Deployment Modes

This section describes the basic deployment modes for ActiveSpaces.

Clients (Leeches) and Servers (Seeders)
When a member joins a space, it can join as a server (seeder) or as a leech (client).
This allows you to distribute the node deployment between seeders and leeches:

• Seeders play an active role in maintaining the space by providing CPU and
RAM.

• Leeches play a passive role. They have access to space data but provide no
resources.

Figure 1 Client-Server Deployment
 TIBCO ActiveSpaces Administration

4 | Chapter 1 Overview of ActiveSpaces Administration and Deployment
For more information on deploying seeders and leeches in the ActiveSpaces
network, see When to Join the Space as a Seeder or a Leech in the TIBCO
ActiveSpaces Developer’s Guide.

Shared-All Persistence
ActiveSpaces allows you to persist data to disk storage and recover it if data loss
occurs or there is a problem with cluster startup. For detailed information on
persistence, see Persistence in the TIBCO ActiveSpaces Developer’s Guide.

With shared-all persistence, all seeder nodes share a single persister or a set of
persisters. Your application must provide an implementation of the persistence
interface and interface to the shared persistence layer of choice.

Figure 2, Deployment with Shared-All Persistence shows all of the seeder nodes
in an ActiveSpaces sharing a single database for persistence and data recovery.

Figure 2 Deployment with Shared-All Persistence
TIBCO ActiveSpaces Administration

Deployment Modes | 5
Shared-Nothing Persistence
With shared-nothing persistence, each node that joins a space as a seeder
maintains a copy of the space data on disk. Each node that joins as a seeder writes
its data to disk and reads the data when needed for recovery and for cache misses.

Figure 3, Deployment with Shared-Nothing Persistence shows a group of seeder
nodes that persist data to local hard disk.

Figure 3 Deployment with Shared-Nothing Persistence

Host-Aware Replication
Host-aware replication allows you to ensure that the data for seeders running on
the same machine is always replicated on a different machine than the one
running the original seeders. If there is only one seeder running on a machine,
then host-aware replication is not needed, because data could not be replicated
onto the same machine if there are no other seeders running on that machine.

To set up host-aware replication for the seeders on a machine, you logically group
the seeders together using the following member naming convention:

<group_name>.<member_name>
 TIBCO ActiveSpaces Administration

6 | Chapter 1 Overview of ActiveSpaces Administration and Deployment
where group_name can be any name which helps you to identify the grouping of
seeder members. For example, the group_name can be the name of the machine on
which the seeders are running or some other arbitrary name that logically
identifies the group of seeders.

Figure 4, Sample Deployment with Host-Aware Replication shows a topology for
host-aware replication in which each host is running four seeders and a seeder
grouping is defined for each host.

Host-aware replication is purely based on the group_name part of the member
name of the seeder, and not on the IP address of the physical host the process is
running on.
TIBCO ActiveSpaces Administration

Deployment Modes | 7
Figure 4 Sample Deployment with Host-Aware Replication

The first host is named Host1, and runs four seeders, Seeder1, Seeder2, Seeder3,
and Seeder4. The second host is named Host2, and the third host is named
Host3. Each of these hosts also runs four seeders.

If you name the seeders according to host-aware replication member naming,
then ActiveSpaces always replicates data that is seeded on one of the seeders on a
given host to a seeder that is running on another host. Therefore, if a host or
device goes down, the data that was seeded by any of the seeders on that host is
not lost, because it is automatically backed up on a seeder that resides on another
host.

You can set up this type of topology in several ways:
 TIBCO ActiveSpaces Administration

8 | Chapter 1 Overview of ActiveSpaces Administration and Deployment
1. By using the TIBCO ActiveSpaces API programs in an application program
that implements <group_name>.<member_name> member names.

For information on the API functions to implement host-aware replication, see
Using the ActiveSpaces API Set to Implement Host-Aware Replication on
page 62 in the TIBCO ActiveSpaces Developer’s Guide.

2. By using as-agent and specifying the member names using the -name
parameter.

For example, you might use as-agent with the -name parameter to start four
seeders on each host. For example, on host 1, run as-agent as follows:
java -jar as-agent.jar -metaspace ms -discovery
tcp://127.0.0.1:50000 -listen tcp://127.0.0.1:50000 -name
Host.1.Seeder1

Then run two additional instances, with the -name parameter specifying
Host1.Seeder2, and Host1.Seeder3.

3. By using as-admin to connect to a metaspace. The member name is specified
using the membername option of the connect command.

Remote Client Architecture
In some situations, where nodes are unable to become full peers in the data grid,
for example, when there is a firewall protecting a LAN, you can deploy
ActiveSpaces nodes as remote clients. Remote clients can perform puts and gets,
but cannot act as seeders or assume a management role in the core cluster.

Using remote clients also has the advantage of saving cluster processing
overhead.
TIBCO ActiveSpaces Administration

Deployment Modes | 9
Figure 5 Remote Client Deployment

When you use remote clients, the remote clients can update the entries in the
database, and active spaces seeders ensure that concurrency is maintained.
Remote clients connect using TCP connections.

Figure 6, Concurrency with Remote Clients, shows remote clients updating to a
seeder (Member 1). The seeders in the metaspace ensure that the data replicated
on Member 2 synchronized with the data on Member 1.
 TIBCO ActiveSpaces Administration

10 | Chapter 1 Overview of ActiveSpaces Administration and Deployment
Figure 6 Concurrency with Remote Clients
TIBCO ActiveSpaces Administration

Best Practices for Node Discovery | 11
Best Practices for Node Discovery

This section describes how to specify discovery parameters in several deployment
scenarios:

• Specifying Discovery When Using ActiveSpaces Security, page 11

• Choosing the Right Discovery Point, page 11

• Specifying Multiple TCP Discovery Nodes for Fault Tolerance, page 13

Specifying Discovery When Using ActiveSpaces Security
If you are implementing ActiveSpaces security:

• The discovery transport type must be TCP.

• The discovery list on both the requestor and controller members for the given
metaspace binding must be the same.

Also, when you implement ActiveSpaces security, you do not need to specify the
discovery URL for a member that is joining the metaspace, because the discovery
URL is retrieved from the security policy file or security token file used to start a
node. If you do specify the discovery URL, it is ignored and ActiveSpaces uses the
value for the metaspace as specified in the security configuration files.

For more information on ActiveSpaces security, see Chapter 4, Implementing
ActiveSpaces Security in the TIBCO ActiveSpaces Developer’s Guide.

Choosing the Right Discovery Point
When you specify the discovery attribute (either in the discovery attribute of the
MemberDef object for the space member or in the discovery parameter for the
as-admin connect command), you can specify the IP address of the network
interface to use for discovery.

It is important to specify the optimum discovery IP address. For example, in a
network where you have several subnetworks, or where you have a relatively fast
network and also a slower network, performance will be best if you choose the
faster network. Figure 7 shows a network topology that has a fast network and a
slower network.
 TIBCO ActiveSpaces Administration

12 | Chapter 1 Overview of ActiveSpaces Administration and Deployment
Figure 7 Selecting an Interface and Network for Optimum Discovery

In the network shown in Figure 7, there are two networks: network 1 is fast and
network 2 is slow.

To ensure that you use the interface connected to the faster network for discovery,
specify the interface for the faster network. In the example, we specify the tibpgm
discovery protocol and the IP address of the interface for the faster network:
tibpgm://10.10.10.1

This ensures that discovery uses the faster network.
TIBCO ActiveSpaces Administration

Best Practices for Node Discovery | 13
Specifying Multiple TCP Discovery Nodes for Fault Tolerance
If you are using the TCP discovery method, you can specify multiple TCP
discovery nodes to provide fault tolerance.

Figure 8, Specifying Multiple TCP Discovery Nodes illustrates how to specify
multiple TCP discovery nodes in a network with four TCP hosts.

In the example, we specify the tcp discovery method and two node address/port
pairs:
tcp://10.10.10.1:6000;10.10.10.2:6000

When setting up the discovery attribute in the MemberDef object for the space or
with the discovery parameter for the connect command, you can specify
additional IP addresses and ports, separated by semicolons.

Figure 8 Specifying Multiple TCP Discovery Nodes
 TIBCO ActiveSpaces Administration

14 | Chapter 1 Overview of ActiveSpaces Administration and Deployment
TIBCO ActiveSpaces Administration

Administering ActiveSpaces with the Admin CLI | 15
Chapter 2 Administering ActiveSpaces with the
Admin CLI

Administrative tasks for TIBCO ActiveSpaces are performed through a utility
called as-admin, or the Administration Command Line Interface (Admin CLI). These
tasks include connecting to a metaspace, creating a space, and displaying
information about existing spaces and members. This chapter lists and describes
the commands available in the Admin CLI.

Topics

• Starting the Admin CLI, page 17

• alter space, page 21

• clear, page 23

• clear | set password, page 24

• connect, page 26

• define | create security_policy, page 30

• define | create security_token, page 33

• define | create space, page 35

• disconnect, page 42

• drop space, page 43

• export metaspace, page 44

• help, page 45

• quit | exit | bye, page 46

• recover space, page 47

• resume space, page 48

• show | describe member, page 49

• show | describe members, page 50
 TIBCO ActiveSpaces Administration

16 | Chapter 2 Administering ActiveSpaces with the Admin CLI
• show | describe space, page 51

• show | describe spaces, page 54

• validate policy_file, page 55

• validate token_file, page 56

• validate truststore, page 57
TIBCO ActiveSpaces Administration

Starting the Admin CLI | 17
Starting the Admin CLI

To start the TIBCO ActiveSpaces Admin CLI, you must:

• Set environment variables for TIBCO ActiveSpaces

• Launch the Admin CLI, in a command prompt window

Setting the Required Environment Variables
To be able to run the Admin CLI, you must set environment variables to point to:

• JAVA_HOME The location of the Java installation on your computer.

• AS_HOME The location of the ActiveSpaces installation on your computer.

• PATH Defines the path to AS_HOME and JAVA_HOME.

The easiest method to set the variables is in a script file (a command file in MS
Windows or a shell script on UNIX platforms).

The following Windows command script sets the required environment variables
for starting the Admin CLI in a command window.

Example 1 Windows Command File for Setting Environment Variables for the Admin
CLI

@echo off

set AS_HOME=c:\tibco\as\2.1
set PATH=%AS_HOME%\lib;%AS_HOME%\bin;%PATH%

set JAVA_HOME=%DRIVE_C%\Program Files\Java\jdk1.6.0_24
set PATH=%PATH%;%JAVA_HOME%\bin;%JAVA_HOME%\lib

Launching the Admin CLI
The default location of the Admin CLI program on Windows is:
C:\tibco\as\2.1\lib

To launch the CLI:

1. Open a command window.

I Make sure that you prepend the AS_HOME\lib PATH setting and the
AS_HOME\bin PATH setting to the PATH setting; for example:

set PATH=%AS_HOME%\lib;%AS_HOME%\bin;%PATH%
 TIBCO ActiveSpaces Administration

18 | Chapter 2 Administering ActiveSpaces with the Admin CLI
2. Make sure that you have set the required environment variables as described
in the previous section, Setting the Required Environment Variables, page 17.

3. Enter the following commands:
cd C:\tibco\as\2.1\lib

java -jar as-admin.jar

The Admin CLI prompt appears:
as-admin>

You can now enter Admin CLI commands.

Using a script file to pass arguments when launching the Admin CLI

Using a script file, you can pass command line arguments when you launch the
Admin CLI, as follows:

java -jar as-admin.jar -i admin-cmd-filename

This mechanism allows execution of commands in a batch mode through the
Admin CLI. There are several limitations on the structure of the file:

1. No special characters are allowed.

2. Each line is executed sequentially by the Admin CLI. Therefore, each
individual command must be entered on one line.

3. The admin tool will not automatically exit and return to the shell after
executing the commands of the file unless the script file contains a quit
command

If you are running Windows on a 64-bit platform, the command to launch the
Admin CLI is:

java [-d64] -jar as-admin.jar

The examples in this section use Windows conventions.

The above usage information for as-admin can be obtained by invoking java
-jar as-admin.jar-h from the ActiveSpaces lib directory in a command line
window.

Comments can be inserted into the script file by starting a line with #, as follows:

this is a comment
TIBCO ActiveSpaces Administration

Starting the Admin CLI | 19
Here is an example.

######
connect name "UserMetaspace" discovery "tibpgm"
show members
export metaspace to "export.txt"
quit
######

This will connect to a metaspace, display members, export the metaspace, and
quit
.

Example

1. Create a text file that invokes the Admin CLI.

Here is sample of the contents of such a file. In this example, the file is named
example01.txt, and is located in the directory C:\temp2.

connect name 'ms' discovery 'tibpgm' listen 'tcp';
define space name 'testspace' (field name 'key' type 'integer'
field name 'value' type 'string') key (type ’hash’ fields
('key'));
This defines the key index to be of index type "hash" with
fields "key"

2. Launch the Admin CLI using the following syntax:

java -jar as-admin.jar-i c:\temp2\example01.txt.

Additional Characteristics of the Admin CLI Tool:

• When running the tool, hitting the question mark key (?) at any time brings up
context-sensitive help.

• Arrow keys and the tab key function in the command window as in typical
advanced shells.

• You can invoke a shell command by using the escape character’!’, for example,
!dir or !ls to list the files in the current directory.

• Field names and literals must be enclosed in single or double quotes.

Using the Admin CLI command export metaspace [to <filename>] (see
export metaspace on page 44) will generate a file containing the schema for the
existing metaspace. The admin-cmd-filename value can be the path to this
generated file. In this way, a new metaspace can be created using the exported
metaspace schema.
 TIBCO ActiveSpaces Administration

20 | Chapter 2 Administering ActiveSpaces with the Admin CLI
• In most cases, the Admin CLI will start by using the connect command to
connect to a metaspace.

• The default discovery mechanism is PGM. If RV discovery or TCP unicast
discovery is needed, you must specify the appropriate discovery URL.

For more information on discovery, see “Connecting to the Metaspace “in the
TIBCO ActiveSpaces Developer’s Guide.

The Execute method

Admin CLI administrative commands (for example defining a space) can be
executed directly from within an application. This is done by using the Metaspace
object's execute method and passing it a string representing the Admin CLI
command. A string is returned containing the output resulting from executing the
command.
TIBCO ActiveSpaces Administration

alter space | 21
alter space
Admin CLI Command

Syntax alter space name <string> add (field name <string> type <string>
[nullable <boolean>] (, field name <string> type <string> [nullable
<boolean>])*)
|
alter space name <string> add index (name <string> [type <string>]
fields (<string> (, <string>)*))
|
alter space name <string> drop index (<index_name> (,
<index_name>)*)

Purpose Use alter space to add a field to an existing space definition, or to add or drop
an index from a space definition.

Parameters The following table describes the parameters for this command.

Table 3 alter space Parameters

Parameter Description

name The name of the space to be modified.

add Specifies that a field is to be added:

• name specifies the name of the field to be added.

• type specifies the data type for the field. Must be one of the following:
boolean, char, short, integer, long, float, double, string, datetime,
blob.

• nullable is optional when adding a field. If you do not specify the nullable
parameter, the field is by default not nullable. If you enter nullable, you
must enter nullable true.

add index Specifies that an index is to be added:

• name specifies the name of the index.

• type specifies the type of the index, which can be hash or tree.

• fields specifies the fields to be used in the index.

When you add an index, the new index cannot have fields from an
existing index.
 TIBCO ActiveSpaces Administration

22 | Chapter 2 Administering ActiveSpaces with the Admin CLI
Examples Examples for add field:

alter space name “myspace” add (field name “average” type “double”)
alter space name “myspace” add (field name “average” type “double”
nullable true)

alter space name “myspace” add (field name “average” type “double”,
field name “total” type “long” nullable true)

Examples for add index:
alter space add index (name “index1” type “hash” fields(“a”, “b”,
“c”))

alter space add index (name “index1” type “hash” fields(“a”, “b”,
“c”)) index (name “index2” type “hash” fields(“a”, “b”, “c”))

Examples for drop index:
alter space drop index (“index1”)

alter space drop index (“index1”, “index2”)

Example for adding a field and an index:
alter space name “myspace” add (field name “average” type “double”)
index (name “index1” type “hash” fields(“a”, “b”, “c”))

The parameters for fields and index use the following format:

• fields: (field name “average” type “double”)

• index: index (name “index1” type “hash” fields(“a”, “b”, “c”))

You can perform consecutive updates by adding one field after another.

drop index Specifies that one or more indexes are to be removed.

index must be followed by a list of one or more index names specifying the
indexes to remove.

Table 3 alter space Parameters

Parameter Description

You cannot add and drop an index in the same alter space command with
as-admin. However, you can do this using the API operations. For an example
showing how to do this with the Java API set, see Adding and dropping an index
using the Java API on page 72 in the TIBCO ActiveSpaces Developer’s Guide.
TIBCO ActiveSpaces Administration

clear | 23
clear
Admin CLI Command

Syntax clear

Purpose clear is used to remove all lines of text from the command window except for a
single Admin CLI prompt.

Parameters None.
 TIBCO ActiveSpaces Administration

24 | Chapter 2 Administering ActiveSpaces with the Admin CLI
clear | set password
Admin CLI Command

Syntax clear | set password domain_name <string> policy_file <string>
[new_policy_file <string>]

clear | set password token_file <string> [new_token_file <string>]

Purpose Use the clear password command to create a new policy file without a
password or a new token file without a password.

Use the set password command to create a a new policy file or a new token file
with a new password.

When you issue the set password command, you are prompted to enter and
verify the new password for the domain.

Parameters The following table lists the parameters for this command with a description of
each parameter.Because there are two versions of the command, there are two sets
of parameters.

Table 4 clear password Parameters

Parameter Description

domain_name Specify the domain name for the domain for which you want
to set or clear the password.

policy_file Specify the policy file to use when creating the a new policy
file without a password.

new_policy_file This optional parameter specifies the name of a new policy
file that is created based on the policy file that you specify
with the policy_file parameter.

If you do not specify a new policy filename, then a new policy
file created is with the current date and time appended to the
filename. For example, if you specify an existing policy
filename of “policy.txt,” ActiveSpaces creates a policy file
name; for example, “policy.txt.2013_01_16_20_38_00.'

The policy filename cannot contain a forward slash
character (“/”).

token_file If you are using the clear password command to clear the
password in a token file or the set password command to set
the password for a token file, specify the token filename.
TIBCO ActiveSpaces Administration

clear | set password | 25
Example clear password domain_name 'AS-DOMAIN' policy_file 'policy.txt'
new_policy_file 'newdeal.txt'

The following examples illustrate the syntax of the clear password command:

• clear password domain_name 'AS-DOMAIN' policy_file 'policy.txt'

• clear password domain_name 'AS-DOMAIN' policy_file 'policy.txt'

new_policy_file 'newdeal.txt'

• clear password token_file 'mytoken'

• clear password token_file 'mytoken' new_token_file 'yourtoken'

new_token_file This optional parameter specifies the name of a new token file
that is created based on the token file that you specify with
the token_file parameter.

If you do not specify a new token filename, then a new token
file created is with the current date and time appended to the
filename. For example, if the token file is named “my token,”
ActiveSpaces creates a token filename; for example,
“mytoken.2013_01_16_20_38_00.'

Table 4 clear password Parameters

Parameter Description

Parameter values must be enclosed in either single or double quotes.
 TIBCO ActiveSpaces Administration

26 | Chapter 2 Administering ActiveSpaces with the Admin CLI
connect
Admin CLI Command

Syntax connect [name <string>] [discovery <string>] [listen <string>]
[membername <string>] [security_token <string>] [security_policy
<string>]

Purpose connect is used to connect to a metaspace. Connecting to a metaspace is a
necessary initializing step for the Admin CLI in order to begin working with
ActiveSpaces, just as it is for an ActiveSpaces application. The Admin CLI can
only be connected to one metaspace at a time.

You cannot specify a token file and a policy file at the same time.

Parameters The table lists the parameters for this command with a description of each
parameter.

Table 5 connect Parameters

Parameter Description

name Optional. If a metaspace with this name does not exist, it will
be created as a result of this command. If no name is specified,
the Admin CLI will connect to the default metaspace, called
ms.
TIBCO ActiveSpaces Administration

connect | 27
discovery Optional. The discovery URL can take one of three forms:

NOTE: If you are using ActiveSpaces security, you MUST use
TCP discovery.

• If Unicast discovery is used, then a list of 'well known' IP
addresses and ports must be passed in a URL with the
following syntax:

tcp://ip1:port1;ip2:port2;...

• If multicast discovery is to be used then the URL must be
one of the following depending on which reliable
multicast transport is to be used:

The tibrv (multicast) URL takes three parameters: service,
network, and daemon. In many cases, the default values
are sufficient.
Syntax: tibrv://service=service/network=network/

daemon=daemon

or

tibpgm://destination port/interface;discovery
group address/optional transport arguments

See “PGM (Pragmatic General Multicast) URL Format” in the
TIBC0 ActiveSpaces Developer’s Guide for more information on
PGM discovery URLs.

See “TIBCO Rendezvous Discovery URL format” in the TIBC0
ActiveSpaces Developer’s Guide more information on TIBCO
Rendezvous discovery URLs.

If you are connecting as a security domain controller
or as a security domain requestor, do not specify the
discovery parameter. If you do specify a discovery
parameter, it will be overwritten by the discovery
parameter specified in the security policy file or the
security token file specified with the connect
command.

Table 5 connect Parameters

Parameter Description
 TIBCO ActiveSpaces Administration

28 | Chapter 2 Administering ActiveSpaces with the Admin CLI
Example connect name 'ms' discovery 'tcp://192.168.1.10'

listen Optional. Specifies which interface and port the
administrative process should create its listening TCP socket
on.

Syntax:
tcp://interface:port

See “Listen URL Format” in the TIBC0 ActiveSpaces Developer’s
Guide for more information on listen URLs.

membername Optional. Specifies a member name for the member. This
helps to identify which member name is associated with
which member ID. The show members command displays the
member name if one has been assigned; otherwise, a default
member name is assigned that is constructed from the
member ID.

security_token Optional. Specifies the token file for a security domain
requestor that must be authenticated by a security domain
controller.

If TIBCO ActiveSpaces security is implemented and you are
connecting from a requestor node, and the metaspace to
which you are connecting requires a token file, specify the
security_token parameter and provide the directory path
and filename for the token file.

If you specify a token file, do not specify the
security_policy parameter.

security_policy Optional. If TIBCO ActiveSpaces security is implemented and
you are connecting from a domain security controller node,
specify the security_policy parameter and provide the
directory path and filename for the policy file.

If you specify a policy file, do not specify the
security_token parameter.

Table 5 connect Parameters

Parameter Description

Parameter values must be enclosed in either single or double quotes.
TIBCO ActiveSpaces Administration

connect | 29
The following examples illustrate the syntax of the connect command:

• connect

• connect name <metaspace_name>

• connect discovery <discovery_url>

• connect listen <listen_url>

• connect discovery <discovery_url> listen <listen_url>

• connect name <metaspace_name> discovery <discovery_url>

• connect name <metaspace_name> discovery <discovery_url> listen
<listen_url>

• connect name <metaspace_name> discovery <discovery_url> listen
<listen_url> membername <member_name>

• connect security_policy ’mypolicy.txt’ name ’ms’ listen ’tcp://127.0.0.1:50000’

• connect security_token ’mytoken.txt’ name ’ms’ listen ’tcp://127.0.0.1:50000’
 TIBCO ActiveSpaces Administration

30 | Chapter 2 Administering ActiveSpaces with the Admin CLI
define | create security_policy
Admin CLI Command

Syntax (define | create) security_policy [policy_name <string>]
[encrypt <boolean>][validity_days <integer>] policy_file <string>

Purpose Use the define | create security_policy command to create a security
policy file.
TIBCO ActiveSpaces Administration

define | create security_policy | 31
Parameters The following table lists the parameters for this command with a description of
each parameter.

Table 6 define | create security_policy Parameters

Parameter Description

policy_name Optional. Specifies the name of the policy to be created. If you do not
specify a policy name, the policy is given the default name AS-POLICY.

You cannot specify a policy file and a security token for the same
connection.

You can also specify one or more domains that the policy is associated
with:

1. To specify that the policy is associated with one domain, specify the
policy name and the domain as follows:
(define | create) security_policy policy_name
<policy_name>/<domain name> policy_file <string>.

For example:
create security_policy policy_name
"OUR_POLICY/OUR_DOMAIN" policy_file "ourpolicy.txt"

If you enter the command in this way, the encrypt setting defaults to
false: then if you specify one domain, you are prompted to enter and
verify the password for that domain. If you specify multiple domains,
you are prompted to enter and verify the password for each domain.

If you specify encrypt=false, then ActiveSpaces creates all
domains is created with an unencrypted ID, which requires no
password, and you are not prompted for a password.

2. To create multiple domains associated with the policy, specify the
policy name and a list of domains that the policy is associated with.
Specify the domains separated by commas:
(define | create) security_policy policy_name
"<string/string, string, string ...>" policy_file
<string>

For example:
create security_policy policy_name
"NEW_POLICY/MD1,MD2,MD3" policy_file "newpolicy.txt"
 TIBCO ActiveSpaces Administration

32 | Chapter 2 Administering ActiveSpaces with the Admin CLI
Example create security_policy policy_name 'mypolicy' policy_file
'policy.txt'

create security_policy policy_name 'mypolicy' encrypt false
policy_file 'policy.txt'

The following examples illustrate the syntax of the define | create
security_policy command:

• create security_policy policy_name 'mypolicy' policy_file

'policy.txt'

• create security_policy policy_name 'mypolicy' encrypt false

policy_file 'policy.txt'

• define security_policy "MY_POLICY/MY_DOMAIN" policy_file

’policy.txt’

encrypt Optional. Indicates whether the private key for the policy is to be
encrypted. The default is encrypt true.

If you specify encryption, as-admin prompts you to specify and verify a
new domain password and creates an encrypted private key in the
Domain Identity section of the policy file.

If you specify encrypt false, the domain does not require a password,
and as-admin creates an unencrypted private key in the policy file.

validity_days An integer that specifies how long the domain ID that the command
creates remains valid. The default value is 365 days.

Policies can have more than one domain, where (in theory) each of them
can have different validity days if the domain definitions are moved
between policy files manually.

policy_file Enter the name of the policy file that is to be created for the policy.

You cannot specify a policy file and a security token for the same
connection.

The policy filename cannot contain a forward slash character
(“/”).

Table 6 define | create security_policy Parameters

Parameter Description

Parameter values must be enclosed in either single or double quotes.
TIBCO ActiveSpaces Administration

define | create security_token | 33
define | create security_token
Admin CLI Command

Syntax (define | create) security_token domain_name <string>
policy_file <string> [create_identity [common_name <string>]
[encrypt <boolean>][validity_days <integer>]]token_file <string>

Purpose Use the define | create security_token command to create a security token
for deployment to ActiveSpaces requestor nodes.

When you enter the command, you are prompted to enter and verify a new token
password for the security token. Enter and verify the password.

Parameters The following table lists the parameters for this command with a description of
each parameter.

Table 7 define | create security_token Parameters

Parameter Description

domain_name Specifies the name of the domain for which the security token
is to be created.

policy_file Specifies the name of the policy file that is to be used to create
the token.

create_id Optional. Enter the create_id parameter if you want to
create a private key to verify the identify of connecting nodes.

common_name Optional. If you enter the create_id parameter and you want
to provide an X.509 common name to identify the private key,
specify a common name. If you do not specify a common
name, ActiveSpaces generates a common name that contains
the domain name plus a random number; for example
"/CN=AS-REQUESTOR-FEF3A467."

If there is no common name associated with the token, then
node connections use a temporary name generated by
ActiveSpaces. If you provide a common name for the token
file, this name is always used.

encrypt Optional. If you enter the create_id parameter and you want
to encrypt the private key, enter encrypt true (the default
setting). If you do not want to encrypt the private key, enter
encrypt false. Using encrypt false eliminates having to
enter the password each time the node is started.
 TIBCO ActiveSpaces Administration

34 | Chapter 2 Administering ActiveSpaces with the Admin CLI
Example create security_token domain_name 'AS-DOMAIN' policy_file
'policy.txt' create_identity common_name 'MyRequestor-123' encrypt
true validity_days 90 token_file 'mytoken'

The following examples illustrate the syntax of the define | create
security_token command:

• create security_token domain_name 'AS-DOMAIN' policy_file 'policy.txt'
create_identity common_name 'MyRequestor-123' encrypt true validity_days
90 token_file 'mytoken'

• create security_token domain_name 'AS-DOMAIN' policy_file

'policy.txt' create_identity token_file 'newtoken'

• create security_token domain_name 'AS-DOMAIN' policy_file

'policy.txt' create_identity common_name 'MyRequestor-123'

encrypt true validity_days 100 token_file 'mysecurity_token'

validity_days Optional. To specify the number of days that the private key is
valid for, enter the number of days. The default setting is 365
days.

token_file Provide the name of the token file that is to be created.

Table 7 define | create security_token Parameters

Parameter Description

Parameter values must be enclosed in either single or double quotes.
TIBCO ActiveSpaces Administration

define | create space | 35
define | create space
Command

Syntax (define | create) space name <string>

(field name <string> type <string> [nullable <boolean>] (, field
name <string> type <string> [nullable <boolean>] [encrypted
<boolean>)*)

key ([type <string>] fields (<string> (, <string>)*))

distribution_def ('KEY','field0','field1','field2' ...)

(index (name <string> [type <string>] fields (<string>
(, <string>)*)))*

[distribution_policy <string>]

[persistence_type <string>]

[persistence_policy <string>]

[update_transport <string>]

[replication_policy <string>]

[replication_count <integer>]

[min_seeders <integer>]

[capacity <long>]

[eviction_policy <string>]

[ttl <long>]

[lock_ttl <long>]

[lock_wait <long>]

[lock_scope <long>]

[space_wait <long>]

[write_timeout <long>]

[read_timeout <long>]

[phase_count <int>]

[phase_interval <long>]

Purpose Used to create a space.

Remarks The supported data types for fields are:

• Field types boolean, char, short, integer, long, float, double, blob, string,
datetime

• Distribution policies non_distributed, distributed

• Persistence types none, share_all, share_nothing

• Persistence policies sync, async
 TIBCO ActiveSpaces Administration

36 | Chapter 2 Administering ActiveSpaces with the Admin CLI
• Update transports unicast, multicast

• Replication policies sync, async

• Eviction policies none, lru

• Lock scopes thread, process

Parameters The parameters for this command are listed and described in Table 8, define space
Parameters.

Table 8 define space Parameters

Parameter Description

name Required.

field Required.

The data type for a field must be one of the following:
boolean, char, short, integer, long, float, double,
string, datetime, blob.

nullable Optional. Can be either true or false (no quotes). By default
is equal to false. If a field has nullable set to true, tuples put
into the space do not need to contain a field with that
name.

encrypted Optional. If the field is not a key field or an index field and
you have enabled ActiveSpaces security, you can specify
that the data in the field is encrypted. Each (non-key,
non-index) field can be made encrypted, as long as the
policy for the corresponding domain allows it.

key Required. Identifies one or more fields (already specified
with the field parameter) that will serve as a unique key
for the space.

When you enter the key parameter, you can optionally
specify the index type of the key field by including the type
keyword. For example:
key (type "hash" fields (...))

The fields keyword is required.

The type keyword is optional. The default index type is the
“hash” index type.
TIBCO ActiveSpaces Administration

define | create space | 37
index Optional. Identifies one or more fields already specified
with the “field” parameter that will serve as a secondary
index. You can specify an index name and index type to be
used by entering:
index (name "index1" type "tree" fields (...))

The name keyword is required.

The type keyword is optional. The default is index type is
“tree.”

The fields keyword and fields are required

You can specify as many indexes as desired by specifying
the indexes, one by one, after the key parameter. You just
need to put them one after other after the key field. For
example:
key (...) index(name "index1" ...) index(name
"index2" ...) index (name "index3" ...)

distribution_def Defines one or more fields as distribution fields. If a field is
defined as a distribution def field, then all tuples that have
an identical data value for the field are stored on the same
seeder.

The distribution fields must be a subset of the key
fields. Otherwise, ActiveSpaces throws an
exception.

The following example shows how to set up distribution
def fields:
key (fields ('KEY','field0','field1','field2'))
distribution_def
('KEY','field0','field1','field2')
distribution_policy 'distributed'
replication_count 0

In the example, field0, field1, and field2 are defined
as key fields and also as distribution def fields.

If you define fields as distribution def fields, then
you must also set distribution_policy to
distributed.

Table 8 define space Parameters

Parameter Description
 TIBCO ActiveSpaces Administration

38 | Chapter 2 Administering ActiveSpaces with the Admin CLI
distribution_policy Optional. Determines whether management of entries in
the space is shared among the seeders that have joined the
space (distributed) or a single seeder is responsible for
all entries in the space (non_distributed). The default
value is distributed.

If you define fields as distribution def fields, then
you must also set distribution_policy to
distributed.

persistence_type Optional. Specifies whether persistence is enabled for the
space, and if so, what type of persistence to use.

To specify no persistence, specify none. To specify shared
all persistence (space members designated as persisters
maintain data on disk), specify share-all. To specify
shared-nothing persistence (each member maintains data
on disk), specify share_nothing.

update_transport The transport protocol used to distribute notifications of
updates to the data stored in the space. Can be either
unicast or multicast, signifying whether unicast or
multicast is used.

replication_policy Optional. A value of sync specifies that replication is done
in synchronous mode for the space, so that when an
operation modifies one of the entries in the space, the
operation only returns an indication of success when that
modification has been positively replicated up to the
degree of replication required for the space. A value of
async specifies that replication is asynchronous.

replication_count Optional. Specifies the degree of replication for the space,
i.e., the number of replicates required.

persistence_policy Optional. Specifies the what type of communication is used
to maintain persistence: synchronous (sync) or
asynchronous (async).

min_seeders Optional. Specifies the minimum number of seeders that
should be joined to the space before the space becomes
ready to accept operations. The default value is 1.

Table 8 define space Parameters

Parameter Description
TIBCO ActiveSpaces Administration

define | create space | 39
capacity Optional. Specifies a maximum number of entries per
seeder for the space. When the capacity is reached the
result of any additional request to put (insert) a new entry
in the space will depend on the value of the
eviction_policy attribute. The default value is -1 (no
capacity).

eviction_policy Optional. If a put operation on a space would cause a
seeder to exceed the space's capacity attribute, then the
value of this attribute will dictate the result of this
operation: if the value is 'none' (in quotes) then there will
be no eviction and the operation will fail because the
seeder is already at capacity. If the value is 'lru' (in quotes)
then the seeder will evict another entry from the space
using the 'least recently used' eviction algorithm. The
default value is 'none' (no eviction).

ttl Optional. Time to live in milliseconds. The default is -1
(forever).

lock_ttl Optional. Specifies in milliseconds the duration of a lock
placed on the space. The default is -1 (forever).

lock_wait Optional. For a space that is locked, specifies how long a
member process will wait for it to become unlocked. The
default is -1 (forever). Other valid values are 0 or any
positive value. The unit of measure is milliseconds.

lock_scope Optional. Specifies the lock scope to be used for each
operation that includes locking.

You can specify the following:

• thread The lock applies to the current thread only.

• process The lock applies to the entire application.

The default value is thread.

space_wait Specifies the space wait for the specified space.

The space wait value is a timeout that applies to operations
that cannot be processed because the space is not in the
READY state, i.e., the space in the INITIAL, LOADING,
RECOVER, or SUSPEND state.

Table 8 define space Parameters

Parameter Description
 TIBCO ActiveSpaces Administration

40 | Chapter 2 Administering ActiveSpaces with the Admin CLI
Examples Simple example

define space name 'myspace' (field name 'key' type 'integer' field
name 'value' type 'string') key (fields ('key'))

With additional parameters

write_timeout Specifies the write timeout value that is set for the space.

The write timeout value applies to Put, Take, Lock, and
Unlock operations.

read_timeout Specifies the read timeout value for a specified SpaceDef.

The read timeout value applies to Get operations.

phase_count An integer that specifies a phase count value. The phase
count value specifies how many phases are carried out
when an operation is performed.

Phase count is used in conjunction with the
phase_interval parameter, which specifies how long each
phase lasts, in milliseconds.

If you do not specify a phase count, the system uses the
default phase count value (-1), which specifies that the
phase count is calculated internally based on the number of
entries in the space.

If the phase count is small, more entries are redistributed in
each phase, and will take longer for clients to operate. If the
phase count is large, fewer entries are redistributed and it
will take less time to complete operations.

phase_interval A value that specifies a phase interval, in milliseconds. The
phase interval specifies the duration of each processing
phase. The default value is 200 milliseconds.

Phase interval is used in conjunction with the phase_count
parameter. For example, to specify that there will be 10
phases and each phase duration is 200 milliseconds, you
would enter:
create space name "test" (field name "k" type
"blob") key(fields("k")) phase_count 200
phase_interval 10

Table 8 define space Parameters

Parameter Description
TIBCO ActiveSpaces Administration

define | create space | 41
define space name 'testspace' (field name 'key' type 'double' field
name 'value' type 'blob') key (fields ('key')) distribution_policy
'non_distributed' replication_count 1 replicated_policy ’sync’
capacity 10000 eviction_policy 'none' persistence_type
’share_nothing’ persistence_policy ’sync’

With distribution key parameters

define space name 'usertable3' (field name 'KEY' type 'string',
field name 'field0' type 'string', field name 'field1' type
'string',field name 'field2' type 'string',field name 'field3' type
'string',field name 'field4' type 'string', field name 'field5'
type 'string', field name 'field6' type 'string', field name
'field7' type 'string', field name 'field8' type 'string', field
name 'field9' type 'string') key (fields
('KEY','field0','field1','field2')) distribution_def
('KEY','field0','field1','field2') distribution_policy
'distributed' replication_count 0
 TIBCO ActiveSpaces Administration

42 | Chapter 2 Administering ActiveSpaces with the Admin CLI
disconnect
Command

Syntax disconnect

Purpose Disconnects the Admin CLI from the metaspace to which it is currently
connected.

Parameters None.
TIBCO ActiveSpaces Administration

drop space | 43
drop space
Command

Syntax drop space <name>

Purpose Drops the named space.

Remarks It is required that no members be connected to the space when the drop space
command is executed.

Parameters The following table shows parameters for this command.

Note that by definition, the as-agent process joins all user spaces as a seeder.
Therefore, the drop space command might fail if you are running as-agent in
the same cluster.

Table 9 drop space Parameters

Parameter Description

name Name of the space to be dropped.
 TIBCO ActiveSpaces Administration

44 | Chapter 2 Administering ActiveSpaces with the Admin CLI
export metaspace
Command

Syntax export metaspace [to <filepath>]

Purpose Exports the definitions for the metaspace and its spaces (if any are currently
defined) to a designated text file or to the screen.

Remarks The file that is created can be used as a parameter when invoking as-admin with
the -i parameter, as shown below.

Example using java -jar lib/as-admin.jar -i

1. Export a metaspace to a file by invoking export metaspace, including ’to’
and a filepath parameter. Use single- or double-quotes around the filepath:

as-admin> export metaspace to 'C:\temp3\saved_metaspace.txt'

2. Quit as-admin:

as-admin> quit

3. Launch as-admin with the -i flag and the filepath (no quotation marks):

C:\tibco\as\2.0\lib>java -jar as-admin.jar-i
C:\temp3\saved_metaspace.txt

4. The output will indicate that metaspace has been recreated and as-admin is
now connected to this newly-created metaspace:

C:\tibco\as\2,0\lib> java -jar as-admin.jar -i
C:\temp3\saved_metaspace.txt admin.jar -i
C:\temp3\saved_metaspace

Connected to metaspace ms

Parameters The table shows parameters for this command.

Table 10 export metaspace Parameters

Parameter Description

filepath Optional. The path to a location where the text file will be saved. If no filepath is
given, the metaspace information is displayed on the screen.
TIBCO ActiveSpaces Administration

help | 45
help
Command

Syntax help

Purpose Provides a complete list of Admin CLI commands and their syntax.

Remarks The help command also displays the keyboard shortcuts available within the
Admin CLI. Context-sensitive help (such as the syntax for the current command)
is displayed when the question mark (’?’) character is typed.

The syntax for the as-admin command, with all possible parameters, is displayed
by invoking:

java -jar as-admin.jar-h:

Usage: java -jar as-admin.jar-h - -i admin-cmds-filename

Parameters None.
 TIBCO ActiveSpaces Administration

46 | Chapter 2 Administering ActiveSpaces with the Admin CLI
quit | exit | bye
Command

Syntax quit | exit | bye

Purpose Exits the Admin CLI.

Parameters None.
TIBCO ActiveSpaces Administration

recover space | 47
recover space
Admin CLI Command

Syntax recover space <string> (with | without) data

Purpose If shared-nothing persistence is implemented for the space, specifies whether,
when the space is recovered, data is written from disk to the in-memory grid. If
you specify with data, data is recovered from disk.

Parameters The following table lists the parameters for this command with a description of
each parameter.

Example recover space ’myspace’ with data

Table 11 recover space Parameters

Parameter Description

data You can specify with data or without data. If you specify with
data, then if shared-nothing persistence is set for the space,
data is written from disk to the in-memory grid. If you specify
without data, recovery without data is performed (no data is
read from the old file).

Parameter values must be enclosed in either single or double quotes.
 TIBCO ActiveSpaces Administration

48 | Chapter 2 Administering ActiveSpaces with the Admin CLI
resume space
Admin CLI Command

Syntax resume space <string>

Purpose This command is used when shared-nothing persistence is specified for the space.
Specifies that the specified space is resumed.

Parameters The following table lists the parameters for this command with a description of
each parameter.

Example resume space ’myspace’

Table 12 resume space Parameters

Parameter Description

<string> Specifies the name of the space to resume.

If shared-nothing persistence is set for the space and the space
loses one of its persisters, then the space is set to the
SUSPENDED state, which means that no writes to persistence
files can occur. You can issue the resume space command to
put the space back in a normal state.

Parameter values must be enclosed in either single or double quotes.
TIBCO ActiveSpaces Administration

show | describe member | 49
show | describe member
Command

Syntax show | describe member <name>

Purpose Outputs information to the screen about the member specified with the name
parameter.

Parameters The table shows parameters for this command.

Output The following example shows output from the show member command.

show member 'test_member'
--
 Member id : a62c8ce-c350-4febaa34-35e
 Member name : test_member
 Member ip:port : 10.98.200.206:50000
 Member join time : 2012-06-28T00:49:56GMT
 Member role : manager
Member context : none
--
No spaces

Member Attributes

Member id The system-assigned member ID for the member.

Member name If a name was specified when the member was created, shows the
member name.

Member ip:port Indicates the IP address and port number for the member.

Member join time Indicates the time that the member joined the space.

Member role Indicates the member role. Can be member or manager.

Member context If the application that is managing the member has set up a
thread context, displays the thread context; otherwise, indicates none.

Table 13 show member Parameters

Parameter Description

name Name (member ID) of the member for which information is desired.
 TIBCO ActiveSpaces Administration

50 | Chapter 2 Administering ActiveSpaces with the Admin CLI
show | describe members
Command

Syntax show | describe members

Purpose Outputs to the screen a list of all members currently running in the metaspace.

Remarks In addition to the name (member ID) of each space in the metaspace, the output
includes the role of the member in the space, that is, whether the member is a
metaspace manager (for the metaspace group membership protocol) or just a
metaspace member.

If remote members are active, the output shows the remote members.

If you have started an as-agent using the -name parameter, for example:
as-agent -name agent1

then you can issue the show member command and specify the agent name on
the command line, as follows:
show member "agent1"

This will output information about the as-agent that has been launched with the
specified member name.

Parameters None.
TIBCO ActiveSpaces Administration

show | describe space | 51
show | describe space
Command

Syntax show | describe space ’<name>’

Purpose Outputs information to the screen about the space specified with the name
parameter.

Remarks See the Output section below for information on the output of the show space
command.

Parameters Table 14 shows parameters for this command.

Output
The output of the show space command is displayed in the form of three tables
as described in this section.

Space definition attributes

The first section of the output provides information about the space's attributes,
arranged in the following columns:

Space Name The name of the space, as given when the space was defined.

Space State The current state of the space. The value can be initial (meaning
that the Space needs more seeders or more persisters), loading (meaning the
space is being loaded from the persistence layer), or ready (meaning the space
has enough seeders, persisters, and has been loaded)

Distribution Policy Can be either distributed (meaning the space is distributed)
or non_distributed.

Replication count The replication count is displayed. Default is 0, meaning there
is no replication.

Replication Policy Can be sync or async.

Capacity The capacity value for the space in number of entries per seeder. -1
indicates that there is no capacity limit.

Table 14 show space Parameters

Parameter Description

name The name of the space for which information is desired. The name value must be
in single or double quotes.
 TIBCO ActiveSpaces Administration

52 | Chapter 2 Administering ActiveSpaces with the Admin CLI
Eviction policy The policy of the eviction to be applied when a space operation
would cause the capacity to be exceeded. Can be none (no eviction) or LRU (least
recently used eviction).

Min seeders The minimum number of seeders that need to be joined to the space
before the space becomes ready.

Persistence Type Can be none, share_all, or, share_nothing.

Persistence Policy Can be none, sync or async.

Update transport The transport protocol used to distribute notifications of
updates to the data stored in the space. Can be unicast or multicast.

Entry TTL The TTL (time-to-live) of the entries stored in the spaces in
milliseconds. Default is -1 (forever).

Lock wait The Lock wait defined for the space is displayed. Default is -1
(forever).

Lock TTL The Lock TTL (time-to-live) defined for the space is displayed. Default
is -1 (forever).

Lock scope Indicates the lock scope for the space, if set. Can be thread or process.

Space wait Indicates the space wait value for the space, if a space wait value has
been set.

Write timeout Indicates the write timeout value for the space, if a write timeout
has been set.

Read timeout Indicates the read timeout value for the space, if a read timeout has
been set.

Phase count Indicates the phase count value in effect for the space.

Version num Indicates how many time the space definition has been changed
since it was defined initially. This value is incremented for each alter space
operation. The initial value is 0.

Fields

For each field, the name and type of the field, and whether or not the field is
nullable (optional), is displayed.

Below this list of field definitions are names of all the fields that make up the
space's key.
TIBCO ActiveSpaces Administration

show | describe space | 53
Key and Index

The display shows any primary keys that have defined for the space and
secondary indexes. For each key or index, the output indicates the index type
(HASH or TREE) and the fields for that key or index definition.
Key : {KeyDef index_type=HASH, fields=[KEY, field0, field1,
field2]}

In addition, the display indicates any distribution fields that have been set up:
Distribution Fields: {[KEY, field0, field1, field2] }

Distribution fields are key fields that have been configured for affinity—for these
fields, all tuples that have the same value are stored on the same seeder.

Members

List the members of the space.

Statistics

The count of put, get, take, seeded, and replicated entries is displayed, as well the
number of expires, evictions, locks, unlocks and invokes. These counts are
displayed per member and the cumulative count for all members connected to
this space.
 TIBCO ActiveSpaces Administration

54 | Chapter 2 Administering ActiveSpaces with the Admin CLI
show | describe spaces
Command

Syntax show | describe spaces

Purpose Lists all spaces defined for the metaspace.

Parameters None.
TIBCO ActiveSpaces Administration

validate policy_file | 55
validate policy_file
Admin CLI Command

Syntax validate [policy_name <string>] policy_file <string>

Purpose Use the validate policy_file command to validate the syntax and settings in a
specified security policy file.

Parameters The following table lists the parameters for this command with a description of
each parameter.

Example validate policy_file 'policy.txt'

The following examples illustrate the syntax of the validate policy_file
command:

• validate policy_file 'policy.txt'

• validate policy_name 'mypolicy' policy_file 'policy.txt'

Table 15 validate policy_file Parameters

Parameter Description

policy_name Optional. Specifies the name of a specific security policy to be
validated.

policy_file Specifies the name of the security policy file to be validated.

Parameter values must be enclosed in either single or double quotes.
 TIBCO ActiveSpaces Administration

56 | Chapter 2 Administering ActiveSpaces with the Admin CLI
validate token_file
Admin CLI Command

Syntax validate token_file <string>

Purpose Use the validate token_file command to validate a security token file that you
have generated by using the define | create token_file command.

Parameters The following table lists the parameters for this command with a description of
each parameter.

Example validate policy_file "policy.txt"

The following examples illustrate the syntax of the validate token_file
command:

• validate token_file "mytoken"

Table 16 validate token_file Parameters

Parameter Description

token_file Specifies the name of the token file to be validated.

Parameter values must be enclosed in either single or double quotes.
TIBCO ActiveSpaces Administration

validate truststore | 57
validate truststore
Admin CLI Command

Syntax validate truststore cert_file <string>

Purpose Use the validate truststore file to validate a specified security certificate file.

ActiveSpaces validates the specified truststore and outputs error messages if
errors are found. If the certificate file is validated successfully, the output
indicates the X509 information and validity time period.

Parameters The following table lists the parameters for this command with a description of
each parameter.

Example validate truststore cert_file "mycert.pem"

The following examples illustrate the syntax of the validate truststore
command:

• validate truststore cert_file "mycert.pem"

The following example shows sample output from the command:

Example 2 Sample Output from the validate truststore command

as-admin> validate truststore cert_file "mycert.pem"

 [1] /CN=AS-DOMAIN-FEF3A467 [serial: A9CD21B4A05FB244]
 [valid after: Jan 17 03:10:34 2013 GMT, before: Jan 17 03:10:34
2014 GMT]
Found [1] requestor trust anchor(s)
Truststore validated successfully: mycert.pem

Table 17 validate truststore Parameters

Parameter Description

cert_file Specifies the name of the certificate file that is to be validated.

Parameter values must be enclosed in either single or double quotes.
 TIBCO ActiveSpaces Administration

58 | Chapter 2 Administering ActiveSpaces with the Admin CLI
TIBCO ActiveSpaces Administration

Using the as-dump Utility | 59
Chapter 3 Using the as-dump Utility

This chapter describes how to use the as-dump utility to view backup files that
are used with ActiveSpaces shared-nothing persistence.

Topics

• Overview of as-dump, page 60

• as-dump Syntax, page 61

• Sample Output, page 62
 TIBCO Activespaces Administration

60 | Chapter 3 Using the as-dump Utility
Overview of as-dump

The as-dump program is a utility that can you can run offline to examine
shared-nothing persistence files and get information such as the ActiveSpaces
version the file was created with, the number of entries in the file, and optionally,
the data in the file entries. As-dump is useful for examining the data store files
created when you are using shared-nothing persistence and detecting possible
problems.

The as-dump utility takes a file name as and/or a specific directory name as input.
You must provide the full directory path.

If you provide the directory name, as-dump reads all files in the directory or in its
subdirectory and prints out information on each of the files. If you specify a
filename, as-dump outputs information for the specified file only.
TIBCO Activespaces Administration

as-dump Syntax | 61
as-dump Syntax

The as-dump utility has the following syntax:

as-dump [-vhm] <filepath/directory>
 -h help
 -v verbose, verbose output
 -m <int>, number of entries to print at once

Table 18, as-dump Parameters describes the syntax for as-dump.

Table 18 as-dump Parameters

Parameter Description

filepath/directory Required.

-h Displays the command syntax for as-dump.

-v Verbose. Displays detail for each tuple in the file.

-m <int> Specifies output of int entries.
 TIBCO Activespaces Administration

62 | Chapter 3 Using the as-dump Utility
Sample Output

The output from as-dump indicates:

• The location of the persistence file (or files if you specify the directory name
only).

• The filename for each persistence file.

• The ActiveSpaces version that created the files.

• The number of entries in the file.

• If you specify the verbose option, the contents of each tuple.

The following example shows output from the as-dump command with the
verbose option and a specified filename specified.

as-dump -v c:\tmp\ms\shared_nothing_persisted\
a62c937-c350\a62c937-c350_store_1352146870

[2012-11-05 14:29:23:101][4896][7040][INFO][asdump]
fileloc=c:\tmp\ms\shared_nothing_persisted\a62c937-c350\a62c937-c3
50_store_1352146870
[2012-11-05 14:29:23:101][4896][7040][INFO][asdump] <?xml
version="1.0" encoding="UTF-8"?>
[2012-11-05 14:29:23:201][4896][7040][INFO][asdump] <Dump>
[2012-11-05 14:29:23:301][4896][7040][INFO][asdump]
<Filter></Filter>
[2012-11-05 14:29:23:401][4896][7040][INFO][asdump] <File>
[2012-11-05 14:29:23:501][4896][7040][INFO][asdump]
<FilePath>c:\tmp\ms\shared_nothing_persisted\a62c937-c350\a62c937-
c350_store_1352146870</FilePath>
[2012-11-05 14:29:23:601][4896][7040][INFO][asdump]
<Version>2.0.2</Version>
[2012-11-05 14:29:23:701][4896][7040][INFO][asdump]
<ViewNumber>2</ViewNumber>
[2012-11-05 14:29:23:801][4896][7040][INFO][asdump]
<Entries>
[2012-11-05 14:29:23:901][4896][7040][INFO][asdump] <Tuple>
 <value type="int32" pos="0" name="key"> 1 </value>
 <value type="string" pos="1" name="value"> one </value>
 <value type="date_time" pos="2" name="time">
2012-11-05T20:21:33.000GMT </value>
</Tuple>
[2012-11-05 14:29:24:1][4896][7040][INFO][asdump] <Tuple>
 <value type="int32" pos="0" name="key"> 2 </value>
 <value type="string" pos="1" name="value"> two </value>
 <value type="date_time" pos="2" name="time">
2012-11-05T20:21:41.000GMT </value>
</Tuple>
[2012-11-05 14:29:24:101][4896][7040][INFO][asdump] <Tuple>
 <value type="int32" pos="0" name="key"> 3 </value>
 <value type="string" pos="1" name="value"> three </value>
TIBCO Activespaces Administration

Sample Output | 63
 <value type="date_time" pos="2" name="time">
2012-11-05T20:21:54.000GMT </value>
</Tuple>
[2012-11-05 14:29:24:201][4896][7040][INFO][asdump] <Tuple>
 <value type="int32" pos="0" name="key"> 4 </value>
 <value type="string" pos="1" name="value"> four </value>
 <value type="date_time" pos="2" name="time">
2012-11-05T20:22:02.000GMT </value>
</Tuple>
[2012-11-05 14:29:24:301][4896][7040][INFO][asdump] <Tuple>
 <value type="int32" pos="0" name="key"> 5 </value>
 <value type="string" pos="1" name="value"> five </value>
 <value type="date_time" pos="2" name="time">
2012-11-05T20:22:11.000GMT </value>
</Tuple>
[2012-11-05 14:29:24:424][4896][7040][INFO][asdump]
</Entries>
[2012-11-05 14:29:24:524][4896][7040][INFO][asdump]
<EntryCount>5</EntryCount>
[2012-11-05 14:29:24:624][4896][7040][INFO][asdump]
<InvalidBlockCount>0</InvalidBlockCount>
[2012-11-05 14:29:24:724][4896][7040][INFO][asdump]
<ExceptionCount>0</ExceptionCount>
[2012-11-05 14:29:24:824][4896][7040][INFO][asdump] </File>
[2012-11-05 14:29:24:924][4896][7040][INFO][asdump] </Dump>
 TIBCO Activespaces Administration

64 | Chapter 3 Using the as-dump Utility
TIBCO Activespaces Administration

Using as-agent | 65
Chapter 4 Using as-agent

This chapter describes how to use the as-agent program to administer distributed
spaces from a host.

Topics

• Overview of as-agent, page 66
 TIBCO Activespaces Administration

66 | Chapter 4 Using as-agent
Overview of as-agent

ActiveSpaces provides an agent process called as-agent. The main purpose of
as-agent is to join all distributed spaces in the specified metaspace as a seeder.
You can run as-agent on any host.

You can also use as-agent to:

• Ensure that the desired degree of replication specified for a space is achieved.

Because the amount of data that can be stored in a space depends on the
number of seeding members of the space, you might need to add seeders to a
space to scale it up. Although any process using the ActiveSpaces API can
become a seeder on a space, there are situations where applications may not
always be running and joined to the space, or where not enough applications
have joined the space.

• Ensure data integrity.

Because the data contained in the space disappears along with the last seeder
in the space, this can be a problem. You can use the as-agent process to ensure
that there are always one or more seeders for each space in the metaspace.

Agents remain connected to the metaspace, and always seed the system
spaces, keeping the metaspace’s space definitions alive, even when all other
applications have quit the metaspace.

Starting as-agent
To start as-agent:

1. Go to the ActiveSpaces \bin directory:

Windows:

Default location: C:\tibco\as\2.0\bin

UNIX/Linux:

Default location: /opt/tibco/as/2.0/bin

2. Enter as-agent.

You can specify a number of optional parameters. Each parameter specifies a
parameter name and a value.
TIBCO Activespaces Administration

Overview of as-agent | 67
The syntax for launching as-agent with parameters is as follows:

as-agent -metaspace <metaspace_name> -discovery <discovery_url>
-listen <listen_url> -name <member_name> -remote_listen
<remote_listen_url> -log <log_file> -debug <log_level> -name
<member_name> -admin -data_store <directory path>

3. To display usage help for as-agent, enter as-agent -help

The output of the help command is shown here. It includes the default values
used if no parameter is provided by the user:

Usage:
-metaspace <metaspace_name> default ms
-discovery <url> / <url_list> default tibpgm://
-listen <url> default tcp://
-remote_listen <url>
-log <log_file>
-debug <log_level> default 3 (INFO)
-name <membername>
-admin
-security_token <token_filename>
-data_store <directory path>

Discovery url format:
tcp://interface:port;interface2:port2;interface3:port3
tibpgm://dport/interface;multicast/key1=value1;key2=value2;
key3=value3
tibrv://service/network/daemon

Listen url format: tcp://interface/listen_port
Remote listen url format: tcp://interface/remote_listen_port

I If you start as-agent with the -member parameter; for example as-agent -name
agent1, then when you run the Admin CLI you can issue the show member
command and specify the member name of the agent to display the attributes of
the member; for example, show member -name "agent1"

The member name that you specify with the -name parameter can specify simply
the member name; or, if you are implementing host-aware replication, can specify
a membername in the form a.b, where a specifies the name of a region, for example
region1, and b specifies the name of a seeder running in that region, in effect, on
the same host.

For information on deploying host-aware replication, see Host-Aware
Replication, page 5.
 TIBCO Activespaces Administration

68 | Chapter 4 Using as-agent
For more details about discovery and listen URLs, see Chapter 3, “Performing
Basic ActiveSpaces Tasks,” in the TIBCO ActiveSpaces Developer’s Guide.

• Connecting to the Metaspace

• Discovery Attribute

• Listen Attribute

Starting as-agent with Security Enabled
If you are using as-agent to start a requestor node that is authorized using a
security domain controller that uses a security token file, the command to start
as-agent must include the -security_token parameter. This parameter
specifies the name of the security token file that has been placed on the controller
node.

The following example shows how to start as-agent to start a requestor node with
security enabled:
java -jar as-agent.jar -metaspace ms -security_token
"exdomain_token.txt"

Command Parameters
This section gives examples of the as-agent command with additional parameters
specified.

Running as-agent to Include a Command Console

To run as-agent and display an as-admin console that allows you to enter Admin
CLI commands, specify the -admin parameter as follows:
java - jar as-agent.jar -admin

When as-agent starts, an as-agent command prompt appears, which allows
you to enter Admin CLI commands.

There is also a Java version of as-agent available in the lib directory that can be
launched using java -jar as-agent, and which takes the same argument as the
C version of the agent described above. The Java version of the as-agent behaves
exactly as the C version, but will be able to service requests to remotely invoke
methods as triggered by other applications using the space (obviously as long as
it has the classes being invoked present in it's CLASSPATH).
TIBCO Activespaces Administration

Overview of as-agent | 69
Log File Example

If you include the parameter -log <log_file>, then the log filename will be
log_file-<processid>.log. For example, if you enter -log as, then the log filename is
as-<processid>.log.

Using the -debug Parameter

To specify a log level, specify:

-debug <log_level>

The log levels are as follows:

1 = ERROR_LEVEL
2 = WARNING_LEVEL
3 = INFO_LEVEL

The default is 3 (INFO). The log information displayed on the console is minimal
and cannot be controlled through this parameter. This parameter is only for log
files. If a log file is not specified, then the debug (log level) value is ignored.

Using the -data_store Parameter

The -data_store parameter specifies the directory path where shared-nothing
persistence files are stored.

If you are using shared-nothing persistence, specify the -data_store parameter
when you run as-agent; for example:

as-agent -data_store <directory_path>

where directory_path specifies the directory path for the shared nothing
persistence data store.

Remote Invocation

To provide necessary class files to support remote invocation, start your Java
as-agent as follows:
java -Djava.ext.dirs=$LOCATION_OF_JARS$ -jar as-agent.jar

Otherwise, running java as-agent in a cluster that includes remote members will
cause invoke methods to fail with a “ClassNotFound” exception.
 TIBCO Activespaces Administration

70 | Chapter 4 Using as-agent
TIBCO Activespaces Administration

Administering ActiveSpaces Security | 71
Chapter 5 Administering ActiveSpaces Security

This chapter describes the main administration tasks for administering TIBCO
ActiveSpaces® security.

Topics

• Main Tasks for Setting Up Security, page 72

• Creating a Security Policy File, page 74

• Editing a Security Policy File, page 75

• Setting up Data Encryption, page 78

• Validating a Security Policy File, page 79

• Creating a Security Token, page 80

• Setting Up Authorization, page 83

• Starting Security Domain Controllers, page 84

• Starting Security Domain Requesters, page 86
 TIBCO ActiveSpaces Administration

72 | Chapter 5 Administering ActiveSpaces Security
Main Tasks for Setting Up Security

This section describes the basic entities involved in ActiveSpaces security and
provides an overview of the basic tasks needed to implement security.

Basic Entities Involved in Security

Configuring and maintaining security involves the following elements:

• as-admin utility Sets discovery parameters, generates and maintains security
configuration files.

• policy files Specifies security settings across metaspaces, binds metaspaces to
security domains.

• token files Define connection parameters to secured metaspaces.

• ActiveSpaces API Sets up and manages access to secured metaspaces.

Table 19, Tasks for Setting Up Security lists the main tasks for setting up
ActiveSpaces security.

Table 19 Tasks for Setting Up Security

Task See

Create a Policy
File

Creating a Security Policy File, page 74

Edit the Policy
file

Editing a Security Policy File, page 75

Set up Data
Encryption

Setting up Data Encryption, page 78

Validate the
Security Policy
file

Validating a Security Policy File, page 79

Create a
Security Token

Creating a Security Token, page 80

Validate a
Security Token

Validating a Security Token File, page 82

Set up
Authorization

Setting Up Authorization, page 83
TIBCO ActiveSpaces Administration

Main Tasks for Setting Up Security | 73
Start Security
Domain
Controllers

Starting Security Domain Controllers, page 84

Start Security
Domain
Requesters

Starting Security Domain Requesters, page 86

Table 19 Tasks for Setting Up Security

Task See
 TIBCO ActiveSpaces Administration

74 | Chapter 5 Administering ActiveSpaces Security
Creating a Security Policy File

To create a security policy file:

1. Start the as-admin utility:
java -jar as-admin.jar

2. At the as-admin command prompt, enter:

create security_policy policy_name "mypolicy/mydomain"
[encrypt <boolean>][validity_days <integer>] policy_file
<policy_filename>

For example

create security_policy policy_name "mypolicy/mydomain" encrypt
true validity_days 100 policy_file "acme_policy.txt"

where:

• policy_name Is an optional parameter that specifies the name of the security
policy and security domain that is created. If you do not specify this
parameter, a policy named AS-POLICY and a domain named AS-DOMAIN are
created.

• encrypt Is an optional parameter that indicates whether the identity for the
domain is to be encrypted. Each policy can have one or more domains.The
default is encrypt true.

• validity_days An integer that specifies how long the domain ID that the
command creates remains valid. The default value is 365 days.

• policy_filename Specifies the name of the policy file that is created.

You are prompted to enter a domain password:
New domain password [mydomain]:

3. Enter a password for the domain.

4. You are prompted to verify the domain password.
Verifying - New domain password [mydomain]:

5. Re-enter the password to confirm it.

A message appears indicating that the policy was created; for example:
Policy created at: acme_policy.txt
TIBCO ActiveSpaces Administration

Editing a Security Policy File | 75
Editing a Security Policy File

After you have created a policy file for your security domain, you must edit the
settings in the file to specify the security configuration for the domain.

For detailed information on editing security policy files, refer to Chapter 4,
Implementing ActiveSpaces Security in the TIBCO ActiveSpaces Developer’s Guide.

Table 20, Security Policy File Sections indicates the sections in the policy file.
Some sections are optional and might not need to be modified from the default
values or specified in your security policy file. These sections are marked as
“optional.”

Table 20 Security Policy File Sections

Setting Requirements Description

Metaspace Access
List

Required Specifies the metaspaces in the security domain and the
discovery URL to be used to discover each metaspace.

You must specify at least one metaspace and discovery
URL.

For detailed information on the settings, see Metaspace
Access List on page 111 in the TIBCO ActiveSpaces
Developer’s Guide.

Transport Security Required Specifies the type of Transport security used when
ActiveSpaces data is transmitted.

For detailed information, see Transport Security on
page 113 in the TIBCO ActiveSpaces Developer’s Guide.

Restricted
Transport Access

Required Specifies whether transport access is restricted to members
with specific token identities

For detailed information, see Restricting Transport Access
on page 114 in the TIBCO ActiveSpaces Developer’s Guide.
 TIBCO ActiveSpaces Administration

76 | Chapter 5 Administering ActiveSpaces Security
Data Encryption Optional Specifies whether tuple data is encrypted in shared memory
and when it is persisted on local storage.

The default setting, data_encryption=false, specifies that
data is not encrypted.

For detailed information, see Setting up Data Encryption on
page 78 in this guide and Data Encryption on page 116 in
the TIBCO ActiveSpaces Developer’s Guide.

Authentication Optional Species whether user authentication is required, and if so,
what type of authentication is used.

The default value, authentication=none, specifies there is
no authentication.

For detailed information, see Metaspace Access List on
page 111 in the TIBCO ActiveSpaces Developer’s Guide.

Security Domain
Access Control

Optional Specifies whether access control is required.

The default value access_control=false, specifies that
there is no access control.

For detailed information, see User Access Control on
page 123 and Metaspace Access List on page 111 in the
TIBCO ActiveSpaces Developer’s Guide.

Access Control
Groups

Optional Allows you to specify what groups or users are granted
access to specified to ActiveSpaces operations.

The default policy file contains a groups keyword with no
groups defined.

For detailed information, see the following sections of the
TIBCO ActiveSpaces Developer’s Guide:

• Metaspace Access List on page 111

• Access Control Groups on page 124

Table 20 Security Policy File Sections

Setting Requirements Description
TIBCO ActiveSpaces Administration

Editing a Security Policy File | 77
Access Control
Permissions

Optional Allows you to specify which ActiveSpaces operations are
permitted for specified groups or users.

The default policy file contains a permissions keyword
with no permissions defined.

For detailed information on setting permissions, see the
following sections of the TIBCO ActiveSpaces Developer’s
Guide.

• User Access Control on page 123

• Access Control Permissions on page 125

Table 20 Security Policy File Sections

Setting Requirements Description
 TIBCO ActiveSpaces Administration

78 | Chapter 5 Administering ActiveSpaces Security
Setting up Data Encryption

TIBCO ActiveSpaces allows you to specify encryption of tuple data for fields that
have been defined as secure data fields.

Data encryption is set up in the policy file for each domain and by using the
TIBCO ActiveSpaces security API functions.

For detailed information on implementing data encryption, see (Data Encryption,
page 116 in the TIBCO ActiveSpaces Developer’s Guide.
TIBCO ActiveSpaces Administration

Validating a Security Policy File | 79
Validating a Security Policy File

To validate a security policy file:
e

At the as-admin command prompt, enter:
validate [policy_name <string>] policy_file <string>

where

• policy_name specifies the name of the policy to be validated

• policy_file specifies the the name of the policy file to be validated.

For example
validate policy_name 'mypolicy' policy_file 'policy.txt'
 TIBCO ActiveSpaces Administration

80 | Chapter 5 Administering ActiveSpaces Security
Creating a Security Token

Complete this task if you want to create a token. A token is an optional
configuration file that can be deployed on nodes that have access to or create
secured ActiveSpaces resources. The token is created from the security parameter
values set in a specified policy file.

If not used, the keyword “none” is provided for the token file location. In such a
case, requestors will trust any controller and these requestors cannot connect to a
secured metaspace where transport level authentication is required.

When you create a token, you can specify that it is encrypted: in this case, a
requestor can only be started if the password is typed when the node starts.

1. Create a policy file and set the policy parameters required for a token.

2. Run the create security_token command to create a token file.

The create security token command has the following syntax:
(define | create) security_token domain_name <string>
policy_file <string> [create_identity [common_name <string>]
[encrypt <boolean>][validity_days <integer>]]token_file <string>

For a complete description of the create security_token command, see define |
create security_token, page 33.

For example:

as-admin> create security_token
domain_name "mydomain"

policy_file "mypolicy.txt"

token_file "mytoken.txt"

3. Copy the token file to requestor nodes as needed.

4. Verify OS-level access privileges on the security tokens.

Perform Additional Programming Tasks to Process Authentication Requests

To process authentication requests, once you have set up authentication using the
ActiveSpaces CLI, you can code a callback routine for client authentication on
requestors and develop code to process authentication requests.

Implementing the API's authentication callback is optional. If authentication is
required on a metaspace, a default authenticator is always provided, which
prompts the user for the username/account-password or
keyfile/keyfile-password. If more sophisticated credential feeding
implementations are required, the callbacks can be implemented to customize this
behavior.
TIBCO ActiveSpaces Administration

Creating a Security Token | 81
The ActiveSpaces API provides a sample Java program, ASUserAutenticator.java,
that demonstrates the use of a callback routine to process user authentication
information.

For a general description of user authentication, see User Authentication on
page 118 in Chapter 4 in the TIBCO ActiveSpaces Developer’s Guide,” Implementing
ActiveSpaces Security.”

For a description the ASUserAuthenticator sample program, see
ASUserAuthenticator on page 186 in Chapter 5 of the TIBCO ActiveSpaces
Developer’s Guide,” Using the Example Code.”
 TIBCO ActiveSpaces Administration

82 | Chapter 5 Administering ActiveSpaces Security
Validating a Security Token File

To validate a security token file:’
e

At the as-admin command prompt, enter:
validate token_file <token_filename>

where token_filename is the name of the token file to be validated.

For example, enter:
validate token_file "mytoken"
TIBCO ActiveSpaces Administration

Setting Up Authorization | 83
Setting Up Authorization

If you want to provide granular authorization, ActiveSpaces allows you to use
using Access Control Lists (ACLs) to set up authorization scopes, rights, and
privileges.

For information on setting up authorization, see Enabling User Access Control,
page 124 in the TIBCO ActiveSpaces Developer’s Guide.
 TIBCO ActiveSpaces Administration

84 | Chapter 5 Administering ActiveSpaces Security
Starting Security Domain Controllers

To start a security domain controller:

1. Make sure that the paths to the required system variables are set.

See Setting the Required Environment Variables, page 17 for information on
setting the environment variables.

2. Make sure that you have a valid policy file for the domain.

3. Start the as-admin utility:
java -jar as-admin.jar

4. Issue the following CLI command to start the domain controller node:
connect security_policy <string> [name <string>] [membername
<string>]

For example:

connect security_policy ’mypolicy.txt’ name ’ms’ membername

’secure1’ listen ’tcp://127.0.0.1:50000’

where:

• security_policy Specifies a string indicating the name of the security policy
file for the security domain.

• name Specifies a string containing the name of the metaspace that is specified
in the Metaspace Access List within the security policy file

• membername Is an optional parameter that specifies a space member name.

• listen Specifies a string indicating the listen parameter for the metaspace.

Do not specify the discovery parameter for the connect command when starting
either a security domain controller or a security domain requestor. When you start
these nodes, the connect command picks up the discovery setting specified in the
security policy file or the security token file for the node.
TIBCO ActiveSpaces Administration

Starting Security Domain Controllers | 85
On the UNIX platform, if a controller is started in background mode, it issues a
password error without prompting for a password.

There are several possible workarounds:

• Start the controller normally and provide the password; when authentication
is completed, type CTRL-Z and then enter the command bg to run in the
background.

• Alternatively, if customized authentication is required, implement a custom
callback function; for example, an application can send its credentials from its
command line if needed and the custom callback will use them.
 TIBCO ActiveSpaces Administration

86 | Chapter 5 Administering ActiveSpaces Security
Starting Security Domain Requesters

You can start a security domain requestor with a token file, if you have deployed
token files for your security installation, or you can start a requestor without a
token file if you have implemented security without a token file.

Starting a Security Domain Requestor with a Token File
To start a security domain controller with a token file:

1. Make sure that the paths to the required system variables are set:

See Setting the Required Environment Variables, page 17 for information on
setting the environment variables.

2. Make sure that you have a valid token file for the domain

3. Start the as-admin utility:
java -jar as-admin.jar

4. Issue the following CLI command to start the requestor node:
connect security_token <string> [name <string>] [membername
<string>] [listen <string>]

For example:

as-admin> connect security_token ’mytoken.txt’ name ’ms’
membername ’client1’ listen ’tcp://127.0.0.1:50000’

where

• security_token Specifies a string indicating the name of the token file for the
security domain.

• name Specifies a string containing the name of the metaspace that is specified
in the Metaspace Access List within the security policy file.

The metaspace name that you use to start the requestor must be the same
metaspace name that you used to start the security domain controller.

• membername Is an optional parameter that specifies a space member name.

• listen Specifies a string indicating the listen parameter for the metaspace.

Do not specify the discovery parameter for the connect command when starting
either a security domain controller or a security domain requestor. When you start
these nodes, the connect command picks up the discovery setting specified in the
security policy file or the security token file for the node.
TIBCO ActiveSpaces Administration

Starting Security Domain Requesters | 87
Starting a Security Domain Requestor Without a Token File
You can start the domain requestor without specifying a security token filename.

For example:
connect name "ms" discovery "tcp://127.0.0.1:50000" listen
"tcp://127.0.0.2:50000" security_token "none"
 TIBCO ActiveSpaces Administration

88 | Chapter 5 Administering ActiveSpaces Security
TIBCO ActiveSpaces Administration

Using ActiveSpaces Monitoring and Management | 89
Chapter 6 Using ActiveSpaces Monitoring and
Management

TIBCO ActiveSpaces provides an administrative GUI, called ActiveSpaces
Monitoring and Management (ASMM) that lets you connect to a metaspace,
display information about various ActiveSpaces system resources, for example,
metaspaces, metaspace members, spaces, entry statistics, and so on, and browse
space entries.

Topics

• Starting ASMM and Connecting to a Metaspace, page 90

• Connecting and Disconnecting from a Metaspace, page 91

• Viewing Space Information, page 92

• Viewing Space Distribution, page 95

• Viewing Historical Statistics, page 96

• Using the Space Browser, page 97
 TIBCO ActiveSpaces Administration

90 | Chapter 6 Using ActiveSpaces Monitoring and Management
Starting ASMM and Connecting to a Metaspace

To start ASMM:

1. Navigate to the folder where you deployed ActiveSpaces Monitoring and
Management.

2. Open a Windows command window.

3. Navigate to the directory where ASMM is installed (normally this is
C:\tibco\as\2.0\asmm).

4. Enter the following command:
java -jar asmm.jar

5. Open a browser, and in the address field, enter the URL for ASMM. The
default value is:
http://localhost:8686

ASMM starts and the Connect to Metaspace dialog appears.

Figure 9 Connect to Metaspace Dialog

6. Enter the name of the metaspace to connect to.

7. If you want to enter a Discovery URL or a Listen URL, enter them as required.

The start page for ASMM appears. You are now ready to use ASMM to view the
metaspace and configured spaces.

You can change the port number by editing the deployer properties file for
ASMM. This file is located in the directory where you installed ASMM.
TIBCO ActiveSpaces Administration

Connecting and Disconnecting from a Metaspace | 91
Connecting and Disconnecting from a Metaspace

To select a connection option:

1. On the main page of ASMM, click Connections.

The Connections menu appears.

2. From the pull-down menu, select an option.

— To connect to a metaspace, choose Connect To and enter the name of the
metaspace when prompted.

— To disconnect from a metaspace, choose Disconnect From, and enter the
name of the metaspace when prompted.

— To disconnect from all metaspaces, choose Disconnect All.

When you connect to a metaspace, the Metaspace Navigator panel is populated at
the left of the ActiveSpaces Administrator page, as shown in the following figure.

Figure 10 Metaspace Manager

The Metaspace Navigator in the figure shows the AcmeSystems metaspace, for
which one space has been defined—the Employee space.
 TIBCO ActiveSpaces Administration

92 | Chapter 6 Using ActiveSpaces Monitoring and Management
Viewing Space Information

ASMM lets you view basic information about each space attached to each
metaspace in the data grid. You can view:

• Definition Shows the definition for the space.

• Schema Shows the schema for the space and the metadata that is active for
each tuple field.

• Members Shows information about the currently defined space members.

• Indices Shows primary keys and secondary indexes for the selected space
member.

To view information about a space:

1. Connect to a metaspace.

2. Click on the icon for a space defined on the metaspace.

The Space Information page for the selected space appears.

The following figure shows the Space Information page for the Employees
space that is defined for a metaspace called AcmeSystems. The Employees
space contains information that describes the various attributes of an
employee at AcmeSystems (for example, name, age, and salary).

Figure 11 Space Information Page
TIBCO ActiveSpaces Administration

Viewing Space Information | 93
Viewing a Space Definition
To view a space definition, on the Space Name page, click the Definition tab.

For the selected space, ASMM displays:

State The current state of the space. The value can be initial (meaning that the
Space needs more seeders or more persisters), loading (meaning the space is
being loaded from the persistence layer), or ready (meaning the space has enough
seeders, persisters, and has been loaded)

Distribution Policy Can be either distributed (meaning the space is distributed)
or non_distributed.

Replication count The replication count is displayed. Default is 0, meaning there
is no replication.

Replication Policy Can be sync or async.

Capacity The capacity of the space in number of entries per seeder. -1 indicates
no capacity.

Eviction policy The policy of the eviction to be applied when a space operation
would cause the capacity to be exceeded. Can be none (no eviction) or LRU (least
recently used eviction).

Min seeders The minimum number of seeders that need to be joined to the space
before the space becomes ready.

Persistence Type Can be none, share_all, or, share_nothing,

Persistence Policy Can be sync or async,

Update transport The transport protocol used to distribute notifications of
updates to the data stored in the space. Can be unicast or multicast.

Entry TTL The TTL (time-to-live) of the entries stored in the spaces in
milliseconds. Default is -1 (forever).

Lock wait The Lock wait defined for the space is displayed. Default is -1
(forever).

Lock TTL The Lock TTL (time-to-live) defined for the space is displayed. Default
is -1 (forever).

Lock scope The lock scope defined for the space.

Viewing the Space Schema
To view the schema for the selected space, click the Schema tab.

ASMM displays the schema for the space.
 TIBCO ActiveSpaces Administration

94 | Chapter 6 Using ActiveSpaces Monitoring and Management
Viewing the Space Members
To view information on the members connected to the selected space, click the
Members tab.

ASMM displays a list of the space members, as shown in the following figure.

Figure 12 Members Page

For the each space member, the display shows:

• Role—Indicates seeder or leech.

• Puts

• Replicates

• Takes

• Gets

• Expires

Viewing Indices
To view the primary keys and secondary indexes defined for a space, click the
Indices tab.

ASMM displays the primary key, and any secondary indexes that are defined. For
each primary key or index, the index type (HASH or TREE) and the key fields are
shown.
TIBCO ActiveSpaces Administration

Viewing Space Distribution | 95
Viewing Space Distribution

When you view a space using ASMM, the program shows you how the data for
the space is distributed between members. The bottom of the Space Name page
shows a pie chart indicating the distribution of entries amongst space members,
as shown in the following figure.

Figure 13 Space Name Page with Entry Distribution

You can enlarge the Graphs section by clicking on the Space Properties. This will
enlarge the Space Properties area and make the graph appear larger.
 TIBCO ActiveSpaces Administration

96 | Chapter 6 Using ActiveSpaces Monitoring and Management
Viewing Historical Statistics

The Space Name page allows you to view historical statistics for space entries in
graphical format.

To view historical statistics, in the Graphs section at the bottom of the Space
Name page click Historical Stats Chart.

ASMM displays a graph of the activity on the space over a specified interval, as
shown in the following figure.

Figure 14 Historical Stats Graph Display

To control which actions are shown in the Historical Stats display, check or
uncheck the boxes at the right of the graph area for Entries, Replicas, Puts, Takes,
Gets, and Expires.
TIBCO ActiveSpaces Administration

Using the Space Browser | 97
Using the Space Browser

ASMM provides a space browser that lets you browse through the entries defined
in a selected space.

The space browser shows you entries that match filter criteria that you specify
using the Filter Builder.

To browse the entries in a space:

1. Click Utilities at the top of the ASMM page.

2. Click Space Browser.

A list of metaspaces appears.

3. Click on a metaspace name.

A list of the spaces defined for the metaspace appears.

4. Click on a space name.

A list of Available Filters appears at the right of the Filter Builder.

5. Specify a filter definition to use for browsing the space.

a. Click the plus sign (+) to add a filter.

b. In the Filter Entry dialog, enter a filter; for example Age < 50.

c. Continue entering filters until you have built the filter that you want to
use.

d. To remove a filter element, click the delete button (X).

6. To run the query, click the Execute button.

A list of the matching entries appears at the bottom of the display.

The following figure shows a sample query definition and the resulting entry
display.

Holding down the control key and clicking on filters in the list allows you to
select multiple filters or deselect filters. Also, double-clicking on a filter in the list
allows you to edit it.
 TIBCO ActiveSpaces Administration

98 | Chapter 6 Using ActiveSpaces Monitoring and Management
Figure 15 Query Builder with Tuple Display
TIBCO ActiveSpaces Administration

| 99
Index

A

alter space command 21
as-agent 65
as-dump 59

C

clear | set password command 24
clear command 23
connect command 26
customer support xii

D

define | create security_policy command 30
define | create space command 35
disconnect command 42
drop space command 43

E

Example using as-admin.cmd -i 44
Execute method 20
export metaspace command 44

H

help command 45

Q

quit | exit | bye command 46

S

shared-nothing persistence files
viewing data 59

show | describe member command 49
show | describe members command 50
show | describe space command 51
show | describe spaces command 54
support, contacting xii

T

technical support xii
TIBCO_HOME ix

U

using as-agent 46

V

validate policy_file command 55
validate token_file command 56
validate truststore command 57
 TIBCO ActiveSpaces Administration

100 | Index
TIBCO ActiveSpaces Administration

	TIBCO ActiveSpaces®
	Contents
	Preface
	Related Documentation
	TIBCO ActiveSpaces Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Overview of ActiveSpaces Administration and Deployment
	Overview of Administration
	Deployment Modes
	Clients (Leeches) and Servers (Seeders)
	Shared-All Persistence
	Shared-Nothing Persistence
	Host-Aware Replication
	Remote Client Architecture

	Best Practices for Node Discovery
	Specifying Discovery When Using ActiveSpaces Security
	Choosing the Right Discovery Point
	Specifying Multiple TCP Discovery Nodes for Fault Tolerance

	Chapter 2 Administering ActiveSpaces with the Admin CLI
	Starting the Admin CLI
	Setting the Required Environment Variables
	Launching the Admin CLI

	alter space
	clear
	clear | set password
	connect
	define | create security_policy
	define | create security_token
	define | create space
	disconnect
	drop space
	export metaspace
	help
	quit | exit | bye
	recover space
	resume space
	show | describe member
	show | describe members
	show | describe space
	Output

	show | describe spaces
	validate policy_file
	validate token_file
	validate truststore

	Chapter 3 Using the as-dump Utility
	Overview of as-dump
	as-dump Syntax
	Sample Output

	Chapter 4 Using as-agent
	Overview of as-agent
	Starting as-agent
	Starting as-agent with Security Enabled
	Command Parameters

	Chapter 5 Administering ActiveSpaces Security
	Main Tasks for Setting Up Security
	Creating a Security Policy File
	Editing a Security Policy File
	Setting up Data Encryption
	Validating a Security Policy File
	Creating a Security Token
	Validating a Security Token File
	Setting Up Authorization
	Starting Security Domain Controllers
	Starting Security Domain Requesters
	Starting a Security Domain Requestor with a Token File
	Starting a Security Domain Requestor Without a Token File

	Chapter 6 Using ActiveSpaces Monitoring and Management
	Starting ASMM and Connecting to a Metaspace
	Connecting and Disconnecting from a Metaspace
	Viewing Space Information
	Viewing a Space Definition
	Viewing the Space Schema
	Viewing the Space Members
	Viewing Indices

	Viewing Space Distribution
	Viewing Historical Statistics
	Using the Space Browser

	Index

