
Two-Second Adv
TIBCO ActiveSpaces®

Developer’s Guide
Software Release 2.1.4
August 2014
antage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIB, TIBCO, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now, TIBCO ActiveMatrix
BusinessEvents, and TIBCO ActiveSpaces are either registered trademarks or trademarks of TIBCO Software
Inc. in the United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
Copyright © 2009-2014 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

Preface . xi

Related Documentation . xii
TIBCO ActiveSpaces Documentation. xii
Other TIBCO Product Documentation . xii

Typographical Conventions .xiii

How to Contact TIBCO Support. xv

Chapter 1 Introduction. .1

Product Overview. 2
Benefits of TIBCO ActiveSpaces . 2
TIBCO ActiveSpaces Features. 3

Usage Profiles . 5
Distributed Data Cache. 5
In-Memory Operational Data Store. 5
Space-Based Architecture . 6
Grid Computing . 6
Deployment Models . 6

Chapter 2 TIBCO ActiveSpaces Concepts. .9

Introduction to TIBCO ActiveSpaces Applications . 11

Basic ActiveSpaces Terms. 12

What is a Metaspace? . 14
Metaspace Connection. 14
Metaspace Life Cycle . 15

What is a Space?. 16
Space Contents . 16
Differences Between ActiveSpaces and a Distributed Cache . 17

Tuples and Fields . 18
Field Type Conversion . 18

Key Fields and Indexes . 20
Key Fields . 20
Indexes . 20

Basic Operations on Tuples . 22
Batch Versions of Tuple Operations . 22

The Put Operation: Storing Data into a Space . 23
 TIBCO ActiveSpaces Developer’s Guide

iv | Contents
Batch Versus Blocking Operations. 23

Retrieving Data from a Space . 24

The Take Operation: Consuming or Removing Data from a Space . 25

Joining a Space: Members and Member Roles . 26
Seeders . 26
Leeches . 26
Processing Characteristics of Seeders versus Leeches . 26
Using the as-agent Process as a Seeder . 26
Using the as-agent Process to Implement Remote Clients . 27
When to Join the Space as a Seeder or a Leech . 27

Space Definition . 28
Overview of Space Attributes and Policies . 28
Field Definitions . 29

Distribution . 30
Distributed Space. 30
Non-Distributed Space. 31

Replication . 33
Degrees of Replication. 33
Phase Count and Phase Ratio: Tuning Redistribution and Replication . 34
Synchronous and Asynchronous Replication . 35

Host-Aware Replication. 36

Space Storage Options and Persistence . 37
RAM Storage . 37
Persistence . 37
Persistence Policy and Implementation . 39

Expiration: Time to Live and Tuple Locking. 45
Entry TTL . 45
Lock TTL . 45
LockWait . 46

Concurrently Updating Data in a Space . 47

Locking Data in a Space . 48

Results . 49

Browsers . 50
Space Browsers and the Event Browser . 50

Listeners . 54

Filters . 56

Remotely Invoking Code over a Space . 59

Transactions . 61

Deployment . 62

Joining a Space or Metaspace: Special Considerations . 64
TIBCO ActiveSpaces Developer’s Guide

Contents | v
Administrative Interfaces: AS-Admin, AS-Agent, and ASMM . 65

Using Remote Clients . 66
How Remote Client Communication Works . 66

ActiveSpaces Routing . 67
Implementing ActiveSpaces Routing . 67
Freeing a Router. 69

Performance Monitoring. 70

Miscellaneous Topics . 71

Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks .73

Connecting to the Metaspace . 75
Metaspace Name . 75
MemberDef Object . 75

Disconnecting from the Metaspace . 80
Metaspace Membership . 80

Getting the Connection’s Self Member Object . 81

Getting the List of User-defined Space Names . 82

Configuring Logging. 83
Java API . 83
C API . 84

Defining a Space . 86

Getting a Space Definition . 88

Dropping a Space . 89

Configuring Distribution Policy . 90

Defining Capacity. 91

Setting Up Host-Aware Replication . 92

Configuring EntryTTL, LockTTL, and LockWait . 94

Defining Data Fields. 95
Field Definitions . 95
Defining Key Fields . 96
Defining Key Fields for Distribution (Affinity). 97
Adding Fields to a Previously Defined Space. 98
Adding and Dropping Indexes. 98

Joining and Leaving a Space. 100
Joining a Space . 100
Leaving a Space . 101

Setting up Persistence . 102
Persistence Type. 102
Persistence Policy. 102
API Operations for Setting up Persistence . 102
 TIBCO ActiveSpaces Developer’s Guide

vi | Contents
Setting up Recovery with Persistence . 105

Using Tuple Methods. 107

Getting the Name and Definition of a Space. 110

Reading and Writing in a Space . 111
Performing a Put Operation—Storing a Tuple in a Space . 112
Updating a Tuple in a Space . 113

Locking and Unlocking . 114

Using Transactions . 115
Creating and Committing or Rolling Back Transactions. 115
Space Operation Options. 115

Using Batch Operations . 116

Using Listeners . 117

Using SpaceEvent Objects . 120

Implementing a Space Browser: Querying the Space . 121

Using Event Browsers. 123

Enabling Performance Monitoring . 124

Using Remote Space Invocation. 125

Using a Space as a Cache . 126

Working with Remote Clients . 127
Steps for Connecting a Remote Client. 127

Chapter 4 Implementing ActiveSpaces Security . 129

Overview of ActiveSpaces Security . 130
ActiveSpaces Security Architecture . 130

Security Domain Controllers . 133
Setting Up a Node as a Security Domain Controller . 134

Security Policy Files . 135
Creating a Security Policy File . 136
Security Domain Settings . 136
Validating a Security Policy File . 137
Security Policy File Keys and Certificates . 137

Security Domain Requestors . 138
Connecting to a Metaspace Without Using a Security Token File . 138

Security Token Files . 139
Creating a Security Token File . 139
Limiting Metaspace Access . 140
Validating a Security Token File . 140
Security Token File Keys and Certificates . 140
Metaspace Access List . 141
TIBCO ActiveSpaces Developer’s Guide

Contents | vii
Transport Security . 143

Restricting Transport Access . 144

Data Encryption . 146

Security Tracing and File Logging . 147

User Authentication . 148
Operating System User Authentication. 149
LDAP User Authentication . 150
LDAP Certificate Authentication . 151
Authentication Callback . 152

User Access Control . 153
Enabling User Access Control . 154
Access Control Groups. 154
Access Control Permissions . 155
Permissions Precedence . 155

Chapter 5 Using the Example Code .157

Overview . 159
The Examples Directory . 159

Building the Examples . 160
Building the Java API Examples . 160
Building The C API Examples. 160
Building the .NET API Examples . 161

Running the Examples. 164
Running the Java API Examples . 164
Running the C API Examples . 165
Running the .NET API Examples . 166
Command Line Arguments . 166

Adding Security . 169

Example Security Policy File . 171
Example Security Token File . 172

ASOperations. 173
Overview. 173
Starting ASOperations . 173
Starting ASOperations With Security . 174
Using ASOperations . 174

ASBatchOperations . 176
Overview. 176
Starting ASBatchOperations. 176
Starting ASBatchOperations With Security . 177
Using ASBatchOperations . 177

ASChat . 179
 TIBCO ActiveSpaces Developer’s Guide

viii | Contents
Overview . 179
Starting ASChat . 180
Starting ASChat With Security. 180

ASQuery (Java Only) . 181
Overview . 181
Starting ASQuery. 181
Starting AS Query With Security . 181

ASPaint (Java and .NET Only) . 183
Overview . 183
Starting ASPaint . 183
Using ASPaint . 183

ASPersistence. 185
Overview . 185
Starting ASPersistence . 185
Starting ASPersistence With Security . 186

Shared-Nothing Persistence . 189
Overview . 189
Starting ASOperations for Shared-Nothing Persistence . 189
Starting as-agents for Shared-Nothing Persistence. 190
Starting ASOperations for Shared-Nothing Persistence With Security . 190
Using Shared-Nothing Persistence . 191

ASRequestReplyServer and ASRequestReplyClient . 192
Overview . 192
Starting ASRequestReplyServer . 193
Starting ASRequestReplyClient. 193
Starting ASRequestReplyServer and ASRequestReplyClient with Security . 194

Remote Space Invocation: InvokeClient . 195
Overview . 195
Starting InvokeClient . 195
Starting InvokeClient with Security . 195
Using InvokeClient . 196

Overview of ASBrowser, ASEventBrowser, and ASListener . 198

ASBrowser . 199
Overview . 199
Starting ASBrowser . 199
Starting ASBrowser with Security . 200
Using ASBrowser. 200

ASEventBrowser . 201
Overview . 201
Starting ASEventBrowser . 201
Starting ASEventBrowser with Security. 202
Using ASEventBrowser . 202
TIBCO ActiveSpaces Developer’s Guide

Contents | ix
ASListener . 203
Overview. 203
Starting ASListener. 203
Starting ASListener with Security . 203
Using ASListener . 204

MetaspaceMemberMonitor . 205
Overview. 205
Starting MetaspaceMemberMonitor . 205
Starting MetaspaceMemberMonitor with Security . 206
Using MetaspaceMemberMonitor. 206

SpaceDefMonitor . 207
Overview. 207
Starting SpaceDefMonitor . 207
Starting SpaceDefMonitor with Security . 207
Using SpaceDefMonitor . 208

SpaceStateMonitor . 209
Overview. 209
Starting SpaceStateMonitor . 209
Starting SpaceStateMonitor with Security . 209
Using SpaceStateMonitor . 210

SpaceMemberMonitor . 211
Overview. 211
Starting SpaceMemberMonitor. 211
Starting SpaceMemberMonitor with Security . 211
Using SpaceMemberMonitor . 212

ASDomainController . 213
Overview. 213
 Starting ASDomainController . 213
 Java Invocation . 213
Using ASDomainController. 214
 User Authentication Example . 214

 ASUserAuthenticator . 216
Overview. 216
 Starting ASUserAuthenticator . 216
Using ASUserAuthenticator . 216
User Access Control Example . 217

ASPerf . 219
Overview. 219
Starting the ASPerf Master . 220
Starting the ASPerf Slave . 221
Starting the ASPerf Agent. 221

Appendix A Result and Status Codes .223
 TIBCO ActiveSpaces Developer’s Guide

x | Contents
Glossary . 225

Index . 233
TIBCO ActiveSpaces Developer’s Guide

Preface | xi
Preface

TIBCO ActiveSpaces® is a distributed peer-to-peer in-memory data grid, a form
of virtual shared memory that leverages a distributed hash table with
configurable replication.

TIBCO ActiveSpaces® combines the features and performance of databases,
caching systems, and messaging software to support large, highly volatile data
sets and event-driven applications. It lets you off-load transaction-heavy systems
and allows developers to concentrate on business logic rather than the
complexities of developing distributed fault-tolerance.

TIBCO ActiveSpaces is available in three versions:

• TIBCO ActiveSpaces® Enterprise Edition—Provides C, Java, and .NET API
sets and enables full cluster functionality. To enable remote clients, you must
purchase licenses for the TIBCO ActiveSpaces Remote Client Edition.

• TIBCO ActiveSpaces® Remote Client Edition—Can be purchased in
addition to the Enterprise Edition. Allows you to set up remote clients.
Applications running on the remote clients can access the data grid and
perform most ActiveSpaces operations.

• TIBCO ActiveSpaces® Community Edition—A developer version of the
product. Provides limited functionality: one metaspace, four metaspace
members and no TIBCO Rendezvous® capability. This version is
downloadable from TIBCO Developer Network at
http://developer.tibco.com.

This manual describes the basic features of ActiveSpaces and describes how to
use the API set to develop applications that manage the data grid.

Topics

• Related Documentation, page xii

• Typographical Conventions, page xiii

• How to Contact TIBCO Support, page xv
 TIBCO ActiveSpaces Developer’s Guide

http://developer.tibco.com
http://developer.tibco.com

xii | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO ActiveSpaces Documentation
The following documents form the TIBCO ActiveSpaces documentation set:

• TIBCO ActiveSpaces Installation Read this manual for instructions on site
preparation and installation.

• TIBCO ActiveSpaces Administration Read this manual to gain an
understanding of the product that you can apply to the various tasks you may
undertake.

• TIBCO ActiveSpaces C Reference Read this manual for reference information on
the C functions for developing an application that manages data grids.

• TIBCO ActiveSpaces Release Notes Read the release notes for a list of new and
changed features. This document also contains lists of known issues and
closed issues for this release.

Other TIBCO Product Documentation
You might find it useful to read the documentation for the following TIBCO
products:

• TIBCO Rendezvous® software: TIBCO Rendezvous provides an optional
transport that you can choose to use in place of the built-in Pragmatic General
Multicast (PGM) multicast transport that TIBCO ActiveSpaces uses by
default. TIBCO Rendezvous handles the transport of data and messages
between member processes over the network.

For information on TIBCO Rendezvous, see TIBCO Rendezvous Concepts,
Chapter 8 “Transport,” for information about the service, network, and
daemon parameters, which are used to configure discovery and listen
transport in TIBCO ActiveSpaces.
TIBCO ActiveSpaces Developer’s Guide

Preface | xiii
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME All TIBCO products are installed under the same directory. This directory is
referenced in documentation as TIBCO_HOME. The value of TIBCO_HOME
depends on the operating system. For example, on Windows systems, the
default value is C:\tibco.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand pathname

Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.
 TIBCO ActiveSpaces Developer’s Guide

xiv | Typographical Conventions
The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand para1 | param2 | param3

{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}
TIBCO ActiveSpaces Developer’s Guide

Preface | xv
How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
 TIBCO ActiveSpaces Developer’s Guide

http://www.tibco.com/services/support
https://support.tibco.com

xvi | How to Contact TIBCO Support
TIBCO ActiveSpaces Developer’s Guide

Introduction | 1
Chapter 1 Introduction

This chapter introduces TIBCO ActiveSpaces and describes typical use cases for
the software.

Topics

• Product Overview, page 2

• Usage Profiles, page 5
 TIBCO ActiveSpaces Developer’s Guide

2 | Chapter 1 Introduction
Product Overview

TIBCO ActiveSpaces is a peer-to-peer distributed in-memory data grid—a form of
virtual shared memory that is replicated on distributed devices and applications.

ActiveSpaces provides an application programming interface (API) that allows
developers to store and retrieve data and implement database and messaging
functionality. ActiveSpaces also provides an administrative CLI tool and an
administrative GUI that you use to create and administer the data grid. This
makes it easy to create distributed applications that exchange and modify data
shared between processes and across a network.

Benefits of TIBCO ActiveSpaces
ActiveSpaces provides:

• Coherent, in-memory, data storage and retrieval.

• Several network data transport options, including TCP, TIBCO Rendezvous,
and TIBCO SmartPGM.

• An API that can be used to develop custom applications which utilize the
features of ActiveSpaces. An API is available for the Java, C, and .NET
programming languages.

ActiveSpaces facilitates and speeds up storage and retrieval of data in a
distributed manner so that you can concentrate on writing business logic. You do
not have to worry about where to store new data, where current data is stored, or
if it is out-of-date.

In addition, ActiveSpaces:

• Combines database features with a simple, easy to use middleware
management system.

• Supports many hardware and software platforms, so programs running on
many different kinds of computers on a network can communicate seamlessly.

• Allows programmers to easily implement distributed processing of the data
stored in ActiveSpaces while leveraging “data locality” using remote
invocation functionality.

• Scales linearly and transparently when machines/peers are added. An
increase in the number of peers in a space produces a corresponding increase
in the memory and processing power available to the space.

• Allows your application to continue to function smoothly without code
modification or restarts.
TIBCO ActiveSpaces Developer’s Guide

Product Overview | 3
• Allows you to implement shared-all persistence or shared-nothing persistence
to persist space data on local storage media.

• Ensures that any change in data is reflected on all nodes as it happens and that
no node will deliver stale data when reading or querying data from any node.

From the programmer’s perspective, the ActiveSpaces software suite provides the
following benefits. ActiveSpaces:

• Is distributed for speed, resiliency, and scalability

• Simplifies distributed system development

• Provides location transparency: there is no need to worry about where or how
to store or find data

• Decouples producers and consumers of data

• Allows applications to be notified automatically as soon as data is modified

TIBCO ActiveSpaces Features
ActiveSpaces combines some of the important features of a database and a
messaging system in a single integrated interface.

Like a database

• Has a data definition language

• Has SQL-like where clause filters

• Can be made fault-tolerant using data

• Implements a form of horizontal partitioning

• Has locks for concurrent access control

• Has full ACID properties and includes support for transactions

• Supports Create, Read, Update, Delete (CRUD) operations.

• If you have purchased and installed the TIBCO ActiveSpaces Remote Client
version, allows you to connect to TIBCO ActiveSpaces from remote clients
 TIBCO ActiveSpaces Developer’s Guide

4 | Chapter 1 Introduction
Like a messaging system

• Listeners give applications the ability to subscribe to changes in the data

• One or multiple recipients

• Changes to the data are immediately distributed to all intended recipients at
the same time.

• Browsers let applications use a space as a queue

Additional features

Beyond the simplicity and convenience of having a single unified interface for
both data storage features and messaging features, ActiveSpaces provides the
ability to:

• Receive initial values when creating a listener.

• Run continuously updated queries in real-time.

• Trigger code execution transparently on the processes storing the data, either
in parallel or using the distribution algorithm to direct a query directly to one
of the nodes.
TIBCO ActiveSpaces Developer’s Guide

Usage Profiles | 5
Usage Profiles

The ActiveSpaces data grid can solve a variety of application problems. The
nature of the problem determines the best ActiveSpaces configuration. You
should consider the:

• Size of the data

• Frequency of data updates versus reads

• Relative importance of update speed versus absolute consistency of data
between members of the grid

The optimal architecture for your application also depends on whether the
application is being built from scratch as a space-based application, or is being
augmented for scalability, or is space-enabled.

Distributed Data Cache
You can use ActiveSpaces as a distributed data cache to store copies of data that is
too expensive to fetch or compute. Data is distributed across multiple machines,
so that cache size is limited only by the aggregate memory of all peers
participating in the space. A distributed database cache aside architecture reduces
database hits by caching database reads. Database updates invalidate the cache.

ActiveSpaces keeps the cache synchronized across any number of hosts,
eliminating the costly operation of going to a disk. Data is fetched quickly from an
in-memory data cache across a local network. The space handles coherency and
locking.

In-Memory Operational Data Store
A real-time data store aggregates data from multiple sources to speed processing.
Real-time data stores are often used to integrate real-time feeds such as market
data, airline reservation data, or other business data, making the data instantly
available for efficient processing. The data must be highly available, and the
system must process large data sets and transient, volatile data.
 TIBCO ActiveSpaces Developer’s Guide

6 | Chapter 1 Introduction
Space-Based Architecture
When designing a new system from scratch, a space-based approach provides
several advantages:

• Space-based architectures use a grid approach for both data storage and
processing.

• Data storage and access is virtualized.

• The space takes care of both data communication and process coordination

• Processing units are loosely coupled, and run in parallel.

• Processes are coordinated through data and events.

Grid Computing
Grid computing refers to using multiple machines or nodes to solve a large
computing problem. A complex problem is decomposed into smaller pieces that
can be executed across many machines in parallel.

ActiveSpaces can improve analytical processing of large data sets because it
allows you to co-locate and invoke processing of the data directly on the nodes
that store the data. Because ActiveSpaces stores the data in a distributed manner
over many machines, processing is naturally and transparently distributed.

Deployment Models
ActiveSpaces has two deployment models:

• Peer-to-Peer Deployment Mode

• Remote Client Deployment Mode

Peer-to-Peer Deployment Mode

You can deploy ActiveSpaces-enabled applications in a true peer-to-peer
configuration where all processes are direct peers to each other and there are no
“servers” or “clients,” but rather seeders (contributing nodes) and leeches
(non-contributing nodes).

This deployment mode yields the highest performance level, but requires all
processes to establish bidirectional TCP connections with each other. In
peer-to-peer mode, it is also recommended (although not absolutely required)
that all the peers be physically interconnected by LANs (Local Area Networks) or
MANs (Metropolitan Area Networks) rather than by WANs (Wide Area
Networks).
TIBCO ActiveSpaces Developer’s Guide

Usage Profiles | 7
You cannot use peer-to-peer deployment mode if there is network address
translation between any of the peer machines.

Remote Client Deployment Mode

In this deployment mode, seeder processes (which can be seen as “servers”) are
full peers to each other and fully interconnected by TCP connections, as described
above. Any number of applications can access the seeders as remote clients by
making a single TCP connection to one of the ActiveSpaces agent processes,
which act as proxies for the remote clients. Remote clients can connect to their
ActiveSpaces agent proxies over any network topology that supports TCP
connections, including WANs.

You can use this deployment mode even if there is a one-way firewall or network
address translation between the remote client and the full peer proxi(es).
 TIBCO ActiveSpaces Developer’s Guide

8 | Chapter 1 Introduction
TIBCO ActiveSpaces Developer’s Guide

TIBCO ActiveSpaces Concepts | 9
Chapter 2 TIBCO ActiveSpaces Concepts

This chapter explains basic terms used in ActiveSpaces® and discusses
fundamental concepts.

Topics

• Introduction to TIBCO ActiveSpaces Applications, page 11

• Basic ActiveSpaces Terms, page 12

• What is a Metaspace?, page 14

• What is a Space?, page 16

• Tuples and Fields, page 18

• Key Fields and Indexes, page 20

• Basic Operations on Tuples, page 22

• Joining a Space: Members and Member Roles, page 26

• Space Definition, page 28

• Distribution, page 30

• Replication, page 33

• Host-Aware Replication, page 36

• Space Storage Options and Persistence, page 37

• Expiration: Time to Live and Tuple Locking, page 45

• Results, page 49

• Browsers, page 50

• Listeners, page 54

• Filters, page 56

• Remotely Invoking Code over a Space, page 59

• Transactions, page 61
 TIBCO ActiveSpaces Developer’s Guide

10 | Chapter 2 TIBCO ActiveSpaces Concepts
• Deployment, page 62

• Joining a Space or Metaspace: Special Considerations, page 64

• Administrative Interfaces: AS-Admin, AS-Agent, and ASMM, page 65

• Using Remote Clients, page 66

• ActiveSpaces Routing, page 67

• Performance Monitoring, page 70

• Miscellaneous Topics, page 71
TIBCO ActiveSpaces Developer’s Guide

Introduction to TIBCO ActiveSpaces Applications | 11
Introduction to TIBCO ActiveSpaces Applications

ActiveSpaces applications are programs that use ActiveSpaces software to work
collaboratively over a shared data grid. The data grid comprises one or more
tuple spaces.

An ActiveSpaces distributed application system is a set of ActiveSpaces programs that
cooperate to fulfill a mission (either using the administrative CLI tool or the
ActiveSpaces API calls). Tuples are distributed, rather than “partitioned” across
seeders (members that are configured to contribute memory and processing
resources to a space).

ActiveSpaces automatically redistributes tuples when seeders join and leave the
space. Unlike a horizontally partitioned database, where the allocation of items to
nodes is fixed, and can only be changed through manual reconfiguration,
ActiveSpaces data is automatically updated on all devices on the data grid and
rebalanced transparently by using a minimal redistribution algorithm.

ActiveSpaces allows the distribution of data replicates on different peers for fault
tolerance. The data access optimization feature of ActiveSpaces uses a replicate if
one is locally available. If a seeder suddenly fails, the replicate is immediately
promoted to seeder, and the new seeder creates new replicates. This optimizes
system performance.
 TIBCO ActiveSpaces Developer’s Guide

12 | Chapter 2 TIBCO ActiveSpaces Concepts
Basic ActiveSpaces Terms

This section defines basic terms for ActiveSpaces, which are used in the
discussion of ActiveSpaces concepts later in this chapter.

Table 3 ActiveSpaces Terms

Term Definition

Metaspace A logical group of spaces—a cluster of hosts and processes that share the same
metaspace name and set of discovery transport attributes. The hosts and
processes in a metaspace work together by joining the same spaces.

Space A shared, virtual entity that functions as a container for a collection of entries
consisting of a tuple and associated metadata. Applications become members of a
space in order to execute operations on the space. Spaces are contained in a
metaspace.

Tuple A sequence of named elements called fields (similar to the columns in a database
table) that contain values of a specific type.

Seeder A space member that can execute operations on spaces that it is connected to and
which also plays an active role in maintaining the space by providing CPU and
RAM. The service of storing the data contained in a space and handling requests
to read and write this data is implemented in a distributed peer-to-peer manner
by one or more seeders.

Leech A space member that can execute operations on spaces that it is connected to but
which does not contribute memory or CPU time to maintenance of the space.

Replication An ActiveSpaces process that backs up data from one seeder to one or more
additional seeders, to enable fault tolerance.

Persistence An ActiveSpaces feature that allows you to persist data to disk storage and
recover data if data loss occurs or there is a problem with cluster startup.

ActiveSpaces allows the distribution of data replicates on different peers for fault
tolerance. If a seeder suddenly fails, the replicate is immediately promoted to
seeder, and the new seeder creates new replicates. This optimizes system
performance

Browser A mechanism to iterate through a series of tuples retrieved from a space using
filters. Unlike a traditional iterator that works only on a snapshot of the data to be
iterated through, the space browser is continuously updated according to the
changes in the data contained in the space being browsed.
TIBCO ActiveSpaces Developer’s Guide

Basic ActiveSpaces Terms | 13
Listener A mechanism that allows an application to monitor events that represent changes
to the tuples stored in a space through a callback routines that are automatically
called when specific events occur in a space.

Table 3 ActiveSpaces Terms

Term Definition
 TIBCO ActiveSpaces Developer’s Guide

14 | Chapter 2 TIBCO ActiveSpaces Concepts
What is a Metaspace?

A metaspace is a logical group of spaces—a cluster of hosts and processes that
share the same metaspace name and set of discovery transport attributes. A
metaspace:

• Is a virtual entity that contains spaces, which store the data used by
applications.

• Is an administrative container for the spaces. A metaspace can contain:

— System spaces—Spaces defined by ActiveSpaces.

— User spaces—User-defined spaces.

• Consists of a cluster of application processes.

The processes are usually deployed on multiple hosts interconnected by a
network where ActiveSpaces is installed. ActiveSpaces applications can also
be installed on a standalone host.

The hosts and processes in the cluster work together by joining the same spaces.

You can deploy multiple independent metaspaces over a single network, each
with a different set of members and spaces, and each identified by a name and a
set of network transport attributes.

Each metaspace should have a unique name, because an application cannot
connect to two different metaspaces using the same metaspace name.

Space access is based on the combination of metaspace name and space name.
Therefore, changes to a space called clients in a metaspace named Dev have no
impact on a space named clients in a metaspace named Prod.

Metaspace Connection
To use ActiveSpaces, your application must first connect to a metaspace. For
detailed information on connecting to a metaspace, see Connecting to the
Metaspace, page 75.

When your application is connected to a metaspace, it can:

• Define and make use of any number of spaces.

• Connect to additional metaspaces; however, your application can only have a
single connection for each metaspace.

When your application no longer needs access to a metaspace, you should
disconnect from the metaspace.
TIBCO ActiveSpaces Developer’s Guide

What is a Metaspace? | 15
For information on disconnecting from a metaspace, see Disconnecting from the
Metaspace, page 80.

Metaspace Life Cycle
A metaspace is created when the first process connects to it, and disappears when
the last process disconnects from it. The metaspace grows or shrinks
automatically as members connect to it and disconnect from it.

Initially, a metaspace contains only system spaces. As users create spaces in the
metaspace, the definition of those spaces (along with other administrative data) is
stored in system spaces.

If you implement the ActiveSpaces data persistence feature, you can persist data
to local storage. However, space and field definitions are not persisted in existing
spaces after the last metaspace disconnects from it.
 TIBCO ActiveSpaces Developer’s Guide

16 | Chapter 2 TIBCO ActiveSpaces Concepts
What is a Space?

Spaces are the main feature offered by ActiveSpaces. Together with metaspaces,
spaces provide a distributed data grid. A space:

• Is a virtual entity that provides shared virtual storage for data.

• Is a container for a collection of entries that consist of a tuple and associated
metadata.

• Is used concurrently by applications distributed over a network to store,
retrieve, and consume data. Each application has the same view of the data
contained in the space.

After connecting to a metaspace, your application can define, drop, join, and
leave spaces, and also get an existing space’s definition and list of members.

For information on joining a leaving a space, see Joining and Leaving a Space,
page 100.

To enable the data grid, spaces:

• Distribute and synchronize data in a platform independent manner.

• Proactively notify applications of changes in the data contained in the space as
changes happen (push model), and can therefore be used as a coordination
mechanism for building distributed systems.

A space is distributed and implemented collaboratively by a group of processes
located on multiple hosts and communicating over the network.

ActiveSpaces handles changes in the set of processes automatically: processes
may join or leave the group at any time without requiring any user intervention.
A space automatically scales up as the number of processes in the group
increases, and scales down when processes suddenly disappear from the group or
network. There is no negative impact on the data contained in the space when
processes leave the space.

Space Contents
A space contains tuples and associated metadata:

• A tuple is a container for a collection of fields. A tuple is equivalent to a row in
a database.

• Each field in the tuple has a name, a type and a value.

For more information on tuples and fields, see Tuples and Fields, page 18.
TIBCO ActiveSpaces Developer’s Guide

What is a Space? | 17
Differences Between ActiveSpaces and a Distributed Cache
ActiveSpaces is a distributed data grid that implements a distributed in-memory
tuple space. There are important differences between the ActiveSpaces
distributed data grid and a distributed cache:

• A cache can evict entries at any time if it needs to make room for new entries,
but a tuple space data grid does not evict entries Therefore, a distributed
cache (like all caches) can only be used in a cache-aside architecture to cache a
system of record, and, unlike a data grid, can never be used as a system of
record itself.

Although it is possible to use ActiveSpaces as a distributed cache (in a
cache-aside or in a cache-through architecture), the reverse is not true: a
distributed cache cannot be used as a system of record.

• A distributed cache does not have a notification mechanism to proactively
inform applications of changes in the data stored in the cache. Unlike
ActiveSpaces, a distributed cache cannot be used for distributed process
coordination.
 TIBCO ActiveSpaces Developer’s Guide

18 | Chapter 2 TIBCO ActiveSpaces Concepts
Tuples and Fields

Actives Spaces spaces store data in tuples. A tuple is:

• A container for a sequence of field.

• Equivalent to a row in a database.

• Represents a set of related data.

A field is similar to a column in a database table. Each field has a specific name,
type and value, as shown in the following figure.

Tuples and fields function like rows and columns in a traditional database.

Figure 1 Field Definition

A tuple can be seen as a kind of map in which fields can be put or removed. A
tuple can also be seen as a self-describing message. Tuples are platform
independent, and can be serialized and deserialized.

For information on defining tuple fields, see Defining Data Fields, page 95.

Field Type Conversion
When a tuple is stored into a space, the fields that it contains must match the
names and types of the fields described in the space definition. If there is a type
mismatch between a field contained in the tuple and the type of the field defined
in the space field definition, then, if possible, ActiveSpaces performs an
automated field conversion. If the conversion is not possible, the operation fails.

Table 4, Field Type Conversions shows which type conversions are supported.
The letters in the table have the following meanings:

x: Conversion is supported with no loss of precision.

l: Conversion is supported, but with loss of precision.

Name Age State

String Integer String

Field Name

Alice 30 CAValue

Field Type
TIBCO ActiveSpaces Developer’s Guide

Tuples and Fields | 19
N Conversion is not supported.

There is a Get and Put method for each type of field. In Java, an overloaded Put
method is also provided for convenience.

For general information on operations applied to tuples, see Getting the Name
and Definition of a Space, page 110.

Table 4 Field Type Conversions

Boolean Short Integer Long Float Double Blob String DateTime

Boolean x x x x x x N N N

Short l x x x x x N N N

Integer l l x x l x N N N

Long l l l x l l N N N

Float l l l l x x N N N

Double l l l l l x N N N

Blob N N N N N N x N N

String N N N N N N x x N

DateTime N N N N N N N N x
 TIBCO ActiveSpaces Developer’s Guide

20 | Chapter 2 TIBCO ActiveSpaces Concepts
Key Fields and Indexes

This section discusses key fields and indexes.

Key Fields
You must define at least one of the fields in the space definition as a key field.
ActiveSpaces uses key fields to build a key-value index for the space.

In the Java API, you can specify a set of fields to be used as key fields by using the
SpaceDef's setKey method and passing it a number of strings containing the
space names.

For detailed information on defining key fields, see Defining Key Fields, page 96.

Indexes
ActiveSpaces automatically builds a distributed, in-memory index of the tuples in
the space when a space is created or loaded. Because indexes are stored in
memory, queries locate matching records more quickly because the queries do not
have to iterate through every record.

Using indexes, ActiveSpaces also allows you to query for any field of the records
contained in the space, and the queries can be serviced faster if indexes are built
on the fields used by the query filter statement.

Indexes can be either hash indexes (the default) or tree type indexes, and can
contain one or more fields:

• A hash index is more efficient if the set of values to be stored is randomly
distributed or the query is selecting for specific values rather than ranges of
values.

• A tree index is more efficient when the query is selecting ordered ranges of
values.

ActiveSpaces allows you to define as many indexes as you want on a space, as
required, depending on the types of queries that will be run over the space.
Indexes are part of the space's definition and are built on one or more of the fields
that are defined for the space. You can build indexes on any of the fields defined
for the space. Indexes have a type, which can be either “HASH” or “TREE.” Hash
indexes speed up queries where the filter is an exact match ('=' operator) of a
value to the field, e.g.: “field = value”. Tree indexes speed up queries where the
filter is a range match ('>', '<', '>=', '<=' operators) of a value to the field, e.g. “field
> value.”
TIBCO ActiveSpaces Developer’s Guide

Key Fields and Indexes | 21
If your query filter uses only one field, then you can speed it up by defining an
index just on the field that it uses. If your query filter uses more than one field,
then you can speed it up by creating a 'composite index' on the fields used in the
filter. In this case the order of the fields when the index is defined matters when
the TREE index type is used and the query filter contains both equality and range
operators separated by 'AND': for example if the query is “field1 = value1 and
field2 = value2 and field3 > value3” then in order to benefit from the index, it
should be defined on fields “field1”,”field2,”field3” in that order (and only in that
order).

A particular field can be used in more than one index, for example if two query
filters such as “field = value” and “field > value” are to be used, then you could
define two indexes on the field in question: one of type 'HASH' and the other one
of type 'TREE,' and the ActiveSpaces query optimizer will automatically use the
appropriate index depending on the query being issued.

There is always an index automatically created on the key fields of the space, this
index is of type HASH by default (but can be changed to a TREE type if needed).
 TIBCO ActiveSpaces Developer’s Guide

22 | Chapter 2 TIBCO ActiveSpaces Concepts
Basic Operations on Tuples

You can perform the following basic operations on tuples:

• Put Stores a tuple into a space.

• Get Retrieves the complete entry associated with provided key field(s).

• Take Performs an atomic “get and remove” action on the entry for provided
key field(s).

A take is a “consume” operation; therefore if two takes are initiated at the
same time on the same entry, only one succeeds.

• Lock Performs an atomic “get and lock” action on the entry for provided key
fields(). Can also lock a specific entry directly.

• Update Performs an atomic “compare and set” operation on the entry for
provided key field(s). When used on a locked entry, also automatically
unlocks it.

For information on performing puts, gets, and takes, see Reading and Writing in a
Space, page 111.

Get, Put, Take, Lock, and Update are single entry operations. Two additional
combination atomic operations are provided:

• PutAndLock Puts a tuple into a space and automatically locks it.

• UpdateAndLock Performs an atomic compare and set operation on a tuple
and automatically locks it.

Batch Versions of Tuple Operations
The ActiveSpaces API provides batch versions of the basic tuple operations,
which operate on a collection of tuples instead of on than just one tuple. Using the
batch forms of the operations increases throughput by parallelizing the
operations (including operations over the network).

For example, the Java API includes a single entry Space.take method that
operates on a single tuple, and also a Space.takeAll method that operates on a
collection of tuples. And the C API set includes a tibasSpace_Put() function
that puts a single tuple into a space and also a tibasSpace_TakeAll operation
that puts a collection of tuples into a space.
TIBCO ActiveSpaces Developer’s Guide

The Put Operation: Storing Data into a Space | 23
The Put Operation: Storing Data into a Space

Your application can store data into a space by using the space’s put method and
passing it a tuple as its argument. Once the tuple is in the space, it can be accessed
by any other application using that space. Existing entries are replaced with new
ones, which means that if there was already a tuple with the same key field values
stored in the space, it is overwritten by the new tuple.

For information on performing a Put, see Performing a Put Operation—Storing a
Tuple in a Space, page 112.

When a tuple is stored into a space, it is validated against the space definition as
follows:

• Field names and types are checked against the fields defined for the space.

If a tuple's field does not match the space's definition, ActiveSpaces attempts
to automatically convert the field’s value to the desired type as long as the
field type is numerical (no lexical casting).

• Fields marked as nullable need not be present in the tuple, but if they are
present, their type must match or be able to be upcasted.

• Fields present in the tuple that are not defined in the space's definition are not
stored in the space

Batch Versus Blocking Operations
By default, spaces are distributed, which means that the servicing of requests and
storage of entries for the space is implemented in a distributed manner by all of
the space's seeders.

If seeders are distributed over a network, then some operations require at least
one network round-trip to complete. Therefore, using the parallelized batch
versions of the operations (or distributing space operations over multiple threads)
rather than invoking the same blocking operation in a loop is the best way to
achieve a high throughput of operations.
 TIBCO ActiveSpaces Developer’s Guide

24 | Chapter 2 TIBCO ActiveSpaces Concepts
Retrieving Data from a Space

There are three ways to retrieve (or consume) data from a space:

• Get Method A tuple space implements the associative memory paradigm and
allows the application to get a complete copy of the tuple associated with
specific values of it's key fields.

This is done by using the spaces’s get method and passing a tuple containing
appropriate key field values for that space. If a tuple with matching values for
its key fields is currently stored in the space, the value of the status in the
result object returned by the get method is equal to OK. If no tuple in the
space has matching values for the key fields, the value of the status in the
result object is NULL.

• Callback Query Method You can create listeners on a space that invoke a user
query callback function as filtered initial data and new data are pushed from
the space to the listeners. For more information on listeners, see Listeners on
page 54.

• Space Browser Query Method You can also create space browsers on the space
that let users retrieve filtered data initially stored in the space and retrieve
new data tuple by tuple and on demand. For more information on space
browsers, see Browsers on page 50.

Which method you use to retrieve data from a space depends on the application
logic of your code:

• To retrieve a single tuple using an exact key match, use the get function.

• To retrieve and monitor either all or a filtered subset of the data contained in
the space, both listeners and space browsers offer the same functionality. The
choice of which method to use depends on whether your application needs a
multi-threaded event-driven callback-oriented approach, or needs to iterate
through the tuples at its own pace (i.e., on demand, using the space browser’s
next method).
TIBCO ActiveSpaces Developer’s Guide

The Take Operation: Consuming or Removing Data from a Space | 25
The Take Operation: Consuming or Removing Data from a Space

You can remove tuples from a space by using the space’s take method and
passing a tuple containing the appropriate key fields for that space. The take
method behaves exactly like an atomic get-and-remove: If a tuple with matching
values for its key fields is currently stored in the space:

• The status value of the result passed to the take operation is be equal to OK.

• The complete tuple is contained in the result, and at the same time removed
from the space.

Otherwise (if there is no tuple with matching values for its key fields currently
stored in the space), there is nothing to take, and the result's status is equal to
NULL. Since ActiveSpaces provides immediate consistency, you have a guarantee
that if two separate applications issue a take for the same entry at the same time,
only one of them will see its take operation succeed; the other one will see its
result's status be equal to NULL.

Unlike a simple delete operation that succeeds even if there is nothing to delete,
you can use the take operation to effectively “consume” data from a space (for
example, using a space browser), and your application can easily distribute
workload using ActiveSpaces.

You can also perform a take operation on all or a filtered subset of the tuples
contained in a space by using a space browser. For more information on space
browsers, see Browsers on page 50.
 TIBCO ActiveSpaces Developer’s Guide

26 | Chapter 2 TIBCO ActiveSpaces Concepts
Joining a Space: Members and Member Roles

Applications that need access to a space join the space and become space
members. Your application can play two distribution roles when it joins a space:

• Seeder Plays an active role in maintaining the space by providing CPU and
RAM resources.

• Leech Plays a passive role. Has access to space data but provides no
resources.

For detailed information on joining a space, see Joining a Space, page 100.

Seeders
A seeder application participates in the storing of data in the space and can read
and write data. When seeder applications join or leave the space, ActiveSpaces
redistributes the data in the space as necessary to maintain even data distribution.

Leeches
A leech application participates passively in the space and does not read and
write data or cause redistribution of space data when it joins or leaves the space.

Processing Characteristics of Seeders versus Leeches
You can consider seeders to be “servers” for the space, and leeches to be “clients.”
However, because applications can join a space as seeders, effectively embedding
ActiveSpaces inside the application process, an application joining a space as a
seeder is both a server and a client. Note also that the role played by an
application is on a per space basis: a single application might be a seeder on one
space and a leech on another space.

Using the as-agent Process as a Seeder
ActiveSpaces includes a utility called as-agent, which can join a space and
function as a seeder.

The as-agent process provides:

• Scalability to a space, by automatically joining distributed spaces as a seeder
and leveraging the resources of the machine where the agent is running.

• An access point to the metaspace for the remote clients.
TIBCO ActiveSpaces Developer’s Guide

Joining a Space: Members and Member Roles | 27
Using the as-agent Process to Implement Remote Clients
A connection to a metaspace through a seeder or a leech is a direct connection to
the metaspace. For applications running on hosts that are remote from the
metaspace, or separated from it by a firewall, you can connect as a remote client.

You set up a remote client by running an as-agent that provides proxy access to
the metaspace for remote clients. The as-agent, in effect, functions as a seeder for
the remote client. The command line argument for the as-agent process specifies a
“remote listen” URL that the agent uses to listen for data.

As-agents can also implement shared-nothing persistence.

For more information about as-agent, see Administrative Interfaces: AS-Admin,
AS-Agent, and ASMM, page 65.

When to Join the Space as a Seeder or a Leech
Consider the following points when deciding when your application should join
a space as seeder or as a leech:

• Even though ActiveSpaces has a true peer-to-peer architecture, rather than a
client-server architecture, you can deploy applications as leeches (effectively,
as clients of the space service) with as-agents acting as a server cluster.

• For some operations, an application that joins a space as a seeder experiences
better performance than it would as a leech, but this comes at the expense of
higher RAM and CPU usage.

• The entries in the space are stored randomly using a hash of the value(s) of the
key field(s) (in practice as good as random), but are stored evenly between all
of the seeders of the space. Seeders do not necessarily seed what they put in
the space.

• The distribution role (seeder or leech) is only a level of participation—not a
limitation on use. Leeches have access to the same set of space operations as
seeders.

• You can also use the as-agent process to “keep the data alive” when all of the
instances of an application have disconnected from the metaspace.

• When a seeder joins or leaves a space, there might be a temporary impact on
space performance while redistribution is performed. On the other hand,
leeches do not incur any impact when joining or leaving a space.

The choice of distribution role must be made on a per space basis: the best
solution may be to join some spaces as a seeder and others as a leech.
 TIBCO ActiveSpaces Developer’s Guide

28 | Chapter 2 TIBCO ActiveSpaces Concepts
Space Definition

You must define a space in the metaspace before it can be joined by applications
and agents. The space is created when a member of the metaspace joins it and
becomes the first member of the space. Conversely, the space is destroyed when
the last member leaves it (and there are no more members of the space).

The space remains defined after all members have left, and can be reactivated if
needed.

A space definition comprises two parts:

1. A set of space attributes and policies that define the space’s behavior and
mode of deployment.

2. A set of field definitions that describe the format of the data that will be stored
in the space.

The space definition is contained in a SpaceDef object that is defined in the
ActiveSpaces API set. The SpaceDef object is either created from scratch by
invoking the SpaceDef’s create() method, or returned by the metaspace or
space’s getSpaceDef methods.

After a SpaceDef object has been created, you can set values for space attributes
by specifying values for elements in the SpaceDef object.

Overview of Space Attributes and Policies
The attributes of a space define the space’s behavior an mode of deployment. By
calling the SpaceDef functions or methods provided in the ActiveSpaces API, you
can specify:

• Space Distribution Specifies whether a space is distributed.

For information on space distribution, see Distribution, page 30.

• Space Capacity Specifies the maximum number of entries per seeder.

• Eviction Policy (If a space capacity setting is specified, must be specified to set
an eviction policy that is followed when the space capacity limit is reached.

• Replication Count Specifies whether replication is enabled, and if replication
is enabled, specifies the number of seeders that are used to replicate data.

For information on replication, see Replication, page 33.

• Replication Type If replication is enabled, specifies whether replication is
synchronous or asynchronous.
TIBCO ActiveSpaces Developer’s Guide

Space Definition | 29
For information on synchronous and asynchronous replication, see
Synchronous and Asynchronous Replication, page 35.

• Persistence Specifies whether space data is persisted to permanent storage,
and if so, what type of persistence is used.

For information on persistence, seeSpace Storage Options and Persistence,
page 37.

• Routing Specifies whether the space is routed.

For information on implementing routing for a space, see ActiveSpaces
Routing, page 67

• Entry TTL Controls how long a tuple can remain unmodifed before it is
evicted from the space.

For information on time to live and lock wait, see Expiration: Time to Live and
Tuple Locking, page 45.

• Lock TTL controls how long a tuple remains locked after an application has
locked it.

For information on time to live and lock wait, see Expiration: Time to Live and
Tuple Locking, page 45.

• Lock Wait How long an operation attempting to modify a locked tuple can
block while waiting for a tuple lock to clear.

For information on time to live and lock wait, see Expiration: Time to Live and
Tuple Locking, page 45.

Field Definitions
You create field definitions in two steps:

1. By creating field definitions and specifying the data type for each field.

2. By associating the fields with a space definition.
 TIBCO ActiveSpaces Developer’s Guide

30 | Chapter 2 TIBCO ActiveSpaces Concepts
Distribution

A space may be either distributed or non-distributed:

• Distributed Spaces With distributed spaces, management of the space data is
shared among the seeders that have joined the space. Responsibility for
storing the tuples is distributed evenly among all the seeders joined to the
space.

• Non-Distributed Spaces With non-distributed spaces, a single seeder is
responsible for all the tuples in the space (the responsibility for storing tuples
in the space is assigned to one of the seeders joined to the space). However,
other seeders may still store the tuples in the space, depending on the
replication degree specified for the space. degree). (other seeders joined to the
space may also replicate these tuples if a degree of replication is specified)

Distributed Space
By default, spaces are distributed. In a distributed space, management of the
space’s entries is distributed among the seeders that are members of the space,
and the ActiveSpaces distribution algorithm ensures that entries are distributed
evenly in the space.

Figure 2, Distribution of Entries in a Space shows how the entries for a space are
distributed between seeders in the space. Each seeder has approximately the same
number of entries.
TIBCO ActiveSpaces Developer’s Guide

Distribution | 31
Figure 2 Distribution of Entries in a Space

To ensure the best possible (most even) distribution of entries in a space
regardless of the number of entries, the granularity of the ActiveSpaces
distribution algorithm is a single key field’s value. This means that an individual
distribution decision is made for every entry stored in the space.

In a distributed space, management of the space’s entries is distributed among the
seeders that are members of the space:

• An efficient distributed hashing algorithm is used to ensure an even
distribution of the entries among the seeders.

• The scalability of the space is limited to the number of entries that all the
seeder nodes can manage.

• The ActiveSpaces coherence protocol ensures global ordering of the
operations performed on values associated with a single key in a distributed
space, and ensures that those changes are propagated as they happen.
ActiveSpaces guarantees that every member of the space sees changes to the
values associated with a particular key in the exact same order, regardless of
the member’s physical location or level of participation in the space.

Non-Distributed Space
A non-distributed space is entirely managed by a single member. The main reason
for using non-distributed spaces is to get absolute view synchrony, so that
changes are seen in the same order (as opposed to seeing changes in the same key
in the same order).
 TIBCO ActiveSpaces Developer’s Guide

32 | Chapter 2 TIBCO ActiveSpaces Concepts
At any time, one member of the space—the seeder, is in charge of managing the
entries for the space. The scalability of the space is limited to the number of
entries that the single seeder can manage.

Minimum Number of Seeders

It is possible to define a minimum number of seeders for a space. If this attribute
is defined, the space is not usable until the required number of seeders have
joined it. Since it is not possible to service any operation on a space until there is at
least one seeder for it, there is always an implied default value of 1 for this setting.
TIBCO ActiveSpaces Developer’s Guide

Replication | 33
Replication

To provide fault-tolerance and prevent loss of tuples if one of the seeders in a
space suddenly goes down, you can specify that space data is replicated—backed
up one or more seeders.

ActiveSpaces replication is performed in a distributed active-active manner:

• Redistribution or Replication Redistribution is performed when a new seeder
joins the space, rereplication happens when a seeder leaves the space.

• Distributed Replication Replication is distributed over several seeders. Each
seeder seeds some tuples and also replicates tuples assigned to other seeders.
A given seeder does not have a designated backup that replicates all of the
tuples that this seeder seeds; instead, the tuples that it seeds are replicated by
any of the other seeders.

• Active-active Mode There are no “backup seeders” waiting for a “primary
seeder” to fail to start before becoming active. Instead, all seeders are always
active, and are both seeding and replicating tuples. This ensures efficient
replication— if a seeder fails, there is no need to redistribute the tuples among
the remaining seeders to ensure that the distribution remains balanced.
ActiveSpaces simply rebuilds the replication data, which is less work than
having to redistribute. This results in a lower performance impact when a
seeder fails.

Degrees of Replication
When you configure a space you specify whether replication is enabled, and if it is
enabled, specify the replication value using the SpaceDef object’s
setReplicationCount or getReplicationCount methods. The replication value
specifies whether replication is enabled, and if it is enabled, how may seeders
participate in replication. You can configure:

• Zero Replication A value of 0 (the default value) specifies there is no
replication. In this case, if one of the members that has joined the space as a
seeder fails suddenly, the tuples that it was seeding disappear from the space.
However, if the member leaves in an orderly manner by invoking a call to
leave the space or call disconnect from the metaspace, there is no data loss.

• Replication of Degree 1 This specifies that each tuple seeded by one member
of the space is also replicated by one additional other seeder of the space. If a
seeder suddenly goes down, the tuples that it was seeding are automatically
seeded by the nodes that were replicating them, and no data is lost.
 TIBCO ActiveSpaces Developer’s Guide

34 | Chapter 2 TIBCO ActiveSpaces Concepts
Seeders do not have designated replicating members; instead, all of the tuples
seeded by a particular member of the space are evenly replicated by all the
other seeders in the space. This has the advantage that even after a seeder
failure, the tuples are still evenly balanced over the remaining set of seeder
members of that space. It also means that ActiveSpaces' fault-tolerance is
achieved in an active-active manner.

• Replication degree 2 or higher Higher replication degrees specify that each
tuple seeded by a member of the space is replicated by two or more seeders in
the space. This ensures that two or more seeder members of a space can go
down (before the degree of replication can be re-built by the remaining
members of the space) without any data being lost.

• REPLICATE_ALL If you specify REPLICATE_ALL, then all of the tuples in the
space are be replicated by all the seeder members of the space. This allows the
fastest possible performance for Get operations on the space, at the expense of
scalability: each seeder member has a coherent copy of every single tuple in
the space, and can therefore perform a read operation locally, using either its
seeded or replicated view of the tuple.

Phase Count and Phase Ratio: Tuning Redistribution and Replication
You can control the pace and throttling of redistribution and replication be by
using the following space definition settings:

• Phase Count The Java setPhaseCount method sets the number of phases that
are used during redistribution and replication.

- A phase count of 1 provides the fastest redistribution/replication time,
but at the expense of incurring the most impact on ongoing space
operations (no client requests are serviced until the
redistribution/replication is completed).

- The default value (-1) specifies that the total number of records that need
to be redistributed or replicated is divided by 100,000 to compute the
number of phases.

• Phase Ratio The Java setPhaseCount method specifies a percentage of the
time spent doing redistribution/replication versus the time spent servicing
client requests.

By using the values that you specify for the Phase Count and the Phase Ratio,
ActiveSpaces computes the amount of time to wait before starting the next
phase, as follows:

Amount of time to wait before starting next phase = Amount of time spent during a
phase * Phase ratio percentage
TIBCO ActiveSpaces Developer’s Guide

Replication | 35
• The default value is 100 (%), which indicates that if, on average, a
redistribution/replication phase takes x ms to complete, then
redistribution/replication ise paused for 100% of x ms until the next phase
starts.

Synchronous and Asynchronous Replication
You can also define whether replication is performed in synchronous or
asynchronous mode for the space.

Asynchronous Replication

Asynchronous replication is the default behavior. It offers the best performance;
however, it does not guarantee that the data modification is n-replicated to the
desired degree by the time the operation completes.

Asynchronous replication does not degrade the coherency or consistency of the
data view between members of a space. Under normal operating conditions, all e
space members are notified of the change in the data at almost the same time
when the operation returns.

Synchronous Replication

Synchronous replication offers the highest level of safety, at the expense of
performance. With synchronous replication, an operation that modifies one of the
tuples in the space only returns an indication of success when the modification
has been replicated up to the degree of replication required for the space.

Comparison of asynchronous and synchronous replication

Asynchronous replication is more permissive than synchronous replication. It
allows performance of operations that modify space data even when the
configured degree of replication cannot be achieved because there are not enough
seeders— as soon as a sufficient number of additional seeders have joined the
space, the replication is performed automatically. Synchronous replication does
not allow such operations.

Asynchronous replication provides a best effort quality of replication, while
synchronous replication ensures a strict enforcement of the replication degree.
 TIBCO ActiveSpaces Developer’s Guide

36 | Chapter 2 TIBCO ActiveSpaces Concepts
Host-Aware Replication

To enable host-aware replication, you can group seeders to help prevent the loss
of replicated data. With host-aware replication, the data from the seeders in one
group is replicated on seeders that reside in other groups.

For example, if you group all of the seeders that reside on one device into a group
and that device goes down, no data loss occurs, because the replicated data is
guaranteed to reside on seeders in another group that is not on the device that
went down.

With host-aware replication, you can ensure that replicated data does not reside on
the same system as the original data and therefore is not lost if that system goes
down. Instead of increasing the replication degree to ensure that replicated data
exists on other systems when more than one seeder resides on the same system,
you can use host-aware replication instead.

With host-aware replication, you group seeders based upon their member names.
To organize seeders into groups, use member names of the form:

<group_name>.<member_name>

ActiveSpaces groups all seeders with the same group_name together and their data
is replicated on seeders outside of that group.

You can group any seeder in this way. You can set implement host-aware
replication for ActiveSpaces applications run as seeders as well as as-agents that
you start as seeders.
TIBCO ActiveSpaces Developer’s Guide

Space Storage Options and Persistence | 37
Space Storage Options and Persistence

ActiveSpaces provides several options for storing space data:

• RAM storage

• Storage on solid state drives

• Storage on magnetic disk

RAM Storage
ActiveSpaces data can be stored purely in RAM on machines running seeder
processes. RAM is the fastest storage medium and provides the fastest reads and
writes; however, it is the most ephemeral storage medium.

If the seeder process (or the machine running the process) goes down, the data
held in the process' memory is lost. Although the ActiveSpaces mechanism
enables recovery from individual process or machine failures, if all of the seeder
processes of a space go down (because they all crash, or because the machine is in
maintenance), then the data disappears from the space along with the last seeder.

Persistence
To avoid possible data loss, you can persist data to physical media. ActiveSpaces
allows you to persist data to disk storage and recover data if data loss occurs or
there is a problem with cluster startup.

You can persist space data to a storage system such as a database, a key-value
store, or even a file system. When you define a space and specify that it is
persisted, the space data is maintained in the persistence layer, and can be
recovered at startup.

In addition, if the space is defined as persistent and you also specify a capacity
value and an eviction policy of Least Recently Used (LRU), then you can use
ActiveSpaces to cache access to the persistence layer in “cache-through” mode. In
this case, applications can transparently access the data stored in the persistent
layer through the space. If the data associated with a particular key field value is
not in the space at the time of the read request (a “cache miss”), then it is
transparently fetched from the persistence layer, and stored in the space such that
a subsequent request for a get on the same key value can be serviced directly and
much faster by the space (a “cache hit”).

When making a query on a space using a browser or a listener on a transparently
cached space, there is a difference in behavior between the shared-nothing and
the shared-all persistence modes of operation:
 TIBCO ActiveSpaces Developer’s Guide

38 | Chapter 2 TIBCO ActiveSpaces Concepts
With the built-in shared-nothing persistence, the query can return ALL of the
tuples stored in the space regardless of whether they are present in the cached
records in RAM or on persistent storage. What is already cached is returned faster
than what is evicted, but every matching record is returned. However, to do this,
the fields being queried in the space MUST have indexes defined on them.

With external shared-all persistence, listeners and browsers only return the
matching records that are present in the RAM-cached subset of the space, and will
NOT return records that are only present in the persistence layer at the time the
query is issued.

When a space is defined as persisted, it requires at least one persister or at list the
minimum allowable number of seeders.

ActiveSpaces provides two types of persistence:

• Shared-All Persistence The implementation for external “shared-all”
persistence is provided in the ActiveSpaces libraries. All nodes share a single
persister or a set of persisters. Using the ActiveSpaces API, your application
must provide an implementation of the persistence interface and interface to
the shared persistence layer of choice.

• Shared-Nothing Persistence Shared-nothing persistence is built into the
ActiveSpaces system, and provides a distributed back-up of space data. Each
node that joins a space as a seeder maintains a copy of the space data on disk.
Each node that joins as a seeder writes its data to disk and reads the data
when needed for recovery and for cache misses. This type of built-in
persistence is implemented by the ActiveSpaces libraries

When you implement persistence, you can use RAM to store either all of the data,
or the most recently used data. The persistence layer holds all of the data stored in
the space but the RAM of the seeder processes is used as a transparent in-line
cache of a configurable size.

Shared-All Persistence

If you implement shared-all persistence, your application must provide code to
handle reads to and writes from the external persistent storage medium. You can
use a traditional RDBMS (or any other centralized disk-based data store) as the
persistent storage medium.

With shared-all persistence, certain space members are designated as persisters —
to provide the service of interacting with a persistence layer, just as some of the
space members — the seeders — provide the basic space service.
TIBCO ActiveSpaces Developer’s Guide

Space Storage Options and Persistence | 39
With shared-all persistence:

• “Key operations,” for example, Get and Take operations, transparently fetch
entries that have been evicted from the space from the persistence layer.

• Queries only return matching records that are cached in RAM at the time the
query is issued, but do not return records that have been evicted from the
space.

Shared Nothing Persistence

When you use ActiveSpaces’ built-in shared-nothing persistence, your
application does not need to implement code to take care of persistence —
ActiveSpaces seeders use any file system accessible to them (for example local
solid state or disk drives) as the storage (and) medium.

When combined with in-memory indexing, shared-nothing persistence allows
you to use ActiveSpaces as a distributed data store using local disks for persistent
data storage and RAM as a truly transparent in-line caching layer.

With built-in shared-nothing persistence, if you define indexes on the fields used
in a query, ActiveSpaces has a unique ability: because the key fields and indexes
for all of the records in the data store are kept in RAM, queries return not just the
matching records that are cached in RAM, but also records that have been evicted
from the space.

Persistence Policy and Implementation
For both types of persistence, you can specify that the persistence is maintained
synchronously or asynchronously.

Shared-Nothing Persistence

With shared-nothing persistence, each node that joins a space as a seeder
maintains a copy of the space data on disk.

Where Is Persisted Data Stored?

When you configure shared-nothing persistence, you must use a unique name for
each member joining the spaces, and you must specify an existing directory path
for which ActiveSpaces has read and write access.

You can specify the directory path for data storage as follows:

• Through calls to the API operations.

• For as-agents, by using the command line arguments for as-agent.
 TIBCO ActiveSpaces Developer’s Guide

40 | Chapter 2 TIBCO ActiveSpaces Concepts
• Through an environment variable.

The directory you specify is used as the root path under which ActiveSpaces
creates its own subdirectory structure, using the format
metaspace/space/member.

ActiveSpaces creates and manages persistence files automatically. You do not
have to provide a filename for the stored data—the data store directory is used as
the location to create and use the file.

For detailed information on implementing shared-nothing persistence, see Setting
up Persistence, page 102.

For detailed information on implementing shared-all persistence, see Setting up
Persistence, page 102.

Terms and Concepts for Persistence

The following terms and concepts are useful for understanding persistence:

• Space State Indicates whether the space can accept regular space operations
or not. This happens only when the space is in READY state.

• Persistence Type Defines what type of persistence ActiveSpaces uses.
Shared-all and shared-nothing are the supported types. Only one type of
persistence can be configured on the same space at the same time.

• Persistence Policy Defines how the changes to space will be persisted—
synchronously or asynchronously.

• Member Name A unique name to identify each node/seeder/member.
Recommended if using shared-nothing persistence.

• Data Store The file system/directory location where ActiveSpaces stores the
persistence files.

• Data Loss Data loss is detected by ActiveSpaces when the number of nodes
(seeders) that either leave or fail (due to a crash) exceeds the count set for the
space. In this situation, the space is marked as FAILED.

• Space Recovery ActiveSpaces recovers a space (based on user intervention)
when the space state is FAILED either due to data loss or cluster startup.

• Space Resume ActiveSpaces resumes a space (based on user intervention)
when the space goes into a SUSPENDED mode due to loss of a persister.
TIBCO ActiveSpaces Developer’s Guide

Space Storage Options and Persistence | 41
TIBCO ActiveSpaces Cluster Startup with Persistence

With shared-nothing persistence, when ActiveSpaces nodes are started for the
first time and join the metaspace (and subsequently the defined space),
ActiveSpaces creates new data store files, and since there are no old files to
recover from, the space automatically enters the READY state and is available for
space operations.

If any ActiveSpaces node is restarted either after a failure or as a new member, the
space is available for space operations if none of the nodes in the space find files
to load data from. If any node has an old file, the space state is set to WAITING (or
INITIAL if starting nodes after failure), and your application must initiate a load
action.

Space Recovery with Persistence

When you configure persistence, you have the option of configuring space
recovery. Space recovery has two options that you can specify through the API
functions or the recover command:

• Recovery with Data Use this option if data loss is not acceptable and you want
to reload the data from persistence files into the space.

• Recovery Without Data If data loss is acceptable, then use recovery without
data. This specifies that ActiveSpaces does not load data back into the space
from persistence files.

You can perform recovery by using:

• API operations

• The Admin CLI

For detailed information on setting up recovery, see Setting up Recovery with
Persistence, page 105.

Space Resume with Shared-All Persistence

When a space loses one of its persisters, the space is set to a SUSPENDED state,
which means that no writes to persistence files can happen. In this case, you can
resume the space.

Implementing Persistence

For details on how to set up persistence, see Setting up Persistence, page 102.
 TIBCO ActiveSpaces Developer’s Guide

42 | Chapter 2 TIBCO ActiveSpaces Concepts
Space Life Cycle and Persistence

The space life cycle starts when the space is first defined in the metaspace and
ends when the space definition is dropped from the metaspace.

A space can be in one of the following states:

• INITIAL The space has been defined and is waiting for the minimum number
of seeders required by the space's definition to be reached, and for at least one
persister to be registered if it is a persisted space.

• LOADING The space is a persisted space that has reached the required
minimum number of seeders and has at least one registered persister. One of
the persister's onLoad methods is being invoked and the space data is being
loaded from the persistence layer.

• READY The space has the required minimum number of seeders and if
persisted, data has been loaded and has at least one registered persister.

Space operations that read or write data in the space are only allowed when the
space is in the READY state. The only exception to this rule is that the space's load
method can be invoked when the space is in the LOADING state (typically by the
registered persister onLoad method).

Your application can check that the space is in the READY state before attempting
to use it by using the space's isReady() method.

Your application can also synchronize itself with the space's state by using the
space's waitForReady method. This method takes a timeout that is the number of
milliseconds for which it will block while waiting for the space to reach the
READY state, and returns a boolean value indicating whether the timeout was
reached or not (Java also has a convenient version of the method that does not
take a timeout and just blocks until the space is ready).

Another way to synchronize an application with the space's state is to rely on the
space definition's SpaceWait attribute: a configurable timeout that is used to
block space operations when the space is not in the READY state until either the
space becomes ready (at which point the operation is executed) or the SpaceWait
timeout expires (at which point the operation will fail).

Persistence and Space Life Cycle

When a space needs to be persistent so that the data that is stored in it does not
disappear after a disaster (all seeders have crashed) or a maintenance shutdown,
you should define it as a persisted space.

Two choices are available for persistence: built-in shared-nothing persistence or
external shared-all persistence.

At a high level, persistence is invoked at various steps in the life-cycle of a space:
TIBCO ActiveSpaces Developer’s Guide

Space Storage Options and Persistence | 43
• When a space is first reinstantiated after a complete shutdown or crash, the
persistence “loading” phase is first invoked to “re-hydrate” the data (or
rebuild indexes) from the persistent storage medium:

— With built-in shared-nothing persistence, loading occurs in parallel on all
the space's seeders at the same time.

— With external shared-all persistence, the onLoad method of one of the
registered persistence implementations is invoked.

• When a change is made to the data in the space (because of a put, a take or any
other space action that modifies the data), this change needs to be reflected to
the persistent storage medium.

This is done either synchronously or asynchronously in a distributed manner
by each seeder (including those that replicate the data). Data is persisted to it's
designated local storage file folder in shared-nothing persistence, or by the
persistence implementation's onWrite method in external shared-all
persistence mode.

Because in shared-nothing mode writes are automatically distributed between
the seeders (taking into account the degree of the space) and are done to local
disk on each seeder, write performance scales along with the number of
seeders (just as for a non-persistent space). However, when you use shared-all
external persistence is used, because the persistence layer is shared (is a
centralized RDBMS, for example) the number of writes per second is
ultimately limited by what the external persistence layer can handle and does
not scale when more seeders are added to the space.

• When memory is used as a transparent in-line cache (rather than to store the
entire data set), if there is a request to read an entry (as a result of a get, take or
lock operation, for example) that is not currently in the part of the data cached
in memory, then the entry is automatically loaded from the persistence layer
either automatically by the seeders from their local persistent storage in
shared-nothing mode or by the persistence's onRead method.

• When a query (rather than a single entry read) is issued on the space, then
when external shared-all persistence is used, the query will only return the
matching records that are in the in-memory cache at the time, while with
shared-nothing persistence, when indexes are used, the query will return ALL
matching records, including those that may have been evicted at the time the
query was issued.
 TIBCO ActiveSpaces Developer’s Guide

44 | Chapter 2 TIBCO ActiveSpaces Concepts
Write-Behind Caching

ActiveSpaces supports write-behind caching in addition to write-through caching
to a back-end database. Write-behind caching provides asynchronous writes to
the database for faster performance, and allows writes to be buffered in cache and
written to the database later in case the database is down.

The writes to the database are asynchronous to the cache operation. The process is
fault-tolerant of Persister failures and seeder failures of the space up to its
replication degree.

To enable the write-behind feature, you must set the shared-all persistence policy
to ASYNC.

To indicate that an update failed to persist to the back-end data store due to the
database connection being down, your persister code must return a
PERSISTER_OFFLINE error within the onWrite callback.

The PERSISTER_OFFLINE error indicates that the update is to be retried later.
ActiveSpaces does not handle any other persister-related failures, continues with
a warning, and removes the specific update that failed.

The following example shows how your code can return the PERSISTER_OFFLINE
error message.

ActionResult.create().setFailed(new
ASException(ASStatus.PERSISTER_OFFLINE, sqlException))

The as-admin utility can display statistics indicating the pending update count
on each node. If a system is not able to catch up with incoming user updates, the
ToPersist count shows the status of pending updates.

Because writes are now asynchronous, changes done in cache are not reflected
immediately in the database. ActiveSpaces conflates multiple updates on the
same key to a single update to reflect the last update. If the database cannot keep
up with cache updates, then updates on different keys are aggregated in memory
and potentially use more memory than expected. Running more Persisters might
help scale out the workload.

If there are pending updates, caching with a defined limit cannot guarantee that
the limit is respected. Once all updates have been flushed, the limit is applied and
eviction takes place. Until then, the cache might grow and necessary tuning might
be required.
TIBCO ActiveSpaces Developer’s Guide

Expiration: Time to Live and Tuple Locking | 45
Expiration: Time to Live and Tuple Locking

ActiveSpaces provides configuration settings that control:

• When data expires and can be evicted from a space

• How long a tuple remains locked when an application has locked it

To control eviction and how long tuples remain locked, ActiveSpaces allows you
to specify the following values:

• Entry TTL Controls how long a tuple can remain unmodifed before it is
evicted from the space.

• Lock TTL controls how long a tuple remains locked after an application has
locked it.

• Lock Wait How long an operation attempting to modify a locked tuple can
block while waiting for a tuple lock to clear.

Entry TTL
ActiveSpaces is a durable data store that can be used as a cache. Tuples stored into
a space are not evicted from the space to make room for new tuples unless the
space is specifically configured to evict tuples after a specified time. Therefore,
you can use a space as a system of record.

In some cases you might want to have an automated garbage collection mechanism
operate on the space to expire old, obsolete tuples from it. To do this, you can
define a time-to-live (TTL) for tuples stored in the space. The TTL is the number of
milliseconds that must elapse since the tuple was created or last modified before it
is considered for expiration.

You can set or return the entry TTL using the SpaceDef objects’s setTTL and
getTTL methods, respectively.

Lock TTL
Applications that have joined a space can lock tuples in the space. By default,
locked tuples remain locked until the application that created the lock clears it, or
until that application disconnects from the metaspace, whether in an orderly
manner or not.

To avoid potential deadlock situations, you can also possible set a maximum
lock-time-to-live for a space, which specifies that if an application does not clear a
lock on its own within a certain number of milliseconds, the lock is automatically
cleared.
 TIBCO ActiveSpaces Developer’s Guide

46 | Chapter 2 TIBCO ActiveSpaces Concepts
You can set or return LockTTL can be set or returned using the SpaceDef objects’s
setLockTTL and getLockTTL methods, respectively. It is expressed in
milliseconds and defaults to TTL_FOREVER.

LockWait
While a tuple is locked, no space member besides the creator of the lock can
perform a Put or Take operation on it. Therefore, distributed applications in
which multiple instances of the application make concurrent modification to the
data stored in a space should always ensure that they lock tuples for the shortest
possible amount of time to maximize concurrency of the overall process.

If you expect that the locks on tuples in the spaces will have a very short duration,
ActiveSpaces allows you to specify a LockWait value for the space. The LockWait
value is the number of milliseconds an operation attempting to modify a locked
tuple can block while waiting for the lock to clear.

If at the end of the LockWait period, the tuple is still locked, then the operation to
modify that locked tuple throws an exception indicating that the operation could
not be performed because the tuple is locked. The LockWait value of a space is
also taken into consideration if a member attempts a non-transacted operation
that conflicts with uncommitted data (for example, tuples about to be replaced by
uncommitted operations are locked by that transaction).

You can set or get the LockWait value by using the SpaceDef object’s
setLockWait and getLockWait methods, respectively. Lock wait value is
expressed in milliseconds. The default value is NO_WAIT, indicating that this
feature is not used, and that an operation attempting to modify a locked tuple will
immediately return with a failure indicating that the tuple is currently locked.

For detailed information on the procedure for setting a LockWait value, see
Specifying a LockWait Value for a Put, page 112.
TIBCO ActiveSpaces Developer’s Guide

Concurrently Updating Data in a Space | 47
Concurrently Updating Data in a Space

When multiple processes concurrently get and update tuples in a space, two
processes might try to update the same tuple at the same time. In that case, it is
often necessary to serialize updates. The classic example of this scenario is that of
a bank account balance: if a deposit and a debit to the same bank account are
being processed at the same time, and if each of these operations follows the
pattern “get current account balance, add/remove the amount of the transaction,
and set the new account balance,” both transactions might start at the same time
and get the same current account balance, apply their individual changes to the
account value, but the application that is last to set the new account balance
overwrites the other applications’s modification.

There are two ways to solve this problem using ActiveSpaces:

1. An optimistic approach is best when the likelihood of having a collision is low.
In this case, you should make use of the space’s update method, which is an
atomic compare and set operation.

This operation takes two parameters, one representing the old data that was
retrieved from the space, and another one representing the new version of that
data. If the old data is still in the space at the time this operation is invoked,
then the operation will succeed. However, if the data in the space was
changed in any way, the operation will fail, which indicates that your
application should refresh its view of the data and re-apply the change.

2. A pessimistic approach to the concurrent update problem is best when there is
a high likelihood of more than one process trying to update the same tuple at
the same time. In this case, application programmers should first attempt to
lock the tuple, and only apply their update to it after having obtained the lock.
Locking is described in the following section.
 TIBCO ActiveSpaces Developer’s Guide

48 | Chapter 2 TIBCO ActiveSpaces Concepts
Locking Data in a Space

ActiveSpaces allows users to lock records and keys in the space. The granularity
of the locking in ActiveSpaces is a key, meaning that any possible key that could
be used in the space can be locked, regardless of whether a tuple is actually stored
in the space.

The space's lock function takes a tuple representing the key as an input parameter
and can optionally return what is stored in the space at that key (if there is
anything) just as a get operation allows you to lock tuples in the space. The
space’s lock method is an atomic get and lock, and takes the same argument as the
get method.

After a key is locked, it is read-only for all other members of the space except for
either the process or the thread that issued the lock command. The lock's scope
(the thread or the process) can be specified when the space's lock method is
invoked.

If a thread or process other than the locking thread or process tries to do a put,
take, lock, or any operation that would modify whatever is stored for the locked
key, that operation may block until the lock is cleared.

A locked key is read-only for all space members except the member that has locked
it. Only one member can lock a specific key at any given time. If a member other
than the lock owner tries to overwrite, take, update, or lock a locked key, that
operation may block until the lock is cleared. If you want to implement this
behavior, set a lock wait value using the space's LockWait attribute.

After a key is locked, the owner of the lock can unlock it.

You can also iteratively lock all or a filtered subset of the tuples in a space by
using a space browser.

Finally, you can specify a maximum time to leave for locks in a space: if a lock is
held for longer than the value specified in the space's LockTTL attribute, it is then
automatically cleared. Locks are also automatically cleared when the application
that has created the lock leaves the metaspace or crashes.
TIBCO ActiveSpaces Developer’s Guide

Results | 49
Results

Most batch space operations return results (or collections of results). Results
objects contain information about the result of the operation and are always
returned by those operations regardless of the operation being a success or a
failure.

A result object contains a status value indicating whether the operation
completed successfully, and if so, whether or not an entry is contained in the
result, or whether the operation failed and the result contains an exception object.

See Appendix A, Result and Status Codes for more detailed information on
results.
 TIBCO ActiveSpaces Developer’s Guide

50 | Chapter 2 TIBCO ActiveSpaces Concepts
Browsers

ActiveSpaces provides another method of interacting with spaces—space
browsers. You can use space browsers when working with groups of tuples,
rather than with the single tuple key lookup of the space’s get method. Space
browsers allow you to iterate through a series of tuples by invoking the space
browser’s next method. However, unlike a traditional iterator that works only on
a snapshot of the data to be iterated through, the space browser is continuously
updated according to the changes in the data contained in the space being
browsed.

Changes happening to the data in the space are automatically reflected on the list
of entries about to be browsed as they happen: a space browser never gives the
user outdated information. For example, if an entry existed at the time the space
browser was created, but it gets taken from the space before the space browser’s
user gets to it, then this entry will not be returned by the space browser.

Space Browsers and the Event Browser
There are two main types of browser:

• Space Browsers Allow your application to not only retrieve the next tuple in a
series of tuples, but also to operate directly on the tuple. You can implement:
three types of space browser:

— Get Browser Retrieves the next tuple in a series of tuples.

— Take Browser Retrieves the next tuple in a series of tuples and consumes it.

— Lock Browser Retrieves the next tuple in a series of tuples and locks it.

For information on coding a space browser, see Implementing a Space Browser:
Querying the Space, page 121

• Event Browsers Allow you to iterate through the stream of events (changes)
occurring in the space.

For information on coding an event browser, see Using Event Browsers, page 123

Here are some additional differences between space browsers and event
browsers:

• Space browsers and event browsers both have two methods, next() and
stop(). However, a space browser's next() method returns a SpaceEntry,
while the event browser's next() method returns a SpaceEvent.

Do not forget to invoke the stop method on the browser once you are done using
it in order to free the resources associated with the browser.
TIBCO ActiveSpaces Developer’s Guide

Browsers | 51
• A space browser also has a getType() method, which the event browser does
not have.

• A space browser's next method will do a get, take, or lock, according to the
browser's type: GetBrowser, TakeBrowser, or LockBrowser.

— The Get Browser’s next() method does a get on the next tuple to browse
(very much like a regular iterator).

— The Take Browser’s next() method atomically retrieves and removes the
next tuple currently available to take from the space.

— The Lock Browser’s next() method atomically retrieves and locks the next
tuple currently available to lock in the space).

• The Event Browser’s next method returns a SpaceEvent rather than a tuple.

• The SpaceEvent objects returned by the event browser’s next method
optionally include the initial values, that is, what was in the space at the time
the event browser was created.

• The initial values are presented as a continuously updated string of PUT
events preceding the stream of events that happen after the creation of the
event browser. Event browsers allow you to see deletions and expirations of
tuples they have already iterated through.

Space browsers deliver the tuples (and initial PUT events) for the initial values in
no particular order, and the order might change from one instance of a space
browser to another.

Since a space browser is continuously updated, it does not have a next() method;
instead, it has a timeout: the amount of time the user is willing for the next call to
block in the event that there is nothing to get, take, or lock at the time it is
invoked (but there may be in the future).

Continuously updating tuples means that if multiple TAKE browsers created on
the same space are used to take tuples from the space using next(), a particular
tuple is only taken by one of the space browsers, effectively allowing the use of a
space as a tuple queue.

Scopes of a Space Browser

A space browser can have either time scope or distribution scope, which are defined
by setting the values of fields in the browser’s BrowserDef object:

Time Scope The time scope can be used to narrow the period of time of interest.
 TIBCO ActiveSpaces Developer’s Guide

52 | Chapter 2 TIBCO ActiveSpaces Concepts
• snapshot means that the browser starts with all the tuples in the space at the
time the browser is created (or initial values), but is not updated with new
tuples that are put into the space after that moment.

• current Allows client applications to create queries that return large result sets
using less resources. Note the following points regarding the current setting:

— When the query returns a very large result set, the amount of memory
required by the seeders and the querying application to provide true
snapshot functionality may become a problem source; in that case, you can
use the current time scope instead.

— The current time scope is a lightweight, best effort, version of the snapshot
time scope that requires almost no extra memory, and very little initial
processing, but where changes in the space done after a browser was
created with a current time scope may or may not be visible.

— It is advisable to use the current time scope with key indexes of type
TREE. However, the current time scope setting also works with HASH
indexes.

— The HASH index might return duplicate values if there is a need to grow
the hash index used with a seeder. If duplicate values are an issue, it is
advisable to switch to the TREE index type.

— If there is a seeder join/leave/drop on the space while the browser is being
created or is in use, then the current time scope throws an exception,
because the iterated data would not be correct. Losing a seeder or having a
new seeder causes redistribution of entries, and this violates the time scope
requirements of the current setting.

• new means that the browser starts empty, and is updated only with tuples (or
associated events) put into the space after the moment of the browser’s
creation.

• all means that the browser starts with all the tuples in the space, and is
continuously updated with new tuples.

• new_events is applicable only to event browsers, and means that the browser
starts empty and is updated with all the events generated by the space after
the moment of the browser's creation (unlike new, which would only deliver
events associated with entries put in the space after the browser's creation
time)

Note that the browser's timeout value is ignored when the time scope is
snapshot, because in this case the browser will only iterate through a finite set of
tuples (only those that are present in the space at the time of the browser's
creation).
TIBCO ActiveSpaces Developer’s Guide

Browsers | 53
Distribution Scope The distribution scope can be used to narrow down the set of
tuples or events being browsed.

• all is used to browse over all the tuples (or associated events) in the space

• seeded is used to browse only over the tuples (or associated events) actually
distributed to the member creating the browser
 TIBCO ActiveSpaces Developer’s Guide

54 | Chapter 2 TIBCO ActiveSpaces Concepts
Listeners

ActiveSpaces can proactively notify applications of changes to the tuples stored in
a space. Users can invoke the metaspace or space’s listen method to obtain a
listener on spaces for receiving event notifications. There are five types of
listeners:

1. PutListener The PutListener’s onPut method is invoked whenever a
SpaceEntry is inserted, updated, or overwritten in the space.

2. TakeListener The PutListener’s onTake method is invoked whenever a
SpaceEntry is removed from the space.

3. ExpireListener The PutListener’s onExpire method is invoked whenever a
SpaceEntry in the space has reached its time to live (TTL) and has expired.

4. SeedListener The PutListener’s onSeed method is invoked whenever there is
redistribution after an existing seeder leaves the space and now the local node
is seeding additional entries. This is only applicable if the listener distribution
scope is SEEDED.

5. UnseedListener The PutListener’s onUnseed method is invoked whenever
there is redistribution after a new seeder joins the space and now the local
node stops seeding some of the entries. Only applicable if the listener
distribution scope is SEEDED.

In the ActiveSpaces Java API, listeners must implement at least one of the listener
interfaces shown above. Listeners are activated using the listen method of the
Metaspace or Space class.

• The PutListener interface requires an onPut(PutEvent event) method.

• The TakeListener interface requires an onTake(TakeEvent event) method.

• The ExpireListener interface requires anonExpire(ExpireEvent event)
method.

• The SeedListener interface requires an onSeed(SeedEvent event) method.

• The UnseedListener interface requires an onUnseed(UnseedEvent event)
method.

In the C API, you must call the tibasListener_Create function and specify a
single callback function that is invoked for all event types. The new
tibasListener object created by tibasListenerCreate is then activated using
the tibasMetaspace_Listen or tibasSpace_Listen functions. The callback
function is passed a tibasSpaceEvent object whose type can be determined by
invoking the tibasSpaceEvent_GetType function.

ActiveSpaces generates space events of type:
TIBCO ActiveSpaces Developer’s Guide

Listeners | 55
• TIBAS_EVENT_PUT when a tuple is inserted, overwritten, or updated.

• TIBAS_EVENT_TAKE when a tuple is taken or removed.

• TIBAS_EVENT_EXPIRE when a tuple reaches the end of its time to live and
expires from the space.

• TIBAS_EVENT_SEED when there is redistribution after a seeder joins or leaves,
and the local node is seeding or unseeding. This is only applicable if the
listener distribution scope is SEEDED.

• TIBAS_EVENT_UNSEED when there is redistribution after a seeder joins or
leaves, and the local node is seeding or unseeding. This is only applicable if
the listener’s distribution scope is SEEDED.

You can also specify that a current snapshot of the entries stored in the space
(sometimes referred to as initial values) is prepended to the stream of events. In
this case, the initial values of all the tuples contained in the space at the listener’s
creation time are seen as space events of type PUT preceding the current stream of
events.
 TIBCO ActiveSpaces Developer’s Guide

56 | Chapter 2 TIBCO ActiveSpaces Concepts
Filters

ActiveSpaces supports the application of filters to both listeners and browsers, as
well as the ability to evaluate a tuple against a filter. Filters allow your application
to further refine the set of tuples it wants to work with using a space browser or
event listener.

A filter string can be seen as what would follow the where clause in a select *
from Space where… statement.

Examples
field1 < (field2+field3)

state = "CA"

name LIKE ".*John.*" //any name with John

Filters can make reference to any of the fields contained in the tuples. s do not
provide any ordering or sorting of the entries stored in the space.

Operators Supported in Filters

Table 5 shows the operators that are supported in the ActiveSpaces filters:

Table 5 Operators for ActiveSpaces Filters

Operator Meaning

>, >= greater than

NOT or ! or <> not

* multiply

= equal

!= not equal

ABS absolute value

MOD modulo

NOTBETWEEN not between

BETWEEN between

|| string concatenation

NOTLIKE not like (regex)
TIBCO ActiveSpaces Developer’s Guide

Filters | 57
Specifying a String Value in a Filter

If you specify a string value in a filter, then the filter value must be enclosed in
double quotes; for example:

value = "Jones"

See ASQuery (Java Only), page 181 for examples of filter queries that utilize
strings enclosed within double quotes.

Regex Syntax for Filter Values

Table 5 indicates several filter formats for regular expressions (regex values). For
regular expressions, ActiveSpaces uses the syntax for Perl Compatible Regular
Expressions (PCRE).

LIKE like (regex)

<, <= less than

+ addition

OR or

- subtraction

AND and

IN range, as in “ age in
(1,3,5,7,11)

NULL does not exist

NOT NULL exists

IS only used with NULL or NOT
NULL, as in “x IS NULL“ or “x
IS NOT NULL"

NOR nor, as in “age NOT 30 NOR
40“

/* comments

// comments

Table 5 Operators for ActiveSpaces Filters

Operator Meaning
 TIBCO ActiveSpaces Developer’s Guide

58 | Chapter 2 TIBCO ActiveSpaces Concepts
For general information on PCRE, see the PCRE website at the following URL:

http://www.pcre.org/

For detailed documentation on PCRE, see the text version of the man pages for
PCRE at the following URL:

http://www.pcre.org/pcre.txt

Formats for Filter Values

Table 6 shows the formats for values used in filters.

Table 6 Formats for Filter Values

octal value \oXXX

hexadecimal value \xXXX

exponents (as in 1E10
or 1E-10)

XXXEYY

date time YYYY-MM-DDTHH:MM:SS

date YYYY-MM-DD

time HH:MM:SS:uuuu+/-XXXXGMT

true TRUE

false FALSE

You must enclose datetime values in single quotes (not double quotes, as with
strings).
TIBCO ActiveSpaces Developer’s Guide

Remotely Invoking Code over a Space | 59
Remotely Invoking Code over a Space

ActiveSpaces allows space members to remotely invoke code on other members
of the space. This feature allows the code to be co-located with the data for
optimal performance.

Execution of the Invocable interface is triggered by an application that can be
running on the same member or a different member of the space. In ActiveSpaces,
this is referred to as remote invocation.

The invocable code is executed either on the member that contains specified data
(if the Invocable interface is used) or on specified members (if the
MemberInvocable interface is used). If you use the MemberInvocable interface,
your application specifies which members should execute the interface.

Compare the two approaches to updating the value of a field on all of the entries
stored in a space.

• One approach is to create a browser of distribution scope all on the node to
serially retrieve and update each entry in the space one entry at a time.

This represents a non-distributed process, as a single node is actually doing
the updating. It incurs a fair amount of network traffic, since retrieving an
entry might require a round-trip over the network, and updating that entry
might require another round-trip. The latency induced by those network
round-trips has a negative impact on the overall throughput.

• Another approach is to use remote invocation to invoke a function on all of
the Space seeders in parallel. The remote function creates a browser of
distribution scope seeded, to iterate only over the entries that it seeds and,
therefore, avoid incurring a network round-trip.

For each entry, the invoked function updates the field and the entry the same
way as described for the non-distributed process, with the difference that the
entry updates will be performed much faster since they do not incur a
network round-trip.

Remote space invocation is available for all language bindings. It only takes care
of function or method invocation and does not take care of distributing the code
to the space members; for example, the function or method being invoked must
be available in the CLASSPATH of all space members.

Invocation Patterns

public interface Invocable
 TIBCO ActiveSpaces Developer’s Guide

60 | Chapter 2 TIBCO ActiveSpaces Concepts
With the Invocable interface, the application indicates the key of an entry stored
in the space. ActiveSpaces determines which space member stores the element
associated with the key or which space member would be used to store the
element, if the element does not exist in the space. Execution of the Invocable
interface will then occur on that space member.

The code implementing the Invocable interface needs to be included in the
CLASSPATH for each member of the space.

The following remote space invocation services are available:

• invoke Invokes a method only on the member seeding the key passed as an
argument to the call.

• invokeMember Invokes a method only on the Space member being specified
as an argument to the call.

• invokeMembers Invokes a method on all of the Space members.

• InvokeSeeders Invokes a method on all of the seeder members of the Space.

All of those calls also take as arguments:

• A class on which the method implementing the appropriate Invocable
interface is invoked

• A context tuple that gets copied and passed as is to the method being invoked.

The invoke method takes a key tuple, which gets passed to the method
implementing the Invocable (rather than MemberInvocable) interface in the
class; the method gets invoked regardless whether an entry has been stored in the
space at that key.

Both the Invocable and the MemberInvocable interfaces return a tuple, but the
remote space invocation methods return either an InvokeResult (invoke and
invokeMember) or an InvokeResultList (invokeMembers and invokeSeeders),
from which the Tuple can be retrieved using the getResult (or getResults)
method.

The methods being invoked using remote space invocation should always be
idempotent; in case there is a change in the membership (or seedership) of the
space while the Remote Space Invocation is being performed, the Space can retry
and re-invoke the methods once the change has happened.
TIBCO ActiveSpaces Developer’s Guide

Transactions | 61
Transactions

ActiveSpaces Enterprise Edition allows you to atomically perform sets of space
operations using transactions. Transactions can span multiple spaces, but not
multiple metaspaces. A transaction starts when an individual thread in an
application creates a transaction, and terminates when either commit or rollback
is invoked, at which point all space operations performed by that thread are either
validated or canceled. Pending transactions may be rolled back automatically if
they exceed an optional TTL (time-to-live) threshold, or when the member
creating them leaves the metaspace.

Transactions can also be moved from one thread to another using the
releaseTransaction() and takeTransaction() methods.

In ActiveSpaces 2.0, the only supported read isolation level is READ_COMMITTED.
This isolation level applies only to your view of data modified by the transactions
of other applications and threads. This means that whether in a transaction or not,
you will not see uncommitted data from other transactions, but if you yourself are
in a transaction you will see your own uncommitted data.

ActiveSpaces has an implied write isolation level of UNCOMMITTED, meaning that
any entry potentially modified by a pending transactional operation appears to be
locked for other users of the space (in which case the space’s LockWait attribute
will apply).
 TIBCO ActiveSpaces Developer’s Guide

62 | Chapter 2 TIBCO ActiveSpaces Concepts
Deployment

ActiveSpaces is a peer-to-peer distributed in-memory tuple space. This means
that the tuples are stored in the memory of a cluster of machines working together
to offer the storage of tuples. There is no central server used for the coordination of
operations, but rather any number of peers working together to offer a common
service.

To store tuples, ActiveSpaces uses a distributed hashing algorithm applied on the
values of the key fields of the tuple to distribute the seeding of the tuples as evenly
as possible (that is, their storing and management) over a set of peers. This means
that:

• Given the current set of seeders (any process joined to a particular space as a
seeder), any participating member of the space knows where to find the tuple
associated with a particular set of key field values.

• The more seeders there are for a space, the larger the amount of data that can
be stored in that space.

• There has to be at least one seeder joined to a space in order for the space to be
functional. A space with no seeders joined to it does not contain any data and
can not have any tuple put into it until at least one seeder has joined it.

By specifying its role as a seeder, a process indicates its willingness to lend some
of its resources—memory, CPU, and network resources—to the storing of tuples
in the space. This is the means by which a space is scaled up. ActiveSpaces also
allows applications to use spaces as leeches, which means that, while retaining
full access to the service provided by the seeders, the application is not willing to
lend any of its resources to the storing of tuples in the space. Adding or removing
seeders from a space can incur performance costs by necessitating redistribution
of the entries in the space, while leeches can join and leave spaces without
impacting performance.

Before being able to join spaces, applications must first connect to a metaspace,
which is an administrative domain in which users can create and use any number
of spaces, but which also represents the cluster of machines and applications
being able to communicate with each other.

Networking Considerations

Applications can connect to the metaspace either as full peers to the other peers of
the metaspace, at which point they will need to be able to establish and receive
TCP connections from all the other full peers of the metaspace (regardless of their
role in individual spaces), or as 'remote clients' that connect to the metaspace
through establishing a single TCP connection to a proxying ActiveSpaces agent
TIBCO ActiveSpaces Developer’s Guide

Deployment | 63
process (itself a fully connected peers). Fully connected peers will always
experience lower latency of execution of the space operations than remote clients,
and remote clients will always be limited to join spaces as leeches (rather than be
able to join spaces a seeders).

Before establishing TCP connections to each other, the full peers of a metaspace
need to 'discover' each other. Discovery can be done by using a reliable multicast
protocol (either the built-in PGM protocol stack, or, optionally using the TIBCO
Rendezvous messaging system) or directly with TCP by listing a set of well
known IP addresses and ports. From a configuration standpoint, the easiest
option is to use the default built-in PGM reliable multicast protocol, but this
assumes that all of the full peers of the metaspace are able to exchange multicast
packets with each other over the network.

In this default deployment scenario, metaspace members must be able to both
receive each other's multicast transmissions and establish TCP connections to
each other. To enable this, firewall settings on the host may have to be adjusted to
allow sending and reception of UDP multicast packets on the port specified
through the multicast URL used to connect to the metaspace, and to allow
incoming and outgoing TCP connections to the ports specified in the listen URL
used by the members of the metaspace to connect to it.

Also, if the host has multiple network interfaces, care must be taken to ensure that
the member binds its multicast and listen transports to the appropriate interface,
that is, to the network that can be used to send or receive UDP multicast packets
and establish or accept TCP connections with the other members of the
metaspace. The interface to use for each transport can be specified in the
associated URL used to connect to the metaspace. If no interface is specified, the
ActiveSpaces transport libraries will default to using the default interface for the
host such as the interface pointed to by 'hostname').

For more information see Joining a Space or Metaspace: Special Considerations on
page 64.
 TIBCO ActiveSpaces Developer’s Guide

64 | Chapter 2 TIBCO ActiveSpaces Concepts
Joining a Space or Metaspace: Special Considerations

A single process can connect to a given metaspace or join a given space only once:

• A single application can only connect once to the same metaspace. In other
words, you cannot invoke connect on the same metaspace twice and have
two connections to the same metaspace from the same process. However, you
can connect simultaneously to several different metaspaces, and it is possible
to get a copy of a currently connected metaspace object by using the ASCommon
object's methods.

• When a process joins a space through its metaspace connection, it will only
join a space once. If you call getSpace twice, the process will join the space
the first time you call it, but the second getSpace call will return to you a new
reference to the previously created space object. If you specify a different role
the second time you call getSpace, then it will adjust your role on that space,
but this does not mean that you have joined the same space twice.

• The space object is reference-counted and the space will actually be left by the
process only when the space object's leave method is invoked an equal
number of times to the Metaspace's getSpace method for that particular
space.

The role on the space (seeder or leech) is also automatically adjusted when
leave methods are being invoked on those space objects.
TIBCO ActiveSpaces Developer’s Guide

Administrative Interfaces: AS-Admin, AS-Agent, and ASMM | 65
Administrative Interfaces: AS-Admin, AS-Agent, and ASMM

The amount of data that can be stored in a space depends on the number of
seeding members of that space. It can be necessary to add seeders to a space to
scale it up. as-agent is a pre-built process that users can run on any host whose
sole purpose is to join all distributed spaces in the specified metaspace as a seeder
and therefore to add the resources of the machine it is running on to the scalability
of the spaces it joins. Agents can also be used to ensure that the desired degree of
specified for a space can be achieved.

For more information, see “Using as-agent” in TIBCO ActiveSpaces Administration.
 TIBCO ActiveSpaces Developer’s Guide

66 | Chapter 2 TIBCO ActiveSpaces Concepts
Using Remote Clients

If you have purchased a license for the Remote Client Edition of TIBCO
ActiveSpaces, then you can implement ActiveSpaces on remote clients.

A remote client acts as a node without actually being a a member of the cluster.
Instead of being directly connected to the space, it is connected through a proxy—
typically through an as-agent.

If you are connecting to a space through a firewall, the applications that connect
must connect as remote clients.

Remote clients can:

• Run applications that use the API operations, and perform all of the basic
space operations—Get, Put, Take, Lock, and so on.

• Run the Admin CLI to allow operators to issue administrative commands.

• Use the same notification mechanisms that are used by nodes within the
cluster.

How Remote Client Communication Works
Remote clients are implemented as follows:

1. You set up an as-agent, which plays the role of a seeder and a proxy server
for remote clients.

2. Using the as-agent, you issue a remote_listen command to contact the
remote client and accept incoming remote client connections.

3. Using the C API or the Java API, you perform remote discovery to discover
the remote client, and you specify a list of well known IP addresses and ports
of proxy as-agents to remotely connect to.

Remote Clients and Seeding Distribution Scope

A remote client application can never become a seeder on a space. If an
application that is remotely connected requests to join a space as a seeder, it will
remain a leech. However, remote client applications can still create browsers or
listeners with a distribution scope of “seeded.” In this case, the seeded scope
becomes the scope of the proxying member of the metaspace through which the
remote client is connecting (i.e,. the tuples that the proxy seeds on the space if
any).
TIBCO ActiveSpaces Developer’s Guide

ActiveSpaces Routing | 67
ActiveSpaces Routing

The ActiveSpaces routing feature is implemented by means of a callback function,
similar to the callback function used with shared-all persistence. Using routing,
your application forwards updates to another site, and receives a status message
in return. The operation is blocked until the status is returned.

This section describes:

• Implementing ActiveSpaces Routing, page 67

• Freeing a Router, page 69

Implementing ActiveSpaces Routing
Implementing routing for a space consists of these steps:

1. Enabling Routing in the Space Definition, page 67

2. Creating the Router Object, page 68

3. Declaring a Callback Function, page 68

4. Setting the Router Object on the Space, page 69

Enabling Routing in the Space Definition

To enable routing for a specified space, connect to a metaspace, create a SpaceDef
object, and then call the tibasSpaceDef_SetRouted() function (C API) or the
setRouted method (Java API).

The tibasSpaceDef_SetRouted() function is defined as follows:

tibas_status tibasSpaceDef_SetRouted(
 tibasSpaceDef spaceDef,
 tibas_boolean routed);

where:

• spaceDef Specifies the SpaceDef object returned to your application by the
tibasSpaceDef_Create() function.

• routed Specifies whether the node data is routed. To route data, specify
TIBAS_TRUE; otherwise, specify TIBAS_FALSE.

A space does not require persistence to be enabled to enable routing. If
persistence is also enabled, both the persister and the router receive callbacks
before completing an operation.
 TIBCO ActiveSpaces Developer’s Guide

68 | Chapter 2 TIBCO ActiveSpaces Concepts
Creating the Router Object

To create a Router Object using the C API, call the tibasRouter_Create()
function. The tibasRouter_Create() function is defined as follows:

tibas_status tibasRouter_Create(
 tibasRouter* router,
 tibas_onRoute onOpen,
 tibas_onRoute onWrite,
 tibas_onRoute onClose,
 tibas_onRoute onAlter);

where:

• router Returns a router object that can be associated with a space.

• onOpen Specifies the function to be invoked when the tibasSpace_SetRouter()
function is called to set the router for a space.Your application is responsible
for making the necessary connections to the routed site.

• onWrite Specifies the function to be invoked when the there is a Put or Take
operation on the node to which data is routed. You function is responsible for
performing the Put or Take actions that take effect on the other site.

• onClose Specifies the function to be invoked when the connection to another
node is terminated (the tibasRouter_Free() function is called).

• onAlter Specifies the function to be invoked when a space definition is
altered.

Declaring a Callback Function

Declare a callback that conforms to the tibas_onRoute typedef (C API) or the
Router interface (Java API).

The tibas_onRoute callback has the following function prototype:

typedef void (TIBAS_CALL_API *tibas_onRoute) (
 tibasRouter router,
 tibasAction action,
 tibasActionResult result);

where:

• router Specifies the router object returned by the
tibasSpace_RouterCreate() function.

• action Returns the action that occurred over the routed connection.

• result Returns the result of the action.

The callback definition for a router does not provide an OnRead function. You
cannot perform Get operations over a routed connection.
TIBCO ActiveSpaces Developer’s Guide

ActiveSpaces Routing | 69
In Java there is no need to declare a function prototype: the Router interface
provides for methods referenced in the callback.

Setting the Router Object on the Space

After you have configured routing, you must set the Router object for the space.

To set the Router object for the space, call the tibasSpace_SetRouter() function
(C API) or the setRouter method (Java API).

The tibasSpace_SetRouter() function is defined as follows:

tibas_status tibasSpace_SetRouter(
 tibasSpace space,
 tibasRouter router);

where:

• space Is a valid space object.

• router Specifies the router object returned by the tibasRouter_Create()
function.

Java Implementation:

The Java setRouter method has the following signature:
Router setRouter (Router router) throws ASException;

Freeing a Router
When the routed connection has been terminated, you should free the router
object.

To free the router object using the C API, call the tibasRouter_Free() function.
The tibasRouter_Free() function is defined as follows:

tibas_status TIBAS_COMMON_API TIBAS_CALL_API tibasRouter_Free(
 tibasRouter* router);

where router specifies the Router object that was used to create the router.

Java Implementation:

Using the Java API, you can free the router by calling the stopRouter method. The
stopRouter method has the following definition:
void stopRouter (Router router) throws ASException;
 TIBCO ActiveSpaces Developer’s Guide

70 | Chapter 2 TIBCO ActiveSpaces Concepts
Performance Monitoring

The ActiveSpaces utility programs, as-admin and as-agent, support performance
monitoring. When performance monitoring is enabled, as-admin users can
display performance statistics by entering commands such as the following:
show member "<member_agent_name>" stats

where member_agent_name is the name of the member or agent for which you are
querying performance statistics.

To display statistics for all members, users can enter:
show system stats

By default, performance monitorin is not active. For information on enabling
performance monitoring, see Enabling Performance Monitoring, page 124.

For information on the performance monitoring commands and command
output, see the TIBCO ActiveSpaces Administration document.
TIBCO ActiveSpaces Developer’s Guide

Miscellaneous Topics | 71
Miscellaneous Topics

The ASCommon Object

The ASCommon class provides a set of static methods for managing metaspaces.
ASCommon can be used to connect to a metaspace, retrieve a list of currently
connected metaspaces, and set a global log level.

ASCommon can be very convenient to use; for example, to obtain a copy of the
currently connected Metaspace object (using ASCommon.getMetaspace(by name)
since a process can only be connected once to a particular metaspace and
therefore can not have parts of it's code invoke Metaspace.connect twice in a
row for a particular metaspace.
 TIBCO ActiveSpaces Developer’s Guide

72 | Chapter 2 TIBCO ActiveSpaces Concepts
TIBCO ActiveSpaces Developer’s Guide

| 73
Chapter 3 Performing Basic TIBCO ActiveSpaces
Tasks

This chapter describes how to perform the most common programming tasks
used to develop TIBCO ActiveSpaces® applications.

Topics

• Connecting to the Metaspace, page 75

• Disconnecting from the Metaspace, page 80

• Getting the Connection’s Self Member Object, page 81

• Getting the List of User-defined Space Names, page 82

• Configuring Logging, page 83

• Defining a Space, page 86

• Getting a Space Definition, page 88

• Dropping a Space, page 89

• Configuring Distribution Policy, page 90

• Defining Capacity, page 91

• Setting Up Host-Aware Replication, page 92

• Configuring EntryTTL, LockTTL, and LockWait, page 94

• Defining Data Fields, page 95

• Joining and Leaving a Space, page 100

• Setting up Persistence, page 102

• Using Tuple Methods, page 107

• Getting the Name and Definition of a Space, page 110

• Reading and Writing in a Space, page 111

• Locking and Unlocking, page 114
 TIBCO ActiveSpaces Developer’s Guide

74 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
• Using Transactions, page 115

• Using Batch Operations, page 116

• Using Listeners, page 117

• Using SpaceEvent Objects, page 120

• Implementing a Space Browser: Querying the Space, page 121

• Using Event Browsers, page 123

• Using Remote Space Invocation, page 125

• Using a Space as a Cache, page 126

• Working with Remote Clients, page 127
TIBCO ActiveSpaces Developer’s Guide

Connecting to the Metaspace | 75
Connecting to the Metaspace

Typically, one of the first things an ActiveSpaces process does is connect to a
metaspace.

Before an application can do anything with ActiveSpaces, it must be connected to
a metaspace.

As mentioned in Chapter 2, TIBCO ActiveSpaces Concepts, there are two modes
of connection to a metaspace—as a full peer or as a remote client. Regardless of
the connection mode, the API calls to use to connect to a Metaspace are the same.

The Metaspace.connect() method—or, in C, the tibasMetaspace_Connect()
call—has two input parameters:

• name

• a MemberDef object

The tibasMetaspace_Connect() function returns a metaspace object that you
can use to define a space or join a space. The input parameters are explained in
more detail in the sections that follow.

Metaspace Name
The metaspace name is a string containing the name of a particular metaspace
instance. The name cannot start with a $ or _, and cannot contain the special
characters., >, or *. If null or an empty string is given as argument to the connect
call, the default metaspace name of ms will be used.

MemberDef Object
The MemberDef object contains the attributes of the connection to the metaspace:

• discovery attribute

• listen attribute

• MemberName attribute

Discovery Attribute

The discovery attribute specifies how this instance of the metaspace discovers the
current metaspace members.

The format of the discovery attribute determines the mode of connection to the
metaspace (either as a full peer or as a remote client).
 TIBCO ActiveSpaces Developer’s Guide

76 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
When your application is connecting as a full peer, the discovery attribute
specifies how this instance of the metaspace is used.

Discovery can be unicast (TCP) or multicast (PGM —Pragmatic General Multicast
or TIBCO Rendezvous—RV).

There are three different discovery protocols:

• PGM discovery

See PGM (Pragmatic General Multicast) URL format, page 76.

• TIBCO RV Discovery

See TIBCO Rendezvous Discovery URL format, page 77.

• TCP discovery

See TCP Discovery URL format, page 78.

To become members of the same metaspace, all intended members of a metaspace
must use compatible discovery URLs. If the members do not specify compatible
discovery URLs, then they are not connected to the same metaspace.

For example, if two metaspace members attempt to connect to the same
metaspace using different discovery protocols, two different metaspaces are
created and the two members are in different metaspaces. For example, if one
application connects to a metaspace named ms using tibrv as its discovery URL,
and another connects to a metaspace named ms using tibpgm as its discovery
URL, since tibrv and tibpgm are two incompatible discovery protocols, two
independent metaspaces, with the same name, are created instead of a single one.

PGM (Pragmatic General Multicast) URL format

With PGM, discovery of the current metaspace members is done by using reliable
IP multicast. The attributes of this discovery mechanism are expressed in the form
of an URL in the following format:
tibpgm://[dport]/[interface];[discovery group
address]/[option=value;]*

where

• dport specifies the destination port used by the PGM transport protocol. If
not specified, the default value of 7888 is used.

• interface;discovery group address specifies the address of the interface
to be used for sending discovery packets, and the discovery group address to
be used. If not specified, it will default to the default interface and discovery
address, 239.8.8.8.
TIBCO ActiveSpaces Developer’s Guide

Connecting to the Metaspace | 77
• optional transport arguments a semicolon-separated list of optional PGM
transport arguments. For example:

— source_max_trans_rate=100000000 (in bits per second) would limit the
PGM transport to limit its transmission rate to 100 megabits per second.

— By default, the PGM transport is tuned to provide the best performance
according to the most common deployment architectures, and the values of
those optional arguments should only be changed when necessary, and
with care as inappropriate values could easily result in degraded
performance of the product.

TIBCO Rendezvous Discovery URL format

The discovery URL for use with TIBCO Rendezvous has the following format:

tibrv://[service]/[network]/[daemon]

The syntax indicates that Rendezvous is used as the discovery transport, and that
the optional service, network, and daemon Rendezvous transport creation
arguments can be specified, separated by slashes, as shown.

• service specifies the Rendezvous service number (UDP port) that will be
used. If not specified, it will default to 7889.

• network specifies the interface and the discovery group address that will be
used to send the Rendezvous discovery packets. The format is:

interface;discovery_group_address

If not specified, ActiveSpaces uses the default interface and discovery group
address 239.8.8.9 (so the URL will be equivalent to
tibrv://7889/;239.8.8.9/). If an interface is specified (by IP address,
hostname, or by interface name) do not forget to also specify a discovery
group address otherwise Rendezvous will revert to using broadcast rather
than discovery (for example, to specify usage of the interface identified by IP
address 192.168.1.1 use the URL: tibrv:///192.168.1.1;239.8.8.9/).

• daemon specifies where to find the Rendezvous daemon. If not specified, it
will try to connect to a local daemon on port 7500.

Creating raw PGM packets (as opposed to UDP encapsulated PGM packets)
requires the process to have root privileges on Unix-based systems.

PGM discovery does not work on wireless networks.
 TIBCO ActiveSpaces Developer’s Guide

78 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
• For more information on these parameters, see Chapter 8 of TIBCO Rendezvous
Concepts.

TCP Discovery URL format

When multicast discovery is not desirable or possible, you can use pure TCP
discovery. In this case, a number of metaspace members are designated as the
“well known” members of the metaspace, and all metaspace members must
specify this exact same list of well known members in their discovery URL. At
least one of the members listed in the discovery URL must be up and running for
the metaspace to exist.

Each well known member is identified by an IP address and a port number. This
address and the port are those specified by the well known member's Listen URL
(if the member did not specify a Listen URL then the discovery process will use
it's default IP address and the first free TCP port it can acquire from the OS
(starting at port 50000 and above). See the following section for more information
on the Listen URL).

The discovery URL to use well known address TCP discovery has the following
format:
tcp://ip1[:port1];ip2[:port2],...

Where any number of ip[:port] well-known addresses can be listed. If no port is
specified, the default port number value of 50000 is assumed.
.

.

Discovery URL format for remote clients

Remote clients connect to the seeder that is running as-agent by calling the Java
setremoteDiscovery method.

The discovery URL format is the same as the discovery URL for the listen
attribute:

tcp://interface:port

ALL of the metaspace members (including the well-known members themselves)
must use the same Discovery URL string when TCP discovery is used.

At least one of the well-known members listed in the discovery URL must be up
and running for the metaspace to exist; if none of the well known members listed
in the discovery URL is up, other members regularly try to connect and print an
advisory message stating that they are waiting for one of the discovery nodes to
come up.
TIBCO ActiveSpaces Developer’s Guide

Connecting to the Metaspace | 79
Connecting as a remote client:

The discovery URL format for connecting to a metaspace as a remote client is

tcp://IP:port?remote=true

Where IP is the IP address and port is the TCP port number of a member of the
metaspace that is connected as a full peer AND offering remote client connectivity
(though the “remote listen” attribute of its metaspace connection).

For information on how remote clients connect to the seeder that is running
as-agent, see Steps for Connecting a Remote Client, page 127.

Listen Attribute

Regardless of the mechanism used for the initial metaspace member discovery
phase, the members of the metaspace always establish TCP connections to each
other. The listen attribute lets the user specify the interface and the TCP port
that the process will use to listen for incoming connections from new members to
the metaspace, and specified in the form of a URL.

Listen URL format

To use a listen URL, use a string of the form:

tcp://[interface[:port]]

This syntax specifies that the member should bind to the specified interface and
the specified port when creating the TCP socket that will be used for direct
communication between the members of the metaspace. If not specified, it will
default to 0.0.0.0 (INADDR_ANY) for the interface and to the first available port
starting from port 5000 and above.

A successful connection to the metaspace will return a valid instance of a
Metaspace object, which can then be used to define, join or leave spaces.

See the entry for Metaspace in the TIBCO ActiveSpaces Java API Reference for more
information about transport arguments.

MemberName Attribute

The MemberName attribute specifies a string that indicates the member name. Each
member must have a unique name in the metaspace.

If no member name is provided at connection name, then a globally unique name
is generated automatically. If a member name is provided but there is already
another member of the metaspace connected with that name, then the connection
fails.
 TIBCO ActiveSpaces Developer’s Guide

80 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Disconnecting from the Metaspace

When your application terminates or no longer needs to use the spaces in a
particular metaspace, it should disconnect from it using the metaspace’s close
method. The close method causes the application to properly leave all of the
spaces to which it may still be joined in that metaspace, destroys any listeners or
space browsers that may still exist on those spaces, and ultimately severs all
network connections with the other members of the metaspace.

Each getSpace() function call increments the use count on an object. This use
count ensures that a metaspace leave does not happen when there is a valid user
space/browser/listener active. The user needs to leave/stop all these
space/browsers/listeners to ensure that when Metaspace.close is used,
metaspace disconnect happens as expected. This is the case both for Java and for
C APIs.

You can forcibly close a metaspace connection even if there are still valid Space
objects by using the closeAll method instead of the close method.

Metaspace Membership
The Member object is returned by the Metaspace object’s getSelfMember method.
The Member object has only two methods: getName and getRole. The getName
method returns a string representing a globally unique name for that particular
member. One of the members of the metaspace takes on the role of the
membership manager for that member in the metaspace. The getRole method
returns the role of that member in the metaspace (MEMBER or MANAGER) for
metaspace group membership management purposes.
TIBCO ActiveSpaces Developer’s Guide

Getting the Connection’s Self Member Object | 81
Getting the Connection’s Self Member Object

When connecting to a metaspace, each application is automatically assigned (or
provides) a unique member name within that metaspace. Your application can
determine this name by invoking the metaspace’s getSelfMember method, which
returns a Member object.
 TIBCO ActiveSpaces Developer’s Guide

82 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Getting the List of User-defined Space Names

You can retrieve the list of names of the user spaces that are currently defined in
the metaspace by using the metaspace’s getUserSpaceNames method, which in
Java returns a String[] and in C returns a StringList object (tibasStringList
*).
TIBCO ActiveSpaces Developer’s Guide

Configuring Logging | 83
Configuring Logging

Using a set of methods in the Java API set, you can control file logging, and also
set up rolling log files.

Rolling Log Files With rolling log files enabled, you specify the size of each log file
and the number of log files to be maintained. When the current log files reach
their maximum configured size, logging is rolled over to a new log file. The
number of log files is also configurable.

In the C API, logging configuration is specified by two functions, one that
specifies log file level, and another function that controls rolling log file
configuration.

Java API
The FileLogOptions class in the Java API provides the following methods:

• setFile Specifies the log file to be used.
public abstract FileLogOptions setFile(java.io.File logFile)

The logFile parameter specifies the name of the log file.

• setLimit Specifies the file size limit for the log file (in bytes).
public abstract FileLogOptions setLimit(int limit)

The limit parameter sets the file size limit. The default value (-1) specifies
unlimited) file size.

The count parameter specifies the total number of log files.

• setAppend Specifies whether log fils can be appended to.
public abstract FileLogOptions setAppend(boolean append)

The append parameter specifies whether to append to existing files.
 TIBCO ActiveSpaces Developer’s Guide

84 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
• setLogLevel Specifies the log level to be used.
public abstract FileLogOptions setLogLevel(LogLevel level)

The level parameter specifies the log level to be used. You can specify the
following values:

— ERROR Error level logging output of errors

— FATAL Error level logging of fatal errors

— FINE Outputs debug information

— FINER Outputs debug information

— FINEST Outputs detailed debug information,

— INFO Outputs debug information. The default log level is INFO.

— NONE Specifies no logging

— WARN Warning level logging outputs warnings

Querying Log Settings

The Java API includes a set of methods that query the log file settings:

• getFile Returns the log file name.

• getLimit Returns the configured log file size.

• getFileCount Returns the configured number of log files.

• isAppend Indicates whether appending to log files is configured

• getLogLevel Returns the configured level of file logging.

C API
The C API provides two functions that control logging:

• tibas_EnableFileLogging() Specifies the log directory, the log file name, and
the log level to be displayed.

tibas_status tibas_EnableFileLogging(

 const char* logDir,

 const char* fileName,

 tibas_logLevel logLevel);

• tibas_EnableFileLoggingEx() Sets the values in the tibasfileLogOptions
structure, which controls the values for rolling log file.
TIBCO ActiveSpaces Developer’s Guide

Configuring Logging | 85
The tibasFileLogOptions structure is defined as follows:

struct _tibasFileLogOptions {
 const char* filePath;
 tibas_logLevel level;
 tibas_int limit;
 tibas_int fileCount;

tibas_boolean append;

};
 TIBCO ActiveSpaces Developer’s Guide

86 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Defining a Space

You must first define space in the metaspace before it can be joined by
applications and agents.

There are two ways to define a user space within a metaspace: through the Admin
CLI tool, or by using API calls.

If the space definition does not exist (that is, it was not defined earlier using the
Admin CLI tool, or by another application using defineSpace), the space
definition is created and stored in the metaspace (more specifically, it is stored in
the system spaces).

Space Definition Through the Admin CLI

To use the Admin CLI tool to define a space, you must first connect to the desired
metaspace using the connect command, and then use the define space or
create space command.

The following example shows the use of the define space CLI command:

define space name 'myspace' (field name 'key' type 'integer', field
name 'value' type 'string') key ('key')

Space Definition Through the API

By calling the SpaceDef functions or methods provided in the ActiveSpaces API
you can specify the basic attributes and policies for a space.

Using the SpaceDef object In the Java API, defining a space is done using the
defineSpace method of the Metaspace object, which takes a SpaceDefinition
object as its sole parameter. In the C API, you define a space by calling the
tibasSpaceDef_Create() function.

If the space was already defined in the metaspace, then defineSpace compares
the space definition that was passed to it as an argument with the space definition
currently stored in the metaspace; if the definitions match then defineSpace
returns successfully, otherwise an error is thrown.

Using the admin object execute method A space can also be defined through the
API by using the admin object’s execute method to execute a define Space
admin language command.

Example creating a space using the admin language:
TIBCO ActiveSpaces Developer’s Guide

Defining a Space | 87
define space name 'myspace' (field name 'key' type 'integer', field
name 'value' type 'string') key ('key')

Space names are case-sensitive.
 TIBCO ActiveSpaces Developer’s Guide

88 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Getting a Space Definition

You can get the space definition for a space that has been previously defined in
the metaspace by using the Metaspace object’s getSpaceDef method, which
takes a space name as a parameters and returns either a copy of that space’s
SpaceDef object or throws an exception if no space of that name is currently
defined in the metaspace.
TIBCO ActiveSpaces Developer’s Guide

Dropping a Space | 89
Dropping a Space

You can delete a space’s space definition from a metaspace by invoking the
dropSpace method of the Metaspace object. This call will only succeed if there
are no members to that space at the time this method is invoked. It is also possible
to drop a space using the Admin tool.
 TIBCO ActiveSpaces Developer’s Guide

90 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Configuring Distribution Policy

You can set or get a space’s distribution policy by using the SpaceDef object’s
setDistributionPolicy and getDistributionPolicy respectively. The value
of the distribution policy argument can be either DISTRIBUTED (which is the
default value) or NON_DISTRIBUTED.

Applications that require strict global view synchrony should use non-distributed
spaces.
TIBCO ActiveSpaces Developer’s Guide

Defining Capacity | 91
Defining Capacity

You can define a capacity for the space to control the amount of memory used by
the seeders for storing tuples in the space. The capacity is expressed in number of
tuples per seeder and defaults to -1, which means an infinite number of tuples
per seeder.

If a capacity is specified, then you must specify an eviction policy that is used to
indicate the outcome of an operation that would result in an additional tuple
being seeded by a seeder that is already at capacity. The two choices for the
eviction policy are NONE, which means that the operation will fail with the
appropriate exception being stored in the Result object, or LRU, which means that
the seeder will evict another tuple using the Least Recently Used (LRU) eviction
algorithm, where the least recently read or modified tuple will be evicted from the
space.

Specifying a capacity and an eviction policy of LRU for a space means that the
space can effectively be used as a cache, and when used in conjunction with
persistence, allows access to a persistent data-store in a “cache-through” mode of
operation.

If you specify a capacity setting, then ActiveSpaces enforces the capacity
limitation at one second intervals, and carries out any eviction policies that are
configured.
 TIBCO ActiveSpaces Developer’s Guide

92 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Setting Up Host-Aware Replication

With host-aware replication, you group seeders based upon their member names.
To organize seeders into groups, use member names of the form:

<group_name>.<member_name>

ActiveSpaces groups all seeders with the same group_name together and their data
will is replicated on seeders outside of that group.

You can set up host aware replication in several ways:

1. By using the TIBCO ActiveSpaces API functions in your application to set up
a MemberDef that specifies a member name using the host-aware replication
naming convention.

See Using the ActiveSpaces API Set to Implement Host-Aware Replication,
page 92

2. By using the as-admin utility.

3. By starting as-agents that run as seeders and using the as-agent -name
parameter to set up member names that use the host-aware replication
naming convention.

For more information on setting up host-aware replication using as-agent, see
Host-Aware Replication on page 6 in the TIBCO ActiveSpaces Administration
Guide.

Using the ActiveSpaces API Set to Implement Host-Aware Replication

The following examples show how to set the member name in the MemberDef
object for each of the API sets:

Java API

MemberDef memberDef = MemberDef.Create();

memberDef.setMemberName = “mymachinename.seeder_n”;

C API

tibasMemberDef memberDef;

tibasMemberDef_Create(&memberDef);

You can group any seeder in this way. You can set implement host-aware
replication for ActiveSpaces applications run as seeders as well as as-agents that
you start as seeders.
TIBCO ActiveSpaces Developer’s Guide

Setting Up Host-Aware Replication | 93
tibasMemberDef_SetMemberName(memberDef, “mymachinename.seeder_n”);

.NET API

MemberDef memberDef = MemberDef.Create();

memberDef.MemberName = “mymachinename.seeder_n”;

The type of replication for a space can be set or queried using the SpaceDef
object’s setSyncReplicated and isSyncReplicated methods, respectively.
Those methods take and return a boolean and the default value is false, that is,
asynchronous replication.

If using the ActiveSpaces examples, the member name is specified on the
command line using the -member_name command line parameter.
 TIBCO ActiveSpaces Developer’s Guide

94 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Configuring EntryTTL, LockTTL, and LockWait

The entry TTL can be set or returned using the SpaceDef objects’s setTTL and
getTTL methods, respectively. The default value (DEFAULT_ENTRY_TTL) is
TTL_FOREVER, which means that tuples in the space never expire. When a tuple
expires from the space, an event of type EXPIRE_EVENT is automatically generated
and can be caught by applications by using a listener or event browser on the
space.

You can set or return the LockTTL value by using the SpaceDef objects’s
setLockTTL and getLockTTL methods, respectively. The value is expressed in
milliseconds and defaults to TTL_FOREVER.

The LockWait value can be set or gotten using the SpaceDef object’s
setLockWait and getLockWait methods, respectively. It is expressed in
milliseconds. The default value is NO_WAIT, indicating that this feature is not used,
and that an operation attempting to modify a locked tuple will immediately
return with a failure indicating that the tuple is currently locked.
TIBCO ActiveSpaces Developer’s Guide

Defining Data Fields | 95
Defining Data Fields

This section describes how to define data fields and indexes.

Field Definitions
Field definitions describe the format of the data that will be stored in the space. A
valid space definition must contain at least one field definition. Field definitions
are created by the FieldDef’s create() method, and can be put (or taken) from
space definitions. Field definitions can also be reused and put into as many space
definitions as needed (for example when using some fields as foreign keys to
correlate tuples stored in different spaces).

A field definition is created by using the FieldDef's create() method. A field
definition has two mandatory attributes which are provided to the create()
method: a name and a type.

The field name is a string and must start with a letter (upper or lower case)
character and then contain any combination of letters (upper or lower case) and
numbers, or special characters or symbols such as "-" or "_" or "$".

The field type must be one of those described in the following table.

Note that field names are case-sensitive.

Type Description

BLOB A BLOB (binary large object) type is an array of 8 bit
values.

BOOLEAN The BOOLEAN type has one of two values, true or
false, represented by the integers 1 or 0, respectively.

CHAR Char type represents a char.

DATETIME Datetime type represents a date. Two date formats
are supported:

• Julian Calendar Any date 64-bit time value

• Proleptic Gregorian Calendar 1 A.D. to 64-bit
time value.

DOUBLE Double type represents double.
 TIBCO ActiveSpaces Developer’s Guide

96 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
A field definition’s name and type can be retrieved using the FieldDef object’s
getName and getType methods.

Beyond the field’s name and type, a field definition also has the following
optional boolean attribute:

• Optional (nullable) field You can use the FieldDef object’s setNullable
method to specify if the field can be null or not (defaults to false), which
marks that field as optional, and use the isNullable to test if the field is
optional or not. The equivalent functions in the C API are
tibasFiledDefSetNullable() and tibasFieldDefIsNullable().

Defining Key Fields
For the space definition to be valid, at least one of the defined fields must to be
used as a key field. In the Java API, you can specify a set of fields to be used as key
fields can be specified by using the SpaceDef's setKey method and passing it a
number of strings containing the space names. (this is repeated in the concepts
chapter)

In the C API, you can call the tibasKeyDefCreate() function to specify a single
string containing a comma-separated list of field names to use as a key.

It is also possible to get a list of the name of the fields marked as key fields in a
SpaceDef. In Java, by using the SpaceDef's getKey method. And in C, by using the
tibasKeyDefGetFieldNames() function.

FLOAT Float type represents float.

INTEGER Integer type represents a int.

LONG Long type represents a long.

SHORT Short type represents a short.

STRING String type represents string.

Type Description

If all key fields are marked as nullable it then becomes possible to store a single
tuple with no key field values in the Space.
TIBCO ActiveSpaces Developer’s Guide

Defining Data Fields | 97
Defining Key Fields for Distribution (Affinity)
When you define key fields for a tuple, ActiveSpaces allows you to define the key
fields in a way that controls their distribution over seeders. This feature of
ActiveSpaces is called “affinity.”

By specifying that certain key fields are distribution fields, your application can
ensure that tuples that have the same value for a particular field or fields, are
stored on the same seeder.

The ActiveSpaces API provides functions and methods for each API set to enable
distribution based on affinity:

• Java setDistributionFields()

• C tibasSpaceDef_SetDistributionFields()

• .NET SetDistributionFields

Each function or method takes as its arguments the space definition for the space
that is to be defined and a list of fields within quotation marks, separated by
commas.

For more information on the C API function, see the reference article for the
tibasspaceDef_SetDistributionFields() function in chapter 5 of the TIBCO
ActiveSpaces C Reference, “SpaceDef.”

For more information on the Java method, see the JavaDoc entry for
setDistributionFields().

Each API set also provides a function to retrieve the distribution key setting for a
specified space. For example, the Java API provides the
getDistributionFields() method.

Admin CLI Support for Distribution Fields

When you define a space using the define | create space command in the
ActiveSpaces Admin CLI, you can specify the distribution_def parameter to
set specified keys for distribution fields. And when you issue the show spaces
command, the command output indicates any fields that are set up as distribution
fields.

For more information, see the reference article for define | create space in
chapter 2 of the TIBCO ActiveSpaces Administration Guide, “Administering
ActiveSpaces with the Admin CLI.”
 TIBCO ActiveSpaces Developer’s Guide

98 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
SpaceWait

No operations on a space are possible unless the space is in the READY state. To
help synchronize applications with the space state, each space has a SpaceWait
attribute. This attribute is the number of milliseconds a space operation will block
for and wait for the space to reach the READY state if it is not in that state at the
time the operation is invoked.

Adding Fields to a Previously Defined Space
ActiveSpaces allows you to alter the fields in a space that is already defined by
using the as-admin utility or by calling Metaspace.alterspace(). The C API
and the .NET API provide equivalent operations. There is no disruption in service
when you alter the space.

Any new fields that you add must be nullable.

If the space has not yet been defined or the space definition is incompatible with
the one that is defined (for example, has new fields that are not nullable),
ActiveSpaces generates an exception describing what was incorrect.

Adding and Dropping Indexes
ActiveSpaces allows you to add indexes to a space that is already defined or drop
indexes from the space. You can add or drop indexes by using the as-admin
utility or by calling Metaspace.alterspace(). The C API and the .NET API
provide equivalent operations. There is no disruption in service. ActiveSpaces
builds the new indexes in the background, and when they are ready, sues them
automatically to optimize queries.

Adding and dropping an index using the Java API

The following example shows how to add and drop an index using the Java API.

SpaceDef spaceDef = metaspace.getSpaceDef(“test”);
 spacedef.removeIndexDef(“index1”);
 spaceDef.addIndexDef(…)
 spaceDef.addIndexDef(…)
 spaceDef.putFieldDef(FieldDef….)

metaspace.alterSpace(spaceDef);

You cannot modify an existing index’s fields or index type. If you want to modify
the fields or index type, you must first drop the index, then alter the space, add
the index and alter it again. Also, when you add a new index, you cannot use
fields from an existing index.
TIBCO ActiveSpaces Developer’s Guide

Defining Data Fields | 99
 TIBCO ActiveSpaces Developer’s Guide

100 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Joining and Leaving a Space

Joining a Space
After a space has been defined in the metaspace, applications can join the space—
and as-agents started in the network automatically join the space if the space is
distributed.

With the Java API, you join a space by invoking the getSpace method in the
Metaspace class.

The getSpace method has the following signature:

public abstract Space getSpace(java.lang.String spaceName,
 Member.DistributionRole distributionRole)
 throws ASException

The getSpace method has the following parameters:

• spaceName Must be the name of a space defined in the metaspace

• DistributionRole Specifies the role for the application. Can be SEEDER or
LEECH.

In Java, there is a second signature for the getSpace method which does not take
a role argument, and can be used to join a space with a distribution role of leech.

In the C API, the equivalent function is tibasMetaspace_GetSpace().

Spaces are also automatically joined (with a role of leech) as needed when
creating a listener or a browser on the space from the metaspace.

A successful invocation of the metaspace’s getSpace method returns a reference
to a Space object that can then be used to interact with the space.

Note also that the space object is reference-counted, meaning that successive calls
to getSpace do not result in the space being joined more than once. However. the
process' role for the space can be adjusted by multiple calls to getSpace: a first
call may cause the process to join the Space as a Leech, and a following call may
change the role to Seeder (and the role will revert back to Leech when leave is
called on the space object reference returned by the second getSpace call). An
application's role for a space can also be adjusted using the Space's
setDistributionRole method.

No space operation—other than getting the space’s name and its definition, or
creating a listener or browser on the space—will succeed until the space is in the
READY state.
TIBCO ActiveSpaces Developer’s Guide

Joining and Leaving a Space | 101
Leaving a Space
Your application can leave a space by invoking the space object's close() method
(Java API), by calling the tibasSpace_Free() function (C API), or by stopping the
listeners or browsers that may have joined the space automatically when created.

Because the space object is reference-counted, when created from a metaspace
object, the space will actually be left by the process only when the space object's
close() method is invoked an equal number of times to the metaspace's
getSpace method for that particular space. Just as the application’s distribution
role in the space can be adjusted by subsequent calls to getSpace with different
roles, the application’s distribution role in the space is adjusted when close() is
invoked on the instances of the Space object returned by each call to getSpace.

If browsers or listeners were created and not terminated when close() was
invoked, the process does not leave the space until the browsers or listeners are
terminated. You can forcefully leave the space and terminate any existing
browsers and listeners on the space by invoking the closeAll() method.
 TIBCO ActiveSpaces Developer’s Guide

102 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Setting up Persistence

When you set up persistence for a space, you specify:

• Persistence Type: You can set persistence to NONE (no persistence, shared all
persistence, or shared-nothing persistence).

• Persistence Policy: You can set up asynchronous persistence or synchronous
persistence.

Persistence Type
ActiveSpaces provides two types of persistence:

• Shared-Nothing Persistence Each node that joins a space as a seeder maintains
a copy of the space data on disk. Each node that joins as a seeder writes its
data to disk and reads the data when needed for recovery and for cache
misses

• Shared-All Persistence All nodes share a single persister or a set of persisters.

Persistence Policy
For both shared-nothing persistence and shared-all persistence, you can specify
that ActiveSpaces uses either synchronous or asynchronous communication to
maintain persistence.

API Operations for Setting up Persistence
You can set up persistence for the space using the following API operations:

• C API By using the tibasSpaceDef_SetPersistenceType() function and the
tibasSpaceDef_SetPersistencePolicy() function.

• Java API By using the PersistenceType and PersistencePolicy methods of
the SpaceDef class.

• .NET API By using the PersistenceType and PersistencePolicy methods of
the SpaceDef class

For descriptions of the ActiveSpaces example programs used to set up
persistence, see ASPersistence, page 185 and Shared-Nothing Persistence,
page 189.
TIBCO ActiveSpaces Developer’s Guide

Setting up Persistence | 103
Using the tibasSpaceDef_SetPersistenceType() Function

The ActiveSpaces C API provides the tibasSpaceDef_SetPersistenceType()
Function. When you call this function, you can specify:

• TIBAS_PERSISTENCE_NONE Do not persist objects in the space.

• TIBAS_PERSISTENCE_SHARED_ALL Use shared-all persistence

• TIBAS_PERSISTENCE_SHARED_NOTHING Use shared-nothing persistence.

Using the tibasSpaceDef_SetPersistencePolicy() Function

The C API provides the tibasSpaceDef_SetPersistenceType() function
specifies the persistence policy to use on the space. You can specify
PERSISTENCE_SYNC or PERSISTENCE_ASYNC.

Using the PersistenceType and PersistencePolicy Methods

In the Java API and the .NET API, the SpaceDef class provides the following
methods:

• PersistenceType Method Lets you set persistence to NONE, SHARE_ALL, or
SHARE_NOTHING.

• PersistencePolicy Method Lets you set the persistence policy to ASYNC or
SYNC.

Setting up Shared-Nothing Persistence

To set up and configure shared-nothing persistence:

1. Use a unique name for each member that is joining the space. This is used to
uniquely identify the persistence files.

2. Define a data store for each node that is joining as a seeder.

The data store must be an existing directory name (with full path) that
ActiveSpaces has permissions to read and write to.
 TIBCO ActiveSpaces Developer’s Guide

104 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
You can do this by:

— Using the MemberDef object and calling the
tibasMemberDef_SetDataStore() function.

— Setting the AS_DATA_STORE environment variable to the directory required
before starting the client program or as-agent.

— With the as-agent, using the -data_store <directory name with path>
CLI command.

The data store directory can be different or same for each node (seeder). If
it is the same, ActiveSpaces creates the required subdirectory structure
based on the metaspace name, space name, and member name. Each file
has the member name and a timestamp embedded in its name.

Do not rename the files that are created by the persistence operation.

For code examples showing how to set up shared-nothing persistence, refer to
ASPersistence2.c in the /examples directory.

Setting up Shared All Persistence

Because ActiveSpaces is a true peer-to-peer distributed system, it provides API
operations that let you enable shared all persistence. With shared all persistence,
some of the space members — the persisters — are responsible for interacting with
a persistence layer, just as some of the space members — the seeders — provide the
basic space service.

Applications can register their ability to provide the persistence service on a space
by invoking the setPersister method of the Space object. In Java, this method
takes an instance of a class that implements the Persister interface. In C it takes a
tibasPersister object, which itself can be created using the
tibasPersister_Create function where pointers to the functions required by
the persister interface are provided by the user. It is therefore necessary for the
application to first have joined the space (as a seeder or as a leech) before it can
register itself as a persister.

Applications can also indicate their desire to stop providing the persistence
service by invoking the space's stopPersister method in Java and
tibasPersister_Free in C.

Interaction with the persistence layer is implemented by classes (or sets of
functions in C) that implement the Persister interface. It is up to the user to
provide implementations of this interface to perform persistence to their
persistent storage of choice (for example a database, or a key-value store, or a file
system).
TIBCO ActiveSpaces Developer’s Guide

Setting up Persistence | 105
Applications able to provide the persistence service register an instance of a class
implementing the Persister interface for a space using the space object's
setPersister method, and indicate their willingness to stop providing the
persistence service for a space using the space object's stopPersister method.

The Persister interface consists of five methods:

• onOpen Invoked when the persister object is registered with the space

• onClose Invoked when the persister object is stopped for the space

• onWrite Invoked when a tuple stored in the space is modified (due to a put,
take, or update operation) and is intended to perform the steps necessary to
reflect the change in the space onto the persistence layer.

• onRead Invoked if the space has a capacity set and a capacity policy of EVICT,
and if a request to read, lock, or take a tuple by key value did not result in a
matching tuple being found in the space.

• onLoad The onLoad callback is made to the first persister instance.

It is invoked as soon as the space has reached the minimum number of
seeders. If the space has a capacity set and a capacity policy of EVICT it is not
required to do anything but can still be used to pre-load the caching space
with some of the tuples stored in the persistence layer.

Setting up Recovery with Persistence
You can set up recovery with persistence by:

• Using the API Operations

• Using the Admin CLI

Setting up Recovery Using the API Operations

The C API provides the following recover API settings, which are specified using
the metaspace object, space name, and recovery options and passing a struct:

struct _tibasRecoveryOptions {

 tibas_boolean recoverWithData;

};

The default value for recoverWithData (TIBAS_TRUE) specifies recovery
with data; if you specify TIBAS_FALSE, recovery without data is set.

You can also use tibasMetaspace_RecoverSpaceEx(metaspace, spaceName,
recoveryOptions).

The Java and .NET APIs provide similar APIs.
 TIBCO ActiveSpaces Developer’s Guide

106 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Setting up Recovery Using the CLI

To set up recovery using the Admin CLI:

Connect to the metaspace and enter recovery commands as shown in the
following example:

as-admin> recover space "myspace" with data

Space myspace recovery started

as-admin> show space "myspace"
TIBCO ActiveSpaces Developer’s Guide

Using Tuple Methods | 107
Using Tuple Methods

The simplest way to look at a tuple is as a map of fields, that is, an object in which
you can put, get, and remove fields. A tuple can also be seen as a self-contained,
self-describing set of fields. Tuples are self-describing in that you can get a list of
the names of all the fields contained in a tuple (although not in any specific
order). A tuple does not have any reference to any metaspace or space in
particular. A copy of the tuple is made inside an tuple during a space put
operation.

It is not necessary to be connected to any metaspace or joined to a space in order
to create and use a tuple. You can, for example, extract a tuple out of the tuple that
was returned by a get from one space, modify it by changing field values (or
adding or removing fields), and then to put that tuple into another space (as long
as the fields in the tuple are compatible with that space’s field definitions). And
you can put a tuple into a space and then re-use the same tuple object by
updating one of the field values and using it to do another put in the same space.

A tuple contains fields that are identified by names, each of which is unique
within the tuple. A field name must start with a letter (upper or lowercase) or the
underscore character (_), followed by any combination of letters (upper or lower
case) and numbers. Field names are case-sensitive.

Fields also have a value and a type (see Field Definitions on page 95 for the list of
field types supported by ActiveSpaces). The tuple object has a put method for
each one of the supported field types.

Examples

tuple.putString(“Name”,”John Doe”)
tuple.putInt(“Age”,40)

The Java API also has an overloaded generic put method that uses the type of the
value being passed to establish the type of the field, for example:

tuple.put(“Name”,”John Doe”)
tuple.put(“Age”,40)

The tuple object also has a set of get methods used to get fields of the appropriate
type. For example, tuple.getString(“Name”) will return a string.

Tuple fields

In Java, getting a field of a scalar type will return an object rather than the
primitive type for the field. For example, tuple.getInt(“Age”) will return an
object of type Integer (rather than an int).
 TIBCO ActiveSpaces Developer’s Guide

108 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
This is because if there is no field by the name requested in the get method in the
tuple, a null is returned, rather than an exception being thrown. It is therefore
important, especially when using autoboxing, to always check if the get method
returned a null when dealing with tuples that may or may not contain the
requested field, for example, when a space is defined with some Nullable
(optional) fields. Trying to get a field that exists in the tuple but is of a different
type than expected will, however, throw a runtime exception. Because objects are
returned for all field types, the Java API also has a generic get method that
returns an object of corresponding type for the requested field, or null if there is
no such field in the tuple.

When using the C API, which unlike the Java methods, returns a status code—a
tibasTuple_Get… function call will return NULL if there is no field by the
requested name, and will return TIBAS_INVALID_TYPE if a field of that name
exists in the tuple but is of a different type than what is being requested.

Automatic lossless type upcasting is however supported when getting fields from
a tuple. This means that, for example, if the tuple contains a field named 'A' of
type short, doing a getLong("A") will succeed and return a long that is set to
the value of the field. The supported automatic type conversions are shown in
Table 7.

You can test for the presence of a named field inside a particular tuple by using
either the exists method or the isNull method, which both return a boolean
indicating the presence or absence of the field in the tuple.

You can also find out the type of a particular field in the tuple using the
getFieldType method, which can return a field type value of NULL (TIBAS_NULL
in C).

Table 7 Automatic Type Conversions

Upcasting Supported to... Type of Field in Tuple

Short Short, Int, Long, Float, Double

Int Short, Int, Long, Float, Double

Long Short, Int, Long, Float, Double

Float Short, Int, Long, Float, Double

Double Short, Int, Long, Float, Double

Blob Blob, String
TIBCO ActiveSpaces Developer’s Guide

Using Tuple Methods | 109
The choice of which method to use is a matter of preference. Programmers more
familiar with messaging systems may prefer to test for the existence of a field,
while programmers more familiar with database systems may prefer to test
whether a field is NULL. In ActiveSpaces, a NULL field is actually a non-existing
field.

A tuple can also be seen as a self-describing data structure in that it offers
methods that can be used to inspect the fields contained in the tuple:

• The size method returns the number of fields in the tuple

• The getFieldNames method returns a String[] in Java, while in C it returns
a pointer to a tibasStringList object.

You can serialize or deserialize a tuple into a platform-independent stream of
bytes using the serialize and deserialize methods.

And finally a convenience toString method can also be used to generate an XML
representation of the tuple into a string.
 TIBCO ActiveSpaces Developer’s Guide

110 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Getting the Name and Definition of a Space

You can get the name and the space definition of the space represented by the
Space object by invoking the getName and getSpaceDef methods respectively.
TIBCO ActiveSpaces Developer’s Guide

Reading and Writing in a Space | 111
Reading and Writing in a Space

This section describes how to read data from a space and write data to a space.

Getting or Taking a Single Tuple from the Space

Retrieving or taking a single tuple from a space is done using the space’s get or
take methods. These methods take a tuple as an argument, which must contain
fields of the same name and type as the fields marked as key in the space’s space
definition. If there is a tuple in the space containing a tuple whose key field values
match exactly the values in the tuple passed as argument stored in the space,
these methods return a copy of that tuple inside a Result object. (In the case of the
take method, it also atomically removes that tuple from the space.)
 TIBCO ActiveSpaces Developer’s Guide

112 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Performing a Put Operation—Storing a Tuple in a Space
To store a tuple in a space, call the space’s put method, which takes the tuple to
put as an argument and returns what ever was overwritten in the space (if
anything was) by the put.

The put operation is an “upsert” operation: like both the INSERT and UPDATE
SQL statement (like a MERGE statement); it always overwrites what was stored
previously in the space. When you perform a Put:

• If the tuple contains fields that do not match the names of the fields in the
space's definition, then these fields are stripped from the tuple stored in the
space

• If there is already a tuple containing a field with the same key field values
stored the space at the time the put is invoked, then the old tuple is replaced
by the new one. If this behavior is not desired, and you want to avoid
overwriting an existing tuple by mistake, then you should use a special form
of the space's update method.

• When the time the put is invoked, if there is already a matching tuple in the
space and that tuple is locked, the method might block for the amount of time
specified in the space definition’s LockWait attribute. After LockWait time is
reached, if the stored tuple is still locked, the Put fails, and the failure scenario
will be indicated by the Result object's Status field (or the return value of the
method in C) having a value of LOCKED.

Specifying a LockWait Value for a Put

If you expect that the locks on tuples in the spaces will have a very short duration,
ActiveSpaces allows you to specify a LockWait value for the space. The LockWait
value is the number of milliseconds an operation attempting to modify a locked
tuple can block while waiting for the lock to clear.

If at the end of the LockWait period, the tuple is still locked, then the operation to
modify that locked tuple throws an exception indicating that the operation could
not be performed because the tuple is locked. The LockWait value of a space is
also taken into consideration if a member attempts a non-transacted operation
that conflicts with uncommitted data (for example, tuples about to be replaced by
uncommitted operations are locked by that transaction).

You can set or get the LockWait value by using the SpaceDef object’s
setLockWait and getLockWait methods, respectively. Lock wait value is
expressed in milliseconds. The default value is NO_WAIT, indicating that this
feature is not used, and that an operation attempting to modify a locked tuple will
immediately return with a failure indicating that the tuple is currently locked.
TIBCO ActiveSpaces Developer’s Guide

Reading and Writing in a Space | 113
Updating a Tuple in a Space
Put operations always overwrite (and return) whatever was stored before them in
the space. But when more than one application updates the same data
concurrently, it can be necessary to use “compare and set” type operations.

ActiveSpaces has two compare and set operations:

• compareAndPut This is a conditional put operation to atomically change the
values associated with a key from one value to another (or fail). It takes an old
tuple, and a new tuple as inputs, and returns the current tuple (meaning the
new tuple if the compare was a success and the current value stored in the
space otherwise). Note that you can pass NULL as an old tuple if you want to
make sure your put is an insert rather than an overwrite.

• compareAndTake This is a conditional take operation that succeeds only if the
tuple that was stored in the space matches the old tuple value it takes as input.

For an example of code that works with tuples, see the documentation on the
ASOperations example (ASOperations, page 173).
 TIBCO ActiveSpaces Developer’s Guide

114 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Locking and Unlocking

You can make a key in a space read-only by locking it. When a key is locked, only
the lock owner has the ability to modify the data that is stored with that key.
Locking is enforced regardless of the presence or not of a record for the key being
locked.

The owner of the lock is either the thread that created it, or the process. You can
define this lock ownership scope when acquiring the lock. Locks are
automatically cleared if the member that created them leaves the metaspace.

Locking protects the data stored in the space, you can even lock an empty key to
prevent anyone else from inserting a record there. Any operation to modify the
key (put, take, and so on) will be denied if it is issued outside of the lock's scope. It
is also possible to make those operations (not just other attempts to lock) block for
a period of time using the space's LockWait attribute.

The lock function automatically returns the tuple that was stored at the key (or
null is there was none) upon lock acquisition. If the lock could not be acquired
then an exception is thrown (or LOCKED is returned in the status in C).

You can optimize performance by combining locking and unlocking with many
space operations using options.
TIBCO ActiveSpaces Developer’s Guide

Using Transactions | 115
Using Transactions

ActiveSpaces supports transactions to keep data consistent, even in cases of
system failure. This section describes how transactions work in ActiveSpaces.

Creating and Committing or Rolling Back Transactions
Since in ActiveSpaces transactions can span operations on more than one space,
users need to specify the start and the end of a transaction using the metaspace’s
beginTransaction, commit, or rollback methods. A transaction is associated
with the thread that created it: at the end of the transaction all of the space
operations invoked by that thread will be either committed (if none of those space
operations failed) or rolled back (if one of those operations failed), according to
the method invoked. In other words, the prepare phase of the transaction is the
invocation of operations on a space by a thread that has invoked
beginTransaction first.

Obviously, only space operations that modify the data stored in a space are
affected by the outcome of the transaction, but a get operation within a
transaction will always return the uncommitted version of the tuples that may
have been modified in that transaction.

Space Operation Options
Many space operations can be combined with various options. Options can be
used to optimize performance of the space operations, by either combining two
operations together or indicating whether the return value is unwanted.

Most operations for example can be combined with a lock or an unlock options.
For example to simultaneously update the value and unlock a record you can pass
the unlock option to your put operation. And if you do not care about the return
of the put operation, you can specify the forget option.
 TIBCO ActiveSpaces Developer’s Guide

116 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Using Batch Operations

Because in most installations, ActiveSpaces is deployed with seeders on many
machines on the same network, some of the operations might need a complete
network round trip to complete. Therefore, large improvements in throughput
can be achieved by parallelizing operations using the batch versions of the space
operations whenever possible.

For example it is always faster to use the putAll method than to do a series of
repeated individual puts in a loop. This throughput improvement is due to the
fact that the individual operations of the batch are executed asynchronously and
are therefore parallelized, providing improvement in overall throughput for the
application. Batch versions of the space methods are named adding the 'All' suffix
to the method's name (e.g., putAll) and return a ResultList object.

The ResultList contains a multiple ways to get the individual Result objects for
each of the operations contained in the batch, as well as convenience methods
such as hasException() which is true if any of the operations failed, or methods
to get lists of SpaceEntries for operations that returned OK rather than
NOT_FOUND.
TIBCO ActiveSpaces Developer’s Guide

Using Listeners | 117
Using Listeners

Listeners are used to monitor events that represent changes to the tuples stored in
a space. Listeners are callback-driven, unlike space EventBrowsers, where the
user decides when to get the next event by invoking the EventBrowser’s next
method. This means that a method of a callback class (or a callback function in C)
provided by the user will be automatically invoked by the ActiveSpaces library
code whenever a change happens to one of the tuples in the space being
monitored.

In Java, to use a listener, users provide a class to the listen method that
implements one or more of the listeners interfaces.

• The PutListener interface requires a onPut(PutEvent event) method.

• The TakeListener interface requires a onTake(TakeEvent event) method.

• The ExpireListener interface requires a onExpire(ExpireEvent event)
method.

• The SeedListener interface requires a onSeed(SeedEvent event) method.

• The UnseedListener interface requires a onUnseed(UnseedEvent event)
method.

In C, users provide a callback function to the tibasListener_Create function or
one of the additional listener creation functions that will be invoked for all event
types. This user callback function will be passed a single tibas_spaceEvent object
that they can pass to the tibasSpaceEvent_GetType function to determine the
type of the event.

• SpaceEvents of type TIBAS_EVENT_PUT are generated whenever a tuple is
inserted, overwritten or updated.

• SpaceEvents of type TIBAS_EVENT_TAKE are generated whenever a tuple is
taken or removed.

• SpaceEvents of type TIBAS_EVENT_EXPIRE are generated whenever a tuple
reaches the end of its time to live and expires from the space.

• SpaceEvents of type TIBAS_EVENT_SEED are generated whenever there is
redistribution after a seeder leaves the space and the local node is now
seeding additional tuples. This is only applicable if the listener distribution
scope is SEEDED.

• SpaceEvents of type TIBAS_EVENT_UNSEED are generated whenever there is
redistribution after a seeder joins the space and the local node is no longer
seeding some of the tuples. Only applicable if the listener distribution scope is
SEEDED.
 TIBCO ActiveSpaces Developer’s Guide

118 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
You can optionally specify a filter string when creating a listener. A filtered
listener will only return events that match the specified filter. This is done by
adding a filter argument when you invoke the listen() method on the
metaspace. The filter argument contains a string in the language described in
Filters on page 56. Note that some of the filtering may be executed in a distributed
manner by ActiveSpaces in order to optimize performance.

In addition to the basic tibasListenerCreate() function, the C API provides
functions that allow you to create additional types of listener:

• tibasSpaceMemberListener_Create()—Creates a space member listener.

• tibasMemberListener_Create()—Creates a member event listener.

• tibasSpaceRemoteMemberListener_Create()—Creates a remote space member
listener.

• tibasRemoteMemberListener_Create()—Creates a remote member listener.

• tibasSpaceStateListener_Create()—Creates a space state listener.

• tibasSpaceDefListener_Create()—Creates a space definition listener.

A listener can have either time scope or distribution scope, defined by setting the
values of fields in the listener’s ListenerDef object:

Time scope The time scope can be used to narrow down the period of time of
interest.

• snapshot means that the listener contains only PUT events corresponding to the
tuples stored in the space at creation time.

• new means that the listener starts empty and is updated only with events
related to new or overridden tuples in the space.

• new events means that the listener starts empty, and is updated with all events
that occur in the space after creation time. Unlike the time scope new described
above, this time scope includes events (such as TAKE or EXPIRE events) related
to tuples already contained in the space at creation time.

• all means that the listener starts with all the tuples currently in the space at
creation time (which will be presented as an initial set of PUT events) and then
is continuously updated according to changes in the space.

Distribution scope The distribution scope can be used to narrow down the set of
tuples or events being browsed.

• all is used to listen to events related to all tuples in the space.

• seeded is used to listen only to events associated with the tuples in the space
that are seeded by this member. It will be empty unless the member is a seeder
on the space.
TIBCO ActiveSpaces Developer’s Guide

Using Listeners | 119
When the listener’s distribution scope is set to seeded, two additional types of
events may be generated:

• SEED Generated when the member that created the listener starts seeding an
tuple.

• UNSEED Generated when the member that created the listener no longer
seeds an tuple.

For a description of the ASListener example program, which illustrates how to set
up a listener, see ASListener, page 203.
 TIBCO ActiveSpaces Developer’s Guide

120 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Using SpaceEvent Objects

SpaceEvent objects are either passed as the argument to methods of a class
implementing the SpaceListener interface or returned by an EventBrowser’s
next method. SpaceEvent objects implement the following methods:

• getSpaceTuple Returns the tuple associated with the space event (that is, the
tuple that was put or updated, the tuple that was taken or removed, the tuple
that expired, or the tuple that is now seeded or is no longer seeded).

• getSpace Returns the space object representing the space on which this event
was generated (this is a convenience function so that the users can then easily
interact with the space in reaction to the event).

• getType Returns the type of the event (useful when using an event browser)
which can be either EVENT_PUT, EVENT_TAKE, or EXPIRE_EVENT. If the
distribution scope of the listener or browser is SEEDED, the type can also be
EVENT_SEED or EVENT_UNSEED.
TIBCO ActiveSpaces Developer’s Guide

Implementing a Space Browser: Querying the Space | 121
Implementing a Space Browser: Querying the Space

Although you can use a listener to query the data in a space, in practice, you will
almost always use space browsers: a browser is used to iterate through the
contents of a space.

You create a browser by calling the browse method of a Space or Metaspace
object. Parameters of this method include the type of browser and a BrowserDef
object, which contains configuration settings for the browser.

A browser has two only methods: next() and stop(). What the next() method does,
and what it returns, depends on the type of the browser. There are three types of
browser:

• GET A browser of type GET’s next method gets and returns the next unread
tuple.

• TAKE A browser of type TAKE’s next method takes and returns the next
unread and unlocked tuple.

• LOCK A browser of type LOCK’s next method locks and returns the next
unread and unlocked tuple.

To run queries on the space, you can specify a filter string when creating the
browser: a filtered browser will only return tuples that match the specified filter.
The browser's filtering criteria is expressed as a string in the language described
in the section on filters: see Filters on page 56. Note that some of the filtering may
be executed in a distributed manner by ActiveSpaces in order to optimize
performance.

A tuple browser can have either time scope or distribution scope, defined by setting
the values of fields in the browser’s BrowserDef object:

Time scope The time scope can be used to narrow down the period of time of
interest.

• snapshot means that the browser starts with all the tuples in the space at the
time the browser is created (or initial values), but is not updated with new
tuples that are put into the space after that moment.

• new means that the browser starts empty, and is updated only with tuples put
into the space after the moment of the browser’s creation.

• all means that the browser starts with all the tuples in the space, and is
continuously updated with new tuples.

Distribution scope The distribution scope can be used to narrow down the set of
tuples or events being browsed.

• all is used to browse over all the tuples (or associated events) in the space
 TIBCO ActiveSpaces Developer’s Guide

122 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
• seeded is used to browse only over the tuples (or associated events) actually
distributed to the member creating the browser

The BrowserDef object for a tuple browser can include a timeout value. The
timeout is the amount of time for which a tuple browser's next() method can
block while waiting for something new in the space to 'next()' on. If there is still
nothing new for the browser to’next()’ on at the end of the timeout, the next()
method will return null.

Browser prefetch A query in ActiveSpaces consists of two steps:

1. The space's seeders filter the data according to the criteria of the filter.

2. The matching tuples must be retrieved from those seeders to the application
issuing the query.

By default, the matching records will be mostly retrieved on demand, one by one,
each time next() is called on the browser. Due to network latency there is a
minimum amount of time potentially required by a next() operation, and it is
therefore much more efficient in many cases (for example, when the resulting
dataset is large) to pre-fetch some of the tuples in parallel with the processing of
the result tuples.

The prefetch is expressed in number of records per seeder that are prefetched in
parallel with the browser's thread. A special value of ALL (-1) indicates that the
whole result set should be pushed at once to the client.

For a description of the ASBrowser sample program, which shows how to
implement a browser, see ASBrowser, page 199.

The browser’s timeout value is ignored when the time scope is set to snapshot. In
this case any invocation of the next method on the browser once all of the tuples
in the snapshot have been iterated through will return null right away.

If any form of fault-tolerance is desired, prefetch should not be used on TAKE
browsers.

When the ALL and NEW timescopes are used ActiveSpaces automatically
maintains the coherency of the prefetched tuples with the space.

The browser's next() call is thread-safe: you can have multiple processing threads
call next() concurrently on the same browser safely.
TIBCO ActiveSpaces Developer’s Guide

Using Event Browsers | 123
Using Event Browsers

An event browser is the iterative version of a listener’s next() method and
returns the next event (the same kind of object you would get in a listener) in the
space's event stream. Just like any other browser or listener, it can take a filter and
has the same time and distribution scopes. Please see the documentation about
Listeners to learn more about events.

For a description of the ASEventBrowser sample program, which shows how to
implement an event browser, see ASEventBrowser, page 201.
 TIBCO ActiveSpaces Developer’s Guide

124 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Enabling Performance Monitoring

To enable the performance monitor from your application, call the function or
method provided with the API set that you are using. The performance monitor
activates several commands in the as-admin utility that allow you to monitor
system performance:
show member stats

show system stats

By default, this feature is not turned on.

C API

With the C API, to enable performance monitoring, call the
tibas_EnablePerformanceMonitor() function with the argument specified as
TIBAS_TRUE:

tibas_EnablePerformanceMonitor(TIBAS_TRUE)

Java API

With the Java API, to enable performance monitoring, invoke the
AsCommon.setEnablePerformanceMonitor method, as follows:

ASCommon.setEnablePerformanceMonitor(true)

.NET API

With the .NET API, to enable performance monitoring call the
AsCommon.EnablePerformanceMonitor method as follows:

ASCommon.EnablePerformanceMonitor = true
TIBCO ActiveSpaces Developer’s Guide

Using Remote Space Invocation | 125
Using Remote Space Invocation

With TIBCO ActiveSpaces 2.0.0, the Java API and the .NET API allow applications
to remotely invoke code execution over the space to other members.

For a method in a class to be able to be invoked remotely, it needs to fulfill two
criteria:

• The method needs to implement one of the two invocable interfaces:
Invocable or MemberInvocable

• The class needs to be present in all of the members’ CLASSPATHs (or
preregistered for C applications)

The remote invocation can then be triggered by any space member using either a
single member invocation calls invoke, which will invoke the method on the
node seeding the key passed as an argument); or invokeMember, which will
invoke the method on the member listed in the argument.

In addition, a parallel distributed invocation of the method on multiple space
members can be triggered using the calls invokeMembers (which invokes it on all
of the space's members, regardless of role), and invokeSeeders (which invokes it
on all of the space's seeders).

Remote invocation in ActiveSpaces is completely cross-platform. The class name
is what is used to identify what is going to be invoked. This means that you could
have applications in one platform invoke classes implemented in another
platform. You could even have a mix and match of platforms implementing the
same class on a space, as long as the class names match (and of course as long as
they expect the same kind of tuples as context and return).

You can very easily create distributed processing of data stored in ActiveSpaces
leveraging in-process “data locality” by invoking a class on all the seeders of a
space where the invoked class creates browsers of distribution scope “seeded.”
This means that each seeding process can iterate at very high speed (in-process
latency, memory bus bandwidth) through it's subset of the data, like a “map” in a
map/reduce processing architecture, and either store the updated tuples back in
the space (still a local operation) or return the results back to the invoker in the
result tuple (or store them in another space) where they can be 'reduced'.
 TIBCO ActiveSpaces Developer’s Guide

126 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
Using a Space as a Cache

To use a space as a cache, you should configure it with the following attributes:

• Capacity Assign a capacity (the maximum number of tuples per seeder that
can be stored in the space).

• Eviction Policy Set up an eviction policy; for example, set up a Least Recently
Used (LRU) policy to determine what happens when the space is full and a
request to insert a new tuple is made. In that case, and in that case only, the
space will evict one of the tuples to make room for the new one. By default,
spaces do not have a capacity, meaning that the capacity is unlimited. Also, by
default, spaces have no eviction policy, meaning that if the space has a
capacity, an attempt to insert an extra tuple will fail due to the capacity being
reached.
TIBCO ActiveSpaces Developer’s Guide

Working with Remote Clients | 127
Working with Remote Clients

If you have purchased the TIBCO ActiveSpaces Remote Client in addition to the
Enterprise Edition, then you can implement applications that run on remote
clients and which communicate with a space running on the core ActiveSpaces
cluster.

Java applications that connect remotely to the metaspace need to use the
MemberDef's setRemoteDiscovery call to specify the list of well known
addresses to connect to.

C applications need to set the Discovery URL attribute in the memberDef object to
specify the remote listen URL that was specified when the as-agent was started on
a seeder device in the core cluster.

Remotely connected client applications have access to the same features as any
other applications, however they can never be seeders on a space. If an
application remotely connected asks to get a space as a seeder it will get a handle
on the space but will remain a leech. The SEEDED distribution scope is the scope
of the proxy client they are connected to.

Also, while remotely connected clients can invoke methods on the space
members, on can not invoke methods remotely on a remote client application.

Steps for Connecting a Remote Client
The basics steps for connecting a remote client are:

1. On the device that will act as the full peer proxy to the remote clients, run the
as-agent program, and specify the discovery URL, the listen URL, and the
remote listen URL.

The remote listen URL specifies on which IP address and TCP port this proxy
metaspace member will be listening for remote client connections.

2. From an application running on the remote client, call the member functions
to discover the seeder and establish communication.

Starting as-agent to Listen for a Remote Client

Start an as-agent with remote_listen parameter that points to a URL and specific
port.

Enter the as-agent command as follows:

as-agent –metaspace <“metaspace_name”> –discovery
<“discovery_url"> –listen <“listen_url”> –remote_listen
<“remote_listen_url”>
 TIBCO ActiveSpaces Developer’s Guide

128 | Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
For example, assuming that the IP address of the machine where you will run
as-agent to set up a seeder is 10.98.200.194, enter:

as-agent –metaspace “agent007” –discovery
“tcp://10.98.200.194:5000” –listen “tcp://10.98.200.194:5000”
–remote_listen “tcp://10.98.200.194:5001”

This opens up a port on 5001 for the remote client program to communicate with
a member in the metaspace, in this case the as-agent.

Connecting to the Seeder from the Remote Client

After the as-agent is running on the seeder, remote clients can connect to a
metaspace and a space on the proxy machine.

For an application to connect to a metaspace as a remote client, when connecting
to the metaspace, all it needs to do is pass a Discovery URL of the format:

tcp://ip:port?remote=true

Where IP is the IP address and port is the TCP port used by a proxying full peer
member of the metaspace to listen for remote client connections (specified in the
“remote client listen” URL of that proxying process).

You can now create spaces and perform the normal space operations on the space
that is running on the core cluster.
TIBCO ActiveSpaces Developer’s Guide

Implementing ActiveSpaces Security | 129
Chapter 4 Implementing ActiveSpaces Security

TIBCO ActiveSpaces® provides a comprehensive solution for security of the
ActiveSpaces hardware and the data stored in the data grid. This chapter
provides an overview of ActiveSpaces security and describes how to set up
security.

Topics

• Overview of ActiveSpaces Security, page 130

• Security Domain Controllers, page 133

• Security Policy Files, page 135

• Security Domain Requestors, page 138

• Security Token Files, page 139

• Transport Security, page 143

• Restricting Transport Access, page 144

• Data Encryption, page 146

• Security Tracing and File Logging, page 147

• User Authentication, page 148

• User Access Control, page 153
 TIBCO ActiveSpaces Developer’s Guide

130 | Chapter 4 Implementing ActiveSpaces Security
Overview of ActiveSpaces Security

TIBCO ActiveSpaces allows you to secure the information stored in the data grid
by protecting both transport data and stored data. TIBCO ActiveSpaces security is
provided for metaspaces that use TCP for discovery.

TIBCO ActiveSpaces security provides the following security features:

• Transport security

• Data encryption

• Authentication, Authorization and Accounting (AAA)

With TIBCO ActiveSpaces security you can:

• Encrypt information stored in the data grid

• Encrypt data stored in shared-nothing persistence stores

• Secure data during transmission within the data grid

• Prevent unauthorized access to data in the grid

• Prevent unauthorized recovery of persisted data

• Restrict user access to metaspaces, spaces, or data within a space

• Trace and log security related actions

ActiveSpaces Security Architecture
TIBCO ActiveSpaces security utilizes the concept of a security domain. A security
domain defines specific security behavior for:

• Transport security

• Restricting transport access

• Data encryption

• User authentication

• User access control

You can define different security domains where each domain defines a different
set of security-related behaviors. You specify security settings that define the
security behavior for a security domain in a security policy file. See Security
Policy Files, page 135 for more information on security policy files.

A security domain also specifies which metaspaces the security behavior of the
security domain can be applied to. To apply security to a metaspace:
TIBCO ActiveSpaces Developer’s Guide

Overview of ActiveSpaces Security | 131
1. Associate the metaspace with a security domain.

2. Start a security domain controller for the metaspace.

If you want to apply the same security settings to more than one metaspace, you
can associate the same security domain with multiple metaspaces. However, only
one security domain can be associated with each metaspace. See Metaspace
Access List, page 141 for more information on associating metaspaces with
security domains.

To utilize security within a metaspace, one or more nodes in the metaspace are
initialized as a security domain controller for the metaspace. A security domain
controller enforces the security domain's defined behavior for a metaspace. A
security domain controller can be the manager of a metaspace or just a member of
a metaspace. See Security Domain Controllers, page 133 for more information

Nodes in the metaspace that request security services from the security domain
controllers are called security domain requestors. Similar to security domain
controllers, a security domain requestor can be a manager of a metaspace or a
member of a metaspace. These security components allow you to set up a secured
ActiveSpaces cluster.

Figure 3 shows the two node types in the TIBCO ActiveSpaces security
architecture.
 TIBCO ActiveSpaces Developer’s Guide

132 | Chapter 4 Implementing ActiveSpaces Security
Figure 3 TIBCO ActiveSpaces Security Architecture

The two node types in the ActiveSpaces security architecture are:

• Security Domain Controllers TIBCO ActiveSpaces nodes that are dedicated to
enforcing a security domain's defined security behavior for a metaspace
associated with the security domain. Security domain controllers are the only
discovery nodes in a metaspace.

For more information, see Security Domain Controllers, page 133.

• Security Domain Requestors Nodes that require access to the data in the data
grid, such as a seeder or a leech, and which need to be authorized by a
controller. Requesters can never be used a discovery nodes.

For more information, see Security Domain Requestors, page 138.
TIBCO ActiveSpaces Developer’s Guide

Security Domain Controllers | 133
Security Domain Controllers

A security domain controller is a TIBCO ActiveSpaces node that is dedicated to
enforcing a security domain's defined security behavior for a metaspace
associated with the security domain. For example, a security domain controller
enforces the level of transport security used for communication between nodes of
a metaspace and interfacing to an LDAP system when LDAP user authentication
is used.

You must use TCP discovery to apply security to metaspaces. A security domain
controller must be a “well known” member of a metaspace. This means that the
member's listen URL IP address and port must be part of the discovery URL for
the metaspace.

A TIBCO ActiveSpaces application becomes a security domain controller for a
metaspace when it connects to a metaspace using all of the following:

1. A security policy file that sets up a security access binding for the metaspace
and its discovery list.

2. The discovery list in the binding includes the application's listener address (in
ip_address:port or hostname:port format).

See Security Policy Files, page 135 for detailed information on creating and using
security policy files with security domain controllers.

The security domain controller for a metaspace must be running before security
domain requestors are allowed to complete their connection to the metaspace. See
Security Domain Requestors, page 138 for more information on security domain
requestors.

When choosing an application to be a security domain controller, consider that
the highest load on a security domain controller occurs when members are joining
a metaspace. This processing is done in a separate thread from your application's
thread. If you require quick response times when members join a metaspace,
consider running an application that serves only as a security domain controller
and does not connect to any spaces.

The ASDomainController example program demonstrates how to handle a
domain controller. The ASDomainController example only connects to a
metaspaces as a security domain controller.

For more information on the ASDomainController example program, see
ASDomainController, page 213 in Chapter 5, Using the Example Code.

If servicing a lot of metaspace joins is not a concern, you can also use an as-agent
as a security domain controller. The following example shows how to start
as-agent.exe as a security domain controller:
 TIBCO ActiveSpaces Developer’s Guide

134 | Chapter 4 Implementing ActiveSpaces Security
as-agent.exe -metaspace "examplems"
-discovery "tcp://192.168.0.5:50000;192.168.0.10:50000"
-listen "tcp://192.168.0.5:50000"
-security_policy "mypolicy.txt"

You should set up multiple security domain controllers for each metaspace to
provide fault tolerance for the security of each metaspace. If the security domain
controllers go down for some reason, you lose your security for the metaspace.

Setting Up a Node as a Security Domain Controller
To set up a TIBCO ActiveSpaces node as a security domain controller:

1. Create a security policy file using the Admin CLI.

2. Edit the Metaspace Access List for the security domain in the security policy
file.

3. Ensure that there is a metaspace_access entry with the metaspace name and
discovery URL for the metaspace the node will connect to, in the Metaspace
Access List.

4. Review the Transport Security, Restricted Transport Access,
Authentication, Data Encryption, and Access Control settings to ensure they
are set to meet your security requirements.

5. Save your changes to the security policy file.

6. Validate your security policy file using the Admin CLI.

7. Securely join the metaspace by using the TIBCO ActiveSpaces security API
and passing in the security policy file. See the ASDomainController example
for each supported programming language to see how the security API is
used to connect to a metaspace as a security domain controller.

For some features of TIBCO ActiveSpaces security, the settings in the security
policy file work in conjunction with calls to the security API in your application.
Depending upon the type of security feature you implement, you might need to
modify your application to use the features provided by the security API. See the
sections for the individual security features to learn how to implement a
particular security feature.
TIBCO ActiveSpaces Developer’s Guide

Security Policy Files | 135
Security Policy Files

A security policy file contains the security settings for one or more security
domains. Security domain requestors use a security token file that you generate
from a security policy file to connect to a metaspace contained in the Metaspace
Access List for a security domain that is defined in the security policy file.

The basic steps for creating and using a security policy file are:

1. Create a security policy file using the Admin CLI.

See Creating a Security Policy File, page 136 for information on how to create
a security policy file.

2. Open the security policy file with a text editor.

3. Edit the settings for each security domain to define the specific security
behavior desired. See Security Domain Settings, page 136 for information on
defining each type of security behavior.

4. Save and close the security policy file.

5. Validate the security policy file using the Admin CLI. See Validating a
Security Policy File, page 137 for information on how to validate a security
policy file.

6. If required for your transport security requirements, generate one or more
security token files from the security policy file using the Admin CLI. See
Security Token Files, page 139 for detailed information on security token files.

7. Modify your TIBCO ActiveSpaces application to enable it to function as a
security domain controller for a metaspace, and use the security API to have
the application connect to the metaspace using the security policy file.

8. See the ASDomainController example program for each supported
programming language to see how the security API is used to connect to a
metaspace using a security policy file.

9. Save, build and run your application.

Applications that connect to a metaspace listed in the Metaspace Access List for a
security domain in a security policy file use the security policy file to become
security domain controllers for the metaspace.

Applications that connect to a metaspace listed in the Metaspace Access List for a
security domain in a security policy file, but do not use the security policy file to
connect to the metaspace, become security domain requestors for the metaspace.
 TIBCO ActiveSpaces Developer’s Guide

136 | Chapter 4 Implementing ActiveSpaces Security
In general, you should require the security domain requestor to connect to a
metaspace using a security token file that is generated from the security policy
file. See 'Security Domain Requestors, page 138 and Security Token Files, page 139
for more information on security domain requestors and security token files.

You can also choose the less secure method of allowing connections without a
security token. This is a weaker security solution, but is easier to deploy.

Creating a Security Policy File
You generate security policy files using the Admin CLI. You then edit the settings
for each security domain within the security policy file to fit your particular
security needs. The following example shows the Admin CLI command to create
a security policy file for a policy named mypolicy and a security domain named
mydomain:

as-admin> create security_policy
policy_name "mypolicy/mydomain"
policy_file "mypolicy.txt"

If you do not specify a domain name, ActiveSpaces creates a domain named
AS-DOMAIN in the security policy file.

See Chapter 2, “Administering ActiveSpaces with the Admin CLI” in the TIBCO
ActiveSpaces Administration Guide for information on the define | create
security_policy command.

Security Domain Settings
A security policy file contains the following security settings for one or more
security domains:

• Metaspace Access List

• Transport Security

• Restricted Transport Access

• User Authentication

• Data Encryption

• User Access Control

Some of the security settings work in conjunction with the TIBCO ActiveSpaces
security API. For a more detailed discussion of how to use each setting, see the
section for the setting in this chapter.
TIBCO ActiveSpaces Developer’s Guide

Security Policy Files | 137
Validating a Security Policy File
You validate security policy files using the Admin CLI. After you have finished
editing the security settings for the security domains included in the security
policy file, validate the file to make sure that your edits to the file seem reasonable
before you try to actually use the file. The following example shows the Admin
CLI command to validate a security policy file:
validate policy_name "mypolicy" policy_file "mypolicy.txt"

Security Policy File Keys and Certificates
For each security domain, the security policy file also contains:

• A private key and public certificate that security domain requestors use to
verify the identity of the security domain controller when establishing
transport connections with the security domain controller. See Transport
Security, page 143 for more information on the private key and public
certificate.

• A data encryption key that is used by each node in a metaspace to encrypt
data that resides in memory or is locally persisted. See Data Encryption,
page 146 for more information on the data encryption key.
 TIBCO ActiveSpaces Developer’s Guide

138 | Chapter 4 Implementing ActiveSpaces Security
Security Domain Requestors

A security domain requestor is a TIBCO ActiveSpaces node that requests security
services from a security domain controller for a metaspace. Typically, a security
domain requestor is just a normal TIBCO ActiveSpaces application that uses the
security API when connecting to a metaspace associated with a security domain.

The security domain settings in the security policy file for the security domain
controller define the security applied to a security domain requestor.

Depending on your application’s security requirements, the application might be
required to connect to a metaspace using a security token file that has been
generated from a security policy file. Consider requiring a security token file
when a security domain requestor connects to a metaspace to ensure:

• Security domain requestors are restricted to connecting to specified
metaspaces.

• The identity of security domain controllers the security domain requestor tries
to connect to.

• The identity of security domain requestors when establishing secure transport
connections.

• Only certain security domain requestors are allowed to connect to a
metaspace.

See Security Token Files, page 139 for more information on how connecting to a
metaspace with a security token file can affect a security domain requestor.

Connecting to a Metaspace Without Using a Security Token File
A a security domain requestor can also connect to a metaspace without specifying
a security token file. In this scenario, an empty string (“none”) is used as the name
of the security token file when connecting to the metaspace.

When a security domain requestor does not use a security token file, the following
occurs:

• Connections to any metaspace in any security domain are allowed.

• A transport security level of encrypted_normal is used by default.

• If the security domain's transport security level is encrypted_strong, the
security domain requestor's transport security level is automatically upgraded
to encrypted_strong.

See Transport Security, page 143 for more information on transport security
levels.
TIBCO ActiveSpaces Developer’s Guide

Security Token Files | 139
Security Token Files

When a security domain requestor uses a security token file to connect to a
metaspace, ActiveSpaces uses the contents of the security token to:

1. Restrict the metaspaces to which a security domain requestor can connect.

2. Ensure the identity of the security domain controller.

3. Determine the level of transport security the security domain requestor
should use for TCP communication.

The same token file can be shared by different security domain requestors. If you
use the same token file for different requesters, consider the following:

• If the token does not have an ID, the tokens used by different requestors on
the same metaspace will probably look the same.

• However, if the tokens do have an ID, you should avoid sharing it as their
certificates will be the same.

Creating a Security Token File
You generate a security token file from a security policy file using the Admin
CLI.and an existing security policy file. The following example shows the Admin
CLI common for generating a security token file:

as-admin> create security_token
domain_name "mydomain"

policy_file "mypolicy.txt"

token_file "mytoken.txt"

This command generates a security token file that contains the following
information from the specified security domain in the security policy file:

• The Metaspace Access List

• The Transport Security setting

• The public certificate of the security domain

See Chapter 2, “Administering ActiveSpaces with the Admin CLI “in the TIBCO
ActiveSpaces Administration document for information on the define | create
security_token command.
 TIBCO ActiveSpaces Developer’s Guide

140 | Chapter 4 Implementing ActiveSpaces Security
Limiting Metaspace Access
Typically, you do not need to edit a security token file. The one case where you
might want to edit a security token file is when a security domain is associated
with more than one metaspace, but you want to make sure that a security token
file can only be used to connect to a specific metaspace.

When a security domain is associated with more than one metaspace, the
Metaspace Access List for the security domain contains multiple
metaspace_access entries in the security policy file. When you generate a
security token file from the security policy file, multiple metaspaces are listed in
the security token file. To restrict the metaspaces that can be connected to using
this security token file, remove the metaspace_access entries for connections
that should not be allowed.

See Metaspace Access List, page 141 for more information about the format of the
Metaspace Access List in security policy files.

Validating a Security Token File
You validate security token files using the Admin CLI. After you have finished
generating or editing a security token file, you should validate the file to make
sure that the token file is valid before you try to actually use it. The following
example shows the Admin CLI command to validate a security token file:

 as-admin> validate token_file "mytoken.txt"

Security Token File Keys and Certificates
When you generate a security token file from a security policy file, the public
certificate of the domain identity in the security policy file is copied to the security
token file. When a security domain requestor attempts to connect to a metaspace
using the security token file, the connection fails if the public certificate in the
security token file does not match the security domain controller's identity
certificate.

By default, security token files do not contain a private key and public certificate
for establishing the identity of the security domain requestor. Thus, when a
security domain requestor attempts to connect to a metaspace, a temporary
private key and public certificate are dynamically created for the security domain
requestor to establish secure connections with. This key and certificate are valid
for the duration of its connection to the metaspace.
TIBCO ActiveSpaces Developer’s Guide

Security Token Files | 141
Optionally, when you generate a security token file you can specify creation of a
private key and public certificate. The following example shows the Admin CLI
command to generate a security token file with a private key and public certificate
for establishing a security domain requestor's identity for secure transport
connections:

as-admin> create security_token
domain_name “mydomain”

policy_file “mypolicy.txt”

 create_identity
token_file “mytoken.txt”

See Restricting Transport Access, page 144 for information on how generating a
private key and public certificate in the security token file can be used to restrict
access in a security domain to only certain security domain requestors.

Metaspace Access List
Each domain defined in a security policy file contains a Metaspace Access List.
The Metaspace Access List restricts the security behavior defined by the settings
for its security domain to only those metaspaces specified in the list. A metaspace
can only belong to one security domain.

Each item in the Metaspace Access List must follow the format:

metaspace_access=metaspace=<metaspace name>;discovery=<discovery
URL>

where:

• metaspace name is the name of the metaspace (no quotes)

• discovery URL is the TCP discovery URL of the metaspace (no quotes)

For example, to add the metaspace 'examplems' with a discovery URL of
'tcp://192.168.0.10:50000' to the Metaspace Access List for the domain
'mydomain' in the security policy file mypolicy.txt:

1. Open mypolicy.txt in a text editor.

2. Find the Metaspace Access List for the security domain mydomain.

3. Modify the following line in the Metaspace Access List:
metaspace_access=metaspace=mydomain-ms1;
discovery=tcp://127.0.0.1:50000

to read:
metaspace_access=metaspace=examplems;
discovery=tcp://192.168.0.10:50000
 TIBCO ActiveSpaces Developer’s Guide

142 | Chapter 4 Implementing ActiveSpaces Security
4. Save mypolicy.txt.

5. To add additional metaspaces to the metaspace access list add, another
metaspace_access item after the first metaspace_access item. For example:
metaspace_access=metaspace=examplems;
discovery=tcp://192.168.0.10:50000

metaspace_access=metaspace=examplems2;
discovery=tcp://192.168.0.11:50001

When you generate a security token file from a security policy file, the Metaspace
Access List for the specified security domain is copied from the security policy file
into the security token file. A security domain requestor using the security token
file is allowed to connect to any of the metaspaces in the Metaspace Access List.
To further restrict which metaspaces can be connected to, you should edit the
security token file and remove any undesired metaspaces from the Metaspace
Access List.
TIBCO ActiveSpaces Developer’s Guide

Transport Security | 143
Transport Security

TIBCO ActiveSpaces allows you to protect data being transported by preventing:

• Alteration of traffic

• Eavesdropping

• Exchange of data between untrusted parties

When security is used for a metaspace, any transmission of messages within the
data grid occurs on a secure transport. A security domain's transport_security
setting controls the level of security used for communication within the data grid.

The available settings for transport_security are:

• encrypted_normal Use secure transport with 128 bit symmetric key
encryption (default).

• encrypted_strong Use secure transport with 256 bit symmetric key
encryption.

• integrity Use secure transport without encryption.
 TIBCO ActiveSpaces Developer’s Guide

144 | Chapter 4 Implementing ActiveSpaces Security
Restricting Transport Access

TIBCO ActiveSpaces security allows you to restrict transport connections within a
security domain to only “trusted” nodes.

To restrict transport connections within a security domain:

1. Open the security policy file for the domain in a text editor

2. Go to the line that reads transport_access=false;cert_file=

3. Edit the line to read:

transport_access=true;cert_file=<trusted_certs_file>

where trusted_certs_file is the filename for a trusted certificate file that you will
create in step 8.

4. Save the security policy file.

5. Use the validate policy_file Admin CLI command to validate the
security policy file.

6. Use the Admin CLI to generate a security token file from the security policy
file, which contains its own private key and public certificate. This key and
certificate are used to verify the identity of a node using the security token file
when it tries to initiate any transport connections. For example,
as-admin> create security_token
domain_name "mydomain"
policy_file "mypolicy.txt"
create_identity
token_file "mytoken.txt"

7. Use the validate token_file Admin CLI command to validate the security
token file.

8. Create an empty trusted certificates file to hold the public certificates of the
nodes to allow transport connections from.

9. Copy and paste the public certificate of the local token identity from the
security token file into the trusted certificates file.

The public certificate is everything in the security token file between and
including
-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

10. Save the trusted certificates file.

11. Start a security domain controller using the security policy file name when
connecting to the metaspace.
TIBCO ActiveSpaces Developer’s Guide

Restricting Transport Access | 145
Metaspace communication within the security domain is now restricted to only
security domain controllers and security domain requestors that connect to the
metaspace using a security token file whose public certificate is contained in the
trusted certificates file.
 TIBCO ActiveSpaces Developer’s Guide

146 | Chapter 4 Implementing ActiveSpaces Security
Data Encryption

The TIBCO ActiveSpaces security API allows you to define encrypted fields in a
space.

When data is put into a field that is defined to be encrypted, the data is encrypted
while it resides in memory in the data grid and when it is persisted with
shared-nothing persistence.

Certain types of fields in a space should not be encrypted. Do not encrypt fields
that are used:

• As keys or indexes

• In filters for searching through the data in a space

Suppose that you need to protect the social security number of patients admitted
to a hospital. You could store the social security number in an encrypted field to
ensure that the social security number cannot be accidently read while it is stored
in memory in the data grid or stored using shared-nothing persistence. You can
use the patient's name or admission ID as a key for the space and search for their
name or admission ID to later retrieve their social security number.

To allow encryption to be used when defining the fields of a space using any of
the TIBCO ActiveSpaces language APIs, set the following for the security domain
in the security policy file:

data_encryption=true

If you try to define an encrypted field in a space when the data_encryption
setting is set to false, ActiveSpaces throws an exception.

The data_encryption setting in a security domain is used in conjunction with
the following methods to specify that the contents of a field should be encrypted:

• Java FieldDef.setEncrypted(boolean)

• C tibasFieldDef_SetEncrypted(tibasFieldDef fieldDef,

tibas_boolean secured)

• .NET FieldDef.Encrypted

The data stored in an encrypted field is encrypted with a symmetric data
encryption key that is generated when a security policy file is created. The data
encryption key is always unique for each security domain and is stored encrypted
under the domain's identity.

The security domain controllers pass the data encryption key to each security
domain requestor so that all security domain requestors can encrypt and decrypt
the data of encrypted fields in a space.
TIBCO ActiveSpaces Developer’s Guide

Security Tracing and File Logging | 147
Security Tracing and File Logging

ActiveSpaces outputs security-related messages output as trace messages and to
the TIBCO ActiveSpaces log file. You can control the level of the security
messages, as with normal TIBCO ActiveSpaces tracing and logging. The
following API methods control the level of security messages that are output to
both the console and log file:

• Java API ASCommon.setSecurityLogLevel(LogLevel)

• C API tibasSetSecurityLogLevel(LogLevel)

• .NET API ASCommon.SecurityLogLevel
 TIBCO ActiveSpaces Developer’s Guide

148 | Chapter 4 Implementing ActiveSpaces Security
User Authentication

TIBCO ActiveSpaces security allows you to authenticate the users of security
domain requestors.

If the security domain for a metaspace has been configured to perform user
authentication, then user authentication occurs when a security domain requestor
tries to connect to the metaspace.If authentication fails, the connection to the
metaspace fail.s

The authentication setting in the security policy file used by the security
domain controller for a metaspace controls how users are authenticated. You can
specify two types of user authentication:

• Username and password authentication

• Certificate-based authentication against an LDAP server

Username and password authentication can be performed using the operating
system's authentication services or an LDAP server. Certificate-based
authentication can only be done using an LDAP server.

The basic format of the authentication setting in the security policy file is:

authentication=<none(default)|userpwd|x509>;[source=<system|ldap>;
<source property>;...;hint=<string>]

If you specify userpwd or x509 for the authentication setting. you must specify
source settings to enable the security domain controller to connect to the system
that performs the authentication:

• source=system specifies that the security domain controller should use
operating system services to authenticate users.

• source=ldap indicates that the security domain controller should connect to
and use an LDAP server for authentication.

See the following sections for more detailed information on how to configure the
authentication settings for operating system or LDAP authentication:

• Operating System User Authentication, page 149

• LDAP User Authentication, page 150

• LDAP Certificate Authentication, page 151

For each type of authentication, TIBCO ActiveSpaces prompts the user of the
security domain requestor to enter the appropriate information needed for
authentication (for example, user name and password, location of PKCS#12 file,
and the password of the private key in the file).
TIBCO ActiveSpaces Developer’s Guide

User Authentication | 149
You can override the default behavior for retrieving authentication information
by using a callback mechanism. If a callback function is available, then when a
security domain requestor tries to connect to a metaspace, ActiveSpaces uses the
callback function to retrieve the user's authentication information instead of using
the default behavior provided by TIBCO ActiveSpaces. See Authentication
Callback, page 152 for more detailed information.

Operating System User Authentication
User name and password authentication can be done using the operating system
to authenticate the user. When operating system authentication is used and a
security domain requestor first tries to connect to a metaspace, TIBCO
ActiveSpaces prompts the user to enter their:

1. Login domain name (on Windows systems)

2. Login user name

3. Login password

For example, suppose you normally log into Windows using “AcmeInc\brady”
for your domain and user names and “abc123” for your password. You should
enter:

1. “AcmeInc” when prompted for the domain

2. “brady” when prompted for the user name

3. “abc123” when prompted for the password

The logon information entered is passed to the security domain controller, which
tries to perform user authentication with the operating system.

When operating system based user authentication is configured:

• Pluggable Authentication Modules (PAM) is used on UNIX and Linux
systems

• NTLM/Kerberos is used on Windows systems

To configure the security policy file to perform user name and password
authentication using the operating system, set the authentication setting as
follows:
authentication=userpwd;source=system;service=login;hint=<message
to display to user>
 TIBCO ActiveSpaces Developer’s Guide

150 | Chapter 4 Implementing ActiveSpaces Security
The service setting specifies the operating system application to use for
authentication. Currently this setting is ignored for Windows and is only used for
UNIX systems. Specifying service=login causes the UNIX “login” system
access application to be used to authenticate security domain requestor users. You
can use the service setting to redirect PAM authentication requests to other local
authentication applications.

LDAP User Authentication
You can configure user authentication to use an LDAP server to perform user
name and password authentication. When user name and password
authentication is used with LDAP and a security domain requestor first tries to
connect to a metaspace, TIBCO ActiveSpaces prompts the user to enter their:

1. Login user name

2. Login password

The logon information entered is passed to the security domain controller, which
tries to connect to the LDAP server configured in the security policy file and use
the LDAP server to authenticate the user.

To configure the security policy file to perform user name and password
authentication with an LDAP server using an unsecure connection to the LDAP
server, the authentication setting uses the following format:

authentication=userpwd;source=ldap;name=<LDAP object name>;
host=<LDAP server name>;plainPort=<port number>;
baseDN=<DN of parent>;hint=<message displayed to user>

where the unsecure LDAP connection parameters are:

• name Name of the object to query LDAP for (for example, cn for common
name, uid for unique ID).

• host The fully qualified domain name of the LDAP server (for example,
ldapsrvr.com).

• plainPort The port on which the LDAP server listens for clear text TCP/IP
connections (default: 389).

• baseDN The distinguished name of the parent of the LDAP subtree (for
example: dc=users,dc=com).

• hint A message to be displayed to the user as a hint of what they should
enter.

If connecting to the LDAP server requires a secure connection using SSL/TLS, the
authentication setting uses the following format:

authentication=userpwd;source=ldap;name=<LDAP object name>;
TIBCO ActiveSpaces Developer’s Guide

User Authentication | 151
host=<LDAP server name>;securePort=<port number>;trustStore=<LDAP
keystore>;
baseDN=<DN of parent>;hint=<message displayed to user>

where the secure LDAP connection parameters are:

• name Name of the object to query LDAP for (for example, cn for common
name, uid for unique ID).

• host The fully qualified domain name of the LDAP server (for example,
ldapsrvr.com).

• securePort The port on which LDAP clients should connect to the LDAP
server using SSL/TLS (default: 636)

• truststore A file that contains the secure LDAP server's certificate chain

• baseDN The distinguished name of the parent of the LDAP subtree (for
example: dc=users,dc=com).

• hint A message to be displayed to the user as a hint of what they should
enter.

The security domain controller uses the contents of the truststore to authenticate
the LDAP server when establishing a connection to the LDAP server. The
truststore format can be a p7b file containing only certificates and certificate
chains. If the LDAP server certificate is self-signed, the truststore can be a .pem
certificate file or a binary DER format file.

LDAP Certificate Authentication
Security domain controllers can be configured to perform certificate
authentication using an LDAP server. When certificate authentication is used and
a security domain requestor attempts to connect to a metaspace, the user will be
prompted to enter the following:

 1. Path to a PKCS#12 (.p12) file to use for authentication.

 2. Password for the private key inside of the PKCS#12 file.

The authentication information is passed to the security domain controller, which
tries to authenticate the user against the LDAP server configured in the security
policy file. To configure the security policy file to perform LDAP certificate
authentication with an LDAP server, the authentication setting uses the
following format:

authentication=userpwd;source=ldap;name=<LDAP object name>;
host=<LDAP server name>;securePort=<port number>;trustStore=<LDAP
keystore>;
baseDN=<DN of parent>;hint=<message displayed to user>

where the secure LDAP connection parameters are:
 TIBCO ActiveSpaces Developer’s Guide

152 | Chapter 4 Implementing ActiveSpaces Security
• name Name of the object to query LDAP for (for example, cn for common
name, uid for unique ID).

• host The fully qualified domain name of the LDAP server (for example,
ldapsrvr.com).

• securePort The port on which LDAP clients should connect to the LDAP
server using SSL/TLS (default: 636)

• truststore A file that contains the secure LDAP server's certificate chain

• baseDN The distinguished name of the parent of the LDAP subtree (for
example: dc=users,dc=com).

• hint A message to be displayed to the user as a hint of what they should
enter.

When LDAP certificate authentication is used, a secure LDAP server must always
be used. The security domain controller uses the contents of the truststore to
authenticate the LDAP server when establishing a connection to the LDAP server.
The truststore format can be a p7b file containing only certificates and certificate
chains. If the LDAP server certificate is self-signed, the truststore can be a .pem
certificate file or a binary DER format file.

Authentication Callback
Sometimes you might not want to use ActiveSpaces’ default behavior for
retrieving user authentication information. For example, if you want your users to
use a smart card or USB drive to hold their authentication information and
automatically authenticate security domain users without their being aware that
the authentication has taken place, you can override the default behavior.

To override the default behavior of TIBCO ActiveSpaces for retrieving user
authentication information, the ActiveSpaces API provides a callback mechanism.
If a security domain requestor tries to connect to a metaspace using an
authentication callback, the callback is used to retrieve the user's authentication
information.

See ASUserAuthenticator, page 216 for information on each supported
programming language to see how the security API is used to implement an
authentication callback.
TIBCO ActiveSpaces Developer’s Guide

User Access Control | 153
User Access Control

TIBCO ActiveSpaces security provides user access control to the operations on a
metaspace or space. User access control allows you to control the types of TIBCO
ActiveSpaces functionality a user is allowed to perform. User access can be
allowed or denied for the following permissions:

• read Allows reading the contents of a space. The tuple_get operation requires
read access. Get browsers also require read access.

Read is the minimum permission required on any scope, because it implies
the right to connect to a metaspace.

• write Allows writing data to a space. Examples of operations that require
write access are:

— put

— take

— lock

— unlock

Take browsers, lock browsers, and transaction also require write access.

Write permission implies that a user also has read permission, because most
ActiveSpaces operations that write to a space must first be able to read data
from the space. For example, to take a tuple from a space, an application must
first do a read to find the tuple before it can remove the tuple.

• invoke Perform remote invocations on a a space

• seeder Allows the user to seed tuples.

• encrypt Allows the user to encrypt tuples.

You can grant or deny a user all of the above permissions by specifying one of the
following:

• grant_all

• deny_all

You can also arrange users into groups and apply permissions to all users in a
group or to the users in several groups. And you can specify which spaces in a
metaspace the permissions for users and groups should be applied to.

Permissions can be applied for:

• A single metaspace and space

• All spaces in a metaspace
 TIBCO ActiveSpaces Developer’s Guide

154 | Chapter 4 Implementing ActiveSpaces Security
• A particular space name in any metaspace

• All metaspaces and spaces

User access control works in conjunction with user authentication. Do not enable
authorization (access control) unless user authentication is enabled

See User Authentication, page 148 for information on how to configure the
security policy file to enable user authentication.

Enabling User Access Control
The following example shows the format of the access_control setting in the
security policy file:

access_control=<true|false(default>;default=<deny|grant>

After you have configured user authentication in the security policy file, you then
need to enable user access control in the security policy file by specifying the
following setting:

access_control=true;default=deny

The default setting specifies whether a user should be denied any access or
granted all access permissions, if no access permissions have been defined for a
user.

Access Control Groups
To group users so that permissions can easily be applied to multiple users, you
must define each group of users that you would like to apply permissions to in
the security policy file. Locate the groups heading in the security policy file and
add a line after it for each group of users. For example, specify the following:

 groups
 group1=davidl,robertb,tomd
 group2=susanh,joannd,nicolem
 group3=group1,miket,joew

A group name can consist of any combination of letters and numbers but can only
be defined once. A group can be assigned to other groups.

A user name is either a user's logon user name, if user name/password
authentication is used, or the common name of the user's leaf certificate when
LDAP certificate authentication is used.
TIBCO ActiveSpaces Developer’s Guide

User Access Control | 155
Access Control Permissions
Once you have defined your user groups, you can now apply permissions to each
group of users or to single users. Locate the permissions heading in the security
policy file and add a permissions declaration after the permissions heading for
each metaspace or space that you want to control the access to. A permissions
declaration has the following format:

<<metaspace name>|<space name>|<metaspace name>/<space name>>
<<user name>|<group name>>=<permission>,...

where permission can be any of the following:

• grant_all

• deny_all

• read

• write

• invoke

• seeder

• encrypt

For detailed information on the permissions, see User Access Control, page 153.

You can use a wildcard character (*) for the metaspace name or space name. A
single wildcard character (*) can replace both the metaspace name and space
name to designate that the permissions will apply to all metaspaces and all
spaces. For example:

// Examples:
// domain1-ms1/* group1=read, seeder
// domain2-ms4/sp1 group2=write, encrypt
// */sp2 group1=write, invoke
//
permissions
ms/* group1=seeder,read,write,encrypt

Permissions Precedence
Permissions precedence is based on the following evaluation rules:

1. Scope rule

2. Denial rule

3. Ambiguity rule

4. Owner rule
 TIBCO ActiveSpaces Developer’s Guide

156 | Chapter 4 Implementing ActiveSpaces Security
5. Order rule

The permissions rules work as follows:

• Scope rule When an access control list (ACL) is enabled, any connection
request to a metaspace must be associated with a valid space-level permission
entry, which implicitly grants access to the metaspace.

If there is no space-level permission, the client’s connection to the controller
fails even if authentication is successful. The only exception is when the user
cannot be mapped to the group list and the ACL’s default access is grant_all.
In other words, any successful connection to a metaspace requires that one or
more permissions with a corresponding scope exist in the permissions table.

The minimum permission required on any scope is read, which implies the
right to connect to a metaspace.

• Denial rule A deny_all declaration for a user or group takes ultimate
precedence over any other permission declaration that might apply to the
same user or group.

• Ambiguity rule If there are multiple permissions that can be applied to a
metaspace or space, then the permissions declaration that explicitly names the
metaspace or space takes precedence over any permissions declarations that
use a wildcard character (*).

• Owner rule If there are multiple permissions that can be applied to a user, the
permissions declaration that explicitly names the user takes precedence over
any permissions declarations applied to a group that the user is a member of.

• Order rule If after applying the above rules there is still more than one
permission that applies to the authenticated user’s context, the effective
privilege is retrieved from the most recent (lowest) matching permission in
the table.
TIBCO ActiveSpaces Developer’s Guide

Using the Example Code | 157
Chapter 5 Using the Example Code

This chapter describes how to use the example programs that are provided with
TIBCO ActiveSpaces.

Topics

• Overview, page 159

• Building the Examples, page 160

• Running the Examples, page 164

• Adding Security, page 169

• Example Security Policy File, page 171

• ASOperations, page 173

• ASBatchOperations, page 176

• ASChat, page 179

• ASQuery (Java Only), page 181

• ASPaint (Java and .NET Only), page 183

• ASPersistence, page 185

• Shared-Nothing Persistence, page 189

• ASRequestReplyServer and ASRequestReplyClient, page 192

• Remote Space Invocation: InvokeClient, page 195

• Overview of ASBrowser, ASEventBrowser, and ASListener, page 198

• ASBrowser, page 199

• ASEventBrowser, page 201

• ASListener, page 203

• MetaspaceMemberMonitor, page 205

• SpaceDefMonitor, page 207
 TIBCO ActiveSpaces Developer’s Guide

158 | Chapter 5 Using the Example Code
• SpaceStateMonitor, page 209

• SpaceMemberMonitor, page 211

• ASDomainController, page 213

• ASUserAuthenticator, page 216
TIBCO ActiveSpaces Developer’s Guide

Overview | 159
Overview

TIBCO ActiveSpaces provides examples programs that demonstrate how to use
the various features of the product. Some of the examples (such as ASOperations)
provide boilerplate code templates that you can copy and paste directly into your
application; others demonstrate the use of specific API functions.

The example programs are one of the most important resources to use when
learning to program with ActiveSpaces. It is highly recommended that any
developer new to ActiveSpaces reserve some time to study the examples.

The Examples Directory
The TIBCO ActiveSpaces examples are provided in the AS_HOME/examples
directory. This directory contains examples for each API set included with the
product—Java, C, and .NET. The examples for each API set are in the following
directories:

• AS_HOME/examples/c—C API examples

• AS_HOME/examples/java—Java API examples

• AS_HOME/examples/dotnet—.NET API examples

Different examples are available depending upon the language API. For example,
the ASPaint example is only available for the Java and .NET API sets.
 TIBCO ActiveSpaces Developer’s Guide

160 | Chapter 5 Using the Example Code
Building the Examples

The following sections describe how to build the TIBCO ActiveSpaces examples
for each API set:

• Building the Java API Examples, page 160

• Building The C API Examples, page 160

• Building the .NET API Examples, page 161

Building the Java API Examples
The Java examples are provided in the AS_HOME/examples/java directory. To
facilitate building the Java examples, a build.xml file for use with Apache Ant is
provided.

See http://ant.apache.org for more information on using Apache Ant for
building Java applications.

Complete these steps to build the Java examples:

1. Ensure that the /bin directory for ant is in your path.

2. Change to the directory containing the ActiveSpaces Java examples.

cd AS_HOME/examples/java

3. Enter the following:
ant

The Java compiler compiles the examples and two jar files are created:

• Examples.jar contains the class files for all of the examples except for
ASPaint

• ASPaint.jar contains the class files for only the ASPaint example.

Building The C API Examples
The C examples are provided in the AS_HOME/examples/c directory. Makefiles
are provided for the platform you are installing on.

Building the C Examples on Windows

For the Windows platform, TIBCO ActiveSpaces provides a Makefile that works
with Microsoft Visual C++.
TIBCO ActiveSpaces Developer’s Guide

Building the Examples | 161
Complete these steps to build the C examples:

1. Ensure the AS_HOME environment variable has been set to the location where
TIBCO ActiveSpaces has been installed.

2. Ensure the TIBRV_HOME environment variable has been set to the location
where TIBCO Rendezvous has been installed.

3. Ensure that your environment is set up for building with Microsoft Visual
Studio. For example, on Windows 7 64-bit with Visual Studio 2010, do the
following:

set VCINSTALLDIR=c:\Program Files (x86)\Microsoft Visual Studio
10.0\VC

"%VCINSTALLDIR%"\vcvarsall.bat x86_amd64

4. Enter the following commands:

cd AS_HOME/examples/c

nmake

The compiler generates executable files for the example programs.

Building the C Examples on Non-Windows Platforms

For platforms other than MS Windows, two makefiles are provided:
• Makefile

• Makefile.mk

Makefile.mk is included by the makefile file, and contains platform and
compiler settings for the target platform.

To build the C examples on a non-Windows platform:

1. Edit the settings in the Makefile.mk file as required.

2. Run your compiler against the makefile to generate the example code.

Building the .NET API Examples
The .NET API examples can be found in the AS_HOME/examples/dotnet
directory. To facilitate building the .NET examples, the file build.cmd is
provided. A Microsoft Visual Studio solutions file is also provided.

This section describes the following tasks:

This step is only required if TIBCO Rendezvous will be used as the network
transport for ActiveSpaces.
 TIBCO ActiveSpaces Developer’s Guide

162 | Chapter 5 Using the Example Code
• Building the .NET Examples from the Windows Command Line, page 162

• Building the .NET Examples from MS Visual Studio, page 163

Building the .NET Examples from the Windows Command Line

Complete these steps to build the examples from a Windows command window:

1. Ensure that the AS_HOME environment variable is set to the TIBCO
ActiveSpaces installation directory.

For example:

set AS_HOME=c:\tibco\as\2.0

2. Ensure that your environment has been set up for building with Microsoft
Visual Studio.

For example, on a Windows 7 64-bit machine with Visual Studio 2010, execute
the following commands:

set VCINSTALLDIR=c:\Program Files (x86)\Microsoft Visual Studio
10.0\VC

"%VCINSTALLDIR%"\vcvarsall.bat x86_amd64

3. Ensure that AS_HOME/lib/TIBCO.ActiveSpaces.Common.dll has been
installed into your Global Assembly Cache (GAC).

4. If TIBCO.ActiveSpaces.Common.dll is not present in your GAC, enter the
following:

cd AS_HOME/lib

gacutil -i TIBCO.ActiveSpaces.Common.dll

5. To build the .NET examples, enter:

cd AS_HOME/examples/dotnet

This should have automatically been done during installation, but you can verify
it using the following command:

gacutil -l TIBCO.ActiveSpaces.Common
TIBCO ActiveSpaces Developer’s Guide

Building the Examples | 163
build.cmd

Building the .NET Examples from MS Visual Studio

The ActiveSpaces installation provides a Visual Studio solutions file for building
the .NET examples.

Complete these steps to build the examples using MS Visual Studio:

1. Ensure that the AS_HOME environment variable has been set to the TIBCO
ActiveSpaces installation directory.

For example:

set AS_HOME=c:\tibco\as\2.0

2. Ensure that AS_HOME/lib/TIBCO.ActiveSpaces.Common.dll has been
installed into your Global Assembly Cache.

3. If TIBCO.ActiveSpaces.Common.dll is not present in your GAC, do the
following:

cd AS_HOME/lib

gacutil -i TIBCO.ActiveSpaces.Common.dll

4. Invoke the Microsoft Visual Studio solutions file for the TIBCO ActiveSpaces
.NET examples:

cd AS_HOME/examples/dotnet

Examples.sln

5. In Visual Studio, right click on Solution Examples and select Build Solution.

To build the .NET examples for 32-bit when installed on a 64-bit platform, add the
following C# compiler command option to the csc commands in build.cmd:

 /platform:x86

For example,

 csc /r:%AS_HOME%\lib\TIBCO.ActiveSpaces.Common.dll /platform:x86
ASOperations.cs ASExampleBase.cs

This should have automatically been done during installation, but you can verify
it using the following command:

gacutil -l TIBCO.ActiveSpaces.Common

To build the .NET examples for 32-bit when installed on a 64-bit platform, set the
Platform Target to x86 in the Build properties for the project.
 TIBCO ActiveSpaces Developer’s Guide

164 | Chapter 5 Using the Example Code
Running the Examples

As long as your PATH/LD_LIBRARY_PATH and CLASSPATH environment variables
are correctly set up, it should be straightforward to run the examples.

Since many examples are distributed, you should run multiple instances of the
example applications at the same time to see how easy it is to create a coherent
and consistent distributed system using ActiveSpaces.

The following sections contain information on setting up your environment and
the commands to use for running the ActiveSpaces examples for each of the
language APIs.

Running the Java API Examples
Before running the Java examples, ensure that your environment variables have
been set up for running ActiveSpaces as discussed in 'Chapter 2 Setting
Environment Variables' of the document 'TIBCO ActiveSpaces Installation'.

Examples.jar or ASPaint.jar must be appended to your CLASSPATH
depending upon which example you are running. For example, on a Microsoft
Windows platform, you might set your CLASSPATH variable as follows:
C:\tibco\as\2.1\examples\java\Examples.jar;

C:\tibco\as\2.1\examples\java\ASPaint.jar

If any additional jar files need to be appended to your CLASSPATH for running an
example, the section on that example will have the additional information.

After your CLASSPATH is set appropriately, you can invoke all of the Java
examples by using the following basic command:

java example_name command_line_arguments

For example, to run ASOperations with the default settings, enter:
java ASOperations

See Command Line Arguments, page 166 for information on the command line
arguments that you can use when invoking the examples.

Alternatively, in Java, you can launch the example programs using the java
command with the classpath (-cp) parameter.

Because ActiveSpaces is platform independent, the C, Java, and .NET versions of
the examples are completely interoperable; you can, for example, run one instance
of an example application in C and one in Java and they will interact just as if all
instances were C (or Java).
TIBCO ActiveSpaces Developer’s Guide

Running the Examples | 165
java -cp Examples.jar class_name command_line_arguments

where class_name is the name of the example class. For example:

java -cp Examples.jar ASChat

ASOperations is the default class for the jar file and can be launched directly
using

java -jar Examples.jar

Running the C API Examples
To run a C API example program:

Windows

1. Set your PATH environment variable to the directory where you have compiled
the example programs (e.g. AS_HOME/examples/c).

2. Ensure AS_HOME/lib is set in your library path environment variable (e.g.
PATH, LIBPATH, LD_LIBRARY_PATH, etc.).

3. Enter the name of the executable file for the example you wish to run,
followed by any command line arguments. For example, to run ASChat, enter
ASChat.

The following section on command line arguments applies to all three API sets.

UNIX/Linux/AIX/HP UX

1. Use a text editor to edit the Makefile.mk file provided with the TIBCO
ActiveSpaces C example programs.

The Makefile is located in the /AS_HOME/examples/c directory.

2. Locate the line that reads:
CC=<compiler>

For UNIX, this line reads CC = CC; for Linux, CC = gcc; for AIX, it reads CC =
xlC; for HP-UX, CC = aCC.

3. Change the line to read:
CC= <path>/<compiler>

where path is the path to the C compiler that you are using and compiler is the
compiler name.

4. Save the file.
 TIBCO ActiveSpaces Developer’s Guide

166 | Chapter 5 Using the Example Code
5. Enter the name of the executable file for the example you wish to run,
followed by any command line arguments. For example, to run ASChat, enter
ASChat.

Running the .NET API Examples
To run a .NET API example program:

1. Set your PATH environment variable to the directory where you have
compiled the example programs (e.g. AS_HOME/examples/dotnet).

2. Ensure AS_HOME/lib is also set in your PATH environment variable.

3. Enter the name of the executable file for the example you wish to run,
followed by any command line arguments. For example, to run ASChat, enter
ASChat.

The following section on command line arguments applies to all three API sets.

Command Line Arguments
Many of the examples use the same basic set of command line arguments, which
you can use to change the default settings used by the examples. For example,
you might want to use a different metaspace name so you will not run into
conflicts with other users who are running the ActiveSpaces examples on the
same network.

When an example does not support certain command line arguments or supports
additional command line arguments, those argument differences will be
described in the sections relating to that particular example.

The following sections contain detailed information about the basic command
line arguments supported by most of the examples.

Command Line Help

Invoking any example with the following argument displays the list of possible
command line arguments for that example:
-help

Metaspace Command Line Arguments

All of the ActiveSpaces examples default to using the same metaspace.

You can use the following command line arguments to change metaspace settings
when invoking the examples:
-metaspace metaspace_name (default: ms)
TIBCO ActiveSpaces Developer’s Guide

Running the Examples | 167
-discovery discovery_URL (default: tibpgm)
-listen listen_URL (default: tcp)
-member_name member_name (Must specify a unique string identifying
the member; default: auto-generated member name)

SpaceMemberDef Command Line Arguments

The following command line arguments can be used to change the
SpaceMemberDef settings when invoking the examples:
-role leech | seeder (default: leech)

-persistence shared_nothing | shared_all

SpaceDef Command Line Arguments

Most of the ActiveSpaces examples default to using the same SpaceDef.

When an example uses other settings, this is indicated in the section covering that
example. The following command line arguments can be used to change the
SpaceDef setting when invoking the examples:
-space space_name (default: myspace)

-capacity entries_per_seeder where entries_per_seeder specifies the number of entries
per seeder; -1= infinite (default)

-eviction none | lru (default: none)
-data_store directory_path (default: AS_HOME/examples/data_store)

-_count num_copies (default: 0)

-min_seeders num_seeders (default: 1)

Default Metaspace Name

The default metaspace name used by all of the examples is ms. Since the default
discovery URL is tibpgm, conflicts might occur when multiple users are on the
same network and using the default metaspace ms. Therefore, it is recommended
that when running the examples, you specify a unique metaspace name on the
command line using the -metaspace command line option.

Default Discovery URL

The default discovery URL used by all of the examples is tibpgm. This means that
the PGM transport is used by ActiveSpaces applications (peers) to “discover”
each other. If multiple versions of ActiveSpaces are being used on the same
network, message deserialization errors can occur, because the message formats
are typically not compatible between the various versions of ActiveSpaces.
 TIBCO ActiveSpaces Developer’s Guide

168 | Chapter 5 Using the Example Code
When tibpgm is specified as the discovery URL, the default destination port used
is 7888. To prevent conflicts when multiple versions of ActiveSpaces are being
used with PGM as the discovery transport, it is recommended that a unique
discovery URL be specified on the command line using the -discovery
command line option.

For example,
-discovery tibpgm://7900

This discovery URL indicates that the destination port used by the PGM transport
will be port 7900. As long as no other version of ActiveSpaces is run using the
same port, you will not get discovery message deserialization errors.

Default Space Fields

Unless otherwise noted, the default space (myspace) that is defined for use by the
examples has a definition consisting of three fields:

• A mandatory key field called key of type integer

• An optional field called value of type String

• An optional field called time of type DateTime
TIBCO ActiveSpaces Developer’s Guide

Adding Security | 169
Adding Security

Most of the examples can be run using the security features of TIBCO
ActiveSpaces. To help you get started, an example security policy file and security
token file can be found in the /security subdirectory of the examples for each
language API.

For detailed information on the ActiveSpaces security features, see Chapter 4,
Implementing ActiveSpaces Security.

To run an example with security applied to it, you must first start up a security
domain controller for the metaspace the example will use. You can use as-agent as
a security domain controller.

To run as-agent as a security domain controller using the example security
policy file, change to the example directory that contains example_policy.txt
and invoke as-agent as follows:

Java Invocation

java [-d64] -jar AS_HOME/lib/as-agent.jar -security_policy
example_policy.txt -discovery tcp://127.0.0.1:50000 -listen
tcp://127.0.0.1:50000

C Invocation

AS_HOME/bin/as-agent.exe -security_policy example_policy.txt
-discovery tcp://127.0.0.1:50000 -listen tcp://127.0.0.1:50000

.NET Invocation

AS_HOME\bin\Agent.NET.exe -security_policy example_policy.txt
-discovery tcp://127.0.0.1:50000 -listen tcp://127.0.0.1:50000

These commands start up as-agent using the default metaspace name of ms.
When security is used, the TCP transport must be used. So we have used the
loopback IP address of tcp://127.0.0.1 and a port of 50000 for both the discovery
and listen URLs. This will keep the network connections on your local machine.

If you need to change the metaspace name or discovery URL, you will also need
to modify the metaspace name or discovery URL in the metaspace_access entry
in the example security policy file and regenerate the example security token file.

To see how to use the security API to code a security domain controller, see
ASDomainController, page 213.
 TIBCO ActiveSpaces Developer’s Guide

170 | Chapter 5 Using the Example Code
Once you have started a security domain controller, to apply security to most of
the examples you just need to add the following command line option when
starting the example:

-security_token exdomain_token.txt

Refer to the section for each example to see whether security can be applied to it.

The following sections explain how the example security policy file and security
token file were created and which security features are enabled when you use
them.
TIBCO ActiveSpaces Developer’s Guide

Example Security Policy File | 171
Example Security Policy File

The security policy file, example_policy.txt, was created using the Admin CLI
by issuing the following command:

as-admin> create security_policy policy_name "example/exdomain"
encrypt false policy_file "example_policy.txt"

This generates a security policy file named example_policy.txt containing the
following:

1. One security domain named exdomain.

2. A metaspace access list with a default metaspace_access entry of:
metaspace_access=metaspace=ms;discovery=tcp://127.0.0.1:50000

3. An unencrypted private key and public certificate for the security domain's
identity.

4. A data encryption key for the security domain.

When you use security, you must use TCP transport. Notice that the discovery
URL in the metaspace_access entry is tcp://127.0.0.1:50000. This URL
designates the loopback IP address of 127.0.0.1 and port 50000 as the discovery IP
address and port, which will keep metaspace discovery messages on your local
machine.

The generated policy file, example_policy.txt, was edited as follows:

1. The data_encryption setting was changed from false to true.

2. The group entry, group1 = user1, was added under Access Control Groups.

3. The following permission entry was added under Access Control
Permissions:
ms/* group1=tuple_get,tuple_put,tuple_encrypt,space_browse

The example security policy file uses the default metaspace name of ms in the
metaspace_access list. If you wish to use a different metaspace name, you must
change the metaspace name in the following line:
metaspace_access=metaspace=ms;discovery=tcp://127.0.0.1:50000

Without any modifications, the example security policy file can be used to ensure
secure transports are used for communication throughout a metaspace.

It can also be used to run most of the examples with an encrypted data field
added to the space used by example.

See User Authentication, page 148 and User Access Control, page 153 for
information on how to change the example security policy file to turn on user
authentication or user access control.
 TIBCO ActiveSpaces Developer’s Guide

172 | Chapter 5 Using the Example Code
Example Security Token File
The security token file, example_token.txt, was created from the example
security policy file by using the following Admin CLI command:

as-admin> create security_token domain_name "exdomain" policy_file
"example_policy.txt" token_file "exdomain_token.txt"

This generates a security token file named exdomain_token.txt, which is based
upon the security settings for the security domain named exdomain in the
security policy file .xample_policy.txt. The example security token file
contains a copy of the following from the security policy file:

1. The metaspace access list. This restricts the metaspaces that can be connected
to using this security token file.

2. The transport security setting. This determines the type of security to be
applied when making transport connections within a metaspace.

3. The public certificate of the security domain. This is used to establish a secure
transport connection with the security domain controller.

This security token file can be used by the examples to connect to a security
domain controller for the default metaspace named ms. A connection to the
security domain controller for a metaspace is established when an example tries
to connect to the metaspace using the example security token file.

The security domain controller for the ms metaspace takes care of ensuring that
security is applied to any example that connects to the metaspace using the
example security token file. Other than using a security token file when
connecting to a metaspace, there is nothing else that an application needs to do to
have security applied to it, unless the default mechanism for obtaining user
credentials for user authentication is not desired.

See ASUserAuthenticator, page 216 for an example of how to use the security API
callback mechanism to override how user credentials can be retrieved for user
authentication.
TIBCO ActiveSpaces Developer’s Guide

ASOperations | 173
ASOperations

The first example program you should examine is the ASOperations example.
ASOperations defines and joins (as a leech) a space called myspace that has a
very basic definition consisting of three fields.

You should launch more than one instance of ASOperations at the same time to
see the different instances interacting with each other over the same space (for
example, you can try the lock or compare and put operations).

Overview
ASOperations is a basic example that demonstrates how to connect to a
metaspace, define and join a space, and invoke the basic methods of the API for
performing operations on the space, such as put and get. ASOperations is the
first example that you should examine and run to get familiar with ActiveSpaces.
ASOperations is also sometimes run with other examples, so it is a good idea to
become familiar with it first.

The following are some of the features of ActiveSpaces that ASOperations
exercises:

• Metaspace Connect, close, begin transaction, commit transaction, rollback
transaction.

• Space Define, close, get, put, putAll, take, compare the previous tuple value
and if still the same do a put, get the number of entries in a space, display the
entries in the space, lock, unlock.

Starting ASOperations
The following examples show how to invoke ASOperations for each of the API
sets:

Java Invocation
java ASOperations -metaspace examplems -member_name op

C Invocation
ASOperations -metaspace examplems -member_name op
 TIBCO ActiveSpaces Developer’s Guide

174 | Chapter 5 Using the Example Code
.NET Invocation
AS_HOME\examples\dotnet\ASOperations.exe -metaspace examplems
-member_name op

ASOperations by default joins a space (myspace) as a leech. If you try to run
ASOperations using the default settings, you will get the following message
asking you to start a seeder:
waiting for the space to be ready...
please start 1 seeder nodes (ex. as-agent)

You have two options:

• Start an as-agent before running ASOperations.

• Run ASOperations and specify -role seeder as a command line option.

Starting ASOperations With Security
The following is an example of the command line options that you can use when
starting ASOperations to have it join the security domain exdomain and to use a
space with an additional encrypted field:

-discovery tcp://127.0.0.1:50000 -member_name op -security_token
exdomain_token.txt -encrypt_field

These command line options start ASOperations using the default metaspace
named ms and allow it to connect to a security domain controller that has been
started using the example security policy file example_policy.txt. When you
use ASOperations to put data into the space, you will see the following
additional prompt:
Put: Enter the value to be encrypted (string):

The value you enter at this prompt is stored into a field named secure_value
that is defined as a string. Any string value that you enter in response to this
prompt will be encrypted when it is stored in the space or when it is persisted. See
the section Data Encryption, page 146 in Chapter 4, “Implementing ActiveSpaces
Security” for information on encrypting data fields.

Using ASOperations
After ASOperations initializes, the following options are displayed, which allow
you to perform actions on the space or metaspace:

b - begin transaction

c - commit transaction

r - rollback transaction
TIBCO ActiveSpaces Developer’s Guide

ASOperations | 175
s - Displays the number of entries in the space.

br - Displays the entries in the space. If no filter is specified, all entries in the space
will be displayed.

p - put a tuple into a space

pm - put a list of tuples into a space

cp - do a compare and put of a tuple into a space

g - get a tuple from a space

t - take a tuple from a space

l - lock a tuple in a space

u - unlock a tuple in a space

q - exit the example

Some options prompt you for a key. The key is an integer value.

You might also be prompted for a value. A value is a string. When prompted for a
value, if you press Return instead of entering a string, the value is considered
null. For example, the following key/value pairs are valid:

 1, ant

 2, bat

 3,

 4, dog

 5, eel

Using ASOperations with Shared-Nothing Persistence

See Shared-Nothing Persistence, page 189 for detailed information on how to run
ASOperations using the built-in shared-nothing persistence feature.
 TIBCO ActiveSpaces Developer’s Guide

176 | Chapter 5 Using the Example Code
ASBatchOperations

ASBatchOperations demonstrates how to perform batch operations on spaces.

Overview
ASBatchOperations is similar to ASOperations, except that instead of getting or
putting one data item at a time, you can get or put a list of data items at one time.

The following are some of the features of ActiveSpaces that ASBatchOperations
exercises:

• Metaspace connect, close

• Space define, getAll, putAll, putAll and lockAll, compareAndPutAll, takeAll,
lockAll, unlockAll

Starting ASBatchOperations
The following examples show how to invoke ASBatchOperations for each of the
API sets:

Java Invocation
java ASBatchOperations -metaspace examplems -member_name batchop

C Invocation
ASBatchOperations -metaspace examplems -member_name batchop

.NET Invocation
AS_HOME\examples\dotnet\ASBatchOperations.exe -metaspace
examplems -member_name batchop

ASBatchOperations by default joins a space (myspace) as a leech. If you try to
run ASBatchOperations using the default settings, you will get the following
message asking you to start a seeder:
waiting for the space to be ready...
please start 1 seeder nodes (ex. as-agent)

You have two options:

• Start an as-agent before running ASBatchOperations.

• Run ASBatchOperations and specify -role seeder as a command line
option.
TIBCO ActiveSpaces Developer’s Guide

ASBatchOperations | 177
Starting ASBatchOperations With Security
The following example shows the command line options that you can use when
starting ASBatchOperations to have it join the security domain exdomain and
use a space with an additional encrypted field:

-discovery tcp://127.0.0.1:50000 -member_name batchop
-security_token exdomain_token.txt -encrypt_field

These command line options start ASBatchOperations using the default
metaspace named ms and allow it to connect to a security domain controller that
has been started using the example security policy file example_policy.txt.

When you use ASBatchOperations to put data into the space, you see the
following additional prompt:
Put All: Enter the value to be encrypted (string):

The value you enter at this prompt is stored into a field named secure_value,
which is defined as a string. Any string value that you enter in response to this
prompt is encrypted when it is stored in the space or when it is persisted.

See the section Data Encryption, page 146 in Chapter 4., “Implementing
ActiveSpaces Security” for information on encrypting data fields.

Using ASBatchOperations
After ASBatchOperations initializes, the following options are displayed from
the main loop of the program and allow you to perform actions on the space or
metaspace:

p - put all, allows you to enter a sequence of data to be put into the space

pl - put all and lock the space entries, same as p option except the space entries
are locked.

Locking means the entries cannot be modified but they can still be read. An entry
remains locked until it is specifically unlocked.

g - get all, allows the user to enter a list of keys for entries to be retrieved from the
space, retrieves the entries, then displays the entries.

t - take all, allows the user to enter a list of keys for entries to be removed from the
space, removes the entries, then displays the removed entries.

l - lock all, allows the user to enter a list of keys for entries to be locked in a space,
locks the entries, then displays the locked entries.

q - exit the program
 TIBCO ActiveSpaces Developer’s Guide

178 | Chapter 5 Using the Example Code
After each of the above options is performed, a list of suboptions is displayed to
continue to allow you to work with your list of entries. Suboptions are provided
for all of the main options, except t (take all), because the list of entries that were
originally taken from the space no longer exists in the space.

The following suboptions are available to be invoked on the list of space entries
generated while invoking the main options:

r - remove all entries in your list from the space

l - lock all entries in your list in the space

u - unlock all entries in your list in the space

p - put new values for your existing entries by doing a compareAndPutAll()

s - Exit the suboptions menu
TIBCO ActiveSpaces Developer’s Guide

ASChat | 179
ASChat

ASChat demonstrates how to build a peer-to-peer distributed application using
ActiveSpaces: a multi-user chat room.

Overview
ASChat exchanges messages with another running instance of ASChat. You
should run two instances of ASChat to see the exchange of messages in the space.

ASChat does not use the same default space as the other examples, but defines its
own simple space (ASChat), which has the following two fields:

• A mandatory key field called name of type String

• An optional field called message of type String

Each instance of ASChat that you run uses a single tuple to store the user's name
and message for 'putting' into the space. The program loops, waiting for the user
to enter a new message. The new message then replaces the old message in the
tuple before the tuple is put into the space again.

A listener callback is implemented for puts and takes on the space. When another
ASChat instance puts or takes messages to or from the space, the listener callback
is invoked and information about the put or take is displayed.

One interesting thing to note about how ASChat is implemented is that it uses the
Admin interface to define the ASChat space. Most of the other examples define a
space using the SpaceDef interface.
 TIBCO ActiveSpaces Developer’s Guide

180 | Chapter 5 Using the Example Code
Starting ASChat

The following examples show how to invoke ASChat for each of the API sets:

Java Invocation
java ASChat -metaspace examplems

C Invocation
AS_HOME\examples\dotnet\ASChat.exe -metaspace examplems

.NET Invocation
AS_HOME\examples\dotnet\ASChat.exe -metaspace examplems

ASChat is hard-coded to join the ASChat space as a seeder. So it is not necessary to
run other instances of as-agent for the ASChat space to have seeders.

Starting ASChat With Security
The following example shows the command line options that you can be use
when starting ASChat to have it join the security domain exdomain:

-discovery tcp://127.0.0.1:50000 -security_token exdomain_token.txt

These command line options start ASChat using the default metaspace named ms
and allow it to connect to a security domain controller that has been started using
the example security policy file example_policy.txt.

Using ASChat

After ASChat initializes, the following options are displayed from the main loop
of the program, which allow you to perform actions on the space or metaspace:
Please enter your name:

After you enter your name, the following message is displayed:
[<your name>] has entered the chat room!

Any message you now enter into the command window is displayed to all
members of the space in the form:
[<your name>] <your message>

Type quit in the command window to exit the program.
TIBCO ActiveSpaces Developer’s Guide

ASQuery (Java Only) | 181
ASQuery (Java Only)

The ASQuery example is provided only in a Java version.

Overview
ASQuery is a good example to look at to learn about how to compose search filter
strings for use when browsing a space. ASQuery first populates the default space
(myspace) with 1,000,000 tuples, and then displays the amount of time it took to
populate the space.

After the space is populated, ASQuery creates browsers using different searche
filters, scans the entries of the space using each browser, and displays the browse
statistics. ASQuery adds indexes to the default space (myspace) in order to speed
up the filtering of data when processing queries. Indexes are added for the 'key'
and 'value' fields.

Starting ASQuery
The following example shows how to invoke ASQuery in Java.

Java Invocation
java ASQuery -metaspace examplems -member_name query

ASQuery by default joins a space (myspace) as a leech. If you try to run ASQuery
using the default settings, you will get the following message asking you to start a
seeder:
waiting for the space to be ready...
please start 1 seeder nodes (ex. as-agent)

You have two options:

• Start an as-agent before running ASQuery.

• Run ASQuery and specify -role seeder as a command line option.

Starting AS Query With Security
The following example shows the command line options that you can use when
starting ASQuery to have it join the security domain exdomain and to use a space
with an additional encrypted field:

-discovery tcp://127.0.0.1:50000 -member_name query -security_token
exdomain_token.txt -encrypt_field
 TIBCO ActiveSpaces Developer’s Guide

182 | Chapter 5 Using the Example Code
These command line options start ASQuery using the default metaspace named ms
and allow it to connect to a security domain controller that has been started using
the example security policy file example_policy.txt. ASQuery will then
additionally populate an encrypted field named secure_value. Since encrypted
fields cannot be queried, additional queries on the encrypted field have not been
added to the example. See the section Data Encryption, page 146 in Chapter 4.,
“Implementing ActiveSpaces Security” for information on encrypting data fields.
TIBCO ActiveSpaces Developer’s Guide

ASPaint (Java and .NET Only) | 183
ASPaint (Java and .NET Only)

ASPaint is an implementation of a shared whiteboard. This example is provided
only for Java and .NET.

Overview
ASPaint showcases various features of ActiveSpaces, but is not designed to be
used as a template for coding best practices.

To get a full understanding of ASPaint, launch more than one instance of the
program so that you can see the eventing aspect of ActiveSpaces in action.

You can also check the seeded checkbox and see the distribution algorithm
working in a visual manner. Also try adding or removing seeders from the space
to see redistribution at work. You can also try filter ss and remote space
invocation.

Starting ASPaint

Java Invocation

In Java, you can start ASPaint in two ways:

1. By entering:
java com.tibco.paint.AsPaintApp

2. By entering
java -jar ASPaint.jar

.NET Invocation
AS_HOME\examples\dotnet\ASPaint.exe

Using ASPaint
When you invoke ASPaint, you are prompted to enter the following metaspace
connection attributes:

• Member name

Starting ASPaint using the -jar option requires that you start ASPaint from the
AS_HOME/examples/java directory, because the manifest in ASPaint.jar looks
for lib/as-common.jar in the current directory.
 TIBCO ActiveSpaces Developer’s Guide

184 | Chapter 5 Using the Example Code
• Metaspace name

• Discovery URL

• Listen URL

• Remote discovery URL

Enter these in the dialog window that appears.

ASPaint displays a window that allows you to draw into a "whiteboard." The
interface is similar to the MS Paint interface.

ASPaint creates a space named paint. The ASPaint example requires that two
seeders be connected to the paint space before you can use the tools to draw or
enter text on the whiteboard. Therefore, you should start a second instance of
ASPaint.

When both instances of ASPaint are running, what you draw on the whiteboard
of one ASPaint instance is automatically reflected on the whiteboard of the
second ASPaint instance.

If you check the Seeded check box, the command window indicates when a
member joins or leaves the metaspace.
TIBCO ActiveSpaces Developer’s Guide

ASPersistence | 185
ASPersistence

The ASPersistence example demonstrates how to implement the external
shared-all persistence interface.

Overview
With shared-all persistence, all nodes in a space persist their data into a single
data store. To use shared-all persistence with ActiveSpaces, you must implement
the Persister interface. The implemented persister is then used to store and
retrieve data from the data store.

The ASPersistence example provides two example implementations of the
Persister interface.

• The first implementation, SimplePersister, uses an in-memory HashMap as
the data store.

• The second implementation, ASPersister, uses a database as the data store.

The onWrite method of the persister is invoked when data is put into the space.

The onRead method of the persister is invoked when data is read from the data
store back into the space.To see data being read back out of the data store, the
space needs to be defined with a capacity so that when the capacity is exceeded,
the least recently used data in the space is ejected from the space. When data that
has been previously ejected from the space is read back into the space, you will
see the onRead method of the persister invoked.

The ASPersistence examples does not provide the means to read or write data
into the space. Therefore, you should run the ASOperations example program
along with the ASPersistence example.

Starting ASPersistence
The following examples show how to invoke ASPersistence for each of the API
sets:

Java Invocation
java ASPersistence -metaspace examplems -member_name sharedall
-capacity 2 -eviction_policy lru
 TIBCO ActiveSpaces Developer’s Guide

186 | Chapter 5 Using the Example Code
C Invocation
ASPersistence -metaspace examplems -member_name sharedall -capacity
2 -eviction_policy lru

.NET Invocation

AS_HOME\examples\dotnet\ASPersistence.exe -metaspace examplems
-member_name sharedall -capacity 2 -eviction_policy lru

The following examples indicate how to invoke ASOperations to work in
conjunction with the ASPersistence example so that you can see the various
methods of the persister being invoked.

Java Invocation for ASOperations with ASPersistence
java ASOperations -metaspace examplems -role seeder -persistence
shared_all -capacity 2 -eviction_policy lru

C Invocation for ASOperations with ASPersistence
ASOperations -metaspace examplems -role seeder -persistence
shared_all -capacity 2 -eviction_policy lru

.NET Invocation
AS_HOME\examples\dotnet\ASOperations.exe -metaspace examplems
-space shared_all_persisted -persistence share_all -capacity 2
-eviction_policy lru

Starting ASPersistence With Security
The following example shows the command line options that you can be use
when starting ASPersistence to have it join the security domain exdomain:

-discovery tcp://127.0.0.1:50000 -member_name sharedall -capacity 2
-eviction_policy lru -security_token exdomain_token.txt

To invoke ASOperations to work in conjunction with the ASPersistence example
when it has been started with security, use the following command line options:

ASPersistence does not use the default space but uses a basic space definition
and sets the persistence type of the space to 'shared-all'. ASPersistence uses a
default space name of shared_all_persisted to identify this slightly different
space so that you will not get a space definition mismatch with the other
examples which may already be running.
TIBCO ActiveSpaces Developer’s Guide

ASPersistence | 187
-discovery tcp://127.0.0.1:50000 -role seeder -persistence
shared_all -capacity 2 -eviction_policy lru -security_token
exdomain_token.txt

These command line options start ASPersistence and ASOperations using the
default metaspace name ms and allow them to connect to a security domain
controller that has been started using the example security policy file
example_policy.txt. Using ASPersistence

Use ASOperations to put the following data into the space:

 1, any
2, bat

3, cat

Each time a put is done using ASOperations, you will see the onWrite method of
the Persister interface invoked in the command window where the
ASPersistence example was started.

Since we have defined the space to have a capacity of 2 but we have put three
entries into the space, the first entry will be evicted from the space. To verify this,
enter br at the command prompt displayed by the ASOperations example and
press Enter when prompted for a filter. The last two entries put into the space
should be displayed.

Now use ASOperations to get the entry with an index of 1 back into the space.
Enter g for get in the command window of ASOperations. Enter 1 for the key and
press Enter. You will see the onRead method of the Persister interface invoked
in the ASPersistence command window.

Enter quit in the command window of the ASPersistence example to shut
down the application. The onClose method of the Persister interface is invoked
when ASPersistence is stopped.

Using ASPersistence with a Database

You can use the ASPersistence example with a database for the data store. The
default database supported in the code is PostgreSQL. The class
MySQLConnection is also provided to show you how easy it is to build on the
current ASPersistence example to support a different database.

Complete these steps to use the ASPersistence example with a database:

1. Ensure your database server is running.

Because encrypted fields cannot be persisted with shared all persistence, you
should not try to use the -encrypt_field command line option when starting
ASPersistence or ASOperations for this scenario.
 TIBCO ActiveSpaces Developer’s Guide

188 | Chapter 5 Using the Example Code
2. Create a database for use with the ASPersistence example.

3. Modify your CLASSPATH to include the JDBC driver jar file for your database

4. Modify the file ASPersistence.java as follows:

a. Uncomment the following import statement at the beginning of the file:
//import persistence.ASPersister;

b. Comment out the following import statement at the beginning of the file:
import persistence.SimplePersister;

c. Comment out the following lines in the ASPersistence constructor:
persister = space.setPersister(new
SimplePersister(spaceDef));

d. Uncomment the following line in the ASPersistence constructor:
//persister = space.setPersister(new ASPersister(metaspace));

5. Modify the file ASPersister.java as follows:

a. Ensure that the values for DB_NAME, DB_HOST, USER_NAME, and
USER_PASS are set appropriately for your database.

b. Ensure that JDBC_DRIVER and JDBC_URL are set appropriately for your
database.

c. In the onOpen method, ensure that the appropriate database connection
class is being instantiated.

6. Rebuild Examples.jar.

7. Invoke the ASPersistence and ASOperations examples as described in
Starting ASPersistence, page 185, and ensure that your CLASSPATH has been
set appropriately as described in Step 3.
TIBCO ActiveSpaces Developer’s Guide

Shared-Nothing Persistence | 189
Shared-Nothing Persistence

This example shows how to make an application be its own persister using the
internal shared-nothing persistence feature.

Overview
Shared-nothing persistence can be demonstrated using the ASOperations
example. With shared-nothing persistence, each seeder in the space stores its
space entries locally on disk.

Using ASOperations for shared-nothing persistence, you will be able to see how
data is recovered from disk. If all seeders in a space go down, data recovery is
initiated using as-admin after the seeders are brought back up.

The following is the default location for persisting data:

data_store_path/metaspace_name/space_name/member_name

Where data_store_path defaults to your user home directory. Use the -data_store
command line option to change the default data_store_path location.

Shared-nothing persistence is built into ActiveSpaces, so there is no persistence
interface that you need to implement. The only thing you have to do is to define a
space with a persistence type of shared-nothing.

Starting ASOperations for Shared-Nothing Persistence
The following examples show how to invoke ASOperations for shared-nothing
persistence.

Java Invocation

java ASOperations -metaspace examplems -space
shared_nothing_persisted -persistence shared_nothing -role seeder
[-data_store path]

C Invocation

ASOperations -metaspace examplems -space shared_nothing_persisted
-persistence shared_nothing -role seeder [-data_store path]

.NET Invocation

AS_HOME\examples\dotnet\ASOperations.exe -metaspace examplems
-persistence shared_nothing -role seeder [-data_store path]
 TIBCO ActiveSpaces Developer’s Guide

190 | Chapter 5 Using the Example Code
When using ASOperations for shared-nothing persistence, you must start
ASOperations as a seeder so that data will be stored on the node running
ASOperations. The basic space definition is used, but the persistence type of the
space is set to shared-nothing. To identify this slightly different space,
ASOperations uses a default space name of “shared_nothing_persisted” when it
detects that shared-nothing persistence has been specified. This is done to prevent
conflicts with other examples which may already be running and using the
default space definition.

Starting as-agents for Shared-Nothing Persistence
You can also run as-agents to provide additional persistence nodes for the space.
The following are examples of how to invoke as-agent to work in conjunction
with ASOperations when invoked for shared-nothing persistence:

Java Invocation

java [-d64] -jar AS_HOME/lib/as-agent.jar -metaspace examplems
[-data_store path]

C Invocation

AS_HOME/bin/as-agent.exe -metaspace examplems [-data_store path]

.NET Invocation

AS_HOME\bin\Agent.NET.exe -metaspace examplems [-data_store path]

Starting ASOperations for Shared-Nothing Persistence With Security
The following example shows the command line options that you can use when
starting ASOperations for shared-nothing persistence to have it join the security
domain exdomain:

-persistence shared_nothing -role seeder [-data_store path]
-security_token exdomain_token.txt -encrypt_field

These command line options start ASOperations using the default metaspace
named ms and allow it to connect to a security domain controller that has been
started using the example security policy file example_policy.txt.

When you use ASOperations to put data into the space, you will see the
following additional prompt:
Put: Enter the value to be encrypted (string):
TIBCO ActiveSpaces Developer’s Guide

Shared-Nothing Persistence | 191
The value you enter at this prompt is stored into a field named secure_value,
which is defined as a string. Any string value that you enter in response to this
prompt is encrypted when it is stored in the space and when it is persisted.

See the section Data Encryption, page 146 in Chapter 4., “Implementing
ActiveSpaces Security” for information on encrypting data fields.

Using Shared-Nothing Persistence
One of the interesting things to see demonstrated for shared-nothing persistence,
is how recovery occurs when all of the seeders for a space go down and then come
back up.

Complete these steps to see how a space is recovered when using ASOperations
for shared-nothing persistence:

1. Start ASOperations as described above.

We will refer to this process as ASOperations1.

2. Start another ASOperations as described above.

We will refer to this process as ASOperations2.

3. Put several entries into the space using either ASOperations1 or
ASOperations2.

4. Use the br command with ASOperations2 to verify the entries in the space.

5. Exit the ASOperations1 process (enter quit at the command line).

6. Use the br command with ASOperations2 to verify that the entries have been
redistributed to ASOperations2.

7. Exit the ASOperations2 process (enter quit at the command line).

8. Restart ASOperations2.

You will see a message indicating that the space is not ready and instructing
you to issue a recover space admin command.

9. Start as-admin and connect to the metaspace:
connect name "examplems"

10. Issue the following recover command in as-admin:
recover space shared_nothing_persisted with data

11. When you see the message indicating the persisted data has been loaded in
the window used to start ASOperations2, use the br command with
ASOperations2 to verify that the entries in the space have been restored.
 TIBCO ActiveSpaces Developer’s Guide

192 | Chapter 5 Using the Example Code
ASRequestReplyServer and ASRequestReplyClient

These examples show how two spaces can work together as a reply server and
reply client.

Overview
The ASRequestReplyClient and ASRequestReplyServer examples work
together to demonstrate how two spaces can be used by applications to
communicate in a request and reply manner. The two spaces are named request
and reply.

In this example, ASRequestReplyServer defines the spaces and
ASRequestReplyClient joins the already defined spaces. This is different from
most of the other examples where the space is always defined.

Another interesting thing to note about how ASRequestReplyServer is
implemented is that it uses the Admin interface to define the 'request' and 'reply'
spaces. Most of the other examples define a space using the SpaceDef interface.

ASRequestReplyClient loops, putting messages into the 'request' space. When it
is notified of messages in the 'reply' space, ASRequestReplyClient takes the
replies from the 'reply' space.

For every 100 replies received, ASRequestReplyClient prints a message
indicating the number of requests that have been sent and the number of replies
received.

ASRequestReplyServer periodically polls for messages on the 'request' space.
When a message is put into the 'request' space, ASRequestReplyServer takes it
from the space. The name of the ASRequestReplyServer is added to the original
message as the responder to the request. This slightly modified message is then
put into the 'reply' space. For every 100 requests received,
ASRequestReplyServer prints a message indicating the number of requests it has
processed.

The request space has a definition consisting of two fields:

• A mandatory key field called id of type 'integer'

• A mandatory key field called requester of type 'string'

The reply space has a definition consisting of three fields:

• A mandatory key field called id of type 'integer'

• A mandatory key field called requester of type 'string'

• A mandatory field called responder of type 'string'
TIBCO ActiveSpaces Developer’s Guide

ASRequestReplyServer and ASRequestReplyClient | 193
ASRequestReplyServer is a seeder for the request space and a leech for the
reply space.

ASRequestReplyClient is a leech for the request space and a seeder for the
reply space.

Starting ASRequestReplyServer
You should start ASRequestReplyServer first. The following examples indicate
how to invoke ASRequestReplyServer for each of the APIs.

Java Invocation
java ASRequestReplyServer -metaspace examplems -member_name
rrserver

C Invocation
ASRequestReplyServer -metaspace examplems -member_name rrserver

.NET Invocation
ASRequestReplyServer -metaspace examplems -member_name rrserver

You should start ASRequestReplyClient second. The following examples
indicate how to invoke ASRequestReplyClient for each of the APIs.

Starting ASRequestReplyClient
The following examples indicate how to invoke ASRequestReplyClient for each
of the APIs.

Java Invocation
java ASRequestReplyClient -metaspace examplems -member_name
rrclient

C Invocation
ASRequestReplyClient -metaspace examplems -member_name rrclient

.NET Invocation
ASRequestReplyClient -metaspace examplems -member_name rrclient
 TIBCO ActiveSpaces Developer’s Guide

194 | Chapter 5 Using the Example Code
Starting ASRequestReplyServer and ASRequestReplyClient with Security
The following example shows the command line options that you can use when
starting ASRequestReplyServer to have it join the security domain exdomain:

-discovery tcp://127.0.0.1:50000 -member_name rrserver
-security_token exdomain_token.txt

To invoke ASRequestReplyClient to work in conjunction with the
ASRequestReplyServer example when it has been started with security, use the
following command line options:

-discovery tcp://127.0.0.1:50000 -member_name rrclient
-security_token exdomain_token.txt

These command line options start ASRequestReplyServer and
ASRequestReplyClient using the default metaspace name ms and allow them to
connect to a security domain controller that has been starting using the example
security policy file example_policy.txt.
TIBCO ActiveSpaces Developer’s Guide

Remote Space Invocation: InvokeClient | 195
Remote Space Invocation: InvokeClient

The example directory for each API set also contains an example showing how to
implement and use remote space invocation.

Overview
The InvokeClient example demonstrates how to invoke a user defined method
on:

• An entry associated with a given key in a space

• Only on the invoking member of a space

• On all seeders in a space

• On all members of a space

Implementations of the Invocable and MemberInvocable interfaces are
provided.

Starting InvokeClient
The following examples show how to invoke InvokeClient for each API set.

Java Invocation
java InvokeClient -metaspace examplems -member_name invoke

C Invocation

InvokeClient -metaspace examplems -member_name invoke

.NET Invocation

AS_HOME/examples/dotnet/InvokeClient.exe -metaspace examplems
-member_name invoke

Starting InvokeClient with Security
The following example shows the command line options that you can use when
starting InvokeClient to have it join the security domain exdomain and to use a
space with an additional encrypted field:

-discovery tcp://127.0.0.1:50000 -member_name invoke
-security_token exdomain_token.txt -encrypt_field
 TIBCO ActiveSpaces Developer’s Guide

196 | Chapter 5 Using the Example Code
These command line options start InvokeClient using the default metaspace
named ms and allow it to connect to a security domain controller that has been
started using the example security policy file example_policy.txt. Using the
-encrypt_field command line option allows InvokeClient to connect to the
same space defined when ASOperations is started with security and the
-encrypt_field command line option.

Using InvokeClient
After InvokeClient initializes, the following options are displayed that allow
you to perform actions on the space:

• key invokes the user defined method on the space member that holds the
tuple with a key of 1.

• self invokes the user-defined method on the invoking member in the space
(e.g. InvokeClient).

• seeders invokes the user-defined method on all seeders in the space.

• members invokes the user defined method on all members in the space.

The Invocable interface is used when the key option is selected. The
MemberInvocable interface is used when the self, seeders, or members option is
selected.

The purpose of the key option is to see that the user-defined method is invoked
on the seeder that contains the entry with the key of 1. To see anything with the
key option, you should start up two instances of ASOperations, using the -role
seeder command line option, and put some entries into the space, making sure
that you have an entry with a key of 1.

When the example is run and the key option is selected, you will see the-user
defined method of the Invocable interface run by the seeder that contains the
entry with a key of 1.

The purpose of the other options is to let you see how the user-defined
implementation of MemberInvocable is called on different members of the space.
The InvokeClient example joins the space as a leech. To see what happens when
the user-defined method is invoked with these different options, start up two
instances of ASOperations, using the -role seeder command line option, along
with InvokeClient. In this case:

• The self option should cause the user-defined method to be invoked on
InvokeClient.

• The seeders option should cause the user-defined method to be invoked on
the other ASOperations instances.
TIBCO ActiveSpaces Developer’s Guide

Remote Space Invocation: InvokeClient | 197
• The members option should cause the user-defined method to be invoked on
InvokeClient and the other ASOperations instances.
 TIBCO ActiveSpaces Developer’s Guide

198 | Chapter 5 Using the Example Code
Overview of ASBrowser, ASEventBrowser, and ASListener

The ASBrowser, ASEventBrowser, and ASListener examples show how simple it
is to use the space browser and listener features to iterate over the contents of a
space, or to listen for events on a space. ASBrowser and ASListener do exactly
the same thing, but each uses a different set of ActiveSpaces API calls to achieve
its goal. ASEventBrowser implements an event listener. Examine all three
programs to evaluate when to use a browser and when to use a listener in your
own code.

These examples are also very useful when designing and debugging your own
applications. Since they do not care about the definition of the space being
browsed or listened to, they can be used, for example, to get a dump of the data
contained in a space, or to monitor the actions taken on a space by another
application.

For example, try to launch ASOperations and, at the same time, use ASListener
on the space called myspace to see the effects of the various space operations.

Do not forget to experiment with the timescope attribute as well.
TIBCO ActiveSpaces Developer’s Guide

ASBrowser | 199
ASBrowser

Overview
The ASBrowser example creates a space browser which, by default, retrieves all of
the entries in the default space 'myspace,’ displays them in the command
window, and then exits.

The ASBrowser example does not create any entries in the space. Therefore you
should run ASOperations to create the space and put data into it so you will have
something in the space to “browse.” See ASOperations, page 173 for more specific
information on running ASOperations.

The ASBrowser example accepts the following additional command line
arguments:

-timeout 0 | -1 | xxx where: 0=no wait (default), -1=wait forever,
xxx=timeout in milliseconds

-filter “” | filter_string where: “”=no filter (default)

-distribution_scope all | seeded (default: all)

-timescope snapshot | all | new (default: snapshot)

-browser get | take (default: get)

-prefetch entries_to_prefetch (default: 1000)

Starting ASBrowser
The following examples indicate how to invoke ASBrowser for each of the API
sets:

Java Invocation
java tools.ASBrowser -metaspace examplems -member_name browser

C Invocation
ASBrowser -metaspace examplems -member_name browser

.NET Invocation
ASBrowser -metaspace examplems -member_name browser
 TIBCO ActiveSpaces Developer’s Guide

200 | Chapter 5 Using the Example Code
Starting ASBrowser with Security
The following example shows the command line options that you can use when
starting ASBrowser to have it join the security domain exdomain :

-member_name browser -discovery tcp://127.0.0.1:50000
-security_token exdomain_token.txt

These command line options start ASBrowser using the default metaspace named
ms and allow it to connect to a security domain controller that has been started
using the example security policy file example_policy.txt.

Using ASBrowser
By varying the additional command line arguments of ASBrowser, you can affect
the behavior of the ASBrowser example. For example, to cause ASBrowser to
block and wait endlessly for any new entries added to the space, start ASBrowser
with the following additional command line options:
-timescope new -timeout -1
TIBCO ActiveSpaces Developer’s Guide

ASEventBrowser | 201
ASEventBrowser

Overview
The ASEventBrowser example creates an event browser for a space. When
started, the event browser displays all of the current entries in the space and then
blocks, waiting for new operations to occur on the space. When a new operation
occurs, the event browser displays the information about that event.

ASEventBrowser does not create any entries in the space. Therefore you should
run ASOperations to create the space and put data into it so you will have
something in the space to “browse." See ASOperations, page 173 for more
information on running ASOperations.

The ASEventBrowser example recognizes the following additional command line
arguments:

-timeout 0 | -1 | xxx where:
0 =n o wait (default)

-1 = wait forever
xxx=timeout in milliseconds

-filter “” | filter_string where: “”=no filter (default)

-distribution_scope all | seeded (default: all)

-timescope snapshot | all | new (default: snapshot)

Starting ASEventBrowser
The following examples indicate how to invoke ASEventBrowser for each API
set.

Java Invocation
java tools.ASEventBrowser -metaspace examplems -member_name
evtbrowser

C Invocation
ASEventBrowser -metaspace examplems -member_name evtbrowser

.NET Invocation
ASEventBrowser -metaspace examplems -member_name evtbrowser
 TIBCO ActiveSpaces Developer’s Guide

202 | Chapter 5 Using the Example Code
Starting ASEventBrowser with Security
The following example shows the command line options that you can use when
starting ASEventBrowser to have it join the security domain exdomain:

-member_name evtbrowser -discovery tcp://127.0.0.1:50000
-security_token exdomain_token.txt

These command line options start ASEventBrowser using the default metaspace
named ms and allow it to connect to a security domain controller that has been
started using the example security policy file example_policy.txt.

Using ASEventBrowser
By varying the additional command line arguments of the ASEventBrowser
example, you can affect the behavior of the ASEventBrowser example. For
example, to cause ASEventBrowser to only display new entries added to the
space, start ASEventBrowser with the following additional command line
options:
-timescope new
TIBCO ActiveSpaces Developer’s Guide

ASListener | 203
ASListener

Overview
The ASListener example creates a listener for a space. The listener callback is
invoked whenever a put, take, expire, seed, or unseed event occurs for an entry in
the space. The listener callback displays information about the event that caused
it to be invoked.

The ASListener example does not create any entries in the space. Therefore you
should run ASOperations to create the space and put data into it so you will have
something which triggers the ASListener example. he space and put data into it
so you will have something in the space to “browse.” See ASOperations, page 173
for more specific information on running ASOperations.

The ASListener example recognizes the following additional command line
arguments:

 -filter “” | _string where: “”=no filter (default)

 -distribution_scope all | seeded (default: all)

 -timescope snapshot | all | new | new_events (default: new)

Starting ASListener
The following examples describe how to invoke ASListener for each of the API
sets.

Java Invocation
java tools.ASListener -metaspace examplems -member_name listener

C Invocation
ASListener -metaspace examplems -member_name listener

.NET Invocation
ASListener -metaspace examplems -member_name listener

Starting ASListener with Security
The following example shows the command line options that you can use when
starting ASListener to have it join the security domain exdomain:
 TIBCO ActiveSpaces Developer’s Guide

204 | Chapter 5 Using the Example Code
-member_name listener -discovery tcp://127.0.0.1:50000
-security_token exdomain_token.txt

These command line options start ASListener using the default metaspace
named ms and allow it to connect to a security domain controller that has been
started using the example security policy file example_policy.txt.

Using ASListener
By varying the additional command line arguments of the ASListener example,
you can affect the behavior of ASListener. For example, to cause ASListener to
display all entries added to the space, start ASListener with the following
additional command line option:
-timescope all
TIBCO ActiveSpaces Developer’s Guide

MetaspaceMemberMonitor | 205
MetaspaceMemberMonitor

Overview
The MetaspaceMemberMonitor example creates a MetaspaceMemberListener for
a metaspace. The listener callback is invoked whenever a member joins, leaves or
changes their role in the metaspace (e.g. member vs manager). The listener
callback displays information about the event which caused it to be invoked.

MetaspaceMemberMonitor is only interested in events that affect the members of
a metaspace. If MetaspaceMemberMonitor connects to a metaspace with existing
members, it displays information about those members when it first starts up,
then display information about members as they connect to or leave the
metaspace.

Starting MetaspaceMemberMonitor
The following examples show how to invoke MetaspaceMemberMonitor for each
of the API sets.

Java Invocation
java tools.MetaspaceMemberMonitor -metaspace examplems -member_name
mmmonitor

C Invocation

MetaspaceMemberMonitor -metaspace examplems -member_name mmmonitor

.NET Invocation

AS_HOME\examples\dotnet\MetaspaceMemberMonitor.exe -metaspace
examplems -member_name mmmonitor
 TIBCO ActiveSpaces Developer’s Guide

206 | Chapter 5 Using the Example Code
Starting MetaspaceMemberMonitor with Security

The following example shows the command line options that you can use when
starting MetaspaceMemberMonitor to have it join the security domain exdomain.

-member_name mmmonitor -discovery tcp://127.0.0.1:50000
-security_token exdomain_token.txt

These command line options start MetaspaceMemberMonitor using the default
metaspace named ms and allow it to connect to a security domain controller that
has been started using the example security policy file example_policy.txt.

Using MetaspaceMemberMonitor
To see output from MetaspaceMemberMonitor, start MetaspaceMemberMonitor
then start as-agent, and then start other example programs such as ASChat or
ASOperations to see what is displayed when each program connects to or leaves
the metaspace.

Enter quit in the command window to exit the program.
TIBCO ActiveSpaces Developer’s Guide

SpaceDefMonitor | 207
SpaceDefMonitor

Overview
The SpaceDefMonitor example creates a SpaceDefListener for a metaspace. The
listener callback is invoked whenever a space is defined or dropped from the
metaspace. The listener callback displays information about the event that caused
it to be invoked.

SpaceDefMonitor is only interested in events that affect the definition of spaces
in a metaspace. If SpaceDefMonitor connects to a metaspace with existing spaces,
it displays information about those spaces when it first starts up, and then
displays information about spaces as they are defined in or dropped from the
metaspace.

Starting SpaceDefMonitor
The following examples show how to invoke SpaceDefMonitor for each of the
API sets.

Java Invocation
java tools.SpaceDefMonitor -metaspace examplems -member_name
sdmonitor

C Invocation

SpaceDefMonitor -metaspace examplems -member_name sdmonitor

.NET Invocation

AS_HOME/examples/dotnet/SpaceDefMonitor.exe -metaspace examplems
-member_name sdmonitor

Starting SpaceDefMonitor with Security
The following example shows the command line options that you can use when
starting SpaceDefMonitor to have it join the security domain exdomain.

-member_name sdmonitor -discovery tcp://127.0.0.1:50000
-security_token exdomain_token.txt
 TIBCO ActiveSpaces Developer’s Guide

208 | Chapter 5 Using the Example Code
These command line options start SpaceDefMonitor using the default metaspace
named ms and allow it to connect to a security domain controller that has been
started using the example security policy file example_policy.txt.

Using SpaceDefMonitor
To see output from SpaceDefMonitor, start SpaceDefMonitor, and then start
other example programs that define new spaces, such as ASChat or
ASOperations to see what is displayed when each program starts up. Exit all
example programs, then start up the Admin CLI and enter the following:
as-admin> connect name “examplems” membername “admin”

as-admin> show spaces

For each space displayed by show spaces, do the following and watch what is
displayed in the SpaceDefMonitor command window:
as-admin> drop “ASChat”

as-admin> drop “myspace”

as-admin> quit

Enter quit in the SpaceDefMonitor command window to exit the program.
TIBCO ActiveSpaces Developer’s Guide

SpaceStateMonitor | 209
SpaceStateMonitor

Overview
The SpaceStateMonitor example creates a SpaceStateListener for a metaspace.
The listener callback is invoked whenever the state of a space changes (e.g., READY,
FAILED). The listener callback displays information about the event which caused
it to be invoked.

SpaceStateMonitor is only interested in events which affect the state of spaces in
a metaspace. If SpaceStateMonitor connects to a metaspace with existing spaces, it
will display information about those spaces when it first starts up, then display
information about spaces as their state changes.

Starting SpaceStateMonitor
The following examples show how to invoke SpaceStateMonitor for each of the
API sets.

Java Invocation

java tools.SpaceStateMonitor -metaspace examplems -member_name
ssmonitor

C Invocation

SpaceStateMonitor -metaspace examplems -member_name ssmonitor

.NET Invocation

AS_HOME/examples/dotnet/SpaceStateMonitor.exe -metaspace
examplems -member_name ssmonitor

Starting SpaceStateMonitor with Security
The following example shows the command line options that you can use when
starting SpaceStateMonitor to have it join the security domain exdomain:

-member_name ssmonitor -discovery tcp://127.0.0.1:50000
-security_token exdomain_token.txt

You can listen to space state changes for a specific space by using the -space
command line option.
 TIBCO ActiveSpaces Developer’s Guide

210 | Chapter 5 Using the Example Code
These command line options start SpaceStateMonitor using the default
metaspace named ms and allow it to connect to a security domain controller that
has been started using the example security policy file example_policy.txt.

Using SpaceStateMonitor
To see output from SpaceStateMonitor, start SpaceStateMonitor, and then start
other example programs that define new spaces, such as ASChat or
ASOperations, to see what is displayed when each program starts up. Exit all
example programs and watch how the space state changes in the
SpaceStateMonitor command window.

Enter quit in the SpaceStateMonitor command window to exit the program.
TIBCO ActiveSpaces Developer’s Guide

SpaceMemberMonitor | 211
SpaceMemberMonitor

Overview
The SpaceMemberMonitor example creates a SpaceMemberListener for a space.
The listener callback is invoked whenever a member joins, leaves, or changes
their role in the space (e.g. leech vs seeder). The listener callback displays
information about the event which caused it to be invoked.

SpaceMemberMonitor is only interested in events that affect the members of an
existing space. It does not create the space itself.

If SpaceMemberMonitor connects to a metaspace with existing members, it
displays information about those members when it first starts up, and then
displays information about members as they connect to or leave the space.

Starting SpaceMemberMonitor
The following examples show how to invoke SpaceMemberMonitor for each of
the API sets.

Java Invocation

java tools.SpaceMemberMonitor -metaspace examplems -space myspace
-member_name smmonitor

C Invocation

SpaceMemberMonitor -metaspace examplems -space myspace -member_name
smmonitor

.NET Invocation

AS_HOME/examples/dotnet/SpaceMemberMonitor.exe -metaspace
examplems -space myspace -member_name smmonitor

Starting SpaceMemberMonitor with Security
The following example shows the command line options that you can use when
starting SpaceStateMonitor to have it join the security domain exdomain.

If the space name is not specified on the command line, an exception will be
thrown.
 TIBCO ActiveSpaces Developer’s Guide

212 | Chapter 5 Using the Example Code
-member_name smmonitor -discovery tcp://127.0.0.1:50000
-security_token exdomain_token.txt

These command line options start SpaceMemberMonitor using the default
metaspace named ms and allow it to connect to a security domain controller that
has been started using the example security policy file example_policy.txt.

Using SpaceMemberMonitor
To see output from SpaceMemberMonitor, start SpaceMemberMonitor and then
start as-agent or other example programs, such as ASOperations, to see what is
displayed when each program connects to or leaves the space.

Enter quit in the command window to exit the program.
TIBCO ActiveSpaces Developer’s Guide

ASDomainController | 213
ASDomainController

Overview
You can use the ASDomainController example as a security domain controller
when running the rest of the ActiveSpaces examples with security.
ASDomainController uses a security policy file to connect to a metaspace and
become a security domain controller for the metaspace.

The ASDomainController example does not connect to any spaces or provide
any functionality besides what is needed to act as a security domain controller.
Once ASDomainController successfully connects to a metaspace, it loops,
waiting for user input to tell it to shut down.

 Starting ASDomainController
The following examples show how to invoke ASDomainController for each of
the API sets. If you do not start the example from the security subdirectory of the
examples, be sure to enter the full path of the example_policy.txt file.

 Java Invocation
java security.ASDomainController -discovery tcp://127.0.0.1:50000
-listen
tcp://127.0.0.1:50000 -security_policy example_policy.txt

C Invocation

ASDomainController -discovery tcp://127.0.0.1:50000 -listen
tcp://127.0.0.1:50000 -security_policy example_policy.txt

.NET Invocation

AS_HOME/examples/dotnet/ASDomainController.exe -discovery
tcp://127.0.0.1:50000
-listen tcp://127.0.0.1:50000 -security_policy example_policy.txt
 TIBCO ActiveSpaces Developer’s Guide

214 | Chapter 5 Using the Example Code
Using ASDomainController
Once the ASDomainController example starts, you can then start other examples
using security. ASDomainController acts as the security domain controller for the
metaspace it connects to. In the above example invocation, the default
metaspace named ms is connected to by ASDomainController. To have
ASDomainController act as the security domain controller for a different
metaspace, use the -metaspace command line argument to specify the name of
the desired metaspace.

Once ASDomainController has started, it will displayed a short menu of options.
The following options are allowed:

h - display command line help information

q - exit ASDomainController

 User Authentication Example
Using the example security policy file, example_policy.txt, you can easily
enable user authentication using your local operating system for authentication.
When user authentication is enabled, any of the examples, which are started with
security using the security token file exdomain_token.txt will prompt the user
for their domain name, user name and password when trying to connect to a
metaspace in the 'exdomain' security domain.

To enable user authentication for use with the examples:

1. Change directory to the security subdirectory of the examples.

2. Open the file example_policy.txt with a text editor.

3. Locate the following line:
authentication=none

4. Change it to the following to enable system level user authentication:
authentication=userpwd;source=system;service=login;
hint=SystemLoginInformation

5. Save the file.

If you have only changed the user authentication setting in the security policy file,
it should not be necessary to regenerate the security token file. What is entered for
the hint is displayed to the user to give them an indication of which login
username and password to enter.

To run an example with user authentication:

1. Stop any examples that were started with security for the exdomain security
domain.
TIBCO ActiveSpaces Developer’s Guide

ASDomainController | 215
2. Restart any security domain controllers, for the exdomain security domain,
using the modified security policy file.

3. Start your example as you normally would start it with security.

When your example tries to connect to the metaspace, you will first be asked to
enter your system login domain, username, and password. If your user
information cannot be authenticated against your operating system, your
connection to the metaspace will be denied.
 TIBCO ActiveSpaces Developer’s Guide

216 | Chapter 5 Using the Example Code
 ASUserAuthenticator

Overview
When using user authentication, the default ActiveSpaces behavior of prompting
users to enter their authentication information may not be adequate. Therefore,
TIBCO ActiveSpaces provides a callback mechanism that allows you to customize
how user authentication information is retrieved for your users.

The ASUserAuthenticator example demonstrates how to use the user
authentication callback mechanism to implement your own functionality for
retrieving user authentication information. However, you must first have
configured the example security policy file to enable user authentication as
described in User Authentication Example, page 214. After
ASUserAuthenticator successfully connects to a metaspace, it loops, waiting for
user input to tell it to shut down.

 Starting ASUserAuthenticator
The following examples show how to invoke ASUserAuthenticator for each of
the API sets. If you do not start the example from the security subdirectory of
the examples, be sure to enter the full path of the exdomain_token.txt file.

Java Invocation

java security.ASUserAuthenticator -discovery tcp://127.0.0.1:50000
-security_token exdomain_token.txt

C Invocation

ASUserAuthenticator -discovery tcp://127.0.0.1:50000
-security_token exdomain_token.txt

.NET Invocation

AS_HOME/examples/dotnet/ASUserAuthenticator.exe -discovery
tcp://127.0.0.1:50000 -security_token exdomain_token.txt

Using ASUserAuthenticator
Once the ASUserAuthenticator example starts, you will see the following
prompts:
Enter user name and password for SystemLoginInfo
TIBCO ActiveSpaces Developer’s Guide

ASUserAuthenticator | 217
Login Domain:

Login User Name:

Login Password:

You will notice in this example that the password you enter is echoed back to
you. ASUserAuthenticator is only an example and uses the input mechanisms
provided by the implementation language. Various software packages are
available from third-party vendors which you can use to not echo what is being
input by the user.

ASUserAuthenticator connects to the default metaspace named ms. Once
ASUserAuthenticator has started, it will displayed a short menu of options.
The following options are allowed:

h - display command line help information

q - exit ASUserAuthenticator

User Access Control Example
User access control works in conjunction with user authentication. To get user
access control to work, you first have to enable user authentication as described in
the User Authentication Example, page 214.

The example security policy file example_policy.txt has a predefined user
named user1 who has been configured to have the following permissions for all
spaces in the default metaspace named ms:

• seeder

• read

• write

• encrypt

To enable user access control for you as the user, do the following:

1. Change directory to the security subdirectory of the examples.

2. Open the file example_policy.txt with a text editor.

3. Locate the following line:
access_control=false;default=deny

4. Change it to the following to enable user access control:
access_control=true;default=deny

5. Locate the line:
group1 = user1

6. Change user1 to your <domain\username>.
 TIBCO ActiveSpaces Developer’s Guide

218 | Chapter 5 Using the Example Code
7. Save the file.

To see how user access control works when running ASOperations with security,
do the following:

1. Stop any examples that were started with security for the exdomain security
domain.

2. Restart any security domain controllers, for the exdomain security domain,
using the modified security policy file.

3. Start ASOperations with security.

When ASOperations tries to connect to the metaspace, you will be prompted for
your user login information. After that ASOperations will join the space. You
should be able to do some puts and gets on the space and browse the space.
TIBCO ActiveSpaces Developer’s Guide

ASPerf | 219
ASPerf

Overview
ASPerf is an example that demonstrates how to perform timing measurements to
calculate how long it takes ActiveSpaces to perform an action. ASPerf consists of
a master and any number of slaves. The master is used to remotely invoke
methods on the slaves. Each remote invocation method on a slave times the action
being performed and the timings are returned in the results of the remote
invocation. The master then displays the results returned from each of the slaves.

The ASPerf example uses two different spaces:

• ASPerfCtrl Used by the master to remotely invoke methods on the slaves.

• ASPerfShared Used by all of the remote invocation methods of the slaves for
performing the actions of the remote invocation methods, such as putting data
into the space.

Additionally, each slave creates its own individual space, which the slave can use
instead of using the ASPerfShared space that it shares with all of the other slaves.
Remote invocations from the master indicate which space a slave should use. In
this way, you can see the timing differences between when a slave uses its own
local space or uses the shared space in its remote invocation methods.

The ASPerf master creates the ASPerfCtrl space and then joins it as a leech. Each
slave joins the ASPerfCtrl space as a seeder. In this way, the ASPerf master can
use remote invocation on all seeders to invoke the same remote invocation
method on all of the slaves of the ASPerfCtrl space.

ASPerf slaves can join the ASPerfShared space or their own local space as
seeders or leeches.

Whether a slave joins these spaces as a leech or a seeder is controlled by the
command line options of the ASPerf slave. The minimum number of seeders
required for the ASPerfShared space and the ASPerf slave's own space is one. So
if an ASPerf slave is started as a leech, an as-agent must also be run so that the
slave's own space will have a seeder.

Since an as-agent joins all spaces in a metaspace as a seeder, when the ASPerf
master tries to remotely invoke a method on all seeders of the ASPerfCtrl space,
the remote invocation is also be tried on the as-agent. Since the as-agent does
not know about the ASPerf remote invocation methods, as-agent reports an
error back to the ASPerf master. For this reason, a special version of as-agent,
ASPerfAgent, is provided with the ASPerf example.
 TIBCO ActiveSpaces Developer’s Guide

220 | Chapter 5 Using the Example Code
Similar to as-agent, ASPerfAgent joins spaces in a metaspace as a seeder and
thereby lends its computing resources to the space. However, ASPerfAgent
specifically does not join the ASPerfCtrl space. So when the ASPerf master does
remote invocations on all seeders of the ASPerfCtrl space, the remote invocation
is not be tried on the ASPerfAgent and unnecessary errors are not reported back
to the master.

Starting the ASPerf Master
The following are examples of how to invoke the ASPerf master for each of the
APIs:

Java Invocation

java ASPerf -metaspace examplems -member_name master

.NET Invocation

ASPerf.exe -metaspace examplems -member_name master

C Invocation

ASPerf.exe -metaspace examplems -member_name master

The ASPerf master joins the ASPerfCtrl space as a leech. When you start the
ASPerf master, you see the following message until an ASPerf slave is started:
Waiting for the control space to be ready (no slave connected
yet)...

After an ASPerf slave is started, the master continues, and you see the following
prompt, which allows you to enter commands to cause the remote invocation of
methods on the slaves:
Invoke on slaves (enter 'h' for help):

The following are some of the remote invocation methods that can be invoked
using the ASPerf master:

• LatencyGet, LatencyPut, LatencyTake Returns the execution times when space
operations are individually performed. For example, by default, LatencyPut
returns the time it takes to store 1000 tuples of data into a space by doing 1000
puts.

• ThroughputGet, ThroughputPut, ThroughputTake Returns the execution times
when space operations are performed as batches. For example, by default,
ThroughputPut returns the time it takes to store 1000 tuples of data into a
space by putting the tuples into the space in batches of 100.
TIBCO ActiveSpaces Developer’s Guide

ASPerf | 221
To see the full list of commands, enter h at the prompt after the ASPerf master
starts up.

Starting the ASPerf Slave
The following are examples of how to invoke an ASPerf slave for each of the
APIs:

Java Invocation

java ASPerfSlave -metaspace examplems -member_name slave1 -role
seeder

.NET Invocation

ASPerfSlave.exe -metaspace examplems -member_name slave1 -role
seeder

C Invocation

ASPerfSlave.exe -metaspace examplems -member_name slave1 -role
seeder

Starting the ASPerf Agent
The following are examples of how to invoke an ASPerf agent for each of the
APIs:

Java Invocation

java ASPerfAgent -metaspace examplems -member_name agent1

.NET Invocation

ASPerfAgent.exe -metaspace examplems -member_name agent1

C Invocation

ASPerfAgent.exe -metaspace examplems -member_name agent1
 TIBCO ActiveSpaces Developer’s Guide

222 | Chapter 5 Using the Example Code
TIBCO ActiveSpaces Developer’s Guide

Result and Status Codes | 223
Appendix A Result and Status Codes

Many space operations return a result object—or in C, a status value— or, in the
case of batch operations, a list of result objects. The operations that return a Result
always return a result even if the operation failed (likewise, a status is always
returned in C). Result objects always contain a status code (which is the same as
the status codes returned directly by the functions in C).

Each status code has one of three types: no error, error, or severe error. No error
indicates that the operation was successful, and data was returned. Errors indicate
that the operation was successful from a system standpoint, but no data could be
returned (because there was no tuple in the space or because the tuple in the space
was locked). Severe errors indicate that the operation failed because of a system
problem. If the status indicates an error or severe error, it is possible to get an
exception (or an error object in C) using the getError() or getSevereError()
methods of the Result (or in C, using tibasError_GetError() or
tibasError_GetSevereError()).

Result (and ResultList) also has convenience hasError() and
hasSevereError() methods that return true if the Result object (or any of the
Results contained in the list) has an Error or SevereError.

If the operation was successful and resulted in an tuple being returned, this tuple
can be retrieved from the Result object using the getEntry method, in this case it
is also possible to directly retrieve the tuple contained in that tuple using the
Result object's getTuple method.

If one of the objects passed as an argument to the space method is invalid, this
method will throw a runtime exception.

The following table lists status codes returned by TIBCO ActiveSpaces functions:

Table 8 Status Codes

Constant Type Description

TIBAS_OK no
error

The operation was successful and a tuple was found.

TIBAS_ALREADY_EXISTS error The operation failed because there is currently a tuple
in the space for the requested key field(s) value(s).
 TIBCO ActiveSpaces Developer’s Guide

224 | Appendix A Result and Status Codes
TIBAS_LOCKED error The operation failed because the tuple is locked by
another thread or process (depending on the
LockScope().

TIBAS_MISMATCHED_LOCK error The lock expired in the space and another member
already locked the tuple.

TIBAS_INCOMPATIBLE_TUPLE error The operation failed because the name of a field
contained in the Tuple is incompatible with the space
definition.

TIBAS_MISMATCHED_TUPLE error The operation failed because the Tuple is incompatible
with the space definition.

TIBAS_INCOMPATIBLE_TYPE severe
error

The operation failed because two data types involved
in an operation are incompatible

TIBAS_LIMIT_EXCEEDED error The operation failed because a predefined limit on the
space, such as capacity, has been exceeded.

TIBAS_INVALID_ARG severe
error

The operation failed because an invalid argument was
passed to an operation.

TIBAS_SYS_ERROR severe
error

The operation failed because of a system error.

Table 8 Status Codes

Constant Type Description
TIBCO ActiveSpaces Developer’s Guide

| 225
Glossary

A

ActiveSpaces distributed application system

A set of ActiveSpaces programs that cooperate to
fulfill a mission.

ActiveSpaces program

A program that uses ActiveSpaces software to
work collaboratively over a shared data set that
is represented by one or more tuple spaces.

ACL

Access Control List (ACL). A list of subjects and
groups and the permissions granted to the
subjects or to members of groups, which controls
access to ActiveSpaces resources. You specify
ACLs in the policy file for a security domain
with the access_control setting, which can be
set to true or false.

agent

A optional standalone process or daemon that is
part of ActiveSpaces and provides services or
features to the space. Using the Admin CLI, the
administrator launches ActiveSpaces agents on
the host or hosts where these services will run.
They currently provide the following services:

1. Persist the system spaces configuration
information to disk.

2. Provide additional scalability and stability to
spaces.

associative array

A collection of values with unique keys, where
each key is associated with one value. The keys

can be any object, not necessarily an integer. A
space can be used as an associative array.

authentication source

An ActiveSpaces component that presents
credentials to an external authenticator and
decides whether a supplied Credential—retrieved
by the Authenticator—is valid. The authentication
source can be an LDAP client, an OS or
Pluggable Authentication Modules (PAM) login,
a smart-card, an API invoker and so on. The
authenticator performs the verification by
connecting to an external resource (such as an
LDAP v3 directory server) or by invoking local
system calls, such as win32 LogonUser() or with
UNIX/Linux, pam_authenticate().

authenticator

An ActiveSpaces component that establishes a
unique association between a subject and an
identity through its credentials. The
authenticator securely obtains Credentials from
authenticating components to generate Subject—
Credential associations. The authenticator
converts and forwards the credential to the
component, which verifies its validity.

C

cache

A generic term commonly used to refer to a
repository of data that duplicates original values
stored elsewhere, making that data more readily
available to be fetched quickly where it is
 TIBCO ActiveSpaces Developer’s Guide

226 | Glossary
needed. In ActiveSpaces, a cache is distinguished
from a tuple space in that data may be evicted
from a cache without notification, for instance, to
make space for other data. In this case, the
evicted data, if needed later, will be fetched from
the original data store, of which the cache is
merely a copy. Data is never evicted from a space
without notification; it is only removed if it
expires or is deliberately taken out. It is possible
to configure a space to act as a cache by setting a
capacity and an eviction policy other than none
in the space's definition.

cluster

A group of linked computers working closely
together to increase scalability, and to maximize
performance and availability beyond what can
be achieved by a single computer of comparable
power.

coherency

When multiple identical copies of data are
maintained, coherency is a quality that indicates
the copies are kept in synch when the original
data changes.

credential

An object that can be used to establish the
identity of a requestor node. This can be data:

• Known to the requestor, such as a
username/password.

• Possessed by the requestor, such as an
X509v3 certificate, security token, shared
secret, IP address, and so on.

D

distributed cache

A cache that uses multiple locations for storage
of data.

distributed in-memory tuple space

A generic term for the category of software
product that includes ActiveSpaces. The data in
a tuple space is distributed over multiple
machines for scalability and failover, and it is
stored in memory for optimal performance.

data grid

A data store that is distributed over a cluster
comprised of multiple machines or members.
With ActiveSpaces, the capacity of the data grid
scales linearly as you add members to the cluster.

data partitioning

Distributing a set of data over a cluster of
members. ActiveSpaces performs data
partitioning transparently, based on the
members that have been provided to the tuple
space. Developers do not need to concern
themselves with which parts of the data are
stored on which members.

data

A means of providing fault tolerance where a
copy of data from one member is stored on
another member, so that no member can be a
single point of failure. When is enabled for a
space, the replicates are updated whenever tuple
data changes through a put or take
command. (A get command will not cause
replicates to be updated, since it does not change
the data.)

There are two kinds of , synchronous and
asynchronous. Synchronous will have an impact
on performance, since it involves putting (or
taking) data and replicating it in a single
transaction. With asynchronous , there is little
perceptible impact on performance, but there is a
small amount of time where the data is not fully
replicated.
TIBCO ActiveSpaces Developer’s Guide

Glossary | 227
Whether or not a space is replicated and, if so,
whether the is synchronous or asynchronous, is
specified when the space is created. The
administrator can also specify the degree of , that
is, how many replicas of the data will be created.

With synchronous , the administrator or
application has immediate verification of
whether or not the was successful, because if it
was not, then the put or take command that
triggered the attempted will itself fail, returning
an error message. In asynchronous mode, the
command will succeed, regardless of successful .
An application or administrator can listen to
advisory spaces to determine whether there was
a problem with for an instance of asynchronous .

If a space is being used as a cache-aside, the
space will normally be created without , since the
system of record for that data will be a database.
In this case, if the single member containing the
space goes down or is offline, the data can be
obtained from the database.

domain data key

Used for memory- and local-persistence
encryption. It can be generated or regenerated by
using the as-admin tool;.

E

entry

An entry represents a tuple that is stored in a
space. While a tuple is made up of a key and
value, an entry is made up of the tuple plus the
metadata associated with its being stored in a
space. In addition to details used internally by
ActiveSpaces, the metadata includes the entry’s
time-to-live value (TTL), that is, how much time
is left before the entry expires, at which time it
will be deleted from the space.

event

In ActiveSpaces, an event reflects a change to
some of the data in a space or a change in state of
a space or member.

event listener

See space listener.

event notification

An asynchronous message sent to event listeners
when data changes. The message takes the form
of an invocation of a callback method on the
space listener.

F

field

A field is a portion of a tuple, similar to a single
value (or row) in a column of a database table. A
field is associated with a name, a type, and a
value.

G

group

A group that can be used to organize users and
domain objects, thus simplifying administration.
Security groups allow you to assign the same
security permissions to a large numbers of users
or requestors, such as employees in a single
department or in a single location or nodes in a
security domain, ensuring that security
permissions are consistent across all members of
a group.

The security group can include:

• Individual subjects

• Other security groups
 TIBCO ActiveSpaces Developer’s Guide

228 | Glossary
For example, a security group named group3
can include users (user6 and user7) and also
other security groups, such as a group
named group2.

• Objects or entities
For example, My Ldap X509Cert CN, which
represents ian X509 v3certificate

H

hash map

An associative array that uses a hash function to
optimize search and insertion operations. The
hash function transforms the key into a hash, a
number that is used as an index in an array to
locate the values during a lookup.

I

Identity

A set of properties of an entity that can be used
to uniquely distinguish it from other entities. A
logical association with:

• An individual computer/node that is
running the ActiveSpaces software.

• A program or a program component that is
invoking the ActiveSpaces API.

K

key

A unique value based on the value of one or
more fields.

The key is used to implement the insertion
policy for a tuple. The key is also used by the
ActiveSpaces distribution algorithm to
determine how data is distributed.

L

leech

A member that joins a space but does not lend
any resources to the space, such as memory or
processing power. Distinct from a seeder.

listener

See space listener.

lock

An application can lock an entry so that the entry
cannot be modified (but can still be read) until
the lock is explicitly removed.

M

member

A process, either an application or an agent, that
is linked to the ActiveSpaces libraries and is
joined to a space as one of a cluster of members.
A single machine may contain more than one
member. A member can be a seeder or a leech,
depending on whether or not it lends resources
to the space.

A member can be a seeder in one space and a
leech in another.

metaspace

An administrative collection of system spaces
and user spaces sharing the same transport
argument, which includes a multicast address
that can be used for messages (event
notifications).
TIBCO ActiveSpaces Developer’s Guide

Glossary | 229
A metaspace is a container for managing a
number of user spaces, and a group of members
that are working together in a cluster. The
metaspace is the initial handle to ActiveSpaces.
An application or member first joins a
metaspace, and through it, gets access to other
objects and functionality.

N

node

A term sometimes used in place of the term
member. This usage can be confusing, because the
term node is most often used outside of
ActiveSpaces to refer to a machine, whereas
within ActiveSpaces, a single machine may
contain more than one member.

P

peer

A process that has connected to a metaspace and
joined a space as either a seeder or a leech.

permission

A specific set of access control permissions
possessed by either a user or a group, which
defines how to access Resources in the Security
Domain. Permissions are granted to specific
scopes—to metaspaces or spaces.

The privilege that is granted depends on the
scope level; for example, at the metaspace level,
specified metaspaces or all metaspaces can be
granted access to transactions, or to connections,
and at the space level, specified spaces or all
spaces can be granted access to read, write,
delete, browse, lock, or seed operations.

Rights or privileges are specified in a
permissions table that you code in the policy file
for a domain

R

relaxed coherency

If there are multiple copies of a tuple (due to or
local caching), any change to the tuple is
reflected in those copies as quickly as possible.
ActiveSpaces uses relaxed coherency in most
modes of operation. (See strict coherency.)

requestor

An ActiveSpaces node that requests access to
resources (by attempting to join one or more
metaspace) controlled by one or more Security
Domain Controllers.

resource

ActiveSpaces objects such as metaspaces, spaces
or tuples.

S

scalability

For data stores, the ability to contain
ever-increasing amounts of data. ActiveSpaces
offers linear scalability, meaning that storage
capacity and performance increase at a constant
rate as members are added to a space.

security domain

A context in which uniform and consistent
security settings can be enforced on a defined set
of metaspaces. A metaspace can only be
contained (managed) by one domain at a time.
Within a domain, secured transports are
negotiated between pairs of nodes, independent
 TIBCO ActiveSpaces Developer’s Guide

230 | Glossary
of other nodes. Memory- and local-persistence
encryption use a shared secret, stored protected
by the managing node’s identity (see the
definition for Security Domain Controller).

security domain controller

An ActiveSpaces node that is dedicated to
enforcing the policy definitions for one or more
Security Domains. You should set up multiple
security domain controllers for each security
domain to provide fault tolerance for security.

security policy

The definition of security preferences for one or
more Security Domains. The policy configuration
is specified in a policy file that you create by
using the as-admin define | create
security_policy command. The policy file
contains:

• A domain identity that you specify in the
command to create the security policy.
command.

For information on creating the domain
identity, see Creating a Security Policy File,
page 136.

• Optional RSA private keys and an X509v3
certificate that ActiveSpaces creates when
you create a policy file.

For information on creating the domain
identity, see Security Policy Files, page 135.

• Configuration keywords that specify specific
attributes of the security policy, such as
access lists, and transport quality (QoS).

security token

A file that is deployed on nodes that need to
connect to access- controlled and/or secured
ActiveSpaces Resources. The token comprises:

• An X509v3 node identity (optional). You can
specify a node identity when you run the
as-admin secpolicy new token command.

• An X509v3 trust anchor for a Security Domain
to establish initial trust. The trust anchor
consists of the security key and security
certificate for the domain which are
contained in the policy file for the domain.

• A discovery URL. This is provided in the
policy file.

• A transport service quality (QoS) identifier to
define the strength of the secured transport
between the client (see definition for
Requestor) and managing nodes. This is
provided in the policy file.

seeder

A member that joins a space and lends resources,
such as memory and processing power, to the
scalability of the space. Distinct from a leech.

In a distributed space, all peers are responsible
for seeding certain tuples.

In a non-distributed space, one of the peers is
assigned to be the seeder, determined by the
ActiveSpaces distribution algorithm.

Ideally, peers are relatively stable, since there is
overhead to reorganize the distribution of the
tuples among the remaining peers when a peer
leaves the space. For this reason, a transient
application—one that will leave and join the
space frequently—should generally be
configured to join the space as a leech, rather
than as a peer.

Note that agents are always seeders, not leeches.
Agents provide an efficient, stable means of
increasing the scalability of a space. Also, note
that multiple seeders cannot be created from a
single client program.
TIBCO ActiveSpaces Developer’s Guide

Glossary | 231
For each entry in a space, the ActiveSpaces
distribution algorithm designates one seeder as
the seeder of that tuple, whether or not the tuple
is replicated on other members. The seeder holds
and owns the authoritative copy of the complete
tuple.

If the space has multiple seeders, a tuple may be
held by different seeders at different times. If the
current seeder of the entry leaves the space,
another seeder is chosen as the entry’s new
seeder, and the entry is then copied over to the
new seeder.

Shared-All Persistence

With shared-all persistence, certain space
members are designated as persisters — to
provide the service of interacting with a
persistence layer, just as some of the space
members — the seeders — provide the basic
space service.

Shared-Nothing Persistence

Each node that joins a space as a seeder
maintains a copy of the space data on disk. Each
node that joins as a seeder writes its data to disk
and reads the data when needed for recovery
and for cache misses

space browser

A space browser, created with the ActiveSpaces
API, allows an application to iterate through the
entries in a space. There are four kinds of space
browsers: EventBrowser, GetBrowser,
TakeBrowser, and LockBrowser. All space
browsers have a single method, next, which
returns an entry to the calling process. Space
browsers are described in more detail in this
document and in the API documentation.

space listener

The portion of your code that comprises a
callback function to be invoked by ActiveSpaces
when certain data changes or certain events

occur. A listener is similar to a subscriber in a
publish-subscribe messaging system.

The events for which callback functions will be
invoked are lock, put, take, and unlock.

Depending on the distribution scope of the
listener two additional callback functions,
onSeed and onUnseed, can be invoked to
monitor seeder changes due to re-distribution of
entries when a seeder joins or leaves a space.

strict coherency

When there are multiple copies of a set of data
(due to or local caching), strict coherency means
that any change to the data must be applied to all
copies at the same time. Because this adversely
impacts performance, and because relaxed
coherency offers nearly the same degree of
coherence, ActiveSpaces provides strict
coherency only for spaces that are
non-distributed, that is, where only a single copy
of the data exists. (See relaxed coherency.)

subject

An entity that is associated with an Identity
through a Credential. A subject represents a
single aspect of a Credential; for example, the
name of a user or the common name value of the
distinguished name component of an X509v3
certificate.

system spaces

A set of administrative spaces that are created
and maintained by ActiveSpaces and are used to
describe the attributes of the spaces. Distinct
from user spaces.

T

tuple

A typed data object that is stored in a space.
Similar to a row in a database table.
 TIBCO ActiveSpaces Developer’s Guide

232 | Glossary
tuple space

A collection of tuples. Similar to a table in a
database.

U

user spaces

Spaces that are defined by the user. Distinct from
system spaces.
TIBCO ActiveSpaces Developer’s Guide

| 233
Index

A

ActiveSpaces distributed application system 225
ActiveSpaces features 3
ActiveSpaces program 225
agent 225
ASBrowser, ASEventBrowser and ASListener 192
ASOperations and ASBatchOperations 173
ASPerf 219
ASPersistence 185
ASRequestReplyServer and

ASRequestReplyClient 192
associative array 225

B

batch operations 116
batch versus blocking operations

23
benefits of programming with ActiveSpaces 3
building the examples 160

C

cache 225
cluster 226
coherency 226
concurrently updating data in a Space 47
connecting to the Metaspace 75
consuming or removing data from a Space 25
customer support xv

D

data grid 226
data partitioning 226
data replication 226
deployment 62
disconnecting from the Metaspace 80
distributed cache 226
distributed Data Cache 5
distributed in-memory tuple space 226
distributed Space 30

E

entry 227
event 227
event browsers 123
event listener 227
event notification 227

F

field 227
field definitions 95
filters 56

specifying strings 57

G

getting or taking a single Tuple from the Space 111
getting the list of user defined space names 82
getting the name and definition of a Space 110
grid computing 6
 TIBCO ActiveSpaces Developer’s Guide

234 | Index
H

hash map 228

I

in-memory operational Data Store 5

J

joining a Space 100

K

key 228
Key fields 20, 96

L

leaving a Space 101
leech 228
listener 228
Listeners 117
lock 228
locking and working with locked entries 117
locking data in a Space 48

M

member 228
metaspace 228
Metaspace membership 80
Metaspace name 75

N

networking considerations 62
node 229
non-distributed Space 31

O

operators supported in filters 56

P

peer 229
PGM (Pragmatic General Multicast) URL Format 76,

77
product overview 2

R

relaxed coherency 229
remote Space invocation 195
retrieving data from a Space 24
running the examples 164

S

scalability 229
scopes of a Space browser 51
seeder 230
Space attributes 90
space browser 231
Space definition through the Admin CLI 86
Space definition through the API 86
space listener 231
space-based architecture 6
SpaceEntry 117
SpaceEvent 120
TIBCO ActiveSpaces Developer’s Guide

Index | 235
storing a Tuple in a Space 112
storing data into a Space 23
strict coherency 231
support, contacting xv
system spaces 231

T

technical support xv
TIBCO Rendezvous Discovery URL Format 76
TIBCO_HOME xiii
transactions 61, 115
tuple 231
Tuple fields 107
tuple space 232

U

updating a Tuple in a Space 113
usage profiles 5
user spaces 232

W

what are Tuples, Entries, and Results? 49
what is a Metaspace? 14
what is a Space? 16
 TIBCO ActiveSpaces Developer’s Guide

236 | Index
TIBCO ActiveSpaces Developer’s Guide

	TIBCO ActiveSpaces®
	Contents
	Preface
	Related Documentation
	TIBCO ActiveSpaces Documentation
	Other TIBCO Product Documentation

	Typographical Conventions
	How to Contact TIBCO Support

	Chapter 1 Introduction
	Product Overview
	Benefits of TIBCO ActiveSpaces
	TIBCO ActiveSpaces Features

	Usage Profiles
	Distributed Data Cache
	In-Memory Operational Data Store
	Space-Based Architecture
	Grid Computing
	Deployment Models

	Chapter 2 TIBCO ActiveSpaces Concepts
	Introduction to TIBCO ActiveSpaces Applications
	Basic ActiveSpaces Terms
	What is a Metaspace?
	Metaspace Connection
	Metaspace Life Cycle

	What is a Space?
	Space Contents
	Differences Between ActiveSpaces and a Distributed Cache

	Tuples and Fields
	Field Type Conversion

	Key Fields and Indexes
	Key Fields
	Indexes

	Basic Operations on Tuples
	Batch Versions of Tuple Operations

	The Put Operation: Storing Data into a Space
	Batch Versus Blocking Operations

	Retrieving Data from a Space
	The Take Operation: Consuming or Removing Data from a Space
	Joining a Space: Members and Member Roles
	Seeders
	Leeches
	Processing Characteristics of Seeders versus Leeches
	Using the as-agent Process as a Seeder
	Using the as-agent Process to Implement Remote Clients
	When to Join the Space as a Seeder or a Leech

	Space Definition
	Overview of Space Attributes and Policies
	Field Definitions

	Distribution
	Distributed Space
	Non-Distributed Space

	Replication
	Degrees of Replication
	Phase Count and Phase Ratio: Tuning Redistribution and Replication
	Synchronous and Asynchronous Replication

	Host-Aware Replication
	Space Storage Options and Persistence
	RAM Storage
	Persistence
	Persistence Policy and Implementation

	Expiration: Time to Live and Tuple Locking
	Entry TTL
	Lock TTL
	LockWait

	Concurrently Updating Data in a Space
	Locking Data in a Space
	Results
	Browsers
	Space Browsers and the Event Browser

	Listeners
	Filters
	Remotely Invoking Code over a Space
	Transactions
	Deployment
	Joining a Space or Metaspace: Special Considerations
	Administrative Interfaces: AS-Admin, AS-Agent, and ASMM
	Using Remote Clients
	How Remote Client Communication Works

	ActiveSpaces Routing
	Implementing ActiveSpaces Routing
	Freeing a Router

	Performance Monitoring
	Miscellaneous Topics

	Chapter 3 Performing Basic TIBCO ActiveSpaces Tasks
	Connecting to the Metaspace
	Metaspace Name
	MemberDef Object

	Disconnecting from the Metaspace
	Metaspace Membership

	Getting the Connection’s Self Member Object
	Getting the List of User-defined Space Names
	Configuring Logging
	Java API
	C API

	Defining a Space
	Getting a Space Definition
	Dropping a Space
	Configuring Distribution Policy
	Defining Capacity
	Setting Up Host-Aware Replication
	Configuring EntryTTL, LockTTL, and LockWait
	Defining Data Fields
	Field Definitions
	Defining Key Fields
	Defining Key Fields for Distribution (Affinity)
	Adding Fields to a Previously Defined Space
	Adding and Dropping Indexes

	Joining and Leaving a Space
	Joining a Space
	Leaving a Space

	Setting up Persistence
	Persistence Type
	Persistence Policy
	API Operations for Setting up Persistence
	Setting up Recovery with Persistence

	Using Tuple Methods
	Getting the Name and Definition of a Space
	Reading and Writing in a Space
	Performing a Put Operation—Storing a Tuple in a Space
	Updating a Tuple in a Space

	Locking and Unlocking
	Using Transactions
	Creating and Committing or Rolling Back Transactions
	Space Operation Options

	Using Batch Operations
	Using Listeners
	Using SpaceEvent Objects
	Implementing a Space Browser: Querying the Space
	Using Event Browsers
	Enabling Performance Monitoring
	Using Remote Space Invocation
	Using a Space as a Cache
	Working with Remote Clients
	Steps for Connecting a Remote Client

	Chapter 4 Implementing ActiveSpaces Security
	Overview of ActiveSpaces Security
	ActiveSpaces Security Architecture

	Security Domain Controllers
	Setting Up a Node as a Security Domain Controller

	Security Policy Files
	Creating a Security Policy File
	Security Domain Settings
	Validating a Security Policy File
	Security Policy File Keys and Certificates

	Security Domain Requestors
	Connecting to a Metaspace Without Using a Security Token File

	Security Token Files
	Creating a Security Token File
	Limiting Metaspace Access
	Validating a Security Token File
	Security Token File Keys and Certificates
	Metaspace Access List

	Transport Security
	Restricting Transport Access
	Data Encryption
	Security Tracing and File Logging
	User Authentication
	Operating System User Authentication
	LDAP User Authentication
	LDAP Certificate Authentication
	Authentication Callback

	User Access Control
	Enabling User Access Control
	Access Control Groups
	Access Control Permissions
	Permissions Precedence

	Chapter 5 Using the Example Code
	Overview
	The Examples Directory

	Building the Examples
	Building the Java API Examples
	Building The C API Examples
	Building the .NET API Examples

	Running the Examples
	Running the Java API Examples
	Running the C API Examples
	Running the .NET API Examples
	Command Line Arguments

	Adding Security
	Example Security Policy File
	Example Security Token File

	ASOperations
	Overview
	Starting ASOperations
	Starting ASOperations With Security

	Put: Enter the value to be encrypted (string):
	Using ASOperations

	ASBatchOperations
	Overview
	Starting ASBatchOperations
	Starting ASBatchOperations With Security
	Using ASBatchOperations

	ASChat
	Overview
	Starting ASChat
	Starting ASChat With Security

	ASQuery (Java Only)
	Overview
	Starting ASQuery
	Starting AS Query With Security

	ASPaint (Java and .NET Only)
	Overview
	Starting ASPaint
	Using ASPaint

	ASPersistence
	Overview
	Starting ASPersistence
	Starting ASPersistence With Security

	Shared-Nothing Persistence
	Overview
	Starting ASOperations for Shared-Nothing Persistence
	Starting as-agents for Shared-Nothing Persistence
	Starting ASOperations for Shared-Nothing Persistence With Security
	Using Shared-Nothing Persistence

	ASRequestReplyServer and ASRequestReplyClient
	Overview
	Starting ASRequestReplyServer
	Starting ASRequestReplyClient
	Starting ASRequestReplyServer and ASRequestReplyClient with Security

	Remote Space Invocation: InvokeClient
	Overview
	Starting InvokeClient
	Starting InvokeClient with Security
	Using InvokeClient

	Overview of ASBrowser, ASEventBrowser, and ASListener
	ASBrowser
	Overview
	Starting ASBrowser
	Starting ASBrowser with Security
	Using ASBrowser

	ASEventBrowser
	Overview
	Starting ASEventBrowser
	Starting ASEventBrowser with Security
	Using ASEventBrowser

	ASListener
	Overview
	Starting ASListener
	Starting ASListener with Security
	Using ASListener

	MetaspaceMemberMonitor
	Overview
	Starting MetaspaceMemberMonitor
	Starting MetaspaceMemberMonitor with Security
	Using MetaspaceMemberMonitor

	SpaceDefMonitor
	Overview
	Starting SpaceDefMonitor
	Starting SpaceDefMonitor with Security
	Using SpaceDefMonitor

	SpaceStateMonitor
	Overview
	Starting SpaceStateMonitor
	Starting SpaceStateMonitor with Security
	Using SpaceStateMonitor

	SpaceMemberMonitor
	Overview
	Starting SpaceMemberMonitor
	Starting SpaceMemberMonitor with Security
	Using SpaceMemberMonitor

	ASDomainController
	Overview
	Starting ASDomainController
	Java Invocation
	Using ASDomainController
	User Authentication Example

	ASUserAuthenticator
	Overview
	Starting ASUserAuthenticator
	Using ASUserAuthenticator
	User Access Control Example

	ASPerf
	Overview
	Starting the ASPerf Master
	Starting the ASPerf Slave
	Starting the ASPerf Agent

	Appendix A Result and Status Codes
	Glossary
	Index

