
TIBCO® Adapter SDK

Programmer’s Guide

Software Release 5.8
November 2011

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.

TIBCO, The Power of Now, TIBCO Administrator, TIBCO Designer, TIBCO Enterprise, TIBCO Integration
Manager, TIBCO Rendezvous, and TIBCO Repository are either registered trademarks or trademarks of TIBCO
Software Inc. in the United States and/or other countries.

EJB, Java EE, J2EE, and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 1998-2011 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

| iii
Contents

Figures . xi

Tables . xiii

Preface .xv

Changes from the Previous Release of this Guide .xvi

Related Documentation . xvii
TIBCO Adapter SDK Documentation . xvii
Other TIBCO Product Documentation . xvii

Typographical Conventions . xviii

Connecting with TIBCO Resources .xxi
How to Join TIBCOmmunity .xxi
How to Access All TIBCO Documentation .xxi
How to Contact TIBCO Support .xxi

Chapter 1 Programming Requirements and TIBCO Adapter SDK Classes1

Requirements on Microsoft Windows . 2

Requirements on UNIX . 4
Environment Variables for UNIX Systems . 4
Compiling Requirements for UNIX Systems. 5

Java SDK Requirements . 13

TIBCO Adapter SDK Classes . 15

Chapter 2 Adapter Configuration .17

Overview . 18

Types of Configuration Information . 19

Configuring and Exporting the Project Repository . 20
Configuring an Adapter. 20
Exporting Project Repositories . 21

Specifying Configuration Information . 22
Command-Line Arguments. 22
Property Key. 26
MAppProperties . 26

Accessing Configuration Information . 27
 TIBCO Adapter SDK Programmer’s Guide

iv | Contents
Location of Configuration Information . 27
Server-based Repository Locator String . 27
Local Repository Locator String. 30
How Adapters Access Configuration Information . 31

Variable Substitution . 34
Variable Substitution Mechanism. 34
Specifying Variables. 34
Predefined Global Variables . 36

Properties Files . 39
Format of Properties File . 39
Recognized Property Keys . 40
Two Types of Properties . 40
Properties File Examples. 41

Chapter 3 Adapter Program Elements . 43

Overview . 44

MApp Application Manager . 45
Top-Level Control Flow . 46
Control Flow in Java . 48
Creating an MApp Instance . 49

Transport Protocol. 51
Publish/Subscribe Protocol . 51
Request/Reply Interactions . 52

Endpoints . 53
Creating Endpoints . 53
Changing Endpoint Quality of Service . 54

Transports, Wire Formats, and Message Formats . 56

Sessions . 58

Event Model . 60
Event Management Classes . 60
TIBCO Adapter Flow of Event Information. 61
Extending Adapter Event Classes . 62

Multiple Adapter Instances . 63

Chapter 4 Sending and Receiving Data . 65

Adapter Application Data . 66
Application Data Overview. 66
Application Data Message Format. 67

How Adapters Send Application Data . 68

How Adapters Receive Data . 69
TIBCO Adapter SDK Programmer’s Guide

Contents | v
Chapter 5 Tracing, Tracking, and Exception Handling. .71

Tracing . 72
Using Tracing Facilities. 72
Available Tracing Roles . 74
Multiple Traces and Sinks. 74
MTrace and MSink . 75
Sample XML Message Element . 76
Trace Message Format. 77
Configuring Tracing Using TIBCO Designer. 78
File Sink Management . 79

Tracking . 81
MTrackingInfo . 81
Tracking Example . 81

Exception Handling . 83
Exceptions in the C++ API . 83
Exceptions in the Java API . 83
Using Exceptions . 84
Designing an Exception-Handling Mechanism . 84
Exception Handling in Delayed Acknowledgement of Certified Messages. 86

Chapter 6 Metadata .89

Understanding TIBCO Adapter Metadata Management . 90
Uses for Metadata . 90
Metadata Definition. 91
MInstance Implementation . 92

Defining Metadata Classes . 93
Using TIBCO Designer . 93
Working With the AEXML Repository File . 94

Creating Classes Based on Metadata Objects . 96
Metadata Description Classes . 96
Metadata Hierarchy Example . 97

Creating Runtime Data . 98
Metadata Encapsulation Classes . 98
Metadata Attribute Encapsulation Classes . 98
Metadata Example . 99

Metadata Class Names . 101

Guidelines for Metadata Use . 102
Adapter Metadata Look-up . 102
How the SDK Performs Metadata Look-up. 102
Restrictions on Metadata . 103
Working with XML and XSD . 104

AE Schema Types and SDK Classes . 107
 TIBCO Adapter SDK Programmer’s Guide

vi | Contents
SDK Date and Time Classes . 107
Mapping AESchema Types to C++ MData Subclasses. 107
Mapping AESchema Types to Java Classes . 109

Chapter 7 TIBCO ActiveEnterprise Operation Model . 113

Overview . 114

ActiveEnterprise Operations . 115
Synchronous and Asynchronous . 115
Supported Invocation Protocols . 115
Implementing ActiveEnterprise Operations . 116

Implementing ActiveEnterprise Operations in C++ . 117
Synchronous Client Control Flow. 117
Asynchronous Client Control Flow. 118
Synchronous Server Control Flow . 119
Asynchronous Server Control Flow . 119

Implementing ActiveEnterprise Operations in Java . 120
Defining ActiveEnterprise Operation Elements . 120
Defining Endpoints and Protocols . 121
Defining and Invoking the Methods . 121

Chapter 8 Advanced Features. 123

Multithreaded Adapters . 124
Deciding on Multithreaded Implementation . 124
Multithreading and MDispatcher . 125
Multithreading Scenarios . 126
Writing a Multithreaded Adapter with the C++ SDK. 127
Writing a Multithreaded Adapter with the Java SDK . 128

Adapter SDK Unicode Support . 130
Prespecifying Encoding . 130
SDK-Internal C++ Unicode Type Conversion . 131
Specifying the Wire Format Encoding . 132
How TIBCO Administrator Determines Encoding . 132

Preregistering a Subscription Service . 134

Setting Data to NULL Explicitly . 135

TIBCO Adapter Wire Formats . 136
Wire Formats and Message Formats. 136
Control Information . 136

Advisory Handling . 138
Receiving Advisory Messages. 138
Advisory Listeners . 139
Advisory Publisher . 140
Advisory Subject Format . 140
TIBCO Adapter SDK Programmer’s Guide

Contents | vii
Advisory Message Format . 141
User-Defined Advisories . 142

Using the MPlugin Class . 143
Defining a Plug-in . 143
Configuring a Plug-in . 143
Running an Adapter with a Plug-in . 144

Transformation Plug-in. 145
Usage Scenarios . 145
Implementation . 145
Example . 146

Subject Names . 148
Subject Name Syntax . 148
Using Wildcards to Receive Related Subjects . 149
Distinguished Subject Names. 151

Chapter 9 TIBCO Adapters and TIBCO Hawk .153

TIBCO Adapter SDK and TIBCO Hawk. 154
TIBCO Hawk Overview. 154
TIBCO Hawk and Adapter Applications . 155

Predefined TIBCO Hawk Microagent Methods . 156
Terminology . 156
Microagents Provided by the SDK . 156

Configuring the TIBCO Hawk Microagents . 158

TIBCO Adapter SDK API to TIBCO Hawk . 159
TIBCO Hawk Integration Classes. 159

Creating User-Defined TIBCO Hawk Methods . 160
Creating TIBCO Hawk Methods in C++ . 160
Creating TIBCO Hawk Methods in Java . 161

Chapter 10 Getting Started: Hello World Adapter .163

Prerequisites . 164

Preparing the Adapter Configuration . 165

The Adapter Program . 168
Hello World Code in C++ . 168
Hello World Code in Java . 170

Chapter 11 Custom Adapter Example: zapadapter. .173

Overview . 174

Analysis and Design . 175
Problem Statement . 175
Elements of Implementation . 176
 TIBCO Adapter SDK Programmer’s Guide

viii | Contents
Components of ZapAdapter Sample Application . 176

Specifying Configuration Information . 178

Implementing the Adapter Code . 185

Chapter 12 Creating a Deployable Custom Adapter . 187

Overview . 188

Setting Up the Example . 189

Modifying Code for TIBCO Administrator Compliance . 190
Adding MHostInfo . 190
Adding MAdapterServiceInfo . 192
Implementing Custom Advisory Listener . 192
Implementing Standard ActiveEnterprise Tracing with MMessageBundle. 193

Configuring the Adapter . 195

Adding the Adapter to the Domain . 198
Creating an Alias Library in TIBCO Designer . 198
Creating EAR File in TIBCO Designer . 198
Adding the ZapAdapter to the TIBCO Administrator Domain . 200
Creating the ZapAdapter Application in the TIBCO Administrator Domain . 201
Deploying, Starting, and Stopping the Adapter . 203

Chapter 13 TIBCO Wrapper Utility . 205

Overview . 206

Running an Adapter as a Microsoft Windows Service . 207
Java Adapters . 207
C++ Adapters. 208

Using the TIBCO Wrapper Under UNIX . 211

Source Code Changes . 212
Java Only . 212
C++ Only . 213
Wrapper Sample Code . 213

Wrapper Properties . 214
Wrapper Settable Properties . 214
Properties Files . 220

Command Line Options . 221

Appendix A SDK Programming Guidelines . 223

General SDK Best Practices. 224

MBusinessDocument and MAdvisoryDocument . 226

Using Distributed Processes for Load Balancing . 228

Connection Management . 230
TIBCO Adapter SDK Programmer’s Guide

Contents | ix
Security Considerations. 231
TIBCO Administrator Administration Server Access. 231
Password Obfuscation . 232
Data Security . 232

TIBCO Rendezvous Programming Guidelines . 233

C++ Utility Classes and Methods. 238
MList, MMap, MString, and MWString . 238
The downCast() Method . 238
SDK Enumerators. 238
SDK Types . 239

JMS in Adapter SDK . 240
JMS Implementation . 240
JMS Features . 241

Appendix B TIBCO Adapter Standards .243

TIBCO Rendezvous License Ticket . 244

TIBCO Runtime Agent Considerations . 245

Adapter Configuration Requirements. 246

Adapter Services Requirements . 247
Publication Service and Subscription Service . 247
Request Response Service and Request Response Invocation Service . 248

Integration Requirements. 249
Integration with ActiveEnterprise . 249
Integration with TIBCO ActiveMatrix BusinessWorks . 250
Integration with TIBCO Administrator . 250

Appendix C TIBCO Adapter SDK Hawk Microagents and Methods .253

Overview . 254

Available Microagents . 255
COM.TIBCO.ADAPTER::activateTraceRole() . 257
COM.TIBCO.ADAPTER::deactivateTraceRole() . 258
COM.TIBCO.ADAPTER::getAdapterServiceInformation() . 259
COM.TIBCO.ADAPTER::getComponents() . 260
COM.TIBCO.ADAPTER::getConfig() . 261
COM.TIBCO.ADAPTER::getConfigProperties() . 262
COM.TIBCO.ADAPTER::getHostInformation(). 263
COM.TIBCO.ADAPTER::getRvConfig() . 264
COM.TIBCO.ADAPTER::getRvQueueInfo(). 265
COM.TIBCO.ADAPTER::getServerLatency(). 266
COM.TIBCO.ADAPTER::getStatus() . 267
COM.TIBCO.ADAPTER::getTraceSinks() . 268
COM.TIBCO.ADAPTER::getVersion() . 269
 TIBCO Adapter SDK Programmer’s Guide

x | Contents
COM.TIBCO.ADAPTER::preRegisterListener(). 270
COM.TIBCO.ADAPTER::reviewLedger(). 271
COM.TIBCO.ADAPTER::setTraceSinks() . 272
COM.TIBCO.ADAPTER::stopApplicationInstance() . 273
COM.TIBCO.ADAPTER::unRegisterListener() . 274

Index . 275
TIBCO Adapter SDK Programmer’s Guide

Figures | xi
Figures

Figure 1 Adapter Configuration Overview . 18

Figure 2 Adapter Configuration in TIBCO Designer . 21

Figure 3 Global Variables Tab . 35

Figure 4 Adapter Control Flow (C++) . 46

Figure 5 Adapter Publisher. 51

Figure 6 Adapter Subscriber . 51

Figure 7 Demand-Driven Request/Reply Interactions . 52

Figure 8 Default Session . 58

Figure 9 Event Management Class Hierarchy . 60

Figure 10 TIBCO Adapter Event Model . 62

Figure 11 One Adapter with Multiple Instances . 63

Figure 12 Assigning Different Trace Messages to Different Sinks . 75

Figure 13 Configure Tracing. 79

Figure 14 SDK MException Class Hierarchy . 84

Figure 15 Metadata Creation and Usage Overview . 91

Figure 16 Metadata Runtime Implementation . 92

Figure 17 Defining Metadata with TIBCO Designer . 94

Figure 18 Access an XSD from an AESchema Defined Class. 105

Figure 19 Control Flow for Synchronous Clients . 117

Figure 20 Control Flow for Asynchronous Clients . 118

Figure 21 Multithreading for Single Event Queue . 126

Figure 22 Scenarios of Encoding Formats . 133

Figure 23 Create the HelloWorldAdapter . 165

Figure 24 Add Generic Adapter Configuration Resource. 166

Figure 25 ZAPAdapter and the TIBCO Enterprise Model. 175

Figure 26 Create a Folder for Schema Data . 178

Figure 27 Create a Class . 179

Figure 28 Add an Attribute . 180
 TIBCO Adapter SDK Programmer’s Guide

xii | Figures
Figure 29 Adapter Configuration . 181

Figure 30 Add a Publication Service . 182

Figure 31 Add a Timer. 183

Figure 32 Edit Adapter XML . 184

Figure 33 Link Schema and Publisher. 184

Figure 34 Monitoring Tab . 195

Figure 35 fileSink Configuration . 196

Figure 36 hawkSink Configuration. 197

Figure 37 Advisories Configuration . 197

Figure 38 Add an Adapter Archive . 200

Figure 39 Create New Application. 202

Figure 40 Configuration Console. 203
TIBCO Adapter SDK Programmer’s Guide

Tables | xiii
Tables

Table 1 General Typographical Conventions . xviii

Table 2 Syntax Typographical Conventions . xix

Table 3 Environment Variables for Microsoft Windows. 2

Table 4 Shared Libraries for Microsoft Windows. 2

Table 5 Environment Variables for UNIX Systems . 4

Table 6 Solaris Development on SPARC . 5

Table 7 Solaris Development on X86 . 6

Table 8 HP-UX Development on PA-RISC . 8

Table 9 HP-UX 11iv2, 11iv3 Development on Itanium 2. 9

Table 10 AIX Development . 10

Table 11 Linux Development . 11

Table 12 TIBCO Adapter SDK Classes . 15

Table 13 Command-Line Arguments . 23

Table 14 Optional Parameters for Server-based Locator String (TIBCO Rendezvous) 28

Table 15 Optional Parameters for Server-based Locator String (HTTP) . 29

Table 16 Optional Parameters for Local Repository Locator String . 30

Table 17 Predefined Global Variables . 36

Table 18 Message Formats . 57

Table 19 Endpoints and TIBCO Rendezvous Sessions . 59

Table 20 Message Formats . 67

Table 21 Predefined Roles . 74

Table 22 Trace Message Fields . 77

Table 23 Trace Message Details . 77

Table 24 Attributes Accessible to Custom Adapters . 96

Table 25 Metadata Hierarchy Example. 97

Table 26 SDK Date and Time Classes . 107

Table 27 Mapping AESchema Types to C++ MData Subclasses. 108

Table 28 Mapping AESchema Types to Java Classes . 109
 TIBCO Adapter SDK Programmer’s Guide

xiv | Tables
Table 29 Types Supported for Attributes . 111

Table 30 get() and isNullData() . 135

Table 31 aeRvMsg and aeXml Control Information . 137

Table 32 Advisory Sources . 139

Table 33 Advisory Message Fields. 140

Table 34 Function and Method for a Plug-in . 143

Table 35 Special Characters in Subject Names. 149

Table 36 Using Wildcards to Receive Related Subjects . 150

Table 37 Invalid Wildcards in Subject Names . 150

Table 38 Subject Names with Special Meanings . 151

Table 39 ZapAdapter Files . 177

Table 40 Add Custom Software . 201

Table 41 Wrapper Settable Properties . 214

Table 42 Command-line Options (all platforms) . 221

Table 43 Command-line Options (Microsoft Windows only). 221

Table 44 C++ SDK Enumerators . 239

Table 45 Microagent Methods . 255
TIBCO Adapter SDK Programmer’s Guide

| xv
Preface

TIBCO Adapter SDK (Software Development Kit) is a class library that facilitates
adapter development. All adapters implemented using TIBCO Adapter SDK have
the same external interface and consistently plug in to the overall TIBCO
ActiveEnterprise product suite.

Topics

• Changes from the Previous Release of this Guide, page xvi

• Related Documentation, page xvii

• Typographical Conventions, page xviii

• Connecting with TIBCO Resources, page xxi
 TIBCO Adapter SDK Programmer’s Guide

xvi | Changes from the Previous Release of this Guide
Changes from the Previous Release of this Guide

This section itemizes the major changes from the previous release of this guide.

MSVC++ 8 SP1

The MSVC++ 8 SP1 compiler is supported on Windows platforms in this release. Refer to
Requirements on Microsoft Windows on page 2 for more information.
TIBCO Adapter SDK Programmer’s Guide

Preface | xvii
Related Documentation

This section lists documentation resources you may find useful.

TIBCO Adapter SDK Documentation

The following documents form the TIBCO Adapter SDK documentation set:

• TIBCO Adapter SDK Concepts Read this manual before reading any other book
in the documentation set to familiarize yourself with the product and its use.

• TIBCO Adapter SDK Installation Read this manual for instructions on site
preparation and installation.

• TIBCO Adapter SDK Programmer’s Guide Read this manual for details on
implementing a custom adapter. This manual also discusses configuration
and programming, and provides example code fragments.

• TIBCO Adapter SDK Status Codes A reference for the message codes used by
TIBCO Adapter SDK.

• TIBCO API Reference Provides online documentation for the exposed
interfaces, classes, and methods of the TIBCO Adapter C++ and Java APIs.

• TIBCO Adapter SDK Release Notes Read the release notes for a list of new and
changed features. This document also contains lists of closed and known
issues for this release.

Other TIBCO Product Documentation

You may find it useful to read the documentation for the following TIBCO
products:

• TIBCO ActiveMatrix BusinessWorks™

• TIBCO ActiveEnterprise™

• TIBCO Designer™

• TIBCO Administrator™

• TIBCO Rendezvous®

• TIBCO Enterprise Message Service™

• TIBCO Hawk®

• TIBCO Runtime Agent™
 TIBCO Adapter SDK Programmer’s Guide

xviii | Typographical Conventions
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

ENV_NAME

TIBCO_HOME

SDK_HOME

TIBCO products are installed into an installation environment. A product
installed into an installation environment does not access components in other
installation environments. Incompatible products and multiple instances of the
same product must be installed into different installation environments.

An installation environment consists of the following properties:

• Name Identifies the installation environment. This name is referenced in
documentation as ENV_NAME. On Microsoft Windows, the name is
appended to the name of Windows services created by the installer and is a
component of the path to the product shortcut in the Windows Start > All
Programs menu.

• Path The folder into which the product is installed. This folder is referenced
in documentation as TIBCO_HOME.

TIBCO Adapter SDK is installed into a directory within a TIBCO_HOME. This
directory is referenced in documentation as SDK_HOME. The default value of
SDK_HOME depends on the operating system. For example, on Windows
systems, the default value is C:\tibco\adapter\SDK\version_number.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]
TIBCO Adapter SDK Programmer’s Guide

Preface | xix
italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms. For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

Key
combinations

Key names separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand para1 | param2 | param3
 TIBCO Adapter SDK Programmer’s Guide

xx | Typographical Conventions
{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}

Table 2 Syntax Typographical Conventions

Convention Use
TIBCO Adapter SDK Programmer’s Guide

Preface | xxi
Connecting with TIBCO Resources

How to Join TIBCOmmunity

TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access All TIBCO Documentation

After you join TIBCOmmunity, you can access the documentation for all
supported product versions here:

http://docs.tibco.com/TibcoDoc

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows:

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a username and password. If you do not have a
username, you can request one.
 TIBCO Adapter SDK Programmer’s Guide

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com/TibcoDoc
http://www.tibcommunity.com

xxii | Connecting with TIBCO Resources
TIBCO Adapter SDK Programmer’s Guide

| 1
Chapter 1 Programming Requirements and TIBCO
Adapter SDK Classes

This chapter lists the TIBCO Adapter SDK programming requirements on
Microsoft Windows and UNIX systems. This chapter also provides an overview
of the major classes in TIBCO Adapter SDK.

Topics

• Requirements on Microsoft Windows, page 2

• Requirements on UNIX, page 4

• Java SDK Requirements, page 13

• TIBCO Adapter SDK Classes, page 15
 TIBCO Adapter SDK Programmer’s Guide

2 | Chapter 1 Programming Requirements and TIBCO Adapter SDK Classes
Requirements on Microsoft Windows

Table 3 and Table 4 list the environment variables and shared libraries required
for Microsoft Windows.

Table 3 Environment Variables for Microsoft Windows

Variable Must Include Example (Command Line)

PATH TIBCO Adapter SDK installation
folder's bin folders.

If using TIBCO Enterprise Message
Service, include the ems entry. If
using TIBCO Enterprise for JMS,
use jms in the path instead of ems.

SET
PATH=C:\tibco\adapter\sdk\version_number\bin
;C:\tibco\tibrv\version_number\bin;C:\tibco\
tpcl\version_number\bin;C:\tibco\ems\version_n
umber\bin;%PATH%

INCLUDE TIBCO Adapter SDK installation
folder's include folder.

SET
INCLUDE=C:\tibco\adapter\sdk\version_number\
include;C:\tibco\tibrv\version_number\includ
e;C:\tibco\tpcl\version_number\include;C:\ti
bco\tpcl\version_number\include\xercesc;%INC
LUDE%

LIB TIBCO Adapter SDK installation
folder's lib folder.

SET
LIB=C:\tibco\adapter\sdk\version_number\lib;
C:\tibco\tibrv\version_number\lib;C:\tibco\t
pcl\version_number\lib;%LIB%

The environment variables must also be set appropriately for TIBCO Rendezvous
and TIBCO Designer. See the relevant product documentation for more
information.

Table 4 Shared Libraries for Microsoft Windows

Item Description

Supported Platform Refer to the readme file for the supported platform.

Compiler MSVC++ 8 SP1

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include files.

TIBCO Enterprise Message Service include files.
TIBCO Adapter SDK Programmer’s Guide

Requirements on Microsoft Windows | 3
Preprocessor symbols none

SDK library (32-bit platforms) SDK_HOME/lib/maverick58d.lib (debug) or
SDK_HOME/lib/maverick58.lib (release)

(64-bit platforms) SDK_HOME/lib/64/maverick58d.lib (debug) or
SDK_HOME/lib/64/maverick58.lib (release)

Table 4 Shared Libraries for Microsoft Windows (Cont’d)

Item Description
 TIBCO Adapter SDK Programmer’s Guide

4 | Chapter 1 Programming Requirements and TIBCO Adapter SDK Classes
Requirements on UNIX

For all UNIX systems:

1. Include the TIBCO Adapter SDK header file, Maverick.h, in the program.

2. Add the include directories of the following products to the makefile:
TIBCO Adapter SDK, TIBCO Rendezvous, and TIBCO Enterprise Message
Service.

3. Set the environment variables as listed in Environment Variables for UNIX
Systems on page 4.

4. Compile applications with an ANSI-compliant C++ compiler. See Compiling
Requirements for UNIX Systems on page 5.

Environment Variables for UNIX Systems

To compile the example programs, the C++ examples included in the package,
you can use the configure tool, which is also included, to generate a makefile.
Makefiles generated by the configure tool set the following environment
variables.

Table 5 Environment Variables for UNIX Systems

Variable Set to...

RV_ROOT Directory where TIBCO Rendezvous is installed.

TRA_ROOT Directory where TIBCO Runtime Agent is installed.

SDK_ROOT Directory where TIBCO Adapter SDK is installed.

JMS_ROOT Directory where TIBCO Enterprise Message Service is installed.

TPCL_ROOT Directory where third-party client library is installed.

CCC Compiler location if CC is not in $PATH.

CFLAGS Compiler flags, if defined, override configure-generated flag.

USER_DEF_PATH If special include and lib paths are needed.
TIBCO Adapter SDK Programmer’s Guide

Requirements on UNIX | 5
Compiling Requirements for UNIX Systems

This section introduces the compiler, includes, preprocessor symbols for the
individual platforms.

• Solaris Development on SPARC, page 5

• Solaris Development on X86, page 6

• HP-UX Development on PA-RISC, page 8

• HP-UX 11iv2, 11iv3 Development on Itanium 2, page 9

• AIX Development, page 10

• Linux Development, page 11

Solaris Development on SPARC

The sequence in which the link libraries are specified is important for some
platforms.

Table 6 Solaris Development on SPARC

Item Description Compiler flags

Solaris (SPARC 32-bit)

Supported Platforms Refer to the readme file for the supported versions.

Compiler CC 5.9 -mt

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.

Libraries –lmaverick58
–ltibrvft
–ltibrvcmq
–ltibrvcm
–ltibrv
–lsocket
–lgen
–lnsl
–ldl
-lrt
-lrepowww580
-lxerces-c2_8
-lssl
-lcrypto
 TIBCO Adapter SDK Programmer’s Guide

6 | Chapter 1 Programming Requirements and TIBCO Adapter SDK Classes
Solaris Development on X86

Solaris (SPARC 64-bit)

Supported Platforms Refer to the readme file for the supported versions.

Compiler CC 5.9, CC 5.10 -mt
-m64

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.

Libraries –lmaverick5864
–ltibrvft64
–ltibrvcmq64
–ltibrvcm64
–ltibrv64
–lsocket
–lgen
–lnsl
–ldl
-lrt
-lrepowww58064
-lxerces-c2_8
-lssl
-lcrypto

Table 6 Solaris Development on SPARC (Cont’d)

Item Description Compiler flags

Table 7 Solaris Development on X86

Item Description Compiler flags

Solaris (x86)

Supported Platforms Refer to the readme file for the supported versions.

Compiler CC 5.9 or

Sun Studio 12

-mt

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.
TIBCO Adapter SDK Programmer’s Guide

Requirements on UNIX | 7
Libraries –lmaverick58
–ltibrvft
–ltibrvcmq
–ltibrvcm
–ltibrv
–lsocket
–lgen
–lnsl
–ldl
-lrt
-lrepowww580
-lxerces-c2_8
-lssl
-lcrypto

Solaris (x86-64)

Supported Platforms Refer to the readme file for the supported versions.

Compiler CC 5.9 or

Sun Studio 12

-mt
-m64

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.

Libraries –lmaverick5864
–ltibrvft64
–ltibrvcmq64
–ltibrvcm64
–ltibrv64
–lsocket
–lgen
–lnsl
–ldl
-lrt
-lrepowww58064
-lxerces-c2_8
-lssl
-lcrypto

Table 7 Solaris Development on X86 (Cont’d)

Item Description Compiler flags
 TIBCO Adapter SDK Programmer’s Guide

8 | Chapter 1 Programming Requirements and TIBCO Adapter SDK Classes
HP-UX Development on PA-RISC

Table 8 HP-UX Development on PA-RISC

Item Description Preprocessor symbols

HP (PA-RISC 32-bit)

Supported Platforms Refer to the readme file for the supported
versions.

Compiler aCC 3.13 -DHP_UX
-D_REENTRANT
+DAportable

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.

Libraries –lmaverick58
–ltibrv
–ltibrvcm
–ltibrvcmq
–ltibrvft
–lrt
-lrepowww580
-lxerces-c2_8
-lssl
-lcrypto
-lpthread

HP (PA-RISC 64-bit)

Supported Platforms Refer to the readme file for the supported
versions.

Compiler aCC 3.13 -DHP_UX
-D_REENTRANT
+DA2.0W

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.
TIBCO Adapter SDK Programmer’s Guide

Requirements on UNIX | 9
HP-UX 11iv2, 11iv3 Development on Itanium 2

With HP-UX 11iv2 and 11iv3 on Itanium, you need the following environmment.

Libraries –lmaverick5864
–ltibrv64
–ltibrvcm64
–ltibrvcmq64
–ltibrvft64
–lrt
-lrepowww58064
-lxerces-c2_8
-lssl
-lcrypto
-lpthread

Table 8 HP-UX Development on PA-RISC (Cont’d)

Item Description Preprocessor symbols

Table 9 HP-UX 11iv2, 11iv3 Development on Itanium 2

Item Description Complier flags

HP-UX on Itanium 2 (32-bit)

Supported Platforms Refer to the readme file for the supported versions.

Compiler aCC A.05.50 -mt
+DAportable -DHP_UX
-D_REENTRANT

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.

Libraries -lmaverick58
-lxerces-c2_8
-lrepowww580
-ltibrv
-ltibrvcm
-ltibrvcmq
-ltibrvft
-lrt
-lpthread
-lssl
-lcrypto

HP-UX on Itanium 2 (64-bit)

Supported Platforms Refer to the readme file for the supported versions.
 TIBCO Adapter SDK Programmer’s Guide

10 | Chapter 1 Programming Requirements and TIBCO Adapter SDK Classes
AIX Development

With AIX you need the following environment.

Compiler aCC A.05.50 +DD64
-AA
-DHP_UX -D_REENTRANT
-DHPUX_IA64
-D_THREAD_SAFE -mt

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.

Libraries -lmaverick5864
-ltibrv64
-ltibrvcm64
-ltibrvcmq64
-ltibrvft64
-lrt
-lrepowww58064
-lxerces-c2_8
-lssl
-lcrypto
-lpthread

Table 9 HP-UX 11iv2, 11iv3 Development on Itanium 2 (Cont’d)

Item Description Complier flags

Table 10 AIX Development

Item Description Compiler flags

AIX (32-bit)

Supported
Platforms

Refer to the readme file for the supported versions.

Compiler xlC_r v5.1.0

xlC_r v8.0 with -qnamemangling=v5

xlC_r v9.0 with -qnamemangling=v5

xlC_r v11.0 with -U__STR__ and -qnamemangling=v5

-+
-qcpluscmt -qroconst -qproto
-qchars=signed-qlongdouble
-qstaticinline
-DU_SIZEOF_WCHAR_T=2

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.
TIBCO Adapter SDK Programmer’s Guide

Requirements on UNIX | 11
Linux Development

With Linux, you need the following environment.

Libraries -lmaverick58
-ltibrv
-ltibrvcm
-ltibrvcmq
-ltibrvft
-lrepowww580
-lxerces-c2_8
-lssl
-lcrypto

AIX (64-bit)

Supported
Platforms

Refer to the readme file for the supported versions.

Compiler xlC_r v8.0 with -qnamemangling=v5

xlC_r v9.0 with -qnamemangling=v5

xlC_r v11.0 with -U__STR__ and -qnamemangling=v5

-+
-qcpluscmt -qroconst -qproto
-qchars=signed-qlongdouble
-qstaticinline
-DU_SIZEOF_WCHAR_T=4

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.

Libraries -lmaverick5864
-ltibrv64
-ltibrvcm64
-ltibrvcmq64
-ltibrvft64
-lrepowww58064
-lxerces-c2_8
-lssl
-lcrypto

Table 10 AIX Development (Cont’d)

Item Description Compiler flags

Table 11 Linux Development

Item Description Compiler flags

Linux (x86)

Supported Platforms Refer to the readme file for the supported
versions.
 TIBCO Adapter SDK Programmer’s Guide

12 | Chapter 1 Programming Requirements and TIBCO Adapter SDK Classes
Compilers GNU gcc 3.2.3, gcc 4.4.1 -pthread
-fPIC

Note: Add "-DLINUX24" to
CCFLAGS option in the makefile.

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.

Libraries -lmaverick58
-ltibrv
-ltibrvcm
-ltibrvcmq
-ltibrvft
-ldl
-lrepowww580
-lxerces-c2_8
-lssl
-lcrypto

Linux (x86-64)

Supported Platforms Refer to the readme file for the supported
versions.

Compilers GNU gcc 3.4.4, gcc 4.4.1 -pthread
-fPIC
-m64

Note: Add "-DLINUX24" to
CCFLAGS option in the makefile.

Includes TIBCO Adapter SDK directory.

TIBCO Rendezvous include directory.

Libraries -lmaverick5864
-ltibrv64
-ltibrvcm64
-ltibrvcmq64
-ltibrvft64
-ldl
-lrepowww58064
-lxerces-c2_8
-lssl
-lcrypto

Table 11 Linux Development (Cont’d)

Item Description Compiler flags
TIBCO Adapter SDK Programmer’s Guide

Java SDK Requirements | 13
Java SDK Requirements

To compile and run a Java SDK application, you need to set up the CLASSPATH and
PATH (or LD_LIBRARY_PATH on UNIX). The shared library path must be set
because the TIBCO Rendezvous Java implementation uses JNI to access its shared
libraries at runtime. If the TIBCO Rendezvous shared library path is not specified,
a runtime exception of Native Implementation required is thrown.

Assuming that the TIBCO Runtime Agent (with SDK suite) has been installed in
C:\tibco\tra, TPCL in C:\tibco\tpcl, Rendezvous in C:\tibco\tibrv\8.1,
and JDK in C:\jdk, the CLASSPATH and PATH should be set as follows:

set CLASSPATH=\
.;\
C:\tibco\tra\version_number\hotfix\lib\TIBCOrt.jar;\
C:\tibco\tra\version_number\lib\TIBCOrt.jar;\
C:\tibco\tra\version_number\lib\TIBCOxml.jar;\
C:\tibco\tra\version_number\lib\TIBCrypt.jar;\
C:\tibco\tpcl\version_number\lib\xmlParserAPIs.jar;\
C:\tibco\tpcl\version_number\lib\xercesImpl.jar;\
C:\tibco\tibrv\version_number\lib\tibrvjsd.jar

set PATH=
C:\jdk\bin;
C:\tibco\tibrv\version_number\bin;
C:\tibco\tra\version_number\hotfix\bin;
C:\tibco\tra\version_number\bin;
%PATH%

For TIBCO Enterprise Message Service, include the following JAR files in the
classpath. For TIBCO Enterprise for JMS, use jms in the path, not ems.

C:\tibco\ems\version_number\lib\tibjms.jar
C:\tibco\ems\version_number\lib\jms.jar

Remember to add all hotfix JAR files (if there are any) under the
SDK_HOME\hotfix\lib directory ahead of the CLASSPATH.

Note on SSL

Generally speaking, a security provider JAR must be part of CLASSPATH whenever
encryption or secure connections are used. Specific scenarios are:

• If SSL is configured for adapter message transport (JMS or Rendezvous).

• If an adapter connects to security enabled TIBCO Administrator Server
(password check or full https:// connection).

• If the local file repository contains an encrypted global variable that requires a
security provider to decrypt.
 TIBCO Adapter SDK Programmer’s Guide

14 | Chapter 1 Programming Requirements and TIBCO Adapter SDK Classes
For example, if your applications require SSL and you are using Entrust, ensure
that the CLASSPATH includes the Entrust JAR file. See
install-path\tibco\tpcl\version_number\lib\entrust.

set TPCL_ROOT=C:\tibco\tpcl\version_number
set
CLASSPATH=%CLASSPATH%;%TPCL_ROOT%\lib\entrust;%TPCL_ROOT%\lib\entr
ust\enttoolkit.jar;

To use a different security vendor, change the TIBCO_SECURITY_VENDOR java
property. For example, if you use J2SE as the vendor then you must either:

• specify java.property.TIBCO_SECURITY_VENDOR=j2se in the tra property
file or

• add -DTIBCO_SECURITY_VENDOR=j2se in the command line

In addition, vendor libraries must be included in the CLASSPATH (this is
automatically so for j2se).
TIBCO Adapter SDK Programmer’s Guide

TIBCO Adapter SDK Classes | 15
TIBCO Adapter SDK Classes

Table 12 lists the major classes in the TIBCO Adapter SDK and the location in this
document where they are discussed. For additional information, see the API
Reference available online.

Table 12 TIBCO Adapter SDK Classes

Class Description See

MApp Handles initialization and
shutdown.

Manages other elements and
dispatches messages to other
elements’ methods.

MApp Application Manager,
page 45

MRvSession

MJmsSession

Support instantiation of sessions. MApp Application Manager,
page 45

MDispatcher Supports multi threaded SDK
adapters.

Multithreaded Adapters,
page 124

MTree Represents data in a heterogeneous
format.

Adapter Application Data,
page 66

MData and subclasses (MInstance,
MSequence, MUnion, and data
encapsulation classes)

Represent data constrained by
external metadata descriptions.

Different classes exist for different
types.

Metadata, page 89

MClassRegistry and related
classes

Provide access to metadata
information.

Metadata, page 89

MMetaDescription and
subclasses

Metadata class descriptions
including SDK-based and custom
types.

Metadata, page 89

MEventSource

MEvent

MEventListener

Define event model. Event Model, page 60

MPublisher

MSubscriber

Send or receive data using the
chosen message format.

Transport Protocol, page 51
 TIBCO Adapter SDK Programmer’s Guide

16 | Chapter 1 Programming Requirements and TIBCO Adapter SDK Classes
MProperties

MPropertiesRegistry

MConfigurationUtilities

Define processing and retrieval of
configuration information and
other structured information that is
not application data.

Adapter Configuration,
page 17

MTrace

MSink (and related classes)

Define tracing (logging) behavior. Tracing, page 72

MException Defines exceptions. Exception Handling, page 83

MAdvisory Defines advisories (usually TIBCO
Rendezvous advisories).

Advisory Handling, page 138

MMessageBundle Encapsulates trace message
information.

Using Tracing Facilities,
page 72

MTrackingInfo Allows tracking of messages across
the ActiveEnterprise.

Tracking, page 81

MHawkMicroagent Allows easy integration with
TIBCO Hawk AMI (Application
Management Interface).

TIBCO Adapters and TIBCO
Hawk, page 153

MOperation and related classes Implement AEOperation
invocation.

TIBCO ActiveEnterprise
Operation Model, page 113

Table 12 TIBCO Adapter SDK Classes (Cont’d)

Class Description See
TIBCO Adapter SDK Programmer’s Guide

| 17
Chapter 2 Adapter Configuration

This chapter gives an introduction to TIBCO Designer and explains how to create,
modify, and save project repositories. It also includes a list of the standard
command-line arguments for C++ and Java TIBCO Adapter SDK adapters, as
well as instructions on how to supply certain configuration information from the
command line or in a properties file.

Topics

• Overview, page 18

• Types of Configuration Information, page 19

• Configuring and Exporting the Project Repository, page 20

• Specifying Configuration Information, page 22

• Accessing Configuration Information, page 27

• Variable Substitution, page 34

• Properties Files, page 39
 TIBCO Adapter SDK Programmer’s Guide

18 | Chapter 2 Adapter Configuration
Overview

TIBCO Designer is available for configuring SDK-based custom adapters.
Adapter configurations are saved to the project repository, where the code can
access them.

In general, an adapter developer needs to go through the following steps:

1. Prepare the adapter configuration using TIBCO Designer and export it to the
project repository. See Configuring and Exporting the Project Repository on
page 20.

2. Write the custom adapter code. Ensure that the project repository is known to
the adapter. The runtime adapter program accesses the information in the
project repository.

The repository location (as well as some startup information) can be specified
on the command line, in a properties file, or in the adapter program itself. See
Specifying Configuration Information on page 22.

3. Upon startup, the SDK encapsulates the configuration information in
instances of classes. The custom adapter code can then access that
information. See Accessing Configuration Information on page 27.

Figure 1 Adapter Configuration Overview

TIBCO Designer

Project repository

Runtime Adapter
TIBCO Adapter SDK Programmer’s Guide

Types of Configuration Information | 19
Types of Configuration Information

The first step in developing a custom adapter is to specify the configuration
information. TIBCO Adapter SDK allows you to specify various types of
configuration information:

Application Objects (publisher, subscriber, session, and so on)

Application objects are specified in TIBCO Designer using the Generic Adapter
Configuration resource and saved in the project repository.

At runtime, the SDK accesses the descriptions based on the configUrl or
repoUrl and stores them in the MProperties class. The custom adapter can then
access the data through MProperties. See Sending and Receiving Data on
page 65.

Metadata Information (class description and operation description)

Metadata information is specified using TIBCO Designer or by editing the
AEXML repository file.

At runtime, the SDK accesses the descriptions based on the configUrl or
repoUrl and creates class description classes (for example, MClassDescription).
Custom adapters access the class descriptions through the MClassRegistry
object and create instances based on the description. See Metadata on page 89.

Global Variables

Global variables are specified in TIBCO Designer, in a properties file, or on the
command-line. See Variable Substitution on page 34.

Startup Information

Startup information is specified using the Generic Adapter Configuration
resource inside the application code, in a properties file, or on the command-line.
 TIBCO Adapter SDK Programmer’s Guide

20 | Chapter 2 Adapter Configuration
Configuring and Exporting the Project Repository

Configuration and metadata information for an adapter instance are specified in
TIBCO Designer.

The TIBCO Designer Palette Reference explains how to use TIBCO Designer for
adapter configuration and gives a reference to the configuration objects and
attributes. It also explains how to use TIBCO Designer for schema configuration
and gives a reference to the schema objects and attributes. In TIBCO Designer,
click What is This on any resource for help information.

Configuring an Adapter

Here’s an overview of the steps involved in adapter configuration:

1. Using the TIBCO Designer adapter resource, specify the data the adapter
publishes or subscribes to. You can specify multiple schema if different
endpoints handle different data.

2. Drag a Generic Adapter Configuration into the design panel.

TIBCO Designer automatically creates the appropriate base folders and
objects.

3. In the Adapter Services folder, select the appropriate services (Publication
Service, Subscription Service, and so on.) and drag them into the design panel,
as shown in Figure 2.

A service is an abstraction that encapsulates an endpoint and the corresponding
session.
TIBCO Adapter SDK Programmer’s Guide

Configuring and Exporting the Project Repository | 21
Figure 2 Adapter Configuration in TIBCO Designer

4. For each service, specify the schema, the transport, and other attributes. When
instantiating the service, TIBCO Designer automatically creates
corresponding sessions and other objects and places them into the Advanced
folder.

5. In certain situations, it may be necessary to customize the sessions themselves.
You can do so by using the adapter’s Advanced folder.

Exporting Project Repositories

After configuring an adapter in TIBCO Designer, export the adapter to a project
repository. See the TIBCO Designer User’s Guide for details.

See Chapter 11, Custom Adapter Example: zapadapter for an example of a
custom adapter configuration.
 TIBCO Adapter SDK Programmer’s Guide

22 | Chapter 2 Adapter Configuration
Specifying Configuration Information

A custom adapter accesses the configuration information stored in the project
repository. Separating code from configuration allows a custom adapter to run
with one configuration during testing, and with a different configuration after
deployment.

The location of the project repository can be specified on the command line, in a
properties file, or in the code. In addition, some information about the adapter
(for example, the instance ID or username and password) can be specified either
in the custom adapter itself, on the command line, or in a properties file.

Command-Line Arguments

Command-line options have the highest precedence. A list of command-line
arguments is given below.

-system:clientVar varName=value
-system:configurl relativeUrlPath | absoluteUrlPath
-system:propfile file
-system:repourl repositoryConnectionString | repositoryLocalFile
-system:instanceid instanceid
-system:plugin plugname
-system:version
-system:username username
-system:password password
-system:messageformat format
-system:jmsReconnectCount
-system:jmsReconnectDelay
-system:xsdGeneration
-system:dedicatedHawkThread
-system:showBanner

Table 13 gives detailed information of the command-line arguments.

Before using this feature, call MAppProperties::setCommandLine().
TIBCO Adapter SDK Programmer’s Guide

Specifying Configuration Information | 23
Table 13 Command-Line Arguments

Argument Description

-system:clientVar
<varName>=<value>

Defines the value for a client variable in a repository. For example:
-system:clientVar cmName=foo

This value takes precedence over any global value set in the repository.
Substitution takes place only at startup.

If more than one -system:clientVar is specified in the command line,
the latter one replaces the prior one. No space characters are allowed in
either the varName or the value when using -system:clientVar. See
Variable Substitution on page 34 for details.

TIBCO Adapter SDK provides two predefined client variables:

AppName - The name of the application set in MAppProperties.

InstanceId - The name of the application instance.

–system:configurl

<relativeUrlPath>|
<absoluteUrlPath>

Specifies the location of the adapter instance description object to use.

See Guidelines for Using the Argument –system:configurl on page 24 for
details.

-system:propfile <file> Tells the SDK to load a command properties file containing SDK startup
information. It may also contain optional properties to be used by the
adapter itself. These properties can be set and queried through the
MAppProperties::setProperty() and
MAppProperties::getProperty() methods (C++ only).

For Java, the conventional properties mechanism can also be used. The
properties file specification is part of the Java language. There are built-in
APIs in Java for loading properties files, and the syntax of such files is
detailed in the official Java documentation from Sun Microsystems. In
particular, see the description of java.util.Properties.

See Properties Files on page 39 for available keys and other information.

–system:repourl
<repoConnectionString> |
<repoLocalFile>

Specifies the location of the repository to use.

See Guidelines for Using the Argument –system:repourl on page 25 for
details.

–system:instanceid
<instanceId>

MApp InstanceId to be used for this process. This information
supersedes any other instanceId defined.

-system:plugin
<plugname>

Loads a plug-in into the adapter. See the API documentation for the
MPlugin class for more information.

-system:<version> Gets the version of the application and SDK version the application is
using.
 TIBCO Adapter SDK Programmer’s Guide

24 | Chapter 2 Adapter Configuration
Guidelines for Using the Argument –system:configurl

The argument –system:configurl <relativeUrlPath> | <absoluteUrlPath>
specifies the location of the adapter instance description object. If not specified,
the adapter instance description object provided in the MApp constructor is used.

• If relativeUrlPath is specified, the adapter instance description object is
assumed to be under the default area in the repository
(/tibco/private/adapter/).

For example, the following command-line argument connects to an adapter
instance description object named ZAPInstance1 in the directory
/tibco/private/adapter/ZAPadapter.

–system:configurl ZAPadapter/ZAPInstance1

-system:username <username>

-system:password <password>

The user name and password used by the repository server to access the
security data.

-system:messageformat
<format>

Specifies the message format to be used by the adapter. Legal values are
aeRvMsg, xmlRvMsg, and xmlJmsMsg.

-system:xsdGeneration on|off If this option is turned on, Adapter SDK validates an incoming XML
message using the XSD for the given class. The default value is off.

Refer to Working with XML and XSD on page 104 for more information.

-system:dedicatedHawkThread
on|off

This property is specific to C++ SDK.

By default, MApp runs as a single-threaded application. Under heavy load,
this could interfere with Hawk’s status update of the adapter application.
Setting this property to on allows dedication of a separate thread for the
application to do Hawk status updates.

The default value is on.

-system:showBanner
true|false

This property is specific to C++ SDK.

Setting this property to true displays a banner containing application
name, RepoURL, ConfigURL, application version, information string, and
the TIBCO copyright notice. This banner appears on the console.

The default value is true.

-system:jmsReconnectCount
<reconnection count>

The JMS reconnection attempt count.

For example: -system:jmsreconnectcount=2

-system:jmsReconnectDelay
<reconnection delay>

The delay value between each JMS reconnection attempt.

For example: -system:jmsreconnectdelay=500

Table 13 Command-Line Arguments (Cont’d)

Argument Description
TIBCO Adapter SDK Programmer’s Guide

Specifying Configuration Information | 25
Here, /tibco/private/adapter/ is the default area of the repository for
adapter instance description objects, ZAPadapter is an application defined
subdirectory.

• If absoluteURlPath is specified, the adapter instance description object is looked
up in the repository.

For example:

–system:configurl
/tibco/private/adapter/ZAPadapter/ZAPInstance1

Guidelines for Using the Argument –system:repourl

The argument –system:repourl <repoConnectionString> |
<repoLocalFile> specifies the location of the repository.

• If repositoryConnectionString is specified, a connection is made to an adapter
instance description object defined in a remote repository.

The following example shows a connection to an adapter instance description
object named ZAPInstance1, which is defined in a remote repository. No
subject name is specified, so the default subject is used. Note that tibrc@
syntax is required as part of the connection string protocol.

–system:repourl tibcr@ZAPInstance1

The next example shows a connection string to an adapter instance
description object defined in a remote repository that uses the given subject
name for discovery. There are no space characters in the subject string.

–system:repourl tibcr@ZAPInstance1:subject=foo.bar:
service=7500:network=le0:daemon=tcp:target:7500:timeout=120

In this example

— subject is the subject for repository discovery.

— service, network, and daemon are TIBCO Rendezvous parameters.

— timeout is the timeout value in seconds for any TIBCO Administrator
communication to be aborted.

• If repositoryLocalFile is specified, a connection is made to a local file repository.

The following example connects to a repository instance named ZAP.DAT that
is on the local file system.

–system:repourl C:\repositories\ZAP.DAT
 TIBCO Adapter SDK Programmer’s Guide

26 | Chapter 2 Adapter Configuration
Property Key

Properties file values have the second highest precedence, which means if the
same information can be set with a command-line argument, the command-line
argument overrides the property key.

This section lists the property keys predefined and recognized by the Adapter
SDK.

tibco.repourl
tibco.configurl
tibco.instanceid
tibco.appname
tibco.appinfo
tibco.appversion
tibco.username
tibco.password
tibco.clientVar.varname
tibco.messageFormat (values: aeRvMsg, xmlRvMsg, and xmlJmsMsg)
tibco.jmsReconnectCount
tibco.jmsReconnectDelay
tibco.xsdGeneration (values: off, and on)
tibco.dedicatedHawkThread (values: off, and on)
tibco.showBanner (values: true, and false)
tibco.jmsclientid.session_name

See Properties Files on page 39 for more information.

MAppProperties

The custom adapter code can set some of the configuration information, usually
through the MAppProperties instance. This approach has the lowest precedence.

Specifying the information directly in the code, as shown in the following
example, enables an adapter to always run with the same configuration:

MAppProperties appProperties;
appProperties.set(MAppProperties::APPNAME,"zapadapter");
appProperties.set(MAppProperties::APPVERSION,"3.0");
appProperties.set(MAppProperties::APPINFO,"Adapter SDK based ZAP

publisher");
appProperties.set(MAppProperties::REPOURL,"tibcr@CPP_EXAMPLES");
appProperties.set(MAppProperties::CONFIGURL,

"examples/zapadapter/zapone");
appProperties.setCommandLine(argc,argv);

When the adapter calls the constructor for MApp, it passes in the MAppProperties
instance.
TIBCO Adapter SDK Programmer’s Guide

Accessing Configuration Information | 27
Accessing Configuration Information

This section explains how the SDK encapsulates the information saved in the
project repository, and how adapters access that information. It also includes a
detailed description of the repository locator string.

Location of Configuration Information

The repourl and configurl specify the location of a project repository, which
must be defined for a custom adapter.

• repourl: the repository location, that is, the location of the project repository
(repository instance).

Specify the repourl in one of the following ways:

— Calling the MAppProperties method set to set the REPOURL before creating
the MApp application manager.

appProperties.set(MAppProperties::REPOURL,"repoul")

— Using the –system:repourl command line argument.

— Setting tibco.repourl in a properties file.

• configurl: the location of the adapter instance description object inside the
project repository.

Specify the configurl in one of the following ways:

— Calling the MAppProperties method set to set the configurl before
creating the MApp application manager.

appProperties.set(MAppProperties::CONFIGURL, "configurl")

— Using the –system:configurl command line argument.

— Setting tibco.configurl in a properties file.

See Server-based Repository Locator String on page 27 and Local Repository
Locator String on page 30 for instructions on how to specify the locator string.

Server-based Repository Locator String

Applications built with the TIBCO Adapter SDK use a repository resource locator
string to specify the server-based repository location and parameters.

The parameters available depend on the protocol with which the client and server
communicate.
 TIBCO Adapter SDK Programmer’s Guide

28 | Chapter 2 Adapter Configuration
TIBCO Rendezvous

In the case of a TIBCO Rendezvous transport, a URL begins with tibcr:// or
tibcr@, followed by the instance name.

Table 14 lists the supported optional parameters. They are separated by colons.

Table 14 Optional Parameters for Server-based Locator String (TIBCO Rendezvous)

Parameter Description

daemon TIBCO Rendezvous rvd daemon value

service TIBCO Rendezvous rvd service value

network TIBCO Rendezvous rvd network value

rva TIBCO Rendezvous rva host and port

subject Instance discovery subject

discoveryTime Timeout value in seconds for instance discovery

timeout Timeout value in seconds for server requests

operationRetry Number of retries when timeout occurs

userName Any identifier (null or empty implies read only with guest privileges)

password User password for security

regionalSubject TIBCO Rendezvous subject prefix used for regional read-operation in the load
balancing mode. For more information see the TIBCO Administrator Server Configuration
Guide.

 typeAccess Type of client connection. Valid values are:

CLIENT_USAGE_DONT_CARE—Client reads until update, then switches to write. This
is the default.

CLIENT_USAGE_READ_ONLY—Client is not allowed to do updates.

CLIENT_USAGE_READ_WRITE—Client can do both reads and updates.

urlFile Property file. The property file identifier can either be a fully qualified path or a
relative path.

The legal properties in this file are the same as optional parameters specified above.
The properties in the file are appended to the repository locator string. If the same
property appears in both locator string and property file, the properties in the locator
string take precedence.

Property values starting with # are considered obfuscated.
TIBCO Adapter SDK Programmer’s Guide

Accessing Configuration Information | 29
Examples are given below:

tibcr://myInst:service=5456:userName=ann:timeout=4000
tibcr@myInst:service=5456:urlFile=/tibco/props/fredsProps.txt
tibcr://myInst:urlFile=/tibco/props/fredsProps.txt

HTTP and HTTPS

In the case of HTTP transports, a URL begins with http://. In the case of HTTPS
transports, a URL begins with https://.

The host name and port number come next (http://host:port). The port
number is optional. If not specified, the default value is 8080 for HTTP and 8443
for HTTPS. In the case of HTTP/HTTPS clients, the host name and port number
are followed by a '?' (http://host:port) and the instance name.

In addition, remote HTTP/HTTPS clients support the following optional
parameters separated by &. When & is used as separator of parameters and the
URL is specified on the command line, the URL should be enclosed in quotes so
that shell does not interpret it.

HTTPS-specific properties should be placed in a property file and that file should
be specified using urlFile=. Therefore, urlFile is a required parameter for
HTTPS.

Table 15 Optional Parameters for Server-based Locator String (HTTP)

Parameter Description

timeout Timeout value in seconds for server requests.

operationRetry Number of retries if a timeout occurs.

userName Any identifier (null or empty implies read only with guest privileges)

password User password for security

typeAccess Whether it is read only or read-write. Valid values are:

CLIENT_USAGE_DONT_CARE—Client reads until update, then switches to write. This
is the default.

CLIENT_USAGE_READ_ONLY—Client is not allowed to update.

CLIENT_USAGE_READ_WRITE—Client can both read and update.
 TIBCO Adapter SDK Programmer’s Guide

30 | Chapter 2 Adapter Configuration
Examples are given below:

http://host:8080/administrator/repo?myInst&userName=ann&timeout=40
00
https://host:8443/administrator/repo?myInst&urlFile=httpsProps.ini
https://host:8443/administrator/repo?urlFile=httpsProps.ini

Local Repository Locator String

Local repositories start with the instance name, which can optionally be preceded
by localrepo@. The instance name can either be a fully qualified path or a
relative path. The .dat extension is optional. In addition, clients support the
following optional parameters separated by colons.

urlFile Property file. The property file identifier can either be a fully qualified path or a
relative path.

The legal properties in this file are the same as optional parameters specified above.
The properties in the file are appended to the repository locator string. If the same
property appears in both locator string and property file, the properties in the locator
string take precedence.

Property values starting with # are considered obfuscated.

Table 15 Optional Parameters for Server-based Locator String (HTTP) (Cont’d)

Parameter Description

Table 16 Optional Parameters for Local Repository Locator String

Parameter Description

userName Any identifier (if not present or empty makes a read-only client)

urlFile Property file. The property file identifier can either be a fully qualified path or a relative
path.

The legal properties in this file are the same as optional parameters specified above. The
properties in the file are appended to the repository locator string. If the same property
appears in both locator string and property file, the properties in the locator string take
precedence.

Property values starting with # are considered obfuscated.
TIBCO Adapter SDK Programmer’s Guide

Accessing Configuration Information | 31
Examples are given below:

./instances/myInst.dat:userName=deborah
c:/tibco/repository/instances/myInst.dat:urlFile=c:/tibco/reposito
ry/props/deborah
myProj.dat
myProj
myProj/myrepo.dat

How Adapters Access Configuration Information

This section explains how a custom adapter can access configuration information.

MApp and MClassRegistry

Upon startup, MApp creates an MClassRegistry object that the custom adapter
can use to access the information in the project repository. For example:

• Use transport configuration information to create one or more transport
sessions.

• Create endpoint objects. Endpoints are publisher, subscriber, client, or server.

• Perform automatic creation of timers.

• Create reporting sinks, as specified in TIBCO Designer for that adapter
instance, and map them to the trace object created by MApp.

• Create the Metadata description classes specified by the schema configuration
data. See Guidelines for Metadata Use on page 102.

In addition, MApp creates metadata description classes for metadata objects and
their attributes. The custom adapter can access that information as needed. See
Metadata Description Classes on page 96.

typeAccess Type of client connection. Valid values are:

CLIENT_USAGE_DONT_CARE—Client reads until update, then switches to write. This is the
default.

CLIENT_USAGE_READ_ONLY—Client is not allowed to do updates.

CLIENT_USAGE_READ_WRITE—Client can do both reads and updates.

CLIENT_USAGE_REACQUIRE_INSTANCE_LOCK—Client is allowed to overwrite this local
repository even if a lock file exists, as long as it’s the same user.

CLIENT_USAGE_FORCE_INSTANCE_LOCK—Client is allowed to overwrite this local
repository even if a lock file exists.

WARNING: Using this option may result in other users overwriting the project.

Table 16 Optional Parameters for Local Repository Locator String (Cont’d)

Parameter Description
 TIBCO Adapter SDK Programmer’s Guide

32 | Chapter 2 Adapter Configuration
MProperties

By default, MApp creates an MProperties instance that encapsulates access to the
adapter instance description object.

In the following C++ code fragment, the adapter creates a publisher using the
configuration URL and the subject specified in the adapter instance definition.
Note how the configuration URL is included as the first argument to getValue().

if (!pMProperties->getValue("zapadapter/zapconnection/instance", m_sInstanceId))
 m_sInstanceId = "zap:112";

 if (!pMProperties->getValue("zapadapter/zapconnection/hostname", m_sHostName))
 m_sHostName = "hostile";

 if (!pMProperties->getValue("zapadapter/zapconnection/port", m_iPort))
 m_iPort = 8000;

A Java SDK custom adapter uses similar methods.

Configuration Classes

A custom adapter uses configuration classes to access configuration information.
The following classes are defined in both the C++ and the Java API:

• MProperties—Custom adapters call methods in an instance of this class to
retrieve property information.

• MPropertiesEnumerator—Allows you to iterate through the MProperties
name/value pairs.

• MPropertiesRegistry—Manages all MProperties instances. Allows you to
commit and roll back changes and create new MProperties instances for
project repositories.

• MConfigurationUtilities—Allows specialized custom adapters direct
control over the creation of components and metadata from configuration
information. This class should only be used under certain circumstances.

The Java SDK has the following classes for encapsulating information retrieved
from an MProperties instance: MPropertyElement, MPropertyAttribute, and
MPropertyText. This helps custom adapters retrieve information from
MProperties.

See MProperties.elements() in the TIBCO Adapter SDK API Reference for more
information.
TIBCO Adapter SDK Programmer’s Guide

Accessing Configuration Information | 33
MProperties.elements() Example

The following example shows how to enumerate an MProperties object.

/* get the configuration properties from MApp */
MProperties prop = mapp.getConfigProperties();
Enumeration enum = prop.elements("/private/tibco/adapter");
for (;enum.hasMoreElements();) {
 Object o = e.nextElement();
 if(o instanceof MPropertyAttribute)
 {
 MPropertyAttribute a = (MPropertyAttribute)o;
 System.out.print(" "+a.getName()+"="+a.getValue());
 }
 else if(o instanceof MPropertyText)
 {
 MPropertyText t = (MPropertyText)o;
 System.out.println(t.getText());
 }
 else ifo instanceof MPropertyElement)
 {
 MPropertyElement t = (MPropertyElement)o;
 System.out.println

"This is PropertyElement - has to recursively
get the enumeration again");

 }
 else
 System.out.println("Should never happen");
}

 TIBCO Adapter SDK Programmer’s Guide

34 | Chapter 2 Adapter Configuration
Variable Substitution

The Adapter SDK variable substitution mechanism can override global variables
predefined in the project repository in a restricted manner. Predefined variables
can be viewed and set in TIBCO Designer. Variables are specified as %%VARNAME%%
and contain no white space.

Variable Substitution Mechanism

Variable substitution allows users to accomplish the following tasks:

• Substitute string variables specified in the repository at startup time.

• Locally define the value for a variable in the properties file for a specific
project repository. The local value takes precedence over any global value.

• Specify the value for a variable through a command-line argument. This
overrides all other specification.

-system:clientVar varName=value

Multiple variables can be specified using the command line
-system:clientVar. If the same variable already exists in the command line,
the newly input value replaces the existing value. No space characters are
allowed for either varName or the value, when using -system:clientVar.

• Specify the value for a variable in a properties file. This overrides the project
repository and values set in code, but not variables set on the command line.

• Enforce the predefined variables listed in Predefined Global Variables on
page 36.

Variables can be used anywhere in the configuration and will be replaced by
the locally defined adapter instance.

Specifying Variables

Custom adapters can specify variables in the following ways:

• In the project repository during configuration:

— using TIBCO Designer (recommended)

— editing repository XML files (not recommended)

• In a properties file (using the tibco.clientVar.<varname> property)

• On the command line (using -system:clientVar varName=value)
TIBCO Adapter SDK Programmer’s Guide

Variable Substitution | 35
The order of precedence is: command-line values overwrite values set in the
properties file, properties file values overwrite values set in the repository.

Specifying Variables Using TIBCO Designer

Global variables provide an easy way to set defaults for use throughout a project.

For example, assign the value 7474 to the predefined global variable RvDaemon,
then use the variable in different sessions in an adapter. If you want to change the
TIBCO Rendezvous daemon for an adapter, globally set it to a different value or
override it from the command line.

To specify global variables using TIBCO Designer:

1. Start TIBCO Designer.

2. In the project panel, click the Global Variables tab. All currently defined
global variables are displayed in the project panel.

Figure 3 Global Variables Tab

3. To edit the global variables, click the Open Advanced Editor button .

In the Global Variables dialog, you can do the following:

— To assign or change a variable value, click the field in the Value column and
then enter the new value. Press Enter when done.

— To add a global variable group, click the Add a Variable Group button .
Specify the name of the group, then press Enter.

— To add a global variable, click the Add a Variable button . A new global
variable item is added to the bottom of the list. With a variable group
 TIBCO Adapter SDK Programmer’s Guide

36 | Chapter 2 Adapter Configuration
selected, you can click this button to add variables to the group. Enter the
variable name and, optionally, the value. Press Enter when done.

— To add a global variable to a group, select the desired group icon and click
the Add a Variable button.

4. To use the global variable in the fields of a resource, enter the variable name
enclosed with %% on both sides. For example, %%DirTrace%%.

When the project is deployed and the configured components are run, all
occurrences of the global variable name are replaced with the global variable
value (unless it was overridden in a way that had higher precedence).

A number of global variables are predefined. See Predefined Global Variables on
page 36. You can add definitions of any variables you need to the predefined
variables.

Specifying Variables in the Properties File

To specify variables in a properties file, use the following parameter:

tibco.clientVar.varname

Specifying Variables on the Command Line

To specify one or more variables on the command line, use the following syntax:

-system:clientVar varName=value

Predefined Global Variables

Table 17 lists the predefined global variables. Some global variables are
automatically used within the system when an adapter instance is configured.

Table 17 Predefined Global Variables

Variable Description

Deployment Defaults to the TIBCO Designer project name. It can be any string
value. This global variable is used by the system to partially define
the subject name defined for a service.

DirLedger The path name of the TIBCO Rendezvous certified messaging ledger
file. The default is the root installation directory.

DirTrace The path name for log file used by the adapter. The default is the
root installation directory.
TIBCO Adapter SDK Programmer’s Guide

Variable Substitution | 37
Domain The default value for a file-based local project is MyDomain. The
value for a server-based project is the domain to which the project
was saved.

HawkEnabled Indicates whether TIBCO Hawk is used to monitor the adapter.

True indicates that a Hawk microagent is defined for the adapter.
False indicates the microagent is not to be used. Default is False
in TIBCO Designer but True for SDK-based adapters.

JmsProviderUrl Tells applications where the JMS daemon is located. Setting this
value mostly makes sense in early stages of a project, when only one
JMS daemon is used.

RemoteRvDaemon TIBCO Rendezvous routing daemon (rvrd) to be used. See TIBCO
Administrator Server Configuration Guide for instructions on how to
set up a domain using rvrd.

RuntimeCertificatesDirectory Provides support for external SSL files at runtime by allowing
applications to reference external trusted certificates instead of using
the certificate in the EAR file.

Use this variable to specify the path of the directory in which all the
Trusted Certificates are stored. This variable is valid only for TIBCO
ActiveMatrix BusinessWorks and TIBCO JMS.

For more information on SSL, refer to TIBCO Designer User’s Guide.

RuntimeRvDaemonCertificate Provides support for external SSL files at runtime by allowing
applications to reference external trusted certificates instead of using
the certificate in the EAR file.

Use this variable to specify the path of the certificate file when the
supported transport is TIBCO Rendezvous.

RvDaemon TIBCO Rendezvous daemon. Sessions use this daemon to establish
communication. The default value is 7500.

RvNetwork TIBCO Rendezvous network. This variable needs only be set on
computers with more than one network interface. If specified, the
TIBCO Rendezvous daemon uses that network for all outbound
messages.

In most cases, you can leave the default.

Table 17 Predefined Global Variables (Cont’d)

Variable Description
 TIBCO Adapter SDK Programmer’s Guide

38 | Chapter 2 Adapter Configuration
RvService TIBCO Rendezvous service. The Rendezvous daemon divides the
network into logical partitions. Each transport communicates on a
single service. A transport can communicate only on the same
service with other transports.

Unless you are using a non-default TIBCO Rendezvous
configuration, leave the default (7500).

RvaHost Computer on which the TIBCO Rendezvous agent runs. This
variable is only relevant if you are using the TIBCO Rendezvous
Agent (rva) instead of the TIBCO Rendezvous daemon, and if you
have configured a non-default setup. See TIBCO Rendezvous
Administration for instructions on how to specify the rva parameters.

RvaPort TCP port where the TIBCO Rendezvous agent (rva) listens for client
connection requests. See TIBCO Rendezvous Administration for
instructions on how to specify the rva parameters.

Defaults to 7501.

TIBHawkDaemon TIBCO Rendezvous daemon used in the TIBCO Hawk session. See
the TIBCO Hawk Installation and Configuration manual for details.

TIBHawkNetwork TIBCO Rendezvous network used by the TIBCO Hawk session. See
the TIBCO Hawk Installation and Configuration manual for details.

TIBHawkService TIBCO Rendezvous service used by the TIBCO Hawk session. See
the TIBCO Hawk Installation and Configuration manual for details.

Table 17 Predefined Global Variables (Cont’d)

Variable Description
TIBCO Adapter SDK Programmer’s Guide

Properties Files | 39
Properties Files

The Adapter SDK supports properties files, which contain property key/property
value pairs that would otherwise be supplied on the command line. Properties
files are supported with both the C++ and the Java API.

If an adapter includes a properties file, the precedence of options is affected.

• The properties file overrides everything except those options entered from the
command line.

• Options directly entered on the command line override everything else.

Format of Properties File

Each line in a properties file is a single property. Each property consists of a key
and a value. The key starts with the first non-whitespace character and ends at the
first "=", ":", or whitespace character. The value starts at the first character after
the equal sign (=).

The properties file format is identical to the Java properties file format defined in
java.util.Properties.load(). Therefore, the following restrictions apply:

• The "!" character cannot be used as a comment line indicator. Only the "#"
character is recognized.

• The line continuation character is ignored (no multi-line values).

• The key cannot contain any of the termination characters. Although Java
allows termination characters by escaping the value with a preceding "\"
character, TIBCO Adapter SDK does not support this syntax.

Tagging Values for Encryption

The presence of "#!" as the first two characters in a value (not the key) indicates
that the value has been encrypted or is to be encrypted.

An option "-system:propfile file" is not supported within the properties file
itself. Therefore, properties files cannot be nested. You may, however, call an SDK
properties file from a TIBCO Wrapper properties file. See Chapter 13, TIBCO
Wrapper Utility.
 TIBCO Adapter SDK Programmer’s Guide

40 | Chapter 2 Adapter Configuration
The encryption tool can be found in tra/version/bin. It is also called obfuscate
for compatibility. When the encryption tool is run, it rewrites the properties file
with the encrypted value in place.

Recognized Property Keys

The following property keys are predefined and recognized by the Adapter SDK:

tibco.repourl
tibco.configurl
tibco.instanceid
tibco.appname
tibco.appinfo
tibco.appversion
tibco.username
tibco.password
tibco.clientVar.varname
tibco.messageFormat (values: aeRvMsg, xmlRvMsg, and xmlJmsMsg)
tibco.jmsReconnectCount
tibco.jmsReconnectDelay
tibco.xsdGeneration (values: off, and on)
tibco.dedicatedHawkThread (values: off, and on)
tibco.showBanner (values: true, and false)
tibco.jmsclientid.session_name

Two Types of Properties

The Adapter SDK allows two types of properties in a properties file:

• SDK properties affect the SDK program. They are listed in Recognized Property
Keys on page 40.

• TIBCO Wrapper properties affect the TIBCO Wrapper. The TIBCO Wrapper
utility is separate from the SDK libraries and must be explicitly linked in if
you want to use it. See Chapter 13, TIBCO Wrapper Utility for more
information.

Both types of properties can be included in one file. Alternatively, you can place
each in an individual file and call the SDK properties file from the TIBCO
Wrapper properties file using application.args --propfile in the latter.

Using "#" for obfuscation is obsolete.
TIBCO Adapter SDK Programmer’s Guide

Properties Files | 41
Properties File Examples

Example Properties File

tibco.configurl=/tibco/private/adapter/test/config/config1
tibco.repourl=tibcr://SDK_TEST
tibco.appname=MyApp
tibco.instanceid=config
tibco.appversion=4.0
tibco.appinfo=TIB/Adapter SDK test for Configuration
tibco.username=admin
tibco.password=samplePassword
tibco.clientVar.service=7600
tibco.clientVar.daemon=tcp:7600
tibco.showBanner=false

Setting the Properties File Inside the Program

Custom adapters that want to set the properties file in code instead of passing it
on the command line can refer to the following example.

main()
{

MAppProperties myAppProps;
//…
myAppProps.set(MAppProperties::PROPFILE, "obfuscatedFile");
//…
MString r3password;
if (myAppProps.get("r3.password", r3password)== Mtrue)
{

// log into R/3…
};

//…
}

 TIBCO Adapter SDK Programmer’s Guide

42 | Chapter 2 Adapter Configuration
TIBCO Adapter SDK Programmer’s Guide

| 43
Chapter 3 Adapter Program Elements

This chapter discusses the main elements of an adapter program.

Topics

• Overview, page 44

• MApp Application Manager, page 45

• Transport Protocol, page 51

• Endpoints, page 53

• Transports, Wire Formats, and Message Formats, page 56

• Sessions, page 58

• Event Model, page 60

• Multiple Adapter Instances, page 63
 TIBCO Adapter SDK Programmer’s Guide

44 | Chapter 3 Adapter Program Elements
Overview

The primary task of an adapter is to retrieve or send data. The SDK supports this
with a flexible architecture that allows separation of the configuration from the
adapter program. The SDK contains the facility to work in this framework and the
classes to encapsulate the transport, endpoint, and so on.

The program elements of an adapter fit together as follows:

• The MApp application manager handles initialization and shutdown of an
adapter. Applications can customize initialization and shutdown. See MApp
Application Manager on page 45.

• The adapter interacts with the source or target application using either a
publish/subscribe or a request/reply transport protocol. See Transport
Protocol on page 51.

• Endpoints send or receive the data. They are the publishers, subscribers,
clients, and servers in a custom adapter. See Endpoints on page 53.

Endpoints are configured to use a specific message format, which packages
the data going over the network. See Transports, Wire Formats, and Message
Formats on page 56.

Each endpoint is associated with a session. The MSession subclasses
encapsulate the transport (TIBCO Rendezvous or TIBCO Enterprise Message
Service) used to communicate with the source or target application. See
Sessions on page 58.

• The program is executed based on an event model using event sources (which
are the endpoints that receive or send data), events, and event listeners. See
Event Model on page 60.
TIBCO Adapter SDK Programmer’s Guide

MApp Application Manager | 45
MApp Application Manager

At the center of each running adapter instance is the application manager, an
instance of a subclass of MApp. All adapters need to create a subclass of MApp and
define its methods.

The MApp instance handles the following tasks:

• Initialization and shutdown of an adapter. Loading the configuration data
(such as sessions, endpoints) and metadata into memory as part of
initialization.

• Connecting to the project repository and processing configuration and
metadata information found there.

• Setting up tracing and tracking and TIBCO Hawk management.

• Providing the glue logic that binds components together.

The SDK MApp class and its application-defined subclass implement these tasks
together.
 TIBCO Adapter SDK Programmer’s Guide

46 | Chapter 3 Adapter Program Elements
Top-Level Control Flow

Figure 4 Adapter Control Flow (C++)

Control Flow in C++

Figure 4 illustrates how a C++ program proceeds in single-threaded mode. In
general, custom adapters run most efficiently in single-threaded mode, which is
also the default mode. If a custom adapter requires multithreading, see
Multithreaded Adapters on page 124.

The default steps are as follows:

1. The custom adapter creates an instance of a subclass of MApp and calls its
start() method.

Adapter SDK
internal initialization

Adapter-specific
initialization

start()

onInitialization()

onTermination()

stop()

Adapter-specific
cleanup

Adapter SDK
internal shutdown

Adapter event processing
Adapter event processing
...

1

event loop

2

3
4

5

6

7
8

9

Mapp::~Mapp

Mapp destroyed

10

Application code SDK
TIBCO Adapter SDK Programmer’s Guide

MApp Application Manager | 47
2. When MApp receives the call to start(), the SDK performs internal
initialization:

a. Checks to see if MApp is already started; if it is, just returns.

b. Reads the information in project repository and creates objects as
appropriate. This includes session, endpoint, and trace objects, as well as
metadata description objects.

c. Creates the default TIBCO Hawk microagent.

d. Activates all sink components.

3. MApp calls the method onInitialization(), which performs
application-specific initialization and must be defined for each custom
adapter.

4. The SDK executes onInitialization().

5. When onInitialization() returns successfully, MApp behaves as follows:

— If start() was called with bStartEventLoop set to true (default
behavior), MApp enters a loop to dispatch events.

— If start() was called with bStartEventLoop set to false, MApp returns
execution control to the custom adapter, which can then call
MApp::nextEvent() to dispatch any incoming event, or
MRvSession::nextEvent() to dispatch events for this session.

See Event Model on page 60 for information on the event model in use.

6. To exit the event loop, the custom adapter must send a message that invokes
the stop() method, which leads to a shutdown operation.

7. When MApp receives the call to stop(), it calls onTermination()—defined by
the custom adapter—which performs application-specific cleanup.

8. The custom adapter executes onTermination() and returns control to the
SDK.

9. The SDK performs system-specific shutdown and returns control to the
adapter.

10. The adapter calls the destructor for MApp.

11. MApp is destroyed and control returns once more to the adapter.

Also, call stop() if the program never entered the event loop.
 TIBCO Adapter SDK Programmer’s Guide

48 | Chapter 3 Adapter Program Elements
Control Flow in Java

The control flow for Java differs slightly from that in C++. The SDK and the
custom adapter interact as follows:

1. The custom adapter creates an instance of a subclass of MApp and calls its
start() method.

2. When MApp receives the call to start(), it performs internal initialization:

— Checks to see if MApp is already started; if it is, just returns.

— Reads the information in project repository and creates objects as
appropriate. This includes session, endpoint, and trace objects, as well as
metadata description objects.

— Creates the default TIBCO Hawk microagent.

— Activates all sink components.

3. After MApp has performed internal initialization, it calls onInitialization().
This method performs application-specific initialization and must be defined
for each custom adapter.

Components and metadata objects are already available; the custom adapter
can therefore register listeners with subscribers and activate the subscribers.

4. The SDK executes onInitialization(), then activates all components, if so
specified. For some components, additional criteria must be met. For example,
a subscriber must have at least one listener attached to get activated.

5. The SDK spawns a new thread in which the event manager runs, and returns
control to the custom adapter.

See Event Model on page 60 for information on the event model in use.

6. When the custom adapter is ready to exit the event loop, it sends a message to
invoke the stop() method.

7. When MApp receives the call to stop(), it first checks whether MApp is already
stopped; if so, it just returns. If not, it calls onTermination().

8. The adapter executes onTermination() and returns control to the SDK.

9. The SDK performs a system-specific shutdown that:

— Stops the event thread.

— Deactivates all components.

— Performs other internal cleanup.
TIBCO Adapter SDK Programmer’s Guide

MApp Application Manager | 49
Creating an MApp Instance

Custom adapters set up MApp as follows:

1. Use the TIBCO Designer software to set the adapter name, version, banner
information, and other information, and save the configuration to the project
repository.

2. Programmatically create an MAppProperties instance that points to the
project repository.

See MAppProperties in the online API Reference documentation.

3. Call the constructor for MApp, passing in the MAppProperties instance, which
allows access to the configuration information.

MApp is an abstract class. All custom adapters must create a subclass and
implement, at a minimum, the onInitialization() and onTermination()
methods. In addition, MApp offers methods to allow command-line arguments, to
retrieve the current adapter name and version, and so on. See the online API
documentation for MApp for details.

Examples

Example 1 onInitialization()

The following code fragment illustrates the use of onInitialization().

class ExampleApp extends MApp
{

 ExampleListener listener;
 public ExampleApp(MAppProperties appProperties)
 {
 super(appProperties);
 }

 protected void onInitialization() throws MException
 {
 // attach listener for a subscriber for discovery messages
 MComponentRegistry componentRegistry =

getComponentRegistry();
 MSubscriber sub = componentRegistry.getSubscriber(

"DiscoveryListener");
 sub.addListener(listener);

 // attach to a monitored object to a Hawk microagent
 MHawkRegistry hawkRegistry = getHawkRegistry();
 Object monitoredStats = new Stats(this);
 MHawkMicroAgent hma = hawkRegistry.getHawkMicroAgent(

"GetStatistics");
 hma.setMonitoredObject(monitoredStats);
 }
…

 TIBCO Adapter SDK Programmer’s Guide

50 | Chapter 3 Adapter Program Elements
}

Example 2 onTermination()

The following code fragment illustrates the use of onTermination().

public void onTermination() throws MException
{
 // application specific database cleanup
 dbConn.commit();
 dbConn.close();

 // global notification that application is stopping
 MPublisher publisher = getComponentRegistry().getPublisher(

"Alert-sender");
 Minstance message =

getClassRegistry().getDataFactory().newInstance(“Alert”);
 message.set("status", "Stopping");
 publisher.send(message);
}

TIBCO Adapter SDK Programmer’s Guide

Transport Protocol | 51
Transport Protocol

TIBCO Adapter SDK allows custom adapters to use a publish/subscribe or a
request/reply transport protocol. This section gives an overview of both
protocols. See Chapter 7, TIBCO ActiveEnterprise Operation Model, on page 113
for more information about request/reply (client/server) interactions.

Publish/Subscribe Protocol

Publish/subscribe interactions are driven by events such as the arrival of data or
a timer signaling that a specified interval has elapsed.

Adapter Publisher

A publisher gets information from a source application, for example, an ERP
(Enterprise Resource Planning) application, and makes it available (publishes it)
to the transport, directly or through an intermediary.

Figure 5 Adapter Publisher

Adapter Subscriber

A subscriber receives information from the transport and passes it on to a target
application.

Figure 6 Adapter Subscriber

In publish/subscribe interactions, data producers (publishers) are decoupled
from data consumers (subscribers), that is, they do not coordinate data
transmission with each other. Information is routed to the appropriate consumer
because that consumer has subscribed to all messages with the matching
destination.

TIBCO Messaging
Source

application

Adapter publisher

TIBCO MessagingTarget application

Adapter subscriber
 TIBCO Adapter SDK Programmer’s Guide

52 | Chapter 3 Adapter Program Elements
Request/Reply Interactions

Demand for data drives request/reply (client/server) interactions. A client
requests data from a server; the server computes an individual response and
returns it to the client. Communication flows in both directions, as illustrated in
Figure 7. The complete interaction consists of two point-to-point messages—a
request and a reply.

Figure 7 Demand-Driven Request/Reply Interactions

Request/Reply Basics

Demand-driven computing is well-suited for distributed applications that require
point-to-point messages. In request/reply interactions, data producers coordinate
closely with data consumers. A producer does not send data until a consumer
makes a request.

The server sends replies to the client that requested the data. The client listens
until it receives the reply, and then stops listening (unless it expects further
installments of information).

Request/reply interactions can be implemented in two ways:

• MPublisher and MSubscriber have facilities to implement request/reply.

• ActiveEnterprise operations support a more sophisticated approach to
request/reply interactions. See Chapter 7, TIBCO ActiveEnterprise Operation
Model, on page 113.

Request/Reply and Reply Destinations

To perform request/reply interactions and set your own reply destination, do the
following:

1. Call the MPublisher method setReplyDestination() to specify the reply
subject.

2. Create the MSubscriber(s) listening on the reply subject.

3. Call the MPublisher method send() to send the message.

Note that the MPublisher method sendWithReply() is not suited for this
approach because it is always point-to-point.

TIBCO Messaging Target application

Adapter
TIBCO Adapter SDK Programmer’s Guide

Endpoints | 53
Endpoints

Endpoints represent the services that an adapter provides. Publisher, subscriber,
client, or server instances are the endpoints in a custom adapter.

TIBCO Designer allows to create endpoints by using the concept of a service. A
service encapsulates both an endpoint and the corresponding session. Services
include:

• Publication Service—a publisher and associated session

• Subscription Service—a subscriber and associated session

• Request-Response Service—a server and associated session

• Request-Response Invocation Service—a client and associated session

Creating Endpoints

Endpoints can be configured through TIBCO Designer or be created
programmatically using the appropriate constructor. It is recommended that you
use TIBCO Designer for configuration because it enables changing endpoint
details (for example, transport information) without recoding.

Configuring Endpoints in TIBCO Designer

To configure an endpoint and use it in a custom adapter:

1. Open TIBCO Designer and create a project.

2. Select the Generic Adapter Configuration resource and drag it into the
Design panel.

3. Select the Generic Adapter Configuration instance in the Project panel,
click its Adapter Services folder to open it.

4. Select one of the resources (for example, Publication Service) available in the
Palette panel and drag it into the Design panel.

5. Specify the relevant information of the service. For example: name, transport
type (Rendezvous or JMS), information about the transport in the Transport
tab (including wire format and quality of service), schema describing the data
the endpoint sends or receives.

6. Save the project.

Services are abstractions used for GUI configuration purposes. The SDK itself
encapsulates endpoints and sessions but not services.
 TIBCO Adapter SDK Programmer’s Guide

54 | Chapter 3 Adapter Program Elements
Creating Endpoints Programmatically

To create endpoints programmatically:

1. Instantiate an MRvEndpointSpec or MJmsEndpointSpec.

2. Assign member variables to the endpoint. These variables specify, among
other things, the message format for the endpoint to use.

3. Pass the endpoint specification to the MPublisher or MSubscriber.

Changing Endpoint Quality of Service

The SDK-based adapters can be written to work with different types of sessions.
For example, suppose you have configured an adapter for TIBCO Rendezvous
Certified Messaging and have written the corresponding adapter code. If you
later decide to switch to TIBCO Enterprise Message Service with explicit
confirmation, the code will still work (unless you performed some unusual
customizations).

In contrast, if you have written code that expects the endpoints to use automatic
confirmation, and then change the configuration of the endpoints to use a
non-persistent transport, the sending adapter continues to wait for the receiving
adapter to confirm the events. As a result, resources will be consumed without
being freed.

Assume a publisher has been configured to use RVCMQ. In that case, the
following code fragment would send messages in aeRvmsg wire format.

MClassRegistry * pCR;
 MInstance outInstance(pCR , "sdkSchema");

 //Set the instance ..
 outInstance.set(... , ...);
 outInstance.set(... , ...);
 ...
 ...

 //Serialize into Mtree
 MTree rTree;
 outInstance.serialize(rTree);

 //Publish the message
 pMPublisher->send(rTree);

Because of the advantages of separating configuration from the code, it is
preferable to include endpoints in the configuration instead of creating them
programmatically.
TIBCO Adapter SDK Programmer’s Guide

Endpoints | 55
Suppose you want to change the message to be sent in using TIBCO Enterprise
Message Service and, because of that, aeXml wire format. You can change the
endpoint configuration using TIBCO Designer and the code will work, but there
will be serious performance degradation.

The instance is first converted to MTree using aeRvmsg wire format. When the
MTree is sent out by the JMS endpoint, the MTree is deserialized back to
Minstance and then converted to the an MTree using aeXml wire format. The
code should therefore be changed as follows:

MClassRegistry * pCR;
 MInstance outInstance(pCR , "sdkSchema");

 //Set the instance ..
 outInstance.set(... , ...);
 outInstance.set(... , ...);
 ...
 ...

 //Publish the message
 pMPublisher->send(outInstance);

The MInstance is now sent directly, and the SDK takes care of the serialization.

Change all the programs to send out MInstance objects instead of serializing the
MInstance to MTree.
 TIBCO Adapter SDK Programmer’s Guide

56 | Chapter 3 Adapter Program Elements
Transports, Wire Formats, and Message Formats

This section discusses transports, wire formats, and message formats.
Understanding what each term means, and what the available options are, is
essential for proper configuration and programming of the adapter.

Adapter events are created by an event source such as an MTimer or an
MSubscriber (see Event Model on page 60). With each event, data are either sent
or received using one of the supported transports and wire formats. You must
specify the transport, quality of service, and wire format when configuring the
adapter elements.

Transports

Both TIBCO Rendezvous and TIBCO Enterprise Message Service are supported.
Each transport supports different qualities of service:

• TIBCO Rendezvous supports reliable, certified, and transactional messages. In
addition, you can use TIBCO Rendezvous to support queues.

• TIBCO Enterprise Message Service supports persistent or non-persistent
delivery modes. Standard JMS topics and queues are supported.

Wire Formats

Three wire formats are supported:

• rvMsg (standard TIBCO Rendezvous Message)

• aeRvMsg (ActiveEnterprise Messages, which includes control information)

• aeXml (standard XML representation)

SDK C++ API calls the EMS C API to create lookup context and other EMS
functionalities as there is no concept of tibjmsnaming in the EMS C API. The
concept of tibjmsnaming is used only in Java for JNDI implementation.

To use tibjmsnaming, specify the TCP notion in Designer or SDK, and specify
tibjmsnaming in the factories.conf file, which is queried by the EMS server.

In the factories.conf file, specify the URL of [TopicConnectionFactory] or
[QueueConnectionFactory] as follows:

[TopicConnectionFactory]
type = topic
url = tibjmsnaming://hostname:7222
TIBCO Adapter SDK Programmer’s Guide

Transports, Wire Formats, and Message Formats | 57
TIBCO Rendezvous supports all three wire formats, while TIBCO Enterprise
Message Service supports only aeXml. See TIBCO Adapter Wire Formats on
page 136 for more information.

Message Formats

The combination of a transport and a wire format is called a message format. A
message format is a C++ enumerated type or a Java interface that can be passed,
for example, when constructing an MTree class. The following message formats
are available.

Table 18 Message Formats

C++ Java Description

M_RV_MESSAGE_FORMAT MMessageFormat.RV rvMsg using TIBCO Rendezvous transport

M_AERV_MESSAGE_FORMAT MMessageFormat.AERV aeRvMsg using TIBCO Rendezvous
transport

M_XMLRV_MESSAGE_FORMAT MMessageFormat.XMLRV aeXml message using TIBCO Rendezvous
transport

M_XMLJMS_MESSAGE_FORMAT MMessageFormat.XMLJMS aeXml message using JMS transport
 TIBCO Adapter SDK Programmer’s Guide

58 | Chapter 3 Adapter Program Elements
Sessions

An SDK session encapsulates transport information. To represent sessions the
SDK supplies a hierarchy of classes: a parent class, MSession, and two subclasses,
MRvSession and MJmsSession.

Each adapter instance can use one or more sessions. The SDK session
configurations can be created and changed through TIBCO Designer. This keeps
configuration separate from the running application.

When creating adapter services in TIBCO Designer, a corresponding endpoint
(publisher, subscriber, etc) and session are created automatically. Figure 8 shows a
default RVCM Session created when a Publication Service was instantiated. In
general, you do not need to change these defaults.

Figure 8 Default Session

If multiple sessions are required for the same endpoint, select the session in the
configuration’s Advanced folder in TIBCO Designer. When you save the project,
the information is stored in the project repository.

Sessions can also be defined programmatically. However, using TIBCO Designer
is preferred for flexibility.
TIBCO Adapter SDK Programmer’s Guide

Sessions | 59
In C++, timers are associated with a TIBCO Rendezvous session. In the Java SDK,
they are session-independent. (There is no such thing as a JMS-based timer.)

In Java, TIBCO Rendezvous sessions can be RVA sessions. RVA sessions allow
communication with the RVA daemon instead of the RVD daemon. Note that
unlike RVD, the RVA daemon is not started automatically.

Sessions and TIBCO Rendezvous

When you create services and allow TIBCO Designer to auto create a session, you
need not to worry about the type of session. If, however, you create an
MPublisher or MSubscriber that uses TIBCO Rendezvous programmatically,
ensure that the appropriate TIBCO Rendezvous session (transport) is available.

Multiple Sessions

SDK-based adapters can use multiple sessions. By default, sessions are
autocreated by TIBCO Designer when creating a Publication or Subscription
Service.

You can also use the Advanced folder inside the adapter configuration in TIBCO
Designer to define as many sessions of each type as you need. During execution
of MApp::start(), the SDK will create the corresponding instances of the
appropriate MSession subclass. Custom adapters can obtain information about a
session by calling the methods in the session instance.

Table 19 Endpoints and TIBCO Rendezvous Sessions

Protocol Used by Endpoint Required Session

RV Any type of session: RVA (Java only), RV, RVCM, or RVCMQ (subscriber
only).

RVCM RVCM. If the session is of type RV, an error occurs.

RVCMQ (subscriber) RVCMQ. If the session is of type RV, an error occurs.
 TIBCO Adapter SDK Programmer’s Guide

60 | Chapter 3 Adapter Program Elements
Event Model

This section discusses the TIBCO Adapter event model.

• Event Management Classes, page 60

• TIBCO Adapter Flow of Event Information, page 61

• Extending Adapter Event Classes, page 62

Event Management Classes

Three classes participate in the TIBCO Adapter event model: event sources,
events, and event listeners. Figure 9 illustrates the event management class
hierarchy.

Figure 9 Event Management Class Hierarchy

• Event sources generate events, that is, an event source creates an event
instance when it is triggered. An example is the MSubscriber event source,
which creates MDataEvent, MExceptionEvent, or MTimeOutEvent instances.

• Events are created and owned by the event source. Instances of events
encapsulate state information about an event. Some adapters may decide to
provide a custom event for their source or target application.

MComponent

Publisher

EventSource

MIODescriptorSource

MSubscriber

MTimer

MEvent

MDataEvent

MExceptionEvent

MTimeoutEvent

MTimerEvent

MIOEvent

MEventListener
TIBCO Adapter SDK Programmer’s Guide

Event Model | 61
An MSubscriber sends a special event, MExceptionEvent. See How Adapters
Receive Data on page 69 for details on when a subscriber receives an
MException event.

• Event listeners register interest with event sources. Custom adapters create
appropriate subclasses of the SDK event listener class and implement
onEvent() methods with application-specific behavior.

The following code fragment accesses a subscriber event source, which was
defined in the project repository, and binds a listener—in effect, a callback—to the
subscriber:

MSubscriber* pMSubscriber = pComponentRegistry ->
getComponentByName ("mySub");

DataEventHandler* pDataEventHandler = new DataEventHandler(this);
pMSubscriber->addListener(pDataEventHandler);

TIBCO Adapter Flow of Event Information

Assume the custom adapter has been set up to listen to certain data events. In that
case:

1. An external process (source application) publishes data.

2. An MSubscriber instance (event source) receives the data and creates an
instance of MDataEvent (event). A new event instance is created each time
new data is received.

3. The event source informs each registered listener by calling the listener’s
onEvent() method. Each onEvent() method executes using the information
stored in the MDataEvent instance.

The Java API supports MEventSource, MEvent, and MEventListener classes to
implement an event model that mirrors that of the C++ API.

In contrast to the C++ API, the MIODescriptor event source and related
MIOEvent are not supported because there is no need for them in conjunction with
the Java event model.
 TIBCO Adapter SDK Programmer’s Guide

62 | Chapter 3 Adapter Program Elements
Figure 10 TIBCO Adapter Event Model

Extending Adapter Event Classes

A custom adapter can use custom events to suit its needs. In these cases, the
custom adapter needs to provide the following elements:

• Custom event source(s)—subclass(es) of MEventSource—with these methods
defined:

— addListener() adds a listener to the event source.

— removeListener() removes a listener from the event source. Calling this
method does not cancel certified delivery agreement for RVCM.

— notify() triggers an event in each event listener attached to this event
source.

Custom adapters can also remove listeners from the event source.

• A custom event (subclass of MEvent). This is the event the custom event
source generates. In the constructor for the event, the related event source is
provided.

• Instances of MEventListener with appropriate onEvent() methods.

Source application
External Listener

creates multiple
instances

receives
information frominforms

Event3
stateEvent2

stateEvent1
state

Event listener

onEvent()

Event source

addListener()
removeListener()
notify()

e.g. MTimer, MSubscriber, etc.

e.g. sales order handler

e.g. MTimerEvent, MDataEvent
TIBCO Adapter SDK Programmer’s Guide

Multiple Adapter Instances | 63
Multiple Adapter Instances

You can run more than one instance of the same adapter on one or multiple
computers. The instances can use the same configuration data or different
configuration data. Adapter configurations are defined using TIBCO Designer.
Each adapter instance can have different sessions, endpoints, timers, and
metadata.

Figure 11 shows the ZAP adapter with several instance definitions. Each instance
definition starts as a clone of the ZAP adapter and has a unique set of
configuration data defined.

The project repository for each adapter is in a separate user-defined adapter
directory, and uses a unique instance ID and project name. The information for
each project is then used by the adapter program at runtime.

Figure 11 One Adapter with Multiple Instances

ZAP

ZAPOrders

ZAPInventory

ZAPSupplier

sub1

pub1

sub2

pub2

sub3

pub3
 TIBCO Adapter SDK Programmer’s Guide

64 | Chapter 3 Adapter Program Elements
TIBCO Adapter SDK Programmer’s Guide

| 65
Chapter 4 Sending and Receiving Data

This chapter discusses how adapters send and receive data.

Topics

• Adapter Application Data, page 66

• How Adapters Send Application Data, page 68

• How Adapters Receive Data, page 69
 TIBCO Adapter SDK Programmer’s Guide

66 | Chapter 4 Sending and Receiving Data
Adapter Application Data

An adapter works with two kinds of data, application data and metadata. This
chapter discusses application data. Metadata are discussed in Chapter 6,
Metadata, on page 89.

Application Data Overview

Adapters need an in-memory data structure to represent complex, hierarchical
information that can be sent over a network. There are two options:

• MData subclasses (MInstance, MSequence, MUnion) are restricted by
metadata information.

• MTree is a generic structure for complex hierarchical data. There is no
constraint of content based on metadata.

MInstance, MSequence, MUnion

The Adapter SDK provides several subclasses of MData to represent complex
hierarchical information:

• MInstance. The MInstance class allows hierarchical data representation
based on a predefined class description (metadata information). This
metadata information is provided in the repository. The MApp application
manager encapsulates the metadata information so it can be used during
MInstance creation.

• MSequence. Class for encapsulating lists of data.

• MUnion. Class for encapsulating data specified in the repository as a union.
Unions have a name and contain one or more unionMember association lists.
Each unionMember association list has a name and a class. Union and union
member elements may have extended properties.

In SDK 5.x and later, an MInstance can be published without additional
modification. The SDK serializes the MInstance when you pass it to a publisher’s
send() method.

In this manual, MInstance refers to one of these composite objects. In most cases,
custom adapters send MInstance objects.
TIBCO Adapter SDK Programmer’s Guide

Adapter Application Data | 67
MTree

In addition to the MData subclasses, which are always constrained by metadata,
SDK also supports an MTree format.

An MTree is a data structure that can be sent over a network. When sending an
MData subclass to the transport, the SDK serializes it to create an MTree. When the
data arrives, it is in MTree format.

Application Data Message Format

When a publisher endpoint sends data over the wire, the data must be marshalled
to include message format information.

The message format contains information about the transport (TIBCO
Rendezvous or TIBCO Enterprise Message Service) and the wire format
(aeRvMsg, rvMsg, aeXml). The following message formats are supported.

When sending an MInstance, the SDK performs the serialization and you need
not be concerned about the message format. See Sending MInstance Data on
page 68.

Table 20 Message Formats

C++ Java Description

M_RV_MESSAGE_FORMAT MMessageFormat.RV rvMsg using TIBCO Rendezvous transport

M_AERV_MESSAGE_FORMAT MMessageFormat.AERV aeRvMsg using TIBCO Rendezvous
transport

M_XMLRV_MESSAGE_FORMAT MMessageFormat.XMLRV aeXml message using TIBCO Rendezvous
transport

M_XMLJMS_MESSAGE_FORMAT MMessageFormat.XMLJMS aeXml message using JMS transport
 TIBCO Adapter SDK Programmer’s Guide

68 | Chapter 4 Sending and Receiving Data
How Adapters Send Application Data

This section discusses sending data using the SDK send() method. For simplicity,
the discussion uses a publisher as an example. The same concepts apply if data is
sent as part of a client/server interaction.

Sending MInstance Data

An SDK MPublisher has various send() methods that take an MInstance (or
other composite MData subclass) as an argument. Because the publisher has been
created to use one of the supported message formats, you can pass in the
MInstance and the publisher handles the serialization appropriately.

Sending MTree Data

Custom adapters can also send an MTree. In that case, the custom adapter must
explicitly serialize the MInstance.

It is recommended that you use the MPublisher.send() method to send an
MInstance and let the SDK perform serialization.

If you explicitly serialize the MInstance, the serialization method must know
which message format to use. Choose one of the following options:

• Set a global variable (MESSAGEFORMAT) to determine the message format. This
variable is then used by the SDK each time the MTree is serialized. Set the
global variable as follows:MAppProperties.set(MESSAGEFORMAT, ...)

• Pass the message format as an argument, so the SDK can use the correct
format for serialization. Here is a sample code fragment:

MInstance foo(...);
// set the data into the foo instance
//...
MTree x;
foo.serialize(x, Pub.getMessageFormat());
Pub.send(x);

• Accept the default, aeRvMsg.

After you have serialized the MInstance, call the send() method.

If an MTree is produced with a message format that does not match the sending
endpoint, the endpoint is forced to convert the MTree to the matching message
format. The performance cost of doing so is often unacceptable for production
systems.
TIBCO Adapter SDK Programmer’s Guide

How Adapters Receive Data | 69
How Adapters Receive Data

This section discusses receiving data. For simplicity, the discussion uses a
subscriber as an example. The same concepts apply if data is received as part of a
client/server interaction.

When custom adapters receive data, the data always arrives in MTree format. The
message format of the subscriber determines how data is handled. The following
rules apply:

• If the incoming message format matches the message format with which the
subscriber was configured, an instance of the MDataEvent results. The custom
adapter can then deserialize the MTree that contains the data, and use the
resulting MInstance.

For example, the custom adapter application code could enter the data into a
database or enterprise application, depending on the task the adapter has
been set up to perform.

• If the protocol used by the publisher differs from that of the subscriber, the
subscriber never gets the message.

• If the protocol is the same, but the wire format is not matched, the subscriber
usually sends an MExceptionEvent that includes the message data. That way,
the receiving custom adapter knows that something unusual has happened
but still gets the data.

• If the protocol is the same, and the wire format expected by the subscriber is
rvMsg, the subscriber passes on the data that arrived, regardless of the content
of the message, in an MDataEvent.
 TIBCO Adapter SDK Programmer’s Guide

70 | Chapter 4 Sending and Receiving Data
TIBCO Adapter SDK Programmer’s Guide

| 71
Chapter 5 Tracing, Tracking, and Exception Handling

TIBCO Adapter SDK provides a number of ways to send error or debugging
information. This chapter discusses tracing, tracking, and exception handling.

Topics

• Tracing, page 72

• Tracking, page 81

• Exception Handling, page 83

Handling TIBCO Rendezvous advisories is discussed in Chapter 8, Advanced
Features, page 123.
 TIBCO Adapter SDK Programmer’s Guide

72 | Chapter 5 Tracing, Tracking, and Exception Handling
Tracing

Traces are useful both during development (debugging messages) and after the
custom adapter has been deployed (error and information messages).

The SDK allows custom adapters to store error message information in a separate
file. In the file, each message includes a number of elements, such as the message
code, the message role and category, and the message symbol. The custom
adapter program uses the message symbol, and the SDK maps the symbol to the
message in the file to send out a complete message to the desired location. Storing
error messages separate from the actual custom adapter program makes it easier
to localize the adapter to a specific language locale.

This section discusses the following topics:

• Using Tracing Facilities, page 72

• Available Tracing Roles, page 74

• Multiple Traces and Sinks, page 74

• MTrace and MSink, page 75

• Sample XML Message Element, page 76

• Trace Message Format, page 77

• Configuring Tracing Using TIBCO Designer, page 78

• File Sink Management, page 79

Using Tracing Facilities

This section gives an overview of how to implement tracing in a custom adapter.
Some of the example programs included in the TIBCO Adapter SDK (for example,
zapadapter) use this approach.

1. In TIBCO Designer, specify the sinks you want to have available and their
associated roles. See the TIBCO Designer Palette Reference for more information.

2. Prepare an XML file containing elements for each message you expect to use.
See Sample XML Message Element on page 76. Include a role for each
message element. You can use one of the predefined roles or a user-defined
role. See Available Tracing Roles on page 74.

3. Process the XML file using the genAeErrors utility (in the
SDK_HOME/resourceKit directory).
TIBCO Adapter SDK Programmer’s Guide

Tracing | 73
The utility can have two possible outputs:

— Source files that can then be included in the project. This can be either a
.cpp and a .h file or a .java file. The output files contain an
MMessageBundle and an InitializeMessages definition.

— If you are using Java, you may choose to output a Java properties file. In
that case, load the properties file as follows:

MMessageBundle.addResourceBundle("ZAP","ZAP_Messages");

See the example program for details.

4. Be sure to call the InitializeMessages() static method in the
onInitialization() method in MApp.

5. During initialization, MApp creates an instance of MTrace that you can retrieve
as follows:

C++ MTrace *pMTrace = pMapp->getTrace();

Java MTrace trace = mapp.getTrace();

6. In the custom adapter, call the MTrace method trace() with an MException
or an error code. For example:

C++ //.....
pTrace->trace("ZAP_ERR_NO_CONNECTION", NULL, NULL);

Java try {
//...
} catch (MException ex) {
 MTrace.trace("ZAP_ERR_NO_CONNECTION", ex, null);
}.

7. At runtime, the SDK looks up the message corresponding to the message
symbol used in the trace() call and sends the complete trace message to the
appropriate sink.

The output file includes a message symbol, which is then to be used in your
code. When later call trace() with the message symbol as an argument, all
other message elements are used in the trace.

It is recommended that you use the genAeErrors utility and the
InitializeMessages method instead of creating the MMessageBundle explicitly
and adding messages. See the API documentation for more information.
 TIBCO Adapter SDK Programmer’s Guide

74 | Chapter 5 Tracing, Tracking, and Exception Handling
See the TIBCO Adapter SDK Satus Codes for a complete list of predefined
messages and codes. You may create additional XML files with message codes
and related information for the custom adapter.

Available Tracing Roles

The SDK predefines the roles listed in Table 21. In addition, user-defined roles are
supported. For instructions on creating user-defined roles, refer to the TIBCO
Designer Palette Reference.

Multiple Traces and Sinks

With multiple roles and sinks, the output information level can be tuned via
modifications to the adapter instance definition. Because each sink receives trace
messages corresponding to its assigned role, you can do the following:

• Send different types of information (info, debug, warning, error) to different
sinks.

• Send the same information to more than one sink. For example, send it to a file
and publish it as a TIBCO Rendezvous message.

Combinations of sinks and roles are specified using TIBCO Designer.

In Figure 12, all error trace messages go to Sink4 and Sink3; all warning messages
go to Sink4; all debug messages go to Sink1 and Sink3; and all info trace messages
go to Sink1 and Sink2.

Table 21 Predefined Roles

C++ Java Description

MAPP_DEBUG_ROLE MTrace.DEBUG Developer-defined tracing. During normal operating
conditions, DEBUG should be turned off.

MAPP_ERROR_ROLE MTrace.ERROR Unrecoverable errors. The operation in which the error
occurred is skipped. The adapter may continue with the
next operation or may stop altogether.

MAPP_INFO_ROLE MTrace.INFO A significant processing step was reached. It is logged for
tracking and auditing purposes.

MAPP_WARNING_ROLE MTrace.WARN An abnormal condition was found. It does not prevent
processing to be performed but special attention from an
administrator is recommended.
TIBCO Adapter SDK Programmer’s Guide

Tracing | 75
Figure 12 Assigning Different Trace Messages to Different Sinks

MTrace and MSink

The two SDK classes MTrace and MSink offer the following services:

• Send a message to the desired location. The following sink types are
supported:

— MFileSink Messages are sent to file.

— MRvSink Messages are sent to TIBCO Rendezvous.

— MStdioSink Messages are sent to a user-provided file; usually stderr or
stdout.

— MHawkSink Messages are sent to TIBCO Hawk, to the specified microagent
method _onUnsolicitedMsg().

• Format a message string (printf() style).

• Fine-tune where and when different types of information are sent.

The SDK implements trace message handling as follows:

1. The developer uses the TIBCO Designer software to define sinks and map
each sink to one or more roles.

Trace

Info Role

Debug Role

Warning Role

Sink1

Sink2

Sink3

Sink4Error Role
 TIBCO Adapter SDK Programmer’s Guide

76 | Chapter 5 Tracing, Tracking, and Exception Handling
2. When a custom adapter calls the MApp method start(), MApp prepares for
tracing as follows:

a. Creates an MTrace instance.

b. Attaches the MTrace to the MApp from which it was called.

c. Creates the sinks defined for the adapter instance.

d. Maps trace roles and sinks. Roles group trace messages so related
messages can then be examined in one place. There are system-defined
roles (error, information, etc.) or you can use a user-defined role.

3. Each time the custom adapter calls one of the MTrace tracing methods, a role
is implicitly specified via the error code that is passed in.

4. Each sink that has been mapped to the specified role receives that message if
the role has been turned on.

See File Sink Management on page 79 for information on naming and potential
deletion of log files.

Sample XML Message Element

The following message element illustrates how to specify messages inside the
trace message XML file.

The XML file is compiled into source files or a Java property file when you run the
genAeErrors utility. At runtime, the compiled message is accessed to map from
the message code to other message information so the whole trace message can be
displayed, sent to the log, etc.

<message>
 <messageCode>AESDKC-0041</messageCode>
 <messageSymbol>M_ERR_CANNOT_FIND_PREFIX</messageSymbol>
 <role>errorRole</role>
 <category>SerializerCategory:
 <description>Deserialization failed to find prefix in Idx list

</description>
 <longDescription/>
 <resolution>Deserialization was attempted on an MTree that does

not contain necessary metadata prefix list information. Either correct
the sending application or do not attempt to deserialize this MTree (it
may not have been packed by an SDK-based application)</resolution>

</message>
TIBCO Adapter SDK Programmer’s Guide

Tracing | 77
Trace Message Format

In preparation for running a custom adapter, prepare an XML file that matches
error codes with other error information. See Sample XML Message Element on
page 76. Then launch the genAeErrors tool, which generates sources or resource
bundles from the XML file.

The message is typically extracted from the MMessageBundle object at runtime. A
substitution might occur in a reference field using Error description to fill the
field. This ensures each error definition originates from one, and only one, source.

In the log file, each message has the same format, derived from the tracing facility.
Table 22 lists each field and corresponding examples.

Here is an example of a single trace message:

2000 Sep 12 18:13:26:373 zap.inst1 Error [TibrvComm] AESDKJ-000237
AE Operation Request timeout tracking=
#<trackingID>#<info1>#<info2>#<info3>#

Table 23 gives details for each field in the trace message.

Table 22 Trace Message Fields

Field Example

<timestamp> 2000 Sep 12 18:13:26:373

<applicationId> zap.inst1 (The default applicationId format is <appName.instanceID>)

<role> Error

<category> [TibrvComm]

<message code> AESDKJ-0237

<message> AE Operation Request timeout

<tracking information> tracking= #<trackingID>#<info1>#<info2>#<info3>#

Table 23 Trace Message Details

Field Name Required Description

Timestamp Yes Timestamp of occurrence.

ApplicationId Yes Name of the product where the error is raised. A combination of
the SDK application name and instanceID is appropriate and
used by default.
 TIBCO Adapter SDK Programmer’s Guide

78 | Chapter 5 Tracing, Tracking, and Exception Handling
Configuring Tracing Using TIBCO Designer

This section demonstrates how to configure tracing using TIBCO Designer.

By default:

• the Generic Adapter Configuration is set up to support tracing to a log file
named according to a variable;

• Info, Warning, and Error messages are being logged;

• Debug messages are not logged.

Role Yes Role of the trace message. See Available Tracing Roles on page 74
for a definition of the following predefined roles: ERROR, WARN,
INFO, and DEBUG.

Category Yes

Not required for
DEBUG messages.

Category of the message.

Standard categories: Application,
Component,Configuration, Database, JMSComm,
Marshaller, Metadata, Properties, Rpc, Serializer,
TibRvComm, Unicode, Utility, XML

If necessary, the standard category set can be extended but
extension is discouraged

MessageCode Yes

Not required for
DEBUG messages.

Unique code for the message.

The code consists of one alphanumeric key followed by a dash "-"
and a four-digit code.

Message Yes Text message. Only string substitutions are acceptable.

TrackingId No Always a GUID defined by the source.

Set by the source and carried forward by intermediate
components.

Note that in all data-related messages the trackingId should be
traced.

ApplicationInfo No Application-specific information added to the tracking info to
trace the message back to its source. Set initially by the source and
carried forward, it is augmented by each intermediate component.

For adapters, ApplicationInfo should be in the following
form:

<appName>.<instanceID>.<businessEvent>.<Business
Id>

Table 23 Trace Message Details (Cont’d)

Field Name Required Description
TIBCO Adapter SDK Programmer’s Guide

Tracing | 79
Figure 13 Configure Tracing

You can change the default tracing by selecting or clearing the check boxes in the
Logging tab of the Generic Adapter Configuration. You can also change the name
of the log file.

For any other changes, for example, for additional sinks, select the Use Advanced
Logging check box.

Advanced Logging

With the Use Advanced Logging check box selected, you can create additional
sinks or change the default sinks from inside the Advanced folder’s Log Sinks
folder.

See the TIBCO Designer Palette Reference for more information.

File Sink Management

In most cases, custom adapters specify a file sink in the adapter configuration,
which includes File Limit and File Count attributes. The SDK uses this
information as follows:

1. Creates a file using the file name assigned for the adapter instance.

2. Writes to that file until it reaches the size specified in File Limit.

3. When File Limit is reached, the SDK renames the current file to file.1 and
creates a new file with no extension.

Note that the log file may be slightly larger than the limit because the new file
is only created after the limit has been reached.
 TIBCO Adapter SDK Programmer’s Guide

80 | Chapter 5 Tracing, Tracking, and Exception Handling
4. The SDK repeats this process, renaming all files each time a new file is
generated, until it reaches the number of files specified in File Count.

Setting File Sink Information

To set non-default File Sink information in TIBCO Designer:

1. In the Generic Adapter Configuration’s Logging tab, click Use Advanced
Logging.

2. In the Advanced folder for the adapter, drag a File Sink into the design panel.

3. Specify the information for the file sink.

The adapter overwrites the file with the lowest number, that is, the oldest file,
when the number of files reaches File Count and that last file reaches File
Limit. To avoid that, set either File Count or File Limit to a sufficiently large
value.
TIBCO Adapter SDK Programmer’s Guide

Tracking | 81
Tracking

The TIBCO Adapter SDK tracking facility allows custom adapters to associate
tracking information with data (not with trace messages). The tracking
information remains associated with the data as they are passed between
ActiveEnterprise applications. This makes it possible to see a history of the
operations performed on the message.

Use of tracking should not be confused with tracing. While tracing provides full
detail of custom adapter activities, tracking provides an audit trail for messages
as they travel through the ActiveEnterprise.

MTrackingInfo

Tracking is implemented by an MTrackingInfo object.

1. The source application places information into the MTrackingInfo objects
using the MTrackingInfo::addApplicationInfo() method.

This SDK adds the information to the MTree, MData, or MOperation.

2. As the data is sent through the enterprise, each TIBCO application adds
information about its operations to messages that pass through.

3. If an operation on the data fails, the application where it fails can access the
information by looking at the message.

Because the MTrackingInfo is sent on the wire, applications should limit the
information added through addApplicationInfo(). Each application should call
addApplicationInfo() only once per message. The message should contain
concise and minimal information.

Tracking Example

The following pseudo-code fragment illustrates how a subscriber event listener
could extract tracking information if serialization failed.

// *** A Subscriber tracking info sample ***
void
MyMEventListener::onEvent(MEvent const & event)
{
 MTree const * pTree = NULL;
 MDataEvent const * pDataEvent = MDataEvent::downCast(&event);

MTrackingInfo cannot be used if you are using rvMsg format.
 TIBCO Adapter SDK Programmer’s Guide

82 | Chapter 5 Tracing, Tracking, and Exception Handling
 if (pDataEvent) {
 pTree = pDataEvent->getData();
 try {
 MInstance foo(m_pClassRegistry, *pTree);
 //...
 }
 catch (MException e) {
 MTrackingInfo info = pTree->getTrackingInfo();
 m_pMTrace->trace(e, &info, NULL);
 }
 //...
 }
}

TIBCO Adapter SDK Programmer’s Guide

Exception Handling | 83
Exception Handling

The TIBCO Adapter SDK has its own MException class.

Exceptions in the C++ API

The C++ MException class differs from the standard C++ exception classes in that
it does not use a different exception subclass for each type of exception. Instead,
MException encapsulates exception information, including an exception code, to
avoid a large number of exception classes in the SDK. See the TIBCO Adapter SDK
Message Codes for more information.

Catching an MException instance is similar to catching any other C++ exception.
MException accessors allow the custom adapters to access the encapsulated
information. Comparison and assignment operations are also available. It is
possible to get a verbose description of the exception. See MException in the C++
API.

An MOperationException class has been defined for use with the SDK operation
model, which allows custom adapters to perform operation invocation or to act as
an operation server in a client-server implementation. Custom adapters do not
create instances of MOperationException, they only retrieve error information
from it. See TIBCO ActiveEnterprise Operation Model on page 113.

Exceptions in the Java API

The SDK supports standard Java exception handling. The Java API includes an
MException class with subclasses that indicate different types of exceptions. Each
class is documented as part of the API documentation.

Java custom adapters can use the instanceof operator to find out the specific
error that occurred. If the custom adapter wants to print the error to stdout, it can
call the getMessage() method from the exception object to retrieve the message
string.
 TIBCO Adapter SDK Programmer’s Guide

84 | Chapter 5 Tracing, Tracking, and Exception Handling
Figure 14 SDK MException Class Hierarchy

Using Exceptions

A custom adapter can catch exceptions thrown by the SDK and handle them
appropriately. Custom adapters can also create their own subclass of MException
for application-specific exceptions.

try {
...
catch (MException e){
m_pTrace ->trace (e);
...

Designing an Exception-Handling Mechanism

When designing an exception-handling mechanism, consider the following
recommendations:

• Distinguish between business and system errors.

— When an operation fails due to business logic execution, it should not
prevent the adapter from continuing to function normally. The adapter
must anticipate and handle business exceptions. You should also consider
the possibility of receiving data that does not match the expected metadata
description.

— For programming mistakes, the adapter must ensure that there is enough
information traced and logged for an administrator to debug or work
around the problem.

MRuntimeException

MException

MConstructionException

MDuplicateException

MInvalidInputException

MNestedException

MRestrictedMethodException

MTimeoutException
TIBCO Adapter SDK Programmer’s Guide

Exception Handling | 85
• Handle business errors inside or outside the custom adapter.

— Business errors can be handled outside the adapter (for example, in TIBCO
ActiveMatrix BusinessWorks).

— A business exception handling mechanism within the adapter is also
possible. However, such design could compromise the flexibility of the
adapter to evolve over time as business requirements change.

• Consider using TIBCO Hawk or TIBCO Administrator monitoring to help
manage system errors.

— Hawk can help monitor and manage the adapter using a Hawk trace sink
at runtime. Hawk can also be used to restart an adapter in case of fatal
system errors. Hawk sends out alert message, email, or a page to an
administrator who can correct and bring the system back up if needed.

— TIBCO Administrator implements monitoring and tracing behavior. You
can also write trace information to files.

• Consider whether transactional behavior applies for the adapter.

— Transactional messaging behavior provided by TIBCO Rendezvous TX
includes atomic transaction, exactly once message consumption (duplicate
detection), and store and forward message delivery.

— You can commit on success and handle transactional exceptions with
rollback.

• Maintain transactional integrity when handling system errors.

— You should ensure that the adapter can survive system errors such as a
target application down. Message integrity must be preserved in case of
system errors.

— By wrapping a transaction around both the consumption of the incoming
message and the publication of the resulting transformation, the engine is
made lossless. That is, a message is never marked as consumed until the
transformed version has been successfully published. Similarly, no
transformed message is published until the incoming source message has
been marked as consumed.

• Consider disaster scenarios and disaster recovery schemes.

— All known system and business exceptions should be handled. Logging
and monitoring can help manage other disaster scenarios.
 TIBCO Adapter SDK Programmer’s Guide

86 | Chapter 5 Tracing, Tracking, and Exception Handling
Exception Handling in Delayed Acknowledgement of Certified Messages

Delayed acknowledgement of a certified message is also known as explicit RVCM
confirmation. This feature is most useful when controlling whether to confirm
receipt of the certified message. This feature also allows you to handle the case
where a target application crashes after it receives a certified message, but before
it can process the message.

Note that successful certified message delivery is different from successful
application processing of the received message. Adapter business logic and
application error (not application crash type) handling logic should be separated
from explicit RVCM confirmation.

Adapter developers must decide whether the adapter should acknowledge
messages that have resulted in an error.

First, a developer should differentiate between data errors and system errors:

• Data errors If the message is retransmitted, it will probably result in the same
error. This may not always be true if the operation failed due to missing
information that may subsequently have become available (for example, a
foreign key violation).

• System errors The message cannot be processed because the target system is
down. The message is retransmitted after the system comes back up and the
message may then be successfully processed.

Second, being a message delivery protocol, RVCM has no built-in intelligence to
retransmit on a failure condition at application level. RVCM should not be used to
recover or retransmit after an error condition, such as failed operation invocation.

Certified messages are only retransmitted under the following conditions:

• When the receiving certified subscriber detects a missed message from the
sequence number. For example, the receiver gets message # 1,2, 3 then 5. The
certified subscriber will request retransmission for message # 4.

• In recovery from abnormal termination of either the publisher or subscriber.
For example, a certified subscriber crashes while the certified publisher keeps
publishing. When the subscriber is restarted, the messages published while it
was down will be retransmitted from the publisher.

Messages that result in data errors should be acknowledged (confirmed) and
logged, which allows the problem to be addressed outside the adapter.

Messages that result in system errors should be handled in one of the following
ways:

• Explicit RVCM confirmation can be used and the adapter can simply not
acknowledge a failed message. However, the adapter must manage pausing
TIBCO Adapter SDK Programmer’s Guide

Exception Handling | 87
and triggering retransmission of the message so that it can be resent for
processing.

The Adapter SDK provides a subscriber method that allows custom adapters
to suspend and restart certified message delivery subscription. The
MSubscriber::suspend() method stops the current subscription interest but
does not cancel the certified delivery agreement. The suspend() method
works the same way as an abnormal termination of subscriber, mentioned
above. By suspending subscription interest the publisher retains all the
certified messages it publishes.

When the target application is reconnected the subscriber can resume
subscription and the publisher will retransmit all messages retained.
Subscription interest is restarted by calling the MSubscriber::activate()
method. There are no equivalent methods for the request response service,
you should instead use the operation remote exception handling mechanism
(that is, confirm and raise remote exception).

• If the subscriber application is a stateless, short-lived process, sending the
RVCM confirmation at the end of the process is acceptable. Otherwise you
need to persist and confirm, then do the processing. If a system error occurs
you should recover using the persistence.

Either way, you must deal with the possibility of a continuous system error (that
is, the target system is never reconnected) and should handle it like any data
error.
 TIBCO Adapter SDK Programmer’s Guide

88 | Chapter 5 Tracing, Tracking, and Exception Handling
TIBCO Adapter SDK Programmer’s Guide

| 89
Chapter 6 Metadata

The chapter explains how to use TIBCO Adapter SDK metadata.

Topics

• Understanding TIBCO Adapter Metadata Management, page 90

• Defining Metadata Classes, page 93

• Creating Classes Based on Metadata Objects, page 96

• Creating Runtime Data, page 98

• Metadata Class Names, page 101

• Guidelines for Metadata Use, page 102

• AE Schema Types and SDK Classes, page 107
 TIBCO Adapter SDK Programmer’s Guide

90 | Chapter 6 Metadata
Understanding TIBCO Adapter Metadata Management

The SDK metadata classes form the basis for model-driven computing with an
adapter. Metadata is, by definition, data about data. Metadata isolates the data
description from the application data itself.

In regards to the SDK, metadata is data describing the data the custom adapter
deals with. For example, for a custom adapter that extracts data from a database
and publishes it to TIBCO Rendezvous, the metadata would describe the
database data to be extracted.

If several applications handle the same data, a specification document must exist
that defines exactly how the data is implemented. Each time the specification
document changes, all applications dependent on it must change as well.

Instead of a specification document, developers can use metadata to describe the
application data. The metadata is used in a similar fashion to a hardcopy
document, however, applications can access metadata automatically and don’t
have to manually update data descriptions.

Well-designed metadata makes it possible to have an adapter with the same
behavior under different circumstances. If data definitions in the source or target
application change, you change the metadata that describes the data instead of
changing the custom adapter code and recompiling. In addition, standardizing on
metadata provides interoperability among TIBCO ActiveEnterprise components.

Uses for Metadata

Custom adapter developers specify the metadata hierarchy in TIBCO Designer
and save them as part of the project repository. Metadata is useful in several ways:

• Metadata describe the data model (schema) for the custom adapter. When the
data model of the source or target application changes, you do not have to
rewrite the adapter. Instead, you change the metadata objects.

• By changing the metadata you can change which data the custom adapter
publishes or subscribes to. It is therefore possible to use the same adapter code
with different sets of metadata residing in different directories in different
project repositories.

Metadata is also known as schema data. The two terms can be used
interchangeably.
TIBCO Adapter SDK Programmer’s Guide

Understanding TIBCO Adapter Metadata Management | 91
• Metadata encapsulates the data themselves as classes and the relationships
between classes as associations. Much of the information in the source data
can therefore be preserved.

Custom adapters create instances of the MInstance class based on metadata
information. The SDK serializes the MInstance objects when they are send out so
they become instances of MTree. On the wire, data is always in MTree format.

Metadata Definition

This section explains the steps required for defining and using metadata.

Figure 15 Metadata Creation and Usage Overview

• Defining Metadata Classes. At design-time, metadata is either defined using
TIBCO Designer or by extracting information about the data the adapter
works with from the target application. For data extraction, you need to write
a schema tool that extracts the data from the source application and places it
in the repository. Developers can also edit an AEXML file.

• Creating Classes Based on Metadata Objects. The SDK creates instances of
subclasses of MModeledClassDescription to describe the metadata and
stores it with MClassRegistry. By default, this happens when the custom
adapter starts.

• Creating Runtime Data. At runtime, the adapter creates instances (MInstance)
as defined by the metadata and populates the MInstance attributes with
actual object data from the target application for publishing or responding to
request-response invocations. On the receiving side, a subscriber adapter

Target
Application

 Schema
Tool

Run-time

Design-time

Metadata

ActiveEnterprise
Message

AEXML

Object
data

Object
definition

TIBCO Messaging

TIBCO
Adapter

project
repository

TIBCO
Designer AEXML
 TIBCO Adapter SDK Programmer’s Guide

92 | Chapter 6 Metadata
converts the incoming message back to an instance through deserialization,
which also validates the message against metadata definition.

Figure 16 Metadata Runtime Implementation

MInstance Implementation

TIBCO Adapter SDK provides the following two types of MInstance
implementations in C++ SDK:

• MInstanceMapImpl: This implementation is the same as the MInstanceImpl
in previous releases. It adopts hash tables to improve the access performance,
but consumes more memory. MInstanceMapImpl is the default
implementation.

• MInstanceListImpl: This implementation consumes less memory, however,
the access performance degrades slightly compared with the
MInstanceMapImpl implementation.

The MInstanceListImpl implementation is suitable for the following scenarios:

• The total number of attributes in MInstance is less than 50.

• The memory capacity is limited.

• There are large numbers of nested MInstance objects to be referenced by one
MInstance object.

For a Request-Response Service, the adapter can use the method void
setInstanceImpl(MInstanceImplSelector impl), provided in MRpcServer, to
choose an MInstance implementation.

For a Request-Response Invocation Service, the adapter can assign an instance
implementation to the constructors of class MOperationRequest.

Metadata
Description

get

Serialization

MTree

MInstance

Actual data

set

Deserialization

Metadata URLTIBCO
Repository

TIBCO Messaging

TIBCO
Designer
TIBCO Adapter SDK Programmer’s Guide

Defining Metadata Classes | 93
Defining Metadata Classes

The adapter developer defines metadata classes by using TIBCO Designer or by
editing an AE XML file, which can be verified using the schema available as part
of the SDK.

Using TIBCO Designer

TIBCO Designer includes a hierarchy of all metadata classes defined in the SDK.
Instantiate these classes as appropriate for describing the data the adapter will
work with, then save the project. For additional information, see the TIBCO
Designer Palette Reference.

After defining the metadata classes, save them as part of the project or export
them to a file.

Metadata Types

There are two types of metadata:

• Metadata that restricts incoming or outgoing data.

This metadata is defined through class, union, or association resources, and
has scalar type or complex type (which can be another class, union, or
association) attributes.

• Metadata that restricts operation methods, parameters, and exceptions.

This metadata should have a name, and a method or methods with a return
class (if any), parameters (name, class, and the direction: in, out, or both), and
any exceptions the operation raises. This metadata is used by SDK Operations
classes.
 TIBCO Adapter SDK Programmer’s Guide

94 | Chapter 6 Metadata
Figure 17 Defining Metadata with TIBCO Designer

Working With the AEXML Repository File

At times, you may want to edit the AEXML repository file directly. There are
several ways to create an AEXML schema file:

• Launch TIBCO Designer, select the top-level resource, then select Resource >
Export Resource.

In cases where adapter schema changes infrequently, you can supply
preconfigured schema by manually creating it in TIBCO Designer and
exporting it as an AEXML repository file. The exported file can then be
imported into a new TIBCO Designer project to reuse the adapter metadata
schema.

• Use the TIBCO Administrator command line export tool to specify the
AEXML repository format.

• Create a tool to generate the AEXML repository from an application object or
schema, then use Repository Import and Export API to load it.
TIBCO Adapter SDK Programmer’s Guide

Defining Metadata Classes | 95
The first two options export an existing repository to an AEXML file. The third
option (Repository Import and Export API) creates a standalone schema
configuration application for the adapter.

In cases where adapter schema varies greatly at runtime, the interactive schema
configuration application will extract the metadata object from the target
application and map it into an AEXML file for import into the repository. You
must programmatically generate an AEXML stream by following an example
export file. TIBCO Runtime Agent includes the ActiveEnterprise Schema XSD file,
AESchema.xsd, which is used to validate an AEXML stream.

TIBCO Designer can save the adapter configuration as a template so that it can be
used to create a new project, complete with schema and adapter configuration.
This makes it easy to clone template for adapters that do not require a high level
of schema customizations.
 TIBCO Adapter SDK Programmer’s Guide

96 | Chapter 6 Metadata
Creating Classes Based on Metadata Objects

The SDK parses metadata objects found in the project repository and populates
the class registry. By default, this happens upon startup.

Metadata Description Classes

Metadata description classes encapsulate the metadata description. For example:

• MModeledClassDescription encapsulates the descriptions of the classes
themselves. It describes MInstance.

• MSequenceClassDescription encapsulates attribute types that are
sequences. It describes MSequence.

• MOperationParameterDescription encapsulates operation parameters. It
describes the expected inputs and outputs for an ActiveEnterprise operation.

• In the C++ SDK, MPrimitiveClassDescription encapsulates simple
attribute type descriptions. It governs such classes as MInteger, MBinary, or
MReal. (The Java SDK uses Java native classes in this case).

When the SDK reads the metadata from the adapter instance in the repository,
each attribute must have a name and type. The SDK creates an
MAttributeDescription for each attribute. Custom adapters can then set the
attributes when they send the information over the wire. Custom adapters can
also access the following information.

It is recommended to have all metadata data parsed upon startup. See Adapter
Metadata Look-up on page 102 for instructions on how to alter this behavior.

Table 24 Attributes Accessible to Custom Adapters

Attribute Method

name MAttributeDescription::getAttributeName()

type MAttributeDescription::getAttributeClassDescription()

parent class MAttributeDescription::getAttributeParentClassDescription()
TIBCO Adapter SDK Programmer’s Guide

Creating Classes Based on Metadata Objects | 97
Metadata Hierarchy Example

Assume you have created an Order class with four attributes. Three of the
attributes are strings, the other, Orderlines, is a sequence of four attributes.

In this case, MApp would generate one MModeledClassDescription with four
associated MAttributeDescription instances for the Order class, as well as one
MModeledClassDescription with four associated MAttributeDescription
instances for the OrderLine class. MApp also creates an
MSequenceClassDescription consisting of one or more OrderLine instances.

Table 25 Metadata Hierarchy Example

Metadata Classes

Order class MModeledClassDescription with four associated
MAttributeDescription classes.

Order/ Orderlines attribute MSequenceClassDescription.

OrderLine class MModeledClassDescription with four associated
MAttributeDescription classes.
 TIBCO Adapter SDK Programmer’s Guide

98 | Chapter 6 Metadata
Creating Runtime Data

Each time information has to be sent over the wire, the custom adapter creates
MInstance instances for those MModeledClassDescription instances it wants to
work with. It adds attributes by iterating through the
MModeledClassDescription attributes.

As part of instance creation, custom adapters encapsulate the attributes as
instances of MData subclasses.

Metadata Encapsulation Classes

MData and its subclasses encapsulate the data itself.

• MInstance encapsulates class data.

• MSequence encapsulates sequences to be used as a type.

• MUnion encapsulates union data. Unions have a name and have as
subelements one or more Union Member attributes. At any given time there is
one, but only one, active member.

• MInterval encapsulates a time interval.

• MAssocList encapsulates association lists.

• MChar, MStringData, MReal, MFixed, MBinary, MDate, MDateTime, etc. support
the appropriate corresponding types. See AE Schema Types and SDK Classes
on page 107.

Metadata Attribute Encapsulation Classes

Metadata attribute encapsulation classes are represented differently depending
on the API in use:

• In the C++ API, all metadata types, that is, all types used for the attributes of
metadata elements, are represented by an SDK-defined class.

• Because Java provides encapsulated types, the Java SDK metadata interface
does not include the type description classes such as MInteger or MBoolean.
Instead, adapters use the native Java classes. See AE Schema Types and SDK
Classes on page 107.

C++ MData Subclasses

In the C++ SDK, there are a number of MData subclasses for types, such as
MInteger or MBool.
TIBCO Adapter SDK Programmer’s Guide

Creating Runtime Data | 99
The C++ SDK chose this rather complex hierarchy because it facilitates
introspection. Assume a custom adapter receives an MInstance that consists of
chunks of MData. The design of the classes allows the custom adapter to first find
out what type of data it is dealing with, for example, MInteger. The adapter can
then downcast this MInteger and retrieve information about the exact type, as
encapsulated by the MPrimitiveClassDescription data member, for example
"i4".

When custom adapters get ready to send data across the wire, they create
instances of MInstance for each item defined as a class in the adapter instance.
Custom adapters then set values for each instance. MData and its subclasses allow
the custom adapter to encapsulate data at a high level. For example, you can use
MInteger for all integer primitive types, while at the same time maintaining the
information about the specific primitive type that is used.

C++ Data Encapsulation Classes

When a C++ custom adapter wants to send data or retrieve data, it uses the data
encapsulation classes.

1. The classes and attributes for an adapter instance are defined using the TIBCO
Designer software.

2. The SDK creates class description classes based on the metadata in the project
repository.

3. The adapter accesses the class descriptions as needed.

4. The adapter creates instances and sets instance values.

The type of the instance value is the class that encapsulates the attribute’s
class in the adapter instance. For example, if the attribute had the class “i4”,
the code for setting the value would use an MInteger.

5. The custom adapter sends the MInstance and the SDK serializes and
publishes it.

Metadata Example

The adapter first accesses the class registry to retrieve the information about the
type of data that it publishes or subscribes to.

//retrieve the registry
MClassRegistry* pClassRegistry = m_pMApp->getClassRegistry();
//retrieve class descripton from class registry, downcast because we’re

The Java SDK does not have SDK subclasses such as MInteger or MStringData
because these classes are available as part of Java.
 TIBCO Adapter SDK Programmer’s Guide

100 | Chapter 6 Metadata
//working with MModeledClassDescription.
MModeledClassDescription* pMCD = MModeledClassDescription::downCast

(pClassRegistry->getClassDescription());

//get the attributes for the class we just retrieved.
MMap<MString, MAttributeDescription*>* pAttributes = pMCD->getAttributes()

The adapter then creates the instance using one of the metadata classes. For
example:

MInstance orderInstance(this,"Order");

The custom adapter provides the first three attribute values for the attributes of
the predefined class. Note that the attributes are defined in the adapter instance
description object as "i4". The custom adapter can set values of any integer type
attribute by defining the value as an MInteger.

MInteger iOrderId = 1000;
MInteger iCustomerId = 112;

// set the order
orderInstance.set("OrderId", iOrderId);
orderInstance.set("CustomerId", iCustomerId);
orderInstance.set("ShipToAddress", MStringData("3165 Porter Dr"));
//
//The fourth attribute value is a sequence of Orderline instances. The application
//creates them as follows:
//
// create a orderline sequence
MSequence orderLineSequence(this, "sequence[OrderLine]");

//create one orderLine instance
MInstance orderLineInstance(this, "OrderLine");
orderLineInstance.set("OrderId", iOrderId);
orderLineInstance.set("ItemId", MInteger(1));
orderLineInstance.set("Quantity", MInteger(345));
//append to sequence
orderLineSequence.append(&orderLineInstance);

// create another orderline
orderLineInstance.set("OrderId", iOrderId);
orderLineInstance.set("ItemId", MInteger(1));
orderLineInstance.set("Quantity", MInteger(345));
//append to sequence
orderLineSequence.append(&orderLineInstance);
//
//The application can then set the fourth attribute of the Order instance:
//
orderInstance.set("Orderlines", &orderLineSequence);
TIBCO Adapter SDK Programmer’s Guide

Metadata Class Names | 101
Metadata Class Names

The TIBCO Adapter SDK metadata class name used in an API call can be either
the full name or the short name:

• Full Name Each object managed by the repository has a name, called the full
name because it is fully qualified. An object's full name is the concatenation of
its name with the names of all its parent directories, separated by forward
slash ("/") characters. Names are case sensitive.

To refer to the object myClass, use the full name
/tibco/public/class/ae/myClass.

Using full name relieves the need to specify loadURL in the configuration
because the global path specifies exactly from where to load the class
description.

• Short Name Each object's name is referred to as the short name of that object.

In the above example, the short name would be myClass. Without the parent
directories concatenated, all short names must be unique. Otherwise, SDK
will use the last definition in the repository, irrespective of the loadURL order.

Only sequences using sequence[myclass] need to be under this particular path.
This is because the path itself tells SDK where to look for sequence element type
myclass.

To illustrate, a sequence with following path

/tibco/public/sequence/ae/class/ae/sequence[foo]

means that class foo can be found using following path

/tibco/public/class/ae/foo

So this requirement is valid only if the adapter is using the SDK 2.x configuration
XML notation of the name sequence[myClass]. Possible sources of such notation
are the schema generation tool shipped with TIBCO Adapters and migrated
configuration from SDK 2.x. This requirement is not valid if the schema is created
through TIBCO Designer because the XML configuration for SDK specifies an
elementType attribute, which specifies where the sequence element type is to be
found. The elementType attribute allows the use of an arbitrary sequence class
name (that is, mySequenceClassOfFoo).

A sequence class using the sequence[element] name notation is a special case of
short name for SDK. This notation gives a self-describing type name, so by
default, even without loadURL specification, SDK looks for the class description
under the /tibco/public/sequence/ae path.
 TIBCO Adapter SDK Programmer’s Guide

102 | Chapter 6 Metadata
Guidelines for Metadata Use

This section gives guidelines for metadata use.

Adapter Metadata Look-up

When configuring an adapter in TIBCO Designer, you specify metadata that
restrict how the data an endpoint receives or sends should be structured.

When saving the TIBCO Designer project, the metadata are stored in the project
repository. The SDK parses the metadata and creates instances of the metadata
classes. These instances encapsulate the metadata information stored in TIBCO
Administrator. The custom adapter can access the information through
MClassRegistry and use it to process the available data.

Using TIBCO Designer, you can specify when the objects encapsulating the
metadata should be created:

• Specify one or more loadURL resources so that only frequently used classes
are loaded upon start-up. Multiple project repository URLs can be specified
from which metadata are loaded upon startup using the loadURL resources
inside the Metadata URLs folder inside the adapter’s Advanced folder.

Only the metadata defined in the loadURL resource is loaded at start-up. If no
loadURL resources are defined, nothing is loaded at start-up. Metadata that is
not specified in the loadURL resource will be fetched on first access and will be
cached for subsequent access.

• Specify project repository URLs in which the custom adapter will search for a
metadata object or attribute if its description is not yet loaded. Use the
Metadata Search URL field in the Startup field of the adapter configuration
object.

• Specify both a search URL and load URLs.

How the SDK Performs Metadata Look-up

When executing the MApp start() method, the Adapter SDK loads the metadata
as follows:

• The Adapter SDK first prepends the Metadata loadURL to form a full name
(defined under the genericAdapter/Advanced/Metadata URLs/ folder). The
Metadata loadURL specifies all the schema class definition that are to be
pre-loaded on initialization and cached.
TIBCO Adapter SDK Programmer’s Guide

Guidelines for Metadata Use | 103
• If the Metadata loadURL is not found, the Adapter SDK loads class definition
from the repository using the searchURL (this is known as a lazy fetch).

The SDK checks the URL listed under the Metadata Search URL only when the
class description cannot be located in the class registry using Full Name with the
prepended Metadata load URL. For example:

Metadata Search URL= /tibco/public/class/ae/myfolder
Metadata load URL ("Metadata URLs" folder) = /tibco/public/class/ae
Short Name = GreetingClass

The full name used by the SDK to locate the class description will first be

/tibco/public/class/ae/GreetingClass

If the class description is not found there, SDK will use

/tibco/public/class/ae/myfolder/GreetingClass

Restrictions on Metadata

Be aware of the following restrictions on metadata:

• The top-level class in any message sent to an adapter should be an MInstance.

Inner classes may be unions, sequences, or scalars. While it is possible to
create and use messages with a top level class of sequence or union, these
top-level classes can be difficult to use in conjunction with mappers.

• The ActiveEnterprise schema type any is not a class type but an
ActiveEnterprise scalar type. Type any should not be used in the context of the
any class in a top level schema.

• Class names and attribute names must not use the dot (.) character.

The dot character has special meaning in different places (such as subject
name where it is used as element separator). Some adapters may decide to use
a class name in their subject space, which can cause unpredictable issues.

• Schema class names and attributes should avoid using non-alphanumeric
characters if at all possible.

Schema class names cannot have parentheses '(' ')' because they are used to
distinguish script functions. The '^' is used by TIBCO Adapter SDK to delimit
ActiveEnterprise wire format control fields and should not be used in class
names. Below are legal non-alphanumeric characters; use them only if it is not
possible to implement the adapter using alpha-numerics:

'_', ,'%','@', '|', '~', '{', '}', '#','-','$'

• Schema class names and attribute names can only be in ASCII alphanumeric
characters (only schema attribute values support Unicode).
 TIBCO Adapter SDK Programmer’s Guide

104 | Chapter 6 Metadata
• Avoid the use of the sequence[any] data type where elements may have
different classes (a heterogeneous list) because not all adapters are able to
handle such list types.

• Do not define and use an Operation class schema that uses inheritance. The
ActiveEnterprise metadata model does not implement features such as C++
class method override and virtual methods.

• Earlier versions of Adapter SDK allow to create schema that contained both
simple value attributes and operation methods. Such schema are not
supported in TIBCO Designer, which can read but cannot create class schema
with both value attributes and operation methods. You must create separate
classes for attributes and operations. This is enforced by TIBCO Designer.

• A superclass and its child classes cannot have duplicate attribute names. If a
child class and its parent class have duplicate attributes, a duplicate attribute
exception will be thrown.

• If a long class name (/tibco/public/class/ae/className) is specified
without specifying a loadURL to access the class, and the repository file is
very large and accessed remotely, an MConstructionException is thrown
noting that the metadata class is not found.

Working with XML and XSD

Adapter SDK supports AESchema XSD (generic XSD is not supported).
AESchema XSD support is defined as the conversion of MInstance to and from
XML. In other words, Adapter SDK can only deserialize from an AESchema based
XML data into an MInstance. Conversely, Adapter SDK can only serialize
MInstance into AESchema based XML data.

If you have XML data from a third party application and want that data to be part
of a TIBCO application, the XML data must conform to an AESchema XSD.

Because third party XML can, probably, not be created conforming to AESchema
XSD, you must transform the third party XML using either BusinessWorks or a
transformation plug-in. A transformation XSLT (mapping) can be generated using
an AESchema XSD generated from the schema classes defined in Designer
together with the XSD of the third party XML. For more information on the
transformation plug-in, refer to Transformation Plug-in on page 145. You can
always bypass any Adapter SDK supported ways of handling serialization and
deserialization yourself. However, that is outside the scope of this guide.

Figure 18 shows where you can access an XSD from an AESchema defined class.
You may want to use this XSD in an external modeling tool.
TIBCO Adapter SDK Programmer’s Guide

Guidelines for Metadata Use | 105
Figure 18 Access an XSD from an AESchema Defined Class

You can access the XML/XSD as follows:

1. Use the TIBCO Turbo XML tool to create the XSD. It allows you to save the
XSD to a repository.

2. Export XSD from the repository using TIBCO Designer.

— Use the Tools > Export As XML Schemas menu command in TIBCO
Designer. See the TIBCO Designer User’s Guide for details.

— Use the ae2xsd utility to export an XSD. The utility is documented in the
TIBCO Runtime Agent Administrator’s Guide.

3. Use the following programming tools to get the XML and XSD from an
application. These APIs allow you to access the XML and XSD needed for
transformation or manipulation. It is useful when you want to transform non
AESchema XSD based XML into SDK’s AESchema based XML (AEXML).

— Get the AESchema XSD from the Adapter SDK class registry with
MClassRegistry::getXSD(aeSchemaClassName).

SDK parses the incoming AESchema XML. The XSD from
MClassRegistry::getXSD(aeSchemaClassName) validates the AEXML
data instance.

— Get the XML string message using MInstance::toXML() which gives the
XML serialized form of MInstance (or use MTree::getTextBody() if you
are accessing MTree).

TIBCO Transport

TIBCO
Repository

Use TIBCO Designer or the

ae2xsd utility to get XSD

Adapter Adapter

Use MClassRegistry::getXSD and

MInstance::toXML() to get XSD and
XML
 TIBCO Adapter SDK Programmer’s Guide

106 | Chapter 6 Metadata
By default, MAppProperties is configured with XSDGENERATION set to OFF. So, by
default, the XSD is not used while parsing the AEXML. If you configure
MAppProperties with XSDGENERATIONON set to ON, Adapter SDK can parse an
incoming XML message using the XSD for the given class.

The getXSD() method is used to access the automatically generated XSD and is
automatically used in the validation process. After XSDGENERATION is set to ON,
you need not explicitly call getXSD() to do the validation.
TIBCO Adapter SDK Programmer’s Guide

AE Schema Types and SDK Classes | 107
AE Schema Types and SDK Classes

This section discusses SDK date and time classes, then lists the mapping of type
names to SDK classes for both C++ and Java.

SDK Date and Time Classes

TIBCO Adapter SDK contains a number of classes that can be used to specify date
and time information.

Mapping AESchema Types to C++ MData Subclasses

This section describes the mapping between class names and MData subclasses for
the C++ SDK.

Table 26 SDK Date and Time Classes

SDK Class Description

MDateTime By default, MDateTime uses the local time.

When data of type MDateTime are sent, they are converted from the time zone used by the
sender to GMT/UTC. When data of type MDateTime are received, they are converted
from GMT/UTC to the local time zone at the location of the recipient. This may lead to
confusing results, especially if the message crosses the international date line.

Sent using TIBCO Rendezvous as a TIBRVMSG_DATETIME type for aeRvMsg format.

MDateTime should be used when sender and receiver of a time value need a common
reference timezone. Since the timezone is fixed at GMT/UTC, additional computation can
be made on receiver side without ambiguity.

MTime Contains only the time value as a string. This string time is sent "as-is" on the wire and can
be of any time zone.

Time should be used when the time value is to be kept without conversion to/from
GMT/UTC.

MDate Contains the time value as a string.

Date should be used when the date is to be kept without conversion to/from GMT/UTC.
 TIBCO Adapter SDK Programmer’s Guide

108 | Chapter 6 Metadata
Table 27 lists the type (class) defined in the repository, the corresponding MData
class, and whether a default value is supported.

Table 27 Mapping AESchema Types to C++ MData Subclasses

Type MData Class Default? Example

any Yes, treated as
MStringData

"Any string here"

string MStringData Yes "Don’t Panic!"

fixed.p.s MFixed Yes p is the total number of digits; by default
unlimited

s is the number of digits after the decimal point;
by default unlimited

For example, the number 123.45 would be
represented by 5.2, not by 3.2.

boolean MBool Yes "true", "TrUe", "false"

dateTime MDateTim Yes "1966-04-07T18:39:09.030544", "current " means
current date/time

date MDate Yes "1994-11-05", "current" means current date

time MTime Yes "08:15:27.4444", "current " means current time

interval MInterval Yes "P2DT3H2M", "PT3600S"

i1 MInteger Yes "1", "127", "-128"

i2 MInteger Yes "1", "703", "-32768"

i4 MInteger Yes "1", "703", "-32768", "148343", "-1000000000"

i8 MInteger "1", "703", "-32768", "14834343456534",
"-1000000000000000"

ui1 MInteger Yes "1", "255"

ui2 MInteger Yes "1", "255", "65535"

ui4 MInteger Yes "1", "703", "3000000000"

ui8 MInteger Yes "1483433434334"

r4 MReal Yes ".31415E+1"

r8 MReal Yes ".3141159265358979E+1"
TIBCO Adapter SDK Programmer’s Guide

AE Schema Types and SDK Classes | 109
Prespecifying Data Length

For some types, such as char or binary, you can pre specify the length of the data
in the repository, then refer to that prespecified bounded data type. For example,
binary.10 refers to binary data containing at most 10 bytes.

Mapping AESchema Types to Java Classes

Table 28 lists how the types you specify as an attribute’s class in the repository
map to classes in an SDK application. Most of the types map directly to a
corresponding Java class. A few others map to a class defined by the SDK.

binary.n not supported

char.n MChar Yes. By default n
= 1.

"ABCD"

sequence MSequence not supported

<custom class
name>

MInstance not supported

<custom union
name>

MUnion not supported

Table 27 Mapping AESchema Types to C++ MData Subclasses (Cont’d)

Type MData Class Default? Example

If using Latin-1 encoding, char.4 would be 4 bytes. If using UTF-8, char.4 would
be 8 bytes.

If you specify char.4 using Latin-1 encoding, there will be padding when the full
length of the type is not used. For UTF-8, there will be no padding.

Table 28 Mapping AESchema Types to Java Classes

Type Java Example

any java.lang.Object "Any string here"

string java.lang.String "Don't Panic!"
 TIBCO Adapter SDK Programmer’s Guide

110 | Chapter 6 Metadata
fixed.p.s java.math.BigDecimal p is the total number of digits; by default unlimited

s is the number of digits after the decimal point; by
default unlimited

For example, the number 123.45 would be
represented by 5.2, not by 3.2.

boolean java.lang.Boolean "true", "false"

dateTime java.util.Date "1966-04-07T18:39:09.030544"

date java.util.Date "1994-11-05"

time java.util.Date "08:15:27.4444"

interval com.tibco.sdk.metadata.MInterval "P2DT3H2M", "PT3600S"

i1 java.lang.Byte "1", "127", "-128"

i2 java.lang.Short "1", "703", "-32768"

i4 java.lang.Integer "1", "703", "-32768", "148343", "-1000000000"

i8 java.lang.Long "1", "703", "-32768", "14834343456534",
"-1000000000000000"

ui1 java.lang.Byte "1", "255"

ui2 java.lang.Short "1", "255", "65535"

ui4 java.lang.Integer "1", "703", "3000000000"

ui8 java.lang.Long "1483433434334"

r4 java.lang.Float ".31415E+1"

r8 java.lang.Double ".3141159265358979E+1"

binary.n byte[]

char.n java.lang.String "ABCD"

char.1 java.lang.String (with length=1) or
java.lang.Character

 "A"

sequence com.tibco.sdk.metadata.MSequence

Table 28 Mapping AESchema Types to Java Classes (Cont’d)

Type Java Example
TIBCO Adapter SDK Programmer’s Guide

AE Schema Types and SDK Classes | 111
Table 29 provides more detail on the types that are currently supported for
attributes.

 <custom class
name>

com.tibco.sdk.metadata.MInstance

 <custom union
name>

com.tibco.sdk.metadata.MUnion

Table 28 Mapping AESchema Types to Java Classes (Cont’d)

Type Java Example

Table 29 Types Supported for Attributes

Type Description Example

m_any Unspecified type - can model Java Object, C++ void *,
COM VARIANT.

m_string String of unlimited length. Don’t Panic!

m_fixed.p.s Fixed number. Precision (p) is the total number of digits.
Scale (s) is the number of digits to the right of the decimal
point and must be less than or equal to the precision.

12.0042

m_boolean "0" or "1" 0, 1 (1 == "true")

m_dateTime A date in a subset of ISO 8601 format, with optional time
and no optional zone.

2088-04-07T18:39:09

m_date A date in a subset ISO 8601 format. (no time) 2094-11-05

m_time A time in a subset ISO 8601 format, with no date and no
time zone. Fractional seconds may be as precise as
nanoseconds.

08:15:27.4444

m_interval Time interval P2DT3H2M, PT3600S

m_i1 1 byte signed int 1, 127, -128

m_i2 2 byte signed int 1, 703, -32768

m_i4 4 byte signed int 1, 703, -32768, 148343,
-1000000000

m_i8 8 byte signed int 1, 703, -32768, 14834343456534,
-1000000000000000

m_ui1 1 byte unsigned int 1, 255
 TIBCO Adapter SDK Programmer’s Guide

112 | Chapter 6 Metadata
m_ui2 2 byte unsigned int 1, 255, 65535

m_ui4 4 byte unsigned int 1, 703, 3000000000

m_ui8 8 byte unsigned int 1483433434334

m_r4 Real number with 7 digits of precision. .31415E+1

m_r8 Real number with 15 digits of precision. .3141159265358979E+1

m_binary.n Binary. length (n) may be specified. Default is unlimited. binary

binary.32

m_char.n Character string, n characters long. Length may be
specified. Default is 1.

char (==char.1)

char.64

Table 29 Types Supported for Attributes (Cont’d)

Type Description Example
TIBCO Adapter SDK Programmer’s Guide

| 113
Chapter 7 TIBCO ActiveEnterprise Operation Model

This chapter discusses how the TIBCO Adapter SDK implements the
ActiveEnterprise operation model.

Topics

• Overview, page 114

• ActiveEnterprise Operations, page 115

• Implementing ActiveEnterprise Operations in C++, page 117

• Implementing ActiveEnterprise Operations in Java, page 120
 TIBCO Adapter SDK Programmer’s Guide

114 | Chapter 7 TIBCO ActiveEnterprise Operation Model
Overview

The ActiveEnterprise operation model allows custom adapters to perform
operation invocation or to act as an operation server. The model provides a simple
way to represent and use request/reply interactions between distributed
invocation components.

The ActiveEnterprise operation model enhances basic TIBCO Rendezvous and
TIBCO Enterprise Message Service request/reply with the following features:

• Operations are specified using TIBCO Designer and saved in the project
repository. The operation specification can be shared across ActiveEnterprise
products and introspected at runtime for dynamic invocation.

• The SDK enforces proper marshalling/unmarshalling of the requests and
replies and therefore limits errors in corresponding code.

• The ActiveEnterprise operation model provides a framework for passing
parameters in both directions and for allowing servers to throw exceptions.

• The ActiveEnterprise operation model optimizes invocations when an
in-process server implementation is available.

This document uses the term ActiveEnterprise operation model instead of
Remote Procedure Call (RPC) because invocation of ActiveEnterprise operations
can be remote or in-process.

The SDK includes a number of examples for remote operations in the
SDK_HOME/examples directory.
TIBCO Adapter SDK Programmer’s Guide

ActiveEnterprise Operations | 115
ActiveEnterprise Operations

This section explains the synchronous and asynchronous ActiveEnterprise
operations, as well as how to implement them.

Synchronous and Asynchronous

Both client and server can be either synchronous or asynchronous.

• A synchronous client invokes an operation and then waits for the specified time
for the reply to arrive.

• An asynchronous client invokes an operation and specifies a reply listener class,
which will be used to process the reply. Using asynchronous invocation, an
adapter can invoke multiple remote operations without having to wait for the
reply.

• A synchronous server provides an implementation where the reply can
immediately be built and sent back.

• An asynchronous server provides an implementation where the reply is built
asynchronously. When the reply is ready, it is sent back to the client.

The synchronous or asynchronous characteristics are inherently private to the
client or server implementation. Synchronous or asynchronous clients are fully
inter-operable with either asynchronous or synchronous servers.

Supported Invocation Protocols

The SDK allows adapters to use remote and in-process operation invocation.

• Remote Invocation—Client and server communicate across a network.

• In-Process Invocation—Whenever the server and the client reside in the same
MApp, the invocation is optimized to prevent unnecessary communication
overhead. In that case, the SDK does not broadcast requests to anyone outside
that process and does not send out messages.

The terms synchronous and asynchronous have special meaning in this context, as
defined in this section.
 TIBCO Adapter SDK Programmer’s Guide

116 | Chapter 7 TIBCO ActiveEnterprise Operation Model
Invocations With or Without Replies

Most ActiveEnterprise operations, regardless of whether they use remote or
in-process invocations, expect a reply. The reply can be expected synchronously
or asynchronously (see Synchronous and Asynchronous on page 115).

The SDK also supports one-way invocation. When an operation is declared as
one-way, no reply is expected by the client.

Implementing ActiveEnterprise Operations

Implementing ActiveEnterprise operations consists of the following tasks:

• Use the TIBCO Designer software to:

— Configure the operations to be performed using TIBCO Designer Schema
resources. See TIBCO Designer Palette Reference.

— Specify the services using the TIBCO Designer Generic Adapter
Configuration. If necessary, customize the endpoints and sessions that are
automatically created. See TIBCO Designer Palette Reference.

• Use SDK classes to implement the behavior in the custom adapter code.

— The client builds a request instance based on the operation schema
information and invokes the corresponding operation. The client receives a
reply in the form of a reply instance.

— The server registers an implementation for each operation based on the
schema information. The server implementation receives a request instance
object and builds a reply instance object.
TIBCO Adapter SDK Programmer’s Guide

Implementing ActiveEnterprise Operations in C++ | 117
Implementing ActiveEnterprise Operations in C++

This section demonstrates the control flows for a synchronous or asynchronous
client and a synchronous or asynchronous server. Code examples can be found in
the operation sample program.

Synchronous Client Control Flow

Synchronous clients use the control flow shown below.

Figure 19 Control Flow for Synchronous Clients

1. The custom adapter calls the MOperationRequest constructor.

2. The SDK creates the MOperationRequest instance.

3. The custom adapter calls MOperationRequest::syncInvoke().

4. In response, the SDK sends the request from the client to the server.

5. The server returns an MOperationReply. The server can be either synchronous
or asynchronous.

— A synchronous server provides an implementation where the reply can
immediately be built and sent back

— An asynchronous server provides an implementation where the reply is built
asynchronously. When the reply is ready, it is sent back to the client.

1

Call MOperationRequest
constructor

Custom adapter SDK Server

Create
MOperationRequest

2

Call MOperationRequest
method syncInvoke()

3

Send request to
server
and wait for reply

4

Call MOperationRequest
method getReply()

6

Receive request
Return reply

5

 TIBCO Adapter SDK Programmer’s Guide

118 | Chapter 7 TIBCO ActiveEnterprise Operation Model
6. The custom adapter calls the MOperationRequest::getReply() method to
retrieve the arguments and continue work.

Asynchronous Client Control Flow

Asynchronous clients use the control flow shown below. The step 3, step 4, and
step 7 are different from the synchronous client.

Figure 20 Control Flow for Asynchronous Clients

1. The invoking application calls the MOperationRequest constructor.

2. The SDK creates the MOperationRequest instance.

3. The custom adapter prepares the reply listener function.

4. The custom adapter calls the MOperationRequest::asyncInvoke() method.

5. In response, the SDK sends the request from the client to the server.

6. The server returns an MOperationReply().

7. The custom adapter calls onReply() in the reply listener class.

1

Call MOperationRequest
constructor

Custom adapter SDK Server

Create
MOperationRequest

2

Call MOperationRequest
method asyncInvoke()

4

Send request
to server

5

Call the listener class
onReply() method

7
Receive request
Return reply

6

Prepare reply listener
function

3

TIBCO Adapter SDK Programmer’s Guide

Implementing ActiveEnterprise Operations in C++ | 119
Synchronous Server Control Flow

To implement a synchronous server:

1. In the TIBCO Designer software, define a Request-Response Service and
specify the transport type (TIBCO Rendezvous or TIBCO Enterprise Message
Service). The corresponding endpoints and sessions are generated
automatically.

2. Define subclasses of MOperationImpl and define the onInvoke() method.
This method is called in response to a client request.

3. Create instances of adapter-defined subclasses of MOperationImpl using the
class and operation name and the server name declared in the Server endpoint
object.

4. Bind each MOperationImpl instance to the appropriate server using the
servername parameter of the constructor.

Asynchronous Server Control Flow

Implementing an asynchronous server is similar to implementing a synchronous
server. In C++, the custom adapter must, however, take ownership of the Reply
handle so that the object is not deleted.
 TIBCO Adapter SDK Programmer’s Guide

120 | Chapter 7 TIBCO ActiveEnterprise Operation Model
Implementing ActiveEnterprise Operations in Java

The remote operation paradigm in the Java SDK is similar to that in the C++ SDK,
with two exceptions:

• There are MClientRequest/MClientReply and
MServerRequest/MServerReply classes (instead of just MOperationRequest
and MOperationReply)

• In addition to using any of the onInvoke() methods, Java programmers can
take advantage of the Java introspection mechanism to use an adapter-defined
method with a name of their choice.

This section gives an overview of ActiveEnterprise operation programming,
which is also illustrated by the zapadapterRPC example program.

Defining ActiveEnterprise Operation Elements

Using TIBCO Designer, you define the clients, servers, and operations in two
different locations:

• Remote invocation operations, their parameters, and the exceptions they raise
are defined in the Schemas folder.

See the TIBCO Designer Palette Reference available via Help > Designer Help
from TIBCO Designer.

• Protocol information for both client and server is defined as part of the
Generic Adapter Configuration.

See the TIBCO Designer Palette Reference available via Help > Designer Help
from TIBCO Designer. See also Defining Endpoints and Protocols on page 121.

The following example shows the information required to define an
ActiveEnterprise operation.

Class Name = rfc-order
Operation Name = rfc-get-order

 Returns= string
Parameter Name = inp1

 Parameter Type = i4
Direction = in

 Default = 4

Parameter Name = inoutp2
 Parameter Type = i4

Direction = inout
 Default = 5

Parameter Name = outp3
TIBCO Adapter SDK Programmer’s Guide

Implementing ActiveEnterprise Operations in Java | 121
 Parameter Type = i4
Direction = out

Raises Name = order-exception
Type = string

Defining Endpoints and Protocols

The endpoint and protocol information is defined using TIBCO Designer. For
example, the following information is required to define an endpoint named
client1 and an endpoint named server1.

Endpoint Name = client1
 Type = RV RPC Client

 Session = session1
 Subject = OPERATION.HELLO
Invocation Timeout = 5000

 Endpoint Name = server1
 Type = RV RPC Server

 Session = session1

 Subject = OPERATION.HELLO

Note the following points while defining endpoints:

• There is no RvCmqClient in this example because certified remote operations
are implemented with an RvCmClient.

• Client and server must use the same subject.

Defining and Invoking the Methods

In the Java SDK, there are two ways to implement the method that is executed
remotely.

• Using the onInvoke() or onOnewayInvoke() Method, page 121

• Using a Method of Your Choice to be Invoked Remotely, page 122

Using the onInvoke() or onOnewayInvoke() Method

To use one of the SDK-supplied methods:

1. Create a subclass of MOperationImpl.

2. Create a method that you want to be invocable by a client through the remote
operation service. Override either onInvoke() or onOnewayInvoke() to
provide a meaningful implementation (depending on whether the operation
is defined as one-way).
 TIBCO Adapter SDK Programmer’s Guide

122 | Chapter 7 TIBCO ActiveEnterprise Operation Model
3. If you choose to implement onInvoke(), an MServerReply object is passed to
the callback method. The custom adapter is responsible for calling reply() on
this object to send back the reply. The resulting behavior is that of an
asynchronous server.

Using a Method of Your Choice to be Invoked Remotely

To allow for a more natural syntax, you can also use a method of your choice.

1. Create an MOperationImpl subclass.

2. Define a Java method whose name and parameter signature match the
operation description provided in the repository.

— The parameter list must consist of in and in-out parameters in the order
defined.

— By default, the returned object is assumed to be the returned value of the
operation.

— You can also choose to have the returned value of the Java method be of
type MServerReply. In that case, the MServerReply object can hold the
returned value and/or the in and in-out parameter values. If you have
in-out parameters in the operation description, return MServerReply from
the operation method.

— Exception of any type can be thrown whenever appropriate; however, only
exceptions of type MOperationException are caught and forwarded back
to the requestor. Other exceptions are just logged locally.

The resulting behavior is that of a synchronous server.

If a method as described above exists (determined by class introspection), it takes
precedence over either onInvoke() or onOnewayInvoke().

Whether a reply is sent back depends on the operation’s one-way property.
Nevertheless, the custom adapter must not call reply() on the MServerReply
object even if it uses it to pass back information to the client. The SDK sends back
the reply if appropriate.
TIBCO Adapter SDK Programmer’s Guide

| 123
Chapter 8 Advanced Features

This chapter discusses advanced features of the TIBCO Adapter SDK.

Topics

• Multithreaded Adapters, page 124

• Adapter SDK Unicode Support, page 130

• Preregistering a Subscription Service, page 134

• Setting Data to NULL Explicitly, page 135

• TIBCO Adapter Wire Formats, page 136

• Advisory Handling, page 138

• Using the MPlugin Class, page 143

• Transformation Plug-in, page 145

• Subject Names, page 148
 TIBCO Adapter SDK Programmer’s Guide

124 | Chapter 8 Advanced Features
Multithreaded Adapters

The TIBCO Adapter SDK allows flexible, platform-independent multithreading.
This section discusses the following aspects of multithreaded adapters:

• Deciding on Multithreaded Implementation, page 124

• Multithreading and MDispatcher, page 125

• Multithreading Scenarios, page 126

• Writing a Multithreaded Adapter with the C++ SDK, page 127

• Writing a Multithreaded Adapter with the Java SDK, page 128

Deciding on Multithreaded Implementation

A thoughtful multithreaded design may help a custom adapter achieve a greater
level of concurrency and performance in terms of latency.

• Use multithreading in the following situations:

— For custom adapter that uses blocking synchronous methods, is deployed
on multi-CPU platform, or both.

To fully exploit a multiprocessor system, the custom adapter running on it
should also be multithreaded.

Multithreading is useful for a server that takes one request at a time, and
then spends most of its time blocking on I/O. In this case, the server would
have unacceptable performance running as a single-threaded application.
With a pool of threads, each thread can work on one request and several
requests can be handled simultaneously, making use of otherwise idle
processor cycles.

• Do not use multithreading in the following situations:

— If it is not needed.

Processing resources may not be the only factor hindering adapter
performance. The interface supported by the target application can also be
a bottleneck that eliminates any benefit resulting from multithreading the

Consider carefully whether the custom adapter requires multiple threads.
Threads result in a more complex programming logic and are therefore more
error-prone and more difficult to debug. In addition, a multithreaded SDK-based
adapter consumes more resources than a single-threaded one on a single-CPU
machine.
TIBCO Adapter SDK Programmer’s Guide

Multithreaded Adapters | 125
adapter. Multithreading cannot address performance issues caused by
system resource bottlenecks.

— If messages must be processed in the order sent.

While TIBCO Messaging delivers messages in the order sent to the adapter
on a single transport, a multithreaded adapter may not process the
messages in the order received.

— If the target application cannot accept multiple threads.

Multithreading and MDispatcher

It is recommended to make an adapter multithreaded using the TIBCO Adapter
SDK MDispatcher class. The different constructors for MDispatcher allow you to
associate each instance with either an MApp application manager or with an MApp
and an MSession.

Custom adapters can create an instance of MDispatcher to spawn a thread that
dispatches events for a given session. The MDispatcher class can be used with
both MRvSession and MJmsSession.

Creating a multithreaded adapter is typically a matter of determining which
session requires additional threads and constructing the appropriate
MDispatcher objects.

Other SDK Objects

In addition to the new MDispatcher class, the following classes can be used in a
multithreaded fashion:

• MClassRegistry is thread safe and thread aware. As a result, you can
serialize and deserialize across threads.

• MTrace is thread safe and thread aware. You can therefore perform tracing
across threads.

• The SDK may need to handle events that are not attached to any explicit
MSession, for example, TIBCO Hawk messages or internal events. These
events must be handled through the main MApp event manger with the
MApp::nextEvent() call.

All C++ custom adapters that implement multithreading must set the multithread
behavior in C++ SDK by calling the MAppProperties::setMultiThreaded().

 MDispatcher is used in conjunction with MSubscriber but not with MPublisher.
 TIBCO Adapter SDK Programmer’s Guide

126 | Chapter 8 Advanced Features
If MApp::start() is called with no arguments or with Mtrue, the SDK
handles these events automatically. The correct synchronized shutdown
behavior of a multithreaded adapter depends on dispatching these events. If
an adapter fails to ensure that MApp::nextEvent() is called during
shutdown, the behavior of the SDK is undefined.

Multithreading Scenarios

This section gives an overview of multithreading scenarios.

Single Event Queue

If all the dispatchers you created are associated with one session (and therefore
with a single event queue), the multithreading adapter program proceeds as
follows:

1. Thread 1 picks the first item of the queue and executes the onEvent()
method.

2. When the next thread, thread 2, becomes available, it picks the second item
and executes the onEvent() method.

3. When the next thread, again thread 2, becomes available, it picks the third
item and executes the onEvent() method.

Figure 21 Multithreading for Single Event Queue

thread1 thread2

1

2

3

4

5

onEvent()
 {...
 ...
 ...
 ...
 ...
 }

onEvent()
 {...
 ...
 ...
 }

onEvent()
 {...
 ...
 ...
 }

1

2

3

TIBCO Adapter SDK Programmer’s Guide

Multithreaded Adapters | 127
Queue Group

If you are using a queue group, there are two options for handling
multithreading.

• Associate the MDispatcher with MApp. This gives each session equal weight
when a thread becomes available.

• Associate MDispatcher instances with individual sessions managed by MApp.

You can also use a combination approach, that is, associate some MDispatchers
with MApp, then create additional dispatchers and associated it with a session that
has priority over all other sessions.

Writing a Multithreaded Adapter with the C++ SDK

To write a multithreaded C++ custom adapter:

1. When setting up the MAppProperties instance for the adapter, call
MAppProperties::setMultiThreaded(); to turn on multi-threading.

You can turn multi-threading off by calling
MAppProperties::setMultiThreaded (MFalse).

The C++ SDK is single-threaded by default and will only behave correctly for
multithreaded custom adapters that make this call. The following example
fragment from mt_rpc shows how the call is made as part of main().

int main(int argc, char** argv) {
MAppProperties appProperties;
appProperties.set(MAppProperties::APPNAME, "mt_rpc");
appProperties.set(MAppProperties::APPVERSION, "5.0.0");
appProperties.set(MAppProperties::APPINFO, "SDK multi-threaded RPC example");
appProperties.set(MAppProperties::APPCONFIGURL,

"/tibco/private/adapter/examples/mt_rpc/mt_rpc_client");
appProperties.set(MAppProperties::APPREPOURL, "tibcr://CPP_EXAMPLES");
appProperties.setMultiThreaded();
OrderAdapter myAdapter(appProperties);
myAdapter.start();

}

2. In MApp::onInitialization(), construct as many instances of MDispatcher
as required.

In the example below, the dispatchers are associated with a session.

void OrderServer::onInitialization() throw(MException){
// create dispatchers which will handle event dispatching in a
// platform-independent way for a given MRvSession
m_pDispatchers = new MList<MDispatcher *>();
 TIBCO Adapter SDK Programmer’s Guide

128 | Chapter 8 Advanced Features
MRvSession *pSession = MRvSession::downCast(
this->getComponentByName(RVSESSION_NAME));

m_NumDispatchers = 5;
if (pSession) {

for (unsigned int i=0; i<m_NumDispatchers; ++i) {
MDispatcher *pDispatcher = new MDispatcher(this, pSession);
m_pDispatchers->push_back(pDispatcher);

}
}
printf("RPC Server - Ready with %u MDispatchers\n",

 m_NumDispatchers);

}

Writing a Multithreaded Adapter with the Java SDK

The mt_pubsub demonstrates how to write a multithreaded adapter using
MDispatcher. Each time an instance of MDispatcher is created, a new thread is
spawned to dispatch incoming events on the relevant MSession. The additional
threads allow the subscriber to remain responsive facing lengthy operations.

1. In the onInitialization() method, create instances of MDispatcher, as
follows. The dispatchers are associated with a session.

protected void onInitialization() throws MException
 {
 MComponentRegistry registry = getComponentRegistry();

MSubscriber sub = registry.getSubscriber("sub");
 if (null == sub) {
 throw new MException("PUBSUB-0003", "sub");
 }
 // attach an event listener to the subscriber
 sub.addListener(new DataEventHandler());

 // create 5 dispatchers for the session that is associated
 // with the subscriber
 MSession session = sub.getSession();
 for (int i = 0; i < NO_OF_DISPATCHERS; ++i) {
 dispatchers.add(new MDispatcher(this, session));}
 }

2. In onTermination(), you must stop all the dispatchers created earlier.

protected void onTermination() throws MException
 {

The custom adapter must also handle inter-thread communication and any
locking concerns explicitly.
TIBCO Adapter SDK Programmer’s Guide

Multithreaded Adapters | 129
 // stop all the dispatchers that were created during
//onInitialization

 System.out.println(new Date() + " Stopping all the
dispatchers...");

 MDispatcher dispatcher = null;
 for (int i = 0; i < NO_OF_DISPATCHERS; ++i) {
 dispatcher = (MDispatcher)dispatchers.get(i);
 dispatcher.stop();
 }
 System.out.println(new Date() + " Stopped all the

 dispatchers");
 TIBCO Adapter SDK Programmer’s Guide

130 | Chapter 8 Advanced Features
Adapter SDK Unicode Support

The C++ API and the Java API both support Unicode for application data. This
allows custom adapters to work with Unicode strings programmatically and to
send and receive data between applications that use a variety of supported
encodings. The data can be aggregated and serialized and then be sent over the
network.

The Java Adapter SDK takes advantage of native Java Unicode support.

The C++ Adapter SDK includes the MChar and MStringData classes to
encapsulate Unicode data. Their constructors allow specifying the encoding for
the source data. A complete list of supported encodings can be found in
MEncoding.h. You can also create an MWString instance from either class, which
allows you to call string manipulation methods against your data.

The following classes are available in the C++ Adapter SDK:

• MString and MWString are used when you need string manipulation methods
to operate on the data.

MString can encapsulate single-byte character data, while MWString
encapsulates Unicode (UTF-16) characters.

You must convert MString and MWString to MChar and MStringData before
sending them on the network.

• MStringData and MChar are used to encapsulate Unicode data.

Any source data strings are converted to Unicode by the Adapter SDK upon
construction, as long as the source is in an encoding supported by the Adapter
SDK and the encoding is provided to the constructor.

Prespecifying Encoding

Custom adapters based on the TIBCO Adapter SDK automatically configure
themselves to send or receive messages in ASCII/Latin-1 or in UTF-8 wire format,
depending on how the associated server-based repository instance is configured.

The conversion from the internal Unicode data (in UTF-16) to the wire format
encoding is accomplished by the serialization to an MTree instance.

If you are using TIBCO Designer 5.1.2 or later to prepare the configuration, you
can set the encoding directly as an attribute of the adapter configuration.
TIBCO Adapter SDK Programmer’s Guide

Adapter SDK Unicode Support | 131
Two adapters based on the SDK can communicate only if they use the same
encoding on the wire. A problem arises if one adapter sends Latin-1 encoded
messages to another adapter expecting UTF-8 encoded messages. Since the
second adapter is expecting UTF-8 on the wire, Latin-1 characters are interpreted
incorrectly.

SDK C++ API takes the encoding value from the repository and no other regional
settings can affect the value of encoding. There can be only one encoding per
process or application. If multiple MApp application managers are running inside
an SDK adapter, and each MApp connects to a different repository, all the
repositories must have the same encoding value.

SDK-Internal C++ Unicode Type Conversion

This section gives an overview of how the C++ SDK performs conversion.

Internally, the C++ SDK first decides to use one of two native implementations:
Latin-1 for single-byte characters or UTF-16 for double-byte characters. Whether
the SDK attempts conversion, and what conversion the SDK attempts depends on
the encoding argument presented to the constructor for MChar or MStringData.

• If the encoding presented to the constructor is ASCII, Latin-1, or UTF-16, no
conversion is needed.

For all other cases, the SDK attempts a best-case conversion. If conversion is
required (for example, UTF-16 to Latin-1), a replacement character is used for
unmappable characters.

• If Unicode conversion to and from arbitrary encodings is required, a file
(tibicudata32.dat) containing a lookup table is required.

Set the environment variable TIB_ICU_DATA to point to the directory that
contains the tibicudata32.dat file. You need to set the variable manually. If
SDK cannot find this file, it will throw an exception when you attempt to
convert certain types of string encodings.

This release of SDK uses the ICU (International Components for Unicode) 3.2
version. Some common aliases from ICU are shown in the ICU Converter
Explorer available at http://icu-project.org/icu-bin/convexp.

However, to maintain backward compatibility, only Adapter SDK encoding types
listed in the SDK_HOME\include\MEncoding.h should be used, not common
alias names listed on the site above.

You can find the tibicudata32.dat file in the TIBCO Runtime Agent
config/g11n directory. This directory also contains a tibicudata.dat file for
backward compatibility with versions prior to SDK 5.3.
 TIBCO Adapter SDK Programmer’s Guide

http://icu-project.org/icu-bin/convexp

132 | Chapter 8 Advanced Features
Specifying the Wire Format Encoding

The wire format encoding for messages affects all communications for adapter
applications. Either Latin-1 or UTF-8 is supported as the wire format encoding
when the adapter application is using a server-based project repositories.

If the project uses only ASCII or Latin-1 data, you can set the encoding to be
Latin-1, which makes the custom adapter run faster. Otherwise, use UTF-8.

Specifying Encoding for Server-Based Repositories

All project repositories managed by a particular administration server use the
same encoding. You can specify the wire format encoding as a server property
(repo.encoding) in the tibcoadmin.tra file. To change the wire format
encoding, shut down the server, edit the tibcoadmin.tra file and then restart the
server.

One reason for choosing a particular encoding may be consistency with another
TIBCO application that uses a fixed encoding.

Specifying Encoding for File-Based Repository

At some stages of a project, you may use a file-based repository. In that case, the
encoding can be set in the project repository file itself. You can make the change
using the Repository Finder in TIBCO Designer or editing the .dat file directly.

Add the instance property below:

<instanceInfoProperty name="encoding" value="desired_encoding"/>

Note that if this repository instance is later managed by a repository server, the
encoding used by the server overrides the encoding of the file.

The encoding only affects communication, it has no effect on the persistent
storage of the data. TIBCO Administrator stores data in UTF-8 format regardless
of the wire format encoding being used.

How TIBCO Administrator Determines Encoding

When an adapter application starts, the TIBCO Administrator client library forces
both the instance name and discovery subject to conform to ASCII so that
communication works with either encoding.

When the client is actually connecting to a server-based project repository for the
first time, the encoding used by the server for that instance determines the
encoding type for all TIBCO messages. The server encoding is determined by the
repo.encoding parameter in the tibcoadmin.tra file.
TIBCO Adapter SDK Programmer’s Guide

Adapter SDK Unicode Support | 133
All communicating applications must use the same wire format encoding.
Therefore, all project repositories in use by applications that communicate with
each other must use the same encoding. To understand the use of encoding
formats, consider the following scenarios.

Figure 22 Scenarios of Encoding Formats

A client application with an embedded TIBCO Administrator client attempts to
connect to two administration servers. In Scenario 1, the two servers use different
encodings. In Scenario 2, the two servers use the same encodings.

The components interact as follows:

1. The client application discovers available administration servers and
instances by sending a discovery message on the network. In the message, the
server name, instance name, and discovery subject are restricted to ASCII
characters only.

2. The client discovers servers and two repository instances.

3. In Scenario 1, the client application connects first to InstanceA through Server
A. Server A uses Latin-1 as the repo.encoding property because the text is
Latin-1. The client is now forced to use Latin-1 as the wire format encoding.

When the client attempts to connect to Server B (which is using UTF-8), an
exception is signalled because a lossy conversion would result.

4. In Scenario 2, the client application connects first to Server A (which is using
UTF-8). When the client then attempts to connect to Server B, it succeeds.

Once the client’s encoding is established, an exception is thrown when trying to
connect to a server that uses a different encoding.

Server A
Latin-1

encoding

Client application
repo client

1 2

Scenario 1 Scenario 2

Database

Instance A
Latin-1 text

Instance B
Japanese text

Server B
UTF-8

encoding

Server A
UTF-8

encoding

Client application
repo client

2 1

Database

Instance A
Latin-1 text

Instance B
Japanese text

Server B
UTF-8

encoding
 TIBCO Adapter SDK Programmer’s Guide

134 | Chapter 8 Advanced Features
Preregistering a Subscription Service

TIBCO Rendezvous supports preregistration for RVCM sessions. In some
situations, a sending RVCM session can anticipate the request for certified
delivery from a (listener) persistent correspondent that has not yet registered.

Consider an example in which a database program (DB) records all messages with
the subject STORE.THIS. The program DB creates an RVCM session that
instantiates a persistent correspondent named DB_PER. All programs that send
messages with the subject STORE.THIS depend on this storage mechanism.

One such sending program is JAN. Whenever JAN starts, it can anticipate that
DB_PER will request certified delivery of the subject STORE.THIS. Suppose that
JAN starts, but DB is not running, or a network disconnect has isolated JAN from
DB. Anticipating that it will eventually receive a registration request for
STORE.THIS from DB_PER, JAN makes an add listener call.

The sending RVCM session in JAN behaves as if it has a certified delivery
agreement with DB_PER for the subject STORE.THIS; it stores outbound messages
(on that subject) in its ledger. When DB restarts, or the network reconnects, the
sender RVCM session in JAN automatically retransmits all the stored messages to
DB_PER.

It is not sufficient for a sender to anticipate listeners; the anticipated listening
programs must also require old messages when they create RVCM sessions.

Two methods in the SDK support this behavior:

• MPublisher::preRegisterListener() and
MPublisher.preRegisterListener().

• MPublisher::unRegisterListener() in and
MPublisher.unRegisterListener().

See the API documentation for more information.

The SDK supports endpoint types (TIBCO Rendezvous publishers and
subscribers, TIBCO Rendezvous CM publishers and subscribers) that result in
preregistration of the specified listener.

• If you changed the subject through the MPublisher method
setDestination(), the publisher with the new subject will be unaware of
any preregistration done previously through the API or the TIBCO Designer
software.

• For TIBCO Enterprise Message Service sessions, it is possible to unregister an
inactive durable subscriber by calling MPublisher.unRegisterListener().
TIBCO Adapter SDK Programmer’s Guide

Setting Data to NULL Explicitly | 135
Setting Data to NULL Explicitly

Custom adapters can set attribute values in MInstance, MAssocList and
MOperationRequest, and in MOperationReply (C++) or MOperation (Java)
explicitly to NULL using a setNullData() method. Explicitly setting an attribute
to NULL is different from not setting the attribute at all.

Before retrieving an attribute, a custom adapter can verify whether the attribute
was set to NULL explicitly by calling isNullData().

The following table illustrates what get() and isNullData() return depending
on how data was set.

To understand data in the SDK context, it is useful to consider both the format in
which data is encapsulated and the format in which it is sent and received.

There are two primary data formats:

• An MInstance allows hierarchical data representation and depends on a
predefined class description (metadata information). This metadata
information is provided in the adapter configuration and then encapsulated in
a number of classes by the MApp application manager.

• An MTree is a data structure that can be sent over a network. An MTree
represents data as a hierarchical tree in which each node contains one or more
name-value pairs.

In SDK versions earlier than 5.x, custom adapters explicitly serialized an
MInstance to get an MTree. In SDK 5.x, a publisher serializes an MInstance when
you send it. A subscriber has to deserialize the MTree.

Table 30 get() and isNullData()

Result of calling get() Result of calling isNullData()

set value calling set() MData value MFalse

Do not set value (or unset) Default value if there is one, NULL
otherwise

MFalse

set value calling
setNullData()

NULL MTrue
 TIBCO Adapter SDK Programmer’s Guide

136 | Chapter 8 Advanced Features
TIBCO Adapter Wire Formats

This section discusses about the wire format used by SDK adapters.

Wire Formats and Message Formats

The term wire format refers to the message formatting convention used by the
adapter. Wire formats include rvMsg, aeRvMsg, and aeXml.

The term message format refers to a combination of the transport (TIBCO
Enterprise Message Service or TIBCO Rendezvous) and the wire format. In
ActiveEnterprise 5, the message format (not the wire format) is the critical
attribute of an endpoint. See Message Formats on page 57. SDK-based adapters
can only exchange data if the sending and the receiving application use the same
message format.

• rvMsg wire format is used for the basic TIBCO Rendezvous message format.
The SDK does not perform validation, but if you use this format, SDK
adapters are compatible with non-SDK adapters. This format can be used in
conjunction with TIBCO Rendezvous.

For rvMsg wire format, a message of type TIBRVMSG_MSG is expected. If a
sending application (for example, rvsend) publishes a simple
TIBRVMSG_STRING, the SDK passes an MExceptionEvent to the event listener.

• aeRvMsg is the TIBCO ActiveEnterprise standard wire format, which provides
class information and packing rules for the TIBCO Adapter SDK set of data
types. This format allows ActiveEnterprise components to perform extra
validation on messages sent or received. This format can be used in
conjunction with TIBCO Rendezvous.

• aeXml wire format can be used in conjunction with either TIBCO Rendezvous
or TIBCO Enterprise Message Service.

Control Information

The wire formats are distinguished, in part, by the control information included
when data is sent on the wire.

Adapters should not attempt to simulate the wire format by adding control
information. Experience has shown that the results are not satisfactory.
TIBCO Adapter SDK Programmer’s Guide

TIBCO Adapter Wire Formats | 137
rvMsg

When a custom adapter sends data in rvMsg format, no control information is
included.

aeRvMsg and aeXml

When a custom adapter sends data in aeRvMsg or aeXml format, the following
control information is generated and set by the SDK:

• ^pfmt^—Present for backward compatibility.

• ^ver^—Version of the wire format.

• ^type^—Specifies how the data in the payload field is packed.

• ^prefixList^—List of strings for qualifying class names. This is generated and
set by the SDK only if message contains a serialized MData or MData subclass.

• ^data^—Payload data.

• ^xmldata^—Payload data.

• ^tracking^—Always a unique identifier defined by the source. Set by the
source and carried forward by intermediate components.

Table 31 lists the data type and value of each field for aeRvMsg and aeXml.

Table 31 aeRvMsg and aeXml Control Information

Name aeRvMsg Type aeRvMsg Field Value aeXml
Type aeXml Field Value

^pfmt^ TIBRVMSG_INT(2) 10 string 10

^ver^ TIBRVMSG_INT(2) 1 string 1

^type^ TIBRVMSG_INT(2) 1 string 2

^prefixList^ TIBRVMSG_MSG List of strings. string List of strings.

^data^ TIBRVMSG_MSG Payload data. N.A. N.A.

^xmldata^ N.A. N.A. string Payload data.

^tracking^ TIBRVMSG_MSG Tracking identifier and any
associated application
information

string Tracking identifier and
any associated
application information

The ^guid^ field is obsolete.
 TIBCO Adapter SDK Programmer’s Guide

138 | Chapter 8 Advanced Features
Advisory Handling

TIBCO Adapter SDK provides an advisory methodology for developers and end
users to report or listen to advisory messages generated by TIBCO Adapters and
TIBCO Rendezvous.

Both TIBCO Rendezvous and the TIBCO Adapter SDK software present
asynchronous advisory messages to custom adapters based on the SDK. Advisory
messages indicate errors, warnings, and other information.

In contrast to status codes, which indicate success or failure within a specific
TIBCO Adapter SDK call, asynchronous advisory messages notify custom
adapters of events that occur outside of the adapter’s direct flow of control. For
example, the adapter is processing inbound messages too slowly, causing the
TIBCO Rendezvous daemon’s message queue to overflow.

Receiving Advisory Messages

Custom adapters can receive advisory messages in the same way as any other
messages—by listening to subject names.

For example, the subject _RV.*.SYSTEM.> matches all advisories related to
TIBCO Rendezvous communications. Programs can also listen for specific
advisories. Where the advisory becomes available depends on whether they are
related to a transport.

• Advisories related to a specific transport present on that transport. A custom
adapter that creates several transports might need to listen for advisory
messages on each transport.

• Advisories not related to a specific transport present on the intra-process
transport.

Advisory messages wait for dispatch in the queue that the custom adapter
designates when creating the listener.

To handle advisories, a custom adapter can instantiate MAdvisory directly and
use the default advisory handling capabilities, or create a custom advisory
listener.

This feature is typically used in conjunction with existing TIBCO Rendezvous
programs that use advisories.
TIBCO Adapter SDK Programmer’s Guide

Advisory Handling | 139
Advisory Listeners

The advisory listener represents an event handler. The SDK allows you to use the
default SDK advisory listener or create a custom advisory listener.

The event handler should be implemented by a custom adapter that needs to take
specific action when an advisory event occurs.

Standard Advisory Listener

The SDK provides a default advisory listener that reports advisory messages
being collected to the MTrace object. The advisory listener can listen to advisory
messages from the sources listed in Table 32.

A typical usage scenario is to have an application listen to TIBCO Rendezvous
error advisories such as _RV.ERROR.>. Using a simple configuration with the
default advisory listener, any TIBCO Rendezvous error would be routed directly
to the errorRole of the SDK MTrace object.

Custom Advisory Listener

You can replace the SDK default advisory listener with a custom advisory listener.
For example, a custom advisory listener can be used to handle
_RV.RVCM.COLLISION. In this case, the application might need to take specific
action. To extend the default behavior, you can create a subclass that inherits
MAdvisoryListener and explicitly calls the superclass callback.

To set a custom advisory listener, use the MApp method setAdvisoryListener().

There can only be one advisory listener in a custom adapter. A new one will
override the default behavior.

Table 32 Advisory Sources

Source Description

TIBCO Rendezvous Messages generated by TIBCO Rendezvous.

SDK Messages from the SDK to help resolve any conflict during publication,
subscription, or operation.

AE Operation Server Advisory messages sent when an ActiveEnterprise operation server receives a
request that it cannot serve. This could be because the incoming messages is in
a bad format or cannot be demarshalled by the server.

TIBCO Administrator Advisory messages are sent when there are changes in repository data.

User-defined User-defined advisory. Not Recommended unless there is a special situation.
 TIBCO Adapter SDK Programmer’s Guide

140 | Chapter 8 Advanced Features
Advisory Publisher

The SDK provides an API to generate user-defined advisories. See the description
of the MAdvisory::send() methods in the online API documentation.

The advisory publisher provides standard SDK advisory events for anomalies.

User advisories are intended for situations where there is no other way of
notifying internal code that an unusual situation has occurred. For example, in
cases where an API is using the SDK to offer services, it is possible that exceptions
cannot be thrown when errors occur. It may be appropriate to send a
user-generated advisory under these circumstances.

Advisory Subject Format

TIBCO Rendezvous Advisory Message

TIBCO Rendezvous advisory messages contain the following subject name as
specified in the TIBCO Rendezvous Concepts:

_RV.<class>.<source>.<category>.<role>.<condition>.<name>

TIBCO Adapter SDK Advisory Message Structure

SDK advisory messages have the following structure:

_SDK.<class>.<category>.<name>

or
_SDK.<class>.<category>.<subject suffix>

Table 33 lists the message fields and descriptions.

Table 33 Advisory Message Fields

Field Description

class Severity of the situation. There are three classes of advisory messages:

ERROR—problem is severe and not repairable.

WARN—problem exists during the operation but the program managed to resolve the
problem. Undesirable side effects might occur.

INFO—information that may be of interest to the user. SDK takes no action. It only
detects these conditions and reports to the users.

category The following categories are available:

RPC—operations-related advisory messages

USER—user-reported advisory messages
TIBCO Adapter SDK Programmer’s Guide

Advisory Handling | 141
Advisory Message Format

Advisory messages are free-form. They are attached to an MTree to be sent out.
All SDK advisory messages are wrapped into an MTree and sent to the advisory
event listener. The advisory event mechanism delivers messages among the
threads of a program and does not go into the network.

Here are the predefined SDK advisory messages:

• _SDK.ERROR.RPC.BADMSGFORMAT

Advisory messages generated when an ActiveEnterprise Operation server
receives an unknown request.

The original message is appended as a part of the advisory message, but the
destination name is not included. You should be able to determine this from
the operation server endpoint itself. You can then use this information to
acknowledge the message manually, in case of durable subscribers with auto
acknowledge disabled.

• _SDK.ERROR.RPC.BADOPERATIONCLASS

Advisory messages generated when an ActiveEnterprise Operation server
receives a legal request but cannot deserialize the request parameters.

• _SDK.ERROR.HAWK.BADMSGFORMAT

(C++ only) Advisory message generated when a TIBCO Hawk microagent
receives an unknown or malformed request. The advisory could be caused by
Adapter SDK subscribing to the unsupported Hawk subject
_HAWK.AMI.DISCOVERY when the Hawk standard microagent is enabled.

• _SDK.WARN.HAWK.MISSING_METHOD

(C++ only) Advisory message generated when a TIBCO Hawk method
implementation is missing from the Hawk microagent for an incoming
request.

• _SDK.ERROR.JMS.RECEIVE_FAILED

This advisory is sent to adapters with JMS subscribers that failed to receive
messages due to a JMS internal error. This can occur if the JMS server crashes

subject suffix Advisory related to a subject name on a publisher, subscriber, or an operation. This can
be a string with arbitrary information.

name Advisory related to a component name such as a publisher, subscriber, or a session.

Table 33 Advisory Message Fields (Cont’d)

Field Description
 TIBCO Adapter SDK Programmer’s Guide

142 | Chapter 8 Advanced Features
or terminates during a receiving operation: jms status =
SERVER_NOT_CONNECTED. This error advisory is an unrecoverable condition.
Applications that rely on this JMS session must exit.

However, if the JMS session has a fault tolerant connection URL specified, JMS
will fail over to next server. If the JMS session has a reconnect URL specified
instead, this advisory occurs only after JMS has exhausted all its reconnection
attempts. Note that no error or exceptions are thrown by JMS while it is
attempting to reconnect.

User-Defined Advisories

Use the MAdvisory::send() method for user-defined advisories.

C++ Code Example

MAdvisory * pAdvisory = pMApp->getAdvisory();
pAdvisory->send("ADVISORIES.DB.SEVERE"

,"ERROR"
,"Insert operation failed
,"queued for retry"
,"remoteLoggingSession");

Java Code Example

In Java, use the MAdvisory.send() method, as in the following example:

MAdvisory advisory = mapp.getAdvisory();
advisory.send("ADVISORIES.DB.SEVERE",

"ERROR",
"Insert operation failed",
"remoteLoggingSession");
TIBCO Adapter SDK Programmer’s Guide

Using the MPlugin Class | 143
Using the MPlugin Class

The MPlugin class allows applications to add extra functionality to an adapter at
runtime without recompiling the adapter. Possible uses of the MPlugin class are:

• userExit plug-in

• loading new MApp components

See the SDK_HOME/examples/java directory for a plug-in example.

Defining a Plug-in

To define a plug-in, you need to create a subclass of MPlugin and implement one
C function and four C++ methods.

Configuring a Plug-in

You can configure a plug-in by using the TIBCO Designer to add a custom plug-in
object to the adapter instance description stored in the project repository.

For example, to configure a Java plug-in MyPlugin.java:

1. Click the Edit Adapter XML button in the Configuration tab of Generic
Adapter Configuration resource.

2. Add the following entries:
AESDK:plugins

AESDK:plugin

AESDK:name pluginObject

AESDK:className MyPlugin

AESDK:verbose true

Table 34 Function and Method for a Plug-in

Function & Method Description

CreateNewPlugin() C function Calls the plug-in constructor with a C interface.

MPlugin::MPlugin() method Plug in constructor.

MPlugin::~MPlugin() method Plug in destructor.

MPlugin::onInitialization() method Initializes the plug in.

MPlugin::onTermination() method Terminates the plug in.
 TIBCO Adapter SDK Programmer’s Guide

144 | Chapter 8 Advanced Features
AESDK:pluginObject true

AESDK:filename MyPlugin.java

Where MyPlugin and MyPlugin.java specify the class name and file name of
the sample custom plug-in.

3. Click OK to close the XML file.

4. Click Apply.

Running an Adapter with a Plug-in

To load a plug-in into the adapter, specify the system:plugin command-line
argument as follows:

"-system:plugin your_plugin_shared_library"

Several plug-ins can be loaded by a single adapter.

Before using this feature, be sure to call MAppProperties::setCommandLine().
TIBCO Adapter SDK Programmer’s Guide

Transformation Plug-in | 145
Transformation Plug-in

The transformation plug-in allows developers to transform inbound and/or
outbound messages for any adapter built with the Adapter SDK. It could be used,
for example, for performing localized transformations using XSLT.

Usage Scenarios

• The adapter wants to transform all outbound XML with XSLT

The application to which the adapter connects understands XML natively. The
adapter code retrieves messages and makes use of the MInstance::toXML()
methods. The corresponding XSD is available in-memory and on disk if you
have exported it. To achieve local transformations to a canonical format, XSLT is
the logical choice. These transformations can be applied to all outbound
endpoints. Inbound transformations most likely don’t make sense.

• Arbitrary custom data manipulation is desired (not XSLT)

Some custom code is required to manipulate messages before sending them to
a third-party application. For example, a legacy TIBCO Rendezvous
application expects its data in a particular format. The only solution is to write
an intervening adapter between packaged adapters and the TIBCO
Rendezvous application to do TIBCO Rendezvous transformations, or to use
other TIBCO products (for example, TIBCO ActiveMatrix BusinessWorks).

Implementation

The low-level callout behavior is made available by an MTransformationPlugin
class that is part of the API (both C++ and Java). See the reference documentation
for more information.

The low-level callout is specified in the TIBCO Designer:

1. Select the adapter configuration resource and choose the Configuration tab.

2. Click the Browse button next to the Message Filter field to select the class that
implements the transformation plug-in.

The transformation plug-ins are applied only to MSubscriber, MPublisher,
MRpcClient, and MRpcServer endpoints.

In TIBCO Designer, a transformation plug in is called a Message Filter.
 TIBCO Adapter SDK Programmer’s Guide

146 | Chapter 8 Advanced Features
You can either throw an exception or return FALSE to stop message flow in the
transformInbound() or transformOutbound() method.

If the transformOutbound() method throws an exception, it will be propagated
back to user.

If the transformInbound() method throws an exception, an advisory will be sent
out on the subject, _SDK.ERROR.PLUGIN.PLUGIN_TRANSFORMATION_ERROR.

Example

The following example illustrates how to use the low-level plug-in.

// GOES IN THE HEADER FILE
extern “C”
{
 DLL_EXPORT MException *
 CreateTransformationPlugin(MApp * pMApp
,MTransformationPlugin * & pTPlugin);
 DLL_EXPORT void
 DestroyTransformationPlugin(MTransformationPlugin * & pTPlugin);
}

class CustomPlugin : public MTransformationPlugin
{
 CustomPlugin(MApp * pMApp,

MString const & pluginName,
MString const & pluginID) throw (MException);

 virtual Mboolean
 transformOutbound(MComponent const & endpoint, MTree & outboundTree)

throw (MException);

 virtual Mboolean
 transformInbound(MComponent const & endpoint, MTree & inboundTree) throw
(MException);

// GOES INTO THE CPP FILE
CreateTransformationPlugin(MApp * pMApp,

MTransformationPlugin * & pTPlugin)
{
 try {
CustomPlugin * pCP =

When using the transformInbound() method in async mode, the message flow
does not stop. An advisory message is sent on the above subject.

Not all details are present here (for example, the DLL_EXPORT macro details are
omitted).
TIBCO Adapter SDK Programmer’s Guide

Transformation Plug-in | 147
new CustomPlugin(pMApp, “MyTransformer”, “Converter v1.0”);
if pCP == NULL
return new MException(…);
 catch(MException e) {
return new MException(…);
 }
 return NULL;
}

void DestroyTransformationPlugin(MTransformationPlugin * pTPlugin)
{
 delete pTPlugin;
}

CustomPlugin::CustomPlugin(MApp * pMApp,
MString const & pluginName,
MString const & pluginID) throw (MException)

 :MTransformationPlugin(pMApp, pluginName, pluginID)
{ … }

virtual Mboolean
CustomPlugin::transformOutbound(MComponent const & endpoint, MTree &

outboundTree) throw (MException)
{
return veilMTree(outboundTree);
}

virtual Mboolean
CustomPlugin::transformInbound(MComponent const & endpoint, MTree & inboundTree)
throw (MException)
{
return unveilMTree(inboundTree);
}

 TIBCO Adapter SDK Programmer’s Guide

148 | Chapter 8 Advanced Features
Subject Names

Each TIBCO Adapter SDK message bears a subject name.

Data-producing programs generate new data messages, label them with subject
names, and send them using TIBCO Adapter SDK software. Data consumers
receive data by listening to subject names. A consumer listening to a name
receives all data labeled with a matching name, from the time it begins to listen
until it stops listening.

Subject Name Syntax

Subject-based addressing™ technology places few restrictions on the syntax and
interpretation of subject names. System designers and developers have the
freedom (and responsibility) to establish conventions for using subject names.
The best subject names reflect the structure of data in the application itself.

Each subject name is a string of characters that is divided into elements by the dot
(.) character. It is invalid to incorporate the dot character into an element by using
an escape sequence.

TIBCO Adapter SDK limits subject names to a total length of 255 characters
(including dot separators). The maximum element length is 252 characters (dot
separators are not included in element length). Typical subject names are shorter
and use fewer elements. To maximize speed and throughput rates, use short
subject names.

The following are examples of correct subject names:

• NEWS.LOCAL.POLITICS.CITY_COUNCIL

• NEWS.NATIONAL.ARTS.MOVIES.REVIEWS

• CHAT.MRKTG.NEW_PRODUCTS

• CHAT.DEVELOPMENT.BIG_PROJECT.DESIGN

• News.Sports.Baseball

• finance

• This.long.subject_name.is.valid.even.though.quite.uninformative

The following are examples of incorrect subject names:

• News..Natural_Disasters.Flood (null element)

• WRONG. (null element)

• .TRIPLE.WRONG.. (three null elements)
TIBCO Adapter SDK Programmer’s Guide

Subject Names | 149
Table 35 lists special characters in subject names.

Using Wildcards to Receive Related Subjects

Programs can listen for wildcard subject names to access a collection of related
data through a single subscription.

• The asterisk (*) is a wildcard character that matches any one element. The
asterisk substitutes for whole elements only, not for partial substrings of
characters within an element.

• Greater-than (>) is a wildcard character that matches all the elements
remaining to the right.

A listener for a wildcard subject name receives any message whose subject name
matches the wildcard.

Table 35 Special Characters in Subject Names

Character Character Name Special Meaning

_ Underscore

Subject names beginning with underscore are reserved.

It is illegal for application programs to send to subjects with
underscore as the first character of the first element, except _INBOX
and _LOCAL.

It is legal to use underscore elsewhere in subject names.

. Dot Separates elements within a subject name.

> Greater-than Wildcard character, matches one or more trailing elements.

* Asterisk Wildcard character, matches one element.

It is recommended that you not use tabs, spaces, or any unprintable character in a
subject name.
 TIBCO Adapter SDK Programmer’s Guide

150 | Chapter 8 Advanced Features
The examples in Table 36 illustrate wildcard syntax and matching semantics.

Table 37 shows subject names that use invalid wildcards.

Table 36 Using Wildcards to Receive Related Subjects

Listening to this
wildcard name

Matches messages with
names like these:

But does not match messages with names
like these (reason):

RUN.* RUN.AWAY

RUN.away

RUN.Run.run (extra element)

Run.away (case)

RUN (missing element)

Yankees.vs.* Yankees.vs.Red_Sox

Yankees.vs.Orioles

Giants.vs.Yankees (position)

Yankees.beat.Sox (vs≠beat)

Yankees.vs (missing element)

.your. Amaze.your.friends

Raise.your.salary

Darn.your.socks

your (missing elements)

Pick.up.your.foot (position)

RUN.> RUN.DMC

RUN.RUN.RUN

RUN.SWIM.BIKE.SKATE

HOME.RUN (position)

Run.away (case)

RUN (missing element)

Table 37 Invalid Wildcards in Subject Names

Invalid Wildcards Reason

abc*xyz Asterisk (*) must take the place of one whole element, not a substring within a
element.

Foo.>.baz Greater-than (>) can only appear as the right-most character. TIBCO Adapter SDK
software interprets this as a specific subject name.

It is not recommended to send messages to wildcard subject names.

Although transports do not prevent you from sending to wildcard subjects, doing
so can trigger unexpected behavior in other programs that share the network.

It is invalid for certified delivery transports to send to wildcard subjects.
TIBCO Adapter SDK Programmer’s Guide

Subject Names | 151
Distinguished Subject Names

Names that begin with an underscore character (_) are called distinguished subject
names. Distinguished names indicate special meaning, special handling, or
restricted use.

Table 38 Subject Names with Special Meanings

Prefix Description

_INBOX. All inbox names begin with this prefix.

Programs may not create inbox names except with inbox creation calls.

Programs must treat inbox names as opaque, not modify them, and refrain from making
inferences based on the form of inbox names.

_LOCAL. Messages with subject names that have this prefix are only visible and distributed to
transports connected to the same TIBCO Adapter SDK daemon as the sender.

For example, a program listening to the subject _LOCAL.A.B.C receives all messages sent
on subject _LOCAL.A.B.C from any transport connected to the same daemon. A TIBCO
Adapter SDK daemon does not transmit messages with _LOCAL subjects beyond that
daemon.

_RV. Subject names with this prefix indicate advisory messages, including informational
messages, warnings and errors. Programs must not send to subjects with this prefix.

_RVCM. Subject names with this prefix indicate internal administrative messages associated with
certified message delivery. Programs must not send to subjects with this prefix.

_RVCMQ. Subject names with this prefix indicate internal administrative messages associated with
distributed certified delivery transports. Programs must not send to subjects with this prefix.

_RVFT. Subject names with this prefix indicate internal administrative messages associated with
TIBCO Adapter SDK fault tolerance software. Programs must not send to subjects with this
prefix.

_RVDS. Subject names with this prefix indicate protocol messages associated with TIBCO Adapter
SDK DataSecurity software (sold separately). Programs must not send to subjects with this
prefix.
 TIBCO Adapter SDK Programmer’s Guide

152 | Chapter 8 Advanced Features
TIBCO Adapter SDK Programmer’s Guide

| 153
Chapter 9 TIBCO Adapters and TIBCO Hawk

This chapter discusses integrating SDK-based adapters with TIBCO Hawk.

Topics

• TIBCO Adapter SDK and TIBCO Hawk, page 154

• Predefined TIBCO Hawk Microagent Methods, page 156

• Configuring the TIBCO Hawk Microagents, page 158

• TIBCO Adapter SDK API to TIBCO Hawk, page 159

• Creating User-Defined TIBCO Hawk Methods, page 160
 TIBCO Adapter SDK Programmer’s Guide

154 | Chapter 9 TIBCO Adapters and TIBCO Hawk
TIBCO Adapter SDK and TIBCO Hawk

This section provides an overview of TIBCO Hawk and an overview of the SDK
integration capabilities.

TIBCO Hawk Overview

TIBCO Hawk is a tool for enterprise-wide monitoring and managing of
distributed applications and systems. System administrators can use it to monitor
nodes in a wide area network of any size.

TIBCO Hawk can be configured to monitor system and application parameters
and to take actions when predefined conditions occur. These actions include:

• sending alarms that are graphically displayed in the TIBCO Hawk display

• sending e-mail

• paging

• running executable

• modifying the behavior of a managed application

Unlike other monitoring applications, TIBCO Hawk relies on a purely distributed
intelligent agent architecture using publish/subscribe to distribute alerts.

TIBCO Hawk uses TIBCO Rendezvous for all messaging and thus gains the
benefits and scalability from the TIBCO Rendezvous features of publish/
subscribe, subject name addressing, interest-based routing, and reliable multicast.

TIBCO Hawk is a purely event-based system that uses alerts. The agents are
configured with rules that instruct them from what and how to monitor to what
actions to take when problems are detected. Thus the workload is fully
distributed throughout the enterprise. Every agent is autonomous in that it does
not depend on other components to perform its functions.

The TIBCO Hawk Enterprise Monitor consists of the following components:

Display GUI front end that displays alarms and provides editors to create rule
bases, create tests, view messages, and invoke microagents to request information
or initiate an action.

Agents Intelligent processes that perform monitoring and take actions as defined
in rules.

Rulebases Rules that are loaded by agents to determine agent behavior.
TIBCO Adapter SDK Programmer’s Guide

TIBCO Adapter SDK and TIBCO Hawk | 155
Application Management Interface (AMI) Manages network applications through
TIBCO Rendezvous and supports communication between a network application
and monitoring TIBCO Hawk agents, including the ability to examine application
variables, invoke methods, and monitor system performance.

Microagents Feed information back to TIBCO Hawk and expose action methods
to rulebases.

For more information, see the TIBCO Hawk documentation.

TIBCO Hawk and Adapter Applications

With the TIBCO Adapter SDK and TIBCO Hawk, you can do the following:

• Use generally available functionality, that is, manage your adapter through
processes, log files, and command line executables.

• Use available TIBCO Hawk methods. For example, the _describe and
_heartbeat methods are handled automatically.

• Use the TIBCO Hawk AMI methods in the microagent provided by the SDK.
These methods know how to do a lot of the monitoring activities commonly
required by adapter applications. See Predefined TIBCO Hawk Microagent
Methods on page 156.

• Use the TIBCO Adapter SDK for the TIBCO Hawk AMI to define your own
methods that can be invoked from the TIBCO Hawk display. See TIBCO
Adapter SDK API to TIBCO Hawk on page 159.
 TIBCO Adapter SDK Programmer’s Guide

156 | Chapter 9 TIBCO Adapters and TIBCO Hawk
Predefined TIBCO Hawk Microagent Methods

This section discusses methods that are predefined as part of the SDK. These
methods facilitate monitoring and debugging a custom adapter.

Terminology

To understand the following sections, you need to be familiar with some basic
concepts and terms used by TIBCO Hawk:

• The Hawk Application Management Interface (AMI) is an agreement on
procedures and TIBCO Rendezvous message formats used to instrument an
application. Selected methods of an application (in this case, a custom
adapter) are made accessible to a TIBCO Hawk agent for the purpose of
monitoring and managing the application.

• A microagent is used by TIBCO Hawk to collect information and carry out
tasks, usually relating to one type of managed resource or managed
application. On the TIBCO Hawk display, each microagent is one menu item.
TIBCO Hawk end users select first the microagent, then the desired AMI
method within that microagent.

Microagents Provided by the SDK

The SDK creates two microagents. The associated sets of methods can then be
used to monitor adapters.

• COM.TIBCO.ADAPTER. This microagent allows you to perform queries on all
running adapters, regardless of their class/application.

If you choose this item on the TIBCO Hawk display and invoke one of the
associated AMI methods, the corresponding method is invoked in all running
adapters.

Generally, COM.TIBCO.ADAPTER:n and COM.TIBCO.ADAPTER.xyz:n behave
the same except if you invoke a method on COM.TIBCO.ADAPTER:n through
network query in TIBCO Hawk display, COM.TIBCO.ADAPTER:n causes it to
perform queries on all running adapters.

• COM.TIBCO.ADAPTER.xyz (where xyz is the name of a class of adapters and
could stands for the source or target software package with which the adapter

For complete documentation of each microagent method, see Appendix C, TIBCO
Adapter SDK Hawk Microagents and Methods.
TIBCO Adapter SDK Programmer’s Guide

Predefined TIBCO Hawk Microagent Methods | 157
is interfacing). This microagent allows performing queries on one class of
adapter.

If you choose this item on the TIBCO Hawk display and invoke one of the
associated AMI methods, the corresponding method is invoked only in
instances of the xyz adapter.

Both microagents implement the same methods. The functionality provided by
these methods includes:

• RVCM ledger file monitoring and preregistration

• RV and RVCM subscribers/publishers discovery

• General adapter state and configuration information

• Tracing profile modification

By default, each instance of MApp has its microagent. Adapters can override this
behavior in the Monitoring tab of the TIBCO Designer software.
 TIBCO Adapter SDK Programmer’s Guide

158 | Chapter 9 TIBCO Adapters and TIBCO Hawk
Configuring the TIBCO Hawk Microagents

TIBCO Hawk microagents are configured using TIBCO Designer.

• To configure the default microagent, use the Monitoring tab of the adapter
you are configuring.

• To configure application-specific microagents, you must edit the XML file.
Select the Generic Adapter Configuration and click the Edit Adapter XML
button.

See TIBCO Designer Palette Reference for detailed information on the fields you
need to configure. You can access the book from TIBCO Designer using Help >
Designer Help.
TIBCO Adapter SDK Programmer’s Guide

TIBCO Adapter SDK API to TIBCO Hawk | 159
TIBCO Adapter SDK API to TIBCO Hawk

In addition to working with the predefined TIBCO Hawk AMI, the TIBCO
Adapter SDK provides its own API to create AMI methods for use with TIBCO
Hawk. The API is modified in several ways:

• Data formats—By default, data that are managed by TIBCO Hawk are TIBCO
Rendezvous messages. However, SDK-based adapters can also send
information in MTree format to TIBCO Hawk and retrieve information in
MTree format from TIBCO Hawk.

• Configuration information—By default, an application that wants to use
TIBCO Hawk must create a TIBCO Rendezvous session. If you use the SDK,
MApp will establish a TIBCO Rendezvous session for use with TIBCO Hawk,
based on the adapter configuration in the project repository.

• Session management—The SDK creates a TIBCO Hawk microagent (unless
explicitly prohibited during adapter configuration) and registers any
MHawkMethod instances as TIBCO Hawk methods. You can then invoke these
methods from TIBCO Hawk to monitor the adapter.

TIBCO Hawk Integration Classes

The SDK makes the following classes available for TIBCO Hawk integration:

• MHawkMicroagent—Encapsulates information about the MHawkMicroagent.

During initialization, MApp creates an instance of this class unless the adapter
instance description object specifies that a TIBCO Hawk microagent should
not be available. Note that a microagent is available by default.

• MHawkMethod—Encapsulates a method.

For each method you want to have available from TIBCO Hawk, create a
subclass of MHawkMethod and implement its processMethodInvocation()
method.
 TIBCO Adapter SDK Programmer’s Guide

160 | Chapter 9 TIBCO Adapters and TIBCO Hawk
Creating User-Defined TIBCO Hawk Methods

This section explains how to create TIBCO Hawk microagents for C++ adapters
and Java adapters.

Creating TIBCO Hawk Methods in C++

To create a method for a C++ adapter:

1. Use the TIBCO Designer software to specify information about the method
name and method input and output parameters in the adapter instance
description object. Select the adapter, then click Edit Adapter XML to define
this information. The following association attributes describe TIBCO Hawk
methods.

— hawk association attribute

— hawk.method association attribute

— hawk.method.inputParameter association attribute

— hawk.method.outputParameter association attribute

2. In the custom adapters, create a subclass of MHawkMethod and define the
appropriate methods, and the destructor. Note that all methods must have
been defined in TIBCO Designer for that adapter instance.

The following class is from the testHawk example:

class Hawk_GetDebugValues : public MHawkMethod
{
public:
Hawk_GetDebugValues(MHawkMicroAgent& refHawkMicroAgent)
: MHawkMethod("getDebugValues", refHawkMicroAgent),

{}

3. Implement the MHawkMethod::processMethodInvocation() method in the
subclass. For the subclass above, the method is implemented as follows:

void processMethodInvocation(const MTree& inMTree,
 MTree& outMTree) throw(MException)
 {
 // Ignore the mtree passed.
 int level = m_pTestHawkDebug->getDebugLevel();
 Mboolean bStatus = m_pTestHawkDebug->getDebugOnStatus();
 MString sMessage = m_pTestHawkDebug->getDebugMessage();

For an example, see TIBCO Designer Palette Reference, available through Help >
Designer Help from TIBCO Designer.
TIBCO Adapter SDK Programmer’s Guide

Creating User-Defined TIBCO Hawk Methods | 161
 outMTree.append("Level", level);
 outMTree.append("On", bStatus?1:0);
 outMTree.append("Message", sMessage.c_str());
 return;
 }

4. Instantiate the method and associate it with the microagent in the
onInitialization() method:

Hawk_GetDebugValues * pHawkMethod =
new Hawk_GetDebugValues(someHawkMicroAgent);

if (pHawkMethod != NULL) {
pHawkSession->addMethod(pHawkMethod);

Creating TIBCO Hawk Methods in Java

Creating user-defined TIBCO Hawk methods with the Java SDK differs slightly
from the process used for the C++ SDK.

To create a method:

1. Use the TIBCO Designer software to specify information about the method
name and method input and output parameters in the adapter instance
description object. Select the adapter, then click Edit Adapter XML to define
this information. The following association attributes describe TIBCO Hawk
methods.

— hawk association attribute

— hawk.method association attribute

— hawk.method.inputParameter association attribute

— hawk.method.outputParameter association attribute

2. In the Java adapter application, create an object and the method you want to
have invoked from TIBCO Hawk. The method must match a method defined
in the adapter instance description object as follows:

— Same method name

— Same name and type of parameters

— Same return type. (Note that if multiple values are returned, the return type
must be MTree.)

3. Get the MHawkMicroagent instance from the MApp MHawkRegistry and call
MHawkMicroagent.setMonitoredObject(), providing the object that
contains the method you defined as the argument.

For an example, see TIBCO Designer Palette Reference, available through Help >
Designer Help from TIBCO Designer.
 TIBCO Adapter SDK Programmer’s Guide

162 | Chapter 9 TIBCO Adapters and TIBCO Hawk
Through introspection, the SDK finds methods at runtime that match those
defined in the adapter instance description object and make them available from
TIBCO Hawk.

For instructions on how to choose the input and output parameters, see the class
description for MHawkMethod in TIBCO Adapter SDK Java API.
TIBCO Adapter SDK Programmer’s Guide

| 163
Chapter 10 Getting Started: Hello World Adapter

This chapter explains how to configure and write a simple "Hello World" adapter.
For detailed information on adapter configuration and implementation, see
Chapter 11, Custom Adapter Example: zapadapter.

Topics

• Prerequisites, page 164

• Preparing the Adapter Configuration, page 165

• The Adapter Program, page 168
 TIBCO Adapter SDK Programmer’s Guide

164 | Chapter 10 Getting Started: Hello World Adapter
Prerequisites

Before starting, make sure that you have the required software available on your
machine. See the TIBCO Runtime Agent Installation Guide for more information.
TIBCO Adapter SDK Programmer’s Guide

Preparing the Adapter Configuration | 165
Preparing the Adapter Configuration

The TIBCO Designer software allows you to define configuration data (and
optionally metadata) for your custom adapter. To create an adapter instance that
holds the minimum configuration information, follow these steps:

1. Start TIBCO Designer with a new empty project.

2. Click Cancel when you are prompted for Save Project information. You can
save the project later.

For more information on answering the prompts given at startup, see the
TIBCO Designer User’s Guide available through Help> Designer Help.

3. Click Palettes> General > General to display the general palette that contains
the folder resource.

4. From the General palette, drag a folder to the design palette and name it
HelloWorldAdapter. Click the Apply button.

Figure 23 Create the HelloWorldAdapter

5. Click Palettes > Adapters > Adapter Resources to display the adapter
resources palette.
 TIBCO Adapter SDK Programmer’s Guide

166 | Chapter 10 Getting Started: Hello World Adapter
6. In the upper left project panel, double-click the HelloWorldAdapter folder to
open it, then drag the Generic Adapter Configuration resource into the
design panel.

Figure 24 Add Generic Adapter Configuration Resource

7. In the Instance Name field, type defaultInstance.

8. In the SDK AppName field, type helloWorld. This is the short name of the
adapter that is used in the source code. Click Apply.

You have now specified the minimum configuration information for an
adapter.

9. Click Project > Save to save the configuration.

This example does not configure any services, sessions, or endpoints. They are
discussed in the second example, Custom Adapter Example: zapadapter on
page 173.
TIBCO Adapter SDK Programmer’s Guide

Preparing the Adapter Configuration | 167
10. Click Project > Export Full Project. In the dialog box, click the Local
Repository tab, then provide the following information:

a. In the Project Name field, type HelloWorldRepoOne.

b. In the Dir Name field, click Browse and select the directory to save the
project. Click OK.

c. Click OK to save the project to the project repository.

11. Click Project > Exit.

A sample copy of the resulting repository can be found in your installation area
under the examples directory. For example, on Windows:
SDK_HOME\examples\helloWorld.
 TIBCO Adapter SDK Programmer’s Guide

168 | Chapter 10 Getting Started: Hello World Adapter
The Adapter Program

After the configuration is completed, the code can access the configuration file.
This section lists the code for the Hello World Adapter in C++ and Java.

Hello World Code in C++

Sample code for the Hello World program is included as part of the SDK
installation. To view the code, open the project file
SDK_HOME\examples\helloWorld\helloWorld.dsp on Microsoft Windows
platforms or the helloWorld.cpp file on UNIX platforms.

The adapter application manager class is defined as follows:

#include <Maverick.h>

#include <iostream.h>
class HelloWorldApp : public MApp

{
 public:
 HelloWorldApp(MAppProperties* pMAppProperties) //constructor
 :MApp(pMAppProperties, NULL) {}

 virtual ~HelloWorldApp() {} //destructor

 void onInitialization() throw (MException) //you must define this method
//it is called by MApp::start()

 {
 cout << " Hello World Adapter " << endl ;
 }
 void onTermination() throw (MException) {} //you must define this method

//it is called by MApp::stop()

};

main() is defined as follows:

1. It first creates an MAppPropterties instance to specify application properties.

int main(int argc, char* argv[])
{

 MAppProperties appProperties;

appProperties.set(MAppProperties::APPVERSION, "1.0");
 appProperties.set(MAppProperties::APPINFO, "TIBCO Adapter Hello World Example");
 appProperties.set(MAppProperties::APPNAME, "helloWorld");
TIBCO Adapter SDK Programmer’s Guide

The Adapter Program | 169
 // set the repository location
 appProperties.set(MAppProperties::REPOURL, "HelloWorldRepo.dat");

 appProperties.set(MAppProperties::CONFIGURL,

"/tibco/private/adapter/HelloWorldAdapter/defaultInstance");

 // store the command line args with MApp
appProperties.setCommandLine(argc, argv);

2. The program then creates the MApp application manager, passing in the
properties just defined.

 try {
 HelloWorldApp* pHelloWorldApp =
 new HelloWorldApp(&appProperties);

3. Next comes a call to the start() method, which starts the event loop by
default. For this example, there is no need to start the event loop, so pass in
false.

4. The stop() method is invoked right after that. While the application did not
enter the event loop, the stop() method must be called because it performs
any internal cleanup and will then call onTermination() to perform
developer-defined cleanup.

 pHelloWorldApp->start(Mfalse);
 pHelloWorldApp->stop();

 delete pHelloWorldApp;
 }
 catch(MException& e)
 {
 cout << "Exception caught in main:

"<< e.getType() << ":" << e.getDescription() << endl;
 }

 return 0;

} // main

You can compile and link the program using:

• Visual C++ on Microsoft Windows platforms

• make on Unix platforms
 TIBCO Adapter SDK Programmer’s Guide

170 | Chapter 10 Getting Started: Hello World Adapter
Hello World Code in Java

The helloWorld example file is included in the installation media as:
SDK_HOME\examples\helloWorld\helloWorld.java

The MAppProperties class is defined as follows:

Define the helloWorld class as follows:
public class helloWorld
{
 MApp app;

public helloWorld(String[] args) throws Exception
{

 // Create the Mapp
 // you can also try to pass in parameter as -system:configurl and

//-system:repourl
 MAppProperties p = new MAppProperties(
 "helloWorld",
 "1.0",
 "Hello World Adapter",
 "/tibco/private/adapter/HelloWorldAdapter/defaultInstance",
 "HelloWorldRepo.dat",
 args);
 System.out.println ("repo = "+p.getRepoURL());
 System.out.println ("config = "+p.getConfigURL());

 app = new helloWorldApp(p);
 app.start(false);
 app.stop();

}

import java.util.*;
import com.tibco.sdk.*;

class helloWorldApp extends MApp //create application manager

{
 public helloWorldApp(MAppProperties p)
 {
 super(p);
 }

 /** Hook to perform application-specific behavior during
 * initialization
 */
 protected void onInitialization() throws MException //required
 {
 System.out.println (" Hello World Adapter ");
 }

 /** Hook to perform application-specific behavior during
 * shut-down
TIBCO Adapter SDK Programmer’s Guide

The Adapter Program | 171
 */
 protected void onTermination() throws MException
 {
 }

} // end of class helloWorldApp

public static void main(String[] args) {
 try {
 new helloWorld(args);
 }
 catch(Exception fatal) { fatal.printStackTrace(); }
 }
} // end of class helloWorld

1. Set the environment variable CLASSPATH to include all dependent JAR files.

2. Compile using the following command.

javac helloWorld.java

3. Run the helloWorld adapter using the following command.

java helloWorld
 TIBCO Adapter SDK Programmer’s Guide

172 | Chapter 10 Getting Started: Hello World Adapter
TIBCO Adapter SDK Programmer’s Guide

| 173
Chapter 11 Custom Adapter Example: zapadapter

This chapter explores an example program that illustrates how to build a simple
custom adapter.

Topics

• Overview, page 174

• Analysis and Design, page 175

• Specifying Configuration Information, page 178

• Implementing the Adapter Code, page 185
 TIBCO Adapter SDK Programmer’s Guide

174 | Chapter 11 Custom Adapter Example: zapadapter
Overview

This chapter first explains how to make some design decisions, then explains the
implementation of those decisions by presenting code fragments from an example
adapter program, ZapAdapter (ZAP is a fictitious ERP system).

All code fragments in this chapter are taken from the zapadapter example
program.

The example code in this chapter is C++, but the concepts are essentially the same
for both APIs. Java programmers can find the zapadapter example included in
the examples folder.

The SDK_HOME/resourceKit/deployableAdapter directory contains a ZAP
adapter example program that was modified to run in an administration domain.
The directory also contains step-by-step instructions on how to change ZAP
adapter to make it compatible with TIBCO Administrator.
TIBCO Adapter SDK Programmer’s Guide

Analysis and Design | 175
Analysis and Design

Before implementing the adapter, you must be clear about the problem to be
solved. This section illustrates how an example problem statement can be
mapped to a design.

Problem Statement

The ZapAdapter application retrieves data from a ZAP source application and
publishes it to the messaging system. ZAP has the following characteristics:

• ZAP is an enterprise order processing application.

• ZAP provides a DataMapper (in C++ only) and ZAPAppData classes to access
ZAP data.

• ZAP does not provide event-driven APIs.

Because the ZAP system’s data access API does not support an event-driven
approach to retrieving data from the ZAP system, ZapAdapter checks every n
seconds for new events. If there are unprocessed events, the data associated with
the events must be published.

Figure 25 shows how this example fits into the TIBCO messaging application
framework.

Figure 25 ZAPAdapter and the TIBCO Enterprise Model

TIBCO Messaging

ZAP
Adapter

Database
Adapter

Database
ZAP

Instance

TIBCO ActiveMatrix
BusinessWorks

TIBCO Hawk
Display
 TIBCO Adapter SDK Programmer’s Guide

176 | Chapter 11 Custom Adapter Example: zapadapter
• An instance of ZAP communicates with TIBCO messaging through
ZapAdapter.

• The adapter sends the data to a listening adapter. The database, which is
always kept current by the actions of ZAP adapter, is used for queries. This
design offloads query processing from the ZAP instance.

• Both adapters, as well as other TIBCO ActiveEnterprise applications, are
monitored through TIBCO Hawk.

• TIBCO ActiveMatrix BusinessWorks could be set up to perform data
conversion. This allows users of the database to work with queries they are
familiar with.

Elements of Implementation

The implementation of ZapAdapter must provide the following elements:

• Initialization and startup. In the example, the adapter needs to:

— Establish a connection with the ZAP instance.

— Create a publisher and a timer event sources.

• Event sources. The application must include the following event source:

— Timer event source to wait for timer events and poll for data.

• Publisher. Publishes the data retrieved by the timer event source.

• Event listener subclass with onEvent() methods.

In this example, the Timer event handler polls data when informed by timer
event source.

• Data conversion element. In the ZAP example, data conversion is done
explicitly by a ZapEventListener, DataMapper (in C++ only) and
ZAPAppData class. The ZapEventListener class accepts data from the ZAP
instance and converts it to MInstance format. Specifically, this example
retrieves two tables, Customer and Contract that share an ID field.

• Configuration. The configuration is performed in TIBCO Designer. See
Specifying Configuration Information on page 178.

Components of ZapAdapter Sample Application

This section gives an overview of the ZapAdapter files and their content.
TIBCO Adapter SDK Programmer’s Guide

Analysis and Design | 177
Table 39 ZapAdapter Files

File Function/Class/Method Description

ZapAppData.h

ZapAppData.cpp

getZAPContract()

getZAPCustomer()

getPendingCustomerEvent()

addCustomer()

addContract()

External library used by the ZAP adapter
to retrieve and update data.

ZapAdapter.h

ZapAdapter.cpp

ZapAdapter class main() MApp subclass with
onInitialization() and
onTermination() method. Creates an
event handler and publisher instances.
Top-level control function main().

ZapEventListener.h

ZapEventListener.cpp

TimerEventHandler

SignalEventHandler

Subclasses of MEventListener with
onEvent() methods.

ZAPConnection.h ZapConnection class with
methods: connect(),
disconnect(), and
getPendingCustomerEvent()

Maintains ZAP connectivity logic.
Connection parameters are passed
through the properties object. This class
creates and maintains the handle to the
ZAP instance.

DataMapper.h Data Mapper class Maps AccountInfo and OrderInfo
from MInstance to C++ and back.
 TIBCO Adapter SDK Programmer’s Guide

178 | Chapter 11 Custom Adapter Example: zapadapter
Specifying Configuration Information

Before running any adapter application, you need to specify its configuration
information. Configuration information and metadata information are specified
using the TIBCO Designer software.

Creating a configuration for zapAdapter consists of the following tasks:

• Task A, Configure Schema, page 178

• Task B, Configure non-Schema Data, page 181

• Task C, Link Schema and Publisher, page 184

Task A Configure Schema

All schema data can be configured using the resources in the AESchemas folder. It
is recommended to place your schema data for each adapter in a separate folder
inside the AESchemas/ae folder.

1. Start TIBCO Designer with a new empty project.

2. Go to AESchemas/ae, create an examples folder.

Figure 26 Create a Folder for Schema Data
TIBCO Adapter SDK Programmer’s Guide

Specifying Configuration Information | 179
3. Open the new folder and drag an AESchema icon from the Palettes panel into
the Design panel. Name it zapadapter and click Apply.

4. Create a new class named Contract.

a. Double-click to select zapadapter, then double-click the Classes folder.

b. Drag the Generic Class object from the Palettes panel to the Design
panel.

c. In the Class Type filed, select Schema and click Apply.

d. Change the name to Contract. Click Apply.

Figure 27 Create a Class

5. Add a ContractId attribute.

a. Double-click the Contract class

b. Drag a Generic Scalar object from the Palettes panel to the Design
panel.

c. Change the Name to ContractId.

d. For the Type, choose i4(32-bit integer) from the drop-down list.

e. Click Apply.
 TIBCO Adapter SDK Programmer’s Guide

180 | Chapter 11 Custom Adapter Example: zapadapter
6. Add a ContractDate attribute of type Date (same procedure as above).

7. Create another new class named Customer with the following attributes:

— CustomerId (Type i4 32-bit integer)

— CustomerName (Type string)

— CustomerAddress (Type string)

8. Add a Contract attribute to the class named Customer.

You can drag a Contract class from the project tree into the Design panel.

Alternatively, you can add a generic class attribute and click the Browse
button, then select the Contract class.

Figure 28 Add an Attribute

9. Save the configuration.
TIBCO Adapter SDK Programmer’s Guide

Specifying Configuration Information | 181
Task B Configure non-Schema Data

To configure the non-Schema data, that is, the adapter itself and its services,
endpoints, and sessions:

1. Drag a folder to the Design palette and name it zapAdapter.

2. In the Project panel, double-click the zapAdapter folder, then drag a Generic
Adapter Configuration from the Adapter Resources palette into the Design
panel.

3. In the Instance Name field, type zapone.

4. In the SDK AppName field, type zapAdapter. This is the short name of the
adapter and will be used in the source code. Click Apply.

Figure 29 Adapter Configuration

5. In the project panel, expand zapone, then click the Adapter Services folder.

6. Drag a Publication Service from the Palettes panel into the Design panel.
In the Configuration Name field, change the name to zappublisher.
 TIBCO Adapter SDK Programmer’s Guide

182 | Chapter 11 Custom Adapter Example: zapadapter
7. Select the Transport tab. The fields should have the following values:

a. Quality of Service field: Certified

b. Message Subject field, type ZAP.DATA

c. Click Apply.

TIBCO Designer creates the service and a corresponding endpoint and
session. Endpoint and session are placed in the Advanced folder.

Figure 30 Add a Publication Service

8. To add a timer, double-click the Timers folder (inside the Advanced folder)
and drag a Timer into the Design panel. In the Configuration tab:

a. Name field, type zap.Timer.

b. Interval field, type 2000 (in millisecond).

c. Repeating field, leave the check box selected.

d. Click Apply.
TIBCO Adapter SDK Programmer’s Guide

Specifying Configuration Information | 183
Figure 31 Add a Timer

9. To add custom information, select the zapone and click Edit Adapter XML.

Click Source and add the following information to the XML file, under
<AESDK:adapter name = "zapAdapter">:

<zapconnection>
<hostname>rio</hostname>
<port>9900</port>
<instance>UIJ23</instance>

</zapconnection>
 TIBCO Adapter SDK Programmer’s Guide

184 | Chapter 11 Custom Adapter Example: zapadapter
Figure 32 Edit Adapter XML

10. Click OK.

Task C Link Schema and Publisher

The final step in the adapter configuration is to link the schema to the publisher.

1. In the Project panel, Expand zapone > Adapter Services.

2. Select zappublisher and click the Schema tab.

3. Click the Browse resources button. In the popup dialog, navigate to the
Customer class and select it. Click Apply and save the project.

Figure 33 Link Schema and Publisher
TIBCO Adapter SDK Programmer’s Guide

Implementing the Adapter Code | 185
Implementing the Adapter Code

Configuration information is processed by MApp during initialization and used
throughout the application. The flow of information is as follows:

1. Specify configuration information using the TIBCO Designer software, which
stores the information in the project repository.

2. During execution of the MApp::start() method, the SDK stores the
configuration information in an MProperties object.

3. The application accesses the MProperties information as needed.

4. During execution of MApp::stop(), the SDK deletes the MProperties object.
The custom adapter can no longer access the information.

For an example of a ZapAdapter application, see the SDK_HOME\Examples
directory.
 TIBCO Adapter SDK Programmer’s Guide

186 | Chapter 11 Custom Adapter Example: zapadapter
TIBCO Adapter SDK Programmer’s Guide

| 187
Chapter 12 Creating a Deployable Custom Adapter

This chapter explains how to create a generic or custom adapter that can be
deployed, started, stopped, and monitored using TIBCO Administrator.

Topics

• Overview, page 188

• Setting Up the Example, page 189

• Modifying Code for TIBCO Administrator Compliance, page 190

• Configuring the Adapter, page 195

• Adding the Adapter to the Domain, page 198
 TIBCO Adapter SDK Programmer’s Guide

188 | Chapter 12 Creating a Deployable Custom Adapter
Overview

This chapter shows how to integrate the Zap Adapter example with TIBCO
Administrator.

The TIBCO ActiveMatrix BusinessWorks process consists of an adapter subscriber
listening to the message published by TIBCO Adapter SDK example zapadapter
and publishing it back using a plain RV publisher.

The process of making this example TIBCO Administrator compliant involves the
following steps:

• Modifying Code for TIBCO Administrator Compliance, page 190

• Configuring the Adapter, page 195

• Adding the Adapter to the Domain, page 198

The SDK_HOME\resourceKit directory includes various programs. Using these
programs you can preview some of the latest development in the Java version of
TIBCO Adapter SDK. It also demonstrates programs that utilize a thin MApp or
no MApp. These programs demonstrate special usages of the TIBCO Adapter
SDK using Servlet technology.

The programs in SDK_HOME\resourceKit directory may contain APIs that are
not documented and may change in the coming releases.

Source code is provided as is and should be treated as an unsupported program.
Comments, feedbacks, and bug reports are welcome but no bug fix release should
be expected in any bug that is related to these programs.
TIBCO Adapter SDK Programmer’s Guide

Setting Up the Example | 189
Setting Up the Example

Load the provided project into a server-based repository as only a server-based
project can be deployed.

1. Start TIBCO Designer.

2. From the Project menu, select Import Full Project.

3. In the Local Repository tab, browse to select the project file
zap_compliant.dat in the directory
SDK_HOME\resourceKit\deployableAdapter. Click OK.

4. Save the project as a server project named zapadapter.

5. Compile the example.

— For the Java example, compile the Java source code using the compile.bat
file. The compile.bat file generates a .jar file and places it under the
../bin directory. It also copies the wrap.exe file to the ../bin directory
and renames it to zapadapter.exe.

— For the C++ example, the Developer Studio .dsw file generates an
executable zapadapter.exe and places it under the ../bin directory.

Make necessary changes to the CLASSPATH to successfully compile the
example.
 TIBCO Adapter SDK Programmer’s Guide

190 | Chapter 12 Creating a Deployable Custom Adapter
Modifying Code for TIBCO Administrator Compliance

The following standard TIBCO Hawk microagent methods are required for the
adapter to comply with TIBCO Administrator.

• COM.TIBCO.ADAPTER::getHostInformation()

• COM.TIBCO.ADAPTER::getAdapterServiceInformation()

To use these microagent methods, modify the code as follows:

1. Adding MHostInfo, page 190

2. Adding MAdapterServiceInfo, page 192

3. Implementing Custom Advisory Listener, page 192

4. Implementing Standard ActiveEnterprise Tracing with MMessageBundle,
page 193

Adding MHostInfo

The following information is Java-specific. For changes required in the C++
adapter, look at the C++ example code in the SDK_HOME\resourceKit directory.
The main difference is that, for C++ SDK, you need to change code to link with
the Service Wrapper library.

The MHostInfo contains the application name, instance ID, and state information
that is returned to the SDK standard Hawk microagent method
getHostInformation(). It can also contain backend specific information such as
the backend application name, version, connection status, and so on.

1. Create MHostInfo in the ZapAdapter constructor and set application status
(AppState) to INITIALIZING.

AppName and Instance ID are automatically set in the constructor from the
information provided by the MApp parameter.

MApp app = new TestAdapterCore(p);
MHostInfo hostInfo = new MHostInfo(app);

//** set hostInfo service state
hostInfo.setAppState(MUserApplicationState.INITIALIZING);
app.setHostInfo(hostInfo);
app.start();

Application status is not reported to TIBCO Administrator until the standard
microagent has been registered with TIBCO Runtime Agent and event dispatch
has started.
TIBCO Adapter SDK Programmer’s Guide

Modifying Code for TIBCO Administrator Compliance | 191
2. Obtain MHostInfo back inside onInitialization() method and set
AppState to RUNNING. After connecting to ZAP, set the backend information
obtained. Events dispatch starts after onInitialization() is done.

onInitialization() {

 //** Create Host information
MHostInfo hostInfo = getHostInfo();
hostInfo.setAppState(MUserApplicationState.RUNNING);
setHostInfo(hostInfo);

....

ZAPCustomer.zap_Init();
ZAPConnection conn = new ZAPConnection(this);
if (conn.connect()) {

//** Trace no tracking id, second param set to null
getTrace().trace("AEZAP-2000", null,

"Successfully connected to ZAP database");
hostInfo.setExtendedInfo("Host", conn.getHostName());
hostInfo.setExtendedInfo("Port",

new Integer(conn.getPortNumber()).toString());
setHostInfo(hostInfo);
}
....
}

3. Obtain MHostInfo back inside onTermination() method and set AppState to
STOPPED. The onTermination() method is called when MApp.stop() is
called, which happens when the standard Hawk method
stopApplicationInstance() is invoked or by wrapper shutdown function
(shown below).

protected void onTermination() throws MException
{

// update HostInfo to STOPPED
getTrace().trace("AEZAP-2000", null, "onTermination: stopping
adapter");
MHostInfo hostInfo = getHostInfo();
hostInfo.setAppState(MUserApplicationState.STOPPED);
setHostInfo(hostInfo);

}

4. In the wrapper's shutdown function, (Note that this function is used by
wrapper --stop), call MApp.stop() to shut down the adapter correctly, that
is, do the cleanup specified in MApp.onTermination().

public void shutdown()
{
try {
 TIBCO Adapter SDK Programmer’s Guide

192 | Chapter 12 Creating a Deployable Custom Adapter
 // set service state to stopping
 MHostInfo hostInfo = new MHostInfo(app);
 hostInfo.setAppState(MUserApplicationState.STOPPING);
 app.setHostInfo(hostInfo);

// Stop adapter, this will call MApp.onTermination()
app.stop();
} catch (Exception ex) {

 System.out.println("shutdown: " + ex);
 ex.printStackTrace();

}
}

Adding MAdapterServiceInfo

Adapter services are defined in terms of a service name, endpoint, and associated
schema class(es). Adapters must register all its services either by enumeration of
all endpoint components or simply by component name. For each service, the
application must call set (serviceName, endpointName, schema) to register the
adapter service.

Inside onInitialization() retrieves all publisher/subscriber, client/server
endpoints with their associated schema and registers them as adapter services
using MAdapterServiceInfo.

onInitialization()
{
...

//** Register publisher service
MAdapterServiceInfo appInfo = new MAdapterServiceInfo();
Enumeration classEnum = pub.getClassNames();

//** Retrieve all class schema specified for this endpoint
while (classEnum.hasMoreElements())
{

String schemaname = (String) classEnum.nextElement();
appInfo.set("Publish service", pub.getName(), schemaname);

}
setAdapterServiceInfo(appInfo);
...

}

Implementing Custom Advisory Listener

Replace the default advisory listener with a custom advisory listener that sends
messages to a log file instead of stdout.
TIBCO Adapter SDK Programmer’s Guide

Modifying Code for TIBCO Administrator Compliance | 193
Depending on the advisory subject, additional action can also be taken. For
example, stop the adapter on a RVCM collision advisory. You can then access the
log file using the TIBCO Administrator user interface. Note that the user can
subclass from MAdvisoryListener and explicitly call the superclass callback
directly to extend the default behavior.

To set a custom advisory listener, use the MApp::setAdvisoryListener()
method.

1. Set the user advisory listener prior to the MApp.start() call.

...
app = new TestAdapterCore(props);
...
app.setAdvisoryListener(new CustomAdvisoryListener(app));
...
app.start();

2. User advisory listener should be implemented in a separate
CustomAdvisoryListener class. This will log configured advisory messages
into log file.

Implementing Standard ActiveEnterprise Tracing with MMessageBundle

To implement standard tracing in the code, the trace and debug methods must
use the (errorCode, trackingInfo) form. For Java, the message bundle properties
file can be used to store all error codes and messages.

The zapadapter.properties file contains the following information:

errorRole.Application.AEZAP-0001="Connection to Zap failed with
parameters: %1"
errorRole.Application.AEZAP-0002="Connection to Zap failed or
system unavailable: %1"
errorRole.Application.AEZAP-0003="Request to Zap failed with
parameters: %1"
errorRole.Application.AEZAP-0999="Exception caught: %1"
debugRole.Application.AEZAP-1000="debugTrace: %1"
infoRole.Application.AEZAP-2000="infoTrace: %1"

The zapdapter.properties file is loaded after MApp is instantiated and before
MApp.start() is invoked.

app = new TestAdapterCore(props);
...
//** load application resource file
MMessageBundle.addResourceBundle("zap", "zapadapter");
 TIBCO Adapter SDK Programmer’s Guide

194 | Chapter 12 Creating a Deployable Custom Adapter
...
app.start();

A sample use of the error trace and info trace in onInitialization() method is
as follows:

if (conn.connect())
{
//** Trace no tracking id, second param set to null
getTrace().trace("AEZAP-2000", null, "Successfully connected
to ZAP database");
...
}

else
{
//** Trace with no tracking id
getTrace().trace("AEZAP-0002", null, "Fail to connect to ZAP
database");
...
}

To include resources that depend on external files, such as the Java Activity in
TIBCO ActiveMatrix BusinessWorks, you must create an AliasLibrary. Resources
in the project can reference aliases in the AliasLibrary to resolve external file
dependencies that they may have at runtime or debug time.

When building an enterprise archive file, the files referenced by the aliases
defined in an AliasLibrary that you include in the project are included in the
archive file. For more information, refer to the TIBCO Designer User’s Guide.
TIBCO Adapter SDK Programmer’s Guide

Configuring the Adapter | 195
Configuring the Adapter

This section explains how to configure the adapter’s monitoring options, log
sinks, and advisories in TIBCO Designer.

Monitoring Tab Configuration

1. In the Project panel, expand the folder named EXAMPLE_ZAPADAPTER, and then
select the adapter configuration named ZAPAdapter.

2. Click the Monitoring tab. Configure the options in the Monitoring tab as
follows.

Figure 34 Monitoring Tab

— Enable Standard MicroAgent — Select the check box.

— Standard MicroAgent Name —
COM.TIBCO.ADAPTER.global_acronym.%%Deployment%%.%%InstanceId%%

Where global_acronym stands for the name that is provided in the domain
utility (Global Acronym is set to "adzap") while adding the adapter
component to the domain. This name must be globally unique within the
TIBCO Administrator domain.

— Enable Class MicroAgent — %%HawkEnabled%%

— Class MicroAgent Name — COM.TIBCO.global_acronym.
%%Deployment%%.%%InstanceId%%

Where global_acronym stands for the name that is provided in the domain
utility (adzap in this example) while adding the adapter component to the
 TIBCO Adapter SDK Programmer’s Guide

196 | Chapter 12 Creating a Deployable Custom Adapter
domain. This name must be globally unique within the TIBCO
Administrator domain.

— Default Microagent Session — If non-default RVD parameters are used
for the Hawk session in the Admin server, you must add a separate session
in this field. For this session, the TIBHawkDaemon, TIBHawkService, and
TIBHawkNetwork RVD parameters must be specified.

To change the session parameter used by the Adapter SDK standard class
microagent:

a. Create a RV session with custom parameters for service and daemon port.
For example:
<session name="hawkSession" service="9000" daemon="tcp:9000"
/>

b. Under the adapter instance, click the Monitoring tab and add the name of
this newly created session to the Default MicroAgent Session field. Refer
to the TIBCO Designer Resource Management Guide for details.

Log Sinks Configuration

1. In the Project panel, expand EXAMPLE_ZAPADAPTER > ZAPAdapter >
Advanced > Log Sinks.

2. Select fileSink. In the Configuration tab, ensure that the File Name field is set
to %%DirTrace%%/%%Deployment%%.%%InstanceId%%.log.

Figure 35 fileSink Configuration

3. Select hawkSink. In the Configuration tab, ensure that the MicroAgent Name
is the same with the MicroAgent name specified in the Monitoring tab.
TIBCO Adapter SDK Programmer’s Guide

Configuring the Adapter | 197
Figure 36 hawkSink Configuration

Advisories Configuration

1. In the Project panel, expand EXAMPLE_ZAPADAPTER > ZAPAdapter >
Advanced > Advisories.

2. Configure the advisory subject to listen to:

— RV Advisory — subject "_RV.ERROR.>" and "_RV.WARN.>"

— SDK Advisory — subject "_SDK.>"

Figure 37 Advisories Configuration
 TIBCO Adapter SDK Programmer’s Guide

198 | Chapter 12 Creating a Deployable Custom Adapter
Adding the Adapter to the Domain

To deploy the custom adapter:

• Creating an Alias Library in TIBCO Designer, page 198

• Creating EAR File in TIBCO Designer, page 198.

• Adding the ZapAdapter to the TIBCO Administrator Domain, page 200.

• Creating the ZapAdapter Application in the TIBCO Administrator Domain,
page 201.

• Deploying, Starting, and Stopping the Adapter, page 203.

Creating an Alias Library in TIBCO Designer

You can include the external files in the EAR by creating an Alias Library. For
detailed steps, refer to TIBCO Designer’s User’s Guide.

To bundle an Alias Library:

1. Start TIBCO Designer.

2. From the Edit menu, select Preferences.

3. In the TIBCO Designer Preferences dialog, click the File Aliases tab and create
aliases for the external files.

4. Add an AliasLibrary and include these external files in the Aliases tab, check
Deploy?, and click Apply.

5. Select Shared Archive and add this AliasLibrary to the Resources tab.

Creating EAR File in TIBCO Designer

To deploy a project, you must generate an Enterprise Archive for it. Before
creating an Enterprise Archive (EAR) file, in Designer, you must convert the
existing AE .dat file to multi-file format, and open the multi-file project.

Task A Convert the Existing File

To convert the existing example .dat file:

1. Open TIBCO Designer. In the TIBCO Designer startup window, click the
Administration tab.

2. Click Convert DAT to Files.
TIBCO Adapter SDK Programmer’s Guide

Adding the Adapter to the Domain | 199
3. In the Convert dialog:

a. In the DAT File field, click Browse and navigate to
SDK_HOME\resourcekit\deployableAdapter\zap_compliant.dat.

b. In the Project Directory field, type
install-path\tibco\tra\version_num\resourcekit\sdk\deployableAdapt
er\zapadapter_multifiles.

c. Click OK. TIBCO Designer converts the .dat file to a multi-file project.

4. Click the Project tab and choose Open Existing Project.

5. In the Open Project dialog, click the Multi-File Project tab, browse to select
the project directory
SDK_HOME\resourcekit\deployableAdapter\zapadapter_multifiles.

6. Click OK.

Task B Build an Enterprise Archive

To build the archive:

1. In the Project panel, select the top-level (project) resource.

2. In the Palettes panel, click the General palette, and then drag an Enterprise
Archive into the Design panel.

3. In the Configuration panel, replace the default value in the Name field with
zapadapter and click Apply.

4. In the Project panel, expand zapadapter, select Shared Archive.

5. Click the Resources tab. Browse and add the AliasLibrary that was created
earlier as explained in Creating an Alias Library in TIBCO Designer on
page 198.

6. Add an Adapter Archive file:

a. In the Project panel, select the zapadapter enterprise archive. In the
Palettes panel, select an Adapter Archive (Adapter Resources palette) and
drag it into the Design panel.

b. In the Configuration panel, click the Browse Resources icon next to the
Adapter field, select the resource from the pop-up, and click Apply.

The name of the .dat file cannot be used as the name of the directory.
 TIBCO Adapter SDK Programmer’s Guide

200 | Chapter 12 Creating a Deployable Custom Adapter
Figure 38 Add an Adapter Archive

c. Click the Advanced tab, specify Software Type as adzap. Click Apply.

7. Save the project.

8. In the Project panel, select the zapadapter enterprise archive. Enter the
following in the File Location field:
SDK_HOME\resourcekit\deployableAdapter\zapadapter.ear.

9. Click Build Archive.

Now, the archive file is ready for deployment.

Adding the ZapAdapter to the TIBCO Administrator Domain

Custom software such as adapters built using the TIBCO Adapter SDK, must be
added manually before you can deploy the application.

To add the ZapAdapter software to a TIBCO Administrator domain:

1. Start the TIBCO Administrator user interface and log into the administrator
domain in which you want to deploy the application.

2. Select the Installed Software console of TIBCO Administrator.

3. Click Add Custom Software.
TIBCO Adapter SDK Programmer’s Guide

Adding the Adapter to the Domain | 201
4. Select the machine on which you want to add the custom software and click
OK.

5. In the panel that is displayed, provide the following information and click
OK.

6. Click Save.

Creating the ZapAdapter Application in the TIBCO Administrator Domain

1. Start the TIBCO Administrator user interface and log into the administrator
domain in which you want to deploy the application.

2. Click the Application Management module and click New Folder. In the
window that displays, type SDK Adapters in the Name field. Click Save.

Table 40 Add Custom Software

Field Description

Machine Name of the machine on which the software is to be added. Click Change to add the
software on a different machine.

Software Type Must match software type used to build the EAR file. Enter adzap.

Software Display
Name

The name that should be displayed in TIBCO Administrator. Enter ZAP Adapter.

Version This number must match the EAR files loaded for the software. If the EAR file
specifies a later version, it cannot be loaded. Enter 5.6.0.

Executable (Full Path) Executable for this custom software.

Software is an adapter Select this check box if the custom software is an adapter; clear otherwise.

Java Software Select this check box for a Java deployable adapter.

Java Start Class Provide the Java start class. Enter ZapAdapter.

Java Start Method Provide the Java start method. Enter main.

Java Stop Method Provide the Java stop method. Enter shutdown.

Java Classpath Provide the Java classpath.

It is recommended to create folders for complex applications. Using folders is
not required.
 TIBCO Adapter SDK Programmer’s Guide

202 | Chapter 12 Creating a Deployable Custom Adapter
3. In the left-hand panel, click the SDK Adapter folder, click New Application.

4. Click Browse, select the zapadater Enterprise Archive file created in the
first step.

Make sure that an adapter is available as the Target in the bottom right corner.
If it isn’t, register it first. See Adding the ZapAdapter to the TIBCO
Administrator Domain on page 200 for more information.

Figure 39 Create New Application

5. The next dialog displays the Configuration console with Configuration
Builder on the left and the Deployed Configuration pane on the right. The
Deployed Configuration pane is empty because the application has not yet
been deployed.
TIBCO Adapter SDK Programmer’s Guide

Adding the Adapter to the Domain | 203
Figure 40 Configuration Console

6. Click Deploy.

For instructions on how to deploy an adapter, see the TIBCO Administrator’s
Guide.

Deploying, Starting, and Stopping the Adapter

Once the adapter has been added to the domain and deployed, it can be started or
stopped using the TIBCO Administrator.

Administrator calls the class Hawk microagent to stop a deployed adapter that is
independent of the stop() method, which is called by the wrapper when it was
run as an NT service. On UNIX, there is no NT service, so the stop() method that
is used to update NT service status is irrelevant. In other words, a
wrapper-enabled and deployed adapter has two ways of running and
terminating on Windows:

• Launched and terminated as an NT service and calls the stop() method to
shutdown().

• Launched and terminated by Administrator, in this case, the shutdown
function is not called unless explicitly coded in onTermination().

For additional information, see the TIBCO Administrator’s Guide.

Running the Example

If the domain registration and deployment are successful, the adapter can be
launched from TIBCO Administrator.
 TIBCO Adapter SDK Programmer’s Guide

204 | Chapter 12 Creating a Deployable Custom Adapter
In the Designer window, run the zapsubscriber process to receive any messages
published.

In a separate command window, launch tibrvlisten zap.out.

Expected Results

You should see the output in the tibrvlisten window.
TIBCO Adapter SDK Programmer’s Guide

| 205
Chapter 13 TIBCO Wrapper Utility

This chapter details the steps required to configure and run adapters using the
TIBCO Wrapper utility, which allows Unix and Microsoft Windows operating
systems to restart an adapter when the system reboots. For C++ applications, it
also explains the build and coding requirements.

Topics

• Overview, page 206

• Running an Adapter as a Microsoft Windows Service, page 207

• Using the TIBCO Wrapper Under UNIX, page 211

• Source Code Changes, page 212

• Wrapper Properties, page 214

• Command Line Options, page 221
 TIBCO Adapter SDK Programmer’s Guide

206 | Chapter 13 TIBCO Wrapper Utility
Overview

The TIBCO Wrapper utility allows deployment of an adapter as a service. Among
other benefits, the wrapper allows the operating system to start the adapter
automatically upon reboot, regardless of the operating system in use.

• On Microsoft Windows platforms, a wrapped application can be installed and
run as a Windows Service.

• On UNIX platforms, the functionality serves as a process abstraction. Hooks
for TIBCO Administrator mean that wrapped applications can be restarted on
reboot under UNIX and monitored using TIBCO Administrator.

The TIBCO Wrapper utility can be used for both Java or C++ adapters. The tool
uses standard Java properties files for configuration of Service and Java Virtual
Machine (JVM) parameters.

When you invoke the Wrapper, it looks in the current directory for the
appname.tra file. If that file is not found, it searches the PATH for appname.tra.

If a .tra file is not found in one of those locations, the Wrapper cannot start.
TIBCO Adapter SDK Programmer’s Guide

Running an Adapter as a Microsoft Windows Service | 207
Running an Adapter as a Microsoft Windows Service

This section explains how to run an adapter as a Microsoft Windows service.

Java Adapters

To run a Java adapter as a service under Microsoft Windows:

1. Ensure that the adapter code is updating the application state information (see
MHostInfo in the online API documentation).

2. Rename the wrap.exe or gwrap.exe binary to the name of your application
(for example, SimpleApp.exe).

3. Create a properties file detailing Service and Java properties. See Wrapper
Properties on page 214.

4. Install the service with the Service Control Manager by using the --install
command line option.

SimpleApp.exe --install

5. Start the service using one of these options:

— through the Control Panel

— using the --start command line option

Upon reboot, you don’t have to restart automatic services explicitly.

The application is now running in the background as a service.

The properties file should use standard Java properties file syntax.

Name the properties file app_name.tra (for example, SimpleApp.tra). It will
be picked up automatically when one of the TIBCO Wrapper command-line
options is used. You can also specify which properties file to use through the
--propFile filename command-line option.

If you changed details in the properties file, run --uninstall and --install
again. Otherwise, changes do not take effect.

Note that the properties file itself is not read when the application is running as a
Windows Service.
 TIBCO Adapter SDK Programmer’s Guide

208 | Chapter 13 TIBCO Wrapper Utility
C++ Adapters

Use the TIBCO Wrapper with the C++ application in two ways:

• Explicitly Linking the Library—This produces an executable that can be run
from the command line.

• Delayed Application Shared Library Loading—At times, it is necessary to set
a per-application PATH instead of accepting a system setting. The PATH
environment variable dictates which dependent shared libraries are loaded.

This approach produces a shared library that can then be loaded by the
Wrapper executable, and allows you to do this.

Explicitly Linking the Library

To run a C++ adapter as a service on Microsoft Windows platforms:

1. Rename the current main() to AppMain().

2. Write an AppStop() method, if required.

3. Write a new main() that calls the LaunchWrapper() function.

4. Modify the existing adapter code to call the SetServiceState() function as
appropriate for the adapter.

5. Compile and link with the libwrap.lib static library.

6. Create a properties file detailing Service properties.

7. Install the service with the Service Control Manager by using the --install
command line option.

SimpleApp.exe --install

8. Start the service using one of these options:

— through the Control Panel applet

— using the --start command line option

Upon reboot, automatic services are restarted.

The properties file should use standard Java properties file syntax (even for
C++ custom adapters).

If you named the properties file app_name.tra (for example, SimpleApp.tra),
it is picked up automatically. You can also specify which properties file to use
through a command-line option.
TIBCO Adapter SDK Programmer’s Guide

Running an Adapter as a Microsoft Windows Service | 209
The application is now running in the background as a service.

Delayed Application Shared Library Loading

To run a C++ adapter as a service on Microsoft Windows platforms, and change
the loading of dependent shared libraries to allow the wrapper to modify the
PATH environment variable:

1. Change the makefile to produce a shared library target instead of an
executable.

2. Rename the current main() to AppMain().

3. Write an AppStop() method, if required.

4. Write a RegisterWrapperEntryPoints() function. This function gives you a
function callback pointer for setting the service state.

5. Write a SetServiceState() function, as appropriate for the adapter, that uses
the pointer obtained from RegisterWrapperEntryPoints().

6. Create a properties file detailing Service properties. Be sure to set the
application.library property to point to the application shared library.

7. Rename the wrap.exe or gwrap.exe binary to the name of the application (for
example, SimpleApp.exe).

8. Install the service with the Service Control Manager by using the --install
command line option.

SimpleApp.exe --install

9. Start the service using one of these options:

— through the Control Panel applet

— using the --start command line option

Upon reboot, automatic services are restarted.

If you changed details in the properties file, run --uninstall and --install
again. Otherwise, changes do not take effect.

Note that the properties file itself is not read when the application is running as a
Windows service.

The properties file should use standard Java properties file syntax (even for
C++ custom adapters).

If you named the properties file app_name.tra (for example, SimpleApp.tra),
it is picked up automatically. You can also specify which properties file to use
through a command-line option.
 TIBCO Adapter SDK Programmer’s Guide

210 | Chapter 13 TIBCO Wrapper Utility
The application is now running in the background as a service.

If you changed details in the properties file, run --uninstall and --install
again. Otherwise, changes do not take effect.

Note that the properties file itself is not read when the application is running as a
Windows service.
TIBCO Adapter SDK Programmer’s Guide

Using the TIBCO Wrapper Under UNIX | 211
Using the TIBCO Wrapper Under UNIX

Some of the facilities available under Microsoft Windows are not available under
UNIX because there is no Service Control Manager. However, you have the
following benefits:

• Monitoring and management through TIBCO Administrator (requires code
modification, see Source Code Changes on page 212).

• Use of a properties file that includes any of the wrapper-settable properties
that do not start with ntservice.

• An application using the TIBCO Wrapper that has joined the TIBCO
administration domain will autostart upon reboot by the TIBCO
Administration Server.

• Use of the following command-line options:

--propFile
--propVar
--run
--help
--version
--pid

Under HP-UX, the wrapper executable and library are explicitly linked against
libjvm.sl. Because that library uses thread local storage (TLS), it cannot be
loaded dynamically through dlopen. (C++ adapters also need to link the libjvm
if they use libwrap.) For this reason, the SHLIB_PATH environment variable must
be set before launching the wrapper.

See the dlopen man page on HP-UX for details on the restriction.
 TIBCO Adapter SDK Programmer’s Guide

212 | Chapter 13 TIBCO Wrapper Utility
Source Code Changes

To use the TIBCO Wrapper, ensure that you link in the wrapper libraries under
C++. In addition, you need to make the following source code changes.

Java Only

Adapters need only be certain that they are updating the application’s state by
using the MHostInfo class. This is how the Win32 Service Control Manager (SCM)
get notified that the application is running. State change notifications are
required, otherwise the SCM will regard the service as non-functional. This may
lead to unexpected behavior.

For example:

main () {
//** 0) create MApp

app = new MyMApp(appProperties);
//** 1) create MHostInfo

MHostInfo hostInfo = new MHostInfo(app);
//** 2) set hostInfo service state

hostInfo.setAppState(MUserApplicationState.INITIALIZING);
//** 3) associating MHostInfo to MApp

app.setHostInfo(hostInfo);
app.start();

}
onInitialization {

 MHostInfo hostinfo = MyMApp.getHostInfo();
 hostInfo.setAppState (MUserApplicationState.RUNNING);

}

Make sure that the application state is set for failure and exit conditions. Before
the adapter exits, the state should be set first to STOPPING and then to STOPPED.
While there is some facility in the TIBCO Wrapper tool to detect or correct
inconsistent state changes, the application itself is responsible for setting state
back to the SCM correctly.

Note that the tool can be used in conjunction with existing Java adapters without
modification, provided they are updating the application state as noted above.
Otherwise, this code needs to be added before attempting to install the adapter as
a Service.

You should create MHostInfo the same place you create MAppProperties so that
you can set the "Initializing" state before setting "Running" state inside
onInitialization().
TIBCO Adapter SDK Programmer’s Guide

Source Code Changes | 213
C++ Only

Adapters need to rename their current main() to ApplicationMain() and call
the LaunchWrapper() method while passing their ApplicationMain() method
to the wrapper.

In addition, the service state for C++ applications must be set using the wrapper
function SetServiceState() instead of relying on MApp::setHostInfo().

Wrapper Sample Code

This section shows a sample C++ application code fragment that integrates the
wrapper.

void AppMain(int argc, char * argv)
{
 SetServiceState(SVC_INITIALIZING);
 // your adapter startup code goes here
 // NOTE: typical adapters will set the service state

// to RUNNING inside of MApp::onInitialization()
// instead of here. An exception would be adapters
// that pass Mfalse to MApp::start().
//…

 SetServiceState(SVC_RUNNING);
//…
}

void AppStop()
{
 SetServiceState(SVC_STOPPING);
 // your app shutdown code here…
 // Note that it may be more appropriate to set state
 // in MApp::onTermination().
 SetServiceState(SVC_STOPPED);
}

void main(int argc, char * argv)
{
 LaunchWrapper(argc, argv, &AppMain, &AppStop);
}

 TIBCO Adapter SDK Programmer’s Guide

214 | Chapter 13 TIBCO Wrapper Utility
Wrapper Properties

Table 41 lists the predefined properties you can use in the properties file. You can
also add application-defined properties to this file. See Two Types of Properties
on page 40.

Wrapper Settable Properties

All properties starting with ntservice are available only under Microsoft
Windows. All other properties are platform independent.

Table 41 Wrapper Settable Properties

Property Name Presence Value Notes

ntservice.name Required
on MS
Windows

any Name of this service in the SCM service
database.

ntservice.displayname Required
on MS
Windows

any Name displayed to users of the Control
Panel Services Applet for this service.

ntservice.binary.path.abso
lute

Required
on MS
Windows

any Absolute path to the wrapper binary
itself. Required when started as a
service. Installing the service and then
moving the binary is not recommended.

Note that the back slash path separator
must be escaped with addition back
slash (or you can simply use the forward
slash).

See Examples for
ntservice.binary.path.absolute on
page 219.

ntservice.dependencies Optional any A comma-separated list of dependent
services that must be started before
starting this service.

ntservice.starttype Optional automatic,
manual, or
disabled

Defaults to automatic if not set.
TIBCO Adapter SDK Programmer’s Guide

Wrapper Properties | 215
ntservice.interactive Optional true or
false

Defaults to true if not set.

Must be false to use a specific account
and password. Specifying true and
specifying an account and password is
considered illegal by the SCM.

ntservice.account Optional any Be certain that the network domain is
specified as part of the account.
Otherwise, the SCM will reject the
account as invalid when attempting to
install the service.

ntservice.password Optional any Password for the specified account. You
can use a password that has been
encrypted. In that case, prefix it with #!
(pound exclamation mark).

application.start.dir Optional any Used to specify a different directory than
the current directory to launch the
application. Useful when applications
make use of relative paths.

application.args Optional any Arguments supplied to the application
when it launches. The string is exactly as
it would be typed on the command line,
however, you must escape certain
characters that terminate a Java
property. Refer to standard Java
property file syntax documentation for
characters requiring escaping.

To read a properties file that specifies
SDK properties, include
application.args=-system:prop
File <SDK_Properties_file>
....

java.start.class Optional The TIBCO Wrapper looks for the
start() method on this class, which
can also be specified directly via the
java.start.method property. If the
start() method is not supplied, then
the standard Java static main() method
is used.

Table 41 Wrapper Settable Properties (Cont’d)

Property Name Presence Value Notes
 TIBCO Adapter SDK Programmer’s Guide

216 | Chapter 13 TIBCO Wrapper Utility
java.start.method Optional The TIBCO Wrapper attempts to invoke
this static method on the start class. If the
start() method is not supplied, then
the standard Java static main() method
is used.

java.stop.method Optional If this property is supplied, the utility
will attempt to invoke this static method
on the start class upon shutdown.

java.class.path Optional any
standard
classpath

Standard java classpath that will be
passed along to the JVM without
modification. Note that the TIBCO
Wrapper only uses either
tibco.class.path.extended or
this property, but not both. If both are
present, the utility takes
tibco.class.path.extended
instead of this property.

tibco.class.path.extended Optional any Classpath that is expanded inline by the
utility. Any directory is searched for
.class, .jar, or .zip files and
expands the final classpath to include all
of these files for that directory. Any
specific files in the classpath are passed
along unaltered.

java.library REQ Absolute path to the JVM to use (see
Sample Properties File on page 220).

java.heap.size.max Optional 4M, 32M,
etc.

The syntax is the same as for the
extended property (-Xmx). For example,
“32M”.

java.thread.stack.size Optional 4M, 32M,
etc.

The syntax is the same as for the
extended property (-Xss).

java.property.<prop> Optional any Allows setting of any Java properties to
be passed along to the Java application.
Takes the form of
Java.property.foo=bar. There may
be an unlimited number of these per
properties file, within file system
limitations.

Table 41 Wrapper Settable Properties (Cont’d)

Property Name Presence Value Notes
TIBCO Adapter SDK Programmer’s Guide

Wrapper Properties | 217
ntservice.interactive Optional true or
false

Defaults to true if not set.

Must be false to use a specific account
and password. Specifying true and
specifying an account and password is
considered illegal by the SCM.

ntservice.account Optional any Be certain that the network domain is
specified as part of the account.
Otherwise, the SCM will reject the
account as invalid when attempting to
install the service.

ntservice.password Optional any Password for the specified account. You
can use a password that has been
encrypted. In that case, prefix it with #!
(pound exclamation mark).

application.start.dir Optional any Used to specify a different directory than
the current directory to launch the
application. Useful when applications
make use of relative paths.

application.args Optional any Arguments supplied to the application
when it launches. The string is exactly as
it would be typed on the command line,
however, you must escape certain
characters that terminate a Java
property. Refer to standard Java
property file syntax documentation for
characters requiring escaping.

To read a properties file that specifies
SDK properties, include
application.args=-system:prop
File <SDK_Properties_file>
....

java.start.class Optional The TIBCO Wrapper looks for the
start() method on this class, which
can also be specified directly via the
java.start.method property. If the
start() method is not supplied, then
the standard Java static main() method
is used.

Table 41 Wrapper Settable Properties (Cont’d)

Property Name Presence Value Notes
 TIBCO Adapter SDK Programmer’s Guide

218 | Chapter 13 TIBCO Wrapper Utility
java.start.method Optional The TIBCO Wrapper attempts to invoke
this static method on the start class. If the
start() method is not supplied, then
the standard Java static main() method
is used.

java.stop.method Optional If this property is supplied, the utility
will attempt to invoke this static method
on the start class upon shutdown.

java.class.path Optional any
standard
classpath

Standard java classpath that will be
passed along to the JVM without
modification. Note that the TIBCO
Wrapper only uses either
tibco.class.path.extended or
this property, but not both. If both are
present, the utility takes
tibco.class.path.extended
instead of this property.

tibco.class.path.extended Optional any Classpath that is expanded inline by the
utility. Any directory is searched for
.class, .jar, or .zip files and
expands the final classpath to include all
of these files for that directory. Any
specific files in the classpath are passed
along unaltered.

java.library REQ Absolute path to the JVM to use (see
Sample Properties File on page 220).

java.heap.size.max Optional 4M, 32M,
etc.

The syntax is the same as for the
extended property (-Xmx). For example,
“32M”.

java.thread.stack.size Optional 4M, 32M,
etc.

The syntax is the same as for the
extended property (-Xss).

java.property.<prop> Optional any Allows setting of any Java properties to
be passed along to the Java application.
Takes the form of
Java.property.foo=bar. There may
be an unlimited number of these per
properties file, within file system
limitations.

Table 41 Wrapper Settable Properties (Cont’d)

Property Name Presence Value Notes
TIBCO Adapter SDK Programmer’s Guide

Wrapper Properties | 219
tibco.env Note

The tibco.env.<varname> property allows you to override the PATH
environment variable for C++ custom adapters running as a Windows Service.

To support this, link the shared libraries that you want to be loaded through the
overridden PATH with the MSVC /DELAYLOAD linker option. This allows the
overridden PATH to take effect before the operating system attempts to load the
dependent shared libraries.

• Example for Windows

tibco.env.PATH
c:/tibco/tra/5.6/bin;c:/tibco/tpcl/5.6/bin;c:/tibco/tibrv/8.1/bin;
c:/tibco/adapter/zap/bin

or

tibco.env.PATH
c:\\tibco\\tra\\5.6\\bin;c:\\tibco\\tpcl\\5.6\\bin;c:\\tibco\\tibr
v\\8.1\\bin;c:\\tibco\\adapter\\zap\\bin

• Example for UNIX

tibco.env.PATH
/opt/tibco/tra/5.6/bin:/opt/tibco/tpcl/5.6/bin:/opt/tibco/tibrv/8.
1/bin:/opt/tibco/zapadapter/bin

Examples for ntservice.binary.path.absolute

ntservice.binary.path.absolute
c:\\tibco\\adapter\\zap\\bin\\zapadapter.exe

or

ntservice.binary.path.absolute c:/tibco/adapter/zap/bin/zapadapter

java.extended.properties Optional any Allows setting of arbitrary extended
JVM options (for example, -XServer
-Xdebug).

tibco.env.<varname> Optional any env.
variable
value

Overrides the environment variable is
set. Otherwise, creates it and sets it for
the application.

Can be used to define any environment
variable. For example defining
tibco.env.PATH will override the
existing PATH environment setting.

See tibco.env Note below.

Table 41 Wrapper Settable Properties (Cont’d)

Property Name Presence Value Notes
 TIBCO Adapter SDK Programmer’s Guide

220 | Chapter 13 TIBCO Wrapper Utility
Properties Files

Adapters that use the TIBCO wrapper can use a separate SDK properties file. To
do so, they specify the SDK properties file in the application.args property of
the TIBCO Wrapper properties file as follows:

application.args=-system:propFile <SDK_Properties_file> ...

Sample Properties File

This section lists a sample properties file for Microsoft Windows.

***** some java application properties *****
java.start.class SimpleApp
java.start.method=main

note that this supports inline directory classpath expansion
java.class.path=.;c:\projects\maverick-dev-rv6\examples\cpp\wrap

#java.library=C:\tibco\JRE\1.5.0\bin\hotspot\jvm.dll
java.heap.size.max 32M

application.start.dir
c:\projects\maverick-dev-rv6\examples\cpp\wrap

***** properties for installing as a service *****
ntservice.name=AAA_wrap
ntservice.displayname=AAA Simple Java Service
ntservice.starttype=manual
ntservice.binary.path.absolute=c:\projects\maverick-dev-rv6\exampl
es\cpp\wrap\release\wrap.exe
#ntservice.dependencies=foo bar

ntservice.interactive=true
NOTE - if interactive is true, then the system account must be
used...
#ntservice.account=
#ntservice.password=

You can use separate properties files for SDK properties and TIBCO Wrapper
properties for clarity. You can also place all properties into the wrapper properties
file.
TIBCO Adapter SDK Programmer’s Guide

Command Line Options | 221
Command Line Options

Table 42 and Table 43 list command-line options you can use in conjunction with
the TIBCO Wrapper.

Table 42 Command-line Options (all platforms)

Option Description

--propFile
<properties file>

By default, the wrapper looks for a properties file with the same name as the
binary, with a .tra extension. For example, MyApplication.exe would look
for a properties file name MyApplication.tra.

This command line option overrides this behavior and allows for the use of a
properties file with any name. Note that for Java applications, the wrapper binary
is typically renamed to reflect the application it is launching.

--propVar name=value Sets a property as though it were in the properties file, but at runtime instead.

For example, assign an environment variable called MYTEST to a property in the
<wrapped application>.tra file as follows:

java.start.class=%MYTEST%

You can then run the application as follows to set the value of the variable at
runtime:

<Wrapped application> --debug --propVar MYTEST=<runtime
value>

--run Runs the application as a console application, not as a service. This can be useful
for debugging an application before installing it as a service.

--help Lists the command line options and usage information.

--version Displays the version of the wrapper utility.

--pid Returns the process ID of the application to stdout in the form
application.processid=%d

Table 43 Command-line Options (Microsoft Windows only)

Option Description

--install Installs the application as a service by registering it with the SCM and copying the
contents of the properties file used into the Microsoft Windows Registry.

Note that any subsequent changes to the properties file will not be propagated to
the service unless it is first uninstalled and reinstalled.
 TIBCO Adapter SDK Programmer’s Guide

222 | Chapter 13 TIBCO Wrapper Utility
--uninstall First attempts to stop the service if it is currently running. After that, it requests
the SCM to remove the application from the service database.

Note that if the SCM was unable to stop the service, it will be removed the next
time Windows is restarted. For this reason, it is possible to see the service listed in
the Microsoft Windows Control Panel after having uninstalled it.

--start Sends a message to the SCM to start the service registered with this service name.
Obviously, the service must be installed first. This is a command line alternative
to using the Microsoft Windows Control Panel Services applet to start a service.

--stop Sends a message to the SCM to stop the service registered with this service name.
Obviously, the service must be installed first. This is a command line alternative
to using the Control Panel Services applet to stop a service.

--restart Requests first a stop and then a start of the service.

--query First checks whether the service has been installed. If so, queries the SCM as to the
state of the service.

Table 43 Command-line Options (Microsoft Windows only) (Cont’d)

Option Description
TIBCO Adapter SDK Programmer’s Guide

| 223
Appendix A SDK Programming Guidelines

This appendix gives programming guidelines for adapter developers.

Topics

• General SDK Best Practices, page 224

• MBusinessDocument and MAdvisoryDocument, page 226

• Using Distributed Processes for Load Balancing, page 228

• Connection Management, page 230

• Security Considerations, page 231

• TIBCO Rendezvous Programming Guidelines, page 233

• C++ Utility Classes and Methods, page 238

• JMS in Adapter SDK, page 240
 TIBCO Adapter SDK Programmer’s Guide

224 | Appendix A SDK Programming Guidelines
General SDK Best Practices

This section gives some general Adapter SDK programming guidelines.

• Do not access any TIBCO Adapter SDK classes (for instance, MTrace) after
MApp.stop() is called.

After a custom adapter has called MApp.stop(), it can no longer access any of
the objects that the class library itself created because MApp performs internal
clean-up while executing the stop() method.

• It is not advisable to use direct calls to the TIBCO Rendezvous API within a
custom adapter.

Using direct calls makes the custom adapter less portable and more difficult to
upgrade to newer versions of the SDK. However, in some cases using a direct
call to a TIBCO Rendezvous API is the only workaround available. For
example, an adapter design may rely on a TIBCO Rendezvous feature not
available in the SDK API, such as RV message queue control or RVFT
protocol.

• Use command-line properties files where appropriate.

For example, you may want to have different properties files for starting the
adapter in different modes. You can also obfuscate the properties file, which
can make user names and passwords inaccessible. See Properties Files on
page 39.

• Do not confuse out of sequence confirmation with selective confirmation.

TIBCO Rendezvous RVCM allows you to confirm message out of sequence.
This means you can confirm messages in any order such as 2, 3, 7, 5, then 6.
This feature is often confused with selective confirmation, that is, confirming
only certain messages.

Assume you want to confirm message 1, 3 and 5 while leaving message 2 and
4 unconfirmed. Selective confirmation is not possible using the RVCM
protocol. While you can confirm individual messages without implicitly
confirming any unconfirmed gaps in the sequence, the listening CM transport
holds the confirmation protocol message until all gaps are filled.

For example, confirming message 57 does not implicitly confirm messages 55
and 56. Instead, the listening CM transport records the confirmation, but does
not send it back to the sending transport until the program fills the gap by
confirming messages 55 and 56, and then the listening transport sends the
confirmations for messages 55 through 57.

• Make transport parameters flexible.
TIBCO Adapter SDK Programmer’s Guide

General SDK Best Practices | 225
TIBCO Adapter SDK supports flexible transport parameters by keeping the
adapter configuration, saved in the project repository, separate from the code.
See Changing Endpoint Quality of Service on page 54.

• Do not access MTree instances directly.

Instead of working with MTree instances, hand them to the deserializer.
TIBCO Adapter SDK validates all deserialized ActiveEnterprise messages
against metadata schema defined in the repository.

• Do not confuse the SDK properties file (and associated properties) with the
TIBCO Wrapper properties file (and associated properties).

While it is possible to define properties from each group in one file, how the
properties are used differs. See Two Types of Properties on page 40.

• Separate the configuration from the code wherever possible.

While constructors exist for SDK classes, it is better to define endpoints,
sessions, etc. as part of the configuration.
 TIBCO Adapter SDK Programmer’s Guide

226 | Appendix A SDK Programming Guidelines
MBusinessDocument and MAdvisoryDocument

MBusinessDocument is a predefined schema that provides context attributes. It
allows a custom adapter to describe a business event in a standard format.

When a custom adapter sends a message to another application, it could send
pure data. In many cases, however, it is useful to include context for the data. The
context allows the receiving and sending application to share information that is
not necessarily part of the data.

Typically, the custom adapter itself defines the context, that means each sending
and receiving application need to agree on the format for the context. The
MBusinessDocument class encapsulates a specification of such a context, which
can be used to provide uniformity, for example, in integration scenarios where
several adapters work together.

The MBusinessDocument architecture provides a flexible way to create
user-defined attributes, without imposing a rigid structure. See the online API
Reference documentation for details, including the methods for accessing and
setting the attributes of MBusinessDocument.

In TIBCO Designer, MBusinessDocument is defined under
AESchemas/ae/baseDocument.

The predefined MBusinessDocument, MDataSection, and MAdvisoryDocument
class schema are available for backward compatibility and should not be used for
new development.

New development that would like to take advantage of MBusinessDocument
should create custom class schema definition and specify
baseBusinessDocument as the superclass. So, any subclass of
baseBusinessDocument will inherit the predefined properties provided by
baseBusinessDocument.

The same subclass use applies to MAdvisoryDocument.

Example

<class name="OrderBusinessDocument"
superclass="baseBusinessDocument">

 <attribute name="OrderId" type="String"/>
 <attribute name="Item" type="OrderLine" />
</class>

The MAdvisoryDocument class is useful for providing context to debugging and
performance analysis data. Whereas MBusinessDocument is useful for providing
context to application data itself.
TIBCO Adapter SDK Programmer’s Guide

MBusinessDocument and MAdvisoryDocument | 227
MInstance *pInstance =
MDataFactory::createInstance("OrderBusinessDocument");

 MBusinessDocument *pDoc = new MBusinessDocument(pInstance);
 TIBCO Adapter SDK Programmer’s Guide

228 | Appendix A SDK Programming Guidelines
Using Distributed Processes for Load Balancing

TIBCO Rendezvous Distributed Queue messaging (RVDQ also known as
RVCMQ) can be used to implement message-level load balancing.

Distributed Queue Member

A distributed queue is a group of cooperating transport objects, each in a separate
process. Each transport object is called a member. From the outside, a distributed
queue appears as a single transport object; inside, the group members act in
concert to process inbound task messages.

Each distributed queue member has two roles: as a worker and as a potential
scheduler. In the worker role, members listen for task messages and process
inbound task messages as assigned by the scheduler. To determine whether a
member is a worker or scheduler, create an advisory listener on the RVCMQ
advisory subject _RV.INFO.RVCM.QUEUE.SCHEDULER.ACTIVE.>. See Advisory
Handling on page 138.

Worker Weight and Worker Tasks

RVCMQ provides message-level load distribution based on Worker Weight and
Worker Tasks. Each worker in the workgroup can specify a different value for
these parameters, thereby influencing how the work is distributed among
workers. The value 0 is the reserved value.

If the parameters Worker Weight and Worker Tasks are set to the same value for
all adapters, RVCMQ will distribute messages evenly. Depending on their
capacities to process tasks, each adapter can specify a different value for each
worker task. For example, if an adapter has n dispatchers, it can specify n tasks.

A thread pool design can also be combined with RVCMQ to increase the number
of tasks a worker member can handle concurrently.

RVCMQ should be used if the adapter must process messages in the order sent or
if the adapter must not process the same message twice (duplicate processing).

When using thread pools, make sure to increase the number of worker tasks
correspondingly.
TIBCO Adapter SDK Programmer’s Guide

Using Distributed Processes for Load Balancing | 229
Scheduler

If the incoming rate of messages is very high and overwhelms the worker
adapters, the adapter in which the RVCMQ scheduler lives will start taking up
tasks itself. When a DQ member assumes a scheduler job, it overwrites its worker
weight and worker task to 1.

You cannot avoid the likelihood of the scheduler being assigned work, but you
can set a short completion time (for example, 1000 milliseconds) on the scheduler
and disable automatic confirmation. This will reassign a certified message (task)
assigned to the scheduler to an available worker one second later.

The actual completion time value to use depends on other DQ parameters and
use cases, such as the number of tasks or threads per worker, the number of
workers, the message rate, and so on. 1000 milliseconds is not appropriate for all
cases.

APIs for Setting RVCMQ Backlog Size

TIBCO Adapter SDK provides the following APIs in the MRvSession class both
for C++ and Java SDK to set the RVCMQ backlog size.

setTaskBacklogLimitInBytes()
setTaskBacklogLimitInMessages()
 TIBCO Adapter SDK Programmer’s Guide

230 | Appendix A SDK Programming Guidelines
Connection Management

Protocol and database adapters usually require connection management using
connection pools. A connection pool works as a system resource management
facility that can help improve performance in an application interface to a
backend system.

When a message arrives at an adapter, it is executed by a target application
specific task. A pool of connections to the application should be available to an
executing adapter task.

The pool of connections should be managed by a connection manager, which
should have the following characteristics:

• Configurable connection pool size

• Configurable connection retry attempts and timeout

• Obtain and release connection

The connection pool is configured in TIBCO Designer and saved to the project
repository. The code can then pick up the connection pool and work with it.

If the backend application processes data in a synchronous manner (blocking
behavior), it is useful to maintain a request queue. Used in conjunction with a
multithreaded design, the adapter can process multiple concurrent synchronous
operations without loss of messages.
TIBCO Adapter SDK Programmer’s Guide

Security Considerations | 231
Security Considerations

The user management and domain monitoring components of TIBCO
Administrator allow administrators to define an access control list (ACL) for
repositories in the administration domain. See TIBCO Administrator User’s Guide
for more information.

The TIBCO Administrator administration server checks the users that access or
invoke project repositories and ensure that they have the appropriate privileges
defined in the ACL.

TIBCO Administrator Administration Server Access

File Repositories

Local file repositories must be secured using file system permissions. The same
applies to a file-based repository managed by an administration server.

Local file repositories cannot be secured using tools provided by TIBCO because
there is no enforcement mechanism available to stop a user from accessing a file, if
the user has file access rights.

Server-Based Repositories

The read-only or read-write mode can be used for a server-based repository. The
mode is specified in the tibcoadmin.tra file.

The read-only mode is only available if the server is operating in Load Balancing
mode. All servers other than the repo.master operate as read-only. The master
may switch its mode by changing the tibcoadmin.tra file directly and restarting,
or using the Repository palette (need to provide an administration server
password).

repo.state=READ_ONLY
repo.master=localhost

You are still ultimately responsible for securing the machines and file systems on
which TIBCO products are running.

See the TIBCO Administrator Server Configuration Guide for more information
about load balancing.
 TIBCO Adapter SDK Programmer’s Guide

232 | Appendix A SDK Programming Guidelines
Password Obfuscation

A domain utility, which includes an obfuscation tool, is provided with TIBCO
Runtime Agent. The obfuscation tool can be used to mask the password stored in
a properties file.

For example, an adapter needs to log into the database, and the username and
password are provided in a properties file. The password needs to be obfuscated
so it is not recognizable to a casual user looking at the file.

1. In TIBCO Designer, define global variables for fields such as the username
and password (%%username%%, %%dbpassword%%). Configure and save the
adapter instance.

2. Create a properties file and include the parameters clientVar.username and
clientVar.dbpassword. Precede the parameters with a #. For example,
lientVar.username=#frog.

3. Run the domain utility, (found under tra/bin) choose obfuscation as the task
to perform, and supply the properties file.

The obfuscation tool will create a new properties file of the same name and
which contains the username and password in obfuscated form.

The adapter can be run with this properties file using the -propFile command
line option.

Data Security

If data security for an adapter on the network is required, developers should
consider using TIBCO Enterprise Message Service and implement the adapter to
use SSL.

As an alternative, developers requiring the use of TIBCO Rendezvous can
consider the transformation plug-in. See Transformation Plug-in on page 145.

The obfuscation tool is not an encryption tool.

These variables are user defined. dbpassword refers to a database the adapter
wants to access.
TIBCO Adapter SDK Programmer’s Guide

TIBCO Rendezvous Programming Guidelines | 233
TIBCO Rendezvous Programming Guidelines

This section lists the following guidelines for programming with TIBCO
Rendezvous:

• Never Send Binary Data Buffers or Internal Structs, page 233

• Do Not Pass Local Values, page 234

• Do Not Send to Wildcard Subjects, page 234

• Control Message Sizes, page 234

• Avoid Flooding the Network, page 234

• Understand TIBCO Rendezvous Transport Parameters, page 235

• Establish Subject Naming Conventions, page 235

• RVCM Session Correspondent Name Restrictions, page 236

• Sessions and TIBCO Rendezvous Protocol, page 237

Never Send Binary Data Buffers or Internal Structs

Programs can exchange binary data buffers using data type TIBRVMSG_OPAQUE.
The program is free to use any format and content within opaque data. However,
extensive use of opaque data is not recommended.

For example, opaque buffers can contain data structures mapped by C language
structs, but this technique couples the programs tightly to the data structure. If
the struct definition in the sender is changed, it must also be changed in the
listener, and vice versa.

Exchanging structs makes it difficult to introduce new, interacting programs in
the future. Furthermore, exchanging internal structs makes it difficult for a
program to interact with programs developed in other languages.

Binary data and internal structs are also platform dependent. Raw, binary data
cannot be exchanged between programs running on machines that represent
numbers or character strings with different formats.

Instead of binary buffers or structs, it is recommended to use TIBCO Rendezvous
self-describing data to ease data exchange. Rendezvous data types span the most
common atomic and array data types of most programming languages, and
ActiveEnterprise wire format messages can emulate any struct or composite data
type.
 TIBCO Adapter SDK Programmer’s Guide

234 | Appendix A SDK Programming Guidelines
Do Not Pass Local Values

When exchanging structs or binary buffers, remember that many data types could
be meaningless at the receiving end.

For example, a pointer is a memory address inside a particular computer. It has
no meaning to any other program running on other computers. You must always
send actual data by value rather than referencing it with a pointer.

Many opaque data structures or quantities are similarly meaningless outside of a
particular program (for example, UNIX file descriptors). Do not send this kind of
data to other programs.

Do Not Send to Wildcard Subjects

Although transports do not prevent you from sending messages to wildcard
subject names, doing so may lead to unexpected behavior in other programs that
share the network. It is invalid for certified delivery transports to send to
wildcard subjects.

Control Message Sizes

Although the ability to exchange large data buffers is a feature of TIBCO
Rendezvous software, it is recommended not to make messages too large.

For example, to exchange data up to 10,000 bytes, a single message is sufficient.
But to send files that could be many megabytes in length, it would be better to use
multiple send calls, perhaps one for each record, block or track.

Empirically determine the most efficient size for the prevailing network
conditions. (The actual size limit is 64 MB, which is rarely an appropriate size.)

Avoid Flooding the Network

TIBCO Rendezvous software can support high throughput, but all computers and
networks have limits. Do not write programs that might flood the network with
message traffic. Other computers must filter all multicast messages, at least at the
hardware level and sometimes at software levels (operating system or TIBCO
Rendezvous daemon).

Do not create loops that repeatedly send messages without pausing between
iterations. Pausing between messages helps leave sufficient network resources for
other programs on the network. For example, if a program reads data from a local
disk between network operations, it is unlikely to affect any other machines on a
reasonably scaled and loaded network; the disk I/O between messages is a large
enough pause.
TIBCO Adapter SDK Programmer’s Guide

TIBCO Rendezvous Programming Guidelines | 235
Publishing programs can achieve high throughput rates by sending short bursts
of messages punctuated by brief intervals. For example, structure the program as
a timer callback function that sends a burst of messages each time its timer
expires; adjust the timer interval and the number of messages per burst for
optimal performance.

When a program sends messages faster than the network can accommodate them,
its outbound message queue grows. When any outbound message waits in the
outbound message queue for more than 5 seconds, TIBCO Rendezvous software
presents a CLIENT.FASTPRODUCER warning advisory message. A program that
receives this warning advisory message should slow its sending rate.

Understand TIBCO Rendezvous Transport Parameters

Transport creation calls accept two parameters that direct the transport to open
two different kinds of sockets:

• The service parameter specifies a UDP or PGM service (also known as a
UDP or PGM port). The transport opens a UDP or PGM socket to that
network service.

The TIBCO Rendezvous daemon processes uses the UDP or PGM service for
communication with other TIBCO Rendezvous daemon processes across the
network.

• The daemon parameter specifies a TCP port number. The transport opens a
TCP socket to that port.

Transport objects use the TCP port for communication between a client
program and its TIBCO Rendezvous daemon (usually on the same host
computer). This parameter corresponds to the -listen parameter of rvd.

These two types of socket are not interchangeable. Confusing the two leads to
programming errors that are difficult to diagnose and fix. One source of this
confusion is that the default TIBCO Rendezvous service (for TRPD daemons) is
UDP service 7500, and the default daemon parameter is TCP socket 7500.
Although these two numbers are the same, they specify different items.

Establish Subject Naming Conventions

Adapter configurations generated with the TIBCO Designer generic adapter
palette creates predefined subject names based on global variables, which
includes the adapter name, instance name, and schema class name.

It is recommended to keep and use the predefined subjects, and use a similar
convention when defining your own subject.
 TIBCO Adapter SDK Programmer’s Guide

236 | Appendix A SDK Programming Guidelines
If the predefined subject is not used, it is important to carefully plan the subject
naming conventions for programs, and document them clearly for reference.
Follow these guidelines:

• Plan naming conventions to reflect the logical structure of the data in the
application domain.

• Study the programming examples in the src/examples/ subdirectory.

• When designing naming conventions, think about the kinds of information
that the programs will receive. Also think about the kinds of information that
the program will ignore.

• Use a reasonably small number of levels in subject names. Four or five is
usually sufficient. (TIBCO Rendezvous software allows many levels in subject
names, but it is recommended to minimize the number of levels you actually
use.)

• Avoid the use of spaces and special characters even where permitted by the
TIBCO Rendezvous API. Such characters may cause trouble with various
editors, browsers, and other tools.

• Keep subject names manageable and readable.

• Keep subject names short for maximum speed and message throughput.

• Allocate the maximum storage for subject names. Subject name length is
artificially limited to 255 bytes so that programs can allocate name buffers
with a reasonable size. To maximize code reusability, allocate 255 bytes for
buffers that are receiving subject names, even if the program does not use long
names. In C and C++, the 255 byte limit is defined by the constant
TIBRV_SUBJECT_MAX in the TIBCO Rendezvous header files.

• Structure subject names so that subscribing programs can use wildcards
effectively. Using wildcards is a powerful technique to filter inbound
messages. Wildcards also offer a convenient way to subscribe to groups of
subjects with a single listening call.

RVCM Session Correspondent Name Restrictions

Correspondent names have the same syntax as TIBCO Rendezvous subject
names. For more information about the syntax of reusable names and practical
advice on selecting a reusable name, see the TIBCO Rendezvous Concepts.

Invalid subject name examples:

• "News..Natural_Disasters.Flood" (null element)

• "WRONG." (null element)

• ".TRIPLE.WRONG.." (three null elements)
TIBCO Adapter SDK Programmer’s Guide

TIBCO Rendezvous Programming Guidelines | 237
Sessions and TIBCO Rendezvous Protocol

When creating a publisher or subscriber, ensure that the appropriate session
(transport) is available.

Associate a publisher or subscriber that uses RV as the protocol with any type of
session, whether RVA (Java only), RV, RVCM, or RVCMQ (subscriber only).

A publisher or subscriber that uses RVCM as a protocol requires an RVCM
session. A subscriber that uses RVCMQ as a protocol requires an RVCMQ session.

If you attempt to create an RVCM or RVCMQ subscriber and you only have an RV
session, an error occurs.
 TIBCO Adapter SDK Programmer’s Guide

238 | Appendix A SDK Programming Guidelines
C++ Utility Classes and Methods

A number of utilities classes and methods are available for building a custom
adapter.

MList, MMap, MString, and MWString

The C++ SDK includes some templated utility classes that make SDK-based
adapters portable across platforms. Custom adapters can use the following
classes:

• MString—Templated string functionality.

• MWString—Templated string functionality for unicode (M_UTF16BE) strings.

• MMap—Templated map functionality.

• MList—Templated list functionality.

Custom adapters can use the SDK classes in conjunction with the C++ Standard
Template Library (STL). However, SDK methods only use the SDK classes.

The downCast() Method

A number of SDK methods have as their return value type a class that is a
superclass of the direct parent class of an object. For example, certain methods
return pointers to MComponent, where the component returned is an instance of a
subclass of MComponent. The downCast() method allows applications to safely
cast the return value to the appropriate subclass so that the subclass methods can
then be called.

Custom adapters usually use the downCast() method as in the following
example:

MPublisher* pPublisher = MPublisher::downCast (pComp);
if (pPublisher)...
//can call MPublisher methods now...

Instead of throwing an exception, NULL is returned when the cast operation fails.

SDK Enumerators

This section applies only to the C++ SDK. Java programmers can use the Java
native enumerator classes.
TIBCO Adapter SDK Programmer’s Guide

C++ Utility Classes and Methods | 239
The C++ SDK offers enumerator classes for a number of its classes. Table 44 lists
available C++ enumerators that are included in the API reference.

SDK Types

The C++ SDK supports the type Mboolean, which is implemented as a #define.
Its value can be either Mtrue or Mfalse. The type provides cross-platform boolean
support.

Table 44 C++ SDK Enumerators

Enumerator Use

MComponentEnumerator Extracts all components managed by one MApp instance.

MTreeEnumerator Iterates through all (non-nested) nodes in an MTree.

MPropertiesEnumerator Iterates through MProperties instances.

MListEnumerator,
MMapEnumerator

Iterates through MList and MMap instances.

MEnumerator Base enumerator.
 TIBCO Adapter SDK Programmer’s Guide

240 | Appendix A SDK Programming Guidelines
JMS in Adapter SDK

This section explains the current JMS implementation in SDK and lists the major
features of it.

JMS Implementation

The combined requirements of single-thread or multi-thread, and synchronous or
asynchronous event dispatch resulted in the current Adapter SDK JMS support
implementation.

When Adapter SDK started support for JMS, it provided a simple transport
configuration switch (maintaining the existing MSession, MPublisher,
MSubscriber object model) that allowed an adapter to change transports from
Rendezvous to JMS.

To achieve this, Adapter SDK abstracted many of the differences between JMS
and Rendezvous. One of the key differences is JMS session. Because event queue
objects do not exist in the JMS world, MJmsSession only encapsulates
timemsConnection and its parameters. On the other hand, MRvSession object
encapsulates tibrvTransport and tibrvQueue.

To support MApp::nextEvent() and MSession::nextEvent() synchronous
dispatch constructs, Adapter SDK uses synchronous event dispatch calls,
tibemsMsgConsumer_ReceiveNoWait() and
tibemsMsgConsumer_ReceiveTimeout().

For multi-threaded MDispatcher asynchronous dispatch, Adapter SDK calls
tibemsMsgConsumer_ReceiveNoWait() in a loop. If a message is retrieved, it
calls tibemsMsgConsumer_ReceiveNoWait() again on the next iteration.
Otherwise, it calls tibemsMsgConsumer_ReceiveTimeout() with a maximum
timeout of 50 ms and minimum timeout of 1 ms. The upper limit is to maintain
good response times, and the lower limit is to prevent high CPU usage.

Adapter SDK supports both single-threaded (default mode) and multi-threaded
adapters (with MApp::setMultiThreaded(true)).

The single thread adapter requirement and synchronous event dispatch
requirement excluded the use of the TIBCO Enterprise Message Service
asynchronous event callback where a new thread is used to dispatch each
incoming event.

Also, MJmsSession is associated with consumer and producer endpoint objects
such that each gets its own tibemsSession, which can be mutex protected in the
MT application dispatched using MDispatcher. tibemsSession needs to be
protected because it is not a thread safe object per the JMS specification.
TIBCO Adapter SDK Programmer’s Guide

JMS in Adapter SDK | 241
JMS Features

Increasing Throughput with JMS Queue Receivers

Having an equal number of consumers and dispatchers on a single queue
destination increases throughput (as compared to one consumer and multiple
dispatchers). This is analogous to creating a group of RVDQ subscribers to
increase throughput.

The difference being RVDQ works best with queue members residing in separate
running processes, while JMS queue receivers can reside within a single process.
The downside is that message ordering is lost.

Multi-threading and Subscription Service

Adapter SDK manages construction and destruction of tibemsSession objects
for an MT application. This allows multi-threaded consumption and production
of messages by JMS adapter to work in a way similar to a Rendezvous adapter.

Configuring or creating multiple MSubscriber endpoints for a MJmsSession
brings the similar effect of specifying multiple JMS sessions in a TIBCO
ActiveMatrix BusinessWorks JMS receiver, which would create one consumer per
JMS session. You can also combine this with MDispatcher multi-threading, which
would dispatch when a consumer receives on one JMS session in each
MDispatcher thread.

Specifying the Client ID for a JMS Session

If multiple consumers are connected to a JMS Session at the same time, you may
need to identify which connection is yours. TIBCO Adapter SDK provides two
approaches to specify a unique client identifier for a JMS session.

• Set the field named Client ID when configuring an EMS connection in
TIBCO Designer.

• If you have created a JMS session in TIBCO Designer, you need to add a
property named tibco.jmsclientid.session_name in the .tra file.

Filtering Messages by JMS Selectors

TIBCO Adapter SDK allows adapters to access JMS selectors in a JMS message. By
doing so, adapters can filter JMS messages.

When creating an EMS Subscription Service, Adapter SDK automatically uses the
value set for the field MString messageSelector in the class
MJmsEndpointSpec.
 TIBCO Adapter SDK Programmer’s Guide

242 | Appendix A SDK Programming Guidelines
In TIBCO Designer, there is a property messageSelector in the EMS endpoint
configuration. Adapter SDK will use the value if the property is set.
TIBCO Adapter SDK Programmer’s Guide

| 243
Appendix B TIBCO Adapter Standards

This appendix outlines the requirements that are necessary for a custom adapter
to meet before it is considered a standard adapter in the TIBCO ActiveEnterprise,
with a special focus on integration with TIBCO ActiveMatrix BusinessWorks.

Topics

• TIBCO Rendezvous License Ticket, page 244

• TIBCO Runtime Agent Considerations, page 245

• Adapter Configuration Requirements, page 246

• Adapter Services Requirements, page 247

• Integration Requirements, page 249
 TIBCO Adapter SDK Programmer’s Guide

244 | Appendix B TIBCO Adapter Standards
TIBCO Rendezvous License Ticket

An adapter must obtain an appropriate license for the messaging system being
used (TIBCO Rendezvous or TIBCO Enterprise for JMS).

For TIBCO Rendezvous, it is possible to use an embedded license ticket, which
can be built into the adapter’s code using
MappProperties.setRvEmbeddedTicket() and allows the adapter to run out of
the box without a separate license ticket.

Contact the TIBCO representative for information on license tickets.
TIBCO Adapter SDK Programmer’s Guide

TIBCO Runtime Agent Considerations | 245
TIBCO Runtime Agent Considerations

TIBCO Runtime Agent provides shared libraries from TIBCO Adapter SDK and
TIBCO Rendezvous, which are required to run the adapter. Adapters should be
designed with a TIBCO Runtime Agent installation in mind because the end-user
will not have the SDK. TIBCO Runtime Agent includes (but is not limited to) the
following software:

• TIBCO Runtime Agent itself, which is the monitoring agent component

• TIBCO runtime libraries

• TIBCO Adapter SDK runtime libraries

• TIBCO Wrapper

• TIBCO Runtime agent (TIBCO Hawk) libraries

• TIBCO Administrator client library

• Third-party libraries (including Java Runtime Environment (JRE))

For an exact list of the software included with TIBCO Runtime Agent and the
versions of that software, see the readme.txt in the tra/version_num folder.
 TIBCO Adapter SDK Programmer’s Guide

246 | Appendix B TIBCO Adapter Standards
Adapter Configuration Requirements

Adapters are configured using the TIBCO Designer generic palette.

Session Configuration

By default, session parameters are set to global variables (%%RvService%%,
%%RvNetwork%%, %%RvSession%%) so that they can be changed at runtime through
either global variable substitution or client variable substitution.

File Sink Configuration

By default, the log file is specified as
%%DirTrace%%/%%Deployment%%.%%InstanceId%%.log.

The adapter must specify where %%DirTrace%% is either from the command line
(using client variable substitution -system:clientVar
DirTrace=/some/log/dir) or in the Global Variable definition itself. This means
that all adapters should provide a launch script or use a wrapper launch
executable that will specify this location.

Adapter Services Configuration

By default, the subject name is defined with global variable such as
%%Domain%%.%%Env%%.adaptername.resourcename. Appropriate values must be
defined to the Domain and Env global variables.
TIBCO Adapter SDK Programmer’s Guide

Adapter Services Requirements | 247
Adapter Services Requirements

One approach to enterprise application integration is to take a "services" view of
the inter-application interfaces and operations.

Each interface is defined terms of the services one application provides to others,
and the underlying technical details of how an application provides these services
is deliberately hidden. One application needs not know anything about the other
application's underlying data and functionality.

This approach allows an organization to reuse services throughout the enterprise,
and insulates each application from underlying changes in other applications.

Publication Service and Subscription Service

Publication Service

A Publication Service generates an event in response to a target application event.

If the Publication Service sends a message in response to a target application
event, the event is communicated to the publisher through notification
mechanism of the target application. If there is no notification mechanism in the
target application, the Publication Service must be configured to be polled using a
timer.

Subscription Service

A Subscription Service converts the data it receives into an MInstance of the
appropriate class that should match the subscriber service definition. The
subscriber must then perform whatever target application task appropriate for
the service, such as inserting the data into target application.

Compatibility with TIBCO ActiveMatrix BusinessWorks

For compatibility with TIBCO ActiveMatrix BusinessWorks, the adapter needs to
provide at least the reliable message quality of service. The adapter should clearly
define the available service and support a quality of service for each service.
 TIBCO Adapter SDK Programmer’s Guide

248 | Appendix B TIBCO Adapter Standards
Request Response Service and Request Response Invocation Service

Request-Response Service

Using the Request-Response Service, an adapter acts as a Request-Response
server for ActiveEnterprise operations. Operations are defined in a schema in the
repository. Input and output parameters and exceptions must be defined for each
operation.

• A server is defined in the configuration and implemented as an AE operation
implementation class (a class that extends MOperationImpl).

• A server may be synchronous or asynchronous (reply immediately or not).
Whether a server is synchronous or asynchronous is transparent to the client.

Request-Response Invocation Service

Using the Request-Response Invocation Service, the adapter acts as a
request-response client for ActiveEnterprise operations. A client is defined in the
configuration and invokes an AE operation in a synchronous or asynchronous
manner. A client invokes an operation by constructing an MClientRequest object
and then calling synchInvoke(), asynchInvoke() or onewayInvoke().

• Synchronous invocation blocks the operation and waits for a reply. Note that
the application implementing a blocking method also requires concurrency in
other aspects of the adapter. Consider a multithreaded design for such an
adapter.

• Asynchronous invocation does not block and provides a callback function for
listening for the reply.

• One-way invocation does not expect a reply.

Compatibility with TIBCO ActiveMatrix BusinessWorks

For compatibility with TIBCO ActiveMatrix BusinessWorkss, the adapter needs to
provide at least the Operation Server Service if client/server operations are
applicable and defined.
TIBCO Adapter SDK Programmer’s Guide

Integration Requirements | 249
Integration Requirements

This section explains the requirements for an adapter to interact with
ActiveEnterprise applications and requirements specific to TIBCO ActiveMatrix
BusinessWorks.

Integration with ActiveEnterprise

Any adapter that wants to interact with ActiveEnterprise applications should
meet the requirements listed in this section.

Standard Wire Format

An adapter interacting with TIBCO ActiveMatrix BusinessWorks should use one
of the ActiveEnterprise wire formats (aeRvMsg or aeXml). If an adapter interacts
with a second adapter that uses rvMsg format, it should use rvMsg as well.

Standard Tracing and Logging

A standard adapter should have at least one fileSink with errorRole, warnRole
and infoRole defined. If a trace log file is not allowed, a network sink can be used
to send trace message for logging by a separate application.

Each component will log the significant steps of a process to the infoRole, which
should be turned ON even in normal production operation. A significant step
should include the minimum amount of information required for normal
operation monitoring. Consider the time duration of a step before defining a
significant step.

If a process is taking a fraction of a second, multiple significant steps should not
be traced in the log for each event.

Monitoring Integration with TIBCO Hawk

Adapters can implement a custom hawk microagent and methods or at least
make use of the TIBCO Adapter SDK provided class microagent.

The class and standard microagent built into the SDK provides basic management
methods. For example, the standard microagent can be used to inspect and
change the adapter's trace sink and role assignment.

The adapter must have the ability to stop using TIBCO Hawk or other
mechanism. An adapter can use the Adapter SDK provided standard method or
implement its own. Optionally, a stop message subscriber can be implemented to
gracefully shutdown the adapter.
 TIBCO Adapter SDK Programmer’s Guide

250 | Appendix B TIBCO Adapter Standards
A custom Hawk microagent and method should be implemented to allow
dynamic runtime management of the adapter when applicable. Optionally, a
custom Hawk method can be included to allow management of the adapter at
runtime, such as the ability to toggle the custom debug trace role or off.

Integration with TIBCO ActiveMatrix BusinessWorks

In addition to the requirements listed under Integration with ActiveEnterprise on
page 249, a number of requirements exist for running a custom adapter in a
TIBCO administration domain as part of a TIBCO ActiveMatrix BusinessWorks
integration project.

TIBCO Wrapper Integration

To provide a uniform adapter launch and shutdown interface, TIBCO Runtime
Agent provides a TIBCO Wrapper executable for TIBCO Adapter SDK Java based
applications and a TIBCO Wrapper library for TIBCO Adapter SDK C++ based
applications.

See Chapter 13, TIBCO Wrapper Utility for details.

Integration with TIBCO Administrator

Generic Adapter Configuration

The following fields must be set to allow TIBCO Administrator to monitor a
TIBCO ActiveMatrix BusinessWorks compliant adapter:

• Logging Tab The log file name in the palette should default to
%%DirTrace%%/%%Deployment%%.%%InstanceId%%.log

• Monitoring Tab The standard microagent name should be
COM.TIBCO.ADAPTER.global_acronym.%%Deployment%%.%%InstanceId%%

Here global_acronym stands for the name that is provided in the domain utility
while adding the adapter component to the domain. The checkbox for Has
Standard Micro Agent should be checked, that is, the value should be true.

Class MicroAgent Name should be:

COM.TIBCO.global_acronym.%%Deployment%%.%%InstanceId%%

The SDK_HOME/resourceKit/deployableAdapter directory contains a ZAP
adapter example program that was modified to run in an administration domain.
The directory also contains step-by-step instructions on how to change ZAP
adapter to make it compatible with TIBCO Administrator.
TIBCO Adapter SDK Programmer’s Guide

Integration Requirements | 251
The value for Has Class Micro Agent should be %%HawkEnabled%%.

All runtime connection parameters for the adapter services should be defined as
global variables and referred in the palette. Values should not be hard coded.

TIBCO Hawk Method Implementation

TIBCO ActiveMatrix BusinessWorks and its monitoring tool TIBCO
Administrator has a different set of requirement for TIBCO Hawk methods,
including the naming convention and code implementation that is needed for two
TIBCO Adapter SDK standard microagent methods:
getAdapterServiceInformation() and getHostInformation(). These two
microagent methods allow TIBCO Administrator to obtain adapter runtime status
(running, stopped, and so on), performance statistics, and adapter service
information.

TIBCO Domain Registration

TIBCO Runtime Agent provides a domain registration utility tool under its
tibco/tra/version_num/tools/bin directory. See the TIBCO Administration Server
Configuration Guide for more information.
 TIBCO Adapter SDK Programmer’s Guide

252 | Appendix B TIBCO Adapter Standards
TIBCO Adapter SDK Programmer’s Guide

| 253
Appendix C TIBCO Adapter SDK Hawk Microagents and
Methods

This appendix describes the available Hawk microagents and methods.

Topics

• Overview, page 254

• Available Microagents, page 255
 TIBCO Adapter SDK Programmer’s Guide

254 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
Overview

The TIBCO Adapter SDK includes two predefined TIBCO Hawk microagents:

• COM.TIBCO.ADAPTER. This microagent allows performing queries on all
running adapters, regardless of their class/application.

• COM.TIBCO.ADAPTER.zap (where zap stands for the target software package
with which the adapter is interfacing). This microagent allows performing
queries on one class of adapter.

For more information about TIBCO Hawk, see the TIBCO Hawk documentation.

The methods in this appendix are documented as if they were C++ methods. In
reality, the methods are accessible through the TIBCO Hawk Display and not
language specific.
TIBCO Adapter SDK Programmer’s Guide

Available Microagents | 255
Available Microagents

lists the methods available for the adapter.

Table 45 Microagent Methods

Method Description

COM.TIBCO.ADAPTER::activateTraceRole() Activates a mapping of a role to a sink at runtime.

COM.TIBCO.ADAPTER::deactivateTraceRole() Deactivates a mapping of a roles to sinks at runtime.

COM.TIBCO.ADAPTER::getAdapterServiceInforma
tion()

Returns information about the services implemented
by this adapter

COM.TIBCO.ADAPTER::getComponents() Returns information about the currently active
components.

COM.TIBCO.ADAPTER::getConfig() Retrieves generic configuration information.

COM.TIBCO.ADAPTER::getConfigProperties() Returns all attributes and elements for the given
configuration property

COM.TIBCO.ADAPTER::getHostInformation() Returns standard and extended application
information set by using the MHostInfo class.

COM.TIBCO.ADAPTER::getRvConfig() Returns information about TIBCO Rendezvous
sessions defined by this adapter.

COM.TIBCO.ADAPTER::getRvQueueInfo() Returns the size and priority for a TIBCO Rendezvous
event queue in a Rendezvous session.

COM.TIBCO.ADAPTER::getServerLatency() Returns MRpcServer latency.

COM.TIBCO.ADAPTER::getStatus() Retrieves basic status information about the adapter.

COM.TIBCO.ADAPTER::getTraceSinks() Returns information about sinks to which traces
currently go.

COM.TIBCO.ADAPTER::getVersion() Retrieves version information for the current
application.

COM.TIBCO.ADAPTER::preRegisterListener() Preregisters an anticipated listener.

COM.TIBCO.ADAPTER::reviewLedger() Returns information retrieved from the ledger file of
an RVCM session.

COM.TIBCO.ADAPTER::setTraceSinks() Adds a role or changes the file limit of a previously
specified sink.
 TIBCO Adapter SDK Programmer’s Guide

256 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
COM.TIBCO.ADAPTER::stopApplicationInstance() Stops the specified adapter by calling the internal
stop() method.

COM.TIBCO.ADAPTER::unRegisterListener() Unregisters a currently preregistered listener.

Table 45 Microagent Methods (Cont’d)

Method Description
TIBCO Adapter SDK Programmer’s Guide

COM.TIBCO.ADAPTER::activateTraceRole() | 257
COM.TIBCO.ADAPTER::activateTraceRole()

Purpose Activates a mapping of a role to a sink at runtime.

This replaces the now deprecated setTraceSink() Hawk method.

Parameters

Return

Name Type Description

Role Name string Name of the role to activate.

Sink Name string Name of a sink for which to activate the role.

Name Type Description

None.
 TIBCO Adapter SDK Programmer’s Guide

258 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
COM.TIBCO.ADAPTER::deactivateTraceRole()

Purpose Deactivates a mapping of a roles to sinks at runtime.

Parameters

Return

Name Type Description

Role Name string Name of the role to activate.

Sink Name string Name of a sink for which to activate the role.

Name Type Description

None.
TIBCO Adapter SDK Programmer’s Guide

COM.TIBCO.ADAPTER::getAdapterServiceInformation() | 259
COM.TIBCO.ADAPTER::getAdapterServiceInformation()

Purpose Returns information about the services implemented by the adapter.

The information is a summary of available adapter services. This information is
set explicitly by the adapter writer using the MAdapterServiceInformation
class.

Parameters

Return

Name Type Description

 Service Name string Name of the service from which to get information.
Default is ALL.

Name Type Description

Line Integer Sequential row number.

Service Name string Name of the Service.

Endpoint Name string Name of the endpoint used for this service.

Type string Type of the endpoint, for example, Publisher,
Subscriber.

Quality of Service string QoS for the endpoint, for example, RV, RVCM.

Subject string Subject defined for this endpoint.

Class string Class associated with the subject.

Number of
Messages

string Number of messages processed for this endpoint.
 TIBCO Adapter SDK Programmer’s Guide

260 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
COM.TIBCO.ADAPTER::getComponents()

Purpose Returns information about the currently active components such as publishers,
subscribers, or timers.

Parameters

Returns

Name Type Description

Component Name string Name of the publisher or subscriber. Default is all.

Component Type string Any of Publisher, Subscriber, Timer, Signal, or
IO Descriptor. Default value is ALL.

Returns Type Description

Instance ID string Name of this adapter instance.

Adapter Name string Name of the adapter.

Component Name string Name of the TIBCO Hawk component.

Component Type string The name of the TIBCO Adapter SDK class for this
TIBCO Hawk component, such as MPublisher,
MSubscriber, or MIODescriptorSource.

Session Name string Name of the TIBCO Rendezvous session.

Description string Information about this TIBCO Hawk component.
For example, time interval, signal type, validating
publisher (or subscriber) etc.
TIBCO Adapter SDK Programmer’s Guide

COM.TIBCO.ADAPTER::getConfig() | 261
COM.TIBCO.ADAPTER::getConfig()

Purpose Retrieves generic configuration information. More specific configuration
information is accessed through separate methods.

Parameters None.

Return Name Type Description

Instance ID string Instance ID of this application.

Adapter Name string Name of the application.

Repository
Connection

string URL of the repository used for the configuration of
this adapter instance.

Configuration URL string Location of the adapter instance description object
inside the repository used for configuration.

Command string Command line arguments used to start the process.
 TIBCO Adapter SDK Programmer’s Guide

262 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
COM.TIBCO.ADAPTER::getConfigProperties()

Purpose Returns all attributes and elements for the given configuration property.

Parameters

Return

Name Type Description

Property string Name of the property for which elements (tags) and
attributes are desired. For example,
"pubsub/timer/interval".

Name Type Description

Element Name string Repository directory for the property.

Attribute Name string Name of the repository object attribute (for example,
interval).

Attribute Value string Value of the repository object attributes (for example,
2000).

Line integer Line number in which this property is defined in the
configuration file.
TIBCO Adapter SDK Programmer’s Guide

COM.TIBCO.ADAPTER::getHostInformation() | 263
COM.TIBCO.ADAPTER::getHostInformation()

Purpose Returns standard and extended application information set by using the
MHostInfo class.

Returns Name Type Description

Name string Name of the property.

Value string Value of the property.
 TIBCO Adapter SDK Programmer’s Guide

264 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
COM.TIBCO.ADAPTER::getRvConfig()

Purpose Returns information about TIBCO Rendezvous sessions defined by the adapter.

Returns information about all currently defined sessions if no sessionName is
provided.

Parameters

Return

Name Type Description

Session Name string Name of the TIBCO Rendezvous session for which
configuration is required (default is all).

Name Type Description

 Instance ID string The instance ID of this application.

Adapter Name string Name of the application.

Session Name string Name of the TIBCO Rendezvous session.

Service string Service group for this session.

Daemon string TIBCO Rendezvous daemon for this session.

Network string Network used by this session.

Session Type string The type of session; one of rv, rvcm, or rvcmq.

Certified Name string Name of this certified session.

Ledger File string Ledger file for RVCM session. Return the empty
string for RV sessions that are not RVCM sessions.

CM Timeout string Timeout for this RVCM session. Return the empty
string for RV sessions that are not RVCM sessions.
TIBCO Adapter SDK Programmer’s Guide

COM.TIBCO.ADAPTER::getRvQueueInfo() | 265
COM.TIBCO.ADAPTER::getRvQueueInfo()

Purpose Returns the size and priority for a TIBCO Rendezvous event queue in a
Rendezvous session.

Parameters

Return

Name Type Description

Session Name string Name of the TIBCO Rendezvous session for which
information is required (default is all).

Name Type Description

Session Name string Name of the TIBCO Rendezvous session.

Session Type string The type of session; one of rv, rvcm, or rvcmq.

TibrvQueue Size integer Event count in the Rendezvous session’s event queue.

TibrvQueue
Priority

integer Priority of the Rendezvous session’s event queue.
 TIBCO Adapter SDK Programmer’s Guide

266 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
COM.TIBCO.ADAPTER::getServerLatency()

Purpose Returns MRpcServer latency.

Parameters

Return

Name Type Description

Server Name string Name of the server (default is all).

Name Type Description

Server Name string Activity name.

Number of
Requests

string Number of requests for this measurement.

Average Seconds
per Request

string Average seconds per request.

Max Seconds per
Request

string Maximum seconds per request.
TIBCO Adapter SDK Programmer’s Guide

COM.TIBCO.ADAPTER::getStatus() | 267
COM.TIBCO.ADAPTER::getStatus()

Purpose Retrieves basic status information about the adapter. This information is fairly
limited; for more information, additional methods are provided
(COM.TIBCO.ADAPTER::getConfig() on page 261,
COM.TIBCO.ADAPTER::getRvConfig(), etc.).

Parameters None.

Return Name Type Description

Instance ID string Instance ID for this adapter instance.

Adapter Name string Name of the application.

Uptime string Number of seconds since startup.

Messages Received integer Number of TIBCO Rendezvous messages received.

Messages Sent integer Number of TIBCO Rendezvous messages
published.

New Errors integer Number of errors since the last call to this method.

Total Errors integer Total number of errors since startup.

Process ID integer Process ID of the application.

Host string Name of host machine on which this application is
running.
 TIBCO Adapter SDK Programmer’s Guide

268 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
COM.TIBCO.ADAPTER::getTraceSinks()

Purpose Returns information about sinks to which traces currently go.

Parameters

Return

Name Type Description

Sink Name string Name of the sink for which you need information. If no
name is specified, information about all sinks is
returned. Default is all.

Role Name string Name of the role for which you need information for
the specified sink or sinks. Default is all.

Name Type Description

Line integer Row number in which this property is defined in the
configuration file.

Instance ID string Name of this adapter instance as a string.

Adapter Name string Name of the application for this sink.

Sink Name string Name of the sink.

Sink Type string Type of this sink. One of fileSink, rvSink, hawkSink,
stderrSink.

Description string The sink description, for example, filename=<file>.

Roles string Roles this sink supports, as a string. For example
"warning, error, debug".
TIBCO Adapter SDK Programmer’s Guide

COM.TIBCO.ADAPTER::getVersion() | 269
COM.TIBCO.ADAPTER::getVersion()

Purpose Retrieves version information for the current application. Two lines may be
returned, one for the SDK, the other for the application.

Parameters None

Return Name Type Description

Instance ID string The instance ID as a string, for example, "finance".

Adapter Name string Name of the application as a string (for example, "r3").

Version string Version number as a string (for example, "2.0").
 TIBCO Adapter SDK Programmer’s Guide

270 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
COM.TIBCO.ADAPTER::preRegisterListener()

Purpose Preregisters an anticipated listener.

Some sending applications can anticipate requests for certified delivery even
before the listening applications start running. In such situations, the sender can
preregister listeners, so TIBCO Rendezvous software begins storing outbound
messages in the sender’s ledger. If the listening correspondent requires old
messages, it receives the backlogged messages when it requests certified deliver.

Parameters

Return This method returns true if the listener was preregistered successfully, false
otherwise.

Name Type Description

Listener Session
Name

string Name of the listener to preregister.

Publisher Name string Name of the component for which the listener
should be preregistered.
TIBCO Adapter SDK Programmer’s Guide

COM.TIBCO.ADAPTER::reviewLedger() | 271
COM.TIBCO.ADAPTER::reviewLedger()

Purpose Returns information retrieved from the ledger file of an RVCM session.

Parameters

Return

Name Type Description

Session Name string Name of the TIBCO Rendezvous session for which
ledger information is desired (default is all).

Subject string Name of the subject for which ledger information is
desired.

Name Type Description

Session Name string Name of the RVCM session to which this information
application.

Subject string Subject for this session.

Last Sent Message integer Sequence number of the most recently sent message
with this subject name.

Total Messages string Total number of pending messages with this subject
name.

Total Size integer Total storage (in bytes) occupied by all pending
messages with this subject name.

If the ledger contains ten messages with this subject
name, then this field sums the storage space over all
of them.

Listener Session
Name

string Within each listener submessage, the Listener Name
field contains the name of the delivery-tracking
listener.

Last Confirmed string Within each listener submessage, the Last Confirmed
field contains the sequence number of the last
message for which this listener confirmed delivery.

Unacknowledged
Messages

integer Number of messages pending for this listener.

The value is computed by subtracting the last sent
sequence number from the last acknowledged
sequence number.

Line integer Row number in ledger file.
 TIBCO Adapter SDK Programmer’s Guide

272 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
COM.TIBCO.ADAPTER::setTraceSinks()

Purpose Adds a role or changes the file limit of a previously specified sink.

Parameters

Return Return OK if successful or an error if not successful.

Name Type Description

Sink Name string Name of the sink for which you want to add a role or
change the file limit.

Role Name string Name of the role you want to add to this sink
(warning, error, debug, or user defined). Default is all.

File Size integer Maximum file size for this sink in bytes.

This parameter is ignored if the sink specified by
sinkName is not a file sink.
TIBCO Adapter SDK Programmer’s Guide

COM.TIBCO.ADAPTER::stopApplicationInstance() | 273
COM.TIBCO.ADAPTER::stopApplicationInstance()

Purpose Stops the specified adapter by calling the internal stop() method.

Return This method returns OK if successful or an error if not successful.
 TIBCO Adapter SDK Programmer’s Guide

274 | Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
COM.TIBCO.ADAPTER::unRegisterListener()

Purpose Unregisters a currently preregistered listener.

Parameters

Return This method returns true if the listener was unregistered successfully, false
otherwise.

Name Type Description

Listener Session
Name

string Name of the listener to unregister.

Publisher Name string Name of the component for which the listener
should be preregistered.
TIBCO Adapter SDK Programmer’s Guide

| 275
Index

Symbols

_describe method 155
_heartbeat method 155
_inbox 151
_local 151
_onUnsolicitedMsg() method 75
_rv 151

Numerics

1-byte signed int 111
1-byte unsigned int 111
2-byte signed int 108, 111
2-byte unsigned int 112
4-byte signed int 111
4-byte unsigned int 112
8-byte signed int 111
8-byte unsigned int 112

A

accessing configuration information 27
ActiveEnterprise integration requirements 253
adapter configuration requirements

designer generic palette 246
adapter instance description object

specifying on command line 23
adapter program elements 43
adapter services 246

requirements 247
adapters

multithreading 125, 127
addApplicationInfo() method 81
adding an anticipated listener 134

Advanced Logging check box 79
advisories, TIBCO Rendezvous

advisories 138
advisory

listening for message 138
message format 140
predefined 141
predefined (SDK) 141

aeRvMsg 136
aeRvMsg wire format 56
aeXml wire format 56
agents 154
AIX development 10
alerts 154
AMI 155
ami, defined 156
anticipated listener 134
any type 108, 111
appinfo property 26, 40
application management interface

defined 156
application objects 19
applicationId field 77, 77
applicationInfo field 78
appname property 26, 40
appversion property 26, 40
argument (command-line)

clientvar 34
association list 98
asynchronous operations 115
asynchronous server 119

B

binary type 109, 112
boolean type 108, 111
byte type 108, 111
 TIBCO Adapter SDK Programmer’s Guide

276 | Index
C

cast operations 238
categories

standard 78
categories (standard for trace message) 78
category field 77, 78
CCFLAGS 12, 12
changes from the previous release of TIBCO Adapter

SDK Programmer’s Guide xvi
char type 109, 112
Client ID 241
clientvar command-line argument 34
clientvar property 26, 34, 36, 40
command line argument

configurl 27
repourl 27

command-line argument
properties file 39

components
retrieving through TIBCO Hawk 260

configuration class 32
configuration information 19

accessing 27
and TIBCO Hawk 157
retrieving through TIBCO Hawk 261
setting with MAppProperties 26

configuration information (RV)
retrieving through TIBCO Hawk 264

configuration properties
retrieving through TIBCO Hawk 262

configurl property 26, 27, 40
confirmation

out of sequence 224
selective 224

connection management considerations 230
connection pool 230
control flow 45
current date 108
current date/time 108
current time 108
custom events 62
customer support xxi

D

data
MInstance 68
MTree 68

data producers
in publish/subscribe model 51
in request/reply model 52

data security 232
date

current 108
date type 108, 111
date/time

current 108
datetime type 108, 111
debug role 74
default date/time 108
default tracing 79
delayed acknowledgement of certified and transac-

tional messages 86
Deployment global variable 36
_describe method 155
destination

request/reply 52
DirLedger global variable 36
DirTrace global variable 36
distinguished subject names 151
Domain global variable 37
downcast() method 238

E

endpoints
and TIBCO Rendezvous sessions 59

enumerator classes 239
ENV_NAME xviii
error codes 74
error messages

tracking 81
error role 74
TIBCO Adapter SDK Programmer’s Guide

Index | 277
errors
genAeErrors utility 72, 76
genaeerrors utility 72
sample XML element 76

event listeners 61
event source 56
event sources 60

custom event sources 62
events 60

custom events 62
flow of information 61

examples
hello world adapter 163
metadata 101
properties file 41
tracking 81
zapadapter 174

exception handling 71, 83
exceptions

C++ API 83
Java API 83
MOperationException 83

F

File Limit attribute 79
file sink configuration 246
FileCount attribute 79
fixed type 108, 111
format

advisory 140

G

genAeErrors utility 72, 76
Generic Adapter Configuration 250
getComponents Hawk method 260
getConfig Hawk method 261
getConfigproperties Hawk method 262
getRvconfig Hawk method 264
getRvQueueInfo Hawk method 265

getServerLatency Hawk method 266
getStatus Hawk method 267
getTracesinks Hawk method 268
getVersion Hawk method 269
global variables 19, 34

MESSAGEFORMAT 68
precedence 35
predefined 36
TIBCO Designer 35

H

Hawk methods
getComponents 260
getConfig 261
getConfigproperties 262
getRvconfig 264
getRvQueueInfo 265
getServerLatency 266
getstatus 267
getTracesinks 268
getVersion 269
preregisterListener 270
reviewLedger 271
setTraceSinks 272
stopApplicationInstance 273
unregisterlistener 274

HawkEnabled global variable 37
_heartbeat method 155
hello world adapter 163

I

i1 type 108, 111
i2 type 108, 111
i4 type 108, 111
i8 type 108, 111
implementing operations 114
info role 74
initializeMessages() static method 73, 73
in-process invocation 115
 TIBCO Adapter SDK Programmer’s Guide

278 | Index
instanceid
for process 23
on command line 23

instanceId property 26, 40
interval 98, 108, 111
introspection 161
invocation

in-process 115
one-way 116
optimized 115
remote 115

J

JMS 56
JMS selector 241
JMS session

Client ID 241
JmsProviderUrl global variable 37

L

lazy fetch 103
ledger file

retrieving information through TIBCO Hawk 271
ledger file monitoring 157
ledger file preregistration 157
Linux development 11
Linux2.4 options 12, 12
list templated class 238
listener

anticipated 134
listeners

preregistering 134
preregistering through TIBCO Hawk 270
unregistering through TIBCO Hawk 274

listening
by subject name 148

loading new MApp components 143
logging tab 250

M

map templated class 238
MApp

and configuration information 31
and microagents 157
constructor 49
loading new components 143
overview 45

MAPP_DEBUG_ROLE 74
MAPP_ERROR_ROLE 74
mApp_info_role 74
MAPP_WARNING_ROLE 74
MAppProperties 26, 49

multithreading 127
MAppProperties.set() method 27
MAssoclist 98
MBinary 98
MBoolean 239
MChar 98
MClassRegistry 31

multithreading 125
MConfigurationUtilities 32
MDataEvent 61
MDate 98
MDateTime 98
message code field 77, 78
message field 77, 78
message format 57
MESSAGEFORMAT global variable 68
messageFormat property 26, 40
messages

categories 78
fields 77
standard categories 78
tracking 81

messages filtering 241
metadata 89

example 101
how to use 101

metadata description class 31
metadata files

RPC elements 120
metadata information 19
methods in TIBCO Hawk 159
TIBCO Adapter SDK Programmer’s Guide

Index | 279
MException 83
MExceptionEvent 61
MExceptionEvent, when signalled 136
MFalse 239
MFileSink 75
MFixed 98
MHawkMethod 159, 160
MHawkSession 159
MHawkSink 75
microagents

and MApp 157
defined 156

MInstance 98
implementation 92
serialization 99

MInstance data
sending 68

MInterval 98
MJmsSession class 58
MMap 238
MMessageBundle class 73
MModeledClassCescription 96
monitoring integration with TIBCO

Administrator 250
monitoring integration with TIBCO Hawk 249
Monitoring tab 250
MOperationException 83
MOperationParameterDescription 96
MPlugin class 143
MProperties 32
MPropertiesEnumerator 32
MPropertiesRegistry 32
MPropertyAttribute 32
MPropertyElement 32
MPropertyText 32
MPublisher

appropriate sessions 59
preregisterListener() 134
send() 52
sendWithReply() 52
setReplyDestination() 52
unRegisterListener() 134

MReal 98
MRvSession class 58
MrvSink 75

MSequence 98
MSequenceClassDescription 96
MStdioSink 75
MString 238
MStringData 98
MSubscriber 52, 59
msubscriber

appropriate sessions 59
MTrace 76

multithreading 125
MTrace.DEBUG 74
MTrace.ERROR 74
MTrace.INFO 74
MTrace.WARN 74
MTrackinginfo class 81
MTree data

sending 68
MTrue 239
multiple sessions 59
multithreaded TIBCO Hawk use 125
multithreading 125, 125, 127
MUnion 98
MWstring 238

O

obfuscation 39
onEvent() method 61
onevent() method 61
one-way invocation 116
oneway operation invocation 116
onInitialization() method 49
onTermination() method 49
operations 114

asynchronous 115
defining elements 120
implementing 116
implementing asynchronous server 119
implementing synchronous servers 119
oneway invocation 116
reply listener function 118
supported protocols 115

optimized invocation 115
 TIBCO Adapter SDK Programmer’s Guide

280 | Index
out of sequence confirmation 224

P

password on command line 24
password property 26, 40
plugin on command line 23
plugins 143
precedence 35, 39
predefined global variables 36
predefined methods in TIBCO Hawk 156, 157
predefined status codes 74
preregistering listener 134
preregisterListener Hawk method 270
preregistration

and setSubjectName() 134
project repository

location 27
properties

MAppProperties 26
properties file

example 41
format 39
keys 26
nested 39
setting inside program 41

properties files 39
property keys 26
protocol mismatch 69
publication and subscription services 247
publish/subscribe model 51
publishers 51

anticipated listener 134
preregistering listeners 134
reply destination 52
RV discovery 157
RVCM discovery 157

R

r4 type 108, 112

r8 type 108, 112
real number 108, 112
receiving data 69
remote invocation 115
RemoteRvDaemon global variable 37
reply destination 52, 52
reply listener function 118
repository instance

location 27
repourl 27
repourl on command line 23
repourl property 26, 27, 40
request response and request response invocation

services 248
request/reply interactions 52
reviewLedger Hawk method 271
role field 77, 78
roles 77, 78

adding through TIBCO Hawk 272
debug 74
error role 74
info 74
warning 74

RV publisher discovery 157
RV subscriber discovery 157
RVA sessions 59
RvaHost global variable 38
RvaPort global variable 38
RVCM

preregistered listener 134
required session 59

RVCM ledger file monitoring 157
RVCM ledger file preregistraton 157
RVCM publisher discovery 157
RVCM subscriber discovery 157
RVCMQ

required session 59
RvDaemon global variable 37
rvMsg 136
rvMsg wire format 56

and tracking 81
RvNetwork global variable 37
rvsend program 136
RvService global variable 38
TIBCO Adapter SDK Programmer’s Guide

Index | 281
S

schema data 90
SDK operations 114
SDK properties 40
SDK_HOME xviii
security considerations 231
see also mbinary 109
selective confirmation 224
send() method 52
sending data 68
sending MInstance data 68
sending MTree data 68
sendWithReply() method 52
sequences 98
serialization of MInstance 99
serializing MInstance 68
session configuration 246
sessions

and endpoints 59
MHawkSession 159
multiple sessions 59
RVA sessions 59
to use with publisher 59
to use with subscriber 59

setSubjectnname()
and preregistration 134

setting configuration information 49
setTraceSinks Hawk method 272
signed integer type 108, 111
sinks

autocreation 31
retrieving through TIBCO Hawk 268

Solaris development 5, 6
SSL 13
standard wire format 249
startup information 19
status codes 74
stl 238
stopApplicationInstance Hawk method 273
stopping applications 273
string templated class 238
string type 111
strings

type 108

subject names
distinguished 151
reserved 149
special characters in 149
syntax 148
wildcards in 149, 149

subject-based addressing 148
subscribers 51

and reply subject 52
RV discovery 157
RVCM discovery 157

substitution 34
substitution variables

precedence 35
support, contacting xxi
synchronous operations 115
synchronous server 119
–system

configurl command-line argument 24, 25
instanceid command-line argument 23, 23
password command-line argument 24
plugin command-line argument 23
repourl command-line argument 23

-system:propfile 39

T

technical support xxi
templated utility classes 238
thread local storage 211
threads 127
TIBCO Administrator 250
TIBCO BusinessWorks

integration requirements 250
TIBCO Designer 49

configuring tracing 75, 78
File Count 80
File Limit 80
sessions 58
specifying variables 35
tracing 75, 78

TIBCO Enterprise for JMS 56
 TIBCO Adapter SDK Programmer’s Guide

282 | Index
TIBCO Hawk 249
_describe method 155
_heartbeat method 155
AMI 155
and TIBCO adapter applications 155
background information 154
configuration information 157
definition of ami 156
enterprise monitor components 154
MHawkMethod 159
MHawkSession 159
multithreading 125
predefined methods 156, 157
RVCM ledger file monitoring 157
tracing profile modification 157

TIBCO Hawk method implementation 251
TIBCO Hawk methods

creating 161
TIBCO Hawk methods See Hawk methods
TIBCO MessageBroker integration 143
TIBCO Rendezvous programming guidelines 233
TIBCO Rendezvous session 59
TIBCO repository server access 231
TIBCO Wrapper properties 40
TIBCO Wrapper properties file 39
TIBCO_HOME xviii
tibco.appinfo property 26, 40
tibco.appname property 26, 40
tibco.appversion property 26, 40
tibco.clientvar. property 26, 34, 40
tibco.configurl property 26, 27, 40
tibco.instanceId property 26, 40
tibco.messageFormat property 26, 40
tibco.password property 26, 40
tibco.repourl property 26, 27, 40
tibco.username property 26, 40
TIBHawkDaemon global variable 38
TIBHawkNetwork global variable 38
TIBHawkService global variable 38
tibrvmsg_msg 136
time

current 108
time interval 98, 111
time intervals 108
time type 108, 111

timers
and session 59

timestamp field 77, 77
TLS 211
top-level control flow

C++ 46
trace message

timestamp field 77, 77
trace message fields 77
trace messages

applicationId field 77, 77
applicationInfo field 78
category field 77, 78
message code field 77, 78
message field 77, 78
role field 77, 78
standard categories 78
tracking information field 77
trackingid field 78

trace messages See Also messages 78
traces

example 72
File Limit attribute 79
FileCount attribute 79
retrieving through TIBCO Hawk 268
rollover behavior 79

tracing 71
default 79
genAeErrors utility 72, 76
in multithreaded application 125
profile modification in TIBCO Hawk 157

tracking 81
example 81

tracking across ActiveEnterprise 81
tracking information field 77
trackingid field 78
transport protocol 51
transport session 31
TIBCO Adapter SDK Programmer’s Guide

Index | 283
types
1-byte signed int 111
1-byte unsigned int 111
2-byte signed int 111
2-byte unsigned int 112
4-byte unsigned int 112
8-byte unsigned int 112
any 111
binary 112
boolean 111
char 112
date 111
datetime 111
fixed 111
i8 111
interval 111
r1 111
r4 112
r8 112
string 111
time 111
ui1 111

U

ui1 108, 111
ui2 type 108, 112
ui4 type 108, 112
ui8 type 108, 112
underscore character 151
unicode 130
union data 98
union member attribute 98
unregisterlistener Hawk method 274
unsigned integer types 111
user-defined TIBCO Hawk methods 161
username property 26, 40
using metadata 101
utilities

genaeerrors 72

V

variable substitution 34
variables 34

precedence 35
TIBCO Designer 35

version
retrieving through TIBCO Hawk 269

W

warning role 74
wildcard

characters 149
windows service wrapper integration 250
wire format 136
wire formats

aeRvMsg 56
aeXml 56
rvMsg 56

wireformats
aeRvMsg 136
rvMsg 136

wstring templated class 238

X

XML example (message) 76

Z

zapadapter example program 174
 TIBCO Adapter SDK Programmer’s Guide

	TIBCO® Adapter SDK
	Contents
	Figures
	Tables
	Preface
	Changes from the Previous Release of this Guide
	Related Documentation
	TIBCO Adapter SDK Documentation
	Other TIBCO Product Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Programming Requirements and TIBCO Adapter SDK Classes
	Requirements on Microsoft Windows
	Requirements on UNIX
	Environment Variables for UNIX Systems
	Compiling Requirements for UNIX Systems

	Java SDK Requirements
	TIBCO Adapter SDK Classes

	Chapter 2 Adapter Configuration
	Overview
	Types of Configuration Information
	Configuring and Exporting the Project Repository
	Configuring an Adapter
	Exporting Project Repositories

	Specifying Configuration Information
	Command-Line Arguments
	Property Key
	MAppProperties

	Accessing Configuration Information
	Location of Configuration Information
	Server-based Repository Locator String
	Local Repository Locator String
	How Adapters Access Configuration Information

	Variable Substitution
	Variable Substitution Mechanism
	Specifying Variables
	Predefined Global Variables

	Properties Files
	Format of Properties File
	Recognized Property Keys
	Two Types of Properties
	Properties File Examples

	Chapter 3 Adapter Program Elements
	Overview
	MApp Application Manager
	Top-Level Control Flow
	Control Flow in Java
	Creating an MApp Instance

	Transport Protocol
	Publish/Subscribe Protocol
	Request/Reply Interactions

	Endpoints
	Creating Endpoints
	Changing Endpoint Quality of Service

	Transports, Wire Formats, and Message Formats
	Sessions
	Event Model
	Event Management Classes
	TIBCO Adapter Flow of Event Information
	Extending Adapter Event Classes

	Multiple Adapter Instances

	Chapter 4 Sending and Receiving Data
	Adapter Application Data
	Application Data Overview
	Application Data Message Format

	How Adapters Send Application Data
	How Adapters Receive Data

	Chapter 5 Tracing, Tracking, and Exception Handling
	Tracing
	Using Tracing Facilities
	Available Tracing Roles
	Multiple Traces and Sinks
	MTrace and MSink
	Sample XML Message Element
	Trace Message Format
	Configuring Tracing Using TIBCO Designer
	File Sink Management

	Tracking
	MTrackingInfo
	Tracking Example

	Exception Handling
	Exceptions in the C++ API
	Exceptions in the Java API
	Using Exceptions
	Designing an Exception-Handling Mechanism
	Exception Handling in Delayed Acknowledgement of Certified Messages

	Chapter 6 Metadata
	Understanding TIBCO Adapter Metadata Management
	Uses for Metadata
	Metadata Definition
	MInstance Implementation

	Defining Metadata Classes
	Using TIBCO Designer
	Working With the AEXML Repository File

	Creating Classes Based on Metadata Objects
	Metadata Description Classes
	Metadata Hierarchy Example

	Creating Runtime Data
	Metadata Encapsulation Classes
	Metadata Attribute Encapsulation Classes
	Metadata Example

	Metadata Class Names
	Guidelines for Metadata Use
	Adapter Metadata Look-up
	How the SDK Performs Metadata Look-up
	Restrictions on Metadata
	Working with XML and XSD

	AE Schema Types and SDK Classes
	SDK Date and Time Classes
	Mapping AESchema Types to C++ MData Subclasses
	Mapping AESchema Types to Java Classes

	Chapter 7 TIBCO ActiveEnterprise Operation Model
	Overview
	ActiveEnterprise Operations
	Synchronous and Asynchronous
	Supported Invocation Protocols
	Implementing ActiveEnterprise Operations

	Implementing ActiveEnterprise Operations in C++
	Synchronous Client Control Flow
	Asynchronous Client Control Flow
	Synchronous Server Control Flow
	Asynchronous Server Control Flow

	Implementing ActiveEnterprise Operations in Java
	Defining ActiveEnterprise Operation Elements
	Defining Endpoints and Protocols
	Defining and Invoking the Methods

	Chapter 8 Advanced Features
	Multithreaded Adapters
	Deciding on Multithreaded Implementation
	Multithreading and MDispatcher
	Multithreading Scenarios
	Writing a Multithreaded Adapter with the C++ SDK
	Writing a Multithreaded Adapter with the Java SDK

	Adapter SDK Unicode Support
	Prespecifying Encoding
	SDK-Internal C++ Unicode Type Conversion
	Specifying the Wire Format Encoding
	How TIBCO Administrator Determines Encoding

	Preregistering a Subscription Service
	Setting Data to NULL Explicitly
	TIBCO Adapter Wire Formats
	Wire Formats and Message Formats
	Control Information

	Advisory Handling
	Receiving Advisory Messages
	Advisory Listeners
	Advisory Publisher
	Advisory Subject Format
	Advisory Message Format
	User-Defined Advisories

	Using the MPlugin Class
	Defining a Plug-in
	Configuring a Plug-in
	Running an Adapter with a Plug-in

	Transformation Plug-in
	Usage Scenarios
	Implementation
	Example

	Subject Names
	Subject Name Syntax
	Using Wildcards to Receive Related Subjects
	Distinguished Subject Names

	Chapter 9 TIBCO Adapters and TIBCO Hawk
	TIBCO Adapter SDK and TIBCO Hawk
	TIBCO Hawk Overview
	TIBCO Hawk and Adapter Applications

	Predefined TIBCO Hawk Microagent Methods
	Terminology
	Microagents Provided by the SDK

	Configuring the TIBCO Hawk Microagents
	TIBCO Adapter SDK API to TIBCO Hawk
	TIBCO Hawk Integration Classes

	Creating User-Defined TIBCO Hawk Methods
	Creating TIBCO Hawk Methods in C++
	Creating TIBCO Hawk Methods in Java

	Chapter 10 Getting Started: Hello World Adapter
	Prerequisites
	Preparing the Adapter Configuration
	The Adapter Program
	Hello World Code in C++
	Hello World Code in Java

	Chapter 11 Custom Adapter Example: zapadapter
	Overview
	Analysis and Design
	Problem Statement
	Elements of Implementation
	Components of ZapAdapter Sample Application

	Specifying Configuration Information
	Implementing the Adapter Code

	Chapter 12 Creating a Deployable Custom Adapter
	Overview
	Setting Up the Example
	Modifying Code for TIBCO Administrator Compliance
	Adding MHostInfo
	Adding MAdapterServiceInfo
	Implementing Custom Advisory Listener
	Implementing Standard ActiveEnterprise Tracing with MMessageBundle

	Configuring the Adapter
	Adding the Adapter to the Domain
	Creating an Alias Library in TIBCO Designer
	Creating EAR File in TIBCO Designer
	Adding the ZapAdapter to the TIBCO Administrator Domain
	Creating the ZapAdapter Application in the TIBCO Administrator Domain
	Deploying, Starting, and Stopping the Adapter

	Chapter 13 TIBCO Wrapper Utility
	Overview
	Running an Adapter as a Microsoft Windows Service
	Java Adapters
	C++ Adapters

	Using the TIBCO Wrapper Under UNIX
	Source Code Changes
	Java Only
	C++ Only
	Wrapper Sample Code

	Wrapper Properties
	Wrapper Settable Properties
	Properties Files

	Command Line Options

	Appendix A SDK Programming Guidelines
	General SDK Best Practices
	MBusinessDocument and MAdvisoryDocument
	Using Distributed Processes for Load Balancing
	Connection Management
	Security Considerations
	TIBCO Administrator Administration Server Access
	Password Obfuscation
	Data Security

	TIBCO Rendezvous Programming Guidelines
	C++ Utility Classes and Methods
	MList, MMap, MString, and MWString
	The downCast() Method
	SDK Enumerators
	SDK Types

	JMS in Adapter SDK
	JMS Implementation
	JMS Features

	Appendix B TIBCO Adapter Standards
	TIBCO Rendezvous License Ticket
	TIBCO Runtime Agent Considerations
	Adapter Configuration Requirements
	Adapter Services Requirements
	Publication Service and Subscription Service
	Request Response Service and Request Response Invocation Service

	Integration Requirements
	Integration with ActiveEnterprise
	Integration with TIBCO ActiveMatrix BusinessWorks
	Integration with TIBCO Administrator

	Appendix C TIBCO Adapter SDK Hawk Microagents and Methods
	Overview
	Available Microagents
	COM.TIBCO.ADAPTER::activateTraceRole()
	COM.TIBCO.ADAPTER::deactivateTraceRole()
	COM.TIBCO.ADAPTER::getAdapterServiceInformation()
	COM.TIBCO.ADAPTER::getComponents()
	COM.TIBCO.ADAPTER::getConfig()
	COM.TIBCO.ADAPTER::getConfigProperties()
	COM.TIBCO.ADAPTER::getHostInformation()
	COM.TIBCO.ADAPTER::getRvConfig()
	COM.TIBCO.ADAPTER::getRvQueueInfo()
	COM.TIBCO.ADAPTER::getServerLatency()
	COM.TIBCO.ADAPTER::getStatus()
	COM.TIBCO.ADAPTER::getTraceSinks()
	COM.TIBCO.ADAPTER::getVersion()
	COM.TIBCO.ADAPTER::preRegisterListener()
	COM.TIBCO.ADAPTER::reviewLedger()
	COM.TIBCO.ADAPTER::setTraceSinks()
	COM.TIBCO.ADAPTER::stopApplicationInstance()
	COM.TIBCO.ADAPTER::unRegisterListener()

	Index

