TIBCO ActiveMatrix® Service Grid

Service Performance Manager API
Reference

Software Release 3.4
April 2019

2

TIBCS

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

ANY SOFTWARE ITEM IDENTIFIED AS THIRD PARTY LIBRARY IS AVAILABLE UNDER
SEPARATE SOFTWARE LICENSE TERMS AND IS NOT PART OF A TIBCO PRODUCT. AS SUCH,
THESE SOFTWARE ITEMS ARE NOT COVERED BY THE TERMS OF YOUR AGREEMENT WITH
TIBCO, INCLUDING ANY TERMS CONCERNING SUPPORT, MAINTENANCE, WARRANTIES,
AND INDEMNITIES. DOWNLOAD AND USE OF THESE ITEMS IS SOLELY AT YOUR OWN
DISCRETION AND SUBJECT TO THE LICENSE TERMS APPLICABLE TO THEM. BY PROCEEDING
TO DOWNLOAD, INSTALL OR USE ANY OF THESE ITEMS, YOU ACKNOWLEDGE THE
FOREGOING DISTINCTIONS BETWEEN THESE ITEMS AND TIBCO PRODUCTS.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, Two-Second Advantage, TIB, Information Bus, ActiveMatrix, Business Studio,
Enterprise Message Service, Hawk, and Rendezvous are either registered trademarks or trademarks of
TIBCO Software Inc. in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. Please see the readme.txt file for
the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

https://www.tibco.com/patents

Copyright © 2010-2019. TIBCO Software Inc. All Rights Reserved.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

Contents
I UIES . oo e e 5
TIBCO Documentation and SUPPOIt SEIVICES .. v vttt ttt et iteiie e eeereesenseneensenesaesossaananns 6
08 0T 18 T 1 T o 8
TIBCO Service Performance Manager APlttt ittt it ittt iteetneeneeneeneeneeneeaneaneens 9
YT Yo [T B T T 10
RIASCNEME .. e e 11
ATHDULES @NA FACES . ..ottt e et e ettt e e 11
D710 1= S T o P 11
TIME DIMENSION ...ttt ettt et 11
DIMENSION HiBrarChyt et e et et e e e 12
Dimension HierarChy AttriDULESt e e e e e e e e ettt et et e e e e aneanenns 13
CUDE 13
MEASUIBIMENT . . .ttt ettt et ettt et et e it 14
L= (=1 10 o TN o] o3 e 15
Additional Properties in the SChema e e e et 15
Publishing the FaCtS 10 the ServVert i i i it it ittt tie s tine s ineeaaneens 18
EXECULING TN QUEBTY ¢ ittt ittt ittt ittt ttettette e eneeaeeaeeaneeneeneeneeneeneeoneaneaneanns 19
SettiNg UP the RUIES . .t i it it ittt ittt ittt eeeeneenesneeneeneenneonesnnoneonanns 21
The RUNTIME MOl AP . o vt i ittt e ittt tiiineeeeetannneneeennnnns 23
Creating CUStOM MetriC FUNCHIONS . .. i ittt ettt it iieiee i it ieeeeeeeeeeneeneeaesnesnnsossanssnennns 24
Creating a Class with @ Metric FUNCHIONttt e e e e et aens 24
Creating @ FUNCHON Cat@logttt ettt ettt et et e e ettt et et et et e e a e et e eennannanens 24
Binding the Metric Parameters to the Fact Attributes inthe Schema o i 26
Make the Metric Function Available to the Product i e 26
Creating CUSIOM ACHIONS . ..ottt ittt ettt ettt et et et et et e et e et et et e e e e et e et e et e ettt teneneeneaneans 27
Creating a Class that Extends AbstractActionHandlerContextottt eaeens 27
Creating a Class that Extends AbStractACtioNIMPl e e et 27
Creating an ACON Catalogvr ittt e e e et e e e e e e e 28
Making the Custom Action Available to the Product i et e 29
Java APl RefereNCe Pages .. oo i ittt ittt ittt it ittt aeeaetaetaetereareaeeaaeaeaaan 30

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

Figures
The Model Objects and their Relationship e e e e e e 10
Binding Function Parameters to the SChemMaooi i i 25

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly
in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than any other
documentation included with the product. To access the latest documentation, visit https://
docs.tibco.com.

Product-Specific Documentation

Documentation for TIBCO ActiveMatrix® Service Grid is available on the https://docs.tibco.com/
products/tibco-activematrix-service-grid page.

Use of the following features, installation profiles and development tools requires a TIBCO
ActiveMatrix Service Grid license:

o TIBCO ActiveMatrix Policy Director Governance, TIBCO ActiveMatrix SPM Dashboard, and TIBCO
o ActiveMatrix SPM Runtime Server profiles; and

e TIBCO ActiveMatrix Service Grid development tools for Java, Webapp and Spring components.

Customers with only a TIBCO ActiveMatrix Service Bus license are not licensed to use these features,
tools or profiles.

The following documents form the documentation set:

o TIBCO ActiveMatrix Service Grid Concepts: Read this manual before reading any other manual in the
documentation set. This manual describes terminology and concepts of the platform. The other
manuals in the documentation set assume you are familiar with the information in this manual.

o TIBCO ActiveMatrix Service Grid Development Tutorials: Read this manual for a step-by-step
introduction to the process of creating, packaging, and running composites in TIBCO Business
Studio.

o TIBCO ActiveMatrix Service Grid Composite Development: Read this manual to learn how to develop
and package composites.

e TIBCO ActiveMatrix Service Grid Java Component Development: Read this manual to learn how to
configure and implement Java components.

o TIBCO ActiveMatrix Service Grid Mediation Component Development: Read this manual to learn how to
configure and implement Mediation components.

o TIBCO ActiveMatrix Service Grid Mediation API Reference: Read this manual to learn how to develop
custom Mediation tasks.

o TIBCO ActiveMatrix Service Grid Spring Component Development: Read this manual to learn how to
configure and implement Spring components.

o TIBCO ActiveMatrix Service Grid WebApp Component Development: Read this manual to learn how to
configure and implement Web Application components.

o TIBCO ActiveMatrix Service Grid REST Binding Development: Read this manual to learn how to
configure and implement REST components.

e TIBCO ActiveMatrix Service Grid Administration Tutorials: Read this manual for a step-by-step
introduction to the process of creating and starting the runtime version of the product, starting
TIBCO ActiveMatrix servers, and deploying applications to the runtime.

o TIBCO ActiveMatrix Service Grid Administration: Read this manual to learn how to manage the
runtime and deploy and manage applications.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

https://docs.tibco.com
https://docs.tibco.com
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://docs.tibco.com/products/tibco-activematrix-service-grid

TIBCO ActiveMatrix Service Grid Hawk ActiveMatrix Plug-in: Read this manual to learn about the
Hawk plug-in and its optional configurations.

TIBCO ActiveMatrix Service Grid Policy Director Governance Custom Actions: Read this manual to learn
how you can configure and enforce policies for ActiveMatrix and external services hosted in third
party containers, using TIBCO ActiveMatrix Policy Director Governance.

TIBCO ActiveMatrix Service Grid Service Performance Manager API Reference: Read this manual to learn
how to use the SPM APIs.

TIBCO ActiveMatrix Service Grid Error Codes: Read this manual to know more about the error
messages and how you could use them to troubleshoot a problem.

TIBCO ActiveMatrix Service Grid Installation and Configuration: Read this manual to learn how to
install and configure the software.

TIBCO ActiveMatrix Service Grid Security Guidelines: Read this manual to learn more about security
guidelines and recommendations for TIBCO ActiveMatrix Service Grid.

TIBCO ActiveMatrix Service Grid Release Notes: Read this manual for a list of new and changed
features, steps for migrating from a previous release, and lists of known issues and closed issues for
the release.

How to Contact TIBCO Support

You can contact TIBCO Support in the following ways:

For an overview of TIBCO Support, visit http://www.tibco.com/services/support.

For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support portal at https://support.tibco.com.

For creating a Support case, you must have a valid maintenance or support contract with TIBCO.
You also need a user name and password to log in to https://support.tibco.com. If you do not have a
user name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
https://community.tibco.com.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

http://www.tibco.com/services/support
https://support.tibco.com
https://support.tibco.com
https://ideas.tibco.com/
https://community.tibco.com

Introduction

TIBCO Service Performance Manager provides the capability to monitor and manage services and
assets in your enterprise in real-time. The Service Performance Manager product suite consists of a
central Service Performance Manager server which provides real-time aggregation capabilities.

The suite also provides the Service Performance Manager client API. Applications should use the
Service Performance Manager Client API to connect to the server and submit monitoring related data to
the server. You can use the Service Performance Manager Client API to model your aggregations in a
flexible manner. This guide covers the various aspects of the Service Performance Manager Client APL

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

TIBCO Service Performance Manager API

The TIBCO Service Performance Manager is an API-driven product. You can use the TIBCO Service
Performance Manager API to define rules and metrics that helps you monitor and manage a group of
services and assets in the enterprise such as machines, resources, and so on. The APl is broadly
classified into Model, Client, Query, Rules, and Runtime APL

Model API

This part of the API set deals with the core model that is used across the client and the server. It consists
of classes and interfaces that are used to model the aggregation rules and the overall aggregation
schema. The Model API provides classes and interfaces to represent elements of a schema.

Client API

This part of the API lets client applications connect to the Service Performance Manager server and
perform various operations. Some such operations are to get the aggregation schemas, submit facts for
aggregations, perform queries on the aggregated sets, and so on. From this point onwards, Service
Performance Manager Server will be referred as "the server" in this document.

Applications connect to the server and submit data or facts to the server. The server uses these facts as
input to compute the aggregations as defined in the schema. The server also includes a Query API to
perform snapshot and streaming queries.

Query API

This part of the API set lets client applications to define queries (snapshot and streaming) and execute
them. It also includes a Filter API that helps the application build complex filters using AND/OR
conditions.

Rule API

This part of the API set deals with Rules, Actions, and alerts. It allows applications such as the
ActiveMatrix Dashboard to define certain conditions (using the Query API) and when they match, to
define actions and alerts. Actions are of two types, Set actions and Clear actions. Set actions are those
that are invoked when a rule condition evaluates to true and a Clear actions are those that are invoked
when a previously set rule condition evaluates to false.

Runtime API

This part of the API exposes certain runtime classes and interfaces that lets you build custom actions
and metric computation functions.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

10

Model Overview

A high level summary of the Model APl is explained. For details refer to the API documentation that
ships with the product.

The figure depicts the model objects and their relationships.

The Model Objects and their Relationship

Project specific

. Bound to
representation of Schema
metrics artifacts |
[Fact
Instance
of Haz 1 or
mare
EE—
Has 1 Attribute Set Attribute
Set of attribute
references
) references T references
Has 1 or
more Dimensian .-%
B (erouping for i
aggregation)
Has 1 or
ﬁh Measurement
—.-‘“\—.,_
referencks
Has 1o - e Dirnensiond
more " | Measurement Attribs/
= Functicn parameter
bindings
Has 1 or a
> Dirmension2 3
rrare Cuhe 3 _
o [Callection of - C;rde-red lizt
Hierarchies) e of 1ormore
Has 1 or
e E 2 Dimension3
Measurement Hae 1 or
rHIre
——= DimensionHierarchy
Has 1 or
mare Mietric Functions
enabled an this
" Has 1 or
higrarchy
mareg

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

RTASchema

The RTASchema represents a logical grouping of all model elements. It is the parent object for all the
schema elements defined under it. The XML equivalent of the RTASchema is the schema XML file.

For example, the Service Performance Manager server loads the AMX_3_0_SPM_Schema.xml at startup.
While loading, the Service Performance Manager server reads from the schema file. The table shows
attributes and their equivalent API for a Schema:

API for the Attributes of a Schema

name String getName()
display-name String getDisplayName()
description String getDescription()

The next sections show example fragments of the schema file for illustration.

Attributes and Facts

An attribute represents a data element. It has a name and a data type. Client applications set values of
these attributes using a fact. A Fact is a collection of related attributes that the client program uses to
send to the server. A fact is always bound to a schema. Therefore, defining a set of attributes in the
model lets the API and the server validate the attributes and their values that are set in the fact.
<attributes>

<attribute datatype="STRING" name="host"/>

<attribute datatype="STRING" name="environment"/>

<attribute datatype="STRING" name="node" />
</attributes>

The table shows attributes and their equivalent API for the Attribute element:

API for the Attribute Element

Attributes API Usage

attribute Attribute RTASchema.getAttribute(String
name)
name String getName()
description String getDescription()
Dimension

An aggregation or a metric computation has several Dimensions. Each Dimension categorizes or
qualifies the metric computation by providing additional information about the metric being
computed. It can be considered as an attribute of a metric.

A dimension is defined at a global level in the schema. It is then referenced by dimension hierarchies.
The name of the dimension can be different from that of the attribute.

Time Dimension

A TimeDimension is an extension of a Dimension. It categorizes the computation by a particular time-
slot. For example, a TimeDimension can be defined to compute a certain metric such as an average

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

12

response time for each minute, or for every 2 hours or for every 2 weeks. A TimeDimension provides
methods to define such a time-slot in terms of time units and time periods.

The following snippet is an example of a TIME dimension.

<time-dimension name="month" attribute-ref="timestamp" unit="MONTH" frequency="1"/>
<time-dimension name="weeks" attribute-ref="timestamp" unit="WEEK" frequency="1"/>
<time-dimension name="days" attribute-ref="timestamp" unit="DAY" frequency="1"/>
<time-dimension name="hours" attribute-ref="timestamp" unit="HOUR" frequency="1"/>
<time-dimension name="minutes" attribute-ref="timestamp" unit="MINUTE"

frequency="1"/>

There are some predefined units such as months, weeks, days, hours, and minutes. The frequency is
the rate at which you want to compute the metrics. For example, if the frequency of the minutes
dimension is set to 2, the aggregation is done every two minutes. The gtroffset is only applicable
when the unit is a quarter and indicates the start of the quarter.

Dimension Hierarchy

A DimensionHierarchy is an ordered list of Dimensions over which aggregations are computed and
rollup computations are performed. For example, if you want to compute minute-wise, hourly and
daily aggregations, you would add them to the API model in that order. Each dimension defined in the
hierarchy has an implicit level; starting with zero for the first dimension in the hierarchy increasing by
one as you traverse the ordered hierarchy.

A set of measurements or metrics to be computed for each of these levels are defined for the hierarchy.
The API has methods to:

e Exclude certain metrics to be computed at specific levels, or

» Not compute measurements completely at a specific level.

By default, all metrics associated with the hierarchy are computed at all levels.

<cube>
<hierarchy name="ByService">

<properties>
<property name="storage-schema" value="ByService"/>

</properties>

<dimensions>
<dimension ref="service_name" compute="false"/>
<dimension ref="application_name" compute="false"/>

<dimension ref="environment" compute="false"/>
<dimension ref="node" compute="false"/>
<dimension ref="host" compute="false"/>
<dimension ref="service_type" compute="false"/>
<dimension ref="weeks"/>
<dimension ref="days"/>
<dimension ref="hours"/>
<dimension ref="minutes"/>

</dimensions>

<measurement-refs>
<measurement ref="HitCount"/>
<measurement ref="SuccessCount"/>
<measurement ref="FaultCount"/>
<measurement ref="AvgResponseTime" />
<measurement ref="TP5ResponseTime" />
<measurement ref="TP95ResponseTime" />

</measurement-refs>

</hierarchy>
</hierarchies>
</cube>

The dimension mentioned in the <dimension-ref> should be a part of the dimensions defined in the
schema.

In the Dimension element, the value in the compute attribute indicates whether or not metrics are
computed for a dimension. By default, this value is set to true. If set to false, the computation is not
propagated upwards and it stops at the dimension where compute is set to false.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

13

The measurement mentioned in the <measurement-ref> should be a part of the measurements defined
in the schema.

Changes made to the schema are reflected only on restarting the Service Performance Manager server.

The table gives attributes and their equivalent API for the hierarchy element:

API for the Hierarchy Element

Attributes API Usage

hierarchy DimensionHierarchy
Cube.getDimensionHierarchy(String name)

name String getName()

display-name String getDisplayName()

description String getDescription()

enabled boolean isEnabled()

Dimension Hierarchy Attributes

Cube

A dimension hierarchy can be enabled or disabled at runtime. When disabled, there are no
computations performed for that hierarchy. By default, all hierarchies are enabled.

To disable a hierarchy, add the enabled="false" attribute to the hierarchy. For example:

<hierarchy name="ByService" enabled="false">
This value takes effect only when you restart he Service Performance Manager server.

The DimensionHierarchy.getEnabled() indicates whether or not the hierarchy is enabled. If the
method returns true, the hierarchy is enabled. The API to disable the hierarchy is
MutableDimensionHierarchy.setEnabled(false).

Cubes are a logical grouping of related hierarchies.

<cube>
<hierarchy name="ByService">
<properties>
<property name="storage-schema" value="ByService"/>
</properties>
<dimensions>

<dimension ref="service_name" compute="false"/>
<dimension ref="application_name" compute="false"/>
<dimension ref="environment" compute="false"/>
<dimension ref="node" compute="false"/>
<dimension ref="host" compute="false"/>
<dimension ref="service_type" compute="false"/>
<dimension ref="weeks"/>
<dimension ref="days"/>
<dimension ref="hours"/>
<dimension ref="minutes"/>

</dimensions>

<measurement-refs>
<measurement ref="HitCount"/>
<measurement ref="SuccessCount"/>
<measurement ref="FaultCount"/>
<measurement ref="AvgResponseTime" />
<measurement ref="TP5ResponseTime" />
<measurement ref="TP95ResponseTime" />

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

14

</measurement-refs>
</hierarchy>
</hierarchies>
</cube>

The table shows attributes and their equivalent API for the cube element:

API for the Cube Element
cube Cube RTASchema.getCube(String name)
name String getName()
display-name String getDisplayName()
description String getDescription()
Measurement

A measurement represents the actual metric that is to be computed. The measurement model object
binds the parameters of the function specified in metric-function to the attributes of the schema. This is
a schema level object. After defining a measurement in the schema, it can be used in a
DimensionHierarchy.
<measurements>
<measurement name="HitCount" unit="hit">
<metric-function ref="System.SUM">
<function-params>
<function-param name="PARAM1" attribute-ref="hit"/>
</function-params>
</metric-function>
</measurement>
</measurements>

The table shows attributes and their equivalent API for the measurement element:

API for the Measurement Element

Attributes AP| Usage

measurement Measurement
RTASchema.getMeasurement(String name)

name String getName()

display-name String getDisplayName()

description String getDescription()

unit String getUnitOfMeasurement()

depends Collection <Measurement> getDependencies()

datatype DataType getDataType()

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

15

Retention Policy
The retention policy can be defined in the schema.

For example:

<retention-policies>

<retention-policy type="fact" period="5" unit="WEEK" purge-time-of-day="1200" purge-
frequency-period="3600000"/>

<retention-policy type="DevNodeCube/DemoServiceHitCount" period="5" unit="WEEK"
purge-time-of-day="1200" purge-frequency-period="86400000"/>

</retention-policies>

where:

e type="fact" indicates that the purge policy is applied on the facts.
e period="5" unit="WEEK" indicates that data older than 5 weeks is purged.

e purge-time-of-day="1200" starts the timer for the purge policy at 12.00 PM. The first two digits
denote the hour and last two digits denote the minutes. Time is represented in a 24-hour notation, in
the "hhmm" format. To start the timer on startup, set purge-time-of-day to "-1".

e purge-frequency-period="3600000" indicates the frequency period after which you the purge
policy is triggered. This value is in milliseconds. In this case the purge policy is triggered at 12:00
P.M. and after that at a time interval of "3600000" milliseconds.

The table shows attributes and their equivalent API for the retention policy in the schema:

API for the Retention Policy Element

Attributes API Usage

retention-policy Collection <RetentionPolicy>
RTASession.getRetentionPolicies()

type Qualifier getQualifier(). If the qualifier is
HIERARCHY, then you can get the type by using
String getHierarchyName();

unit TimeUnits.Unit getRetentionUnit()
peﬂod long getRetentionPeriod()
purge-time-of-day String getPurgeTimeOfDay()
purgefrequency=peﬂod, long getPurgeFrequencyPeriod()

Additional Properties in the Schema

Additional properties can be set as name/value pairs on some of the model artifacts.

In XML, they translate as:

<properties>
<property name="property-name" value="value"/>

</properties>

The corresponding APIs are MetadataElement.getProperty() and
MutableMetadataElement.setProperty(). These properties are used by the runtime. The table shows
the properties and their meanings:

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

Properties

Property Name

Default

Possible
Values

Applicable to

16

Description

storage-datatype

no
default

INTEGER
LONG
DOUBLE
STRING
BOOLEAN,
CLOB,

attributes,
measurements

The storage-datatype property
defines the datatype used for
the column in the underlying
database table. For some
attributes and measurements,
the datatype may not be the
same as the underlying
datatype (of the attribute) or
the metric function (for
measurements). For example,
the storage datatypes of some
large strings, have to be
represented as CLOBs. In this
case, you can set the storage-
datatype as "CLOB"

storage-schema

no
default

dimension
hierarchies

Represents the table name
used for the underlying
database. Since the underlying
database schema is the same
for all Service Performance
Manager schemas, this has to
be a unique name across the
various Service Performance
Manager schemas.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

17

Possible

Property Name Default Values Applicable to Description

asset-hierarchy false true, false Represents the hierarchy of
assets. Some hierarchies
represent the assets in the
system. Assets are those
entities that have life-cycle
events associated with them.
Asset are usually created,
started, deleted, and so on.
Asset hierarchies are different
from other hierarchies that are
simply aggregations of some
measurements over different
dimensions. For example, in
the TIBCO ActiveMatrix
schema, nodes, environments,
applications are all assets.

Asset hierarchies have a
special meaning in the Server
Performance Manager system.
A change to the asset status
can trigger a change to other
non-asset hierarchies. For
example, if the underlying
asset is deleted, all
measurements that include
this asset in other
computation hierarchies are
also deleted.

asset-name Represents the name of the
underlying asset. This is only
applicable if asset-hierarchy is
set to true.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

18

Publishing the Facts to the Server

The Service Performance Manager provides a set of Client APIs to publish facts to the server.

Procedure

1. First, the client applications connect to the server for defining the schema model and for submitting
facts. The server then performs aggregations based on user-defined schema or cubes.

To acquire a connection to the server from the factory, the client applications use the following well-
defined properties:

RtaConnectionFactory connectionFac = new

RtaConnectionFactory();

Map<ConfigProperty, PropertyAtom<?>> configurationMap = new
HashMap<ConfigProperty, PropertyAtom<?>>(); // put all the client properties in
this map

RtaConnection connection = connectionFac.getConnection("server_url", "user_name",
"password", configurationMap);

2. RtaSession is a logical layer for interacting with the server. It provides Query service and FACT
submission service

To get a session, set the well-defined properties using the ConfigProperty, and create a session from
the connection.
RtaSession session = connection.createSession("session_name", configurationMap);

session.init();

8 If a session operation is called before init () is successfully completed, the caller thread is
blocked.

3. Create an instance for this measurement as follows:

RtaSchema schema = session.getSchema("AMX-Schema") ;
Fact fact = schema.createFact();

4. Set various attribute values that map to the defined dimensions as follows:

fact.setAttribute(“Environment", "ENV1");
fact.setAttribute(“Application”, "BookingService");
fact.setAttribute(“ServiceName", "SeatAvialibility");

fact.setAttribute(“HitCount", 1);
5. Publish the fact:

session.publishFact(fact);

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

19

Executing the Query

The server computes the metric results based on the facts published. You can query the server about the
computed metric results using the Query API. The steps help you create and execute a query and
browse through the results.

Procedure

1. Define a Query Object.
The code snippets defines query object is:

final Query query = session.createQuery();
QueryByFilterDef queryDef = query.newQueryByFilterDef(
SCHEMA_NAME, CUBE_NAME,
DIM_HIERARCHY_NAME,
MEASUREMENT_NAME) ;
queryDef.setName("SnapshotQueryDef-Gt-filter");
queryDef.setBatchSize(5);

2. Set the type of query you are using. The valid types are Snapshot and Streaming. The snapshot
queries help you evaluate the metric results at a given point-in-time, whereas the streaming queries
are executed continuously.

. queryDef.setQueryType(QueryType.SNAPSHOT) ;
. queryDef.setQueryType (QueryType.STREAMING) ;
3. Define a filter.

The filter is similar to the WHERE clause in a standard SQL query. You can add various filter
conditions using the filters that are available.

Filter eqFilter = QueryFactory.INSTANCE.newEgFilter(
MetricQualifier.DIMENSION_LEVEL,
DIM_LEVEL_SERVICE);

Filter gtFilter = QueryFactory.INSTANCE.newGtFilter(
FilterKeyQualifier.MEASUREMENT_ NAME,
MEASUREMENT HTITCOUNT, 5.0);

AndFilter andFilter = QueryFactory.INSTANCE.newAndFilter();

andFilter.addFilter(eqFilter, gtFilter);

queryDef.setFilter(andFilter);

4. After setting the filter, you can execute the query. In case of streaming queries, it is recommended to
execute the query in a separate thread.

Browser<MetricResultTuple> browser = query.execute();
You can get two types of query results: Streaming query results and snapshot query results.

5. To get Streaming Query results, you must implement QueryResultHandler and register it with the
query.
a) Implementing Query ResultHandler

private class MyQueryResultHandler implements QueryResultHandler {
@Override
public void onData(QueryResultTuple queryResultTuple) {
MetricResultTuple rs =
queryResultTuple.getMetricResultTuple();
if (rs != null) {
for (String metricName : rs.getMetricNames()) {
SingleValueMetric metric =
(SingleValueMetric) rs.getMetric(metricName) ;
if (metric != null) {
String measurementName =
metric.getDescriptor() .getMeasurementName() ;
MetricKey key = (MetricKey) metric.getKey();
System.out.println(String.format("%s: Level = %s",
queryResultTuple.getQueryName(),
key.getDimensionLevelName()));

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

20

for (String dimName : key.getDimensionNames()) {
System.out.println(String.format("%s: Dimension name =
%s, value = %s", pad, dimName,
key.getDimensionValue(dimName))) ;

}

System.out.println(String.format("%s: Metric = %s,

value = %s", pad,

metric.getDescriptor() .getMeasurementName(),

metric.getValue()));

System.out.println();

}
}
¥
¥
@Override

public void onError(Object errorContext) {
System.out.println("OnError...");

¥

b
b) Registering QueryResultHandler with the Query

query.setResultHandler(new MyQueryResultHandler());

To get snapshot query results, browse the resultset from the Browser object returned after executing
the query.

while (browser.hasNext()) {

MetricResultTuple rs = browser.next();

SingleValueMetric<Long> metric =

(SingleValueMetric<Long>) rs.getMetric("HitCount");

MetricKey key = (MetricKey) metric.getKey();

System.out.println(String.format(" Level = %s",

key.getDimensionLevelName()));

for (String dimName : key.getDimensionNames()) {
System.out.println(String.format("Dimension name = %s,
value = %s", dimName, key.getDimensionValue(dimName)));

¥

System.out.println(String.format(" Metric = %s,value = %s",

metric.getDescriptor() .getMeasurementName(),

metric.getValue()));

System.out.println();

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

21

Setting up the Rules

The Service Performance Manager provides you with another set of API to define a set of rules that,
once registered with the server, gets automatically triggered when the threshold conditions are met.

Defining a Rule Definition Object and Set its Properties

Procedure

instance.

RuleFactory factory = new RuleFactory();

String ruleName = "APIDemoRule";

MutableRuleDef ruleDef = factory.newRuleDef(ruleName +
Math.round(Math.random()));
ruleDef.setScheduleName("schedulel");
ruleDef.setUserName("userNamel") ;

To set the threshold conditions at which a rule gets evaluated, define a query object, and set its
query type to STREAMING. Rules are nothing but continuously evaluating queries.

QueryFactory gfac = QueryFactory.INSTANCE;
//7‘:;’:*.‘:7’:*‘.‘:*5‘::’:7“:7\‘*5‘:‘!:*:’:*:‘:‘!:*:’:*7\‘Set ConditiOn*‘.\‘“k:‘:‘!:*‘.\“k:‘:‘!:*‘.’:“k
QueryByFilterDef setCondition =
qfac.newQueryByFilterDef (SCHEMA_NAME, CUBE_DEV,
DIM_HIERARCHY_DEMO, MEASUREMENT_HITCOUNT) ;
setCondition.setName("RuleService");
setCondition.setQueryType (QueryType.STREAMING) ;
setCondition.setBatchSize(6);

Filter eqFilter = QueryFactory.INSTANCE.newEgFilter(
MetricQualifier.DIMENSION_LEVEL,
DIM_LEVEL_SERVICE);

Filter gtFilter = QueryFactory.INSTANCE.newGtFilter(
FilterKeyQualifier.MEASUREMENT_ NAME,
MEASUREMENT_HITCOUNT, 41.0);

Filter 1tFilter = QueryFactory.INSTANCE.newLtFilter(
FilterKeyQualifier.MEASUREMENT_NAME,
MEASUREMENT_HITCOUNT, 45.0);

AndFilter andFilter = QueryFactory.INSTANCE.newAndFilter();

andFilter.addFilter(eqFilter, gtFilter, 1ltFilter);

setCondition.setFilter(andFilter);

//7‘:7’:7‘::’::“:‘.‘:7’:7‘:‘!:*7‘:*7‘:‘!:*7’:“}:7‘:‘!:*7’:“}:7‘:‘!:*Clear Condition:’:*7‘:*7‘:‘!:*7’:“}:7‘:‘!:*7’:

QueryByFilterDef clearCondition=

qfac.newQueryByFilterDef (SCHEMA_NAME, CUBE_DEV,

DIM_HIERARCHY_DEMO, MEASUREMENT_HITCOUNT) ;

clearCondition.setName("ClearCondition");

clearCondition.setQueryType(QueryType.STREAMING) ;
clearCondition.setBatchSize(6);

Filter eqFilterl = QueryFactory.INSTANCE.newEgFilter(
MetricQualifier.DIMENSION_LEVEL,
DIM_LEVEL_SERVICE) ;

Filter gtFilterl = QueryFactory.INSTANCE.newGtFiltexr(
FilterKeyQualifier.MEASUREMENT NAME,
MEASUREMENT_HITCOUNT, 47.0);

Filter 1tFilterl = QueryFactory.INSTANCE.newLtFilter(
FilterKeyQualifier.MEASUREMENT NAME,
MEASUREMENT_ HITCOUNT, 50.0);

AndFilter andFilter2 = QueryFactory.INSTANCE.newAndFilter();

andFilter2.addFilter(egFilterl, gtFilterl, 1tFilterl);

clearCondition.setFilter(andFilter2);

Rules across measurements and hierarchies in the conditions are not supported. For

example, you cannot create a rule with a condition, such as:

%> application.HitCount > 200 AND node.AverageUsedMemory > 600 MB

OR

application.SuccessCount > application.HitCount

1. The following code snippet helps you create a MutableRuleDef object and set the properties of the

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

22

3. Set and clear conditions can be thought of upper and lower bounds for the threshold values. Once
these conditions are defined, you need to register them with the rule.

ruleDef.setSetCondition(setCondition);
ruleDef.setClearCondition(clearCondition) ;

& ‘ You cannot set a rule on alerts hierarchy.

4. After setting the threshold conditions for set and clear, define actions to be taken when these
conditions are met. Actions have to be first setup on the Service Performance Manager server. Some
actions such as "Send-Email" are already set up on the server. Refer to Creating Custom Actions for
details on how to set up custom actions on the server. First, initialize the action definitions using
session.getAllActionFunctionDescriptors().

//Get a handle to a pre-defined action function descriptor.
session.getAllActionFunctionDescriptors();

ActionFunctionDescriptor sendToSessionActionFn =
ActionFunctionsRepository.INSTANCE. getFunctionDescriptor
("SendToNamedSession") ;

//Get a handle to the action's function parameters and provide values to its
parameters.

FunctionParam param = sendToSessionActionFn.getFunctionParam("session-name") ;
ActionFunctionDescriptorImpl.FunctionParamValueImpl

paramValue = new

FunctionDescriptorImpl.FunctionParamValueImpl() ;
paramValue.setName(param.getName());
paramValue.setDataType(param.getDataType());
paramValue.setIndex(param.getIndex());
paramValue.setDescription(param.getDescription());
paramValue.setValue(sessionName) ;

//Bind the function parameter value to the action function.
sendToSessionActionFn.addFunctionParamValue(paramValue) ;

5. Add the time-based constraints to control how many times and how frequently the actions must get
triggered.

InvokeConstraint invokeConstraintl =
factory.newInvokeConstraint(Constraint.TIMED) ;

MutableTimeBasedConstraint tbc = (MutableTimeBasedConstraint) invokeConstraintl;
tbc.setInvocationFrequency(1000) ;

tbc.setMaxInvocationCount(5);

tbc.setTimeConstraint (TimeBasedConstraint.Constraint.TILL_CONDITION_CLEARS);

6. After defining the actions, register the actions with a rule either to fire when the set condition is met
or to fire when the clear condition is met.

ActionDef setSendSessionAction =

factory.newSetActionDef(ruleDef, sendToSessionActionFn, invokeConstraintl);

/A convenience method that clones the passed in action definition and sets it as
an action for the clear condition.

ActionDef clearSessionAction =

factory.newClearActionDef(ruleDef, setSendSessionAction);

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

23

The Runtime Model API

Service Performance Manager also exposes certain runtime model elements. This provides the ability to
introduce user-defined or custom metric functions and custom actions.

MetricNode
MetricNode is a node that holds metric values.

RtaNodeContext

RtaNodeContext is a container for name/value tuples. It stores stateful data for the metric
calculation. It is required to optimize metric calculations so that it does not iterate over child metric or
Facts each time there is a new Fact submitted.
MetricFunction
This interface must be implemented to define a custom metric aggregator function.

ActionHandlerContext

This interface must be implemented for one-time context initialization while developing custom
actions.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

24

Creating Custom Metric Functions

You can create custom metric functions to add your own aggregation functions. For example, in a
TIBCO ActiveMatrix environment, you might want to set the value of a metric function based on the
input you get from the fact published by the probe.

e Determine whether your function is a single-valued function or a multivalued function. Based on
that, create a custom class that extends one of the following: SingleValueMetricFunction or
MultiValueMetricFunction.

o Create a catalog for the metric function.
» Bind the metric function parameters to the fact attributes in the schema file.

o Bundle the classes related to the metric function and the catalog files together in a JAR file and place
it in the server classpath.

Creating a Class with a Metric Function

Procedure

1. Create a class that extends either SinglevValueMetricFunction or MultiValueMetricFunction.
public class MyMetric extends SingleValueMetricFunction{...}

2. Override the init() method. The init () method belongs to the abstract class,
AbstractMetricFunction.

public void init(Fact fact, Measurement measurement, MetricNode startNode,
DimensionHierarchy dh) throws java.lang.Exception

For more information about the API, refer to the TIBCO Service Performance Manager Java API
reference pages.

The init () method has the one-time initialization of the metric function for a series of metric nodes
starting at the leaf node and moving up to the parent node in the rollup hierarchy.

For example, here you can store the current value for a sum computation. Then you can use this
current value in the compute function at each level and add this current value to the existing sum at
that level (Stored in the "context").

3. Opverride the compute () method. This is where you load the previous state from RtaContext. Use
the current value set in init () to compute the new value.
public abstract compute(MetricNode metricNode, SingleValueMetric<N> metric,
RtaNodeContext context)
For more information about the AP], refer to the TIBCO Service Performance Manager Java API
reference pages.

Creating a Function Catalog

Procedure

1. Create a function catalog file. For example, my. function.catalog. Create the function descriptors
as shown in the following sample:

<function-descriptors name="my-functions">
<function-descriptor name="My.AVG"
category="my category" multivalued="false"
implclass="com.tibco.rta.runtime.metric.functions.MyMetric"
datatype="DOUBLE" description="My metric function">
</function-descriptor>

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

25

Function Descriptors Properties

Property Name Description

name Name of the function
category The category name
multivalued Indicates whether or not the function is single-valued or multivalued. The

default value is false. Remember that for a multivalued function, all values
must be of the same datatype.

implclass To create custom metric function, you should extend either
SingleValueMetricFunction Or MultiValueMetricFunction

For more information about the AP]I, refer to the TIBCO Service Performance
Manager Java API reference pages.

datatype Datatype of the metric. For example, the datatype of AVERAGE is generally be a
double.
description Description of the metric function

2. Create the function parameters as shown in the following example:

<function-params>

<function-param id="PARAM1" datatype="LONG" ordinal="0"
description="Measuable Quanitity to be averaged" />
</function-params>

Specify the function parameters, data types, and the ordinal position. The parameters specified here
are bound to the fact attributes in the <product_name>_schema.xml. For example, the ID specified
for the parameter is used in the schema to bind the parameter to the fact.

Binding Function Parameters to the Schema

<function-params:>

function catalog ————> <function-param id="F. M1" datatyvpe="LONG" ordinal="0"
_____ /=

</function-params>

<measurement name="MyAverage" unit="second">
<metric-function ref="My,AVG">
VRECIAC

<function-params> v schema.xml
<function-param name="PARAMI"

attribute-ref="up time"/>
</function-params>
</metric-function>

</measurement>

3. Each metric can store some contextual data for future reuse. The context definition is also used by
the database schema generator to generate columns in the metric tables. For each metric, the
associated context is stored in these columns in the database. Create the function context as shown
in the following example:

<function-context>
<function-param id="count" datatype="LONG" ordinal="0"
description="" />

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

26

<function-param id="sum" datatype="DOUBLE" ordinal="1"
description="" />
</function-context>
</function-descriptor>
</function-descriptors>

Binding the Metric Parameters to the Fact Attributes in the Schema

Procedure

1. Bind the metric function parameters to the fact attributes in the schema file as shown in the
following snippet:

<measurement name="MyAverage" unit="second">
<metric-function ref="My.AVG">
<function-params>
<function-param name="PARAM1" attribute-
ref="up_time" />
</function-params>
</metric-function>

</measurement>

2. Use this measurement in one or more dimension hierarchies as follows:

<hierarchy name="NodeTrends">
<properties>
<property name="storage-schema" value="NodeTrends"/>
</properties>
<dimensions>
<dimension ref="environment" compute="false"/>
<dimension ref="host" compute="false"/>
<dimension ref="node" compute="false"/>
<dimension ref="weeks"/>
<dimension ref="days"/>
<dimension ref="hours"/>
<dimension ref="minutes"/>
</dimensions>
<measurement-refs>
<measurement ref="MyAverage"/>
</measurement-refs>
</hierarchy>

Make the Metric Function Available to the Product

Procedure
1. Create a JAR file containing the classes related to the metric function and the function catalog file,
located at the root of the jar file.

2. The metric function can be made available in one of the following two ways.

o Update the classpath of the associated server TRA file, which is tibspm.tra by default.
e Copy the JAR files into a location such as SPM_HOME/1ib/ext.

3. When the Service Performance Manager server starts, it loads all the custom metric function
definitions from the function catalog files and makes them available for use in the client API using
session.getAllFunctionDescriptors()

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

27

Creating Custom Actions

You can create custom actions to implement your own actions. For example, instead of sending e-mail
notifications, you can send text messages on cell phones.

Create a class that extends AbstractActionHandlerContext
Create a class that extends AbstractActionImpl
Create a catalog for the custom action

Bundle the classes related to the custom action and the catalog file together in a JAR file and place it
in the server classpath.

Creating a Class that Extends AbstractActionHandlerContext

Procedure

1. Create a class that extends AbstractActionHandlerContext as shown in the following code

snippet:

class MyActionHandlerContextImpl extends AbstractActionHandlerContext {
//override init, stop, getAction here.
//Action returned by getAction is as shown in Step 3. It should extend
AbstractActionImpl and provide the performAction method
}
Override the init() method. The init() method is called by the Service Performance Manager
engine on startup. Perform one-time initialization such as resource allocations, and so on here.

void init(java.util.Properties configuration)

Override the getAction() method. This method returns an object of type Action. The Action object
that is returned must implement AbstractActionImpl.

Action getAction(Rule rule, ActionDef actionDef)

For more information about the AP], refer to the TIBCO Service Performance Manager Java API
reference pages.

Override the stop() method. The stop() method is called by the engine during the shutdown
process. Perform resource deallocation here.

Creating a Class that Extends AbstractActionimpl

Procedure

1. Create a class that extends AbstractActionImpl

class MyActionImpl extends AbstractActionImpl {
public MyActionImpl(Rule rule, ActionDef actionDef) {
super(rule, actionDef);

}

Override the getActionHandlerContext () method. This method returns the associated context
handler. The method definition is as follows:

ActionHandlerContext getActionHandlerContext()

Override the performAction() method. This method is called by the engine when the filters
associated to a rule meet the set criteria.

void performAction(Rule rule, MetricNodeEvent node) throws java.lang.Exception

Override the getAlertText() method. This method should return the text associated with this alert.
This alert text returned by this class is stored in the corresponding field of the alerts in the system.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

28

5. Override the getAlertDetails() method. This method should return the alert details, such as e-mail
ID. This string is specific to an action. The alert text returned by this method is stored in the
corresponding field of the alerts in the system.

Actions may use values set in the action definition in their function parameters. These values may
contain tokens recognized by the system. These tokens are substituted with their corresponding
runtime values.

Creating an Action Catalog

Procedure

1. Create an action catalog called my.action.catalog. Create the action descriptors as shown in the
following sample:

<action-descriptor name="My-Action" category="my category"
datatype="BOOLEAN"

implclass="com.tibco.spm.rule.action.MyActionHandlercontextImpl"
description="My custom action function">

Function Descriptors Properties

Property Name Description

name Name of the function.
category The category name.
implclass To create custom metric function, you should extend

com.tibco.spm.rule.action.MyActionHandlercontextImpl. This is an
implementation class that implements ActionHandlerContext.

For more information about the API, refer to the TIBCO Service Performance
Manager Java API reference pages.

datatype Datatype of the action. This is always set to true.

description Description of the custom action.

2. The action parameters list arguments required by the action function with their ordinal position and
data type. The following example for "e-mail action" takes five action parameters:

</action-params>

<action-param id="To" datatype="STRING" ordinal="0" value=""
description="TO Recipient List(Comma Separated)"/>

<action-param id="Cc" datatype="STRING" ordinal="1" value=""
description="CC Recipient List(Comma Separated)"/>

<action-param id="Bcc" datatype="STRING" ordinal="2" value=""
description="BCC Recipient(Comma Separated)"/>

<action-param id="Subject" datatype="STRING" ordinal="3" value=""
description="Subject" />

<action-param id="Body" datatype="STRING" ordinal="4" value=""

description="e-mail Content" />
</action-params>
</action-descriptor>
</action-descriptors>
3. These are made available to the TIBCO ActiveMatrix Dashboard when you use the action. The
dashboard user has to provide values to these parameters at the time of configuring an action in a
rule.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

29

Making the Custom Action Available to the Product

Procedure

1. Create a JAR file containing the classes related to the custom action and the action catalog.

2. The metric function can be made available in one of the following two ways.

o Update the classpath of the associated server TRA file, which is tibspm.tra by default.
e Copy the JAR files into a location such as SPM_HOME/1ib/ext.

3. When the Service Performance Manager server starts, it loads all the actions from the actions
catalogs and makes their descriptors available for use in the client API using the
session.getAllActionFunctionDescriptors() method.

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

30

Java API Reference Pages

Detailed descriptions of each class and method in the TIBCO Service Performance Manager Java API
reference are provided.

Click the API link to access the TIBCO Service Performance Manager Java API reference page.

Java API Reference

TIBCO ActiveMatrix® Service Grid Service Performance Manager API Reference

https://docs.tibco.com/pub/spm/2.2.1/doc/api/index.html

	Contents
	Figures
	TIBCO Documentation and Support Services
	Introduction
	TIBCO Service Performance Manager API
	Model Overview
	RTASchema
	Attributes and Facts
	Dimension
	Time Dimension
	Dimension Hierarchy
	Dimension Hierarchy Attributes
	Cube
	Measurement
	Retention Policy
	Additional Properties in the Schema

	Publishing the Facts to the Server
	Executing the Query
	Setting up the Rules
	The Runtime Model API
	Creating Custom Metric Functions
	Creating a Class with a Metric Function
	Creating a Function Catalog
	Binding the Metric Parameters to the Fact Attributes in the Schema
	Make the Metric Function Available to the Product
	Creating Custom Actions
	Creating a Class that Extends AbstractActionHandlerContext
	Creating a Class that Extends AbstractActionImpl
	Creating an Action Catalog
	Making the Custom Action Available to the Product

	Java API Reference Pages

