
TIBCO ActiveMatrix® Service Grid

REST Binding Development Guide
Software Release 3.4
April 2019

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

ANY SOFTWARE ITEM IDENTIFIED AS THIRD PARTY LIBRARY IS AVAILABLE UNDER
SEPARATE SOFTWARE LICENSE TERMS AND IS NOT PART OF A TIBCO PRODUCT. AS SUCH,
THESE SOFTWARE ITEMS ARE NOT COVERED BY THE TERMS OF YOUR AGREEMENT WITH
TIBCO, INCLUDING ANY TERMS CONCERNING SUPPORT, MAINTENANCE, WARRANTIES,
AND INDEMNITIES. DOWNLOAD AND USE OF THESE ITEMS IS SOLELY AT YOUR OWN
DISCRETION AND SUBJECT TO THE LICENSE TERMS APPLICABLE TO THEM. BY PROCEEDING
TO DOWNLOAD, INSTALL OR USE ANY OF THESE ITEMS, YOU ACKNOWLEDGE THE
FOREGOING DISTINCTIONS BETWEEN THESE ITEMS AND TIBCO PRODUCTS.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, Two-Second Advantage, TIB, Information Bus, ActiveMatrix, Business Studio,
Enterprise Message Service, Hawk, and Rendezvous are either registered trademarks or trademarks of
TIBCO Software Inc. in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. Please see the readme.txt file for
the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

2

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

https://www.tibco.com/patents

Copyright © 2010-2019. TIBCO Software Inc. All Rights Reserved.

3

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Contents

TIBCO Documentation and Support Services .6

TIBCO ActiveMatrix Binding Type for REST Overview . 8

REST Binding Type Key Terms .8

REST Binding Type Usage .9

REST Binding Type Key Features . 9

Easy-to-Use Configuration GUI . 9

Message Exchange Patterns . 10

Error Handling . 10

Complex XSD Constructs Mapping Rules . 11

REST Binding Development .12

Payload Generation . 12

Generating XML Payloads .12

Generating Badgerfish JSON Payloads .12

Overriding Media Types (For Service Only) .12

Configuring REST Bindings .13

Generating a Swagger JSON File from TIBCO Business Studio . 14

Overview of the Swagger JSON File .15

Sample Swagger JSON File . 16

Sending and Consuming HTTP Headers . 18

Creating and Mapping Context Parameters . 18

For REST Service Binding . 19

Configuring for Request (Inbound) Flow .19

Configuring for Response (Outbound or Fault) Flow . 20

For REST Reference Binding .20

Configuring for Request (Outbound) Flow . 20

Configuring for Response (Inbound or Fault) Flow . 21

Mapping HTTP Status Code and Status Message . 22

Modifying a REST Resource Configuration File .22

Policies Supported . 24

Sample Projects . 26

Executing the Bookstore Sample .26

Importing the Bookstore Sample Project .27

Reviewing the WSDL that Defines the Service interface .27

Reviewing the Composite Configuration . 28

Running the Bookstore Sample . 28

Executing the MultipleComplexTypes Sample . 29

4

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Importing the MultipleComplexTypes Sample Project . 29

Reviewing the Mediation Flow . 29

Running the MultipleComplexTypes Sample . 30

Executing the Bookstore Client Sample (Reference) .30

Importing the Bookstore Client Sample Project . 30

Reviewing the REST Resource Configuration File That Defines the REST Service Interface . 31

Running the Bookstore Client Sample . 31

Executing the Facebook Client Sample (Reference) . 31

Importing the Facebook Client Sample Project .31

Running the Facebook Client Sample . 32

Executing the Pass-Through Mode Sample (Reference) . 32

Executing the rest.context Sample . 32

Running the rest.context Example . 33

Breakdown of the rest.context Scenario . 34

REST-Java-REST: Success Scenario of REST-Java . 34

REST-Java-REST: Fault Scenario of REST-Java . 36

Executing the rest.extendedJSONConversion Sample . 37

Running the rest.extendedJSONConversion Example .38

REST-Java-REST: Runtime Node Logs for Rest-Java . 39

Limitations . 41

General Limitations .41

Validation Limitations . 41

Service Limitations . 41

Schema Limitations . 42

Troubleshooting . 43

5

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly
in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than any other
documentation included with the product. To access the latest documentation, visit https://
docs.tibco.com.

Product-Specific Documentation

Documentation for TIBCO ActiveMatrix® Service Grid is available on the https://docs.tibco.com/
products/tibco-activematrix-service-grid page.

Use of the following features, installation profiles and development tools requires a TIBCO
ActiveMatrix Service Grid license:

● TIBCO ActiveMatrix Policy Director Governance, TIBCO ActiveMatrix SPM Dashboard, and TIBCO
ActiveMatrix SPM Runtime Server profiles; and

● TIBCO ActiveMatrix Service Grid development tools for Java, Webapp and Spring components.

Customers with only a TIBCO ActiveMatrix Service Bus license are not licensed to use these features,
tools or profiles.

The following documents form the documentation set:

● TIBCO ActiveMatrix Service Grid Concepts: Read this manual before reading any other manual in the
documentation set. This manual describes terminology and concepts of the platform. The other
manuals in the documentation set assume you are familiar with the information in this manual.

● TIBCO ActiveMatrix Service Grid Development Tutorials: Read this manual for a step-by-step
introduction to the process of creating, packaging, and running composites in TIBCO Business
Studio.

● TIBCO ActiveMatrix Service Grid Composite Development: Read this manual to learn how to develop
and package composites.

● TIBCO ActiveMatrix Service Grid Java Component Development: Read this manual to learn how to
configure and implement Java components.

● TIBCO ActiveMatrix Service Grid Mediation Component Development: Read this manual to learn how to
configure and implement Mediation components.

● TIBCO ActiveMatrix Service Grid Mediation API Reference: Read this manual to learn how to develop
custom Mediation tasks.

● TIBCO ActiveMatrix Service Grid Spring Component Development: Read this manual to learn how to
configure and implement Spring components.

● TIBCO ActiveMatrix Service Grid WebApp Component Development: Read this manual to learn how to
configure and implement Web Application components.

● TIBCO ActiveMatrix Service Grid REST Binding Development: Read this manual to learn how to
configure and implement REST components.

● TIBCO ActiveMatrix Service Grid Administration Tutorials: Read this manual for a step-by-step
introduction to the process of creating and starting the runtime version of the product, starting
TIBCO ActiveMatrix servers, and deploying applications to the runtime.

● TIBCO ActiveMatrix Service Grid Administration: Read this manual to learn how to manage the
runtime and deploy and manage applications.

6

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

https://docs.tibco.com
https://docs.tibco.com
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://docs.tibco.com/products/tibco-activematrix-service-grid

● TIBCO ActiveMatrix Service Grid Hawk ActiveMatrix Plug-in: Read this manual to learn about the
Hawk plug-in and its optional configurations.

● TIBCO ActiveMatrix Service Grid Policy Director Governance Custom Actions: Read this manual to learn
how you can configure and enforce policies for ActiveMatrix and external services hosted in third
party containers, using TIBCO ActiveMatrix Policy Director Governance.

● TIBCO ActiveMatrix Service Grid Service Performance Manager API Reference: Read this manual to learn
how to use the SPM APIs.

● TIBCO ActiveMatrix Service Grid Error Codes: Read this manual to know more about the error
messages and how you could use them to troubleshoot a problem.

● TIBCO ActiveMatrix Service Grid Installation and Configuration: Read this manual to learn how to
install and configure the software.

● TIBCO ActiveMatrix Service Grid Security Guidelines: Read this manual to learn more about security
guidelines and recommendations for TIBCO ActiveMatrix Service Grid.

● TIBCO ActiveMatrix Service Grid Release Notes: Read this manual for a list of new and changed
features, steps for migrating from a previous release, and lists of known issues and closed issues for
the release.

How to Contact TIBCO Support

You can contact TIBCO Support in the following ways:

● For an overview of TIBCO Support, visit http://www.tibco.com/services/support.

● For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support portal at https://support.tibco.com.

● For creating a Support case, you must have a valid maintenance or support contract with TIBCO.
You also need a user name and password to log in to https://support.tibco.com. If you do not have a
user name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
https://community.tibco.com.

7

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

http://www.tibco.com/services/support
https://support.tibco.com
https://support.tibco.com
https://ideas.tibco.com/
https://community.tibco.com

TIBCO ActiveMatrix Binding Type for REST Overview

TIBCO ActiveMatrix Binding Type for REST allows you to map SCA services to REST, so that thin
clients like scripting, mobile, and Web clients can directly invoke these services.

TIBCO ActiveMatrix Binding Type for REST makes client development simpler and cheaper by not
requiring a SOAP stack on client side. Clients can use HTTP methods such as GET, POST, PUT, and
POST with XML or JSON to invoke backend SCA services. During configuration, users can choose the
XML, JSON, or BJSON media type in TIBCO Business Studio UI.

When you configure a SOAP service, WSDL becomes the contract between service provider and
consumer. In contrast, REST service providers do not use WSDL but use out of band mechanisms such
as sample payloads to communicate with REST service consumers. This release of TIBCO ActiveMatrix
Binding Type for REST does not include tools for generating these payloads but includes an example
and documentation.

REST Binding Type Key Terms
HTTP Connector, Context Root, Media Type, Path Parameters and Query Parameters are few key terms
used while discussing about TIBCO ActiveMatrix Binding Type for REST.

See the TIBCO ActiveMatrix Service Grid documentation for a discussion of general ActiveMatrix
terms. The following list presents the key terms for TIBCO ActiveMatrix Binding Type for REST.

HTTP Connector
Name of the HTTP Connector resource instance that provides the HTTP transport for Binding Type
for REST. Both HTTP and HTTPS are supported. Default is HTTP. You define and name the HTTP
Connector at design time. At runtime, you need to create a resource of type HTTP Connector and
assign it the name you used at design time.

Context Root
Defines the base path for the URLs exposed by the REST binding.

Media Type
Format of the payload that ActiveMatrix Binding Type for REST accepts and produces. On the
reference side, XML and Standard JSON are supported. On the service side, XML, Standard JSON,
and Badgerfish JSON are supported.

Path
You can specify Path as part of configuration. Path can be any URI on which a given operation can be
exposed.

Path Parameters
Path parameters can be configured on the service side and reference side.
On the service side, path parameters should map to the part name defined in the WSDL. Path
parameters can be defined on the operation by using the Path field in the UI. For example, if you want
to invoke a backend service operation getBookByTitle(title), you can configure the path as /
book/{title}. Path parameters are supported by parts that are simple types. On the reference side,
path parameters can be configured by adding them in the 'Resource Path' field (for example, '/
{<pathParameter1>}'). For the above getBookByTitle(title) operation, 'title' can be added as a
path parameter using syntax: /book/{title}. Here, /book is the Resource Path and /{title} is the
Path Parameter.

Query Parameters
Query parameters can be configured on the service side and reference side.
On the Service side, query parameters are not configured as part of the path for the operation. TIBCO
ActiveMatrix Binding Type for REST expects that the query parameter name matches the part name of

8

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

the WSDL operation. If you want to use a query parameter, the part name must be a simple type such
as string, boolean, int, and so on.
On the reference side, you can configure a query parameter by adding them in the "Request
Parameters" section of the REST Resource Configuration file.

You cannot add Content-Type or Accept as a Request Parameter.

REST Binding Type Usage
TIBCO ActiveMatrix Binding Type for REST allows you to integrate your SCA services with clients that
use HTTP instead of SOAP to invoke services.

ActiveMatrix service development typically starts with WSDL, which defines the service interfaces.
Developers expose SOAP or JMS services by adding SOAP or JMS bindings on a promoted component
service.

TIBCO ActiveMatrix Binding Type for REST allows you to expose those services as REST services that
can consume Badgerfish JSON, Standard JSON, or XML. You can add multiple bindings and multiple
types of bindings on the same composite services. That means the same service can expose SOAP, JMS,
and REST interfaces to service consumers at the same time.

Typical use cases include the following.

● Mobile clients have to consume an ActiveMatrix SCA service.

● Web clients or scripting clients (thin clients) participate in SCA.

● Mashups or web sites have to expose services as APIs.

The REST bindings are especially helpful in the following situations.

● Mobile devices need to interact with back-end applications and services.

● Mobile application developers find it difficult to program the SOAP stack on the client side.

● Developers use modern scripting languages like JavaScript and Ruby, which provide first class
support for JSON and XML processing.

In these cases, TIBCO ActiveMatrix Binding Type for REST allows the clients to easily invoke
ActiveMatrix SCA services.

If you want to expose already existing services, you might have to use mediation. When an existing
ActiveMatrix service is using WSDLs with multiple parts of complex type, the mediation service can
normalize the WSDL to have a single part of complex type. See Executing the MultipleComplexTypes
Sample on page 29.

REST Binding Type Key Features
Using a configuration GUI and a robust error handler, TIBCO ActiveMatrix Binding Type for REST
allows users to map SCA services as REST services and also allows users to consume a REST service
using a REST reference.

Easy-to-Use Configuration GUI
TIBCO ActiveMatrix Binding Type for REST provides a custom binding palette to add, configure, and
remove a REST binding using the TIBCO Business Studio.

This easy-to-use interface simplifies configuration. You can add, edit, or remove bindings. In addition,
you can perform the following tasks specific to a service or a reference:

9

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

For a Service

● Specify a name, context root, HTTP connector and media type for the binding.
● Configure the operation to use one of the supported HTTP methods.

— Use HTTP GET or HTTP DELETE when the target WSDL operation has parts (single or
multiple parts) of simple type.

— Use HTTP POST or HTTP PUT to send XML, Standard JSON, and Badgerfish JSON payloads.
Only one complexType is allowed when the input message is a multi-part message. Use a
mediation component if your source has multiple complex types.

● Use a mediation component if you have to map a WSDL that uses multiple parts of complex type.
See Complex XSD Constructs Mapping Rules on page 11.

● You can choose Standard JSON, Badgerfish JSON, or XML as the media type.

— Standard JSON TIBCO ActiveMatrix Binding Type for REST can consume and produce JSON
as defined by the standard convention.

— Badgerfish JSON TIBCO ActiveMatrix Binding Type for REST can consume and produce JSON
as defined by the Badgerfish convention. Badgerfish JSON is being used because it maps XML
constructs such as namespaces to JSON.

— XML TIBCO ActiveMatrix Binding Type for REST can consume and produce XML. The XML
payload must be schema compliant.

For a Reference

Specify a name, description, REST resource configuration file, HTTP Client, enable or disable Pass
Thorugh Mode. For more information on modifying REST resource configuration file, refer to
Modifying a REST Resource Configuration File on page 22.

Message Exchange Patterns
Clients of TIBCO ActiveMatrix Binding Type for REST can invoke backend services that are exposing
IN-ONLY or IN-OUT message exchange patterns using HTTP operations (GET, PUT, POST, DELETE).

For a Service

● IN-ONLY operations return HTTP code 200 OK for success or an HTTP error code in case of failure.
● IN-OUT operations return a response or a fault in the HTTP body for success or failure. An HTTP

error code is returned for protocol errors.

For a Reference

Configuring Out-Only operation in REST Resource Configuration file results in addition of dummy
queryParameter Named 'AmxInOutBoolean' for that operation.

Error Handling
TIBCO ActiveMatrix Binding Type for REST returns error in response body in case there is fault in
request or a component.

TIBCO ActiveMatrix Binding Type for REST handles errors as follows:

Service

● System errors such as invalid requests are returned as protocol errors, that is, HTTP error codes.
● When a wired service returns a SOAP fault, the REST binding returns a 200 OK code by default. A

fault message is returned as a response body.

10

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

● The component that implements the WSDL service can override the HTTP response code by using a
context parameter named HTTP_RESP_CODE. This parameter is of type int.

If a component throws an undeclared-fault or a runtime exception, TIBCO ActiveMatrix Binding
Type for REST returns an Internal Server Error with HTTP Code 500 and an HTTP_RESP_CODE. If any
context variables are set, they are ignored.

Reference

● All errors for a specific operation can be configured in the REST resource configuration file.

● Implementation Type consuming REST reference can receive HTTP Status Code and Status Message
of the response received using Context Parameters.

Direction: Output

Data Type: Int (For statusCode) and String (for Status Message)

Header Name: statusCode (For HTTP Status Code) / statusMsg (For HTTP Status Message)

Context Parameter Name: statusCode (For HTTP Status Code) / statusMsg (For HTTP Status
Message)

Complex XSD Constructs Mapping Rules
If backend services are using complex XSD constructs for WSDL operation signatures, such as multiple
parts with complex types, you can use a mediation component between the Implementation Type for
REST component and the backend component.

Follow these rules when mapping WSDL operation arguments (message parts) to HTTP operations.

● Multi-part Operation

— Simple types, or built-in simple XSD types such as string, float, boolean, integer and so on, must
be passed as query or path parameters.

— The name of the query parameter or path parameter must match the part name

— Complex types, such as xsd:complexType must be passed as HTTP body

TIBCO ActiveMatrix Binding Type for REST supports backend WSDL operations with only one
part of complexType in the operation signature for multipart WSDL Executing the
MultipleComplexTypes Sample on page 29 illustrates how to use mediation to expose a multi-
part WSDL to REST clients.

● Single-part Operation

— Simple types, or built-in simple XSD types such as string, float, boolean, integer and so on, must
be passed as query or path parameters.

— Complex types, such as xsd:complexType must be passed as HTTP body.

11

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

REST Binding Development

Create and configure a binding for REST with TIBCO Business Studio and package the binding into a
distributed application archive (DAA).

TIBCO ActiveMatrix Business Studio is a standards-based, unified business process modeling and
development environment for modeling, developing, and deploying business process applications.
TIBCO ActiveMatrix Binding Type for REST is integrated with ActiveMatrix Business Studio so you can
configure and test the REST bindings from there.

For more information about TIBCO Business Studio, see the Workbench User Guide in the Workbench
online help. To view the online help, select Help > Help Contents.

After you configure and test the REST binding, you can create and deploy a distributed application
archive from your project. See the TIBCO ActiveMatrix documentation for details.

Payload Generation
TIBCO ActiveMatrix Binding Type for REST supports XML, Standard JSON, and Badgerfish JSON
payloads. You can generate an XML file from a WSDL file, and then using a tool included with TIBCO
ActiveMatrix Binding Type for REST, you can generate a Badgerfish JSON payload.

Generating XML Payloads
Generate XML file based on where the part types definition are defined.

● Part types are defined in the XSD, imported from WSDL

Right-click the .xsd file and select Generate > XML file .
● Part types are defined in WSDL

In Eclipse, make a copy of the WSDL and change the extension to .xsd. Or, right-click the .xsd file
and select Generate > XML file .

The generated XML file is a valid XML payload for methods exposed over HTTP POST.

Generating Badgerfish JSON Payloads
You can generate the payload for JSON with xmltojsontool, included in the installation.

Procedure

1. Go to TIBCO_HOME/amx/<version_number>/samples/rest/tools.

2. Run xmltojsontool. You pass in the XML file you generated from Eclipse, see Generating XML
Payloads on page 12.

Result

For more information, see the readme of the tool.

Overriding Media Types (For Service Only)
You can override the media types to be consumed or produced by using HTTP headers.

The Media Type configured in the UI serves as the default media type for both the HTTP Request body
content type and for the HTTP Response body content type.

12

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

You need to specify this information only if your REST client has to override the media type on a per
message basis. In most cases, the configuration specifies the media type that is used throughout the
application.

Override the content type based on the message type.

Option Description

Request Set the Content-Type header in the HTTP RequestClients to override the request
body content type. The values are:

● Content-Type: application/json

● Content-Type: application/xml

● Content-Type: application/bjson

Response Set the Accept header in the HTTP RequestClients to override the response
content type. The values are:

● Accept: application/json

● Accept: application/xml

● Accept: application/bjson

Configuring REST Bindings
Specify various details after adding the REST binding type to the composite service or reference using
TIBCO Business Studio.

Prerequisites

Install all four profiles of ActiveMatrix Service Grid or ActiveMatrix Service Bus.

You add a REST binding to the composite service or reference from the TIBCO Business Studio
Composite Editor.

Procedure

1. Import an existing project or create a new project in TIBCO ActiveMatrix Business Studio. See the
TIBCO ActiveMatrix documentation set.

2. Add a REST binding from the canvas view or the properties view.

Option Description

Canvas view Right-click the service or reference and select Add > REST Binding from
the popup menu.

Properties view
● Click the service or reference on the canvas.

● In the Properties view, click the Bindings tab.

● Click the Add Binding... button.

3. Select the service or reference and display its properties.

13

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

4. For a promoted service, specify the following details in the right pane of the Properties View.

Option Description

Name Name of the REST binding.

HTTP Connector HTTP Connector and Context Root together define the URL that is used at
runtime.

You define and name the HTTP Connector at design time. At runtime, you
need to create a resource of type HTTP Connector and assign it the name
you used at design time.

Context Root HTTP Connector and Context Root together define the URL that is used at
runtime.

Media Type Select Standard JSON, Badgerfish JSON, or XML from the pull-down
menu to specify the media type for the request or the response message.

Exclude
namespaces from
response

Excludes namespaces from the response message.

This option is displayed only when Media Type is set to Badgerfish JSON.

5. For a promoted reference, specify the following details in the right pane of the Properties View.

Option Description

Name Name of the REST binding.

Description Short description of the REST binding.

Media Type (read-only field). The media type can be set from the REST resource
configuration file.

Rest resource
configuration file

Location of the REST resource configuration file.

A resource configuration file is not set by default. To create a resource
configuration file, click the -not set- link or click the picker icon and then
click Create New. When you click on Finish in this wizard, a new resource
configuration file (.rrc) is created with default media type (JSON) and
resource base URI.

The .rrc file must be placed in the Service Descriptor folder of
the SOA project.

HTTP Client Select the HTTP client.

Enable pass
through mode

Enables the pass through mode. In the pass through mode, a fixed WSDL
is configured on the REST binding. In the pass through mode,
ActiveMatrix Binding Type for REST behaves like the HTTP Binding Type.

Generating a Swagger JSON File from TIBCO Business Studio
Swagger is a set of open-source tools that can help you design, build, document, and consume REST
APIs. Swagger scans the application code and exposes the documentation on the URL. You can

14

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

consume this URL (a JSON document) to understand the capabilities of the REST service without
accessing the actual source code and documentation. You can now generate Swagger.json file from
TIBCO Business Studio as mentioned in the following steps.

Procedure

1. Click a promoted service.

2. In the Properties view, click the Bindings tab.

3. Select REST binding.

4. In the right pane of Properties view, click Generate Swagger link at bottom.The Swagger
Generation dialog displays.

5. Enter or select the parent folder field, accept the default folder or select a new one.

6. In the File name field, accept the default name (swagger_gen.json) or type a new one.

7. Click Next. The Concrete JSON Settings screen displays.

8. Accept the default values of host, port and scheme or enter new ones and click Finish. A Swagger
JSON file is generated in the parent folder and the file is opened in the editor.

Overview of the Swagger JSON File
The swagger.json file is a specification file that describes the REST APIs in accordance with the
Swagger specification. The file describes details such as available endpoints, operations on each
endpoint, input and output parameters for each operation, authentication methods, and other
information.

The swagger.json file can be written in YAML or JSON.

For a sample file, see Sample swagger.json File.

15

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Basic Structure of File

For more information on the basic structure of the swagger.json file, refer to http://docs.swagger.io/
spec.html#52-api-declaration.

The Swagger representation can be specified in a single file or split into separate files, at your
discretion. If it is split across files, you can use $ref fields in the specification to reference parts in
different files. For more information on the $ref field, refer to https://swagger.io/docs/specification/
using-ref.

Required Fields

For a complete list of all the objects and fields that can be defined in the swagger.json file, refer to
https://github.com/OAI/OpenAPI-Specification/blob/OpenAPI.next/versions/3.0.0.md#specification.

Sample Swagger JSON File
A sample Swagger.json file of the BookStore example is available in <TIBCO_HOME>/amx/3.4/
samples/rest/samples/bookstore/.

An overview of the fields from the sample Swagger.json file is provided below. For a complete list of
all the objects and fields that can be defined in the swagger.json file, refer to https://github.com/OAI/
OpenAPI-Specification/blob/OpenAPI.next/versions/3.0.0.md#specification.

Field Name Description

swagger Specifies the Swagger Specification version being used. For example:
"swagger" : "2.0"

info Provides metadata about the API. For example, the Application API version,
title, and port type of service.
"info" :
{"version" : "1.0",
"title":"com.tibco.restbt.sample.bookstore",
"description" :
"Port Type:BookStoreResource"}

basePath The base URL of the server. All API endpoints are relative to the base URL.
The base URL is of the following format:
scheme://host[:port][/path][parameters]

Some examples are:
http://localhost:8080/bookstore/books
http://localhost:8080/bookstore/books/{title} (with path
parameters)
http://localhost:8080/bookstore/books?storename=demo (with
query parameters)

host The Host of the Service. For example:
"host" : "localhost:9009"

schemes The type of the security scheme supported for authentication. For example:
"schemes" : ["http"]

16

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

http://docs.swagger.io/spec.html#52-api-declaration
http://docs.swagger.io/spec.html#52-api-declaration
https://swagger.io/docs/specification/using-ref
https://swagger.io/docs/specification/using-ref
https://github.com/OAI/OpenAPI-Specification/blob/OpenAPI.next/versions/3.0.0.md#specification
https://github.com/OAI/OpenAPI-Specification/blob/OpenAPI.next/versions/3.0.0.md#specification
https://github.com/OAI/OpenAPI-Specification/blob/OpenAPI.next/versions/3.0.0.md#specification

Field Name Description

paths The relative paths to the individual endpoints and their operations. The path
is appended to the base URL to construct the full URL.

tags A list of tags applicable for the operation. Tags can be used for logical
grouping of operations. For example:
 "tags" : ["BookStoreResource"]

description An explanation of the operation.
 "description" : "getBookList"

operationId Unique string used to identify the operation. For example:
"operationId" : "getBookList"

produces A list of MIME types the operation can produce. For example:
"produces" : ["application/json", "application/bjson",
"application/xml"]

consumes A list of MIME types the operation can consume. For example:
"consumes" : ["application/json", "application/bjson",
"application/xml"]

parameters A list of parameters that are applicable for the operation. For example:
"parameters" : [{
 "name" : "storename",
 "description" : "getBookListRequest",
 "schema" : {
 "description" : "getBookList",
 "type" : "string"
 },
 "in" : "query"
 }]

responses A list of possible responses returned by executing the operation. For example,
a successful response is:
"responses" : {
 "200" : {
 "description" : "Successful Response",
 "schema" : {
 "$ref" : "#/definitions/getBookListResponse"
 }
 }
 }

$ref Refer to other components in the specification, internally and externally.
For example:
"$ref" : "#/definitions/getBookListResponse"

17

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Sending and Consuming HTTP Headers
You can send and consume HTTP headers from the REST operation invocations, using context
parameters on REST reference and service bindings. The values populated by the REST binding, map
HTTP Transport headers to context parameters.

In the case of REST reference bindings, using context mapping, the values set by the Implementation
type can be sent as HTTP Headers as part of the REST request. Also, the HTTP Headers received as part
of the REST response, can be made available to the Implementation Type.

In the case of REST service bindings, using context mapping, the values of the HTTP Transport Headers
can be made available to the Implementation Type (for example, Java IT). Also, the values set by the
Implementation Type can be sent as HTTP Transport Headers as part of the REST response.

The Content-Type or Accept headers are not supported in context parameters and the REST Resource
Configuration (RRC) file. That is, you cannot add a context parameter with the name as Content-Type
or Accept. In the RRC file, you cannot add Content-Type or Accept as a Request Parameter.

For details on configuring the Inbound, Outbound, and Fault messages for service and reference, refer
to the following sections. A sample project is provided as part of the installation in TIBCO_HOME/amx/
<version>/samples/rest/samples/rest.context to elaborate on the same. Refer to the /
rest.context/Readme.pdf for details.

Creating and Mapping Context Parameters
You can add context parameters to REST bindings in the Context Parameters section of the General tab.

Procedure

1. Navigate to the General tab > Context Parameters section of a Promoted Service or Reference.

2. Add a new Context Parameter; select the Operation(s) it applies to, the Direction (Input, Output
or Fault), and the Type (Basic or Bag). For Basic Context Parameters, select a Definition, to
describe the data type of the parameter.

For instance, bookNameCP is a Basic string context parameter that applies to the input flow of the
getBookList operation. The name bookNameCP is used for context parameter mapping in the next
step, and is also referred to by IT Implementation.

3. Navigate to the Bindings tab, in the REST Binding Context Parameter Mapping section and
specify the HTTP header name in the Header Name column.

18

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

4. If the selected type is Basic, specify the HTTP header name in the Header Name column.
The specified Header Name appears as a HTTP Header on the wire and the context Parameter name
is used by Java IT for the Get and Set methods. For instance, the Basic string context parameter
bookNameCP is mapped to HTTP Header Name bookName. That is, when REST service binding
intercepts a request, it retrieves the value of the HTTP Header bookName and makes it available to
IT Implementation as a value of context parameter bookNameCP.

5. Generate Java IT Implementation and add the following declaration to the Implementation class:

//org.osoa.sca.annotations.Context
@Context
//com.tibco.amf.platform.runtime.extension.context.ComponentContext
public ComponentContext componentContext;

For REST Service Binding
To configure the inbound and outbound messages, see:

Configuring for Request (Inbound) Flow on page 19

Configuring for Response (Outbound or Fault) Flow on page 20

Configuring for Request (Inbound) Flow

You can configure inbound messages received on a service by configuring the following:

● Supported Type: Basic, Bag
● Supported Header Source: HTTP_HEADERS
● Direction: Inbound
Add the following code after receiving the service operation response:

To retrieve a 'Basic' context parameter:
//Retrieve requestContext from componentContext which contains the inbound context
parameters from Service-side
RequestContext originalRequestContext = (RequestContext)

componentContext.getRequestContext();
originalRequestContext.getParameter("bookNameCP", String.class));

The return value of above getParameter() call corresponds to the HTTP Header value of the
bookName header (corresponding to context parameter bookNameCP) in the incoming REST Request.

To retrieve context parameter 'Bag' :
//Retrieve requestContext from componentContext which contains the inbound context
parameters from Service-side

19

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

RequestContext originalRequestContext = (RequestContext)
componentContext.getRequestContext();

HashMap<String, String> requestHeadersAllCP_service_map = (HashMap<String, String>)
originalRequestContext.getParameter("requestHeadersAllCP", Map.class);

The HashMap requestHeadersAllCP_service_map contains all the HTTP Headers (user-defined and
native HTTP Headers, corresponding to context parameter requestHeadersAllCP) in the incoming
REST Request.

Configuring for Response (Outbound or Fault) Flow

You can configure outbound messages sent from a service by configuring the following:

● Supported Type: Basic, Bag

● Supported Header Source: HTTP_HEADERS

● Direction: Outbound / Fault

Add the following code.

To set a 'Basic' context parameter:
//Create a Mutable callbackContext (Response flow) from the original RequestContext
MutableCallbackContext originalCallbackContext = (MutableCallbackContext)
originalRequestContext.createCallbackContext();

originalCallbackContext.setParameter("bookCategoryCP", String.class, "Classic");

The value Classic is set for the HTTP Header bookCategory (corresponding to the context parameter
bookCategoryCP) in the outgoing REST Response.

To set a context parameter 'Bag' :
//Create a Mutable callbackContext (Response flow) from the original RequestContext
MutableCallbackContext originalCallbackContext = (MutableCallbackContext)
originalRequestContext.createCallbackContext();

HashMap<String, String> responseHeadersAllCP_service_map = new HashMap<String,
String>();
responseHeadersAllCP_service_map.put("bookAuthor", "Harper Lee");
responseHeadersAllCP_service_map.put("bookPublishYear", "1960");
originalCallbackContext.setParameter("responseHeadersAllCP", Map.class,
responseHeadersAllCP_service_map);

The contents of the HashMap responseHeadersAllCP_service_map will be set as HTTP Headers
(user-defined, corresponding to context parameter responseHeadersAllCP) in the outgoing REST
Response. Setting native HTTP Headers is not permitted.

For REST Reference Binding
To configure the inbound and outbound messages, see the following sections.

Configuring for Request (Outbound) Flow on page 20

Configuring for Response (Inbound or Fault) Flow on page 21

Configuring for Request (Outbound) Flow

You can configure outbound messages sent from a reference by configuring the following:

● Supported Type: Basic, Bag

● Supported Header Source: HTTP_HEADERS

● Direction: Outbound

Add the following code.

20

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

To set a 'Basic' context parameter:

//Create a new Mutable requestContext from componentContext to set context
parameters for Reference-side
MutableRequestContext createMutableRequestContext =
componentContext.createMutableRequestContext();

createMutableRequestContext.setParameter("bookNameCP", String.class, "How to Kill a
Mockingbird");

The value How to Kill a Mockingbird is set for the HTTP Header bookName (corresponding to
context parameter bookNameCP) in the outgoing REST Request.

To set a context parameter 'Bag':
//Create a new Mutable requestContext from componentContext to set context
parameters for Reference-side
MutableRequestContext createMutableRequestContext =
componentContext.createMutableRequestContext();

HashMap<String, String> requestHeadersAllCP_reference_map = new HashMap<String,
String>();
requestHeadersAllCP_reference_map.put("bookAuthor", "Harper Lee");
requestHeadersAllCP_reference_map.put("bookPublishYear", "1960");
createMutableRequestContext.setParameter("requestHeadersAllCP", Map.class,
requestHeadersAllCP_reference_map);

The contents of the HashMap requestHeadersAllCP_reference_map are set as HTTP Headers (user-
defined, corresponding to context parameter requestHeadersAllCP) in the outgoing REST Request.

Configuring for Response (Inbound or Fault) Flow

You can configure inbound messages received on a reference ("out|fault" part of "in-out" MEP) by
configuring the following:

● Supported Type: Basic, Bag

● Supported Header Source: HTTP_HEADERS

● Direction: Inbound/Fault

Add the following code after receiving the service operation response:

To retrieve a 'Basic' context parameter:
//Retrieve the callbackContext (Response/Fault flow) from the mutableRequestContext
CallbackContext callbackContext = createMutableRequestContext.getCallbackContext();

callbackContext.getParameter("bookCategoryCP", String.class));

The return value of above getParameter() call corresponds to the HTTP Header value of the
bookCategory header (corresponding to the context parameter bookCategoryCP) in the incoming
REST Response.

To retrieve a context parameter 'Bag':
//Retrieve the callbackContext (Response/Fault flow) from the mutableRequestContext
CallbackContext callbackContext = createMutableRequestContext.getCallbackContext();

HashMap<String, String> responseHeadersAllCP_reference_map = (HashMap<String,
String>)callbackContext.getParameter("responseHeadersAllCP", Map.class);

The HashMap responseHeadersAllCP_reference_map contains all HTTP Headers (user-defined and
native HTTP Headers, corresponding to context parameter responseHeadersAllCP) in the incoming
REST Response.

21

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Mapping HTTP Status Code and Status Message

You can find out the HTTP status code and status message of every REST response received by a REST
reference binding. You can then map the HTTP status code and status message to a context parameter.
This is helpful when you intend to make decisions based on the HTTP status code of the response
received.

Configure the following:

● Supported Type: Basic
● Supported Header Source: HTTP_HEADERS
● Direction: Output
● Header Name: statusCode (For HTTP Status Code)/statusMsg (For HTTP Status Message)
● Context Parameter Name: statusCode (For HTTP Status Code)/statusMsg (For HTTP Status

Message)

Modifying a REST Resource Configuration File

Procedure

1. Select a REST Binding on a reference.
2. In the Properties View, click on the hyperlink of the REST resource configuration file.

This displays the REST Resource Configuration File Editor.
3. Specify the Context Root.
4. Select the Media Type - Standard JSON or XML. The default is Standard JSON.

This Media Type applies to all operations. You cannot set the Media Type at an operation
level. This Media Type applies to both the request and response of each operation, that is,
the default value of "Content-Type" and "Accept" header is derived from Media Type.

5. Click to add a resource. In the Details Section, specify the following resource details.

● Resource Name: resource name must be unique.
● Resource Path: Resource Path is the path used to access a resource. It is appended to the value of

Context Root.

The URL is a combination of the following: <machine_name>:<port>/<ContextRoot>/
<Resource>.

In TIBCO ActiveMatrix, a WSDL is usually created with operations in it. If a REST
service hosts this WSDL, each operation name has a 'Path' (or Resource Path)
associated with the operation. The 'Path' may be different from the Operation Name.
This 'Path' must be mapped to the corresponding 'Resource' in the REST Resource
Configuration file on a reference.

● Path Parameters: To create a path parameter, create a Path variable represented as {path
parameter}. For example, Resource path to access a book with Id is "/book/{id}" where {id} is Path
Parameter. Path Parameters are added automatically to the table based on the Resource Path
value. In the table, you can edit the data type but you cannot add or remove parameters. Path
Parameters cannot be null or empty.

6. Click to add an operation to a resource. In the Details Section, specify operation details such
as Operation Name and HTTP Method. Operation Name must be unique across all resources. You

22

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

can select GET, PUT, POST, or DELETE as the HTTP Method. The default is GET. For each
operation, specify the following request and response details, as appropriate.

Request or Response
Type of Request or
Response Procedure

Request

A request configuration
includes query parameters,
header, and body. Query
parameter and header name
cannot be null or empty.
Header name cannot be
"Accept" or "Content-Type".

NOTE: The Body (JSON) or
Body (XML) sections are not
displayed if HTTP Method is
set to GET or DELETE.

Standard JSON Request In the Rest Resources section,
select Request under
Operation.

In the Details Section, click

 to add the query
parameters or header. In the
Body (JSON) section, provide
the JSON payload details.

XML Request In the Rest Resources section,
select Request under
Operation.

In the Details Section, click

 to add the query
parameters or header. In the
Body (XML) section, select the
XSD element by clicking -not
set- hyperlink or by clicking

.

NOTE: All the XSD files
needed for the configuration
of the RRC must be placed in
the Service Descriptors
folder. This includes all
imported XSDs from within
an XSD.

XSD Element picker only
shows XSD Element and not
XSD Types.

Response

A response configuration
includes a body.

Standard JSON Response In the Rest Resources section,
select Response under
Operation.

In the Details Section, specify
the details in the Body
(JSON) section or select the
JSON file using the file picker.

23

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Request or Response
Type of Request or
Response Procedure

XML Response In the Rest Resources section,
select Response under
Operation.

In the Details Section, select
the XSD in the Body (XML)
section.

7. Click to add an error type to an operation.
One operation can have multiple error types. Every error type must be associated with either a
single or a list of HTTP Status Codes. If a list of status codes needs to be specified, separate them
with a comma.

8. To generate a WSDL file from the .rrc file, select the .rrc file in the Project Explorer window, and
then select Generate WSDL from the shortcut menu.
A WSDL along with XSD (in case of Standard JSON) is generated.

9. Configure the reference using the WSDL generated in step 8.

On the REST reference side, you must use only the WSDL generated from the REST
Resource Configuration File Editor to configure the reference. Do not manually edit a
WSDL generated from the REST Resource Configuration File Editor. Make sure that the
WSDL and the .rrc file are always in sync with each other. That is, if you make changes
in the REST Resource Configuration File Editor, always regenerate the WSDL file.

Policies Supported

TIBCO ActiveMatrix binding Type for REST supports the following policies. For additional information
on these policies, refer to the TIBCO ActiveMatrix® Service Grid or TIBCO ActiveMatrix® Service Bus
documentation.

Service Side

Policy Description

Basic Authentication Basic Authentication is a security policy that ensures that a consumer
request is validated based on the credentials in the header.

Basic or Username token
authentication

Username Token Authentication is a security policy that ensures that a
consumer request is validated based on the username token &
credentials in the header.

Authorization by role Authorization by Role is a security policy that ensures that a request is
authorized based on the role used in the Security Assertion Markup
Language (SAML) tokens.

Authentication by
Kerberos

Authentication by Kerberos is a security policy to ensure that consumer
requests provide their credentials as Special Negotiation (SPNEGO)
tokens using Kerberos authentication.

24

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Policy Description

Authentication by
Siteminder

Authentication by SiteMinder is a security policy to ensure that the
consumer credentials are validated as username tokens using the
SiteMinder protocol.

Reference Side

Policy Description

Basic Credential
Mapping

Basic Credential Mapping is a policy to ensure that the credentials in the
consumer request are validated once and propagated across domains.
Credentials are mapped using a password identity provider.

25

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Sample Projects

TIBCO ActiveMatrix Binding Type for REST installation includes sample programs which
demonstrates use of the HTTP operations and mediation component.

Service Side

TIBCO ActiveMatrix Binding Type for REST includes the following sample programs for the service
side in the TIBCO_HOME\amx\<version>\samples\rest directory.

● Bookstore sample Implemented in Java. Exposes a potential interaction of a bookstore
administrator with the bookstore inventory. The sample includes two HTTP GET operations,
getBookList and getBookByTitle, and one HTTP POST operation, addBook.

● Multiplecomplextypes sample Demonstrates the use of a Mediation component to expose a
WSDL operation with multiple parts of complex type. Your application might need to perform such
mediation because the Binding Type for REST only supports WSDL operations with a single part of
complex type.

Reference Side

TIBCO ActiveMatrix Binding Type for REST includes the following sample programs for the reference
side in the TIBCO_HOME\amx\<version>\samples\rest directory.

● Bookstore client sample This sample is configured with REST Binding Type on reference with
XML media-type. It consumes the 'bookstore' sample service shipped with the product.

● Facebook client sample This sample is configured with REST Binding Type on reference with
Standard JSON as the media-type. It invokes an external FaceBook service.

● Pass-Through Mode Sample This sample is configured with REST Binding Type on reference to
demonstrate the Pass Through Mode.

Executing the Bookstore Sample
Deploy the Bookstore sample using TIBCO Business Studio, review the composite configuration and
then run the sample to understand about HTTP operations.

Prerequisites

● Before running the samples, ensure that all the required software has been installed and is operating
correctly.

If you install only the Administration profile and not the SOA Development profile, the
samples are not included in the installation.

● Download a REST client such as:

● POSTMAN REST client: https://www.getpostman.com/postman

● GitHub RESTClient: https://github.com/wiztools/rest-client/

The REST client offers an easy to use interface for setting HTTP headers and a simple text box for
sending payload in the HTTP body. If you do not download a REST client, you can see results of
GET operations in a Web browser, but you cannot perform HTTP POST operations.

The service operations are implemented in Java, and the service interface is defined in WSDL.

Load the project in TIBCO Business Studio in order to run the sample.

26

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

https://www.getpostman.com/postman
https://github.com/wiztools/rest-client/

The bookstore sample illustrates how a bookstore administrator might look up the inventory and add
new books. Lookup is by title, or the administrator can get a list of books. Lookup can happen from a
Web browser or a REST client. Adding new books can be done from a REST client.

Importing the Bookstore Sample Project
Load the project in TIBCO Business Studio to run the sample.

Procedure

1. Start TIBCO Business Studio.

2. From the File menu, select Import.

3. In the Import dialog, select General > Existing Projects into Workspace and click Next.

4. Select the root directory of the sample project. Check the Copy projects into workspace check box.

5. Click Finish.

Reviewing the WSDL that Defines the Service interface
Explore the WSDL properties to understand input and output operations for the component service.

Procedure

1. In the Project Explorer, select the bookstore project (com.tibco.restbt.sample.bookstore) and open
Composites.

2. Traverse the hierarchy to get to the BookstoreResource component service, which displays in the
Properties tab.

3. Click the WSDL link to display the WSDL in the modeling pane, and explore the inputs and outputs
for the different operations.

27

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Reviewing the Composite Configuration
Explore the URL and operations associated with the REST bindings.

The composite includes the Java component and the composite service on which the REST bindings are
defined.

Procedure

1. In the design window, select the BookstoreResource icon.

2. In the Promoted Service pane, examine RESTService_Binding1 and the operations that are
associated with it.

3. Select RESTService_Binding1 to examine the HTTP Connector and context root associated with the
binding. The two together form the URL that the service uses.

4. Examine the operation. Each operation maps to a WSDL implemented in Java. The Path field shows
the URL where the operation is exposed.

Running the Bookstore Sample
Start the application and test the HTTP GET and POST operations. You can run the sample from TIBCO
BusinessStudio.

Procedure

1. Right click the design panel background and select Debug in RAD to start the application.

2. Use an HTTP client such as a Web browser or a the REST client tool to invoke one of the HTTP GET
method.

For example, to test getBooklist, specify the following URL in a Web browser or a REST client.
 http://host:port/bookstore/books

Here:

● host and port are required by HTTP. You can find the port by choosing the bug icon in the
title bar and selecting Debug Configuration. You see that information only after you have run
the sample once.

● /bookstore is the context root for RESTService_Binding1.

● /books is the 'Path' of getBookList.

For samples of calling each method, see the sample_payloads.txt file.

3. To test the HTTP POST operation addBook, you need a REST client. You can specify the XML code
for the book you want to add in the POST request.

28

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Executing the MultipleComplexTypes Sample
Deploy and run the MultipleComplexTypes project to understand use of mediation component for
operations with complex types.

TIBCO ActiveMatrix Binding Type for REST supports operations with complex types, but does not
allow more than one complex type per operation. At times, you might have a service that is
implemented in Java, which has operations with multipart messages with complex types. If you want to
make that information available to a REST client, you can use a mediation component. The
MultipleComplexTypes sample illustrates this.

Importing the MultipleComplexTypes Sample Project
Load the project in TIBCO Business Studio to run the sample.

Procedure

1. Start TIBCO Business Studio.

2. From the File menu, select Import.

3. In the Import dialog, select General > Existing Projects into Workspace and click Next.

4. Select the root directory of the sample project. Check the Copy projects into workspace check box.

5. Click Finish.

Reviewing the Mediation Flow
Explore the mediation flow to see how multiple parts are mapped to a single field.

Procedure

1. In the Project Explorer, select the multiplecomplextype composite.

2. Examine the SingleToMultipe mediation component in the design window.

3. Double-click the pre-defined mediation flow to launch the Mediation Flow Editor.

4. Double-click the addCustomer operation to display the mapping properties in the Input tab of the
Transform Mediation Task panel. You can see that the source has multiple parts (Name, Address,
ContactInfo) while mediation context maps the information to a single CustomerInput field.

29

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Running the MultipleComplexTypes Sample
Start the sample project using TIBCO BusinessStudio and run it using a REST client.

Procedure

1. In TIBCO Business Studio, click the design panel background and select Debug in RAD.

2. Open a REST client and set the host and port to match your system and the port on which the
service runs.

3. Set the application type to JSON.

4. Select the Body tab and enter one of the sample body strings from the sample_payloads.txt file.

Executing the Bookstore Client Sample (Reference)

Procedure

1. Deploy the Bookstore client sample using TIBCO Business Studio.

2. Review the composite configuration.

3. Run the sample to understand HTTP operations.

Importing the Bookstore Client Sample Project
Load the project in TIBCO Business Studio to run the sample.

Procedure

1. Start TIBCO Business Studio.

2. From the File menu, select Import.

3. In the Import dialog, select General > Existing Projects into Workspace and click Next.

4. Select the root directory of the sample project. Check the Copy projects into workspace check box.

5. Click Finish.

30

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Reviewing the REST Resource Configuration File That Defines the REST Service
Interface

Procedure

1. In the Project Explorer, select the bookstore client project and open Composites.

2. Traverse the hierarchy to get to the BookstoreResource component reference, which displays in the
Properties tab.

3. Select RESTReference_Binding1 and click the REST Resource Configuration File link.

4. Review the REST resource configuration file.

Running the Bookstore Client Sample
Start the application and test the HTTP GET and POST operations. You can run the sample from TIBCO
BusinessStudio.

Procedure

1. Right click the design panel background.

2. Select Debug in RAD to start the application.

Executing the Facebook Client Sample (Reference)

Procedure

1. Deploy the Facebook client sample using TIBCO Business Studio.

2. Review the composite configuration.

3. Run the sample to understand HTTP operations.

Importing the Facebook Client Sample Project
Load the project in TIBCO Business Studio.

Procedure

1. Start TIBCO Business Studio.

2. From the File menu, select Import.

3. In the Import dialog, select General > Existing Projects into Workspace and click Next.

4. Select the root directory of the sample project. Check the Copy projects into workspace check box.

5. Click Finish.

31

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Running the Facebook Client Sample
Start the application and test the HTTP GET and POST operations. You can run the sample from TIBCO
BusinessStudio.

Procedure

1. Deploy the DAA located in Deployment Artifacts:

- Facebook Graph APIs are SSL protected and hence the client must be SSL-enabled. The certificate
file (.crt) and keystore (.jks) file are packaged along with this sample.

- The above keystore is referred by Resource Template/
FacebookKeystoreProviderResource.cred. Update it with the absolute path to the keystore.

If the keystore has expired, download it from the Facebook site.

2. Right click the design panel background.

3. Select Debug in RAD to start the application.

4. Use URL http://<Host>:<Port>/fBGraphService?wsdl to load the WSDL in SOAP UI or in the
WebService Explorer.

You will see an operation getUserProfile which accepts two arguments - user and
access_token. The access_token argument is the Oauth token required by Facebook REST API
and user is the user name or id or me (currently logged in user).

5. Get an Access Token:
a) Open Facebook Graph Explorer using the following URL: https://

developers.facebook.com/tools/explorer/?method=GET&path=me.
b) After authentication, click Get Acces Token on the right side in Graph API Explorer.
c) After you get the Access Token, use it while invoking getUserProfile operation.

Executing the Pass-Through Mode Sample (Reference)

Procedure

1. Import the Pass Through Model sample project in TIBCO Business Studio.
a) Start TIBCO Business Studio.
b) From the File menu, select Import.
c) In the Import dialog, select General > Existing Projects into Workspace and click Next.
d) Select the root directory of the sample project. Check the Copy projects into workspace check

box.
e) Click Finish.

2. Review the composite configuration.

3. Deploy the DAA in TIBCO ActiveMatrix Administrator.

4. Test the HTTP operations.

Executing the rest.context Sample

The rest.context sample includes:

● REST SOA projects (/rest-soap-projects/):

32

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

— /com.tibco.restbt.context.sample.soa/Composites/rest-java.composite (/
com.tibco.restbt.context.sample.soa/Deployment Artifacts/rest-java.daa) : REST-
Java (Backend REST App)

— /com.tibco.restbt.context.sample.restjava: Sample Java IT Provider Implementation for
REST-Java App (1)

— /com.tibco.restbt.context.sample.soa/Composites/restjavarest.composite ((/
com.tibco.restbt.context.sample.soa/Deployment Artifacts/rest-java-rest.daa) :
REST-Java-REST (Frontend REST App that connects with the Backend REST-Java App via
REST Reference (1))

— /com.tibco.restbt.context.sample.restjavarest : Sample JavaIT Provider/Consumer
Implementation for REST-Java-REST App (3)

● SoapUI projects to invoke the REST Apps (/SoapUIprojects/):

— context-REST-Java-REST-soapui-project: SOAPUI project to send a REST Request to the
REST-Java-REST App (3) with the HTTP Headers

— context-REST-Java-soapui-project.xml: SOAPUI project to send a REST Request to the
REST-Java App (1) with the HTTP Headers

● SoapUI projects to invoke the REST Apps (/SoapUI-projects/):

— context-REST-Java-REST-soapui-project: SOAPUI project to send a REST Request to the
REST-Java-REST App (3) with the HTTP Headers

— context-REST-Java-soapui -project.xml: SOAPUI project to send a REST Request to the
REST-Java App (1) with the HTTP Headers

Running the rest.context Example

1. Launch TIBCO ActiveMatrix Administrator.

2. Create a HTTP Connector Resource Template httpConnector with host as localhost and port as
9897.

3. Create and Install corresponding HTTP Connector Resource Instance httpConnector on Runtime
Node.

4. For REST-Java App, deploy the following DAA:

com.tibco.restbt.context.sample.soa/Deployment Artifacts/restjava.daa

5. For REST-Java-REST App, deploy the following DAA:

com.tibco.restbt.context.sample.soa/Deployment Artifacts/restjavarest.daa

6. To send a REST Request to the REST-Java App, launch the SOAPUI project context-REST-Java-
soapui-project.xml using SoapUI 5.0.0, and send the following REST Request:

33

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

7. To send a REST Request to the REST-Java-REST App, launch the SOAPUI project context-REST-
Java-REST-soapui-project.xml using SoapUI 5.0.0, and send the following REST Request:

Breakdown of the rest.context Scenario
When a REST Request is sent to the REST-Java-REST App with the HTTP Headers (for example,
bookName and bookID) using the SOAPUI project context-REST-Java-REST-soapui-project.xml:

1. they are mapped to context parameters that can be retrieved in the Java IT Implementation (“Java1
(service-inbound)” in the Runtime Node logs shown later)

2. new basic header values and a collection of headers is sent to the REST-Java App via context
parameters (“Java1 (reference-inbound)” in the Runtime Node logs shown later)

3. the headers are retrieved in the REST-Java App’s Java IT implementation (“Java2 (service-inbound)”
in the Runtime Node logs shown later)

4. new outbound headers are set in the REST-Java App’s Java IT implementation (basic and bag) to be
sent back to the REST-Java-REST App (Java2 (service-outbound) in the Runtime Node logs shown
later)

5. the headers sent by REST-Java App are retrieved in REST-Java-REST App’s Java IT implementation
(“Java1 reference-outbound)” in the Runtime Node logs shown later)

6. some headers are set in REST-Java-REST App’s Java IT implementation to be sent back to the
originating client (“Java1 (service-outbound)” or “Java1 (service-fault)” in the Runtime Node logs
shown later, depending on the value of “storename” (“success” and “fault” respectively))

REST-Java-REST: Success Scenario of REST-Java

34

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Runtime Node Logs

[INFO] [rest-java-rest] stdout - ---------- Java1(service-inbound) ----------
[INFO] [rest-java-rest] stdout - storename = success
[INFO] [rest-java-rest] stdout - ---------- Java1(service-inbound) ----------
[INFO] [rest-java-rest] stdout - Getting bookName = The Kite Runner
[INFO] [rest-java-rest] stdout - Getting bookID = 1602
[INFO] [rest-java-rest] stdout - Getting requestHeadersAllCP = {Host=localhost:
9897, User-Agent=Apache-Http-Client/4.1.1 (java 1.5),bookID=1602, Connection=Keep-
Alive,bookName=The Kite Runner}
[INFO] [rest-java-rest] stdout - ---------- Java1(reference-inbound) ----------
[INFO] [rest-java-rest] stdout - Setting bookName = How to Kill a Mockingbird
[INFO] [rest-java-rest] stdout - Setting bookID = 1501
[INFO] [rest-java-rest] stdout - Setting requestHeadersAllCP =
{bookPublishYear=1960, bookAuthor=Harper Lee}
[INFO] [rest-java] stdout - ---------- Java2 (service-inbound) ----------
[INFO] [rest-java] stdout - storename = success
[INFO] [rest-java] stdout - ---------- Java2 (service-inbound) ----------
[INFO] [rest-java] stdout - Getting bookName = How to Kill a Mockingbird
[INFO] [rest-java] stdout - Getting bookID = 1501
[INFO] [rest-java] stdout - Getting requestHeadersAllCP = {bookPublishYear=1960,
bookAuthor=Harper Lee,Cookie=JSESSIONID=1wt523hzhwphvlgyxxt8frpsu, Cookie2=
$Version=1, Host=localhost:9897, Accept-Charset=UTF-8, BookID=1501, Connection=Keep-
Alive, Accept=application/json, ContentType=application/json; charset=UTF-8,
bookName=How to Kill a Mockingbird}
[INFO] [rest-java] stdout - ---------- Java2 (service-outbound) ----------
[INFO] [rest-java] stdout - Setting bookCategory = Classic
[INFO] [rest-java] stdout - Setting bookQuantity = 50
[INFO] [rest-java] stdout - Setting responseHeadersAll: = {bookPublishYear=1960,
bookAuthor=Harper Lee}
[INFO] [rest-java-rest] stdout - ---------- Java1(reference-outbound) ----------
[INFO] [rest-java-rest] stdout - Getting bookCategory = Classic
[INFO] [rest-java-rest] stdout - Getting bookQuantity = 50
[INFO] [rest-java-rest] stdout - Getting responseHeadersAll: =
{bookPublishYear=1960, bookAuthor=Harper Lee, bookCategory=Classic,
bookQuantity=50, Date=Thu, 08 Oct 2015 21:04:22 GMT, Content-Length=111,
ContentType=application/json; charset=UTF-8} 08 Oct 2015 14:04:22,798
[httpConnector_10]
[INFO] [rest-java-rest] stdout - ---------- Java1(service-outbound) ----------
[INFO] [rest-java-rest] stdout - Setting bookCategory = Classic
[INFO] [rest-java-rest] stdout - Setting bookQuantity = 50
[INFO] [rest-java-rest] stdout - Setting responseHeadersAll: =
{bookPublishYear=1960, bookAuthor=Harper Lee}

35

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

REST-Java-REST: Fault Scenario of REST-Java

Runtime Node Logs

[INFO] [rest-java-rest] stdout - ----------- Java1 (service-inbound) -----------
[INFO] [rest-java-rest] stdout - storename = fault
[INFO] [rest-java-rest] stdout - ----------- Java1 (service-inbound) -----------
[INFO] [rest-java-rest] stdout - Getting bookName = The Kite Runner
[INFO] [rest-java-rest] stdout - Getting bookID = 1602
[INFO] [rest-java-rest] stdout - Getting requestHeadersAllCP = {Host=localhost:
9897, User-Agent=Apache-Http-Client/4.1.1 (java 1.5),bookID=1602, Connection=Keep-
Alive,bookName=The Kite Runner}
[INFO] [rest-java-rest] stdout - ----------- Java1 (reference-inbound) -----------
[INFO] [rest-java-rest] stdout - Setting bookName = How to Kill a Mockingbird
[INFO] [rest-java-rest] stdout - Setting bookID = 1501
[INFO] [rest-java-rest] stdout - Setting requestHeadersAllCP =
{bookPublishYear=1960, bookAuthor=Harper Lee}
[INFO] [rest-java] stdout - ----------- Java2 (service-inbound) -----------
[INFO] [rest-java] stdout - storename = fault
[INFO] [rest-java] stdout - ----------- Java2 (service-inbound) -----------
[INFO] [rest-java] stdout - Getting bookName = How to Kill a Mockingbird
[INFO] [rest-java] stdout - Getting bookID = 1501
[INFO] [rest-java] stdout - Getting requestHeadersAllCP = {bookPublishYear=1960,
bookAuthor=Harper Lee, Host=localhost:9897, Accept-Charset=UTF-8, bookID=1501,
Connection=Keep-Alive, Accept=application/json, Content-Type=application/json;
charset=UTF-8, bookName=How to Kill a Mockingbird}
[INFO] [rest-java] stdout - ----------- Java2 (service-outbound) -----------
[INFO] [rest-java] stdout - Setting bookCategory = Classic
[INFO] [rest-java] stdout - Setting bookQuantity = 50
[INFO] [rest-java] stdout - Setting responseHeadersAll: = {bookPublishYear=1960,
bookAuthor=Harper Lee}
[INFO] [rest-java-rest] stdout - ----------- Java1 (reference-outbound) -----------
[INFO] [rest-java-rest] stdout - Getting bookCategory = Classic
[INFO] [rest-java-rest] stdout - Getting bookQuantity = 50
[INFO] [rest-java-rest] stdout - Getting responseHeadersAll: =
{bookPublishYear=1960, bookAuthor=Harper Lee, bookCategory=Classic,
bookQuantity=50, Date=Thu, 08 Oct 2015 21:03:43 GMT, Content-Length= 252,
Expires=Thu, 01 Jan 1970 00:00:00 GMT, Set-
Cookie=JSESSIONID=1wt523hzhwphvlgyxxt8frpsu;Path=/BookStoreBackend;HttpOnly,
Content-Type=application/json; charset=UTF-8}

36

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

[INFO] [rest-java-rest] stdout - ----------- Java1 (service-fault) -----------
[INFO] [rest-java-rest] stdout - Setting notFoundBookID = Book ID Not Found

Executing the rest.extendedJSONConversion Sample
The rest.extendedJSONConversion sample includes:

● REST SOA projects (/rest-soa-projects/):

— restbt.sample.extended.json.conversion/Composites/

restbt.sample.extended.json.conversion.composite

(restbt.sample.extended.json.conversion/DeploymentArtifacts/
restbt.sample.extended.json.conversion.daa): REST-Java (Provider) and REST-Java-
REST (Client) components to demonstrate the enhancements

— com.sample.restbt.sample.extended.json.conversion: Provider and Client Java
Implementations

● SoapUI projects to invoke the REST Apps (/SoapUI-projects/REST-ExtendedJSONConversion-
soapui-project.xml):

— Service “InvokeRESTProvider”: SOAPUI project to send a REST request to the REST Provider
(REST-Java)

— Service “InvokeRESTClient”: SOAPUI project to send a REST request to the REST Client
(REST-Java-REST) which in turns sends a REST request to the REST Provider (REST-Java)

The SOAPUI projects will work as-is if the REST Service Bindings (that use HTTP Connector
“httpConnector”) are deployed on localhost:9897.

Provider side (Service/Outbound/Response): XML-to-JSON Conversion of String XSD Element

Consider an XSD Element that is defined as a “string” in the Provider-side WSDL Schema (identified by
the "type" attribute, which must be set to XSD string, for example 'type="xsd:string"' where "xsd" points
to the XML Namespace "http://www.w3.org/2001/XMLSchema").

If the XML Response contains a non-numeric String as the value for that XSD Element (for example
"teststring" or "test1234"), the JSON Response object is serialized correctly as part of the standard XML-
to-JSON Conversion that is as a JSON String ("teststring" or "test1234”).

However, if the XML Response contains a purely numeric String as the value for that XSD Element (for
example "1234"), then the standard XML-to-JSON Conversion converts the element to a JSON Number
(for example 1234 as opposed to "1234" that is not a JSON String), which would result in an inconsistent
conversion.

This holds true for other JSON types as well for example Double, Boolean, and so on. With this release,
the XSD Element's (in the sample scenario, the “Value” element in Sample.wsdl) "type" attribute will be
factored into the XML-to-JSON Conversion specifically for JSON Strings that is if the XSD Element is of
type "string", the resultant JSON Object will be a JSON String as well and not a JSON Number.

This affects the Service-side RESPONSE. The REQUEST is not affected.

Client side (Reference/Inbound/Request): XML-to-JSON Conversion of String XSD Element

Whether or not an element is of type “string” is inferred from the Reference-side REST Resource
Configuration (RRC) file, specifically from the “Request” of the “POST” method.

In the sample scenario, that would the “Request” of the “addOperation”. If you indicate via the RRC
file that “Value” is a string (by use of ‘”Value”:”123”’), then with this release, the POST Request
generation will honor the “string” type by sending a JSON String, even if the “Value” contains only a
purely numeric value.

This affects the POST method’s REQUEST. The POST method’s RESPONSE is not affected.

37

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

This behavior is demonstrated in the “Test Scenario” section below.

Only inline schemas are supported on the Service-side that is the XSD elements (of type string) that are
of interest to this sample must be present in the Service-side WSDL.

Running the rest.extendedJSONConversion Example

1. Launch TIBCO ActiveMatrix Administrator.

2. Set the TRA property com.tibco.amf.runtime.bindingtype.rest.extendedJsonConversion to
true for the appropriate Runtime Node (via Administrator UI or by adding the line
java.property.com.tibco.amf.runtime.bindingtype.rest.extendedJsonConversion=true

in the .tra file of the Runtime Node) and restart the Runtime Node.

3. Enable the com.tibco.amx.bt.rest logger in DEBUG level on the Runtime Node.

4. Create a HTTP Connector Resource Template httpConnector with host as localhost and port as
9897.

5. Create and Install corresponding HTTP Connector Resource Instance “httpConnector” on Runtime
Node.

6. For both REST-Java and REST-Java-REST Apps, deploy the following DAA:

/rest-soa-projects/restbt.sample.extended.json.conversion/DeploymentArtifacts/

restbt.sample.extended.json.conversion.daa

7. To send a REST Request to the REST-Java (Provider) App, launch the SOAPUI project REST-
ExtendedJSONConversion-soapui-project.xml using SoapUI 5.0.0, and use the
“InvokeRESTProvider” service. This will send a REST request to the REST-Java app and will
demonstrate the Provider-side (Service) behavior.

Set HTTP Request Header to Accept = application/json.

GET method’s RESPONSE (returnOne)

Request URL: http://localhost:9897/Sample/returnOne (HTTP method: GET)

Sample Response (Standard JSON)
{"returnOneResponse": {"Flights": [{
"Arrival": "arrival",
"Departure": "123"
}]}}

Note the [] indicating that Flights is an Array, based on the schema. Also, “123” is a string, which is
schema-compliant.

8. To send a REST Request to the REST-Java-REST (Client) App, launch the SOAPUI project REST-
ExtendedJSONConversion-soapui-project.xml using SoapUI 5.0.0, and use the
“InvokeRESTClient” service. This will send a REST request to the REST-Java-REST app, which in
turn will send a rest to the REST-Java app. This will demonstrate the Client-side (Reference)
behavior.

POST method’s REQUEST (addOperation)

Request URL: http://localhost:9897/SampleClient/addOperation (HTTP method: POST)

Set HTTP Request Header:
Accept = application/json and Content-Type = application/json

SOAPUI Request to first REST Service Endpoint:
{"addOperation": {"Arrays":[{"Key":"ABC","Value":"123"}]}}

POST Request generated by REST Reference Endpoint:
{"Arrays": [{"Key":"ABC","Value":"123"}]}

38

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Note the [] indicating that Arrays is an Array, based on the schema. Also, “123” is a string, based on
the schema.

Response (Standard JSON):
{"addOperationResponse": {"Arrays": [{
"Key": "ABC",
"Value": "123"
}]}}

Note the [] indicating that Arrays is an Array, based on the schema. Also, “123” is a string, based on
the schema.

REST-Java-REST: Runtime Node Logs for Rest-Java
25 Jan 2016 17:23:22,168 [httpConnector_2] [DEBUG] []
com.tibco.amx.bt.rest.RESTDispatcherServlet - TIBCO-AMX-BT-REST-300100:
Request Message from External Consumer to REST Promoted Service.
PromotedServiceName=SampleClient/Sample, BindingName=RESTService_Binding1,
BindingType=REST, URL=http://localhost:9897/SampleClient/addOperation,
ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversion/
JavaClient_1.0.0.v2016-01-25- 1703_inbound_service_SampleClient/
Sample_RESTService_Binding1, OperationName={http://HdrTest/Sample/}addOperation,
CorrelationID=1ed56457-33c4-47e0-aff4-e91b03b4cb92, ContextID=1ed56457-33c4-47e0-
aff4-e91b03b4cb92, ParentContextID=null, RequestHeaders={RequestAttributes :
amx.connector.name = httpConnector; org.mortbay.jetty.newSessionId =
hxepj3z2t0wde68d04zk9x4o; component.URI = urn:amx:DevEnvironment/
restbt.sample.extended.json.conversion#servicebinding(SampleClient/
RESTService_Binding1)___1.0.0.v2016-01-25-1703; } {RequestParameters : } { Protocol
= HTTP/1.1 } { RequestURI = /SampleClient/addOperation } { Method = POST }
{ HTTPHeader : Content-Type = application/json; Content-Length = 58; Host =
localhost:9897; Connection = Keep- Alive; User-Agent = Apache-HttpClient/4.1.1
(java 1.5); }{ QueryString : null }{PathInfo : /addOperation }

25 Jan 2016 17:23:22,254 [httpConnector_2] [DEBUG]
[restbt.sample.extended.json.conversion] com.tibco.amx.bt.rest.RESTHttpClient -
Request Message from REST Promoted Reference to External Service.
PromotedReferenceName=extendedConversionRrcResource,
BindingName=RESTReference_Binding1, BindingType=REST,
URL=http://localhost:9897/Sample/addOperation, ComponentURI=urn:amx:DevEnvironment/
restbt.sample.extended.json.conversion/JavaClient_1.0.0.v2016-01-25-
1703_outbound_reference_extendedConversionRrcResource_RESTReference_Binding1,
OperationName={http://ns.tibco.com/RSBT/extendedConversionRrcResource}add
Operation, CorrelationID=1ed56457-33c4-47e0-aff4-e91b03b4cb92, ContextID=f4261c98-
e8c5-46d0-99a7-d8c93747003f,
ParentContextID=1ed56457-33c4-47e0-aff4-e91b03b4cb92, Method=POST, SchemeName=http,
HostName=localhost, Port=9,897,
RequestURI=/Sample/addOperation, Headers=[Content-Type: application/json;
charset=UTF-8, Accept: application/json, Accept-Charset: UTF-8],
body={"Arrays":[{"Key":"ABC","Value":"123"}]}

25 Jan 2016 17:23:22,290 [httpConnector_4] [DEBUG] []
com.tibco.amx.bt.rest.RESTDispatcherServlet - TIBCO-AMX-BT-REST-300100:
Request Message from External Consumer to REST Promoted Service.
PromotedServiceName=Sample/Sample, BindingName=RESTService_Binding1,
BindingType=REST, URL=http://localhost:9897/Sample/addOperation,
ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversion/
JavaProvider_1.0.0.v2016-01-25-1703_inbound_service_Sample/
Sample_RESTService_Binding1, OperationName={http://HdrTest/Sample/}addOperation,
CorrelationID=46080a36-a928-46db-be47-2da6cb475b16, ContextID=46080a36-a928-46db-
be47-2da6cb475b16, ParentContextID=null, RequestHeaders={RequestAttributes :
amx.connector.name = httpConnector; org.mortbay.jetty.newSessionId =
1utc7734evusb1od1db0fspx60; component.URI = urn:amx:DevEnvironment/
restbt.sample.extended.json.conversion#servicebinding(Sample/
RESTService_Binding1)___1.0.0.v2016-01-25-1703; } { RequestParameters : }
{ Protocol = HTTP/1.1 } { RequestURI = /Sample/addOperation } { Method = POST }
{ HTTPHeader : Content-Type = application/json; charset=UTF-8; Accept =
application/json; Accept-Charset = UTF-8; Content-Length = 40; Host = localhost:
9897; Connection = Keep-Alive; }{ QueryString : null }{ PathInfo : /addOperation }

25 Jan 2016 17:23:22,298 [httpConnector_4] [DEBUG]

39

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

[restbt.sample.extended.json.conversion]
com.tibco.amx.bt.rest. ESTGenericReplyCallback - TIBCO-AMX-BT-REST-300103:
Response (Reply) Message from REST Promoted Service to External Consumer.
PromotedServiceName=Sample/Sample, BindingName=RESTService_Binding1,
BindingType=REST, URL=http://localhost:9897/Sample/addOperation,
ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversion/
JavaProvider_1.0.0.v2016-01-25- 1703_inbound_service_Sample/
Sample_RESTService_Binding1, OperationName={http://HdrTest/Sample/}addOperation,
CorrelationID=46080a36-a928-46db-be47-2da6cb475b16, ContextID=46080a36-a928-46db-
be47-2da6cb475b16, ParentContextID=null, Message={ Content-Type : application/json;
charset=UTF-8 }{ HTTP Status Code: 200 }{ HTTPBody : {"addOperationResponse":
{"Arrays":[{"Key":"ABC","Value":"123"}]}} }

25 Jan 2016 17:23:22,312 [httpConnector_2] [DEBUG]
[restbt.sample.extended.json.conversion]
com.tibco.amx.bt.rest.RESTOutboundEndpoint - Response Message from External Service
to REST Promoted Reference.
PromotedReferenceName=extendedConversionRrcResource,
BindingName=RESTReference_Binding1, BindingType=REST, URL=N/A,
ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversion/
JavaClient_1.0.0.v2016-01-25-
1703_outbound_reference_extendedConversionRrcResource_RESTReference_Binding1,
OperationName={http://ns.tibco.com/RSBT/extendedConversionRrcResource}addOperation,
CorrelationID=1ed56457-33c4-47e0-aff4-e91b03b4cb92,
ContextID=f4261c98-e8c5-46d0-99a7-d8c93747003f, ParentContextID=1ed56457-33c4-47e0-
aff4-e91b03b4cb92, HTTP
Response=HTTP Response { Status Code=200, Status Line=OK, Headers=[Date: Tue, 26
Jan 2016 01:23:22 GMT, Expires: Thu, 01 Jan 1970 00:00:00 GMT, Set-
Cookie: JSESSIONID=1utc7734evusb1od1db0fspx60;Path=/Sample;HttpOnly, Content-Type:
application/json; charset=UTF-8, Content-Length: 65],
Body={"addOperationResponse":{"Arrays":[{"Key":"ABC","Value":"123"}]}}}

25 Jan 2016 17:23:22,318 [httpConnector_2] [DEBUG]
[restbt.sample.extended.json.conversion]
com.tibco.amx.bt.rest.RESTGenericReplyCallback - TIBCO-AMX-BT-REST-300103:
Response (Reply) Message from REST Promoted Service to External Consumer.
PromotedServiceName=SampleClient/Sample,
BindingName=RESTService_Binding1, BindingType=REST, URL=http://localhost:9897/
SampleClient/addOperation,
ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversion/
JavaClient_1.0.0.v2016-01-25-
1703_inbound_service_SampleClient/Sample_RESTService_Binding1,
OperationName={http://HdrTest/Sample/}addOperation,
CorrelationID=1ed56457-33c4-47e0-aff4-e91b03b4cb92, ContextID=1ed56457-33c4-47e0-
aff4-e91b03b4cb92, ParentContextID=null, Message={ Content-Type :
application/json; charset=UTF-8 }{ HTTP Status Code: 200 }{ HTTPBody :
{"addOperationResponse":{"Arrays":[{"Key":"ABC","Value":"123"}]}} }

40

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Limitations

This section lists the limitations and usage guidelines.

General Limitations

Trailing Slash in Request URL

● A REST BT service does not differentiate between a URL ending with a trailing slash (/) and one
without a trailing slash.

● A REST BT reference differentiates between a URL ending with a trailing slash and a URL not
ending with a trailing slash. The reference treats them as different URLs and depends on how you
have configured the resource path in the resource configuration file. For example:

— If the resource path is books/ (with a trailing /), the resulting URL is http://host:port/
Context-Root/books/.

— If the resource path is books, the resulting URL is http://host:port/Context-Root/books.

— If the resource path is books/ and a minimum of one query parameter (for example, ID), the
resulting URL is http://host:port/Context-Root/books?ID=value.

Numbers and Special Characters

● Numbers and special characters (period, comma, hyphen, or hash) are not supported in a Standard
JSON payload key.

Validation Limitations

Design-time

For Standard JSON, if you configure the resource configuration file from payloads that do not have a
well-defined root-level element, you must map the response and faults body to a unique status code.

Service Limitations
You cannot override the default status code (200) returned from a REST service.

Query and Path Parameters

● Mixing of path parameters and path parts in a resource URI is not supported. For example, an
online bookstore has a service to update (add/delete) the number of books in the inventory based on
ISBN. The resource URI of the update operations is:

http://host:port/store/books/{ISBN}/addToStore/{number-of-books} - where {ISBN} and
{number-of-books} are path parameters.

http://host:port/store/books/{ISBN}/subtractFromStore/{number-of-books}

Such resource URIs are not supported. However, the current implementation of REST BT supports
the resource URI where all the path parameters are suffixed. For example:

http://host:port/store/books/addToStore/{ISBN}/{number-of-books} - where {ISBN} and
{number-of-books} are the path parameters.

● Usage guidelines for query and path parameters:

— Path parameters and query parameters must be of Simple type.

41

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

— Query parameters are optional, if not specified.

— Configuring a custom default value for a query parameter is not supported.

— The key of the query parameter is the WSDL part name.

— Path parameters and query parameters must map to a WSDL part. The implementation does
not receive query parameters that are not mapped to any WSDL part name.

Request Response

● REST Request body - There can be at the most one WSDL part referring to a Complex-Type element,
which if present is considered as HTTP body.

● REST Request/Response - The WSDL part representing the REST body, must refer to Element and
not the Type. Simple type in body is not supported. However, you can construct a Simple type as
Complex-Type Element in a WSDL.

Schema Limitations

Standard JSON

● Standard JSON is not namespace-aware. All the elements, types, and attributes must be in a single
namespace. No foreign namespace elements or attributes are supported.

● Global attributes are not supported in the schema, for a REST service with Standard JSON as the
media type.

● For Standard JSON, the elementFormDefault attribute must always be set to qualified.

● To pass an attribute using JSON, you must represent it as "@Key": "Value". That is, prefix the key
with "@". For example, the following payload works:
{
"PersonDetailsInputNestedElements": {
"PersonDetailsInputElementComplexType":
{ "@PersonDOB": "2001-10-26T21:32:52", "@PersonName": "Mr Person" }
,
"FriendDetailsInputElementComplexType":
{ "@PersonDOB": "2001-10-26T21:32:52", "@PersonName": "Mr Friend" }
}
}

This convention is not specified by Standard JSON; it is specific to the TIBCO implementation.

42

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

Troubleshooting

Issue Workaround

For a REST BT Reference, the RRC file shows error messages
even when the validation shows no errors in the file. Error
mesages similar to the following are displayed in the Problems
window:
'NewRrcResource1.rrc' has some error. Please
validate manually.
REST_Binding: 'NewRrcResource1.rrc' has some error.
Please validate manually.

Clean the project.

For a REST BT Reference, the RRC to WSDL generation does not
generate an array type in XSD if the JSON payload has an array
represented by []. As an example, for the following payload:
{getMeresponseType: {
"id": "100006769630394",
"work": [
{
 "employer": {
 "id": "47358345258",
 "name":"TIBCO Software Inc."
 }
 }
]
}}

The generated XSD must look like:
<xs:complexType name="getMeresponseType">
<xs:sequence>
<xs:element type="xs:long" name="id" />
<xs:element type="workType" name="work"
maxOccurs="unbounded" minOccurs="0" /> //array
</xs:sequence>
</xs:complexType>

Make sure the array has at least
two elements.

If you send a request from a REST Client running on the same
machine where REST Service is deployed, you may see REST
client IP value as [0:0:0:0:0:0:0:1] on the TIBCO Service
Performance Manager dashboard.

Make sure the IPv4 DNS
resolution is used in the REST
Client setting.

43

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

	Contents
	TIBCO Documentation and Support Services
	TIBCO ActiveMatrix Binding Type for REST Overview
	REST Binding Type Key Terms
	REST Binding Type Usage
	REST Binding Type Key Features
	Easy-to-Use Configuration GUI
	Message Exchange Patterns
	Error Handling

	Complex XSD Constructs Mapping Rules

	REST Binding Development
	Payload Generation
	Generating XML Payloads
	Generating Badgerfish JSON Payloads

	Overriding Media Types (For Service Only)
	Configuring REST Bindings
	Generating a Swagger JSON File from TIBCO Business Studio
	Overview of the Swagger JSON File
	Sample Swagger JSON File
	Sending and Consuming HTTP Headers
	Creating and Mapping Context Parameters
	For REST Service Binding
	Configuring for Request (Inbound) Flow
	Configuring for Response (Outbound or Fault) Flow

	For REST Reference Binding
	Configuring for Request (Outbound) Flow
	Configuring for Response (Inbound or Fault) Flow

	Mapping HTTP Status Code and Status Message

	Modifying a REST Resource Configuration File
	Policies Supported

	Sample Projects
	Executing the Bookstore Sample
	Importing the Bookstore Sample Project
	Reviewing the WSDL that Defines the Service interface
	Reviewing the Composite Configuration
	Running the Bookstore Sample

	Executing the MultipleComplexTypes Sample
	Importing the MultipleComplexTypes Sample Project
	Reviewing the Mediation Flow
	Running the MultipleComplexTypes Sample

	Executing the Bookstore Client Sample (Reference)
	Importing the Bookstore Client Sample Project
	Reviewing the REST Resource Configuration File That Defines the REST Service Interface
	Running the Bookstore Client Sample

	Executing the Facebook Client Sample (Reference)
	Importing the Facebook Client Sample Project
	Running the Facebook Client Sample

	Executing the Pass-Through Mode Sample (Reference)
	Executing the rest.context Sample
	Running the rest.context Example
	Breakdown of the rest.context Scenario
	REST-Java-REST: Success Scenario of REST-Java
	REST-Java-REST: Fault Scenario of REST-Java

	Executing the rest.extendedJSONConversion Sample
	Running the rest.extendedJSONConversion Example
	REST-Java-REST: Runtime Node Logs for Rest-Java

	Limitations
	General Limitations
	Validation Limitations
	Service Limitations
	Schema Limitations

	Troubleshooting

