
Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO ActiveMatrix® Service Grid
Mediation Component Development
Version 3.4.3 | February 2025



TIBCO ActiveMatrix® Service Grid Mediation Component Development

2 | Contents

Contents
Contents 2

Introduction to Mediation 9
Mediation Flows 10

Message Exchange Patterns 11

Mediation Flow Interfaces 12

Planning Target and Mediation Interfaces 13

Paths in a Mediation Flow 13

Mediation Tasks 15

Mediation Exchange 17

Designing Mediation Flows 19

Working with Mediation Flows 22
Starting the Mediation Flow Wizard 22

Creating a New, Empty Mediation Flow 23

Creating New Mediation Flows from Existing Web Services 24

Editing Mediation Flow Editor Preferences 26

Working with Mediation Flow Properties 28
Validation of Message 28

Adding a Mediation Flow Property 29

Deleting a Mediation Flow Property 30

Working with Interfaces 30
Adding Interfaces to Mediation Flows 30

Deleting Interfaces from Mediation Flows 32

Moving Mediation Interfaces 32

Using the AutoMediate Feature 32

Creating Local WSDL Files 33

Supported Policies 33



TIBCO ActiveMatrix® Service Grid Mediation Component Development

3 | Contents

Working with Mediation Paths 34
Changing Mediation Paths 35

Deleting Mediation Paths 35

Working with Message Context Properties 35
Context Parameters 36

Mediation Context Parameters 37

Undeclared Fault Headers 39

Context Parameters in Mediation Components 39

Adding Context Parameters 40

Deleting Context Parameters 41

Defining the Scope of Context Parameters 41

Working with Exchange Variables 41
Defining Exchange Variables 42

Setting Exchange Variable 43

Creating Simple Schemas 44

Working with Tasks 46
Adding a Task to a Path 47

Deleting a Task From a Path 47

Mediation Components 48

Invoking an Operation 49
Configuring Invoke Operation Tasks 50

Logging Mediation Exchange Information 52
Mediation Appenders and Loggers 53

Configuring a Log Task 54
Message mapped to the message element 55

Routing Messages in a Mediation Flow 57
Paths and Route Tasks 58
Defining a Route 60

Adding Routing Cases 61

Specifying Case Targets in the Decision Table 62



TIBCO ActiveMatrix® Service Grid Mediation Component Development

4 | Contents

Modifying Case Names 63

Modifying Destinations 63

Moving Cases in the List 63

Deleting Cases 64

Nesting Multiple Route Tasks 64

Adding and Deleting Variables 65

Mapping Data to Variables 66

Routing Conditions 67
Editing Route Task Conditions 68

Conditions for XPath Route Tasks 69

Changing Route Tasks to XPath Route Tasks 70

Transforming Tasks 71
Example of Transformation 72

Basic Mapping 73

Using XPath Editor 74

Data Contribution to the Mediation Exchange 76

External Stylesheets for Data Transformation 77

Specifying an External Stylesheet for Data Transformation 77

Schema Components 79

Context Panel 81

Message Panel 82

Data and Function Tabs 83
TIBCO XPath Functions 84

Creating Custom XPath Functions 86

Exporting Custom XPath Functions 87

Deploying Custom XPath Functions 88

Testing Custom XPath Functions 89

Mapper Toolbar Buttons 90

Right-Click Menu in the Message Panel 91

Surrounding a Component With a Choose Statement 92

If Statements 93



TIBCO ActiveMatrix® Service Grid Mediation Component Development

5 | Contents

For Each Statements 94

Adding a Variable to a Mapping 95

Managing Mappings 96

Repairing Incorrect Mappings 97

Mapping an Empty Complex Type 98

Using XPath 98

Transforming XML with Related Tasks 101

Querying a Database 103
JDBC Resource Templates 103

Defining a Resource Template 104

Configuring a JDBC Driver 105

Registering a JDBC Driver 105

Configuration Tabs of the Query Database Task 106

Dynamic Requests 110
Service Providers for Dynamic Composite References 111

Configuring Dynamic Binding 112

Configuring Dynamic Target Interfaces 112

Pattern Variables Usage 113

Dynamic Reference Task Setting 114

General Tab Configuration 116

Input Specification 117

Configuring Dynamic References in Composite 119

Creating and Deploying Composites Used By Dynamic Binding 119

Replying to Messages 121

Fault Processing in a Mediation Flow 123
Throwing Faults in Mediation Flows 125

Fault Paths 125

Catch Fault Configuration 126

Catching Faults from the Mediation Flow 127



TIBCO ActiveMatrix® Service Grid Mediation Component Development

6 | Contents

Sending Faults to the Invoker 128

Custom Mediation Tasks 130
Eclipse Plug-in Reference 130

Support Files 131

Creating the Model Plug-in 131

Creating the UI Plug-in 134

Creating the Runtime Plug-in 136

Writing Custom Mediation Code 138

Accessing Task Input/Output Schema 139

Modifying the Mediation Task Data 139

Defining Model Attributes 140

Custom Mediation Task Categories 141

Thrown Faults 142

Runtime Exceptions 142

Installing Custom Mediation Tasks 142

Deploying Custom Mediation Tasks 143

Testing Custom Mediation Tasks 144

Reference 145
Catch Fault 145

End Mediation 146

Generate Reply 148

Handle Reply 148

Invoke Operation 149

Log 151
Information for Standard Log Messages 152

Information for Custom Log Messages 153

Parse XML 154

Query Database 156

Render XML 160

Route Task 163



TIBCO ActiveMatrix® Service Grid Mediation Component Development

7 | Contents

Send Fault 166

Set Context 167

Set Dynamic Reference 168

Set Exchange Variable 171

Throw Fault 173

Transform 173

Validate XML 176

XPath Route 179

TIBCO AutoMediate Command-Line Tool 183
AutoMediate Command-Line Tool Flow 183

Running the AutoMediate Command-Line Tool 184

AutoMediate Command Syntax and Options 185

AutoMediate ANT Command Syntax and Options 190

Introduction to gXML Applications 192
Developing gXML Applications 192
Implementing GxApplication 193

Implementing GxCatalog 196

Implementing GxResolver 196

Injecting DOM 199

gXML Recipes 200
Parsing a Character Stream and a Byte Stream 201

Constructing a Data Model Tree Programmatically 203

Validating 214

Navigation 216

Mutation 219

Serialization 221

XPath 223

XSLT 227

XQuery 235

Validation 241



TIBCO ActiveMatrix® Service Grid Mediation Component Development

8 | Contents

TIBCO Documentation and Support Services 247

Legal and Third-Party Notices 249



TIBCO ActiveMatrix® Service Grid Mediation Component Development

9 | Introduction to Mediation

Introduction to Mediation
Mediation involves virtualizing and managing service interactions between communicating
participants.

Mediation is part of a Service Oriented Architecture (SOA) for applications. ActiveMatrix
implements a component-based platform to implement SOA within an enterprise.

Advantages of a mediation component are:

l Shields service consumers from the service provider’s physical location from both the
design-time and run-time perspective.

l Is responsible for delivering requests to a service provider.

l Provides a mechanism for handling changing service requirements.

l Service providers can respond to requests delivered by mediation components
without needing to know the point of origin of the message.

Mediation Components

The below example shows a mediation component that provides approvals for loan
applications. The existing loan service might require credit scores, loan amount,
employment history, and so on. To enable quick turnaround for smaller loans, you might
want to provide a new service that approves loan requests for under $50,000 for all
applicants with credit scores above 700.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

10 | Introduction to Mediation

Mediation Example

Instead of rewriting your existing service to handle new types of requests, a mediation
component can accept requests that contain information from the loan requestor and then
submit the request to the appropriate service for approval.

Using the Mediation Flow Editor, you can easily create mediation components that operate
within the SOA-based ActiveMatrix platform.

Mediation Flows
A mediation flow is a graphical representation of the business logic for a mediation
component.

Mediation flows are created and managed within the Mediation Flow Editor, in TIBCO
Business Studio. Mediation flow resources are stored in the Mediation Flows folder within a
ActiveMatrix SOA project.

For more information about creating and managing ActiveMatrix SOA Projects, see TIBCO
ActiveMatrix® Service Grid Composite Development.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

11 | Introduction to Mediation

The Mediation Flow Editor

A mediation flow includes several parts:

l Mediation interfaces: One or more mediation interfaces provide the interface for the
mediation components that you expose to consumers of your applications.

l Mediation paths: Depending on the message exchange pattern of the mediation
interface, there can be an input, output, and fault path from each operation in the
mediation interface to operations in the target interfaces.

l Target interfaces: These interfaces to existing services in your enterprise provide
implementation of the operations for the associated mediation operations.

l Mediation tasks: You can place mediation tasks, such as Log or Route, on mediation
paths to perform business logic your application requires.

Message Exchange Patterns
A message exchange pattern (MEP) is a template that describes the message exchange
pattern between two communicating parties.

Mediation flows support two web service MEP for mediation and target operations:

l One-way (in-only): A message consumer sends a message to a provider.

In this exchange, the mediation flow allows only an input path from the mediation



TIBCO ActiveMatrix® Service Grid Mediation Component Development

12 | Introduction to Mediation

operation. No output path is used. Fault paths exist to handle any errors produced by
mediation tasks executing on the input path.To terminate the mediation of a one-
way operation without invoking a target operation, use the End Mediation task.

l Request-response (in-out): A message consumer sends a message to a provider, and
the provider sends a response message back to the consumer.

In this exchange, the mediation flow has three paths:

1. An input path for the message from the consumer to the provider

2. An output path for the reply message

3. A fault path for any faults that are encountered during processing

Note: To mediate different operations with a target operation of a different
message exchange pattern, use the Invoke Operation and Generate Reply
mediation tasks. For more information, see Generate Reply and Invoke
Operation .

Mediation Flow Interfaces
Web Service Description Language (WSDL) files define the interface to a web service.

WSDL is a standard maintained by the World Wide Web Consortium; it is beyond the scope
of this guide to describe WSDL syntax and functionality in detail. You can learn more about
Web Services and WSDL files here.

Mediation flows have two types of interfaces:

l Target interfaces are interfaces to the actual services that make up your enterprise
application. These interfaces appear on the right side of a mediation flow in the
Mediation Flow Editor.

l Mediation interfaces are interfaces that you expose to the consumers of your
services. Mediation interfaces can have the same number and type of operations as
target operations, or they can be different from the target interfaces. Mediation
interfaces appear on the left side of a mediation flow in the Mediation Flow Editor.

For more information, see Mediation Flows.

Interfaces (also called port types) in mediation flows are references to abstract web
services that a WSDL file defines—interfaces in a mediation flow do not have concrete

https://www.w3.org/TR/wsdl/


TIBCO ActiveMatrix® Service Grid Mediation Component Development

13 | Introduction to Mediation

bindings. The WSDL files you use in a mediation flow might have concrete bindings, but the
mediation flow is concerned only with receiving the message from the mediation
operation, processing the message, and forwarding it to its target operation. Binding
occurs when a mediation flow is placed into an ActiveMatrix mediation component, using
the Composite Editor. For more information about components, see Mediation
Components.

You can add the same interface more than once to either the mediation or target interface
list. Adding the same interface several times to the mediation interfaces list enables you to
offer the same interface to consumers with different mediation implementations.

This functionality can be used to offer different qualities of service to different consumers
of the service. Adding the same interface several times to the target interfaces list enables
you to bind the same interface to different providers, if you have more than one provider
of the same service.

Planning Target and Mediation Interfaces
Designing a mediation flow requires planning how services are exposed by mediation
interfaces.

The requirements of the application drives the design of the mediation flows. There may be
a one-to-one mapping of target and mediation interfaces, or you may expose mediation
interfaces that are very different from your target interfaces.

For example, you may have target services that are offered from a third party and therefore
cannot change the target interfaces. In this case, if you want to offer a service that uses the
third-party services but has different operations and message schemas, you must create
your own interface or a WSDL file describing the service to offer, and use that interface file
as the mediation interface.

Before starting your project, consider the requirements of your application, plan and
develop the required interfaces, and determine how the mediation interfaces use the target
interfaces.

Paths in a Mediation Flow
Each incoming message for an operation in a mediation interface follows an input path to
a target operation, or a task that terminates the input path. Depending on the message



TIBCO ActiveMatrix® Service Grid Mediation Component Development

14 | Introduction to Mediation

exchange pattern, there could also be an output path for reply messages and a fault path
for fault messages.

Paths in a mediation flow for each message exchange pattern

For operations that use the one-way message exchange pattern, there is only an input path
from the mediation operation to the target operation. Operations that use the request-
response message exchange pattern have an input path, an output path, and a fault path.
Fault paths handle faults wherever they occur in a mediation flow—either during
processing within the mediation flow, or during processing by the target operation.

The Mediation Flow Editor enables you to view the input, output, and fault paths for an
operation by selecting the mediation operation, and then clicking on the appropriate
button in the mediation paths area of the editor. Only the path for the currently selected
mediation operation appears in the mediation paths area.

When the input path for a mediation operation is defined or changed, the output and fault
paths are automatically changed to reflect the input path. Output or fault messages must
be returned to the original invoker, so that the input, output, and fault paths are
automatically kept compatible.

You can use Route tasks to divide a mediation path into multiple sub-paths to potential
target operations. Route tasks allow the mediation path to be split into multiple sub-paths



TIBCO ActiveMatrix® Service Grid Mediation Component Development

15 | Introduction to Mediation

to potential target operations. While the path shows multiple potential destinations, each
message is only sent to one destination. The path in the Mediation Flow Editor is like a
map that describes the potential places where a message can go. When the mediation flow
is executed, however, each message travels to only one target operation.

You can use multiple, nested route tasks to send a single message to a target in several
different ways. Rather than using a single route task with compound conditions, the use of
nested routes enables you to make complex routing decisions that are easier to follow.

Mediation Tasks
You can place mediation tasks on input, output, or fault paths, to perform business logic
required by your application.

For example, if the schema of the input message of your mediation operation does not
match the schema of the input message of the target operation, you can use a Transform
task to change the schema to the desired format.

The Mediation Flow Editor includes a variety of mediation tasks:

l Invoke Operation: Enables you to invoke an operation of an interface in the target
interface list during processing of an input, output, or fault path. For example, you
can invoke an operation on the input mediation path and use the data in the reply
message in subsequent tasks in the input path before the mediation flow invokes the
specified target operation. For more information, see Invoking an Operation.

l Query Database: Performs a SQL SELECT statement on a database. The task can
specify one or more tables in the FROM clause of the SELECT statement, one or more
columns to return in the SELECT list, and one or more conditions in the WHERE
clause. Optionally, you can specify the maximum number of rows to return. For more
information, see Querying a Database.

l Log: Writes information to the log file. You can use this task for auditing, security, or
other purposes. For more information, see Logging Mediation Exchange Information.

l Transform: Takes information from the mediation exchange (described in Mediation
Exchange on page 10) and changes it to the appropriate format. For more
information, see Transform Tasks.

l Parse XML: Used when you have an XML document stored in a string or binary field.
This task produces a tree representation of the XML that can be used by subsequent



TIBCO ActiveMatrix® Service Grid Mediation Component Development

16 | Introduction to Mediation

tasks in the mediation flow. This task can be paired with the Render XML task to
convert the parsed XML back into a string or binary field for transmission within a
message. For more information, see Parse XML.

l Render XML: Converts an XML tree for a specified schema to a string or binary
element that contains the XML document. This task can be paired with the Parse XML
task to convert the parsed XML back into a string or binary field for transmission
within a message. For more information, see Render XML.

l Validate XML: Provides validation of XML messages using an XML Schema that is
configured at design-time or specified dynamically at runtime. Validation errors may
be caught and handled in the current flow path, or handled by the fault catch
mechanism. For more information, see Validate XML.

l Set Context: Provides a way to set HTTP header values or JMS user property values
of the operations within a mediation flow. For more information, see Working with
Message Context Properties and Set Context.

l Set Exchange Variable: Sets the value of the items within the exchange variable. The
Input tab of the Set Exchange Variable task is a mapper panel that enables you to set
the exchange variable for the currently selected operation. For more information, see
Setting the Exchange Variable, and Set Exchange Variable.

l Route and XPath Route: Route tasks enable you to specify more than one potential
destination for messages sent by a mediation operation. The message is sent to the
appropriate target operation based on criteria you specify. In Route tasks, the criteria
for routing conditions are simple comparison operations. XPath Route tasks are
similar to Route tasks, but you can specify more complex criteria for routing
conditions. For more information, see Routing Messages in a Mediation Flow.

l Throw Fault: Stops processing in the current mediation flow and transfers control to
the fault path. This task is useful if a mediation operation is deprecated and you
want to return a fault to the requestors of the operation. This task is also useful if
you want to specify fault conditions for Route or XPath route tasks. For more
information about faults and the Throw Fault task, see Fault Processing in a
Mediation Flow.

l Generate Reply and Handle Reply: In some situations, you might want to send a
reply message to a consumer without invoking the target operation. The Generate
Reply and Handle Reply tasks enable you to bypass the target operation and send
reply messages to the consumer directly from the mediation flow. For more
information, see Replying to Messages.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

17 | Introduction to Mediation

l End Mediation: Ends a one-way (in-only) message exchange pattern for operations
that don’t involve a response. End Mediation includes a message re-delivery feature,
so that you can request that a message be re-delivered if it encounters a fault during
processing. For more information, see End Mediation.

l Set Dynamic Reference: Provides the values needed for resolving a service provider
in a dynamic target interface. Each Set Dynamic Reference task sets the value of the
service provider for the specified dynamic target interface. The value is then used by
the next service invocation that refers to that dynamic target interface. For more
information, see Set Dynamic Reference Task.

Note: You can extend the functionality of mediation flows by creating your own
Custom tasks. For more information, see Custom Mediation Tasks.

Mediation Exchange
When a mediation operation receives a message, a mediation exchange is created to hold
information related to the message and the mediation flow. Information in the mediation
exchange is available to tasks in the mediation flow.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

18 | Introduction to Mediation

Mediation exchange information

The mediation exchange consists of this information:

l Mediation flow properties: You can define properties on a mediation flow to store
information used within the flow. For example, you might create a property to store
currency exchange rates, or calendar holidays for system down time.

l Mediation flow context: Includes information such as component name and
mediation flow information, if the Mediation Flow Context option is set on the
Advanced tab of the mediation operation’s Properties view. For more information,
see Working with Message Context Properties.

l Message context: The context of the message sent to the mediation operation.
Message context includes information about the message transport (for example,
HTTP o JMS message headers) and security context information about the message.
You can use the Set Context task to set HTTP header values and JMS user property
values within a mediation flow. For more information, see Working with Message
Context Properties and Set Context .

l Message data: Content of the message. The content of this item depends on the
processing within a mediation flow. For example, for input paths this component
contains the schema of the input message of the mediation or the target operation.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

19 | Introduction to Mediation

For output paths, this component contains the schema of the reply message of the
mediation or the target operation. Similarly, for fault paths this component contains
the schema of the fault message.

Some mediation tasks, such as Transform, can change the contents of the message
data.

l Exchange variable: A defined schema to hold data that persists through all paths of
a mediation operation (input, output, and fault paths). You can use any schema
stored in the project to define the structure of the exchange variable. The value of
the variable is set during execution of the mediation path with the Set Exchange
Variable task. For more information, see Working with Exchange Variables and Set
Exchange Variable.

l Contributed data: Mediation tasks, such as the Transform task or a custom
mediation task, can add — contribute —data to the mediation exchange. When the
data is added, subsequent tasks can access each task’s added data. An option on
some mediation tasks enables you to specify whether you want the task to change
the existing message data in the mediation exchange, or place the results of the task
into a new data item in the mediation exchange.

Designing Mediation Flows
You can design mediation flows from the top down, or from the bottom up. That is, you
can start with interfaces and mediation flows, or you can start by designing composites
and components.

If you start with interfaces, you can create mediation flows from the interfaces. If you start
with components, you can assign a mediation flow as the implementation of the
component after specifying the services and references in the Composite editor.

Procedure
1. Create an ActiveMatrix SOA project and import the WSDL files.

2. Virtualize interfaces.

a. Create a mediation flow.

b. Specify the mediation and target interfaces.

c. Create mediation paths.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

20 | Introduction to Mediation

3. Select a mediation patterns.

The most cited ESB (mediation) patterns are these:

l VETO (Validate, Enhance, Transform, Operate)

l VETRO (Validate, Enrich, Transform, Route, Operate)

Mediation provides the Validate, Transform and Route tasks.

The Enrich task can be achieved using the Query DB task, the Invoke Operation task,
or a customer-created task.

The Operate task makes the target service call.

4. Configure mediation patterns using tasks.

l Add and remove tasks.

l Configure task properties.

l Handle faults.

5. Bind and deploy.

l Create composite and components.

l Specify bindings.

l Assemble and run.

Note: Before you package and deploy your project, ensure that all validation
errors are resolved. An error icon appears on the operation name of mediation
interfaces with errors.

Errors occur because of an invalid configuration. Each error is logged on the
Problems tab of the mediation flow.

For more information about the process of designing a mediation flow, consult these
resources:

l TIBCO ActiveMatrix® Service Grid Composite Development describes the first step in
the process, creating the project and obtain the interfaces.

l Working with Mediation Flows describes steps 2 through step 4a in more detail.

l TIBCO ActiveMatrix® Service Grid Composite Development describes how to create
service assemblies for deployment and execution.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

21 | Introduction to Mediation

l TIBCO ActiveMatrix® Service Grid Administration describes how to deploy and run
your project.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

22 | Working with Mediation Flows

Working with Mediation Flows
You use the mediation flow wizard to create new mediation flows and mediation flows
from existing web services.

Before creating mediation flows, you should have at least one WSDL file that defines the
target interface that you plan to mediate. For more information about folders in
ActiveMatrix SOA projects, see TIBCO ActiveMatrix® Service Grid Installation and
Configuration.

Starting the Mediation Flow Wizard
Use the following steps to start the mediation flow wizard.

Procedure
1. Right-click the Mediation Flows folder in the Project Explorer.

2. Choose New > Mediation Flow from the pop-up menu.

The Create Mediation Flow dialog opens.

The default option is to create an empty mediation flow.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

23 | Working with Mediation Flows

Creating a New, Empty Mediation Flow
Creating a new, empty mediation flow enables you to start a mediation flow from scratch.

Before you begin
You should at least have one WSDL file that describes the interface that you plan to
mediate, but you can have zero or more target interfaces.

Procedure
1. Start the mediation flow wizard.

a. Right-click the Mediation Flows folder in the Project Explorer.

b. Choose New > Mediation Flow from the pop-up menu.

The Create Mediation Flow dialog opens. The default option to create an empty
mediation flow is active.

You can also select the Create Composite checkbox if you want to create a
corresponding composite for this mediation flow. For information about
working with components and composites, see Mediation Components.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

24 | Working with Mediation Flows

2. Click Next.

3. Supply a name in the Mediation Flow Name field.

If you chose to create a composite to correspond to the mediation flow, you can also
name the composite in the Composite Name field.

You can also specify a different folder in the project for the mediation flow (and
composite, if one is created).

4. Click Finish.

The Mediation Flow Editor opens. You can begin to add interfaces and configure
your mediation flow.

Creating New Mediation Flows from Existing
Web Services
To mediate existing web services, you can create new mediation flows for each interface.
This is useful if there are multiple services and you want to create one mediation flow for
each service.

Before you begin
Before creating mediation flows, ensure that the WSDL files that describe the interfaces
have been imported into the project. For more information about importing WSDL files, see
TIBCO ActiveMatrix® Service Grid Composite Development.

Procedure
1. Start the mediation flow wizard.

a. Right-click the Mediation Flows folder in the Project Explorer.

b. Choose New > Mediation Flow from the pop-up menu.

2. Select the option Multiple Mediation Flows Using Existing Web Services.
l You can also select the Create Composite checkbox if you want to create a

corresponding composite for the mediation flows.

For more information about working with components and composites, see



TIBCO ActiveMatrix® Service Grid Mediation Component Development

25 | Working with Mediation Flows

Mediation Components.

3. Click Next to select the interfaces for the mediation flow.

4. Select the WSDL files to use when you create mediation flows.

l You can select and add WSDL files individually, or click the Add All>> button to
add all files to the Selected Interfaces list.

l You can remove one or more WSDL files using the <Remove and <<Remove All
buttons.

A mediation flow is created for each WSDL file. The target interfaces and mediation
interfaces are the same, and a path is automatically created between operations of
the same name. If a WSDL file includes more than one port type, each port type is
added to the mediation flow created for the file.

5. The next step depends on whether you checked the Create Composite option:

a. If you did not check the Create Composite option, click Finish to create the
mediation flows and composite.

b. If you checked the option to create a composite, click Next to specify the
binding type — JMS, SOAP/HTTP, SOAP/JMS.

If you select SOAP/HTTP, additionally specify the Connector.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

26 | Working with Mediation Flows

Click Finish to create the mediation flows and composite.

Editing Mediation Flow Editor Preferences
You can set preferences for the Mediation Flow Editor.

Procedure
1. Select Window > Preferences to open the Preferences dialog.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

27 | Working with Mediation Flows

2. Set values in the Mediation Flow section.

l In the Mediation Flow Name in Wizard text box, provide the default name of
mediation flows that you create with the Single Empty Mediation Flow option
in the wizard.

l In the Mediation Flow Folder Name, provide the name of the folder in which to
store mediation flows.

l Clear the Enable Diagram Tooltips checkbox if you want to disable the tooltips.

l Clear the Enable Connection Animation checkbox if you want to disable
animation.

3. Set values in the Mediation Task Icon Size section.

l Select the Small Icons (16x16) radio button to display small icons in mediation



TIBCO ActiveMatrix® Service Grid Mediation Component Development

28 | Working with Mediation Flows

flows and the palette.

l Select the Large Icons (32x32) radio button to display icons in mediation flows
and the palette.

4. In the Mediation Task Mapper Tree Expansion Level text box, type the default
value for the depth you want to expand the left and right sides of the mapper.

5. Set values in the Live Database Validation For Query Database Task section.

l Select the Validate Query Database Task Data checkbox to connect to the
database during validation to determine if the Query Database task
configuration is correct. The information being queried is the structure (tables
and columns) of the database.

l In the Validation Timeout field, provide the timeout (in seconds) for the
validation task.

l Select the Reload Database Data When Validation checkbox, if the database
structure is changing, to query the database each time the validation process is
run.

Working with Mediation Flow Properties
Mediation flow properties can be defined to store information such as values for current
price markups, currency rates, or user names.

The properties are stored in the mediation exchange, and tasks in a mediation flow can use
them. Properties are defined and removed using the Properties view of the mediation flow.

Validation of Message
When a mediation flow is created, a property called VALIDATE_MESSAGE_DATA is added by
default.

At design-time, a property VALIDATE_MESSAGE_DATA is defined in the mediation flow
implementation. When set to true, this property is used to validate the incoming message.
This property is accessed by the mediation component in the composite is exposed at the
composite level as MEDIATE_VALIDATE_MESSAGE_DATA.

Having this property at the mediation component level allows for fine-grained control
compared to defining it at the mediation implementation level.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

29 | Working with Mediation Flows

A property VALIDATE_MESSAGE_DATA is available at the mediation implementation level
when viewed using the Administrator UI. The default value of this property is false. Set this
property to true to enable validation of message data received by the mediation
component. Validation of message data happens for both the component service and
reference.

Setting this property to true at the mediation implementation level enables validation on
every mediation component on that particular node.

The value of the property set at the mediation component level takes precedence over the
value set at the mediation implementation level. At runtime, when the incoming message
(either a request message on the mediation interface or a reply message on the target
interface) into mediation fails validation, an undeclared fault is returned to the consumer.
The fault message only indicates that a validation failure has occurred with no details
provided. For more details about the cause of the validation failure is contained in the log
files.

Adding a Mediation Flow Property
You can define mediation flow property to store information.

Procedure
1. Click the ellipsis (...) in the Name field, or click the Add button to the right of the

table.

2. Specify a name, data type, and value for the property. You can select one of four
property types:

l String

l Integer

l Boolean

l JDBC Resource Template



TIBCO ActiveMatrix® Service Grid Mediation Component Development

30 | Working with Mediation Flows

You can also specify properties when you create a mediation component.
Component-level properties override the values of properties with the same name
specified on the mediation flow.

Deleting a Mediation Flow Property
You can easily delete a mediation flow property.

Procedure
1. Select the property row in the table.

2. Press the Delete key or click the Delete button to the right of the table.

Working with Interfaces
Interfaces are collections of operations that WSDL files define.

WSDL files are typically contained in the Service Descriptors special folder in a project. You
can obtain interfaces in a variety of ways, usually by importing WSDL files into a project or
by using a UDDI registry service.

Composite Development describes the folders in an ActiveMatrix SOA project and how to
obtain WSDL files and use UDDI registry services.

Adding Interfaces to Mediation Flows
There are many ways to add interfaces to a mediation flow, the method you use depends
upon the requirements of your application.

Before you begin
Before you add interfaces to your mediation flow, plan the needs of your application and
determine which target and mediation interfaces you need. Some planning considerations
are discussed in Planning Target and Mediation Interfaces.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

31 | Working with Mediation Flows

Procedure

You can add interfaces to a mediation flow using one of the following choices:
l If you plan to have a one-to-one relationship between target and mediation

interfaces, you might use the technique described in Creating New Mediation Flows
From Existing Web Services.

l If a WSDL file contains more than one port type, you can expand the WSDL file in the
project tree and select only the interface you want to drag and drop into the
mediation flow. You can also drag and drop the top-level WSDL file to add all
interfaces within the WSDL file to the mediation flow.

l If your target interfaces and mediation interfaces have different operations and
schemas, drag and drop each interface from the Project Explorer into the appropriate
area of the mediation flow.

Note: Dragging and dropping an interface onto the mediation side of a flow
creates an untargeted flow for each operation. When you select the
mediation operation for an untargeted flow, the flow appears as a line
ending in a question mark. You can then use a Generate Reply, Throw
Fault, or End Mediation task on the flow without having to add a target
interface. You can also drag and drop an untargeted flow to a target
interface and mediate that interface.

l Another way to add an interface to the target or mediation interface list is to use the
menu icon at the top of the Mediation Interfaces area and Target Interfaces area of
the mediation flow. The menu contains an Add Mediation Interface or Add Target
Endpoint item, depending upon which side of the mediation flow you use. The Add
menu opens a Select WSDL Port Type dialog where you can choose an interface to
add.

Note: You can add more than one copy of the same interface to the
mediation interfaces side of the mediation flow. Doing so allows you to
specify different business logic for the same interface. You can then expose
each implementation of the interface to different clients.

For example, you could use this functionality to offer different qualities of
service to different clients.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

32 | Working with Mediation Flows

Deleting Interfaces from Mediation Flows
You can delete interfaces from either side of the mediation flow.

Procedure
1. Click the interface menu icon in the title bar of each interface.

2. Select Delete from the pop-up menu.

Moving Mediation Interfaces
Interfaces can be moved within the target and mediation interface list.

Procedure
1. Click the header of the interface you want to move.

2. Drag the interface to the new location in the list of interfaces.

Using the AutoMediate Feature
The AutoMediate mechanism in the Mediation Flow Editor allows users to quickly add
identical interfaces to both the target and mediation interface sides of the mediation flow
with corresponding mediation paths between operations of the same name.

You can use AutoMediate using one of the following choices:
l Drag an interface to either the target or mediation interface area. Select the interface

you have added to the mediation flow, then click and drag it to the opposite side of
the mediation flow.

l Drag an interface to the target interface area. Then, click the projection icon in the
title bar of the interface.

l Drag an interface onto the mediation paths area (the center area) of a mediation flow.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

33 | Working with Mediation Flows

All mediation operations are connected to their corresponding target operations.

Note: You can use the TIBCO AutoMediate Command Line tool to use existing
services as input to create a fully functional composite application that
generates a DAA that you can deploy into ActiveMatrix Service Grid runtime
environment. For more information, see TIBCO AutoMediate Command-Line
Tool.

Creating Local WSDL Files
If you automatically create mediation interfaces, you may want to create local copies of the
WSDL files. Creating local copies enables you to make changes to the copies without
affecting other services or clients that use those WSDL files.

Procedure
1. In your mediation flow, locate the mediation interface you want to include in the

local WSDL file.

2. Click the menu icon in the title bar of the interface and choose Copy Interface from
the pop-up menu.

The Mediation Flow Editor creates a local WSDL file and places it in the same folder
as the mediation flow. The name of the file is the same as the name of the mediation
flow, with the file extension .wsdl.

Note: Include additional mediation interfaces in the local WSDL file by
repeating Step 2 for each interface.

Each interface you copy is placed into the same local WSDL file so that you can edit
the file using the standard WSDL editor.

Supported Policies
Mediation interfaces supports intents.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

34 | Working with Mediation Flows

Intents Description

At least once Specifies that the provider must receive every message sent to it by
consumers at least once.

Transacted
one way

Specifies that references must send all out-only messages within a global
transaction, and the ActiveMatrix framework must deliver the message only
after the transaction commits.

For more information on intents and policies, see TIBCO ActiveMatrix® Service
Grid Composite Development.

Working with Mediation Paths
Paths are created by dragging and dropping a mediation operation onto a target operation.

Paths can be automatically created in mediation flows, as described in Adding Interfaces to
Mediation Flows. Creating an input path also creates corresponding output and fault paths.
You can click the Input, Output, and Fault icons at the top of the mediation paths area to
view the corresponding path for each mediation operation.

The path for only one mediation operation appears in the mediation paths area. Select a
mediation operation to view its path.

Mediation operations must have an input path. Typically, the input path leads to a target
operation, but there can also be a route task that splits the path into more than one
destination, or the path can lead to one of these tasks:

l A Throw Fault task

l A Generate Reply task

l An End Mediation task

Note: If a mediation operation is not implemented — that is, if it does not have
an input path — an error icon appears in the bottom left corner of the
operation’s icon. You must implement all mediation operations in a mediation
flow before deploying the project.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

35 | Working with Mediation Flows

Changing Mediation Paths
On the input path, a small circle appears next to the directional arrow of the path .
This allows you to change a path.

You can modify the target opearation using the follwowing choices:

Goal Procedure

Move path to a different target
opeeration

Click the circle and drag the path to a new location.

Move target operation on an output
path

Click and drag the circle next to the target operation
.

Result
The input and fault paths are automatically updated.

Deleting Mediation Paths
Mediation paths can be easily deleted.

Procedure
1. Select the path.

2. Press Delete, or right-click while hovering over the path and select Delete from the
pop-up menu.

Route tasks create sub-paths and have some additional characteristics. For more
information about working with route tasks, see Routing Messages in a Mediation
Flow.

Working with Message Context Properties
In a mediation exchange, the context of the message sent to the mediation operation
includes information about the message transport (for example, HTTP headers or JMS



TIBCO ActiveMatrix® Service Grid Mediation Component Development

36 | Working with Mediation Flows

message headers/properties), and security information.

TIBCO ActiveMatrix provides a way for the mediation flow to receive message context
information and access its values in the mediation path. It also provides a mechanism for
setting the message context data for the input message of the target operation and the
output message of the mediation operation.

The Mediation Flow also allows you to configure an additional type of context parameter
called Mediation. This type provides the security context, endpoint reference, and request
message mechanisms.

Context Parameters
Context Parameters are variables stored the application session. These are useful when
there is the need to share a parameter in several points in the application.

The context parameters available on the left side of the input mapper are contained under
the root element MessageContext. Context parameters can be used like other elements in
the tree.

The following figure shows the mapping of a context parameter, userID.

The Set Context mediation task is used to set values for the context parameters. The input
mapper for the Set Context task shows the context parameters defined for the target
interface or the mediation interface if the Set Context task is on the output or fault path.

The following figure shows the mapping of two context parameters. The parameters userID
and userVal are defined for mediation interfaces, and the parameters ID and Val are
defined the target interface.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

37 | Working with Mediation Flows

Mediation Context Parameters
Mediation context parameter is available for the input direction only and provides
functionality for security context.

The mediation component in the Composite Editor does not use these parameters. The
values for these parameters are automatically passed to the mediation component and
require no additional configuration.

Security Context

When a parameter of type Mediation and definition mechanism Security Context is added
to the interface, the security context and the SAML assertion data is available for security
context-based routing, transformations, or to log security context data.

The following figure show a simple mapping of the SAML assertion data:



TIBCO ActiveMatrix® Service Grid Mediation Component Development

38 | Working with Mediation Flows

Endpoint Reference

A parameter of type Mediation and definition mechanism Endpoint Reference provides
access to the endpoint reference schema for the mediation interface.

The Set Dynamic Reference task is used to provide the endpoint reference to the target
invocation. The following screen shows one such mapping between the context parameters
of the service and the reference.

The Endpoint Reference Mechanism of the Set Dynamic Reference task is set to WS-A
Endpoint Reference. For more information, see Set Dynamic Reference.

Request Message Context

Provides access to the CorrelationID, ContextID, and ParentContextID parameters.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

39 | Working with Mediation Flows

Undeclared Fault Headers
A context parameter of type Mediation and direction Fault is used to access the undeclared
headers (code, role, and reason) provided by SOAP.

Using this type of context parameter requires the target interface to be bound to a SOAP
endpoint, but no validation can be done to ensure that. The developer of the system just
has to know that SOAP is being used.

The following screen shows the mapping between the context parameters on the Fault
path of the Target interface and that of the Mediation interface.

Context Parameters in Mediation Components
Context parameters added to the interface or operation are propagated to the mediation
component in the Composite Editor. The General tab of the Component Service and the
Component Reference element has a section for context parameters.

All context parameters defined in the mediation flow are exposed in the mediation
component, except for the context parameters of type Mediation.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

40 | Working with Mediation Flows

Context parameters can be added to the Component Service or Component Reference.
These context parameters can then be pushed down to the implementation level. Context
parameters of type Mediation cannot be added to the Component Service or Component
Reference.

Adding Context Parameters
Context parameters can be configured at a mediation interface level, target interface level,
or for an operation contained in the interfaces. Parameters added at the interface level are
available for use by all the containing operations. Parameters added at the operation level
can be used by those operations only.
Context parameters for the Mediation and Target interfaces are independent of each other.
The Set Context mediation task is used to map values of the defined context parameters.

Procedure
1. Choose the interface or operation.

2. Select the General tab from the Properties view.

The Operation Context Parameters table is initially empty.

3. Click the button located on the right side of the table.

4. Specify the parameter properties:

l Name: Name of the parameter.

l Direction: Choose between Input, Output, and Fault.

l Type: Choose between Basic, Message, Bag, Mediation.

l Definition: This is the definition mechanism.

If you chose Mediation as the context parameter type, the available definitions are
Security Context, Endpoint Reference, and Request Message Context.

If the Direction is Fault and the Type is Mediation, the Definition mechanism is set to
Undeclared Fault Context. For more information, see Undeclared Fault Headers.

The context parameter is added to the chosen interface or operation.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

41 | Working with Mediation Flows

Deleting Context Parameters
Context parameters can be deleted at either the interface level or the operation level.

To delete context parameters from the Mediation or Target interface, choose the context
parameter and click the button.
l If the context parameter is deleted at the interface level, the parameter is deleted

from all the operations.
l If the context parameter is deleted from the operation level, the parameter is deleted

from that operation only. If that operation was the last operation to which the context
parameter was applied it is then removed from the interface as well.

Defining the Scope of Context Parameters
Parameters added at the interface level are available for use by all the containing
operations. Parameters added at the operation level are only available for that specific
operation.

You can define the scope of context parameter using the following options:
l A parameter defined for operation A can be made available to operation B by

selecting the parameter in operation B and clicking the button.
l A parameter defined for an operation can be made available to all other operations by

selecting the parameter at the interface level and clicking the button.
l The scope of a parameter used by operations A and B can be reduced by selecting the

parameter in the operation where the parameter is not used and clicking the

button. The operation remains in the table but the tooltip is displayed the reduced
scope.

Working with Exchange Variables
You can define an exchange variable for each mediation operation in your mediation flow.
An exchange variable provides a location that stores data for use in all paths for a
particular mediation operation.

or example, you might want to store a field from an incoming message, such as a
correlation ID in a JMS header for the message. After it is stored, this data is available for
all tasks in the input, output, or fault paths of a mediation operation.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

42 | Working with Mediation Flows

Each mediation operation has one exchange variable. The exchange variable can have any
structure. For example, the exchange variable can have repeating elements, if it is
necessary to hold multiple instances of the same element.

After it is defined, the exchange variable is available for all tasks that can access the
meditation exchange in the input, output, and fault paths of your mediation flow. The
values of the fields of the exchange variable are empty until they are set using the Set
Exchange Variable mediation task. For more information, see Setting the Exchange
Variable.

Defining Exchange Variables
Exchange variables are defined in the Advanced section of the properties view of a
mediation operation.

Procedure
1. Select a mediation operation in the mediation editor.

2. Expand the Advanced option from the General tab.

3. Specify a schema for the exchange variable in the Exchange Variable Schema field.

Set Exchange Variable supports only XSD elements, so the schema definition for
the exchange variable must be stored in an XSD within your workspace.

You can use the following options to create an XSD (XML schema definition).

4. Use the following chices to create an XSD (XML schema definition).



TIBCO ActiveMatrix® Service Grid Mediation Component Development

43 | Working with Mediation Flows

Starting Point Procedure

Browse button Use the simple XSD editor with the Create button.

For information about the Simplified Schema Editor that opens
when you click the Create button, see Creating Simple Schemas.

TIBCO Business
Studio -
BPM Edition

Use the XSD editor.

For more information about the XSD editor in TIBCO Business
Studio - BPM Edition, see the Eclipse documentation, XSD Developer
Guide, .

XSD editor plug-
in

Use your own plug-in.

Setting Exchange Variable
The Set Exchange Variable task sets the value of the items within the exchange variable.
The Input tab of the Set Exchange Variable task is a mapper panel that enables you to set
any portion of the exchange variable for the currently selected operation.

Procedure
1. Use the General tab to specify a name and description for the task.

This tab is useful for providing documentation for tasks in your mediation flows.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

44 | Working with Mediation Flows

2. Assign a name to the task, to identify the task in the mediation flow.

This name appears in the tooltip that opens when you hover the cursor over the task
icon in the mediation flow.

3. Describe the task briefly.

This description appears in the tooltip that opens when you hover the cursor over
the task icon in the mediation flow.

4. Click the Input tab.

This contains a mapping panel for mapping data from the mediation exchange to the
input fields of this task. For using a mapping panel, see Transform Tasks.

5. To set the exchange variable, map values from the mediation exchange to the
exchange variable element.

Creating Simple Schemas
You might need a schema for an exchange variable that is not stored in the project. The
Create button in the Exchange Schema field opens a simplified schema editor dialog that
you can use to create basic schemas. The simplified schema editor creates and stores the
XSD file for the schema you create in the specified location in the project.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

45 | Working with Mediation Flows

Procedure
1. Use the three fields of the simplified schema editor.

l Schema: the structure of the schema. Use the buttons to add, move, and delete
schema elements. Only elements can be created using this editor. If you must
add attributes or create types, use the XSD editor in TIBCO Business Studio -
BPM Edition. Table 4 describes each of the buttons in the Schema field.

l Resource Name: the name of the schema to create.

l Workspace Location: the location in the workspace where the schema is
stored. Use the Browse button to locate a folder in another workspace.

2. Use the buttons for creating schema elements.

Button Description

Adds a group to the schema. You can specify a name for the group and the
type of group from one of these options:

l sequence in order—the elements in the group must appear in the
order in which they are specified in the schema.

l choice of one—the group is a choice group where only one of the
elements in the group can appear at a time.

l all in any order—all elements contained in the group can appear in
any order.

Adds a complex element to the schema that can contain other elements.
You can specify a name for the complex element, a type (from another
stored schema), and the minimum and maximum number of occurrences of
the element.

Adds a primitive element to the schema. You can specify a name for the
primitive element, a primitive type (string, integer, and so on), the
minimum number of occurrences, and the maximum number of
occurrences of the element.

Adds a reference element. A reference element refers to a top-level
element, allowing elements to be reused by reference. References in other



TIBCO ActiveMatrix® Service Grid Mediation Component Development

46 | Working with Mediation Flows

Button Description

schema resources are automatically maintained using imports.

Note: The Simplified Schema Editor does not support duplicate
namespaces. The assumption is that a given namespace is only
imported once, and is associated with a single prefix.

Moves the currently selected element up one position in the schema.

Moves the currently selected element down one position in the schema.

Deletes the currently selected element.

3. After creating a schema, click OK to save the schema to the project.

Working with Tasks
Several operations are the same for all tasks within a mediation flow. Most operations can
be undone by using the Edit > Undo menu item.

Details on how to work with each task in a mediation flow are described in the following
topics:

l Invoking an Operation

l Logging Mediation Exchange Information

l Routing Messages in a Mediation Flow

l Transforming Data in a Mediation Exchange

l Replying to Messages

l Fault Processing in a Mediation Flow

For information about any tasks not mentioned in the list, see Reference.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

47 | Working with Mediation Flows

Adding a Task to a Path
Before you add tasks, expand the palette on the Mediation Flow Editor to show the list of
tasks available.
Not all tasks can be added to all paths. See the description of each task in Chapter 12,
Reference, for more information about the type of path where you can use the task.

Procedure
1. You can add single tasks to a mediation path using the following options:

Operation Procedure

Select Select the task in the palette, and click the path line where you want to
add the task.

Drag Drag a task from the palette to a path. Hold the mouse button until the
cursor is over the path.

l When a task can be added to the path, the path line becomes bold and the
cursor changes to this icon to indicate the task can be added.

l If the task cannot be added to the path, the cursor changes to this icon .

l If tasks are already on the current path, a vertical line appears on the path to
show where the new task is inserted. Move the cursor before or after the
existing task to add the task to a specific location.

2. You can add multiple tasks of the same type to a mediation path.

a. Select the task in the palette.

b. Press the Ctrl key while clicking on the path.

Route tasks cause the path to split into sub-paths. If your mediation flow
requires routing, add the route tasks to the path first. Adding a route task to a
specific location can be difficult when other tasks are already on the path.

Deleting a Task From a Path
Deleting a route task deletes all sub-paths and tasks after the route task.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

48 | Working with Mediation Flows

You can delete Throw Fault and Generate Reply tasks, but the flow becomes untargeted. If
you delete these tasks, you must retarget them as necessary.

To delete a tasks from a path use one of the options:

Option Procedure

Mouse Select the task in the path, right-click while hovering the cursor over the task,
and choose Delete from the pop-up menu.

Keyboard Select the task, and press the Delete key on your keyboard.

Mediation Components
Mediation flows provide implementations for mediation components.

Each mediation interface becomes a component service of the mediation component.

Each mediation flow property becomes a component property. You can override the values
specified for mediation properties at the component or composite level.

Composite Development provides a complete description of composites and components
and how they operate within the TIBCO ActiveMatrix architecture. You should be familiar
with the procedures in that manual before attempting to work with mediation
components.

You can create wires between composite services and component services, to provide
bindings for mediation service consumers. You can also create wires between component
references and composite references, to provide bindings to actual service providers for
target interfaces. You can also create wires from other component services and references
to and from the component services and references for a mediation component.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

49 | Invoking an Operation

Invoking an Operation
The Invoke Operation task enables you to call an operation of any interface during
processing of an input, output, or fault path The Invoke activity can choose any operation
from any interface in the target interface list.

For example, you can invoke an operation on the input mediation path and use the data in
the reply message in subsequent tasks in the input path before the mediation flow invokes
the specified target operation.

These examples describe use cases for the Invoke Operation task:

l Invoking a service to retrieve information, such as item price for a purchase order, a
zip code for a city, or a shipping quote from a shipping service.

l Coordinating with non-automated processes, such as invoking a service to send an
email message after the target operation returns a reply message.

l Basic orchestration with other services, such as invoking an approval service before
invoking a target operation to allow a merchandise return.

An invoked operation can be either a one-way or request-response message exchange
pattern.

If the invoked operation uses the request-response pattern, the mediation flow suspends
execution until a reply is received from the invoked operation. The reply message from an
invoked operation is placed in the mediation exchange in an element corresponding to the
name of the Invoke Operation task. Subsequent tasks in the path can then access the reply
message.

Fault Handling for Invoke Opearations

Faults declared by an operation that an invoke activity references are caught and
processed on the fault path. For more information, see Fault Processing in a Mediation
Flow.

Invoking Operations on Dynamic Interfaces

You can use the Invoke Operation task to invoke operations contained in a dynamic target
interface. Dynamic target interfaces require a Set Dynamic Reference task that specifies the



TIBCO ActiveMatrix® Service Grid Mediation Component Development

50 | Invoking an Operation

actual service to invoke. For more information about dynamic target interfaces, see
Dynamic Requests.

If the Invoke Operation receives a fault from the target service, the fault flow of the
mediation is activated. The Catch Fault task has all target faults that might be generated
by all of the invoke tasks, so you can mediate faults that are returned.

Configuring Invoke Operation Tasks
The operation to be invoked by the Invoke Operation task must be contained in an
interface in the target interface list.

Input Tab

The Invoke Operation task requires an input message for the invoked operation. To
construct the input message, use the Input tab of the Invoke tab. The Input tab is a
mapper panel, similar to the mapper available in the Transform task. For more information
about using the mapper panel, see Transform Tasks.

Output Tab

When the message exchange pattern of the invoked operation is request-reply, the Output
tab displays a static schema tree to represent the output message of the invoked
operation. If the message exchange pattern of the invoked operation is one-way, the
Output tab of the Invoke Operation Mediation Task displays No Output Configured. The
Output tab of the Mediation Operation is empty.

Procedure
1. Add an Invoke task to a path.

2. Select Properties View > General tab > Target Operations, and open the drop-
down list to select an operation to invoke.

You can also press the Shift key and drag the task onto the operation in one of the
target interfaces. (Dragging a task without using the Shift key rearranges the task on
a path.)

When the Target Operation is selected for the Invoke Operation task, a green hint line
appears to indicate which operation the task invokes.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

51 | Invoking an Operation



TIBCO ActiveMatrix® Service Grid Mediation Component Development

52 | Logging Mediation Exchange Information

Logging Mediation Exchange Information
Log tasks allow mediation flows to send data to a file (appender). By default, the appender
for the mediation task is not configured.

You can place a log task on any input, output, or fault path. You can configure the log task
to send any or all of these items to the log file.

l Mediation flow properties are the properties defined for the mediation flow. These
properties are defined either on the Properties tab of the mediation flow, or in the
composite or component containing the mediation flow. You can select all mediation
flow properties, or you can select individual properties to log.

l Mediation flow context logs message context such as component name and
mediation flow information, if the Mediation Flow Context option is set on the
Advanced section of the mediation operation’s General tab.

l Message context is information about the transport or security details of the
message. For more information, see Working with Message Context Properties for
information about the Mediation Flow Context option.

l Message data is the content of the message. Some tasks, such as custom tasks or
Transform tasks, can change the content of the message. The Log task can be used
to output the message content at any point in the mediation flow. You can use this
information for debugging, auditing, or other purposes.

l Contributed data Mediation tasks, such as the Transform task or custom tasks, can
add or contribute data to the mediation exchange. For example, the Log task can be
used to output any data that previously executed mediation tasks contributed to the
mediation exchange.

l Exchange Variable If the mediation operation has an exchange variable set, the
exchange variable appears as one of the items to log. If Log All Items is selected, the
Exchange Variable is automatically logged if it is used.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

53 | Logging Mediation Exchange Information

Mediation Appenders and Loggers
By default, the runtime informational (INFO), warning (WARN) and error (ERROR) messages
logged by the mediation component or the mediation log tasks are sent to the log file of
the ActiveMatrix node or the associated appender.

Using the TIBCO ActiveMatrix Administrator to specify a unique appender for the mediation
component or the mediation log tasks is also possible. The Administrator allows the user
to configure logger and corresponding appenders at application or component level. For
more details on application or component logger configuration, see TIBCO ActiveMatrix®
Service Grid Administration.

Two mediation loggers are available:

l com.tibco.amx.it.mediation

The logger named com.tibco.amx.it.mediation is used by the mediation component
to log runtime error, warning, informational or debug messages and must be applied
to the node were the mediation application is running.

l com.tibco.amx.it.mediation.logTask

The logger named com.tibco.amx.it.mediation.logTask is used by the mediation log
tasks and must be applied to the mediation application. This logger is available only
if it has been configured at design-time.

To send the data logged by the mediation log tasks to a specific appender, either one of
the two logger names can be used in the Administrator to configure the application or
component level loggers. However, to isolate the data logged by the mediation log tasks
from rest of the mediation component messages, the logger named
com.tibco.amx.it.mediation.logTask must be used.

Note: By default only the informational (INFO), warning (WARN) and error
(ERROR) messages are written to the log file of the node or the associated
appender. The Mediation component or mediation log task's debug (DEBUG) or
trace (TRACE) messages are not written to the log file of the node. To view
debug or trace level messages, a logging appender must be configured at a
debug level.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

54 | Logging Mediation Exchange Information

Configuring a Log Task
After adding a log task to a path within a mediation flow, specify the type of information
you want to log. The Log tab of the Log task configures the information to send to the log
file.

Procedure
1. Give the task a name and description.

2. Choose the role level of logging for the task.

3. Set the Use Transform Data option.

This option controls the appearance of the Log tab, where you configure the
information to send to the log file.

l If Use Transform Data is not selected (the default) on the General tab of the
Log Task, the Log tab appears and shows top-level message information, and
you select the items to send to the log file. To send all available information to
the log file, select the Log All Items box.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

55 | Logging Mediation Exchange Information

l If the Use Transform Data option is selected on the General tab of the Log
task, the Log tab appears as a mapping panel. You can use this panel to build
custom log messages.

Message mapped to the message element
This example shows part of a message mapped to the message element:



TIBCO ActiveMatrix® Service Grid Mediation Component Development

56 | Logging Mediation Exchange Information

The messageID element is useful if you need to specify a code, or map from a code that is
included in a message. For more information about the messageID element, see
Information for Custom Log Messages .

You can set a property on the mediation flow for the Log task to use at run-time, to
override the Log Role setting in the General tab if they are different. For example, you
might set the Log Role to debug during development, but set the run-time property to
info.

For more information about using a mapping panel, see Transform Tasks.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

57 | Routing Messages in a Mediation Flow

Routing Messages in a Mediation Flow
Route tasks are used to specify that messages can be delivered to different destinations
based on values within the message data or within other data in the mediation exchange,
such as the security context.

Route tasks enable you to send messages to a specific destination based on conditions
that you specify. Data from the mediation exchange, such as the message context or the
message body, can be used to construct the routing conditions. For example, you might
route incoming messages to a local server from 9:00 a.m. to 5:00 p.m., but outside of those
times, route incoming messages to a different server.

An example of using Route Task

The example shows the input path of a system that searches for travel reservations. For the
searchHotel mediation operation, incoming messages are routed to the appropriate
service, based on the city specified in the search request:

l If the city is that of the requestor, the message is sent to the QueryGDS service.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

58 | Routing Messages in a Mediation Flow

l If the city is in Asia, the message is sent to the QueryGDS_Asia service.

l If the city is in Europe, the message is sent to the QueryGDS_Europe service.

l If the city is in the United States, the message is sent to the QueryGDS_US service.

l A fault is thrown if the city is not the requestor city, or in Asia, Europe, or the United
States.

The two types of route taks are, Route and XPath Route.

l Route task enables you to define basic route conditions.

l XPath Route task allows more flexibility in the expressions you can use to define a
route condition.

The type of condition that you must define determines which route task is appropriate for
your application. For more information, see Routing Conditions.

Note: If you create Route tasks and later decide that a more complex routing
condition is required, you can easily convert the Route task to an XPath Route
task. For more information, see Changing Route Tasks to XPath Route Tasks.

Paths and Route Tasks
Route tasks can be added only to input paths.

Route tasks send each incoming message to a single destination based on which route
case evaluates to true, or to a single destination designated as otherwise if none of the
cases evaluate to true.

Paths on the input flow to a target operation correspond to paths on the output and fault
flow from that target operation. Paths ending in Throw Fault have a corresponding
mediation fault path on the Fault flow. Paths ending in a Generate Reply task have a single,
common Handle Reply path on the Output flow.

Note: You can only introduce the route in the input path, and the response
(output or fault) always returns to the original requester—the requester that
invoked the mediation operation.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

59 | Routing Messages in a Mediation Flow

Output path for a route

Mediation tasks can be added to sub-paths after a route activity. Typically, you use a
Transform task when the input, output, or fault message schema does not match the
mediation operation message schema.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

60 | Routing Messages in a Mediation Flow

Fault path for a route

Defining a Route
The steps for defining a route task are the same regardless of the type of route task you
are using.

Before you begin
Before creating a route, your mediation operation must contain the mediation interface
and one or more target interfaces that contain operations between which you route
messages.

Procedure
1. Add a Route or XPath Route task to an existing input path. If you have not yet

created any input paths in your mediation flow, draw the path between your
mediation operation and one of the target operations that you want for the



TIBCO ActiveMatrix® Service Grid Mediation Component Development

61 | Routing Messages in a Mediation Flow

destination for the route.

After a route task is added to an input path, a default case and an Otherwise case are
created. Cases are the conditions that are evaluated to determine which sub-path a
message takes. The Otherwise case is always present, and is used when all other
cases evaluate to false.

l Create more cases for the route, to create sub-paths to other target operations
in your mediation flow.

2. Add variables to hold the value of data from the message content or message
context. These variables are used in the routing conditions you specify in each
routing case.

3. Specify the routing conditions for each case, using the variables that you have
defined for the route.

4. Use the Input tab on the route task to map data from the message context or
message content to the variables you defined in step 2.

Adding Routing Cases
Routing cases define the potential destination for the route. Each case leads to a different
potential target operation. You must specify two things for each routing case: a name for
the case and the destination to which the case leads.
Each routing case leads to one potential target operation. Target operations cannot be
shared among routing cases. The relationship between routing cases and target operations
must be one-to-one.

Adding a routing case

Use one of the following starting points to define a routing case.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

62 | Routing Messages in a Mediation Flow

Starting
Point

Procedure

Input task 1. Click the route task in the input path of the mediation flow.

2. Drag the cursor to the destination.

The sub-path is automatically drawn, and a case with a default name is added
to the Decision tab.

Decision
tab

1. Open the Decision tab of the route task.

2. Click the Add Case button on the toolbar.

The Add Case button creates a case, but it does not lead to a specific target
operation. The image shows the sub-path that is displayed in this situation. The
sub-path leads to an error icon.

For details on how to change the destination of the routing case to a valid
target operation, see Modifying Case Names or Destinations.

Specifying Case Targets in the Decision Table
You can specify a target in the route task Decision table. If you retarget a Route task, the
entire nested routing structure is replaced.

Procedure
1. Click inside the cell where the target is located.

2. Choose a target from the drop-down list.

l Target operations that are not already targeted.

l Generate Reply or Throw Fault mediation tasks.

l End Mediation task for one-way (in-only) operations.

l Route and XPath Route mediation tasks, which enables you to build nested
routing structures.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

63 | Routing Messages in a Mediation Flow

Modifying Case Names
Use the Decision tab on the route task to change the name of the routing case.

Procedure
1. Click the name in the Case column.

2. Edit the name in the text box.

Modifying Destinations
Use the Decision tab on the route task to change the destination of the routing case.

Procedure
1. Click the name in the Case column.

2. Select the option that matches your goal.

l For selecting a new target operation, use the drop-down list in the Target
Service/Operation field on the Decision tab to specify the new target
operation.

l For newly created routing cases that point to an error icon, click the error icon
and drag the cursor to the target operation.

l For routing cases that point to a valid target operation, click the round ball at
the end of the input path, and drag the cursor to the target operation.

Moving Cases in the List
Cases are evaluated in the order in which they appear in the list. The first case whose
condition evaluates to true is taken, so you might need to move cases up or down in the
list.

Procedure
1. Select the row of the case.

2. Click the Move Up icon on the toolbar to move a case up on the list.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

64 | Routing Messages in a Mediation Flow

l Click the Move Down icon on the toolbar to move a case down on the list.

Deleting Cases
You can delete a routing case in two ways.

Starting Point Procedure

Mediation flow 1. Select the sub-path of the routing case in the mediation flow.

2. Right-click and select Delete from the menu, or press Delete.

Route task 1. Select the row of the routing case on the Decision tab of the
route task.

2. Click the Delete Case icon on the toolbar.

Nesting Multiple Route Tasks
You can use multiple, nested Route tasks to send a message to a target operation. Doing so
enables you to create complex mediation paths with multiple conditions.
When you use nested Route tasks, the mediation path shows whether a route goes directly
to a target operation, or goes through another Route task first. When multiple Route tasks
are in the mediation path, the task output details (or case paths) from only one of the
Route tasks is visible at a time.

Procedure
1. To see the output details of another Route task in the mediation path, click the

button next to the Route task icon, or use the outline view to navigate to a specific
Route task.

2. To see the level of a route in a nested set of Route tasks, place the cursor over the
button next to the Route task icon.

In this example image, the top-level Route task shows nested routes in a mediation
flow in the red circle. Nested routes appear in the Outline view in the blue circle.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

65 | Routing Messages in a Mediation Flow

Adding and Deleting Variables
Variables hold the data that you use in expressions for each routing case. Variables are
managed on the Decision tab of the route task.

Note: After a variable is created, you cannot change its name or data type. To
change a variable, you must delete the variable and create a new one.

You can add or delete a variable.

Task Procedure

Add a
variable

Click the Add Variable icon on the toolbar of the Decision tab. These data

types are available:

l String (default)



TIBCO ActiveMatrix® Service Grid Mediation Component Development

66 | Routing Messages in a Mediation Flow

Task Procedure

l Integer

l Boolean

l Float

l Double

l Decimal

Delete a
variable

Click the Delete Variable icon on the toolbar.

Mapping Data to Variables
After creating a variable, you must map data from the mediation operation to provide a
value for the variable.

Procedure
1. Click the Input tab of the route task.

In the Input tab of a route task, the right-hand panel is labeled Rule Variables. The
schema in the right-hand panel contains a list of the variables that you have defined
for the route task.

2. Use XPath expressions to provide a value for each variable in this schema.

In the example shown, one variable named city is used to determine the destination
of the message. In this example, the city specified in the search request is mapped to
the variable named city. The value of the variable is then used in routing conditions
to determine which target operation should receive the message.

Mapping values to variables



TIBCO ActiveMatrix® Service Grid Mediation Component Development

67 | Routing Messages in a Mediation Flow

Note: The section Schema Components explains that schema components
on the left side of the mapper are not validated against the message
schema, and their data types are thus not guaranteed. Therefore, data
used within XPath expressions on the right side of the mapper is treated as
untyped strings. Simple drag-and-drop mappings are not affected.
However, if you want to perform data type-dependent comparisons or
operations, you must use the Constructor Functions on the Functions tab
(for example, xsd:int()) to correctly specify the data type. For example,
to add two integers, the XPath expression would be:
xsd:int($MessageData/int1) + xsd:int($MessageData/int2)

Routing Conditions
Routing conditions determine which sub-path a message takes. Routing conditions are
specified in order, and the message is sent along the sub-path corresponding to the first
condition that evaluates to true. The Decision tab of the route tab contains the routing
conditions for the route.

Routing conditions are XPath expressions, but each type of route task has a different
method of specifying routing conditions:

l The Route task enables you to specify basic comparison expressions for each variable
you have defined.

l The XPath Route task enables you to use more complex XPath expressions.

The type of route you use depends on the complexity of the routing conditions you need to
define.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

68 | Routing Messages in a Mediation Flow

Conditions for Route Tasks

Route tasks create a simple comparison condition for each variable you have defined. A
Route task is useful in situations where a basic comparison of a few variables can be
specified.

Routing conditions for Route task

In this example, basic equality comparisons are performed for each case. When the city
variable is equal to Palo Alto, the case named CaseMyCity evaluates to true, and its
corresponding sub-path is taken. If none of the routing conditions evaluate to true, the
sub-path for the Otherwise case is taken.

Editing Route Task Conditions
The Route task is useful in some sitatuions where a basic comparison of a few variables
can be specified.

Procedure
1. Click the cell for each variable and each case.

2. Specify a comparison operator and a constant value for comparison.

Basic comparison operators are available in a drop-down list in the condition:

l = (equal)

l != (not equal)

l < (less than)

l <= (less than or equal)



TIBCO ActiveMatrix® Service Grid Mediation Component Development

69 | Routing Messages in a Mediation Flow

l > (greater than)

l >= (greater than or equal)

l =true() (only for variables of type boolean)

l =false() (only for variables of type boolean)

All conditions for each case must evaluate to true for the condition to be true.

In the example loan application shown, the operation
SimpleLoanPortType/SimpleRequestLoan can be used in two circumstances:

l For loan amounts that are less than or equal to $50,000.

l When the applicant has a credit score above 700.

If neither of these conditions is true, the LoanPortType/RequestLoan operation that
requires more information from the applicant must be used.

Routing with more than one variable

Conditions for XPath Route Tasks
XPath Route tasks allow more complex comparisons for each case than does a Route task.
You can specify an XPath expression for each case that examines the value of one or more
of the variables that you have defined.

For example, you can create an expression that specifies a range of time (such as 9AM to
5PM), or you can create an expression that compares two or more variables. Your
expressions are not limited to simple comparisons, and you do not need to use any of the
variables you have defined in the expressions.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

70 | Routing Messages in a Mediation Flow

XPath Route tasks are more flexible than Route tasks, but specifying the expression is more
complex. You must type the XPath expression in the condition field next to each routing
case.

Variables are referenced in the XPath expressions for each routing case by their names.
Unlike XPath expressions in the Transform task, you do not need to use a dollar sign to
specify the root of the path to the variable. For example, the expression to determine if the
city variable is equal to Palo Alto would be:

city = "Palo Alto"

The Transform task has a graphical XPath editor that you can use as a reference for
creating XPath functions for the route task. For more information about XPath, see Using
XPath and Data Function Tabs.

Note: As noted in Mapping Data to Variables, data type-dependent comparisons
and operations should use constructor functions to typecast the data.

Changing Route Tasks to XPath Route Tasks
You can change a Route task to an XPath Route task if, for example, you originally create
Route tasks then later realize that a more complex routing condition is required. Instead of
removing the existing Route task, you can convert a Route task into an XPath Route task.

Note: Converting a Route task to an XPath Route task is a one-way operation.
You cannot convert an XPath Route task to a Route task.

Procedure
1. Select the Route task to convert in a mediation flow diagram.

2. Right-click the Route task and select Convert to XPath Route from the menu.

All variables and cases are maintained, and routing conditions are converted to the
correct XPath syntax.

3. Change the condition for each case, as necessary.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

71 | Transforming Tasks

Transforming Tasks
Transform tasks, used to manipulate data available in a mediation exchange, are necessary
when the schema of the input, output, or fault message does not match the schema of the
message of the expected recipient.

Transform tasks enables to achieve several goals:

l Create a mediation operation that allows new clients to use legacy services with
different schemas. Your new client might need a service that returns an integer for
salary information, but the legacy service returns a string.

l Contribute data to the mediation exchange for use in subsequent mediation tasks.
For example, you might want to place into a string the time a message was sent, the
sender of the message, and the value of one of the elements within a message. You
can then use a log task to write the contents of that constructed string to the log file.

l Manipulate and store data in the mediation exchange without changing the actual
message content.

Transform tasks have an Input tab that contains the expected schema of the recipient’s
message and the data available in the mediation flow.

The Input tab of a Transform task



TIBCO ActiveMatrix® Service Grid Mediation Component Development

72 | Transforming Tasks

The message panel contains an XSLT stylesheet that creates the message that the recipient
expects. The message panel initially displays the expected schema of the recipient’s
message, to give you hints about constructing the message.

The Mediation Operation Context panel contains the data available from the message
sender. You can drag items from the context panel to the message panel to perform simple
mappings. More complex mappings are also possible through the XPath expression field
and by using the right-click menu in the message panel to add XSLT statements.

XPath and XSLT are standard tools for data transformation. Extensive knowledge of XPath
or XSLT is not necessary to use the mapper effectively. You can accomplish most
transformation usage cases with information available in this chapter and in the Help text
available for each XPath function in the product.

If you perform more complex transformations, however, it is helpful to have some detailed
references on XPath and XSLT. It is beyond the scope of this manual to provide a complete
reference for these tools. You can find the complete XPath and XSLT specification at
WSDL website, and several third-party commercial books are available on both XPath and
XSLT.

Example of Transformation
In this example of using the Transform task, the mediation flow is for a travel reservation
service.

The mediation operation exposes the service as a single interface, but the mediation flow
routes incoming requests to the appropriate local service based on the location of the
hotel. Different continents have different target services that perform the hotel reservation.
The schemas for different locations are slightly different, and so some transformation
might be necessary.

https://www.w3.org/TR/wsdl/


TIBCO ActiveMatrix® Service Grid Mediation Component Development

73 | Transforming Tasks

A travel reservation mediation flow: the input path

Transform tasks are required when requests come in for any city other than the local city,
because the schemas for the other target operations are different from the mediation
operation. The image shows the transform task for the case when a reservation is
requested for an Asian city.

Basic Mapping
The schemas for the mediation operation and the target operation are similar, except that
the mediation operation has an element named nearAddress and the corresponding
element in the target operation is named landmark. For all other elements, you can drag
and drop the data component in the mediation operation to the corresponding data
component in the target operation, and the appropriate XPath expression is placed in the
XPath field.

For the nearAddress and landmark elements, you might need to manipulate the data to
transform it to the expected format.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

74 | Transforming Tasks

A basic mapping example

In this example, the nearAddress element contains the name of the location separated by
a comma, followed by the actual address. The landmark element is expecting only the
name of the location. To make the data match the target operation’s expectations, you
need to take the substring of the nearAddress element up to the comma that separates
the name of the location from the address.

Using XPath Editor
When you drag functions from the Functions tab to the XPath Expression window, the
function shows markers in double angle brackets (for example, <<string>>) for completing
the function. You can drag data components and constants from the Data Source or
Constants tab to complete the function. You can also type in the XPath Expression window
to replace the markers manually.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

75 | Transforming Tasks

The XPath Editor Window

Procedure
1. Click the XPath Expression field next to the landmark element in the target operation

message schema.

The field expands to a larger text box so that you can edit the expression easily.

2. Click the Functions tab on the at the top of the context panel.

3. Expand the String functions folder in the functions list and locate the subtring-before
function.

4. Drag the substring-before function into the XPath Expression window.

In the example, you would replace the <<before-string>> marker with a comma
and then drag the nearAddress element onto the <<string>> marker. The image
shows dragging the data components into an XPath function.

Dragging a data element into a function



TIBCO ActiveMatrix® Service Grid Mediation Component Development

76 | Transforming Tasks

More complex transformations are possible with the features available in the Input
tab.

Data Contribution to the Mediation Exchange
The Transform task can modify the message data within the mediation exchange, and
contribute new data to the mediation exchange.

On the General tab of the Transform task, the checkbox labeled Contribute Output to
Mediation Exchange specifies how the Transform task results are handled.

l If Contribute Output to Mediation Exchange is cleared, the results of the
transformation is used to construct a new message. This option is cleared by default.

l If Contribute Output to Mediation Exchange is selected, the results of the
Transform task are added to the mediation exchange as a new data element. The
new data element is available to subsequent mediation tasks along the same path,
and the name of the data element is the same as the name assigned to the
Transform task.

The Contribute Output to Mediation Exchange option is automatically selected if you use
an external stylesheet for data transformation. For more information, see External
Stylesheets for Data Transformation.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

77 | Transforming Tasks

External Stylesheets for Data Transformation
External, third-party XSLT stylesheet can be used for data transformation using the
Transform task. This enables you to specify the transformation mapping in your workspace,
outside the mediation flow.

It is possible to specify an external XSLT stylesheet for transformation in two ways using
reference types.

l A static reference can be used to select a single (static) stylesheet from a folder in
your project.

l A dynamic reference can be used to select a set of stylesheets from a folder in your
project. At run-time one of the stylesheets in the list is used dynamically, based on
the value provided for the stylesheetURI element in the Input tab of the mediation
task.

For example, if the folder specified for the dynamic reference is MySOAProject/Service
Descriptors and the stylesheet is in the folder MySOAProject/Service
Descriptors/folder1/sample.xsl, the value that must be provided for the stylesheetURI
element would be folder1/sample.xsl.

Note: The stylesheet for a reference must be located in the same project as the
mediation flow that uses it.

Specifying an External Stylesheet for Data
Transformation

Procedure
1. On the General tab of the Transform task, select the checkbox labeled Use External

Stylesheet.

The stylesheet selection options open on the General tab.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

78 | Transforming Tasks

2. Open the Input Style drop-down menu and specify how the XML should appear.

l Text Specified with a string.

l Binary Specified with a binary value.

l Tree Specified with a type of any, enabling you transform data that is already in
an XML document

Note: Contribute Output to Mediation Exchange is automatically
selected for this type of transformation, which prevents the MessageData
from being overwritten when an external transformation is used. Also, the
input and output of the transformation task always match the Input Style
you select. For example, if the input is text, the output is also be text.

3. Open the Stylesheet Reference Type drop-down menu of the General tab and
select the type of reference for the Transform task to use:

Option Description

Static
reference
type

a. Browse and select a stylesheet from the stylesheets you have
saved in your project.

b. Open the Input tab of the Transform task and map the data, so
that when the data arrives, the value is transformed using the
specified stylesheet.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

79 | Transforming Tasks

Option Description

Dynamic
reference
type

a. Open the Dynamic Stylesheet Folder drop-down menu of the
General tab and select the folder where one or more stylesheets
are located.

b. Open the Input tab of the Transform task and provide the
stylesheet name as a parameter in the message data.

At run-time, ActiveMatrix searches for this name in the folder you specified.

If the xsl file is in a sub-folder, the name must include the relative path name. For
example, in the case where the xsl file is located in company/dept/app.xsl, the top-
level folder (in this example, /toplevel) is prepended to locate the exact location for
the file in the project:

/toplevel/company/dept/app.xsl

For reference information about the Transform task, see Transform.

Schema Components
The message panel and context panel each contain schemas that contain data
components. The icons represent the general data type of the component. To see the exact
data type, hover the cursor over a component to open a pop-up.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

80 | Transforming Tasks

Icon Description

Complex element that is a container for other datatypes. This is also called a parent
in the schema tree.

String or character value.

Integer value.

Decimal (floating point) value.

Boolean value.

Date value.

Time value.

Binary (base 64()) value.

Choice of multiple values. The actual data value can be one of a specified set of
datatypes.

Icons for schema components

Note: To improve performance, data contained within schema components in
the left side of the mapper are not validated against the message schema for the
operation. Therefore, data used within XPath expressions on the right side of the
mapper are treated as untyped strings.

To perform datatype-dependent comparisons or operations, use the Constructor Functions
on the Functions tab (for example, xsd:int()) to correctly specify the datatype. For
example, to add two integers, the XPath expression would be:

xsd:int($MessageData/int1) + xsd:int($MessageData/int2)



TIBCO ActiveMatrix® Service Grid Mediation Component Development

81 | Transforming Tasks

Qualifier Characters

Schema data components can have additional characters to the right of the element name
that specify additional information. If there is no qualifier, the schema component is
required and you must provide a mapping that results in a value for the schema
component.

Qualifier Description

none Element is required.

? Element is optional.

* Element repeats zero or more times.

+ Element repeats one or more times.

Context Panel
The name of the context panel is based on the type of path where the Transform task
appears.

Type of Path Name of Context Panel

Input Mediation Operation Context

Output Target Operation Context

Fault Mediation Fault Context

The context panel always displays the schemas that define the data for the current
mediation properties, message flow context, and message data. Regardless of the type of
path, the schema of the mediation properties and message flow context are always the
same. The schema for the message data varies depending upon the schema of the
recipient’s expected message.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

82 | Transforming Tasks

Schema Component Description

MediationFlowProperties This schema component contains an element named properties
that is of type complex that contains the properties defined on
the Properties tab of the mediation flow. For more information,
see Adding a Mediation Flow Propery.

MessageFlowContext This schema component contains the defined context
parameters. For more information, see Working with Message
Context Properties.

MessageData The MessageData component contains the message of the
expected recipient.

For example, for input paths this component contains the
schema of the input message of the mediation or the target
operation. For output paths, this component contains the
schema of the reply message of the mediation or the target
operation. Similarly, for fault paths this component contains the
schema of the fault message. For fault paths, this component
contains a choice element that contains either one of the faults
returned by the target operation or a generic Undeclared fault
message

Schema for message properties and message flow context

Message Panel
The message panel contains the schema of the message that the recipient expects. The
name of the message panel is based on the type of path where the Transform task
appears.

Type of Path Name of Context Panel

Input Target Operation Context

Output Mediation Operation Context

Message panel



TIBCO ActiveMatrix® Service Grid Mediation Component Development

83 | Transforming Tasks

Type of Path Name of Context Panel

Fault Mediation Fault Context

You can use the data in the schemas from the context panel to construct the content of the
message expected by the receiver. The message panel is actually an Extensible Stylesheet
Language Transformation (XSLT) template that specifies how data is transformed to
produce the expected message.

You do not need detailed knowledge of XSLT to create the mappings for the message. Most
mappings can be accomplished by simple dragging from the context panel to the message
panel, and also possibly using a few XPath functions for simple data manipulation. If you
want to see the XSLT template that is created from your mappings, click the Show Edit
Tab icon on the toolbar, then click the XSLT Source tab at the top of the XPath editor
dialog.

For more information about using XPath functions and creating mappings, see Data and
Function Tabs and Managing Mappings.

Data and Function Tabs
Use the tabs at the top of the context panel to select items to drag to the message panel.

Tab Description

Data Source Contains the schemas for the mediation flow properties, message flow context,
and message data. This tab is selected by default when you view the Input tab.
For more information, see Context Panel.

Functions Contains a set of XPath functions organized into related functional groups.
XPath (XML Path Language) is an expression language developed by the World
Wide Web Consortium (W3C). XPath functions perform data manipulation, such
as mathematical functions, string manipulation, or logic operators.

You can select and drag XPath functions in this tab to the XPath expression
field or to the Show Edit Tab dialog in the message panel.

Data and Function Tabs



TIBCO ActiveMatrix® Service Grid Mediation Component Development

84 | Transforming Tasks

Tab Description

Each function has help text to describe the function’s use and syntax. The help
for the function is displayed below the function list in the Functions tab.

For more information, see TIBCO XPath Functions that describes the functions
added by Mediation.

Constants Contains constants such as whitespace or symbol characters that can be used
in XPath expressions.

When you drag data, a function, or a constant to the right-hand panel and hover over an
existing expression in an XPath editing window, the background color of the text
underneath the cursor changes. The new color indicates the result of placing the item at
that point:

l Light turquoise - The highlighted text is the first parameter of the dropped function.

l Light pink - The dropped item replaces the existing text.

Note: As noted in Schema Components, data in schema components on the
Data Source tab are not validated and checked against the types in the message
schema. Therefore, data is coerced into an untyped string. The Constructor
Functions on the Functions tab must be used on data to correctly evaluate most
functions and operators.

TIBCO XPath Functions
TIBCO XPath Functions describe the functions added by Mediation.

Function Name Description

base64ToString Converts a base64 binary encoded string to a string using the specified
encoding. If encoding is not specified, UTF-8 is used.

Template

TIBCO XPath Functions



TIBCO ActiveMatrix® Service Grid Mediation Component Development

85 | Transforming Tasks

Function Name Description

base64ToString(<< encodedString >>, << optional encoding >>)

Return Type

string

stringToBase64 Converts a string to a base64 binary encoded string.

Template

stringToBase64(<< stringToEncode >>)

Return Type

string

hexToString Converts a hex string to a string using the specified encoding. If encoding
is not specified, UTF-8 is used.

Template

hexToString(<< encodedString >>, << optional encoding >>)

Return Type

string

stringToHex Converts a string to a hex encoded string.

Template

stringToHex(<< stringToEncode >>)

Return Type

string

timestamp Returns the number of milliseconds since midnight, January 1, 1970 UTC,
at the instance of the call to this function

Template

timestamp()

Return Type

long



TIBCO ActiveMatrix® Service Grid Mediation Component Development

86 | Transforming Tasks

Creating Custom XPath Functions

Procedure
1. Run TIBCO Business Studio - BPM Edition from the Start menu.

For example, select Start > All Programs > TIBCO_Home > TIBCO Business Studio
N.N > Studio for Designers

2. Select File > New > Project.

3. In the New Project dialog under Plug-in Development, select Plug-in Project and
click Next.

4. Specify a name for the project that reflects the XPath functions (for example, My
Custom Functions).

Accept all other defaults and click Next.

5. On the Plug-in Content page, locate the Plug-in Options group, and select This plug-
in will make contributions to the UI.

6. Accept all other defaults, and click Next.

7. In the Templates page, select Custom XPath Function Wizard and click Next.

8. In the Custom XPath Function Group dialog box, provide values:

l Category: This is the name of the category that includes the custom XPath
function.

l Prefix: The prefix for the functions

l Namespace: The namespace for the functions.

l Help Text: The description of the functions.

9. Click Next to continue.

The XPath Function Group Creation Section dialog is displayed. Here you specify the
function and function parameters.

10. Click the Add button located on the right side of the XPath Function table and
provide values.

l Name: The name of the function.

l Return Type: The return type of the function.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

87 | Transforming Tasks

l Description: The description of the function.

11. Click the Add button located on the right side of the XPath Function Parameters
table.

l Name: The name of the parameter.

l Type: The data type of the parameter.

l Optional: Select the checkbox if the parameter is optional.

12. Click Finish.

13. TIBCO Business Studio - BPM Edition opens the Open Associated Perspective dialog,
which asks if you want to open the Plug-in Development perspective.

l Optionally, select the check box Remember my decision. Click Yes.

TIBCO Business Studio - BPM Edition opens the custom XPath function plug-in
and the Plug-in Development perspective.

Result
Along with the custom XPath plug-in, a SOA Project < plug-in project name>.deploy.soa is
created.

Your custom code is written in < plug-in project name>\src\<plug-in project name>\<category
name>.java.

Exporting Custom XPath Functions
You can install a custom XPath function in TIBCO Business Studio - BPM Edition.

Procedure
1. To create a feature project specify the plug-in to package into the new feature.

For more information, see Supplemental Eclipse Help > Plug-in Development
Environment Guide > Reference > Wizards and Dialogs > New Project Creation
Wizards.

2. Export the feature project

Make sure you select the checkbox for the Generate metadata repository option.

For more information, see Supplemental Eclipse Help > Plug-in Development



TIBCO ActiveMatrix® Service Grid Mediation Component Development

88 | Transforming Tasks

Environment Guide > Reference > Wizards and Dialogs > Export Wizards > Export
Feature.

3. Install the feature using Help > Install New Software.

Specify the location where you exported the feature project. Unselect the checkbox
for the Group items by category option which then lists the feature project.

Result
The custom XPath function is ready for use and can be accessed from the Input path of the
data transform function.

Deploying Custom XPath Functions
After the file < plug-in project name>\src\<plug-in project name>\<category
name>.java is updated with the custom code, the deployable artifacts can be generated.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

89 | Transforming Tasks

Procedure
1. Make sure the Target Platform points to TIBCO ActiveMatrix Runtime and no errors

occur in the custom XPath function plug-ins.

For information on switching the Target Platform, see TIBCO ActiveMatrix® Service Grid
Composite Development.

2. In the Project Explorer pane, expand the < plug-in project name>.deploy.soa
project.

3. Expand the Composites folder.

4. Right-click < plug-in project name>.apt.composite and click Create DAA.

Note: To be able to generate the DAA file, while creating the Custom
Mediation task, make sure the RequiredExecutionEnvironment field in
the Manifest.MF file is empty. This allows you to create the DAA and
deploy it at runtime.

Result
The Create Deployment Archive wizard is invoked. For more information on using this
wizard, see TIBCO ActiveMatrix® Service Grid Composite Development.

Deploy this deployment archive, the DAA, like any other SOA project. For information on
uploading and deploying the DAA, see TIBCO ActiveMatrix® Service Grid Administration.

Testing Custom XPath Functions
Custom XPath function can be tested in RAD by creating a Run As or Debug As
configuration

Procedure
1. Add one of the following to the Functions list along with the main composite:

l A composite generated by the Custom XPath Function wizards to the list.

l A DAA created from the composite.

Make sure that the composite or DAA that holds Custom XPath Function is at the top



TIBCO ActiveMatrix® Service Grid Mediation Component Development

90 | Transforming Tasks

of the list of Composite/DAA(s), before the SOA DAA/Composite.

2. Select Apply and Run/Debug.

Mapper Toolbar Buttons
The toolbar contains icons to perform various functions in the mapper.

Button Description

Pins the property view to the current selection.

Click this button to view errors for the selected element or children.

Click to remove the selected mapping. This button is available only when a
mapping is selected in the message panel.

If you remove the mapping when a parent node in the schema tree is selected, all
mappings for child nodes of the parent are also removed.

Deletes XSLT statements that you have added using the right-click menu, such as
variables, comments, or choose statements. This button is available only when a
statement you have added is selected.

Opens the Show Check and Repairs dialog.

For more information, see Repairing Incorrect Mappings.

Opens a larger Show Edit Tab XPath editing window for the selected element in
the message panel. The window gives you access to a larger XPath viewer, the
XSLT source, and controls that enable you to further edit the XSLT statements.

Click this icon a second time to make the Show Edit Tab XPath editing window
disappear.

Mapper toolbar buttons



TIBCO ActiveMatrix® Service Grid Mediation Component Development

91 | Transforming Tasks

Right-Click Menu in the Message Panel
Right-clicking on a data component in the message panel opens a popup menu with
several choices.

Menu Item Description

Show
Mappings

Expands the selected component to show all sub-components with mappings.
Also expands any data components in the left-hand panel that correspond to
mappings so that all mapping lines are shown.

If no component is selected, the operation is performed on the root of the
schema tree.

Show Errors Expands the selected data component to show all sub-components that have
errors.

If no component is selected, the operation is performed on the root of the
schema tree.

Expand All Expands all sub-components of the selected data component.

If no component is selected, the operation is performed on the root of the
schema tree.

Surround
With >
Surround
With Choose

Surrounds the selected data component with a Choose statement. For more
information, see Surrounding a Component With a Choose Statement.

Surround
With >
Surround
With If

Surrounds the selected data component with an If statement. For more
information, see If Statements.

Surround
With >
Surround
With
ForEach

Surrounds the selected data component with a For Each statement. For more
information, see For Each Statements.

Right-click menu in the message panel



TIBCO ActiveMatrix® Service Grid Mediation Component Development

92 | Transforming Tasks

Menu Item Description

Surround
With >
Surround
With
ForEach
Group

Add Child >
Variable

Adds a sub-component to the selected data component. The child component
is a variable. Variables can be set to a constant value and used in other
mappings in the message panel. For more information, see Adding a Variable
to a Mapping.

Add Child >
Comment

Adds a sub-component to the selected data component. The child component
is a comment. For more information, see Surrounding a Component With a
Choose Statement.

Add Sibling
> Variable

Adds a data component at the same level as the selected component. The
new component is a variable. Variables can be set to a constant value and
used in other mappings in the message panel. For more information, see
Adding a Variable to a Mapping.

Add Child >
Comment

Adds a data component to the same level as the selected component. The
new component is a comment. For more information, see Surrounding a
Component With a Choose Statement.

Toolbar
icons

The selections from the toolbar are also available in the right-click menu. For
more information, see Mapper Toolbar Buttons.

Surrounding a Component With a Choose
Statement
Choose statements enable you to conditionally specify the mapping based on an
expression. Choose statements consist of a When clause to specify the condition you want
to test, the mapping you want to perform if the condition is true, and an Otherwise clause
to contain a mapping to perform if no conditions evaluate to true.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

93 | Transforming Tasks

Procedure
1. Select the component to surround, right-click, and choose Surround > Surround

with Choose... from the menu.

2. In the Surround With Choose dialog, enter the number of When conditions to test
against, and also specify whether to include an Otherwise clause for any unhandled
conditions.

3. For each When clause, create an XPath expression that evaluates to a boolean.

4. Under each When clause, provide the XPath expression for the mapping that occurs if
the When condition evaluates to true.

5. If an Otherwise clause is specified, provide an XPath expression for the mapping that
occurs if no When conditions evaluate to true.

An example of using a Choose statement is when more than one fault message is
handled by the same Catch Fault task. The figure below shows a Transform task on a
fault path that handles two faults. The Choose statement specifies that when the
searchHotel_faultMsg is returned, send the value of the searchHotel_fault element.
Otherwise, send the value of the message element.

An example of choose statement

If Statements
If statements enable you to specify a condition, and if the condition is met, then the
specified mapping is output.

When you chose this option, an If statement appears before the selected element, and you
must place an XPath expression in the If statement that evaluates to a boolean. If the
expression evaluates to true, the specified mapping is performed. If the expression



TIBCO ActiveMatrix® Service Grid Mediation Component Development

94 | Transforming Tasks

evaluates to false, the mapping is not performed and no value is set for the item. Do not
place an If statement around schema data components that are marked as required.

Example of If statement

Note: The example requires a comparison of the value of a boolean element. To
obtain the value of the element, the element is coerced into a string using the
string() function and then compared to the value of the string "true". For
more information about comparing the value of boolean data components, see
Testing Boolean Values.

In this example, the returnDate schema element is optional. The returnDate element is
surrounded by an If statement that evaluates whether the roundTrip element is true. If
roundTrip is true, then the element is output, if roundTirp is false, the returnDate element
is not output. The expression in the If statement is:

string
($MessageData/ns:searchAirlineRequest/ns:parameters/ns0:searchAirline/roundTri
p) = "true"

For Each Statements
For Each statements enable you to execute one or more statements once for each data
element in a list.

When you choose this option, a For Each statement appears before the selected data
component, and you must place an XPath expression in the For Each statement that
evaluates to a list of zero or more items. This is useful when you want to manipulate
sequences or repeating elements.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

95 | Transforming Tasks

Example of For Each statement

In this example, the requestor sends a list of ticker symbols and the stock exchanges on
which they are traded. The mediation flow routes the request to different services for each
stock exchange. The For Each statement takes the list of ticker symbols and executes the
remaining statements once for each symbol in the list. The If statement examines the
exchange element and outputs only the ticker symbols for the "NYSE" stock exchange.

Adding a Variable to a Mapping
Variables can be used in any XPath expression within the message panel.
Choosing this option opens a dialog that enables you to specify the name of the variable.
You can change the name of the variable at a later time by selecting the variable and
clicking the Show Edit Tab button in the toolbar. The Variable Name field can be used to
change the variable’s name.

Procedure
1. The value of the variable is specified by supplying an XPath expression, either by

mapping data from the context panel or by using XPath functions or constants.

2. Once the variable’s contents have been supplied, the variable can be referenced
within the scope that it has been defined. That is, you can r eference a variable from
within the same component or within sub-components of the component in which
the variable is defined.

Adding a variable is useful if you perform the same computation repeatedly. You can
refer to the results of the computation in several message elements instead of
recreating the computation for each item.

In this example, the variable uses the mediation flow property USDtoYenXChangeRate
to get the value of the current exchange rate. That value is then multiplied by 1.02 to
add a 2% markup. The variable can then be referenced in subsequent statements in



TIBCO ActiveMatrix® Service Grid Mediation Component Development

96 | Transforming Tasks

the mapping.

An example of adding a variable to a mapping

Managing Mappings
A mapping correlates data from the schema in the context panel with a data component in
the message panel.

You can create and manage mappings using several functions:

Function Procedure

Creating a mapping 1. Drag and drop data components from the left-
hand panel to the right-hand panel.

2. The appropriate XPath expression is displayed
in the XPath Expression field.

Adding functions or constants to an
XPath expression

Use the tabs at the bottom of the context panel
(described in Data Function Tabs).

Opening a larger window in which to
view or edit an XPath statement

Click an expression in the XPath Expression field, or
click the Show Edit Tab button on the toolbar.

l Lines appear between data components that are mapped to each other. The lines are
blue when both components are visible, but the lines turn into a dashed green line
when one or more mapped components are collapsed into its parent in the schema
tree.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

97 | Transforming Tasks

l Data components in the message panel are initially displayed in italics. Italic text
indicates that the components are hints to the potential mappings you can create.

l Once you create a mapping for a data component, the hint changes from italics to
non-italic font. Non-italic font indicates that the mapping is now an XSLT statement
that transforms the data into the specified component. You can change a hint into a
statement without performing a mapping by selecting a component in a message
schema and dragging it past the dividing line between the left and right panels.

l Data components on the right-hand side of a mapping can be either black or red. If
the component is black, the XSLT statement for the component is valid and
complete. If the component is red, that indicates the statement for the component is
an error and must be repaired as described in the next section.

Repairing Incorrect Mappings
Any incorrect statements are displayed in red in the message panel. Errors can occur for a
number of reasons. Correct any errors before attempting to execute your mediation flow.
The reasons for errors coule be:

l A required component has no statement and therefore must be specified.

l The message schema has changed, and existing statements may no longer be valid.

l The XPath formula for a component may contain an error.

Procedure
1. If you hover the cursor over any red component name in the message panel, a pop

up describing the error opens.

2. Find potential problems in your mappings and correct them.

a. Click the Show Check and Repairs button on the toolbar. This button opens a
dialog with all potential problems in the specified mappings.

b. Select the Fix checkbox for potential errors, and the software attempts to
automatically fix the problem.

Some potential problems in the Show Check and Repairs dialog cannot be fixed
easily, and no check box for these items appears in the Fix column. For
example, if a component expects a string and you supply a complex type, the
corrective action to fix the problem is not clear. The problem cannot be



TIBCO ActiveMatrix® Service Grid Mediation Component Development

98 | Transforming Tasks

automatically fixed. You must repair these items manually.

3. You can delete mappings by selecting one and clicking Remove Mappings.
l If a child component is selected, the component is returned to its original state

and no mapping is specified.

l If a parent component is selected, mappings for all child components are also
removed.

Mapping an Empty Complex Type

Procedure
1. In the Generate Replly Mediation Task pan select an object.

2. Drag the empty complex object from the Target Operation Context pane on the
right to the Mediation Operation Context pane on the left side.

Using XPath
The Input tab uses XPath as the language for locating and manipulating data. XPath (XML
Path Language) is an expression language developed by the World Wide Web Consortium
(W3C) for addressing parts of XML documents.

XPath also provides basic manipulation functions for strings, numbers, and booleans. To
use XPath in the Input tab, you need only be familiar with the basic XPath concepts, but
you might want to learn more about XPath when building complex expressions. For a
complete description of XPath, refer to the XPath specification (which can be obtained
from www.w3.org).

Addressing Schema Components

All data in the context and message panel is represented as an XML schema. The data can
be a simple (strings, numbers, booleans, and so on) or a complex component. Complex
components are structures that contain other schema components, either simple
components or other complex components. Both simple and complex components can
also repeat. That is, they can be lists that store more than one component of the given
type.

http://www.w3.org/


TIBCO ActiveMatrix® Service Grid Mediation Component Development

99 | Transforming Tasks

XPath is used to specify which schema component you would like to refer to. For example,
this schema may be available in the context panel.

The context panel of the example shows the schema available for a mediation operation.

Three top-level items, each a root node in the context panel, are present:

l MediationFlowProperties

l MessageContext

l and MessageData

Each of these nodes has its own associated structure. MediationFlowProperties has a
complex component named properties and MesageData has a complex component named
searchHotelRequest.

References to a particular data item in any of these schema start with the root node and
slashes (/) indicate a path to the data component. For example, the country element in the
SearchHotel complex component that is in the paramenters component would look like
this in an XPath mapping field:

$MessageData/searchHotelRequest/parameters/searchHotel/country



TIBCO ActiveMatrix® Service Grid Mediation Component Development

100 | Transforming Tasks

The path starts with a dollar sign, then continues with node names using slashes, like a file
or directory structure, until the location is named.

Some schema components must be prefixed with their namespace prefix. The prefix is
automatically added to components that require this when dragging and dropping data in
the XPath Expression field.

Evaluation Context

XPath also has a method for referencing relative paths from a particular node. If you have
an evaluation context, or a particular starting node in a schema tree, you can specify the
relative path to other elements in the tree.

For example, if your evaluation context is
$MessageData/searchHotelRequest/parameters/searchHotel, you can reference the sub-
items of ShipName without specifying the entire path. If you want to reference
$MessageData/searchHotelRequest/parameters/searchHotel/country, the relative path
would be ./country. The path is relative to the evaluation context — country is at the
same level in the schema tree as the evaluation context.

Search Predicates

An XPath expression can have a search predicate. The search predicate is used to locate a
specific element of a repeating schema item. For example, consider a schema where the
$MessageData/searchReservations/todaysReservations item is a repeating element. If
you want to select only the first item in the repeating element, you would specify this:

$MessageData/searchReservations/todaysReservations[1]

The [1] specifies the first element of a repeating item.

Sub-items can also be examined and used in a search predicate. For example, to select the
element whose reservationId is equal to "3A54", you would specify:

$MessageData/searchReservations/todaysReservations[reservationId= "3A54"]

In the example above, the evaluation context of a predicate is set to the item containing
the predicate. Therefore, reservationId is assumed to be within the todaysReservations
component.

You can also use functions and expressions in the search predicate. For example, if you
want to find all elements after the first, you would specify:

$MessageData/searchReservations/todaysReservations[position()>1]



TIBCO ActiveMatrix® Service Grid Mediation Component Development

101 | Transforming Tasks

Testing Boolean Values

To test the value of a boolean node, you can use the data() function to obtain the value of
the node. A common error in XPath functions is to supply a boolean node in a condition
and expect that the condition evaluates to true or false based on the value in the node. For
example:

if ($MessgeData/searchHotelRequest/parameters/searchHotel/nonSmoking) then ...

The condition in the if statement above would return true when the nonSmoking
component is present, regardless of whether the value of the component is true or false.
To evaluate the value of a boolean element, use this expression:
if (data($MessageData/searchHotelRequest/parameters/searchHotel/nonSmoking))
then ...

You can also use the string() function to coerce the comparison to the string value of the
Boolean node and then compare to the value of "true" or "false". For example:

string($MessageData/searchHotelRequest/parameters/searchHotel/ nonSmoking) =
"true"

Comments

You can add comments to XPath expressions using the XPath 2.0 syntax for comments. The
syntax is:

{-- <comment here> --}

For example, this XPath expression contains a comment:

$MessageData/searchHotelRequest/parameters/searchHotel/country {-- returns the
country --}

Transforming XML with Related Tasks
In addition to the Transform mediation task, ActiveMatrix provides tasks that enable you to
manipulate XML data in text, binary, or tree formats.

The Parse XML Task

The Parse XML task is used when you have an XML document stored in a string or binary
field. This task produces a tree representation of the XML that can be used by subsequent
tasks in the mediation flow. You can pair the Parse XML task with the Render XML task to



TIBCO ActiveMatrix® Service Grid Mediation Component Development

102 | Transforming Tasks

convert the parsed XML back into a string or binary field for transmission within a message.
For reference information about this task, see Parse XML.

The Render XML Task

The Render XML task takes an XML tree for a specified schema and converts it to a string or
binary element that contains the XML document. You can pair the Render XML task with
the Parse XML task to convert the parsed XML back into a string or binary field for
transmission within a message. For reference information about this task, see Render XML.

The Validate XML Task

You can use the Validate XML task to validate message data, a WSDL message, XML text,
binary, or XML tree formats against a schema. The output of the Validate XML task is
contributed to the mediation exchange, and can be used by downstream tasks. For
reference information about this task, see Validate XML.

In addition to the Validate XML task, the message received by the mediation component
can be validated using the VALIDATE_MESSAGE_DATA property that is added by default to
mediation flows. For more information, see Validation of Message.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

103 | Querying a Database

Querying a Database
The Query Database task performs a SQL SELECT statement on a database.

The task can specify three types of records:

l One or more tables in the FROM clause of the SELECT statement

l One or more columns to return in the SELECT list

l One or more conditions in the WHERE

You also have the option to specify the maximum number of rows to return.

The Query Database task can be used to look up data in a database table to enrich the
data available in a mediation flow.

These are two usage scenarios:

l Store service names and namespaces for dynamically bound service references in a
database table. You can then update the database table when a new service
becomes available, and the mediation flow does not need to be changed to obtain
the information about the new service.

l Use a database query to add information to an incoming request. For example, an
incoming request may specify a US postal zip code, and a database query can be
used to look up the city and state to add this information to the request.

JDBC Resource Templates
A JDBC resource template can be used to establish a connection to a database and obtain
table and column information to complete the SELECT statement. This resource template
is only used during design. When the mediation flow is used in a composite and deployed,
the resource template is ignored.

Resource templates are defined on the mediation flow and are used to specify a resource
(such as a database connection) that can be used by one or more tasks in a mediation
flow.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

104 | Querying a Database

The property specified on the Properties tab of the mediation flow provides the database
connection used for each Query Database task.

To connect to more than one database or use different user accounts, create one resource
template for each database connection. Query Database tasks that use the same resource
template use the same database connection.

Note: Resource templates must be associated with JDBC resource templates at
the component or composite level, and you can also override JDBC resources at
deployment time in the ActiveMatrix Administrator interface. For more
information about resource templates and the Administrator interface, see TIBCO
ActiveMatrix® Service Grid Composite Development.

Defining a Resource Template
Resource templates are defined on the mediation flow and are used to specify a resource
(such as a database connection) that can be used by one or more tasks in a mediation
flow.

Procedure
1. Navigate to the Properties tab of a mediation flow by clicking on the canvas of a

mediation flow in the editor window.

2. Click the icon to add a new property.

By default, the property name is specified as propertyn (where each newly added
profile increments n). Specify a new name for the profile, if desired.

The value in the Type column must be JDBC Resource Template. This value is read-
only.

3. In the Value column, click the ellipsis (...) and choose a previously defined template
from the Select JDBC Resource Template dialog box.

4. Click OK.

Result
The JDBC Resource Template is created and is ready for use by the Query Database task.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

105 | Querying a Database

Configuring a JDBC Driver
The JDBC driver referenced by the JDBC Resource Template must be configured before it
can be used.

Before you begin
Configure the JDBC Resource Template.

Procedure

Navigate to Window > Preferences > Data Management > Connectivity > Driver
Definitions.
You can optionally specify a JDBC Resource Templates for use while creating Query
Database tasks. JDBC Resource Templates define connections to databases. For more
information, see TIBCO ActiveMatrix® Service Grid Composite Development.

Registering a JDBC Driver
To connect to a database at design-time from within the Query Database task, you must
first register the JDBC driver.

Procedure
1. Navigate to the Data Source Explorer tab.

2. Right-click Database Connections and select New... .

The Connection Profile pane displays.

3. Select the driver from the list of Connection Profile Types and click Next.

The Specify and Driver and Connection Details pane displays.

4. Click the New Driver Definition icon location to the right of the Drivers drop-down
list.

The New Driver Definition dialog box displays.

5. Select the JDBC Driver in the Available driver templates list of the Name/Type tab.

6. Navigate to the Jar List tab.

The jar file for the selected database is listed in the list of driver files..



TIBCO ActiveMatrix® Service Grid Mediation Component Development

106 | Querying a Database

7. Select the JAR file (generated according to the selected JDBC driver) and click
Remove JAR/Zip.

8. Click Add JAR/Zip.

9. In the Select the file dialog box select the driver appropriate for your database, and
click Open.

10. Click OK.

Result
The database is now registered and is ready to be used within the Query Database task.

Configuration Tabs of the Query Database Task
The configuration tabs of the Query Database task are described.

General Tab
l On the General properties tab, you can specify a name and description. You must

also select one of the resource templates defined for the meditation flow. For more
information, see JDBC Resource Templates.

l The Max Row Count field specifies the maximum number of rows to accept from the
query results. For example, a positive integer of 1 returns only one row. The choice of
Unlimited allows an unlimited number of rows in the result set.

l The Query Timeout field specifies the timeout, in seconds, for a query statement to
execute before an exception is thrown.

Query Tab

You use the Query tab to define the SELECT statement for the query.

If you specified a JDBC property in the mediation flow Properties tab, clicking the
connection icon opens a connection and compares the table and column data with the
metadata from the database. If the connection is not successful, an error notifies you of
the reason.

Three lists enable you to select tables, input data, and output columns for use in the
WHERE clause of your SELECT statement.
Input data is used in the WHERE clause of your SELECT statement. Use the add (+) and



TIBCO ActiveMatrix® Service Grid Mediation Component Development

107 | Querying a Database

delete (x) icons to the right of each list to add and delete items from each list:

l When a database connection is present and valid, the + icons display information
from the database for selecting tables and output columns.

l When no database connection is present, the + icons allow you to add items to each
list, but you must name each item and specify a type if necessary.

Clicking the + and x icons on the Input table attempt an automatic update of the WHERE
condition. If you have modified the WHERE condition, the delete might not update it and
you must fix it manually.

Use the Where Condition field on the Query tab to edit the WHERE clause of the query. You
can add an input variable to a condition by typing a question mark (?) in the condition.
Each input variable appears in the mapper panel on the Input tab, and you can supply data
from the mediation exchange for the input variable. For example, if you want to create a
condition where you look up a ZIP code supplied in the input message, you can add the
condition table.ZIP = ?. When you add a question mark into the WHERE clause, an input
variable appears in the Input Data list. Supply a name for the input variable, then data
from the mediation exchange can be mapped to the input variable.

Table join conditions are never automatically added to the WHERE clause. To specify any
join conditions for your query, you must manually edit the WHERE clause.

The SQL Statement field displays a read-only version of the query you have specified.
Length parameters are stripped from the SQP Type, and only the base type is used in the
mapping. For example, char(12) becomes char.

SQL/92 Data Type XML Type Equivalent

TINYINT short

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT float

Supported SQL types and their mappings to XML



TIBCO ActiveMatrix® Service Grid Mediation Component Development

108 | Querying a Database

SQL/92 Data Type XML Type Equivalent

DOUBLE double

CHAR string

VARCHAR string

NCHAR string (multi-byte)

NVARCHAR2 string (multi-byte)

DATE date

TIME time

TIMESTAMP dateTime

Vendor-specific types are cast to string. You can enable the mapper to automatically
recognize these types in two ways:

l Force vendor-specific types to a compatible XML type using the mapper cast.

l Override the type that is retrieved from the database for the column to a similar
SQL/92 type.

Note: Binary or other complex data types such as JAVA_OBJECT are not
supported.

Input Tab

The Input tab is a mapping panel for mapping data from the mediation exchange to the
input fields of this task. For information on using a mapping panel, see Transforming Data
in a Mediation Exchange.

Output Tab

The Output tab is a read-only display of the output schema for this task. The output
schema is determined by the output columns selected on the Query tab.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

109 | Querying a Database

Test Tab

Use the Test tab to supply test data for values of input variables and test the query against
the database associated with the specified JDBC resource template. To test the statement,
a valid database connection must be present.

You can use a custom JDBC driver to test the database query. For information about
configuring a custom JDBC driver, see Composite Development.

You must have a valid JDBC resource template associated with the shared resource profile
used by this task. The JDBC shared resource is used only in the design environment.

Note: Ensure that the JDBC resource template you use for testing in the design
environment connects to a database that is similar to the database used when
the project is put into production.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

110 | Dynamic Requests

Dynamic Requests
Dynamic binding enables routing of incoming requests to target services as they are
needed at runtime.

The target interfaces in a mediation flow correspond to component references in an
ActiveMatrix composite. Typically, a component reference is wired to a composite reference
that points to a service provider. This static binding is specified when the mediation
component and composite are designed, and the service binding is hard-coded into the
composite.

Dynamic binding allows components to supply a reference to the service provider when the
deployable application archive (DAA) created from the composite is running.

The below diagram shows the differences between static and dynamic binding in
composite references.

Static and dynamic binding

The composite reference is statically bound to Service A. However, the dynamic composite
reference can invoke Service B, Service C, or Service X without having to specify a static
configuration at design-time.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

111 | Dynamic Requests

Dynamic references allow the component to specify which service to invoke. Therefore,
new services can be started and a component can invoke those services without
redesigning the composite and restarting the DAA created from the composite.

One example of using dynamic references is a set of services that return information for
United States postal ZIP codes. The consumer sends a message to a mediation component
containing the ZIP code. The service provider can implement a number of services for
particular ZIP codes. When new ZIP codes are introduced, dynamic binding allows the
service provider to create and start a new service for the new ZIP codes without changing
any existing composites. Requests for information about new ZIP codes are handled
without system downtime.

Service Providers for Dynamic Composite
References
Dynamic composite references can refer only to bindings of type virtualization. That is, the
service type in the provider composite cannot be JMS or SOAP. If your service provider
uses the SOAP or JMS protocol, you can create a simple pass-through composite that
passes the message to the ultimate service provider.

The diagram shows a dynamic composite reference using a composite that implements a
service and also using a pass-through composite for referencing a SOAP service.

Service providers and pass-through composites



TIBCO ActiveMatrix® Service Grid Mediation Component Development

112 | Dynamic Requests

Referring to Service Providers

The component implementation determines the service that is invoked for a dynamic
reference. To specify the service, the implementation supplies the application name and
service name. ActiveMatrix resolves the application name and service name to the correct
running service.

The service name is the name specified for the promoted service in the composite.

Configuring Dynamic Binding
There are four high-level steps for configuring dynamic binding. Perform the four
procedures to configure an application to use dynamic binding.

Procedure
1. Configuring Dynamic Binding.

l Add target interfaces to a mediation component.

l Specify that the interfaces are dynamic.

2. Set the dynamic reference task.

l Add the Set Dynamic reference task to your mediation path.

3. Configure dynamic references in the composite.

l Create a component reference and specify that it is wired by implementation.

l Wire the dynamic component reference of the mediation component to the
dynamic composite reference.

4. Create and deploy composites used by dynamic binding.

l You can create composites with service virtualization that either implement the
service or pass-through to a SOAP or JMS service.

Configuring Dynamic Target Interfaces
You can specify whether a target interface is static or dynamic. By default, target interfaces
are static.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

113 | Dynamic Requests

The target interface corresponds to a component reference that is wired to a composite
reference in a composite. Dynamic target interfaces correspond to dynamic component
references that are wired to dynamic composite references.

Procedure
1. Go to the General tab of the Properties view of the target interface.

2. Select the Wired by Implementation field.

Dynamic and static target interfaces

The title bars of the target interfaces is shaded yellow, and a lightning bolt icon is
added.

Pattern Variables Usage
Once a target interface is marked as dynamic, the application name and service name must
be supplied in the mediation flow. You can optionally specify pattern variables to aid in the



TIBCO ActiveMatrix® Service Grid Mediation Component Development

114 | Dynamic Requests

mapping of data in the mediation exchange to create the appropriate application name
and service name.

For example, you can have six operations in your dynamic target interface. All service
providers that are referenced use the same application name, and service name follows the
pattern service data, where data is a variable portion of the service name. The value of
data is supplied in an incoming message.

Instead of providing a mapping for each of the six operations, you can specify one pattern
variable to represent the variable portion of the service name, and then create one
mapping for all operations on the Pattern Map tab of the Properties view of the target
interface. The figure below shows the Pattern Map tab of this example.

An example of pattern variables

To supply the value of the pattern variable, you can perform one simple mapping in a Set
Dynamic Reference task on the path for each mediation operation.

For more information, see Dynamic Reference Task Setting.

Dynamic Reference Task Setting
The Set Dynamic Reference task provides the values needed for resolving a service provider
in a dynamic target interface.

Each Set Dynamic Reference task sets the value of the service provider for the specified
dynamic target interface. The value is then used by the next item that refers to a dynamic
target interface — either the end of the mediation path points to a dynamic target
interface, or an Invoke task invokes an operation on a dynamic target interface.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

115 | Dynamic Requests

You may need more than one Set Dynamic Reference task along a mediation path in these
situations:

l The target interface is marked as dynamic and there is an Invoke task on the path
configured invoke a different dynamic target interface.

l More than one Invoke tasks are on a path, and each task invokes a different dynamic
target interface.

l You want to Invoke the same operation on a dynamic target interface more than
once, and each time you want to set the dynamic reference to a different value.

Some use cases of the Set Dynamic Reference task are given below:

l One dynamic target interface and one Set Dynamic Reference task.

l Two dynamic target interfaces and two Set Dynamic Reference task. The first Set
Dynamic Reference task sets the reference for the target operation. The second Set
Dynamic Reference task sets the reference for the Invoke task.

l Two Invoke tasks, each executing different operations on the same interface. The first
Set Dynamic Reference task sets the reference for the first Invoke task. The second
Set Dynamic Reference task sets the reference for the second Invoke task. A different
service provider can be invoked by each Invoke task.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

116 | Dynamic Requests

A grey hint line appears between the Set Dynamic Reference task and the corresponding
dynamic target interface. A yellow hint line appears between a Set Dynamic Reference task
and the corresponding Invoke task when you select a Set Dynamic Reference task in the
mediation flow. The diagrams have been changed to show all hint lines, even though only
the hint lines for the selected task can be viewed in the mediation editor.

The Set Dynamic Reference task is typically used on input mediation paths. It can be used
on output or fault paths when an Invoke task that invokes an operation on a dynamic
target interface appears on an output or fault path.

General Tab Configuration
Use the General tab to specify the name and description of the Set Dynamic Reference
task, and to set the target interface and endpoint reference mechanism.

Name Description

Dynamic
Target
Interface

Specifies the name of the dynamic target interface for which this task is
supplying the service name and namespace. By default, this field is
automatically set to the dynamic target interface at the other end of the
path. If there is an Invoke task on the path, this field may be set by default to
the first dynamic target interface in the target interface list. You might need
to set this field when the default choice does not match the dynamic target
interface that you want to set.

Endpoint
Reference

Select the mechanism to use for setting the application and service name



TIBCO ActiveMatrix® Service Grid Mediation Component Development

117 | Dynamic Requests

Name Description

Mechanism

Application &
Service Name

Select to supply the application name and service name. This option requires
two inputs for mapping on the Input tab — ApplicationName and
ServiceName.

Application &
Service URI

Select to supply the exact URI of the endpoint. This is useful if, for example,
someone sends you the URI—you can simply copy and paste it into the
ApplicationServiceURI parameter on the Input tab.

URI Select this option to specify the URI in the Input tab.

Pattern
Variables

Select to use pattern variables from the dynamic target interface. This is
useful if several operations in a dynamic target interface use a similar pattern
for the application name and service name. You can specify the mapping
once on the dynamic target interface and use variables to supply the variable
portion. The variables you create on the dynamic target interface appear in
the Input tab when this option is selected.

By default, the Endpoint Mechanism field is set to Application & Service Name when the
dynamic target interface has no pattern variables.

If the dynamic target interface has pattern variables, the Endpoint Mechanism field is set
to Pattern Variables by default.

Input Specification



TIBCO ActiveMatrix® Service Grid Mediation Component Development

118 | Dynamic Requests

Field Input Value

General >
Endpoint
Reference
Mechanism >
Application &
Service Name

The input elements for this task are ApplicationName and ServiceName.
Any value you specify for these input elements override the value specified
on the Pattern Map tab of the specified dynamic target interface.

l ApplicationName refers to the application name provided during
deployment of a composite, to uniquely identify an instance of an
application template.

l ServiceName is the name of the composite service that is contained
in the target composite.

General >
Endpoint
Reference
Mechanism >
Pattern
Variables

The pattern variables defined on the specified dynamic target interface are
the input elements. This enables you to specify simple mappings of data
from the mediation exchange to the variable values. The variable values
are then passed to the mapping supplied on the Pattern Map tab of the
dynamic target interface.

General >
Endpoint
Reference
Mechanism >
Applicaton &
Service URI

The input element for the Set Dynamic Reference task is
ApplicationServiceURI. The data type of the ApplicationServiceURI input
field is a URI of the format
urn:amx:EnvironmentName/ApplicationName#service(ServiceName)

The variables EnvironmentName, ApplicationName, and ServiceName refer
to the environment and service that are being invoked.

l EnvironmentName is the name of the TIBCO ActiveMatrix
environment that contains the target service.

General >
Endpoint
Reference
Mechanism >
URI

The input elements for the Set Dynamic Reference task are URI.

l SOAP over HTTP

l SOAP over JMS

l ActiveMatrix Service Virtualization

Use any data available in the mediation exchange on the left side of the mapper panel to
provide data to the input values. For information on mapping data in the Input tag, see
Transforming Tasks.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

119 | Dynamic Requests

The content of the Input tab depends on which Endpoint Reference Mechanism you select
on the General tab — Application & Service Name, Application & Service URI, URI, or
Pattern Variables.

Configuring Dynamic References in Composite
Dynamic target interfaces in a mediation flow correspond to dynamic component
references in mediation components that use the mediation flow as an implementation.
Dynamic component references must be wired to dynamic composite references in a TIBCO
ActiveMatrix composite.
For more information about creating and configuring composite references, see TIBCO
ActiveMatrix® Service Grid Composite Development.

Procedure
1. Open the General tab of the promoted reference.

2. In the Advanced section, select the Wired by Implementation field.

The references and services must be promoted to the composite level for this setting
to take effect.

Creating and Deploying Composites Used By
Dynamic Binding
TIBCO ActiveMatrix resolves the application and service names provided by a component to
a running application that contains the corresponding service of binding type virtualization.
The composite with the corresponding service can implement a service or it can pass
through to another service using the SOAP or JMS protocol.
For more information, see Service Providers for Dynamic Composite References. You can
create composites using the Composite Editor, or you can use the automatic mechanism in
the Mediation Editor to create composite services that a dynamic target interface can use.

Procedure
1. Click the down-arrow icon in the title bar of a dynamic target interface in a mediation

flow and select Create Dynamic Provider from the menu.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

120 | Dynamic Requests

This Create Dynamic Provider dialog opens.

2. Specify the Service Name, the Namespace and the Workspace Location in the fields
provided.

3. Click Browse next to the Workspace location field to locate the project and folder in
your workspace where you want to place the composite.

4. Click OK.

Result
The provider composite created with the wizard is configured with a service with the
specified name and namespace. The port type and WSDL location for the service are set to
the target interface in the mediation flow.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

121 | Replying to Messages

Replying to Messages
Generate Reply and Handle Reply tasks can be used to send reply messages without
invoking target operations.

In a typical mediation flow for an operation with an in-out message exchange pattern,
incoming messages travel along the input path until the message is delivered to the target
operation or until a fault is encountered.

In some situations, you might want to send a reply message to the consumer without
invoking the target operation. For example, an operation might return the name of the
target service. The mediation flow already has the target service name, so you can improve
performance and return that information without additional network traffic to the target
service.

Another example is a mediation flow with a route task for processing incoming requests.
Your mediation flow might return an unchangeable message for one or more routing cases.
In that case, you can reply to the consumer without invoking the target service.

You can place the Generate Reply task on an input path to terminate the path and pass
control to the output path of the mediation flow. You must map the output message in the
Generate Reply Input tab, so that the output message is created in the task.

On the output path, the Handle Reply task intercepts messages from any Generate Reply
tasks on the input path and starts the mediation reply path for processing the reply
message before it is sent to the consumer.

The diagram shows the operation of the Generate Reply and Handle Reply tasks. In this
example, a mediation flow for the createUser operation first invokes the queryUser
operation to determine if the user exists. If the user does not exist, the message is
delivered to the createUser target operation. If the user already exists, the Generate Reply
task is used to return a message notifying the consumer that the user already exists.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

122 | Replying to Messages

Sending a reply message

Placing a Generate Reply task in the Input path automatically creates a mediation reply
path with a Handle Reply task. The same Handle Reply task performs all Generate Reply
tasks in the Input path.

The Generate Reply task terminates an input path before reaching a target operation.
However, you can have more than one Generate Reply task on an input path when a route
task splits the input path into multiple sub-paths. One or more sub-paths can end in a
Generate Reply task. Generate Reply tasks are executed based on how they are configured
in the input flow paths. The Handle Reply task is on the output flow.

After a Generate Reply task is executed, control is passed to the Handle Reply task on the
output path. One Handle Reply task accepts reply messages from any Generate Reply task
on the input path. The Handle Reply task starts the mediation reply path. Optionally, you
can place tasks on the mediation reply path to perform additional processing before the
reply message is sent to the consumer. The Handle Reply task and the mediation reply
path are automatically placed into the mediation flow when a Generate Reply task is
placed on the input path.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

123 | Fault Processing in a Mediation Flow

Fault Processing in a Mediation Flow
Faults are errors that can occur at any point along the mediation path. Faults are caused
by the target service while processing messages. Faults can also explicitly occur during a
mediation flow to specify that an unhandled case has occurred. The Mediation Flow Editor
enables you to specify a fault path for processing to occur when a fault is encountered.

Invoke tasks, like any other task, can generate faults. If an operation referenced by an
Invoke activity declares faults, those faults can be caught and processed in the fault path.
For example, if the operation declares that it can throw FaultA and FaultB, these faults
appear in the Fault Path as faults that can be caught and processed.

l Faults can occur when receiving the message and creating the mediation flow
context.

l Faults can occur when executing tasks in input or output or fault paths of the
mediation flow.

l Faults can occur when executing the target operation.

An example of fault path

When a fault is encountered, processing of the current path is immediately halted, and
control is passed to the fault path. The fault path enables you to catch explicitly declared
faults or unhandled faults. However, if a fault is encountered when receiving the message,
the mediation flow has not yet started, so the fault is immediately returned to the sender
and no fault processing can be done in the mediation flow.

By default, each target operation has one Catch Fault task with sub-paths.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

124 | Fault Processing in a Mediation Flow

l A sub-path for each declared fault that can be thrown by the operation.

l One sub-path to handle any undeclared faults.

l One sub-path for timeout faults.

There is also one Catch Fault task for faults that occur during processing of the mediation
flow.

You can configure each Catch Fault task to have fewer sub-paths, if desired. When you
remove sub-paths from a Catch Fault task, the Catch All path is automatically added to
catch any faults where there is no specific sub-path for fault handling.

Each sub-path from each Catch Fault task leads to a Send Fault task. The Send Fault task
sends a fault back to the original sender of the message. By default, the Send Fault task is
configured to send the specific fault caught by the sub-path. You can configure the Send
Fault task on a either a target or mediation fault sub-path to send either a generic
UndeclaredFault or one of the specific fault messages defined on the mediation operation.

When the fault sent by the Send Fault task does not match the fault caught by the sub-
path, a Transform activity is required to transform the fault message into the required
format. For faults on the mediation fault path, the Transform activities are added by
default, but if you change the configuration of the Send Fault or Catch Fault tasks, you
must provide the correct Transform task as well.

You can place mediation tasks along the sub-paths between the Catch Fault activities and
Send Fault activities to perform post-fault processing before the fault is returned to the
original message sender.

For more information about how to configure the Catch Fault and Send Fault tasks, see
Working with Fault Paths.

When faults are encountered while processing tasks in a mediation flow, the execution of
the path is terminated, and the control sent to the mediation fault path. This includes
faults that occur when processing taks on any of the following paths:

l Mediation Input Path

l Mediation Output Path

l Mediation Reply Path

l Mediation Target Fault Path

When a fault is encountered on the Mediation Fault Path, the path terminates and a fault is
sent to the consumer.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

125 | Fault Processing in a Mediation Flow

Throwing Faults in Mediation Flows
The Throw Fault mediation task enables you to explicitly throw a fault during processing
on the input path of a mediation flow.
This is useful in two situations:

l You want to deprecate a mediation operation, and therefore a fault is sent to all
clients that request that operation.

l You want to specify routing cases where a fault is sent.

For example, if a loan processing application cannot process loans over $5,000,000, then
you would configure a routing case for the loan request operation to examine the loan
amount and place a Throw Fault task on the sub-path for the case where the loan amount
was over $5,000,000.

The Throw Fault task enables you to browse through available service descriptors and
select messages from the service to send as the fault message. You also can select which
MediationTaskFault message to send. If you have more than one Throw Fault task and you
want to perform specific processing for each task, configure each task to send a specific
message.

Procedure
1. On the General tab, click Browse to select a service descriptor containing the fault

message to send.

2. On the Select WSDL Message dialog, select the WSDL file in the Matching Resources
field.

3. The Throw Fault activity is configured to throw the message, and you can navigate to
the WSDL by clicking the WSDL Location field label.

Fault Paths
Fault paths enable you to specify tasks to perform when a fault is thrown.

To view the fault path for the currently selected mediation operation, use the Show Fault
Direction button at the top of the mediation paths area of the mediation flow editor. There
is one Catch Fault task for each target operation in the mediation flow, and one Catch
Fault task for faults encountered while processing the mediation flow.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

126 | Fault Processing in a Mediation Flow

Each target operation in a mediation flow has a Catch Fault task that catches faults thrown
by the target operation. The faults can be either explicitly defined faults in the target
operation’s service description, or they can be unhandled exceptions encountered during
processing (for example, a NullPointerException).

The default Catch Fault task for a target operation has sub-paths for each declared fault in
the target operation and one sub-path each for a time out fault and any undeclared faults.
You can place mediation tasks on each sub-path to perform any post-fault processing for
each fault.

To specify the same processing for multiple faults, you can configure the Catch Fault task
to have fewer sub-paths by unselecting the Catch and Handle field for the fault. When you
eliminate one or more sub-paths, the Catch All sub-path is required, and it is automatically
enabled. Any faults that do not have a defined sub-path are sent to the Catch All sub-path.

Catch Fault Configuration
The General tab of the Catch Fault task that allows you to configure the sub-paths for the
faults to catch.

Configuring a catch fault task

In the above example Catch fault task, one fault message is defined on the target operation
named searchAirline_faultMsg. The Catch Fault task also has the following faults listed
for all target operations:



TIBCO ActiveMatrix® Service Grid Mediation Component Development

127 | Fault Processing in a Mediation Flow

Faults Description

UndeclaredFault Catches any undeclared faults encountered while executing the target
operation.

Catch All Catches all remaining faults that are not explicitly defined. By default,
this option is cleared. This option becomes required and is
automatically selected if you clear the Catch and Handle field for any
other faults.

Timeout Fault Catches any timeouts encountered while executing the target operation.

When you select the check box in the Catch and Handle column for a fault, the Catch All
sub-path is automatically added. The following figure shows the fault path that results
when the Catch and Handle check box is cleared for searchAirline_faultMsg, Undeclared
Fault, and TimeoutFault.

Removing specific faults from the target operation fault path

Catching Faults from the Mediation Flow
One Catch Fault task catches faults encountered while processing the mediation flow.

Faults in a mediation flow can occur in the following situations:

l An explicit fault is thrown with the Throw Fault task. This task can either throw the
MediationTaskFault message or it can be configured to throw a different message
defined in a service descriptor in the project.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

128 | Fault Processing in a Mediation Flow

l A mediation task throws the declared MediationTaskFault fault during processing
(this also applies to tasks on target fault paths).

l An undeclared exception occurs during mediation processing. In this case, the
MediatinTaskRuntimeFault is thrown.

Catch fault task for the mediation flow

The above figure shows the Catch Fault task for the mediation flow. In this example, the
mediation flow has a Throw Fault task that throws the searchHotel_faultMsg fault, and
the MediationTaskFault, MediationTaskRuntimeFault, and catch all options are present
in all Catch Fault tasks for mediation flows.

By default, the MediationTaskFault and MediationTaskRuntimeFault sub-paths are
configured with Transform tasks that transform the caught fault into an UndeclaredFault
message. If you check the Catch and Handle field for any faults declared on the target
operation, you must configure the corresponding Send Fault task and provide any required
transformations by adding a Transform task to the sub-path, if necessary.

Catching All Faults

If you choose not to catch specific faults from the target operation or the mediation flow,
the Catch All fault option remains selected. In this case, the Fault to Send field of the
Send Fault task contains an option Original Fault That Was Thrown. When this option is
selected, all encountered faults are passed on the caller as they occur without any
transformation.

Sending Faults to the Invoker
The Send Fault task sends a fault message back to the original process that invoked the
mediation operation.
You can configure the Send Fault task to specify what fault message to send:

l One of the fault messages declared on the mediation operation



TIBCO ActiveMatrix® Service Grid Mediation Component Development

129 | Fault Processing in a Mediation Flow

l The UndeclaredFault message

Procedure
1. In the Send Fault task select General > Fault to Send.

2. Specify the fault message to return.

3. Once you specify the fault message to return, place a Transform task on the fault
path to convert the message sent by the Catch Fault task to the format of the fault
message you are returning.

Result
The message panel of the Transform task on a fault path is labeled Mediation Fault
Message, and the schema of the fault message matches the schema of the message
specified in the Send Fault task on the path.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

130 | Custom Mediation Tasks

CustomMediation Tasks
Custom mediation tasks are user-defined mediation tasks written to perform specific
mediation functions.

Eclipse Plug-in Reference
A custom mediation task consists of three Eclipse plug-ins.

Plug-in Description

Model The basis of automatic code generation for the design and runtime
environments. The model contains attribute-value pairs that can be used in both
environments. This plug-in consists of metada based on the Eclipse Modeling
Framework (EMF).

This plug-in is used in both the design and runtime environments.

For more information, see Creating the Model Plug-in.

UI The user interface code and icons. This plug-in has extension points for the
Properties view and the Mediation Palette in the Mediation Flow Editor.

This plug-in refers to the model and is used in the design environment.

For more information, see Creating the UI Plug-in.

Runtime The Java code that performs the mediation logic.

This plug-in refers to the model and is used in the runtime environment.

For more information, see Creating the Runtime Plug-in.

Custom mediation task plug-ins



TIBCO ActiveMatrix® Service Grid Mediation Component Development

131 | Custom Mediation Tasks

Support Files
A custom mediation task might depend on support files such as schema files and graphic
files. Schema files describe the schemas of messages, and graphic files are used as icons
for the custom mediation task. The icon formats can be GIF, JPEG, or PNG formats.

Icon Where Displayed Recommended
Dimensions

Small Mediation Palette: When the Use Large Icons option is
not selected

Paths: When Small Icons is selected in the preferences

16 x 16 pixels

Default icon:

large Mediation Palette: When the Use Large Icons option is
selected

Paths: When Large Icons is selected in the preferences

32 x 32 pixels

Default icon:

Note: In the palette, icons appear on a light gray background. On the canvas,
icons appear on a yellow gradient. For this reason, consider using a combination
of hard edges (rather than anti-aliasing) and transparency when designing icons.

Creating the Model Plug-in
You can create the model plug-in for the custom mediation task.

Procedure
1. Run TIBCO Business Studio - BPM Edition from the Start menu.

For example, select Start Programs > TIBCO_Home > TIBCO Business Studio N.N >
TIBCO Business Studio.

2. Select File > New > Project.

3. In the New Project dialog under Plug-in Development, select Plug-in Project and
click Next.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

132 | Custom Mediation Tasks

4. Specify a name for the project that reflects the mediation task name and that
identifies this as the model plug-in. For example, type LookupTaskModel.

5. Accept all other defaults and click Next.

6. On the Plug-in Content page, locate the Plug-in Options group and clear these
options.

l Generate an activator, a Java class that controls the life cycle of the plug-
in.

l This plug-in will make contributions to the UI.

7. Accept all other defaults and click Next.

8. On the Templates page, select Mediation Task Model Wizard and click Next.

9. On the Mediation Task Model page, for the Mediation Task Model Name replace the
string within the brackets with another of your choice. This prefix is used for the
Mediation Task Names for the UI and Runtime plug-ins.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

133 | Custom Mediation Tasks

The below figure highlights the string to replace:

10. Specify the Java Package Name for the model plug-in for the custom mediation
task. Click Next.

By default the Java package name is the same as the project name.

11. (Optional) Select a schema element for the custom mediation task input/output in
the Input/Output Schema Selection dialog.

a. Type the name of the schema.

b. Click Browse to see all the schemas in the workspace, or click Create to create
a new schema.

Clicking Create opens the Simplified Schema Editor. For more information, see
Creating Simple Schemas.

12. Specify model attributes that the custom mediation task can use. Model attributes
can be given values for each instance of the task, by specifying the values on the
General tab in the Properties view for the task.

l To add an attribute, click Add. Edit the attribute name and add default values



TIBCO ActiveMatrix® Service Grid Mediation Component Development

134 | Custom Mediation Tasks

for the attribute. Click the Types cell to select the attribute type.

l To remove an attribute, highlight the row for the attribute by clicking in one of
the cells on the row, and click Remove.

The following figure shows an example of a new model attribute:

13. Click Finish.

14. TIBCO Business Studio - BPM Edition opens the Open Associated Perspective dialog,
which asks if you want to open the Plug-in Development perspective.

l Optionally, check the check box Remember my decision. Select Yes. TIBCO
Business Studio - BPM Edition opens the model plug-in and the Plug-in
Development perspective.

Result
The model plug-in for the custom mediation task is created.

Creating the UI Plug-in
UI plug-in refers to the model and is used in the design environment.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

135 | Custom Mediation Tasks

Before you begin
Before you begin, close your runtime plug-in project.

Procedure
1. Close the RT project.

2. Run TIBCO Business Studio - BPM Edition.

3. Select Start > All Programs > TIBCO_HOME > TIBCO Business Studio N.N > TIBCO
Business Studio.

4. Select File > New > Project.

5. In the New Project dialog under Plug-in Development, select Plug-in Project and
click Next.

6. Specify a name for the project that reflects the mediation task name and that
identifies this as the UI plug-in — for example, LookupTaskUI.

7. On the Plug-in Content page, locate the Plug-in Options group and select these
options:

l Generate an activator, a Java class that controls the life cycle of the plug-
in

l This plug-in will make contributions to the UI

8. On the Plug-in Content page, accept all defaults and click Next.

9. On the Templates page, select Mediation Task UI Wizard and click Next.

10. In the Mediation Task Model Selection Section, choose the mediation task model
plug-in and click Next.

11. On the mediation Task UI page, the prefix that was chosen for the Mediation Task
Name for the Model appears. Accept the default or specify a new one.

12. Specify the Java Package Name that is used for the UI plug-in for the custom
mediation task, or accept the default value. Click Next.

By default, the Java package name is the same as the project name.

13. Specify the location of the small icon for the custom mediation task. The location
should be the complete path to the file on your local hard drive. Click Browse to
locate and select the file.

14. Specify the location of the large icon for the custom mediation task. The location



TIBCO ActiveMatrix® Service Grid Mediation Component Development

136 | Custom Mediation Tasks

should be the complete path to the file on your local hard drive. Click Browse to
locate and select the file.

15. Click Finish.

Result
The UI plug-in for the custom mediation task is created.

You can now install the custom mediation tasks. For more information, see Installing
Custom Mediation Tasks.

Note: In case you see compilation errors switch the Target Platform to TIBCO
ActiveMatrix SOA Studio. For information on switching the Target Platform, see
TIBCO ActiveMatrix® Service GridComposite Development.

Creating the Runtime Plug-in
The plug-in refers to the model and is used in the runtime environment.

Before you begin
Before you begin, close your UI plug-in project and your feature project.

Procedure
1. Close the feature or the UI project that was created when the custom mediation

tasks were installed.

2. Run TIBCO Business Studio - BPM Edition.

3. Start > All Programs > TIBCO_HOME > TIBCO Business Studio N.N > TIBCO
Business Studio.

4. Select File > New > Project.

5. Specify a name for the project that reflects the mediation task name and that
identifies this as the runtime plug-in, for example, LookupTaskRuntime.

6. Accept all other defaults and click Next.

7. On the Plug-in Content page, locate the Plug-in Options group and select This plug-



TIBCO ActiveMatrix® Service Grid Mediation Component Development

137 | Custom Mediation Tasks

in will make contributions to the UI.

8. Accept all other defaults and click Next.

9. On the Templates page of the wizard, select Mediation Task Runtime Wizard and
click Next.

10. On the Mediation Task Model Selection Section, choose the mediation task model
plug-in and click Next.

11. Specify the Mediation Task Name. This is a unique name that reflects the nature of
the custom mediation task, for example, LookupTask.

12. Specify the Java Package Name for the runtime plug-in for the custom mediation
task. Click Next.

By default, the Java package name is the same as the project name.

13. Click Finish.

TIBCO Business Studio - BPM Edition opens the Open Associated Perspective dialog,
which asks if you want to open the Plug-in Development perspective.

14. (Optional) Select Remember my decision checkbox and click Yes.

TIBCO Business Studio - BPM Edition opens the runtime plug-in and the Plug-in
Development perspective.

Along with the Runtime plug-in, a SOA Project <runtime plug-in project
name>.deploy.soa is created as shown in the following figure:

This SOA project contains the Custom Mediation Task Extension component that
refers to the runtime plug-in.

Your custom code is written in <runtime plug-in project name>\src\<runtime
plug-in project name>\<cutom mediation task name>RT.java.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

138 | Custom Mediation Tasks

Note: Do not update or delete the generated <runtime plug-in project
name>.apt.composite. This composite is generated for the sole purpose of
packaging the custom tasks plug-ins into deployable artifacts.

If you see compilation errors, switch the Target Platform to TIBCO
ActiveMatrix Runtime. For information on switching the Target Platform,
see TIBCO ActiveMatrix® Service Grid Composite Development.

Writing Custom Mediation Code
Custom mediation code performs operations on Mediation Exchange in paths, and on
specific elements of the message and path contexts.

Before you begin
Before modifying the Task EMF Model, import the required plug-ins:

Procedure
1. Make sure the target platform is set to TIBCO ActiveMatrix Runtime.

2. Select Import > Plug-in Development > Plug-ins and Fragments.

3. Click Next.

4. Make sure the check box for importing from the active target platform setting is
selected.

5. Click Next.

6. Import the following plug-ins by selecting them in the Plug-ins and Fragments
Found table and clicking Add -->:
com.tibco.amsb.core.model

com.tibco.amsb.core.mediation.model.ext

7. Click Finish.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

139 | Custom Mediation Tasks

Accessing Task Input/Output Schema
To access the input or output element declaration at runtime, you must initialize a
mediation task report object MediationTaskNameReport. This object has the accessor
methods to get the input or the output element declaration as XSDElementDeclaration.

The following code shows how to get the input or the output element schemas:

public void init() throws TaskLifeCycleFault { }

public void destroy() throws TaskLifeCycleFault { }
public N execute(final N input, final Exchange<N> exchange)

throws TaskFault {
<TaskName>MediationTask task = this.getContext

().getTaskConfiguration();
TaskName>MediationTaskReport report = new

<TaskName>MediationTaskReport(task);

/Task input type as schema element declaration
XSDElementDeclaration inputType = report.getCustomInputType();

//Task output type as schema element declaration
XSDElementDeclaration outputType = report.getCustomOutputType();

return exchange.getMessageData();

Note: The return type of the execute method in a custom mediation task’s
runtime class that extends MediationTaskRT must be an instance of the output
schema defined for the task. If no output schema is defined, output defaults to
message data mediationExchange.getMessageData().

Modifying the Mediation Task Data
The execute method of the mediation task runtime class has MediationExchange and the
task input as its arguments. The mediation exchange holds the mediation message and the
exchange variable as a generic Uxmal node N. Mediation Properties are held as strings.

The mediation message and properties constitute mediation task data.

As message data. or any data including exchange variables and contributed data. is based
on generics, use XML API that is data model agnostic to process message data. For data



TIBCO ActiveMatrix® Service Grid Mediation Component Development

140 | Custom Mediation Tasks

manipulation you must use gXML. TIBCO gXML is an XML API that is based on generics and
is data model agnostic.

This sample code shows processing message data:

public class HelloWorldRT<I, U, N extends I, A extends I, S, T, X>
extendsTask<I, U, N, A, S, T, X>

{
public void init() throws TaskLifeCycleFault { }

public void destroy() throws TaskLifeCycleFault { }

public N execute(final N input, final Exchange<N> exchange)
throws TaskFault
{

final GxProcessingContext<I, U, N, A, S, T, X> pcx =
exchange.getXMLProcessingContext();

final GxDocumentSerializerFactory<N, S> sf = new
DocumentSerializerFactory<I, U, N, A, S, T, X>(pcx);

// Configure for "pretty" printing.
sf.setIndent(Boolean.TRUE);
sf.setMethod(new QName("xml"));
sf.setOmitXmlDeclaration(false);

final StringWriter sw = new StringWriter();
final GxDocumentSerializer<N> serializer = sf.newDocumentSerializer

(sw);

if(input != null){ serializer.serialize(input); }else{ 
serializer.serialize (exchange.getMessageData()); }

Logger logger = LoggerFactory.getLogger(HelloWorldRT.class);
logger.info(sw.toString());
return exchange.getMessageData();
}

}

Defining Model Attributes
A user-defined mediation task can support attributes that refer to a JDBC property.
Developers of the mediation task can use a property to access JDBC connections using the



TIBCO ActiveMatrix® Service Grid Mediation Component Development

141 | Custom Mediation Tasks

mediation task API provided.

To create such a task, define a Property attribute type during the model-generation phase,
using the model creation page in the mediation task model wizard.

This attribute type is projected by the mediation task's user interface as a combination box
that holds references to attributes defined at the mediation flow level.

Custom Mediation Task Categories
To create categories of custom mediation tasks, add the methodgetPaletteGroup method
to the MediationTask UI factory class as shown in this example:

public String getPaletteGroup(){
return "Samples";

}

This example creates the category Samples.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

142 | Custom Mediation Tasks

Thrown Faults
The runtime class for a custom mediation task has an execute method that throws the
fault TaskFault. A developer of a custom mediation task can throw this fault explicitly.

Runtime Exceptions

Path Exception Handling

Input Path control is transferred to the Catch Mediation Fault task in the fault path. A
Send Fault task in that path sends a message to the service consumer.

Output Path control is transferred to the Catch Mediation Fault task in the fault path. A
Send Fault task in that path sends a message to the service consumer.

Fault A fault message is sent to the service consumer.

Installing Custom Mediation Tasks
To make your custom mediation tasks available in the Mediation Flow Editor, you must
first install and deploy the plug-ins.

Procedure
1. Create a feature project.

Specify the plug-in to package into the new feature.

For more information, see Supplemental Eclipse Help > Plug-in Development
Environment Guide > Reference > Wizards and Dialogs > New Project Creation
Wizards.

2. Export the feature project.

Make sure you select the check box for the Generate metadata res po si tory option.

For more information, see Supplemental Eclipse Help > Plug-in Development



TIBCO ActiveMatrix® Service Grid Mediation Component Development

143 | Custom Mediation Tasks

Environment Guide > Wizards and Dialogs > Export Wizards Feature Export .

3. Install the feature using Help > Install New Software

Specify the location where you exported the feature project. Clear the check box for
the Group items by category option which lists the feature project.

The custom task is ready for use and can be accessed from the palette.

Deploying Custom Mediation Tasks
After the file <runtime plug-in project name>\src\<runtime plug-in project
name>\<MediationTaskName>rt.java is updated with the custom code, the deployable
artifacts can be generated.

Procedure
1. Make sure the Target Platform points to ActiveMatrix Runtime.

For information on switching the Target Platform, see TIBCO ActiveMatrix® Service Grid
Composite Development.

2. Verify that the Model and Runtime plug-ins have no complilation errors.

3. In the Project Explorer pane, expand the <runtime plug-in project
name>.deploy.soa project.

4. Expand the Composites folder.

5. Right-click <runtime plug-in project name>.apt.composite, and click Create DAA.

Note: To be able to generate the DAA file, while creating the Custom
Mediation task, make sure the RequiredExecutionEnvironment field in
the Manifest.MF file is empty. This allows you to create the DAA and
deploy it at runtime.

Result
The Create Deployment Archive wizard is invoked.

For more information on using this wizard, see TIBCO ActiveMatrix® Service Grid Composite
Development. Deploy the DAA that packages the custom mediation task Runtime plug-ins
before deploying the mediation application that uses the custom task.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

144 | Custom Mediation Tasks

For information on uploading and deploying the deployment application archive (.daa), see
TIBCO ActiveMatrix® Service Grid Administration.

Testing Custom Mediation Tasks
You can test the custom mediation task in RAD by creating a Run As/Debug As
configuration

Procedure
1. Add one of the following to the Functions list along with the main composite:

l A composite generated by the Custom Mediation Task wizards to the list.

l A DAA created from the composite.

Make sure that the composite or DAA that holds Custom Mediation Task is at the top
of the list of Composite/DAA(s), before the SOA DAA/Composite.

2. Select Apply and Run/Debug.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

145 | Reference

Reference
Reference describes the configuration tabs for tasks and resources used in mediation flows.
They are organized topically.

Catch Fault
The Catch Fault task specifies the faults to catch from a target operation or a

mediation flow. Catch Fault tasks appear automatically in Fault paths. Catch Fault tasks do
not appear in the palette, and cannot be added manually.

For more information, see Fault Processing in a Mediation Flow.

Use the General tab to select or clear specific faults to catch and handle. Selecting specific
faults to catch creates a sub-path for each selected fault so that you can specify processing
to perform for that fault before the fault is returned to the original environment.

Select the box in the Catch and Handle column for the fault you want to catch. The Fault
column provides a number of fault types

Item in Fault Column Description

Declared Fault Message The target operation, the Throw Fault task, and the Invoke
Operation task can throw a declared fault message. The
content and structure of the message varies, depending
upon its declaration in the WSDL file.

UndeclaredFault An undeclared fault that occurs while invoking the target
operation returns this fault message.

UndeclaredFault A declared fault that is thrown by one of the tasks in the
mediation operation.

MediationTaskRuntimeFault An undeclared fault that is thrown by one of the tasks in the
mediation operation.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

146 | Reference

Item in Fault Column Description

TimeoutFault The TimeoutFault is returned when the invoked operation
does not return in a specified time. The timeout value is
configurable in the composite application.

Catch All This item is always present and is selected when one or
more other faults in the list are cleared. This item
corresponds to the path for any faults that are not explicitly
handled by other fault paths.

End Mediation
The End Mediation task ends a one-way (in-only) or a Request-Response (in-out)

message exchange pattern operation.

One-way operations provide a way for service consumers to initiate operations for which
they won’t receive a response—the End Mediation task is an orderly way to end the
mediation execution. For example, you can log the operation's input data using the Log
task and then terminate the input path of the mediation operation with an End task.

The End Mediation task can be also configured for both in-only operation and in-out
operation to signal the framework to redeliver the request message or stop re-delivery of
the request message.

The mediation input path of a one-way message exchange pattern operation can contain
other mediation tasks before terminating with the End Mediation task. However, if any of
the other tasks in the mediation input path produces a fault at run-time, this terminates
the execution of the mediation input path and transfer control to the mediation fault path.
No reply is sent to the consumer, because the fault path also terminates with an End
Mediation task.

You can mediate a one-way (in-only) message exchange pattern operation to a request-
response (in-out) target operation. Although the mediation input path operation in this
case is similar to that of a mediation flow containing a one-way operation to a request-
response target operation, the behavior in the output and fault paths are different.

When mediating a one-way operation to a request-response operation, the target operation
can either return a reply or throw a fault; Mediation Flow automatically terminates both
with an End Mediation task:



TIBCO ActiveMatrix® Service Grid Mediation Component Development

147 | Reference

l If the target operation returns a reply, the output path is executed and the path is
terminated by the End Mediation task without sending a response to the requestor.

l If the target operation returns a fault, the target fault path is executed and the path
is terminated by the End Mediation task without sending a fault to the requestor.

For a in-only message exchange pattern operation, if the end task is configured with either
a Redeliver Message or Stop redeliver message option, an intent type of either At Least
Once or One Way Transaction has to be defined for the mediation interface.

For a in-out message exchange pattern operation, if the end task is configured with either a
Redeliver Message or Stop Redeliver Message option, an intent type of At Least Once has to
be defined for the mediation interface.

Note: When mediating one-way operations to request-response target
operations, it is good practice to set a Log task to capture the response message
on the output and fault paths, before the path execution stops at the End
Mediation task.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

End Type Specifies how the End Mediation task exits.

l Normal stops the mediation flow immediately.

l Redeliver Message redelivers the message that initiated the

mediation flow, re-executing the entire mediation flow.

l Stop-Redeliver Message stops the redelivery of messages.

l Signal an Exception generates an exception without enforcing an

intent type of either At Least Once or One Way Transaction on the
mediation flow and component.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

148 | Reference

Generate Reply
The Generate Reply task is used to create a reply to a mediation operation without

passing the flow of control on to a target operation.

The Generate Reply task terminates an input path and passes control to the Handle Reply
task on the output path.

For more information on the Generate Reply task, see Replying to Messages.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for
providing documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Input Tab

The Input tab is a mapping panel that you use to map the mediation exchange to the
output message of the operation. For more information about using a mapping panel, see
Transforming Tasks.

Handle Reply
The Handle Reply is the start of the mediation reply path for handling reply messages

created by any Generate Reply task on the input path.

A Handle Reply task appears automatically in the output path when a Generate Reply task
is placed on the input path. Handle Reply tasks do not appear in the palette, and you



TIBCO ActiveMatrix® Service Grid Mediation Component Development

149 | Reference

cannot add these tasks manually.

For more information about the Handle Reply task, see Replying to Messages.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for
providing documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hovers the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Invoke Operation
The Invoke Operation task enables you to invoke an operation of an interface in the

target interface list during processing of an input, output, or fault path. The operation can
be one-way or request-reply. If the operation is request-reply, the reply message is stored
in the mediation exchange for use by subsequent tasks in the mediation path.

General Tab

For more information about the Invoke Operation task, see Invoking an Operation.

Use the General tab to specify a name and description for the task. This tab is useful for
providing documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the



TIBCO ActiveMatrix® Service Grid Mediation Component Development

150 | Reference

Field Description

task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Target
Operation

The operation to invoke. The drop-down list is populated with all operations
from the interfaces in the target interface list of the mediation flow.

Input Tab

The Input tab is a mapping panel for mapping data from the mediation exchange to the
input fields of this task. For more information about using a mapping panel, see
Transforming Tasks.

Field Description

Task
Input

A complex element containing the input message for the invoked operation. The
structure of the sub-elements depends on the structure of the input message for
the operation.

You can also can input the required value for fields directly into the input schema.

Output Tab

The Output tab contains a static tree representation of the reply message schema for the
invoked operation. Subsequent tasks in the mediation flow has access to the reply
message. The reply message is stored in an element within the mediation exchange whose
root is named the same as the Invoke Operation task name specified on the General tab.

Subsequent tasks also have access to the message context properties in the reply message.
For more information, see Working with Message Context Properties.

If the message exchange pattern for the operation is one-way, the output is null.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

151 | Reference

Log
The Log task sends information from the mediation flow context to the log. The Log

task can be placed on an input, output, or fault path.

General Tab

For more information about the Log task, see Logging Mediation Exchange Information.

For information about configuring the log, see Configuring a Log Task.

Use the General tab to specify a name and description for the task. This tab is useful for
providing documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Log Role Select the role for log messages—INFO, WARN, DEBUG, or ERROR. Each is
handled separately, and each has its own log.

Use
Transform
Data

Select this option to display the Log tab as a mapping panel that shows the
schema with the elements message, messageID, and role, so that you can
build custom log messages. For more information, see Information for
Custom Log Messages.

If this option is not set, the Log tab displays information from the mediation
exchange for you to specify which information to send to the log file. For
more information, see Information for Standard Log Messages.

The Use Transform Data option is cleared by default.

Log Tab

The appearance of the Log tab depends on whether the option Use Transform Data is
selected on the General tab.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

152 | Reference

l If Use Transform Data is clear (the default), the Log tab shows top-level message
information, from which you choose the information to log. For more information,
see Information for Standard Log Messages.

l If Use Transform Data is selected, the Log tab appears as a mapping panel so that
you can build custom log messages. For more information, see Information for
Custom Log Messages.

Information for Standard Log Messages
If the Use Transform Data option is not selected in the General tab, you use the Log tab
to specify what top-level information from the mediation exchange to send to the log file.

Item Description

Log All Items Selects all sub-items on this tab and sends all information in the mediation
flow context to the log.

Mediation
Flow
Properties

The properties defined for the mediation flow. These properties can be
defined on the Properties tab of the mediation flow.

You can select the parent item to send all mediation flow properties to the
log, or you can select individual properties to send the properties to the log.

Mediation
Flow Context

Logs message context such as component and mediation flow name
information, if the Mediation Flow Context option is set on the Advanced
tab of the mediation operation Properties view.

For information about the Mediation Flow Context option, see Working with
Message Context Properties.

Message
Context

Logs all message context information. The message context includes
information about the transport used for the message and the security
context for the message.

You can optionally select either the transport or security information if you
do not want the entire message context sent to the log.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

153 | Reference

Item Description

Message Data The content of the message.

Contributed
Data

Some mediation tasks, such as Transform or custom tasks, can contribute
additional data items to the mediation exchange. Each contributed data item
is named for the task that contributes the data. You can send any
contributed data item to the log.

Exchange
Variable

You can send exchange variable information to the log if you have specified
an exchange variable on the mediation operation, and have set it using the
Set Exchange Variable task.

Information for Custom Log Messages
If the Use Transform Data option is selected on the General tab, the Log tab is a mapping
panel, where you can map mediation information to build custom log tasks.

Field Description

message Specify the data from the mediation exchange to log.

You can log any data available in the mapper—the message element allows
logging of a simple message, and also allows mapping XML documents in a
serialized text form.

If the Mediation Flow Context option is set on the Advanced tab of the
mediation operation’s Properties view, you can map message context
information to the message element. For information about the Mediation
Flow Context option, see Working with Message Context Properties.

messageID Optionally specify a message ID value to be included as part of the message
that is being logged. The message ID consists of two elements, name and
code. The name element is a string type and the code element is integer type.

At run-time, the value in the name element and the value in the code element
are combined to form a message ID that has the syntax name-code. For
example, if the name element contains the value Mail and the code element
contains the value 1000 then the message ID is Mail-1000. However, if you



TIBCO ActiveMatrix® Service Grid Mediation Component Development

154 | Reference

Field Description

only provide the value for the name element, a default value of 0 is used for
the code element. Similarly, if you only provide the value for code element,
the default value for the name element is AMSB.LogTask.

role Optionally specify a logging-level role for run-time.

Values can be info, warn, debug, or error. Values are not case-sensitive.

If you map to this role, the value you give its property overrides the Log Role
setting in the General tab.

Parse XML
The Parse XML task is used when you have an XML document stored in a string or binary
field.

This task produces a tree representation of the XML that can be used by subsequent tasks
in the mediation flow. This task can be paired with the Render XML task to convert the
parsed XML back into a string or binary field for transmission within a message.

XML documents are sometimes stored in string or binary fields to improve the performance
of message transmission or for other reasons. You may want to view or manipulate the
data within the document then replace the document in the message before transmission
to a target operation or mediation operation. Also, the target or mediation operation in
your mediation flow may expect to receive all or a subset of the fields within the
document.

To parse an XML document, you must provide the schema definition for the data. The
schema definition must be stored in an XSD within your project. You can use an existing
XSD, create an XSD with the XSD editor within TIBCO Business Studio, or you can use your
own XSD editor plug-in.

For more information about the XSD editor within TIBCO Business Studio, see the Eclipse
XSD Developer Guide.

The output of the Parse XML task is placed into the contributed data portion of the
mediation exchange. An element with the same name as the Parse XML task is placed into
the mediation exchange. The XSD specified in the Output Schema field determines the
structure of the element.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

155 | Reference

The Parse XML task can be placed on an input, output, or fault path.

General Tab

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

This is also the name of the element in the mediation exchange that stores
the output of this task.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Output
Schema

An XSD stored in the workspace that describes the structure of the XML
document you want to parse. The output of this task is a parsed XML tree
containing the data in the XML document supplied in the Input tab. This
output schema is the structure of the element added to the mediation
exchange containing the output of this task.

Binary Input Select this box when the XML document is stored in binary format instead of
text format. When this box is not selected, the XML document is expected to
be text.

This field controls the input element on the Input tab of this task. When you
do not select this field, the input element is a string named xmlString. When
you select this field, the input element is a binary element named xmlBinary.

Validate Input Select this box to enable schema validation of the task input.

If you select this box and the schema validation fails, the error results in a
mediation task fault.

If you do not select this box, validation is not performed. A fault is thrown
only if a parse error occurs



TIBCO ActiveMatrix® Service Grid Mediation Component Development

156 | Reference

Input Tab

The Input tab is a mapping panel for mapping data from the mediation exchange to the
input fields of this task. For more information about using the mapping panel, see
Transforming Tasks.

Field Description

TaskInput A complex element to hold the input for this task. The sub-element
of this element is the XML document that you want to parse. The
Binary Input field on the General tab controls which of the
following elements appear.

ParseXmlStringInput Appears when the Binary Input field on the General tab is not
selected. Map this element to a string element in the Mediation
Exchange that holds the XML document you want to parse.

ParseXmlBinaryInput Appears when the Binary Input field on the General tab is selected.
Map this element to a binary element in the Mediation Exchange
that holds the XML document you want to parse.

Output Tab

The Output tab is a read-only display of the output schema for this task.

Query Database
The Query Database task is used to construct a SQL SELECT statement query to a

database. This task is useful for performing basic queries for looking up information stored
in a database table that is used in the mediation flow.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for
providing documentation for tasks in your mediation flows



TIBCO ActiveMatrix® Service Grid Mediation Component Development

157 | Reference

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

This is also the name of the element in the mediation exchange that stores
the output of this task.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Shared
Resource
Property

Use the drop-down list on the field to select the available shared resource
property. Shared resource properties define database connections that are
used to perform the query. Shared resource properties are defined on the
Shared Resource Properties tab of the mediation flow.

Max Row
Count

The maximum number of rows to retrieve. The default value is 1. Specify a
positive integer, or use the drop-down menu on the field to select Unlimited
to return an unlimited number of rows.

Query
Timeout (sec)

The timeout for the query.

Query Tab

You use the Query tab to define the SELECT statement for the query.

Click the connection button to test the connection and to verify the table and column
data. Clicking this button opens a connection, if you have specified a JDBC property in the
mediation flow Properties tab, and compares the table and column data with the
metadata from the database. If the connection is not successful, an error notifies you of
the reason.

Three lists enable you to select tables, input data, and output columns for use in the
WHERE clause of your SELECT statement

Input data is used in the WHERE clause of your SELECT statement. Use the add (+) and
delete (x) buttons to the right of each list to add and delete items from each list.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

158 | Reference

l When a database connection is present and valid, the + buttons display information
from the database for selecting tables and output columns.

l When no database connection is present, the + buttons allow you to add items to
each list, but you must name each item and specify a type if necessary.

Clicking the + and x buttons on the Input table attempt an automatic update of the WHERE
condition. If you have modified the WHERE condition, the delete might not update it and
you must fix it manually.

Use the Where Condition field on the Query tab to edit the WHERE clause of the query.
You can add an input variable to a condition by typing a question mark (?) in the condition.
Each input variable appears in the mapper panel on the Input tab, and you can supply
data from the mediation exchange for the input variable. For example, if you want to
create a condition to look up a zip code supplied in the input message, you can add the
condition table.ZIP = ?. When you add a question mark into the WHERE clause, an input
variable appears in the Input Data list. Supply a name for the input variable, then data
from the mediation exchange can be mapped to the input variable.

Table join conditions are never automatically added to the WHERE clause, so you must
manually edit the WHERE clause to specify any join conditions for your query.

The SQL Statement field displays a read-only version of the query you have specified. The
following table lists the supported SQL types and how they map to XML. Note that length
parameters are stripped from the SQP Type, and only the base type is used in the mapping
— for example, char(12) becomes char.

SQL/92 Data Types XML Type Equivalent

TINYINT short

SMALLINT short

INTEGER int

BIGINT long

REAL float

Supported SQL types and their mapping to XML



TIBCO ActiveMatrix® Service Grid Mediation Component Development

159 | Reference

SQL/92 Data Types XML Type Equivalent

FLOAT float

DOUBLE double

CHAR string

VARCHAR string

NCHAR string (multi-byte)

NVARCHAR2 string (multi-byte)

DATE date

TIME time

TIMESTAMP dateTime

Vendor-specific types are cast to string. You can enable the mapper to automatically
recognize these types in one of these ways:

l Force vendor-specific types to a compatible XML type using the mapper cast.

l Override the type that is retrieved from the database for the column to a similar
SQL/92 type.

Note: Binary or other complex data types such as JAVA_OBJECT are not
supported.

Input Tab

The Input tab is a mapping panel for mapping data from the mediation exchange to the
input fields of this task. For more information about using a mapping panel, see Transform
Tasks.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

160 | Reference

Field Description

InputValues A complex element to hold the input for this task. The sub-elements of this
element are the input variables defined on the Query tab. Each input
variable corresponds to a question mark (?) that appears in the WHERE
clause of the query.

Map values from the mediation exchange to fields in the input schema to
supply values for the input variables of the query.

Output Tab

The Output tab is a read-only display of the output schema for this task. The output
schema is determined by the output columns selected on the Query tab.

Test Tab

The Test tab is used to test the database query. You must have a valid JDBC template
associated with the JDBC property used by this task. The JDBC resource template is used
only in the design environment.

You can use a custom JDBC driver to test the database query. For information about
configuring a custom JDBC driver, see TIBCO ActiveMatrix® Service Grid Composite
Development.

Note: It is important for you to ensure that the JDBC resource template you use
for testing in the design environment connects to a database that is similar to
the database used when the project is put into production.

Render XML
The Render XML task takes an XML tree for a specified schema and converts it to a

string or binary element that contains the XML document. This task can be paired with the
Parse XML task to convert the parsed XML back into a string or binary field for transmission
within a message.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

161 | Reference

XML documents are sometimes stored in string or binary fields to improve the performance
of message transmission or for other reasons. You may want to view or manipulate the
data within the document then replace the document in the message before transmission
to a target operation or mediation operation. Also, the target or mediation operation in
your mediation flow may expect to receive all or a subset of the fields within the
document.

To render an XML document, you must provide the schema definition for the data. The
schema definition must be stored in an XSD within your project. You can use an existing
XSD, create an XSD with the XSD editor within TIBCO Business Studio - BPM Edition, or you
can use your own XSD editor plug-in.

For more information about the XSD editor within TIBCO Business Studio - BPM Edition, see
the Eclipse XSD Developer Guide.

The output of the Render XML task is placed into the contributed data portion of the
mediation exchange. An element with the same name as the Render XML task is placed
into the mediation exchange. The contents of the element is either a string or binary
element containing the XML document.

The Render XML task can be placed on an input, output, or fault path.

General Tab

Use the General tab to specify a name, description, and input schema for the task. If the
XML document is stored in binary format instead of text format, you can specify that on the
General tab.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

This is also the name of the element in the mediation exchange that stores
the output of this task.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Input Schema An XSD stored in the project that describes the structure of the XML



TIBCO ActiveMatrix® Service Grid Mediation Component Development

162 | Reference

Field Description

document you want to render. The specified schema is used to determine the
input schema for this task.

Binary Output Select this box when the XML document is stored in binary format instead of
text format. When this box is cleared, the XML document is stored in a text
field.

Encoding Use this field to specify the character encoding used to render the XML string.
A list of encodings is provided. If the field is empty the default system
encoding is used.

Validate
Output

Select this box to enable schema validation of the task output.

If this box is selected and the schema validation fails, the error results in a
mediation task fault.

If this box is not selected, validation is not performed; a fault is thrown only if
a parse error occurs.

Input Tab

The Input tab is a mapping panel for mapping data from the mediation exchange to the
input fields of this task. For more information about using a mapping panel, see Transform
Tasks.

Field Description

TaskInput A complex element to hold the input for this task. The sub-element of this
element is the schema specified in the Input Schema field on the General tab.

Map values from the mediation exchange to fields in the input schema to
create the XML document.

Output Tab

The Output tab is a read-only display of the output schema for this task.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

163 | Reference

Route Task
The Route task sends messages to a specific destination based on specified conditions.

Data from the mediation flow context, such as the security information or message body,
can be used to specify the conditions of the route.

You can only introduce the route in the input path. The response (output or fault) always
returns to the original requester—that is, to the same mediation operation.

Route tasks send each incoming message to a single destination based on which route
case evaluates to true, or to a single destination designated as otherwise if none of the
cases evaluate to true.

You can use multiple, nested Route tasks to send a single message to a target in several
different ways, based on the routing cases, conditions, and variables you set for each task
in the Decision tab.

You can configure multiple routes in an input flow, nesting them to any depth, and you can
place mediation tasks on flow paths before or after any route task. This enables users to
decide which tasks are executed in common and which are executed only for specific route
cases.

For more information about the Route task, see Routing Messages in a Mediation Flow.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for
providing documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

164 | Reference

Decision Tab

Use the Decision tab to create routing cases, routing conditions, and variables to hold data
that is evaluated in the routing conditions. The Decision tab has a toolbar for adding and
deleting cases and conditions.

Toolbar
Icon

Description

Add Case Adds a routing case to the table on this tab. A new case appears in the table on
this tab with a default name, and the case is drawn in the mediation flow
diagram.

By default, new cases created with this icon point to an error icon until a Target
Service/Operation is specified for the case.

Delete
Case

Deletes the selected routing case.

Add
Variable

Adds a variable to use in routing conditions. Clicking this icon opens a dialog
that enables you to specify the name and data type of the variable. These
datatypes are available:

l string

l integer

l boolean

l date

l time

l float

Each variable appears as a column between the Case column and the Target
Service/Operation column.

Delete
Variable

Opens a dialog for you to select the variable to delete.

The Decision tab includes a table containing all of the routing cases.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

165 | Reference

Column Description

Case Name of the routing case. Click in the cell to edit the name.

Variable List Variables created with the Add Variable icon appear as columns in this
table. You must specify a comparison operator and a constant to
compare for each variable. Click the cell to select the comparison
operator from a drop-down list and edit the value of the constant in
the text field.

You can specify comparison operators:

l = (equal)

l != (not equal)

l < (less than)

l <= (less than or equal)

l > (greater than)

l >= (greater than or equal)

All variable conditions that you specify for each case must evaluate to
true for the case to evaluate to true.

Target
Service/Operation

The name of the Target Service and target operation that is the
destination for this case. If you drag the path for the case to a target
operation in the mediation flow, this field is automatically set to the
correct value. You can also click this field to either type or select the
target operation.

At the bottom of the Decision tab is the configuration for the Otherwise case for the route.
The Otherwise case is taken when all other cases evaluate to false. You can specify the
target operation for this case in the Target Service/Operation field.

Also at the bottom of the Decision tab is a drop-down list of choices for setting the case
target to a specific type of mediation task. For example, selecting Throw Fault sets the
target to a new Throw Fault task.

Targets you can specify are:

l Targeted operations that are not already targeted



TIBCO ActiveMatrix® Service Grid Mediation Component Development

166 | Reference

l Generate Reply, Throw Fault for mediation tasks

l End Mediation for one-way (in-only) operations.

l Route tasks and XPath Route tasks, which enables you to build nested routing
structures.

Note: Any change you make to a nested routing structure replaces the entire
nested structure.

Input Tab

Use the Input tab to map data from the mediation exchange into the list of variables that
you have created for the Route task. For a complete description of how to perform
mapping, see Transform Tasks.

Send Fault
The Send Fault task returns a fault message to the original process that invoked the

mediation task. Send Fault tasks appear automatically in Fault paths. Send Fault tasks do
not appear in the palette, and you cannot add these tasks manually.

General Tab

For more information about fault processing, see Fault Processing in a Mediation Flow.

Use the Fault tab to specify the fault to send to the original environment.

Field Description

Fault to
Send

A drop-down list of declared fault messages on the mediation operation. You can
also choose to send the UndeclaredFault message.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

167 | Reference

Set Context
The Set Context task provides a way to set the values for the message context

properties of the target operation's input message and the message context properties of
the mediation operation's output message.

This allows the mediation path to set the message context data (such as HTTP header or
JMS user properties) for the output message of the mediation operation and the input
message of the target operation.

The schema that appears on the Set Context task is configured in the Properties view of
the mediation operation or target operation. On the Advanced tab, you can set the field
Message Context Properties (outbound) of the mediation operation, or the Message Context
Properties (inbound) field of the target operation.

For more information, see Working with Message Context Properties.

General Tab

Use the General tab to specify a name and description for the task, and to identify the
operation for which to set the context.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Operation The operation for the Set Context task. The drop-down list is populated with
all operations from the interfaces in the target interface list of the mediation
flow.

If the path is leading to the mediation Operation (for example, the Output
path), you can select the mediation operation and set the context properties
of the mediation output message. The Operation field identifies this case by
identifying the interface. For example, [Mediation
Interface]:HelloWorld/sayHello).



TIBCO ActiveMatrix® Service Grid Mediation Component Development

168 | Reference

Input Tab

he Input tab is a mapping panel for mapping data from the mediation exchange to the
input fields of this task. For more information about using a mapping panel, see Transform
Tasks.

The input context for the target operation appears in the right side of the mapper. The task
input structure provides context properties.

l Of the operation’s outbound message, if a mediation operation is selected in the
General tab.

l Of the operation’s inbound context message, if a target operation is selected in the
General tab.

Set Dynamic Reference
The Set Dynamic Reference task provides the values needed for resolving a service

provider in a dynamic target interface.

Each Set Dynamic Reference task sets the value of the service provider for the specified
dynamic target interface—either the end of the mediation path points to a dynamic target
interface, or an Invoke task invokes an operation on a dynamic target interface.

General Tab

Use the General tab to specify a name and description of the Set Dynamic Reference task,
and to set the target interface and endpoint reference mechanism.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

169 | Reference

Field Description

Dynamic
Target
Interface

The name of the dynamic target interface for which this task is supplying the
service name and namespace.

By default, this field is automatically set to the dynamic target interface at
the other end of the path. If an Invoke task is on the path, this field may be
set by default to the first dynamic target interface in the target interface list.
You might need to set this field when the default choice does not match the
dynamic target interface that you want to set.

The name of the dynamic target interface for which this task is supplying the
application and service name. By default, this field is set to the dynamic
target interface at the other end of the path. If there is an Invoke task on the
path, this field can be set by default to the first dynamic target interface in
the target interface list. You might need to set this field when the default
choice does not match the dynamic target interface that you want to set.

Endpoint
Reference
Mechanism

Select an option for the mechanism to use for setting the application and
service name:

l Application & Service Name: Select to supply the application name
and service name. This option requires two inputs for mapping on the
Input tab—ApplicationName and ServiceName.

l Application & Service URI: Select to supply the exact URI of the
endpoint. This is useful if, for example, someone sends you the URI—
you simply copy and paste it into the ApplicationServiceURI parameter
on the Input tab.

l URI: Select this option to specify a URI.

l Pattern Variables: Select to use pattern variables from the dynamic
target interface. This is useful if several operations in a dynamic target
interface use a similar pattern for the application name and service
name. You can specify the mapping once on the dynamic target
interface and use variables to supply the variable portion. The variables
you create on the dynamic target interface appear in the Input tab
when this option is selected.

By default, the Endpoint Mechanism field is set to Application & Service
Name when the dynamic target interface has no pattern variables.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

170 | Reference

Field Description

If the dynamic target interface has pattern variables, the Endpoint
Mechanism field is set to Pattern Variables by default.

Input Tab

When the Endpoint Reference Mechanism field on the General tab is set to Service &
Namespace, the input elements for this task are serviceName and serviceNamespace. Any
value you specify for these input elements overrides the value specified on the Pattern
Map tab of the specified dynamic target interface.

When the Endpoint Reference Mechanism field on the General tab is set to Pattern
Variables, then the pattern variables defined on the specified dynamic target interface are
the input elements. This enables you to specify simple mappings of data from the
mediation exchange to the variable values. The variable values are then passed to the
mapping supplied on the Pattern Map tab of the dynamic target interface.

Use any data available in the mediation exchange on the left side of the mapper panel to
provide data to the input values.

The content of the Input tab depends on which Endpoint Reference Mechanism you select
on the General tab — Application & Service Name, Application & Service URI, or Pattern
Variables:

Application &
Service Name

When the Endpoint Reference Mechanism field on the General tab is set to
Application & Service Name, the input elements for the Set Dynamic
Reference task are ApplicationName and ServiceName:

l ApplicationName refers to the application name provided during
deployment of a composite, to uniquely identify an instance of an
application template.

l ServiceName is the name of the composite service that is contained in
the target composite.

Application &
Service URI

When the Endpoint Reference Mechanism field on the General tab is set to
Application & Service URI, the input element for the Set Dynamic Reference
task is ApplicationServiceURI.

The data type of the ApplicationServiceURI input field is a URI of the format



TIBCO ActiveMatrix® Service Grid Mediation Component Development

171 | Reference

urn:amx:EnvironmentName/ApplicationName#service(ServiceName)

The variables EnvironmentName, ApplicationName, and ServiceName refer to
the environment and service that are being invoked:

l EnvironmentName is the name of the ActiveMatrix environment that
contains the target service.

l ApplicationName refers to the application name that is provided during
deployment of a composite, to uniquely identify an instance of an
application template.

l ServiceName is the name of the composite service that is contained in
the target composite.

URI When the Endpoint Reference Mechanism field on the General tab is set to
URI, the input elements for the Set Dynamic Reference task are URI.:

l SOAP over HTTP

http://<HostName>:<PortNumber>/<Path>

<PortNumber> and <Path> are optional elements.

l SOAP over JMS: Specify the queue as jms:queue:<QueueName>

l ActiveMatrix Service Virtualization

urn:amx:<EnvironmentName>/<ApplicationName>#service
(<PromotedServiceName>)

Pattern
Variables

When the Endpoint Reference Mechanism field on the General tab is set to
Pattern Variables, the pattern variables that are defined on the specified
dynamic target interface are the input elements.

This enables you to specify simple mappings of data from the mediation
exchange to the variable values. The variable values are then passed to the
mapping supplied on the Pattern Map tab of the dynamic target interface.
You can use any data available in the mediation exchange on the left side of
the mapper panel to provide data to the input values.

Set Exchange Variable
The Set Exchange Variable task sets the value of the exchange variable mediation

exchange.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

172 | Reference

The Set Exchange Variable task can be placed on an input, output, or fault path.

The Set Exchange Variable task sets the value of the entire exchange variable — if you need
to set several attributes, set them all at once, using one Set Exchange Variable task.

For a description of how to define exchange variables for mediation operations, see
Working with Exchange Variables.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for
providing documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Input Tab

The Input tab contains a mapping panel for mapping data from the mediation exchange to
the input fields of this task. For more information about using a mapping panel, see
Transforming Tasks.

Field Description

ExchangeVariable The exchange variable element defined in the mediation operation
General tab appears on the right side of the mapper.

To set the exchange variable, map values from the mediation exchange
to the exchange variable element.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

173 | Reference

Throw Fault
The Throw Fault task enables you to explicitly throw a fault in a mediation flow.

This task can be placed only on the input path. The Throw Fault task is useful in these
situations:

l You want to deprecate a mediation operation, and send a fault to all clients that
request that operation.

l You want to specify routing cases where a fault should be sent. For example, if a loan
processing application cannot process loans over $5,000,000, then you would
configure a routing case for the loan request operation to examine the loan amount
and place a Throw Fault task on the sub-path when the loan amount is over
$5,000,000.

For more information, see Fault Processing in a Mediation Flow.

General Tab
l Use the General tab to select the fault to throw.

l You can choose to throw the MediationTaskFault message, or you can click Browse
to open a dialog of service descriptors.

l You can choose from the list of messages in the selected service descriptors to send a
specific message when a fault is thrown. When a message in a service descriptor is
selected, the WSDL Location field appears.

l You can click the field label link to view the service descriptor in the WSDL editor.

Transform
The Transform task is used to manipulate the data available in a mediation flow so

that the expected input, output, or fault message can be created.

Transform tasks can be placed on input, output, or fault paths. For more information, see
Transform Tasks.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

174 | Reference

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for
providing documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Contribute
Output to
Mediation
Exchange

When not selected, this option signifies that the output of the Transform task
should change the message data.

When this option is selected, the message data is left unchanged, and the
output of this task is added as another data item within the mediation
exchange. The data contributed by this task is available to subsequent
mediation tasks along the same path.

If you select Use External Stylesheet on this tab, the Contribute Output to
Mediation Exchange option is automatically selected and cannot be cleared.

Use External
Stylesheet

Select to use an external stylesheet for data transformation. This enables you
specify the transformation mapping in your workspace, outside the mediation
flow.

Input and
Output Style

Appears only if you select Use External Stylesheet.

Specify how the XML appears:

l Text Specified with a string.

l Binary Specified with a binary value.

l Tree Specified with any element, so that you can transform data
already in an XML document.

Stylesheet Appears only if you select Use External Stylesheet.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

175 | Reference

Field Description

Reference
Type

Select the type of reference for the Transform task:

l A static reference enables you to select a single (static) stylesheet from
a folder that is in your project.

l A dynamic reference enables you to select a set of stylesheets from a
folder in the project. At run-time one of the stylesheets in the list are
used dynamically, based on the value provided for the stylesheetURI
element that is in the Input tab of the mediation task.

For example, if the folder specified for the dynamic reference is
MySOAProject/Service Descriptors and the stylesheet is in the folder
MySOAProject/Service Descriptors/folder1/sample.xsl, the value
that must be provided for the stylesheetURI element must be
folder1/sample.xsl.

When you specify a folder for dynamic reference, ActiveMatrix
recursively includes the stylesheets under this folder and its sub-
folders.

Static Style
Sheet
Reference

Appears if you select a static stylesheet reference type. Click Browse to select
a single (static) stylesheet that is in your workspace.

Dynamic
Stylesheet
Folder

Appears if you selected a dynamic stylesheet reference type. Chose a value
available in the drop-down list. At run-time, one of the style sheets in the list
are used dynamically, based on the input to the mediation task.

Input Tab

Use the Input tab to map data from the mediation exchange into the expected message
schema.

Field Description

xmlString Specify an XML document serialized as a string.

xmlBinary Specify an XML document serialized in Base64Binary format.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

176 | Reference

Field Description

xmlTree Specify an XML document.

stylesheetURI Specify the schema URI, so that ActiveMatrix can locate it at run time and
use it for the transformation.

parameter A stylesheet can expect zero, one or more parameter(s) for its execution at
runtime:

l Parameter Name — Name of the parameter the stylesheet expects.

l Parameter Value — Value of the parameter.

Output Tab

The Output tab shows a tree representation of the Transform task output. Depending on
the input style chosen, the output can be:

l xmlString — XML document serialized as string

l xmlBinary — XML document serialized in Base64Binary format

l xmlTree — XML document

Validate XML
The Validate XML task is used to validate message data, a WSDL message, XML text,

binary, or XML tree formats against a schema.

The output of the Validate XML task is contributed to the mediation exchange, and can be
used by downstream tasks. Validate XML processes an XML document against an XML
schema, to report any errors found. It does not produce a parsed tree.

You choose the schema against which validation is to be performed by first specifying its
reference type in the General tab of the Validate XML task:

l A static reference enables you to select a single (static) schema from a folder that is
in your project.

l A dynamic reference enables you to select a set of schemas from a folder that is in



TIBCO ActiveMatrix® Service Grid Mediation Component Development

177 | Reference

your project. At run-time one of the schemas in the list are used dynamically for
validation, based on the input to the mediation task. When you specify a folder for
dynamic reference, ActiveMatrix Service Grid recursively includes the schemas under
this folder and its sub-folders

Note: The schema for a reference must be located in the same project as the
mediation flow that uses it.

General Tab

On the General tab you specify a name and description for the task, and specify the type
of schema to be used during verification.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Throw Fault
on Validation
Error

When this option is set, an error in the Validate XML task results in a
MediationTaskFault.

When this check box is not selected, an error in the Validate XML task
produces output that contains two fields:

valid has two values: true if the XML is valid; false if the XML is invalid.

error appears if the XML validation fails, and contains an errorCode and an
errorMessage. These codes follow the W3C specification for XML schema.

Input Select the input type:

l MessageData—Validates the mediation or target operation’s input data.
This option reads the input message itself, so no mapping is required.
MessageData is the default input type.

l WSDL Message—Validates the input or output of any operation in the
WSDL. When you select the WSDL Message option, the Schema Source



TIBCO ActiveMatrix® Service Grid Mediation Component Development

178 | Reference

Field Description

field opens. Select the mediation or target option, and the message
type (input or output).

l Text

l Binary

l XML Tree

Schema
Reference
Type

When you select an input type of Text, Binary, or XML Tree, you can choose a
static or dynamic reference type:

l A static reference enables you to select a single (static) schema from a
folder that is in your project.

l A dynamic reference enables you to select a set of schemas from a
folder that is in your project. At run-time one of the schemas in the list
are used dynamically for validation, based on the input to the
mediation task. When you specify a folder for dynamic reference,
ActiveMatrix recursively includes the schemas under this folder and its
sub-folders.

Schema
Element or
Schema
Folder

This field is based on whether you choose a static or dynamic reference type:

l If you choose Static Reference Type, the Schema Element field
appears. Specify the XML schema document against which the
incoming XML is validated.

l If you choose Dynamic Reference Type, the Schema Folder field
appears. Specify the folder where schema resources are located.

Input Tab

The content of the Input tab depends on the Input type you selected on the General tab.

Field Description

MessageData No mapping is required in the Input tab.

WSDL Message Displays a message tree corresponding to the operation and message



TIBCO ActiveMatrix® Service Grid Mediation Component Development

179 | Reference

Field Description

selected in the General tab.

Text Specify the xmlString input to validate.

If you chose a Dynamic Reference Type in the General tab, you can
specify an optional elementName.

Binary Specify the xmlBinary input to validate.

If you chose a Dynamic Reference Type in the General tab, you can
specify an optional elementName.

Tree In the xmlTree node, specify any element to validate.

If you chose a Dynamic Reference Type in the General tab, you can
specify an optional elementName.

Output Tab

The Output tab of the Validate XML task shows the results of the validation, indicating
whether the incoming XML is valid or invalid, after being verified against the specified
schema.

If validation fails, an error description identifies the cause of the failure. You can log this
error description for design-time troubleshooting.

If the Throw Fault field is selected, no output is produced by this task. The Output tab
shows a tree with the message No Output Configured.

XPath Route
The XPath Route task enables you to send messages to a specific destination based on

conditions that you specify.

Data from the mediation exchange, such as the security information or message body, can
be used to specify the conditions of the route.

XPath Route tasks can only be placed on input paths, but specifying an XPath Route task
on the input path automatically creates the correct output and fault paths.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

180 | Reference

For more information about the XPath Route task, see Routing Messages in a Mediation
Flow.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for
providing documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Decision Tab

Use the Decision tab to create routing cases, routing conditions, and variables to hold data
that is evaluated in the routing conditions. The Decision tab includes a toolbar for adding
and deleting cases and conditions

Toolbar
Icon

Description

Add Case Adds a routing case to the table on this tab. A new case appears in the table on
this tab with a default name, and the case is drawn in the mediation flow
diagram. By default, new cases created with this icon point to an error icon until
a Target Service/Operation is specified for the case.

Delete
Case

Deletes the selected routing case.

Add
Variable

Adds a variable to use in routing conditions. Clicking this icon opens a dialog
that enables you to specify the name and data type of the variable:

l String



TIBCO ActiveMatrix® Service Grid Mediation Component Development

181 | Reference

Toolbar
Icon

Description

l Integer

l Boolean

l Float

l Double

l Decimal

Each variable appears as a column between the Case column and the Target
Service/Operation column.

Delete
Variable

Opens a dialog for you to select the variable to delete.

The Decision tab includes a table containing all of the routing cases.

Column Description

Case Name of the routing case. Click the cell to edit the name.

Variable Names

(routing condition)

The name of each variable that you create appears in at the top of the
middle column of the table. The middle column is used to specify the
XPath expression for the routing condition for each case. Your
expressions are not limited to simple comparisons, and you do not
need to use any of the variables you have defined in the expressions.

You must type the XPath expression in the condition field next to each
routing case, or select the field and use the Xpath Editor field at the
bottom of the tab to edit the expression.

Variables are referenced in the XPath expressions for each routing case
by their names. Unlike XPath expressions in the Transform task, you do
not need to use a dollar sign to specify the root of the path to the
variable. For example, the expression to determine if the city variable
is equal to "Palo Alto" would be: city = "Palo Alto"



TIBCO ActiveMatrix® Service Grid Mediation Component Development

182 | Reference

Column Description

The Transform task has a graphical XPath editor that you can use as a
reference for creating XPath functions for the route task. For more
information about XPath, see Using XPath.

Target
Service/Operation

The name of the Target Service and target operation that is the
destination for this case. If you drag the path for the case to a target
operation in the mediation flow, this field is set automatically to the
correct value. You can also click this field to either type or select the
target operation.

At the bottom of the table is the configuration for the Otherwise case for the route. The
Otherwise case is taken when all other cases evaluate to false. Use the Target Service
Operation field to specify the target operation to perform for this case.

You can use the XPath editor window at the bottom of the Decision tab to edit the XPath
expressions for each routing condition.

Input Tab

Use the Input tab to map data from the mediation exchange into the list of variables that
you have created for the XPath Route task. For a description of how to use a mapping
panel, see Transform Tasks.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

183 | TIBCO AutoMediate Command-Line Tool

TIBCO AutoMediate Command-Line Tool
TIBCO AutoMediate Command Line is an independent command-line tool that enables you
to quickly on-ramp a large number of existing services, without having to use TIBCO
Business Studio, the Mediation Flow Editor, or the Composite Editor to build the necessary
design-time components.

The AutoMediate Command Line tool uses existing services as input, specified in a concrete
WSDL, to create a fully functional composite application with pass-through mediation
capabilities. The tool generates a deployment artifact archive that you can deploy into the
runtime environment as the first step in establishing an Enterprise Service Bus (ESB).

By establishing an ESB pattern using the AutoMediate Command Line tool and
ActiveMatrix, you virtualize existing provided or consumed services so that they become
location-transparent and more adaptable to change.

l Virtualizing provided services hides the location of service providers, helping to avoid
interrupting clients that are using the services.

l Virtualizing consumed services hides the details of how the services are provided,
helping to avoid interrupting logic that depends on the services.

The AutoMediate Command Line tool builds SOA projects that contain these components.

l A pass-through mediation flow.

l A composite that contains the mediation component wired to services and
references, depending on the number of ports specified in the concrete WSDL.

l The deployment artifact file for the generated composite application.

You can save these components in your source control system, then add mediation
capabilities — for example routing, transformation, and validation — whenever changes are
necessary.

AutoMediate Command-Line Tool Flow
The AutoMediate Command Line tool creates a SOA project from a concrete WSDL with
HTTP service bindings.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

184 | TIBCO AutoMediate Command-Line Tool

In the following diagram:

l The Service is a SOAP service. The host can be configured during deployment using
HTTP connector name generated for the service.

l The AutoMediate Command Line tool extracts binding information from the WSDL
and uses it in the Reference. The tool also specifies the binding information as a
substitution variable that can be replaced at run-time, if the Reference has changed
its location.

Running the AutoMediate Command-Line Tool
The AutoMediate Command-Line tool creates a SOA project from a concrete WSDL with
HTTP service bindings.

Procedure



TIBCO ActiveMatrix® Service Grid Mediation Component Development

185 | TIBCO AutoMediate Command-Line Tool

1. The AutoMediate Command-Line tool is available in the <TIBCO_HOME>/amx_it_
mediation/<version>/bin location. Navigate to this folder and open a command
window.

2. At the prompt, type the AutoMediate command, specifying the concrete WSDL and
any options. For more information, see AutoMediate Command Syntax and Options.

Note: The WSDL files you specify must be concrete WSDLs. This release of
the AutoMediate Command-Line tool does not support abstract WSDLs.

The AutoMediate Command-Line tool executes, creating a SOA project from the
concrete WSDL.

3. Import your SOA project into TIBCO Business Studio.

The new project includes the deployment application specification and the
application archive file that contains the composite application.

Note: After the AutoMediate Command Line creates your SOA project, you
can deploy its deployment application archive (.daa file) directly into the
runtime environment. For more information, see TIBCO ActiveMatrix®
Service Grid Administration.

AutoMediate Command Syntax and Options
The AutoMediate command uses concrete WSDL file or directory locations as input and
generates a composite application that provides pass-through mediation capabilities for
existing web services.

Syntax

AutoMediate [-projectNameproject_name] [-projectDirproject_dir] [-serviceHosthost_
name] [-servicePortport] wsdl location

Option Description

-projectName The name of the SOA project:

AutoMediate Command Options



TIBCO ActiveMatrix® Service Grid Mediation Component Development

186 | TIBCO AutoMediate Command-Line Tool

Option Description

l If you specify a name, a single SOA project is
created. A single project is created even if you
specify multiple WSDL files.

l If you do not specify a name, all the projects are
generated based on the @name attribute of the
WSDL definitions element.

If the @name attribute is not specified in the
WSDL, the name of the WSDL file is used.

-projectDir The directory where generated projects are to be
created.

If this option is not specified, generated projects are
created in the current working directory.

-serviceHost The host name for the service endpoint using SOAP
over JMS.

If this option is specified, the AutoMediate Command
Line tool overwrites the host name field in the Naming
Provider URL field in the generated resource template.

-servicePort The port number for the service endpoint using SOAP
over JMS.

If this option is specified, the AutoMediate Command
Line tool overwrites the port in the Naming Provider
URL in the generated resource template.

wsdl location Specify the location of the source WSDL files:

l If you use a single WSDL file, specify the name of
the source WSDL file or directory location.

l If you use multiple WSDL files, specify the name
of the directory containing the source WSDL files.

If you do not specify a -projectName when you



TIBCO ActiveMatrix® Service Grid Mediation Component Development

187 | TIBCO AutoMediate Command-Line Tool

Option Description

use multiple WSDL files, the AutoMediate
Command Line tool creates one ActiveMatrix SOA
project for each concrete WSDL file in the source
directory.

-httpConnectorName The name of the HTTP connector for services bound
using SOAP over HTTP.

If this option is not specified, HTTP connector name is
the service name plus the port name. It is ignored for
web services that are bound using SOAP over JMS.

-serviceJmsConFactoryJndiName
(optional)

The JMS connection factory JNDI name for the
resource template that is generated to configure a
SOAP over JMS service endpoint.

If this field is specified, the AutoMediate Command Line
tool overwrites the connection factory JNDI name in
the generated JMS connection factory resource
template for the service endpoint.

-serviceJmsDestJndiName
(optional)

The JMS destination JNDI name for the resource
template that is generated to configure a SOAP over
JMS service endpoint.

If this field is specified, the AutoMediate Command Line
tool overwrites the destination JNDI name in the
generated JMS destination resource template for the
service endpoint.

-refJmsConFactoryJndiName
(optional)

The JMS connection factory JNDI name for the
resource template that is generated to configure a
SOAP over JMS reference endpoint.

If this field is specified, the AutoMediate Command Line
tool overwrites the connection factory JNDI name in
the generated JMS connection factory resource
template for the reference endpoint.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

188 | TIBCO AutoMediate Command-Line Tool

Option Description

-refJmsDestJndiName (optional) The JMS destination JNDI name for the resource
template that is generated to configure a SOAP over
JMS reference endpoint.

If this field is specified, the AutoMediate Command Line
tool overwrites the destination JNDI name in the
generated JMS destination resource template for the
reference endpoint.

-daaOnly (optional) Used to generate only the DAA file.

Example Description

AutoMediate -projectName SOA
webservice.wsdl

Automatically mediates one or more web services
defined by single WSDL file.

AutoMediate -projectName SOA
webservice.wsdl webservice1.wsdl
webservice2.wsdl

AutoMediatec:/tibco/SOAP/wsdls

l c:/tibco/SOAP/wsdls1

l c:/tibco/SOAP/wsdls2

AutoMediate webservice.wsdl
c:/tibco/SOAP/wsdls webservice1.wsdl

Automatically mediates web services.

AutoMediate-projectDir
C:/tibco/SOA/mediation/workspace
webservice.wsdl

Automatically mediates one or more web services
and writes generated SOA project to a specific
directory.

AutoMediate-projectDir
C:/tibco/SOA/mediation/workspace -
serviceHost localhost -servicePort 9897
webservice.wsdl

Automatically mediates one or more web services,
generates a SOA project in a specific directory, and
updates the host and port for the service.

AutoMediate-projectDir Automatically mediates web services defined by

AutoMediate Command Examples



TIBCO ActiveMatrix® Service Grid Mediation Component Development

189 | TIBCO AutoMediate Command-Line Tool

Example Description

C:/tibco/SOA/mediation/workspace

c:/tibco/wsdls

the WSDL files contained in the specified folder.

AutoMediatewebservice.wsdl -daaOnly -
projectDir

C:/tibco/SOA/mediation/workspace

Automatically mediates one or more web services
and generates the DAA in the specified directory.

Exception Description

WSDLFileNotFoundException The WSDL location passed to the AutoMediate
Command Line tool is invalid.

NoWSDLServiceDefinedException The WSDL passed to the AutoMediate Command Line
tool does not have any services defined.

AutoMediate Command Line supports only concrete
WSDLs for this add-on pack release.

NoWSDLServiceBindingException The port child element of a WSDL service element has
a missing binding attribute.

Binding must be provided for AutoMediate Command
Line to generate a fully functional composite
application.

NoWSDLBindingPortTypeException A WSDL binding has a missing port type attribute.

The port type must be provided for AutoMediate
Command Line to generate a fully functional
composite application.

AutoMediate Command-Line Exception



TIBCO ActiveMatrix® Service Grid Mediation Component Development

190 | TIBCO AutoMediate Command-Line Tool

AutoMediate ANT Command Syntax and
Options
The AutoMediate ANT command generates a composite application that provides pass-
through mediation capability for an existing web service or web-services. The WSDL URI
format must be in EMF URI format.

Syntax

amx_eclipse_ant.exe [-DprojectDir=project_dir] [-DprojectName=project_name] [-
DserviceHosthost_name] [-DservicePortport] [-DwsdlLocationwsdl location] [-
DwsdlLocations=wsdl location] [-buildfilebuild_file]

The AutoMediate ANT command is located in the <TIBCO_
HOME>\studio\<version>\eclipse directory

For more information, see AutoMediate Command and Syntax Options.

Command Description

amx_eclipse_ant.exe -DprojectName=SOA webservice.wsdl -buildfile
build.xml

Automatically
mediates one
or more web
services
defined by
single WSDL
file.

amx_eclipse_ant.exe -DprojectName= SOA -
DwsdlLocation=webservice.wsdl;webservice1.wsdl;webservice2.wsdl -
buildfile build.xml

amx_eclipse_ant.exe -DprojectName= SOA -
DwsdlLocation=c:\tibco\SOAP\wsdl1;c:\tibco\SOAP\wsdl2;c:\tibco\SOAP\wsd
l3 -buildfile build.xml

Automatically
mediates web
services.

amx_eclipse_ant.exe-DprojectDir= c:/tibco/SOA/mediation/workspace -
DwsdlLocation=webservice.wsdl -buildfile build.xml

Automatically
mediates one
or more web

AutoMediate ANT Command-Line Examples



TIBCO ActiveMatrix® Service Grid Mediation Component Development

191 | TIBCO AutoMediate Command-Line Tool

Command Description

services and
writes
generated SOA
project to a
specific
directory.

amx_eclipse_ant.exe -DprojectDir=C:/tibco/SOA/mediation/workspace -
serviceHost localhost -servicePort 9897 webservice.wsdl -buildfile build.xml

Automatically
mediates one
or more web
services,
generates a
SOA project in
a specific
directory, and
updates the
host and port
for the service.

amx_eclipse_ant.exe-daaOnly -DprojectDir=
c:/tibco/SOA/mediation/workspace -DwsdlLocation=webservice.wsdl -
buildfile build.xml

Automatically
mediates one
or more web
services and
generates the
DAA in the
specified
directory.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

192 | Introduction to gXML Applications

Introduction to gXML Applications
gXML is a way of writing XML code in the Java language. The code that you write to the
gXML API can be run against any data model that supports the gXML bridge.

A Generic Java API for XQuery Data Model (XDM) and eXtensible Markup Language (XML)
Processing, gXML also provides a cohesive suite of XML processing implementations such
as XPath, XSLT, XQuery, Serialization, W3C XML Schema and Validation.

This flexibility offers several benefits:

l Minimizes expensive conversion overhead.

l Increases opportunities for performance optimization.

l Increases code reuse.

l Minimizes risks associated with locking into one Data Model.

gXML currently supports Parsing, Serialization, XDM Data Model, XPath 2, XSLT 2 and
XQuery, W3C XML Schema and Validation.

l A gXML bridge is provided for org.w3c.dom.Node.

l A gXML bridge for a high performance proprietary implementation is complete but
not yet released.

l A gXML bridge for a reference implementation is complete but not yet released. A
gXML bridge for AxiOM is in the works.

Developing gXML Applications
All gXML processors, including custom processing, run within a GxProcessingContext
instance that provides necessary metadata. A GxProcessingContext instance in turn is
created through a GxApplication instance.

You must write a class that provides an instance of GxApplication. The best way to do this
is to write an abstract class that implements all but the newProcessingContext method of
GxApplication. This approach allows you to write your application generically and then



TIBCO ActiveMatrix® Service Grid Mediation Component Development

193 | Introduction to gXML Applications

inject the choice of parameterization as late as possible for maximum code reuse and
flexibility.

This, of course, is not the only way to use gXML. An existing architecture may force the
choice of parameterization and create silos of XML processing. The degree of integration in
this case may be less that is possible with a homogeneous solution.

Whatever the approach, the best way to use gXML is to write generic, parameterized, and
XML processing code whenever possible.

Implementing GxApplication
You must write a class that provides an instance of GxApplication. The best way to do this
is to write an abstract class that implements all but the newProcessingContext method of
GxApplication.

001 package org.gxml.book.common;
002
003 import java.io.StringWriter;
004 import java.net.URI;
005 import java.net.URISyntaxException;
006
007 import junit.framework.TestCase;
008
009 import org.gxml.sa.GxApplication;
010 import org.gxml.sa.GxModel;
011 import org.gxml.sa.GxNameBridge;
012 import org.gxml.sa.GxProcessingContext;
013 import org.gxml.sa.GxSequenceHandler;
014 import org.gxml.xdm.Resolver;
015
016 import com.tibco.gxml.sa.api.common.util.PreCondition;
017 import
com.tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;
018 import
com.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;
019
020 public abstract class SampleApp<I, U, N extends I, A extends I, S,
T, X> extends TestCase implements GxApplication<I, U, N, A, S, T, X>
021 { 
022 public Resolver getResolver()
023 { 
024 try



TIBCO ActiveMatrix® Service Grid Mediation Component Development

194 | Introduction to gXML Applications

025 { 
026 return new SampleResolver(new URI
("../../plugins/org.gxml.book/resources/foo.xml"));
027 }
028 catch (final URISyntaxException e)
029 { 
030 throw new AssertionError(e);
031 }
032 }
033
034 protected String serialize(final N node, final
GxProcessingContext<I, U, N, A, S, T, X> pcx)
035 { 
036 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
037
038 // Configure for "pretty" printing.
039 sf.setIndent(Boolean.TRUE);
040
041 final StringWriter w = new StringWriter();
042
043 final GxSequenceHandler<A, S, T> handler = sf.newSerializer
(w);
044
045 final GxModel<N, A, S, T> model = pcx.getModel();
046
047 handler.startDocument(null);
048 try
049 { 
050 model.stream(node, true, true, handler);
051 }
052 finally
053 { 
054 handler.endDocument();
055 }
056
057 return w.toString();
058 }
059
060 /**
061 * Some bridge implementations may use {@link String} directly
for symbols. They must make them behave according to
062 * symbol semantics (==,toString).
063 */
064 public void assertNodeSymbolSemantics(final N node, final
GxProcessingContext<I, U, N, A, S, T, X> pcx)



TIBCO ActiveMatrix® Service Grid Mediation Component Development

195 | Introduction to gXML Applications

065 { 
066 final GxModel<N, A, S, T> model = pcx.getModel();
067 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
068
069 switch (model.getNodeKind(node))
070 { 
071 case ELEMENT:
072 { 
073 assertSymbolSemantics(model.getNamespaceURI(node),
nameBridge);
074 assertSymbolSemantics(model.getLocalName(node),
nameBridge);
075 }
076 case TEXT:
077 case DOCUMENT:
078 { 
079
080 }
081 break;
082 default:
083 { 
084 throw new AssertionError(model.getNodeKind(node));
085 }
086 }
087 }
088
089 public void assertSymbolSemantics(final S symbol, final
GxNameBridge<S> nameBridge)
090 { 
091 PreCondition.assertArgumentNotNull(symbol, "symbol");
092 PreCondition.assertArgumentNotNull(nameBridge,
"nameBridge");
093 assertSame(symbol, nameBridge.symbolize(symbol.toString()));
094 assertSame(symbol, nameBridge.symbolize(copy(symbol.toString
())));
095 }
096
097 /**
098 * Do anything to manufacture a String that is equal, but not
identical (the same), as the original.
099 * <p>
100 * This method has the post-condition that the strings are equal
but not the same.
101 * </p>
102 *
103 * @param original



TIBCO ActiveMatrix® Service Grid Mediation Component Development

196 | Introduction to gXML Applications

104 * The original.
105 * @return A copy of the original string.
106 */
107 private String copy(final String original)
108 { 
109 final String copy = original.concat("junk").substring(0,
original.length());
110 // Post-conditions verify that this actually works and isn't
"optimized" out.'
111 assertEquals(original, copy);
112 assertNotSame(original, copy);
113 // Be Paranoid
114 assertTrue(original.equals(copy));
115 assertFalse(original == copy);
116 // OK. That'll do.'
117 return copy;
118 }
119 }

Implementing GxCatalog
A catalog provides the means to isolate your application from the physical location of file
resources. Writing a catalog means implementing the GxCatalog interface so that it maps
form the logical locations specified in code or XML resources to the corresponding physical
location.

001 package org.gxml.book.common;
002
003 public class SampleCatalog
004 { 
005
006 }

Implementing GxResolver
A resolver takes a base-uri and an href and uses these two values to return a stream.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

197 | Introduction to gXML Applications

001 package org.gxml.book.common;
002
003 import java.io.File;
004 import java.io.FileNotFoundException;
005 import java.io.IOException;
006 import java.io.InputStream;
007 import java.net.URI;
008 import java.net.URISyntaxException;
009 import java.net.URL;
010
011 import org.gxml.xdm.Resolved;
012 import org.gxml.xdm.Resolver;
013
014 import com.tibco.gxml.sa.api.common.util.PreCondition;
015
016 public final class SampleResolver implements Resolver
017 { 
018 final URI baseURI;
019
020 public SampleResolver(final URI baseURI)
021 { 
022 this.baseURI = PreCondition.assertArgumentNotNull(baseURI,
"baseURI");
023 }
024
025 /**
026 * Convert a URI relative to a base URI into an input source.
027 * <p/>
028 * This default implementation requires that neither parameter
be null, and performs the expected action to retrieve
029 * the input source (which may involve network access).
030 *
031 * @param baseURI
032 * the base URI against which the target is to be
resolved; must not be null
033 * @param location
034 * the URI to resolve; must not be null
035 * @return a pair of InputStream and resolved URI.
036 */
037 public Resolved<InputStream> resolveInputStream(final URI
location) throws IOException
038 { 
039 PreCondition.assertArgumentNotNull(location, "uri");
040 if (location.isAbsolute())
041 { 
042 return retrieve(location, location);



TIBCO ActiveMatrix® Service Grid Mediation Component Development

198 | Introduction to gXML Applications

043 }
044 else
045 { 
046 PreCondition.assertArgumentNotNull(baseURI, "baseURI");
047
048 final URI base = baseURI.normalize();
049 final URI resolved = base.resolve(location);
050
051 return retrieve(location, resolved);
052 }
053 }
054
055 private Resolved<InputStream> retrieve(final URI location, final
URI uri) throws IOException
056 { 
057 PreCondition.assertArgumentNotNull(uri, "uri");
058
059 final URL toRetrieve;
060
061 if (!uri.isAbsolute()) // assume local file
062 { 
063 final File canonFile = new File(uri.toString
()).getCanonicalFile();
064 toRetrieve = canonFile.toURI().toURL();
065 }
066 else
067 { 
068 toRetrieve = uri.toURL();
069 }
070
071 if (toRetrieve == null)
072 { 
073 throw new FileNotFoundException(uri.toString());
074 }
075
076 final InputStream stream = toRetrieve.openStream();
077 if (stream == null)
078 { 
079 throw new FileNotFoundException(toRetrieve.toString());
080 }
081 try
082 { 
083 return new Resolved<InputStream>(location, stream,
toRetrieve.toURI());
084 }
085 catch (final URISyntaxException e)



TIBCO ActiveMatrix® Service Grid Mediation Component Development

199 | Introduction to gXML Applications

086 { 
087 throw new AssertionError(e);
088 }
089 }
090 }

Injecting DOM
The final task in providing a concrete GxApplication class is to implement the
newProcessingContext method on a derived class. You choose the tree, atomic values,
metadata and symbols that your application uses. In many cases you can use an off-the-
shelf processing context class, but you can also assemble or build your own.

If you are going to use gXML with org.w3c.dom.Node, you have choices for the atomic
values that your system uses as well as the metadata implementation. This example uses
atomic values that are mostly Java wrapper types and the reference sequence type
implementation, SmSequenceType.

001 package org.gxml.book.parsing;
002
003 import org.gxml.sa.GxMetaBridge;
004 import org.gxml.sa.GxNameBridge;
005 import org.gxml.sa.mutable.GxApplicationMutable;
006 import org.gxml.sa.mutable.GxProcessingContextMutable;
007 import org.gxml.xs.SmMetaBridge;
008 import org.gxml.xs.SmSequenceType;
009 import org.w3c.dom.Node;
010
011 import com.tibco.gxml.sa.api.common.datatype.StringNameBridge;
012 import com.tibco.gxml.sa.common.atom.AtomBridge;
013 import
com.tibco.gxml.sa.common.helpers.GxMetaBridgeOnSmMetaBridgeAdapter;
014 import
com.tibco.gxml.sa.common.helpers.SmAtomBridgeOnGxAtomBridgeAdapter;
015 import com.tibco.gxml.sa.xdm.dom.DomProcessingContext;
016 import com.tibco.gxml.xs.SmMetaBridgeFactory;
017
018 /**
019 * Demonstration of constructing a concrete GxApplication(Mutable)
implementation
using the DOM processing context.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

200 | Introduction to gXML Applications

020 */
021 public final class DomValidatingParsingSample extends
BookValidatingParsingSample<Object, Object, Node, Object, String,
SmSequenceType<Object,
String>, Object> implements GxApplicationMutable<Object, Object, Node,
Object, String,
SmSequenceType<Object, String>, Object>
022 { 
023 public final GxProcessingContextMutable<Object, Object, Node,
Object, String,
SmSequenceType<Object, String>, Object> newProcessingContext()
024 { 
025 // The name bridge is created along with the processing
context for maximum
concurrency.
026 final GxNameBridge<String> nameBridge = new StringNameBridge
();
027 final AtomBridge<String> atomBridge = new AtomBridge<String>
(nameBridge);
028 final SmMetaBridge<Object, String> cache = new
SmMetaBridgeFactory<Object,
String>(new SmAtomBridgeOnGxAtomBridgeAdapter<Object, String>
(atomBridge)).newMetaBridge();
029 final GxMetaBridge<Object, String, SmSequenceType<Object,
String>>
metaBridge = new GxMetaBridgeOnSmMetaBridgeAdapter<Object, String>
(cache, atomBridge);
030
031 final DomProcessingContext<Object, SmSequenceType<Object,
String>>
pcx = new DomProcessingContext<Object, SmSequenceType<Object, String>>
(this, metaBridge, cache);
032
033 // Set the "owning" processing context on the atom bridge.
034 atomBridge.setProcessingContext(pcx);
035
036 // Return the newly constructed processing context.
037 return pcx;
038 }
039 }

gXML Recipes



TIBCO ActiveMatrix® Service Grid Mediation Component Development

201 | Introduction to gXML Applications

Parsing a Character Stream and a Byte Stream

001 package org.gxml.book.parsing;
002
003 import java.io.InputStream;
004 import java.io.Reader;
005 import java.io.StringReader;
006 import java.net.URI;
007
008 import org.gxml.book.common.SampleApp;
009 import org.gxml.sa.GxModel;
010 import org.gxml.sa.GxNameBridge;
011 import org.gxml.sa.GxProcessingContext;
012 import org.gxml.xdm.NodeKind;
013 import org.gxml.xdm.Resolved;
014 import org.gxml.xdm.Resolver;
015
016 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
017 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;
018 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;
019
020 public abstract class BookIntroParsingSample<I, U, N extends I, A
extends I, S, T,
X> extends SampleApp<I, U, N, A, S, T, X>
021 { 
022 public void testCharacterStreamParse() throws Exception
023 { 
024 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
025
026 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N,
A, S, T, X>(pcx);
027
028 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();
029
030 final String xmlString = "<e>123</e>";
031 final URI systemId = new URI("e.xml");
032 final Reader characterStream = new StringReader(xmlString);



TIBCO ActiveMatrix® Service Grid Mediation Component Development

202 | Introduction to gXML Applications

033 final N doc = builder.parse(characterStream, systemId);
034
035 final GxModel<N, A, S, T> model = pcx.getModel();
036
037 assertEquals(NodeKind.DOCUMENT, model.getNodeKind(doc));
038
039 final N e = model.getFirstChildElement(doc);
040 assertEquals(NodeKind.ELEMENT, model.getNodeKind(e));
041 assertEquals("e", model.getLocalNameAsString(e));
042 assertEquals("123", model.getStringValue(e));
043 }
044
045 public void testByteStreamParse() throws Exception
046 { 
047 final Resolver resolver = getResolver();
048
049 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
050
051 final URI systemId = new URI("email.xml");
052 final Resolved<InputStream> source =
resolver.resolveInputStream(systemId);
053
054 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N,
A, S, T, X>(pcx);
055
056 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();
057
058 final N document = builder.parse(source.getResource(),
source.getSystemId());
059
060 final GxModel<N, A, S, T> model = pcx.getModel();
061
062 assertEquals(NodeKind.DOCUMENT, model.getNodeKind
(document));
063
064 final N email = model.getFirstChildElement(document);
065 assertEquals(NodeKind.ELEMENT, model.getNodeKind(email));
066 assertEquals("email", model.getLocalNameAsString(email));
067 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
068 final S namespaceURI = nameBridge.symbolize
("http://www.example.com");
069 final S localName = nameBridge.symbolize("from");
070 final N from = model.getFirstChildElementByName(email,



TIBCO ActiveMatrix® Service Grid Mediation Component Development

203 | Introduction to gXML Applications

namespaceURI, localName);
071 assertEquals("Julie", model.getStringValue(from));
072
073 for (final N node : model.getDescendantOrSelfAxis(document))
074 { 
075 assertNodeSymbolSemantics(node, pcx);
076 }
077 }
078 }

Constructing a Data Model Tree Programmatically
This example demonstrates constructing a tree directly using the fragment builder.

001 package org.gxml.book.snoopy;
002
003 import java.io.IOException;
004 import java.io.InputStream;
005 import java.io.StringReader;
006 import java.io.StringWriter;
007 import java.net.URI;
008 import java.net.URISyntaxException;
009
010 import javax.xml.namespace.QName;
011 import javax.xml.parsers.ParserConfigurationException;
012
013 import org.gxml.book.common.SampleApp;
014 import org.gxml.sa.GxException;
015 import org.gxml.sa.GxFragmentBuilder;
016 import org.gxml.sa.GxMetaBridge;
017 import org.gxml.sa.GxModel;
018 import org.gxml.sa.GxNameBridge;
019 import org.gxml.sa.GxProcessingContext;
020 import org.gxml.sa.GxSequenceHandler;
021 import org.gxml.sa.GxVariantBridge;
022 import org.gxml.xdm.NodeKind;
023 import org.gxml.xdm.Resolved;
024 import org.gxml.xdm.Resolver;
025 import org.gxml.xs.SmName;
026
027 import com.tibco.gxml.sa.api.common.lang.ExprException;
028 import com.tibco.gxml.sa.api.common.lang.ExprResult;
029 import com.tibco.gxml.sa.api.common.lang.GxExpr;



TIBCO ActiveMatrix® Service Grid Mediation Component Development

204 | Introduction to gXML Applications

030 import com.tibco.gxml.sa.api.common.lang.GxExprContextDynamicArgs;
031 import com.tibco.gxml.sa.api.common.lang.GxExprContextStaticArgs;
032 import com.tibco.gxml.sa.api.common.lang.GxLanguageToolKit;
033 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
034 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;
035 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;
036 import
com.tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;
037 import
com.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;
038 import com.tibco.gxml.sa.processor.xquery.LanguageToolKit;
039 import com.tibco.gxml.sa.processor.xslt.GxTransform;
040 import com.tibco.gxml.sa.processor.xslt.GxTransformBuilder;
041 import com.tibco.gxml.sa.processor.xslt.GxTransformer;
042 import com.tibco.gxml.sa.processor.xslt.XSLTransformBuilder;
043 import
com.tibco.gxmlsa.processor.org.exslt.strings.ExsltStringsFunctionGroup;
044
045 public abstract class SnoopySample<I, U, N extends I, A extends I,
S, T, X> extends
SampleApp<I, U, N, A, S, T, X>
046 { 
047 public void testDocumentFromString()
048 { 
049 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
050
051 final N document = documentFromString(pcx);
052
053 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
054
055 sf.setIndent(true);
056
057 final StringWriter sw = new StringWriter();
058
059 final GxSequenceHandler<A, S, T> serializer =
sf.newSerializer(sw);
060
061 final GxModel<N, A, S, T> model = pcx.getModel();
062
063 model.stream(document, true, true, serializer);
064
065 // System.out.println(sw.toString());
066 }
067



TIBCO ActiveMatrix® Service Grid Mediation Component Development

205 | Introduction to gXML Applications

068 public void testFragmentBuilder()
069 { 
070 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
071
072 final N document = documentFromEvents(pcx);
073
074 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
075
076 sf.setIndent(true);
077
078 final StringWriter sw = new StringWriter();
079
080 final GxSequenceHandler<A, S, T> serializer =
sf.newSerializer(sw);
081
082 final GxModel<N, A, S, T> model = pcx.getModel();
083
084 model.stream(document, true, true, serializer);
085
086 // System.out.println(sw.toString());
087 }
088
089 private N documentFromString(final GxProcessingContext<I, U, N,
A, S, T, X> pcx)
090 { 
091 final String strval = "" + "<?xml version='1.0'
encoding='UTF-8'?>" + "<book isbn='0836217462'>" + "
<title>Being a Dog Is a Full-Time Job</title>" + " <author>Charles M.
Schultz</author>" + " <character>" + "
<name>Snoopy</name>" + " <since>1950-10-04</since>" + " </character>" +
"</book>";
092
093 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
094
095 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();
096
097 try
098 { 
099 return builder.parse(new StringReader(strval), null);
100 }
101 catch (final IOException e)
102 { 



TIBCO ActiveMatrix® Service Grid Mediation Component Development

206 | Introduction to gXML Applications

103 throw new AssertionError();
104 }
105 }
106
107 private N documentFromEvents(final GxProcessingContext<I, U, N,
A, S, T, X> pcx)
108 { 
109 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
110
111 final S NULL_NS_URI = nameBridge.empty();
112 final S BOOK = nameBridge.symbolize("book");
113 final S ISBN = nameBridge.symbolize("isbn");
114 final S TITLE = nameBridge.symbolize("title");
115 final S AUTHOR = nameBridge.symbolize("author");
116 final S CHARACTER = nameBridge.symbolize("character");
117 final S NAME = nameBridge.symbolize("name");
118 final S SINCE = nameBridge.symbolize("since");
119
120 final GxFragmentBuilder<N, A, S, T> builder =
pcx.newFragmentBuilder();
121
122 // Note: Using try...finally not only ensures that elements
get closed when errors
123 // occur, it also helps to remind you to end elements and
makes the levels in
124 // the XML more obvious.
125 builder.startDocument(null);
126 try
127 { 
128 builder.startElement(NULL_NS_URI, BOOK, "", null);
129 try
130 { 
131 builder.attribute(NULL_NS_URI, ISBN, "",
"0836217462");
132 builder.startElement(NULL_NS_URI, TITLE, "", null);
133 try
134 { 
135 builder.text("Being a Dog Is a Full-Time Job");
136 }
137 finally
138 { 
139 builder.endElement();
140 }
141 builder.startElement(NULL_NS_URI, AUTHOR, "", null);
142 try
143 { 



TIBCO ActiveMatrix® Service Grid Mediation Component Development

207 | Introduction to gXML Applications

144 builder.text("Charles M. Schultz");
145 }
146 finally
147 { 
148 builder.endElement();
149 }
150 builder.startElement(NULL_NS_URI, CHARACTER, "",
null);
151 try
152 { 
153 builder.startElement(NULL_NS_URI, NAME, "",
null);
154 try
155 { 
156 builder.text("Snoopy");
157 }
158 finally
159 { 
160 builder.endElement();
161 }
162 builder.startElement(NULL_NS_URI, SINCE, "",
null);
163 try
164 { 
165 builder.text("1950-10-04");
166 }
167 finally
168 { 
169 builder.endElement();
170 }
171 }
172 finally
173 { 
174 builder.endElement();
175 }
176 }
177 finally
178 { 
179 builder.endElement();
180 }
181 }
182 finally
183 { 
184 builder.endDocument();
185 }
186



TIBCO ActiveMatrix® Service Grid Mediation Component Development

208 | Introduction to gXML Applications

187 return builder.getNodes().get(0);
188 }
189
190 public void testExample() throws ParserConfigurationException,
IOException, GxException, ExprException,
URISyntaxException
191 { 
192 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
193
194 final Resolver resolver = getResolver();
195
196 final URI xmlSystemId = new URI("hotel.xml");
197 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId);
198
199 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
200
201 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
202
203 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());
204
205 final URI xslSystemId = new URI("hotel.xsl");
206 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);
207
208 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>
(pcx);
209
210 // poem.xsl uses version="2.0", but we want to use XPath 1.0
compatibility mode
211 // so that arguments to functions are converted etc.
212 compiler.setCompatibleMode(true);
213
214 final GxTransform<I, U, N, A, S, T, X> compiled =
compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());
215
216 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
217
218 // TODO: Extract the configuration?
219 // compiled.configure(sf);



TIBCO ActiveMatrix® Service Grid Mediation Component Development

209 | Introduction to gXML Applications

220
221 sf.setIndent(true);
222
223 final StringWriter w = new StringWriter();
224
225 final GxSequenceHandler<A, S, T> handler = sf.newSerializer
(w);
226
227 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();
228
229 transformer.transform(document, pcx, handler);
230 }
231
232 public void testVariableBinding() throws
ParserConfigurationException, IOException, GxException,
ExprException, URISyntaxException
233 { 
234 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
235
236 final Resolver resolver = getResolver();
237
238 final URI xslSystemId = new URI("email.xsl");
239 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);
240
241 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T,
X>(pcx);
242
243 final GxTransform<I, U, N, A, S, T, X> compiled =
compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());
244
245 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();
246
247 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
248 final SmName<S> varName = nameBridge.name(new QName("to"));
249 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();
250 final X value = valueBridge.stringValue("David");
251
252 transformer.bindVariableValue(varName, value);
253 transformer.bindVariableValue(nameBridge.name(new QName



TIBCO ActiveMatrix® Service Grid Mediation Component Development

210 | Introduction to gXML Applications

("http://www.example.com", "from")),
valueBridge.stringValue("Julie"));
254
255 final N documentNode = transformer.transform(null, pcx);
256
257 final GxModel<N, A, S, T> model = pcx.getModel();
258
259 assertEquals(NodeKind.DOCUMENT, model.getNodeKind
(documentNode));
260 final N email = model.getFirstChildElement(documentNode);
261 final N to = model.getFirstChildElementByName(email,
nameBridge.symbolize("http://www.example.com"),
nameBridge.symbolize("to"));
262 assertEquals("David", model.getStringValue(to));
263 final N from = model.getFirstChildElementByName(email, null,
nameBridge.symbolize("from"));
264 assertEquals("Julie", model.getStringValue(from));
265 final N again = model.getFirstChildElementByName(email,
nameBridge.symbolize("http://www.example.com"),
null);
266 assertEquals("David", model.getStringValue(again));
267 }
268
269 public void testExternalFunctions() throws
ParserConfigurationException, IOException, GxException,
ExprException, URISyntaxException
270 { 
271 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
272
273 final Resolver resolver = getResolver();
274
275 final URI xmlSystemId = new URI("exslt.xml");
276 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId);
277
278 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
279
280 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
281
282 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());
283
284 final URI xslSystemId = new URI("exslt.xsl");
285 final Resolved<InputStream> xslInput =



TIBCO ActiveMatrix® Service Grid Mediation Component Development

211 | Introduction to gXML Applications

resolver.resolveInputStream(xslSystemId);
286
287 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>
(pcx);
288
289 final String namespaceURI = "http://exslt.org/strings";
290 final ExsltStringsFunctionGroup<I, U, N, A, S, T, X>
functions =
new ExsltStringsFunctionGroup<I, U, N, A, S, T, X>(namespaceURI, pcx);
291 compiler.setFunctionSigns(namespaceURI, functions);
292 compiler.setFunctionImpls(namespaceURI, functions);
293
294 final GxTransform<I, U, N, A, S, T, X> compiled =
compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());
295
296 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
297
298 // TODO: Extract the configuration.
299 // compiled.configure(sf);
300
301 sf.setIndent(true);
302
303 final StringWriter w = new StringWriter();
304
305 final GxSequenceHandler<A, S, T> handler = sf.newSerializer
(w);
306
307 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();
308
309 transformer.transform(document, pcx, handler);
310
311 // System.out.println(w.toString());
312 }
313
314 public void testHotel() throws ParserConfigurationException,
IOException, GxException, ExprException,
URISyntaxException
315 { 
316 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
317
318 final Resolver resolver = getResolver();



TIBCO ActiveMatrix® Service Grid Mediation Component Development

212 | Introduction to gXML Applications

319
320 final URI xmlSystemId = new URI("hotel.xml");
321 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId);
322
323 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
324
325 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
326
327 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());
328
329 final URI xslSystemId = new URI("hotel.xsl");
330 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);
331
332 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>
(pcx);
333
334 final GxTransform<I, U, N, A, S, T, X> compiled =
compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());
335
336 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
337
338 // TODO: Extract the configuration.
339 // compiled.configure(sf);
340
341 sf.setIndent(true);
342
343 final StringWriter w = new StringWriter();
344
345 final GxSequenceHandler<A, S, T> handler = sf.newSerializer
(w);
346
347 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();
348 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
349 final SmName<S> varName = nameBridge.name(new QName
("MessageData"));
350 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();
351 final X value = valueBridge.node(document);



TIBCO ActiveMatrix® Service Grid Mediation Component Development

213 | Introduction to gXML Applications

352
353 transformer.bindVariableValue(varName, value);
354
355 transformer.transform(null, pcx, handler);
356
357 // System.out.println(w.toString());
358 }
359
360 public void testHelloWorld() throws Exception
361 { 
362 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
363 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
364
365 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk = new
LanguageToolKit<I, U,
N, A, S, T, X>(pcx);
366
367 final GxExprContextStaticArgs<I, U, N, A, S, T, X> senv =
xtk.newStaticContextArgs();
368 final String NAMESPACE = "http://www.peanuts.com";
369
370 senv.getInScopeNamespaces().declarePrefix("nuts",
nameBridge.symbolize(NAMESPACE));
371
372 final SnoopyFunctionGroup<I, U, N, A, S, T, X>
peanutsFunctionGroup = new
SnoopyFunctionGroup<I, U, N, A, S, T, X>(NAMESPACE, pcx);
373 senv.setFunctionSigns(NAMESPACE, peanutsFunctionGroup);
374 senv.setFunctionImpls(NAMESPACE, peanutsFunctionGroup);
375
376 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge
();
377
378 final ExprResult<I, U, N, A, S, T, X> prepared = xtk.prepare
("nuts:GetVariableProperty('foo','bar')", metaBridge.emptyType(), senv);
379
380 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();
381
382 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> darg =
xtk.newDynamicContextArgs();
383
384 final String strval = expr.stringFunction(xtk.emptyFocus(),
darg, pcx);
385
386 assertEquals("Bingo!", strval);



TIBCO ActiveMatrix® Service Grid Mediation Component Development

214 | Introduction to gXML Applications

387 }
388 }

Validating

001 package org.gxml.book.parsing;
002
003 import java.io.InputStream;
004 import java.net.URI;
005
006 import javax.xml.namespace.QName;
007
008 import org.gxml.book.common.SampleApp;
009 import org.gxml.sa.GxApplication;
010 import org.gxml.sa.GxAtomBridge;
011 import org.gxml.sa.GxModel;
012 import org.gxml.sa.GxNameBridge;
013 import org.gxml.sa.GxProcessingContext;
014 import org.gxml.xdm.Resolved;
015 import org.gxml.xdm.Resolver;
016 import org.gxml.xs.SmComponentBag;
017 import org.gxml.xs.SmExceptionCatcher;
018 import org.gxml.xs.SmMetaLoadArgs;
019 import org.gxml.xs.SmName;
020
021 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
022 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;
023 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;
024 import
com.tibco.gxml.sa.common.helpers.SmAtomBridgeOnGxAtomBridgeAdapter;
025 import com.tibco.gxml.xs.W3cXmlSchemaParser;
026
027 public abstract class BookValidatingParsingSample<I, U, N extends I,
A extends I, S, T, X>
extends SampleApp<I, U, N, A, S, T, X>
028 { 
029 public void testValidatingParse() throws Exception
030 { 
031 final GxApplication<I, U, N, A, S, T, X> app = this;
032
033 final Resolver resolver = app.getResolver();



TIBCO ActiveMatrix® Service Grid Mediation Component Development

215 | Introduction to gXML Applications

034
035 final SmMetaLoadArgs args = new SmMetaLoadArgs();
036
037 final SmExceptionCatcher errors = new SmExceptionCatcher();
038
039 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
app.newProcessingContext();
040
041 final Resolved<InputStream> resource = getResolver
().resolveInputStream(new URI
("email.xsd"));
042
043 final W3cXmlSchemaParser<A, S> parser = new
W3cXmlSchemaParser<A, S>
(new SmAtomBridgeOnGxAtomBridgeAdapter<A, S>(pcx.getAtomBridge()));
044
045 final SmComponentBag<A, S> components = parser.parse
(resource.getLocation(),
resource.getResource(), resource.getSystemId(), errors, args, pcx);
046
047 pcx.register(components);
048
049 pcx.lock();
050
051 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
052
053 assertEquals(0, errors.size());
054
055 final URI xmlURI = new URI("email.xml");
056 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlURI);
057
058 final GxDocumentBuilderFactory<N, S> factory =
new DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
059
060 // Enable validation of the XML input.
061 factory.setValidating(true, nameBridge.name(new QName
("http://www.example.com",
"email")));
062
063 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();
064
065 // TODO: Need to catch errors...
066 // builder.setExceptionHandler(errors);
067



TIBCO ActiveMatrix® Service Grid Mediation Component Development

216 | Introduction to gXML Applications

068 final N doc = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());
069
070 assertEquals(0, errors.size());
071
072 // System.out.println(serialize(doc, pcx));
073
074 final GxModel<N, A, S, T> model = pcx.getModel();
075 final GxAtomBridge<A, S> atomBridge = pcx.getAtomBridge();
076
077 final N email = model.getFirstChildElement(doc);
078 final S namespaceURI = nameBridge.symbolize
("http://www.example.com");
079 final N sent = model.getFirstChildElementByName(email,
namespaceURI,
nameBridge.symbolize("sent"));
080 assertNotNull("model.getFirstChildElementByName", sent);
081 final SmName<S> typeName = model.getTypeName(sent);
082 assertNotNull("model.getTypeName", typeName);
083 assertEquals("dateTime", typeName.toQName().getLocalPart());
084 final A dateTime = model.getTypedValue(sent).get(0);
085
086 // assertTrue(metaBridge.sameAs(metaBridge.handle
(pcx.getTypeDefinition(type)),
087 // metaBridge.getType(SmNativeType.DATETIME)));
088
089 assertEquals("2008-03-23T14:49:30-05:00",
atomBridge.getC14NForm(dateTime));
090 }
091 }

Navigation

001 package org.gxml.book.parsing;
002
003 import java.io.InputStream;
004 import java.net.URI;
005
006 import org.gxml.book.common.SampleApp;
007 import org.gxml.sa.GxModel;
008 import org.gxml.sa.GxNameBridge;



TIBCO ActiveMatrix® Service Grid Mediation Component Development

217 | Introduction to gXML Applications

009 import org.gxml.sa.GxProcessingContext;
010 import org.gxml.xdm.Resolved;
011 import org.gxml.xdm.Resolver;
012
013 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
014 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;
015 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;
016
017 public abstract class BookNavigationParsingSample<I, U, N extends I,
A extends I, S, T, X> extends SampleApp<I, U, N, A, S, T, X>
018 { 
019 public void testBooksByNealStephenson() throws Exception
020 { 
021 final Resolver resolver = getResolver();
022
023 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
024
025 final URI systemId = new URI("books.xml");
026 final Resolved<InputStream> source =
resolver.resolveInputStream(systemId);
027
028 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
029
030 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();
031
032 final N doc = builder.parse(source.getResource(),
source.getSystemId());
033
034 final GxModel<N, A, S, T> model = pcx.getModel();
035
036 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
037
038 final S namespaceURI = nameBridge.symbolize
("http://www.example.com/books");
039
040 final N inventory = model.getFirstChildElementByName(doc,
namespaceURI, nameBridge.symbolize("inventory"));
041
042 for (final N book : model.getChildElementsByName(inventory,
namespaceURI, nameBridge.symbolize("book")))
043 { 
044 boolean found = false;
045



TIBCO ActiveMatrix® Service Grid Mediation Component Development

218 | Introduction to gXML Applications

046 for (final N author : model.getChildElementsByName(book,
namespaceURI, nameBridge.symbolize("author")))
047 { 
048 if (model.getStringValue(author).equals("Neal
Stephenson"))
049 { 
050 found = true;
051 break;
052 }
053 }
054
055 if (found)
056 { 
057 final N title = model.getFirstChildElementByName
(book, namespaceURI, nameBridge.symbolize("title"));
058
059 System.out.println(model.getStringValue(title));
060 }
061 }
062 }
063
064 public void testPurchaseOrder() throws Exception
065 { 
066 final Resolver resolver = getResolver();
067
068 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
069 final GxModel<N, A, S, T> model = pcx.getModel();
070 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
071
072 final URI systemId = new URI("PurchaseOrder.xml");
073 final Resolved<InputStream> source =
resolver.resolveInputStream(systemId);
074
075 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
076
077 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();
078
079 final N po = builder.parse(source.getResource(),
source.getSystemId());
080
081 final N root = model.getFirstChildElement(po);
082
083 final N items = model.getFirstChildElementByName(root, null,



TIBCO ActiveMatrix® Service Grid Mediation Component Development

219 | Introduction to gXML Applications

nameBridge.symbolize("items"));
084
085 double total = 0;
086 for (final N item : model.getChildElementsByName(items,
null, nameBridge.symbolize("item")))
087 { 
088 System.out.println("partNum:" +
model.getAttributeStringValue(item, nameBridge.empty(),
nameBridge.symbolize("partNum")));
089
090 final N price = model.getFirstChildElementByName(item,
null, nameBridge.symbolize("USPrice"));
091 total += Double.valueOf(model.getStringValue
(price)).doubleValue();
092 }
093 System.out.println("Grand total = " + total);
094 }
095 }

Mutation

001 package org.gxml.book.mutable;
002
003 import java.math.BigDecimal;
004
005 import javax.xml.XMLConstants;
006
007 import org.gxml.book.common.MutableApp;
008 import org.gxml.sa.GxAtomBridge;
009 import org.gxml.sa.GxNameBridge;
010 import org.gxml.sa.mutable.GxModelMutable;
011 import org.gxml.sa.mutable.GxProcessingContextMutable;
012 import org.gxml.xdm.NodeKind;
013
014 /**
015 * This sample illustrates the use of the optional mutability API.
016 *
017 * @author dholmes
018 *
019 * @param <I>
020 * @param <U>



TIBCO ActiveMatrix® Service Grid Mediation Component Development

220 | Introduction to gXML Applications

021 * @param <N>
022 * @param <A>
023 * @param <S>
024 * @param <T>
025 * @param <X>
026 */
027 public abstract class MutableSample<I, U, N extends I, A extends I,
S, T, X> extends
MutableApp<I, U, N, A, S, T, X>
028 { 
029 /**
030 * This is a test of basic mutability through the optional
mutability API.
031 * Line 2
032 * Line 3
033 * Line 4 // OK
034 */
035 public void testIntroduction() throws Exception
036 { 
037 final GxProcessingContextMutable<I, U, N, A, S, T, X> pcx =
newProcessingContext();
038 final GxAtomBridge<A, S> atomBridge = pcx.getAtomBridge();
039 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
040
041 /* // Create a new document. */
042 final N documentNode = pcx.newDocument();
043
044 final GxModelMutable<N, A, S, T> model = pcx.getModel();
045
046 assertEquals(NodeKind.DOCUMENT, model.getNodeKind
(documentNode));
047
048 // Every node in the tree has an owner which is a document
node. /* OK */
049 final N owner = model.getOwner(documentNode);
050
051 assertTrue(model.isSameNode(documentNode, owner));
052
053 final S namespaceURI = nameBridge.symbolize
("http://www.example.com");
054 final S localName = nameBridge.symbolize("foo");
055 final String prefix = "x";
056 final N documentElement = model.createElement(owner,
namespaceURI, localName, prefix);
057
058 // Append the document element to the documentNode.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

221 | Introduction to gXML Applications

059 model.appendChild(documentNode, documentElement);
060
061 model.setNamespace(documentElement, prefix, namespaceURI);
062
063 model.setAttribute(documentElement, nameBridge.empty(),
nameBridge.symbolize("version"),
XMLConstants.DEFAULT_NS_PREFIX, atomBridge.wrapAtom
(atomBridge.createDecimal
(BigDecimal.valueOf(2.7))));
064
065 // Append four text nodes to the document element.
066 model.appendChild(documentElement, model.createText(owner,
"Hello"));
067 model.appendChild(documentElement, model.createText(owner, "
"));
068 model.appendChild(documentElement, model.createText(owner,
"World"));
069 model.appendChild(documentElement, model.createText(owner,
"!"));
070
071 // Compress the four contiguous text nodes into a single
text node.
072 model.normalize(documentNode);
073
074 @SuppressWarnings("unused")
075 final String strval = serialize(documentNode, pcx);
076 //System.out.println(strval);
077 }
078 }

Serialization

001 package org.gxml.book.mutable;
002
003 import java.math.BigDecimal;
004
005 import javax.xml.XMLConstants;
006
007 import org.gxml.book.common.MutableApp;
008 import org.gxml.sa.GxAtomBridge;
009 import org.gxml.sa.GxNameBridge;



TIBCO ActiveMatrix® Service Grid Mediation Component Development

222 | Introduction to gXML Applications

010 import org.gxml.sa.mutable.GxModelMutable;
011 import org.gxml.sa.mutable.GxProcessingContextMutable;
012 import org.gxml.xdm.NodeKind;
013
014 /**
015 * This sample illustrates the use of the optional mutability API.
016 *
017 * @author dholmes
018 *
019 * @param <I>
020 * @param <U>
021 * @param <N>
022 * @param <A>
023 * @param <S>
024 * @param <T>
025 * @param <X>
026 */
027 public abstract class MutableSample<I, U, N extends I, A extends I,
S, T, X> extends
MutableApp<I, U, N, A, S, T, X>
028 { 
029 /**
030 * This is a test of basic mutability through the optional
mutability API.
031 * Line 2
032 * Line 3
033 * Line 4 // OK
034 */
035 public void testIntroduction() throws Exception
036 { 
037 final GxProcessingContextMutable<I, U, N, A, S, T, X> pcx =
newProcessingContext();
038 final GxAtomBridge<A, S> atomBridge = pcx.getAtomBridge();
039 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
040
041 /* // Create a new document. */
042 final N documentNode = pcx.newDocument();
043
044 final GxModelMutable<N, A, S, T> model = pcx.getModel();
045
046 assertEquals(NodeKind.DOCUMENT, model.getNodeKind
(documentNode));
047
048 // Every node in the tree has an owner which is a document
node. /* OK */
049 final N owner = model.getOwner(documentNode);



TIBCO ActiveMatrix® Service Grid Mediation Component Development

223 | Introduction to gXML Applications

050
051 assertTrue(model.isSameNode(documentNode, owner));
052
053 final S namespaceURI = nameBridge.symbolize
("http://www.example.com");
054 final S localName = nameBridge.symbolize("foo");
055 final String prefix = "x";
056 final N documentElement = model.createElement(owner,
namespaceURI, localName, prefix);
057
058 // Append the document element to the documentNode.
059 model.appendChild(documentNode, documentElement);
060
061 model.setNamespace(documentElement, prefix, namespaceURI);
062
063 model.setAttribute(documentElement, nameBridge.empty(),
nameBridge.symbolize("version"),
XMLConstants.DEFAULT_NS_PREFIX, atomBridge.wrapAtom
(atomBridge.createDecimal
(BigDecimal.valueOf(2.7))));
064
065 // Append four text nodes to the document element.
066 model.appendChild(documentElement, model.createText(owner,
"Hello"));
067 model.appendChild(documentElement, model.createText(owner, "
"));
068 model.appendChild(documentElement, model.createText(owner,
"World"));
069 model.appendChild(documentElement, model.createText(owner,
"!"));
070
071 // Compress the four contiguous text nodes into a single
text node.
072 model.normalize(documentNode);
073
074 @SuppressWarnings("unused")
075 final String strval = serialize(documentNode, pcx);
076 //System.out.println(strval);
077 }
078 }

XPath



TIBCO ActiveMatrix® Service Grid Mediation Component Development

224 | Introduction to gXML Applications

001 package org.gxml.book.xpath;
002
003 import org.gxml.book.common.SampleApp;
004 import org.gxml.sa.GxMetaBridge;
005 import org.gxml.sa.GxNameBridge;
006 import org.gxml.sa.GxProcessingContext;
007 import org.gxml.sa.GxVariantBridge;
008 import org.gxml.xdm.Emulation;
009 import org.gxml.xs.SmName;
010 import org.gxml.xs.SmNativeType;
011
012 import com.tibco.gxml.sa.api.common.lang.ExprResult;
013 import com.tibco.gxml.sa.api.common.lang.GxExpr;
014 import com.tibco.gxml.sa.api.common.lang.GxExprContextDynamicArgs;
015 import com.tibco.gxml.sa.api.common.lang.GxExprContextStaticArgs;
016 import com.tibco.gxml.sa.api.common.lang.GxFocus;
017 import com.tibco.gxml.sa.api.common.lang.GxLanguageToolKit;
018 import com.tibco.gxml.sa.processor.xquery.LanguageToolKit;
019 import
com.tibco.gxmlsa.processor.org.exslt.math.ExsltMathFunctionGroup;
020
021 public abstract class XPathSample<I, U, N extends I, A extends I, S,
T, X> extends
SampleApp<I, U, N, A, S, T, X>
022 { 
023 public void testGettingStarted() throws Exception
024 { 
025 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
026
027 // For demonstration purposes, register the language toolkit
with the processing context.
028 pcx.register("xyz", new LanguageToolKit<I, U, N, A, S, T, X>
(pcx));
029
030 @SuppressWarnings("unchecked")
031 // Immediately get back the registered processor.
032 GxLanguageToolKit<I, U, N, A, S, T, X> xtk =
pcx.getProcessor("xyz",
GxLanguageToolKit.class);
033
034 final GxExprContextStaticArgs<I, U, N, A, S, T, X> sarg =
xtk.newStaticContextArgs();
035
036 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge
();



TIBCO ActiveMatrix® Service Grid Mediation Component Development

225 | Introduction to gXML Applications

037
038 final ExprResult<I, U, N, A, S, T, X> prepared = xtk.prepare
("concat('Hello', ', ',
'World', '!')", metaBridge.emptyType(), sarg);
039 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();
040
041 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> darg =
xtk.newDynamicContextArgs();
042
043 final String strval = expr.stringFunction(xtk.emptyFocus(),
darg, pcx);
044
045 assertEquals("Hello, World!", strval);
046 }
047
048 public void testBindingVariables() throws Exception
049 { 
050 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
051
052 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk =
new LanguageToolKit<I, U, N, A, S, T, X>(pcx);
053
054 final GxExprContextStaticArgs<I, U, N, A, S, T, X> statArgs
= xtk.newStaticContextArgs();
055 statArgs.setEmulation(Emulation.MODERN);
056
057 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
058 final SmName<S> varName = new SmName<S>(nameBridge.symbolize
("x"), nameBridge);
059
060 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge
();
061 statArgs.bindVariableType(varName, metaBridge.getType
(SmNativeType.STRING));
062
063 final String es = "concat('Hello', ', ', $x, '!')";
064 final T sfocus = metaBridge.emptyType();
065
066 final ExprResult<I, U, N, A, S, T, X> prepared = xtk.prepare
(es, sfocus, statArgs);
067
068 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> dynArgs
=
xtk.newDynamicContextArgs();
069 dynArgs.setEmulation(Emulation.MODERN);



TIBCO ActiveMatrix® Service Grid Mediation Component Development

226 | Introduction to gXML Applications

070
071 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();
072 final X value = valueBridge.stringValue("World");
073 dynArgs.bindVariableValue(varName, value);
074
075 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();
076 final GxFocus<I> dfocus = xtk.emptyFocus();
077 final String strval = expr.stringFunction(dfocus, dynArgs,
pcx);
078
079 assertEquals("Hello, World!", strval);
080 }
081
082 public void testEXSLT() throws Exception
083 { 
084 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
085 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
086
087 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk =
new LanguageToolKit<I, U, N, A, S, T, X>(pcx);
088
089 final GxExprContextStaticArgs<I, U, N, A, S, T, X> sarg =
xtk.newStaticContextArgs();
090 sarg.getInScopeNamespaces().declarePrefix("math",
nameBridge.symbolize
("http://exslt.org/math"));
091 final ExsltMathFunctionGroup<I, U, N, A, S, T, X>
exsltMathFunctionGroup = new
ExsltMathFunctionGroup<I, U, N, A, S, T, X>("http://exslt.org/math",
pcx);
092 sarg.setFunctionSigns("http://exslt.org/math",
exsltMathFunctionGroup);
093 // The function implementations can be provided now or just
prior to execution.
094 sarg.setFunctionImpls("http://exslt.org/math",
exsltMathFunctionGroup);
095
096 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge
();
097
098 final ExprResult<I, U, N, A, S, T, X> prepared = xtk.prepare
("math:exp(1)",
metaBridge.emptyType(), sarg);
099



TIBCO ActiveMatrix® Service Grid Mediation Component Development

227 | Introduction to gXML Applications

100 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();
101
102 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> darg =
xtk.newDynamicContextArgs();
103 // Here we also (redundantly) provide the function
implementations just prior to execution.
104 darg.setFunctionImpls("http://exslt.org/math",
exsltMathFunctionGroup);
105
106 final String strval = expr.stringFunction(xtk.emptyFocus(),
darg, pcx);
107
108 assertEquals("2.7182818284590455", strval);
109 }
110
111 public void testExpressionType() throws Exception
112 { 
113 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
114
115 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk =
new LanguageToolKit<I, U, N, A, S, T, X>(pcx);
116
117 final GxExprContextStaticArgs<I, U, N, A, S, T, X> sarg =
xtk.newStaticContextArgs();
118
119 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge
();
120
121 final ExprResult<I, U, N, A, S, T, X> prepared = xtk.prepare
("'Hello'",
metaBridge.emptyType(), sarg);
122 /* final GxExpr<I, U, N, A, S, T, X> expr =
*/prepared.getExpr();
123 /* final GxExprInfo<T> info = */prepared.getInfo();
124 }
125 }

XSLT



TIBCO ActiveMatrix® Service Grid Mediation Component Development

228 | Introduction to gXML Applications

001 package org.gxml.book.xslt;
002
003 import java.io.IOException;
004 import java.io.InputStream;
005 import java.io.StringReader;
006 import java.io.StringWriter;
007 import java.net.URI;
008 import java.net.URISyntaxException;
009
010 import javax.xml.namespace.QName;
011 import javax.xml.parsers.ParserConfigurationException;
012
013 import org.gxml.book.common.SampleApp;
014 import org.gxml.sa.GxException;
015 import org.gxml.sa.GxMetaBridge;
016 import org.gxml.sa.GxModel;
017 import org.gxml.sa.GxNameBridge;
018 import org.gxml.sa.GxProcessingContext;
019 import org.gxml.sa.GxSequenceHandler;
020 import org.gxml.sa.GxVariantBridge;
021 import org.gxml.xdm.NodeKind;
022 import org.gxml.xdm.Resolved;
023 import org.gxml.xdm.Resolver;
024 import org.gxml.xs.SmName;
025 import org.gxml.xs.SmNativeType;
026
027 import com.tibco.gxml.sa.api.common.lang.ExprException;
028 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
029 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;
030 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;
031 import
com.tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;
032 import
com.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;
033 import com.tibco.gxml.sa.processor.xslt.GxTransform;
034 import com.tibco.gxml.sa.processor.xslt.GxTransformBuilder;
035 import com.tibco.gxml.sa.processor.xslt.GxTransformer;
036 import com.tibco.gxml.sa.processor.xslt.XSLTransformBuilder;
037 import
com.tibco.gxmlsa.processor.org.exslt.strings.ExsltStringsFunctionGroup;
038
039 public abstract class XSLTSample<I, U, N extends I, A extends I, S,
T, X> extends SampleApp<I, U, N, A, S, T, X>
040 { 
041 public void testExample() throws ParserConfigurationException,
IOException, GxException, ExprException, URISyntaxException



TIBCO ActiveMatrix® Service Grid Mediation Component Development

229 | Introduction to gXML Applications

042 { 
043 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
044 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge
();
045 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
046
047 final Resolver resolver = getResolver();
048
049 final URI xmlSystemId = new URI("hotel.xml");
050 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId);
051
052 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
053 f.setIgnoreComments(false);
054
055 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
056
057 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());
058
059 final URI xslSystemId = new URI("hotel.xsl");
060 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);
061
062 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);
063
064 compiler.setCompatibleMode(true);
065 // compiler.setRestrictedMode(true); // XSLT 2.0 subset for
mapper.
066
067 // Specify the static type for the context item:
068 // document-node(element(*,xs:untyped))
069 final T documentType = metaBridge.documentType
(metaBridge.elementType(new SmName<S>(null, null, nameBridge),
metaBridge.getType(SmNativeType.UNTYPED), false));
070 compiler.setFocus(documentType);
071
072 final GxTransform<I, U, N, A, S, T, X> compiled =
compiler.prepareTransform(xslInput.getResource(), xslInput.getSystemId
());
073
074 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);



TIBCO ActiveMatrix® Service Grid Mediation Component Development

230 | Introduction to gXML Applications

075
076 // TODO: Extract output configuration.
077 // compiled.configure(sf);
078
079 sf.setIndent(true);
080
081 final StringWriter w = new StringWriter();
082
083 final GxSequenceHandler<A, S, T> handler = sf.newSerializer
(w);
084
085 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();
086
087 transformer.transform(document, pcx, handler);
088
089 @SuppressWarnings("unused")
090 final String s = w.toString();
091 // System.out.println(s);
092 }
093
094 @SuppressWarnings("unused")
095 private void bar(final GxProcessingContext<I, U, N, A, S, T, X>
pcx)
096 { 
097 try
098 { 
099 final GxTransformBuilder<I, U, N, A, S, T, X> builder =
new XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);
100
101 final GxTransform<I, U, N, A, S, T, X> transform =
builder.prepareTransform(new StringReader("<x xsl:version='1.0'
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'></x>"), new URI(""));
102
103 final GxTransformer<I, U, N, A, S, T, X> transformer =
transform.newTransformer();
104
105 final N document = transformer.transform(null, pcx);
106
107 final GxModel<N, A, S, T> model = pcx.getModel();
108
109 final N element = model.getFirstChild(document);
110
111 final String name = model.getLocalNameAsString(element);
112
113 // System.out.println("XSLT: " + name);



TIBCO ActiveMatrix® Service Grid Mediation Component Development

231 | Introduction to gXML Applications

114 }
115 catch (final Throwable e)
116 { 
117 e.printStackTrace();
118 }
119 }
120
121 public void skipVariableBinding() throws
ParserConfigurationException, IOException, GxException, ExprException,
URISyntaxException
122 { 
123 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
124
125 final Resolver resolver = getResolver();
126
127 final URI xslSystemId = new URI("email.xsl");
128 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId);
129
130 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);
131
132 final GxTransform<I, U, N, A, S, T, X> compiled =
compiler.prepareTransform(xslInput.getResource(), xslInput.getSystemId
());
133
134 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();
135
136 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
137 final SmName<S> varName = nameBridge.name(new QName("to"));
138 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();
139 final X value = valueBridge.stringValue("David");
140
141 transformer.bindVariableValue(varName, value);
142 transformer.bindVariableValue(nameBridge.name(new QName
("http://www.example.com", "from")), valueBridge.stringValue("Julie"));
143
144 final N documentNode = transformer.transform(null, pcx);
145
146 final GxModel<N, A, S, T> model = pcx.getModel();
147
148 assertEquals(NodeKind.DOCUMENT, model.getNodeKind
(documentNode));



TIBCO ActiveMatrix® Service Grid Mediation Component Development

232 | Introduction to gXML Applications

149 final N email = model.getFirstChildElement(documentNode);
150 final N to = model.getFirstChildElementByName(email,
nameBridge.symbolize("http://www.example.com"), nameBridge.symbolize
("to"));
151 assertEquals("David", model.getStringValue(to));
152 final N from = model.getFirstChildElementByName(email, null,
nameBridge.symbolize("from"));
153 assertEquals("Julie", model.getStringValue(from));
154 final N again = model.getFirstChildElementByName(email,
nameBridge.symbolize("http://www.example.com"), null);
155 assertEquals("David", model.getStringValue(again));
156 }
157
158 public void skipExternalFunctions() throws
ParserConfigurationException, IOException, GxException, ExprException,
URISyntaxException
159 { 
160 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
161
162 final Resolver resolver = getResolver();
163
164 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(new URI("exslt.xml"));
165
166 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
167
168 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
169
170 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());
171
172 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(new URI("exslt.xsl"));
173
174 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);
175
176 final String namespaceURI = "http://exslt.org/strings";
177 final ExsltStringsFunctionGroup<I, U, N, A, S, T, X>
functions = new ExsltStringsFunctionGroup<I, U, N, A, S, T, X>
(namespaceURI, pcx);
178 compiler.setFunctionSigns(namespaceURI, functions);
179 compiler.setFunctionImpls(namespaceURI, functions);
180



TIBCO ActiveMatrix® Service Grid Mediation Component Development

233 | Introduction to gXML Applications

181 final GxTransform<I, U, N, A, S, T, X> compiled =
compiler.prepareTransform(xslInput.getResource(), xslInput.getSystemId
());
182
183 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
184
185 // TODO: Extract configuration.
186 // compiled.configure(sf);
187
188 sf.setIndent(true);
189
190 final StringWriter w = new StringWriter();
191
192 final GxSequenceHandler<A, S, T> handler = sf.newSerializer
(w);
193
194 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();
195
196 transformer.transform(document, pcx, handler);
197
198 // System.out.println(w.toString());
199 }
200
201 public void skipHotel() throws ParserConfigurationException,
IOException, GxException, ExprException, URISyntaxException
202 { 
203 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
204
205 final Resolver resolver = getResolver();
206
207 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(new URI("hotel.xml"));
208
209 final GxDocumentBuilderFactory<N, S> f = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
210
211 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
212
213 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());
214
215 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(new URI("hotel.xsl"));



TIBCO ActiveMatrix® Service Grid Mediation Component Development

234 | Introduction to gXML Applications

216
217 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);
218
219 final GxTransform<I, U, N, A, S, T, X> compiled =
compiler.prepareTransform(xslInput.getResource(), xslInput.getSystemId
());
220
221 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer();
222 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
223 final SmName<S> varName = nameBridge.name(new QName
("MessageData"));
224 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();
225 final X value = valueBridge.node(document);
226
227 transformer.bindVariableValue(varName, value);
228
229 final N documentNode = transformer.transform(null, pcx);
230
231 final GxModel<N, A, S, T> model = pcx.getModel();
232
233 assertEquals(NodeKind.DOCUMENT, model.getNodeKind
(documentNode));
234 final N searchHotelRequest = model.getFirstChildElement
(documentNode);
235 final N parameters = model.getFirstChildElementByName
(searchHotelRequest, nameBridge.symbolize
("http://xmlns.example.com/1189038295781"), nameBridge.symbolize
("parameters"));
236 final N searchHotel = model.getFirstChildElementByName
(parameters, nameBridge.symbolize
("http://www.xyzcorp/procureservice/QueryGDS_Europe/"),
nameBridge.symbolize("searchHotel"));
237 final N country = model.getFirstChildElementByName
(searchHotel, nameBridge.symbolize
("http://www.xyzcorp/procureservice/QueryGDS_Europe/"),
nameBridge.symbolize("country"));
238 assertEquals("USA", model.getStringValue(country));
239 }
240 }



TIBCO ActiveMatrix® Service Grid Mediation Component Development

235 | Introduction to gXML Applications

XQuery

001 package org.gxml.book.xquery;
002
003 import java.io.StringWriter;
004 import java.math.BigInteger;
005 import java.net.URI;
006
007 import javax.xml.namespace.QName;
008
009 import org.gxml.book.common.SampleApp;
010 import org.gxml.sa.GxAtomBridge;
011 import org.gxml.sa.GxNameBridge;
012 import org.gxml.sa.GxProcessingContext;
013 import org.gxml.sa.GxSequenceHandler;
014 import org.gxml.sa.GxVariantBridge;
015 import org.gxml.xs.SmName;
016
017 import com.tibco.gxml.sa.api.common.lang.GxXQConnection;
018 import com.tibco.gxml.sa.api.common.lang.GxXQDataSource;
019 import com.tibco.gxml.sa.api.common.lang.GxXQExpression;
020 import com.tibco.gxml.sa.api.common.lang.GxXQPreparedExpression;
021 import
com.tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;
022 import
com.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;
023 import com.tibco.gxml.sa.processor.xquery.XQEngine;
024 import com.tibco.gxml.sa.processor.xquery.XQErrorCatcher;
025
026 /**
027 * Introduction to XQuery.
028 */
029 public abstract class XQuerySample<I, U, N extends I, A extends I,
S, T, X> extends SampleApp<I, U, N, A, S, T, X>
030 { 
031 public void testExample() throws Exception
032 { 
033 // Obtain a new processing context from the application.
034 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
035
036 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);
037



TIBCO ActiveMatrix® Service Grid Mediation Component Development

236 | Introduction to gXML Applications

038 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();
039
040 final String expression = "<x>{text{for $i in (1,2,3,4)
return $i * 2}}</x>";
041
042 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression);
043
044 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
045 sf.setMethod(new QName("xml"));
046 sf.setOmitXmlDeclaration(true);
047 final StringWriter sw = new StringWriter();
048 final GxSequenceHandler<A, S, T> handler = sf.newSerializer
(sw);
049
050 expr.executeQuery(handler);
051
052 final String actual = sw.toString();
053 assertEquals(expression, "<x>2 4 6 8</x>", actual);
054 }
055
056 public void testGettingStarted() throws Exception
057 { 
058 // Obtain a new processing context from the application.
059 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
060
061 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);
062
063 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();
064
065 final GxXQExpression<I, U, N, A, S, T, X> expr =
conn.createExpression();
066
067 final String es = "for $n in fn:doc('catalog.xml')//item
return fn:data($n/name)";
068
069 final URI systemId = new URI("catalog.xml");
070
071 expr.setBaseURI(systemId);
072
073 @SuppressWarnings("unused")



TIBCO ActiveMatrix® Service Grid Mediation Component Development

237 | Introduction to gXML Applications

074 final X value = expr.executeQuery(es);
075 }
076
077 public void testHelloWorld() throws Exception
078 { 
079 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
this.newProcessingContext();
080
081 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);
082
083 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();
084
085 conn.setScriptingMode(true);
086
087 final String expression = "declare variable $x external;
concat('Hello, ',$x, '!')";
088
089 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression);
090
091 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
092 sf.setOmitXmlDeclaration(true);
093 sf.setIndent(false);
094 sf.setMethod(new QName("xml"));
095 final StringWriter sw = new StringWriter();
096 final GxSequenceHandler<A, S, T> handler = sf.newSerializer
(sw);
097
098 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
099 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();
100
101 final SmName<S> varName = new SmName<S>(nameBridge.symbolize
("x"), nameBridge);
102 final X value = valueBridge.stringValue("World");
103
104 expr.bindVariableValue(varName, value);
105
106 expr.executeQuery(handler);
107
108 String actual = sw.toString();
109 assertEquals(expression, "Hello, World!", actual);
110 }



TIBCO ActiveMatrix® Service Grid Mediation Component Development

238 | Introduction to gXML Applications

111
112 public void testMergeTextNodes() throws Exception
113 { 
114 // Obtain a new processing context from the application.
115 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
116
117 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);
118
119 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();
120
121 // final String expression = "";
122 final String expression = "count((element elem {1, 'string',
1,2e3})/text())";
123
124 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression);
125
126 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
127 sf.setMethod(new QName("xml"));
128 sf.setOmitXmlDeclaration(true);
129 final StringWriter sw = new StringWriter();
130 final GxSequenceHandler<A, S, T> handler = sf.newSerializer
(sw);
131
132 expr.executeQuery(handler);
133
134 final String actual = sw.toString();
135 assertEquals(expression, "1", actual);
136 }
137
138 public void testProblem() throws Exception
139 { 
140 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
this.newProcessingContext();
141
142 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);
143
144 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();
145
146 final XQErrorCatcher messages = new XQErrorCatcher();



TIBCO ActiveMatrix® Service Grid Mediation Component Development

239 | Introduction to gXML Applications

147
148 conn.setErrorHandler(messages);
149 conn.setCompatibleMode(false);
150 conn.setScriptingMode(true);
151
152 final String expression = "(xs:untypedAtomic
('1'),xs:untypedAtomic('2')) = (xs:untypedAtomic('2.0'),2.0)";
153
154 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression);
155
156 final X value = expr.executeQuery();
157
158 final GxVariantBridge<I, N, A, X> variantBridge =
pcx.getVariantBridge();
159 switch (variantBridge.getNature(value))
160 { 
161 case ITEMS:
162 { 
163 @SuppressWarnings("unused")
164 final Iterable<I> items = variantBridge.getItemSet
(value);
165 // System.out.println(items);
166 }
167 break;
168 case ATOM:
169 { 
170 @SuppressWarnings("unused")
171 final A atom = variantBridge.getAtom(value);
172 @SuppressWarnings("unused")
173 final GxAtomBridge<A, S> atomBridge =
pcx.getAtomBridge();
174 // System.out.println(atomBridge.getC14NForm(atom));
175 }
176 break;
177 case STRING:
178 { 
179 @SuppressWarnings("unused")
180 final String strval = variantBridge.getString
(value);
181 // System.out.println(strval);
182 }
183 break;
184 case INTEGER:
185 { 
186 @SuppressWarnings("unused")



TIBCO ActiveMatrix® Service Grid Mediation Component Development

240 | Introduction to gXML Applications

187 final BigInteger integer = variantBridge.getInteger
(value);
188 // System.out.println(integer);
189 }
190 break;
191 default:
192 { 
193 throw new AssertionError(variantBridge.getNature
(value));
194 }
195 }
196 }
197
198 public void testTyping() throws Exception
199 { 
200 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
this.newProcessingContext();
201
202 final GxXQDataSource<I, U, N, A, S, T, X> ds = new
XQEngine<I, U, N, A, S, T, X>(pcx);
203
204 final GxXQConnection<I, U, N, A, S, T, X> conn =
ds.getConnection();
205
206 conn.setScriptingMode(true);
207
208 final XQErrorCatcher messages = new XQErrorCatcher();
209
210 conn.setErrorHandler(messages);
211
212 final String expression = "declare variable $x external;
contains(string(number($x)),'NaN')";
213
214 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression);
215
216 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);
217 sf.setOmitXmlDeclaration(true);
218 sf.setIndent(false);
219 sf.setMethod(new QName("xml"));
220 final StringWriter sw = new StringWriter();
221 final GxSequenceHandler<A, S, T> handler = sf.newSerializer
(sw);
222
223 final GxNameBridge<S> nameBridge = pcx.getNameBridge();



TIBCO ActiveMatrix® Service Grid Mediation Component Development

241 | Introduction to gXML Applications

224 final GxVariantBridge<I, N, A, X> valueBridge =
pcx.getVariantBridge();
225
226 final SmName<S> varName = new SmName<S>(nameBridge.symbolize
("x"), nameBridge);
227 final X value = valueBridge.doubleValue(5.0);
228
229 expr.bindVariableValue(varName, value);
230
231 expr.executeQuery(handler);
232
233 String actual = sw.toString();
234 assertEquals(expression, "false", actual);
235 }
236 }

Validation

001 package org.gxml.book.validation;
002
003 import java.io.InputStream;
004 import java.net.URI;
005 import java.util.LinkedList;
006 import java.util.List;
007
008 import org.gxml.book.common.SampleApp;
009 import org.gxml.sa.GxFragmentBuilder;
010 import org.gxml.sa.GxModel;
011 import org.gxml.sa.GxProcessingContext;
012 import org.gxml.xdm.Resolved;
013 import org.gxml.xdm.Resolver;
014 import org.gxml.xs.SmException;
015 import org.gxml.xs.SmExceptionCatcher;
016 import org.gxml.xs.SmExceptionHandler;
017 import org.gxml.xs.SmMetaLoadArgs;
018
019 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
020 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;
021 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;
022 import
com.tibco.gxml.sa.common.helpers.SmAtomBridgeOnGxAtomBridgeAdapter;



TIBCO ActiveMatrix® Service Grid Mediation Component Development

242 | Introduction to gXML Applications

023 import com.tibco.gxml.sa.processor.validation.GxContentValidator;
024 import com.tibco.gxml.sa.processor.validation.GxValidatorCache;
025 import
com.tibco.gxml.sa.processor.validation.GxValidatorCacheFactory;
026 import com.tibco.gxml.sa.processor.validation.ValidatorCacheFactory;
027 import com.tibco.gxml.xs.W3cXmlSchemaParser;
028
029 public abstract class ValidationSample<I, U, N extends I, A extends
I, S, T, X> extends SampleApp<I, U, N, A, S, T, X>
030 { 
031 public void testByteStreamValidation() throws Exception
032 { 
033 // Load a top-level schema into the processing context.
034 final List<Resolved<InputStream>> resources = new
LinkedList<Resolved<InputStream>>();
035 resources.add(getResolver().resolveInputStream(new URI
("PurchaseOrder.xsd")));
036
037 final SmExceptionCatcher errors = new SmExceptionCatcher();
038 final SmMetaLoadArgs args = new SmMetaLoadArgs();
039
040 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
041
042 final W3cXmlSchemaParser<A, S> parser = new
W3cXmlSchemaParser<A, S>(new SmAtomBridgeOnGxAtomBridgeAdapter<A, S>
(pcx.getAtomBridge()));
043
044 for (final Resolved<InputStream> resource : resources)
045 { 
046 pcx.register(parser.parse(resource.getLocation(),
resource.getResource(), resource.getSystemId(), errors, args, pcx));
047 }
048
049 pcx.lock();
050
051 // Create a validator...
052 final GxValidatorCacheFactory<A, S, T> vcf = new
ValidatorCacheFactory<I, U, N, A, S, T, X>(pcx);
053 final GxValidatorCache<A, S, T> vc = vcf.newValidatorCache
();
054 final GxContentValidator<A, S, T> validator =
vc.newContentValidator();
055
056 // Set the downstream event handler which contains
annotations and typed content.



TIBCO ActiveMatrix® Service Grid Mediation Component Development

243 | Introduction to gXML Applications

057 // validator.setGxContentHandler(/* ...*/null);
058 validator.setExceptionHandler(errors);
059
060 // The document node that we wish to validate.
061 final Resolved<InputStream> xmlInput = getResolver
().resolveInputStream(new URI("PurchaseOrder.xml"));
062
063 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
064
065 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();
066
067 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());
068
069 // Stream the document into the validator.
070 final GxModel<N, A, S, T> model = pcx.getModel();
071
072 model.stream(document, true, true, validator);
073
074 if (errors.size() > 0)
075 { 
076 // You've got errors.'
077 }
078 }
079
080 public void testTreeValidation() throws Exception
081 { 
082 final Resolver resolver = getResolver();
083
084 // Load a top-level schema into the processing context.
085 final List<Resolved<InputStream>> resources = new
LinkedList<Resolved<InputStream>>();
086 resources.add(getResolver().resolveInputStream(new URI
("PurchaseOrder.xsd")));
087
088 final SmExceptionCatcher errors = new SmExceptionCatcher();
089 final SmMetaLoadArgs args = new SmMetaLoadArgs();
090
091 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();
092 final W3cXmlSchemaParser<A, S> parser = new
W3cXmlSchemaParser<A, S>(new SmAtomBridgeOnGxAtomBridgeAdapter<A, S>
(pcx.getAtomBridge()));
093 for (final Resolved<InputStream> resource : resources)



TIBCO ActiveMatrix® Service Grid Mediation Component Development

244 | Introduction to gXML Applications

094 { 
095 pcx.register(parser.parse(resource.getLocation(),
resource.getResource(), resource.getSystemId(), errors, args, pcx));
096 }
097 pcx.lock();
098 // The document node that we wish to validate.
099 @SuppressWarnings("unused")
100 final URI xmlLocation = new URI("PurchaseOrder.xml");
101 final URI xmlSystemId = new URI("PurchaseOrder.xml");
102 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId);
103
104 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);
105
106 final GxDocumentBuilder<N> builder =
factory.newDocumentBuilder();
107
108 final N documentIn = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());
109
110 @SuppressWarnings("unused")
111 final N documentOut = validate(documentIn, errors, pcx);
112
113 if (errors.size() > 0)
114 { 
115 // You've got errors.'
116 for (@SuppressWarnings("unused")
117 final SmException error : errors)
118 { 
119 // System.out.println(error.getLocalizedMessage());
120 }
121 }
122 }
123
124 /**
125 * This static function illustrates a helper function for
validating a document tree. <br/>
126 * Note that we assume that the processing context is already
loaded with meta-data.
127 *
128 * @param node
129 * The input document.
130 * @param errors
131 * The error handler.
132 * @param pcx



TIBCO ActiveMatrix® Service Grid Mediation Component Development

245 | Introduction to gXML Applications

133 * The processing context.
134 */
135 public static <I, U, N extends I, A extends I, S, T, X> N
validate(final N node, final SmExceptionHandler errors, final
GxProcessingContext<I, U, N, A, S, T, X> pcx)
136 { 
137 final GxValidatorCacheFactory<A, S, T> vcf = new
ValidatorCacheFactory<I, U, N, A, S, T, X>(pcx);
138
139 // We already have a tree as input so we'll use the content
validator'
140 // and stream the document in as a bunch of events (a bit
like SAX, but not lexical).
141 final GxValidatorCache<A, S, T> vc = vcf.newValidatorCache
();
142
143 final GxContentValidator<A, S, T> validator =
vc.newContentValidator();
144
145 validator.setExceptionHandler(errors);
146
147 final GxModel<N, A, S, T> model = pcx.getModel();
148
149 // We want to produce a node so we'll need a fragment
builder at the output.'
150 final GxFragmentBuilder<N, A, S, T> builder =
pcx.newFragmentBuilder();
151
152 // Connect the pieces together so that the validation output
builds a tree.
153 validator.setGxContentHandler(builder);
154
155 // Make it so!
156 model.stream(node, true, true, validator);
157
158 // Practice safe coding: We don't know what might happen if
there are errors.'
159 final List<? extends N> nodes = builder.getNodes();
160 if (nodes.size() > 0)
161 { 
162 return nodes.get(0);
163 }
164 else
165 { 
166 return null;
167 }



TIBCO ActiveMatrix® Service Grid Mediation Component Development

246 | Introduction to gXML Applications

168 }
169 }



TIBCO ActiveMatrix® Service Grid Mediation Component Development

247 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO ActiveMatrix® Service Grid
Product Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://support.tibco.com/
https://support.tibco.com/


TIBCO ActiveMatrix® Service Grid Mediation Component Development

248 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/


TIBCO ActiveMatrix® Service Grid Mediation Component Development

249 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix, Business Studio, Enterprise Message Service,
and Hawk are either registered trademarks or trademarks of Cloud Software Group, Inc. in the United
States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL


TIBCO ActiveMatrix® Service Grid Mediation Component Development

250 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Introduction to Mediation
	Mediation Flows
	Message Exchange Patterns
	Mediation Flow Interfaces
	Planning Target and Mediation Interfaces
	Paths in a Mediation Flow
	Mediation Tasks
	Mediation Exchange
	Designing Mediation Flows

	Working with Mediation Flows
	Starting the Mediation Flow Wizard
	Creating a New, Empty Mediation Flow
	Creating New Mediation Flows from Existing Web Services
	Editing Mediation Flow Editor Preferences
	Working with Mediation Flow Properties
	Validation of Message
	Adding a Mediation Flow Property
	Deleting a Mediation Flow Property

	Working with Interfaces
	Adding Interfaces to Mediation Flows
	Deleting Interfaces from Mediation Flows
	Moving Mediation Interfaces
	Using the AutoMediate Feature
	Creating Local WSDL Files
	Supported Policies

	Working with Mediation Paths
	Changing Mediation Paths
	Deleting Mediation Paths

	Working with Message Context Properties
	Context Parameters
	Mediation Context Parameters
	Undeclared Fault Headers
	Context Parameters in Mediation Components
	Adding Context Parameters
	Deleting Context Parameters
	Defining the Scope of Context Parameters

	Working with Exchange Variables
	Defining Exchange Variables
	Setting Exchange Variable
	Creating Simple Schemas

	Working with Tasks
	Adding a Task to a Path
	Deleting a Task From a Path

	Mediation Components

	Invoking an Operation
	Configuring Invoke Operation Tasks

	Logging Mediation Exchange Information
	Mediation Appenders and Loggers
	Configuring a Log Task
	Message mapped to the message element


	Routing Messages in a Mediation Flow
	Paths and Route Tasks
	Defining a Route
	Adding Routing Cases
	Specifying Case Targets in the Decision Table
	Modifying Case Names
	Modifying Destinations
	Moving Cases in the List
	Deleting Cases
	Nesting Multiple Route Tasks

	Adding and Deleting Variables
	Mapping Data to Variables
	Routing Conditions
	Editing Route Task Conditions
	Conditions for XPath Route Tasks
	Changing Route Tasks to XPath Route Tasks


	Transforming Tasks
	Example of Transformation
	Basic Mapping
	Using XPath Editor
	Data Contribution to the Mediation Exchange
	External Stylesheets for Data Transformation
	Specifying an External Stylesheet for Data Transformation
	Schema Components
	Context Panel
	Message Panel
	Data and Function Tabs
	TIBCO XPath Functions
	Creating Custom XPath Functions
	Exporting Custom XPath Functions
	Deploying Custom XPath Functions
	Testing Custom XPath Functions
	Mapper Toolbar Buttons
	Right-Click Menu in the Message Panel
	Surrounding a Component With a Choose Statement
	If Statements
	For Each Statements
	Adding a Variable to a Mapping
	Managing Mappings
	Repairing Incorrect Mappings
	Mapping an Empty Complex Type

	Using XPath
	Transforming XML with Related Tasks

	Querying a Database
	JDBC Resource Templates
	Defining a Resource Template
	Configuring a JDBC Driver
	Registering a JDBC Driver
	Configuration Tabs of the Query Database Task

	Dynamic Requests
	Service Providers for Dynamic Composite References
	Configuring Dynamic Binding
	Configuring Dynamic Target Interfaces
	Pattern Variables Usage
	Dynamic Reference Task Setting
	General Tab Configuration
	Input Specification
	Configuring Dynamic References in Composite
	Creating and Deploying Composites Used By Dynamic Binding

	Replying to Messages
	Fault Processing in a Mediation Flow
	Throwing Faults in Mediation Flows
	Fault Paths
	Catch Fault Configuration
	Catching Faults from the Mediation Flow
	Sending Faults to the Invoker

	Custom Mediation Tasks
	Eclipse Plug-in Reference
	Support Files
	Creating the Model Plug-in
	Creating the UI Plug-in
	Creating the Runtime Plug-in
	Writing Custom Mediation Code
	Accessing Task Input/Output Schema
	Modifying the Mediation Task Data
	Defining Model Attributes
	Custom Mediation Task Categories
	Thrown Faults
	Runtime Exceptions
	Installing Custom Mediation Tasks
	Deploying Custom Mediation Tasks
	Testing Custom Mediation Tasks

	Reference
	Catch Fault
	End Mediation
	Generate Reply
	Handle Reply
	Invoke Operation
	Log
	Information for Standard Log Messages
	Information for Custom Log Messages

	Parse XML
	Query Database
	Render XML
	Route Task
	Send Fault
	Set Context
	Set Dynamic Reference
	Set Exchange Variable
	Throw Fault
	Transform
	Validate XML
	XPath Route

	TIBCO AutoMediate Command-Line Tool
	AutoMediate Command-Line Tool Flow
	Running the AutoMediate Command-Line Tool
	AutoMediate Command Syntax and Options
	AutoMediate ANT Command Syntax and Options

	Introduction to gXML Applications
	Developing gXML Applications
	Implementing GxApplication
	Implementing GxCatalog
	Implementing GxResolver
	Injecting DOM

	gXML Recipes
	Parsing a Character Stream and a Byte Stream
	Constructing a Data Model Tree Programmatically
	Validating
	Navigation
	Mutation
	Serialization
	XPath
	XSLT
	XQuery
	Validation


	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

