
Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO ActiveMatrix® Service Grid
Policy Director Governance Custom Actions
Version 3.4.3 | February 2025

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

2 | Contents

Contents
Contents 2

Introduction to Custom Actions 4

Setting up the Eclipse Environment for Plug-in Development 5

Implementing a Custom Action 8
Packaging the Action for ActiveMatrix® Service Grid 13

Creating an ActiveMatrix Service Grid Composite Wrapper for a Custom Action 14

Policy Templates 19
Creating an Action Template 19

Creating a Rule Template 22

User Interface 25

Deploying the Custom Policy 26
Deploying Policy Templates 26

Deploying User Interface 26

Restarting the System Node 27

Deploying the Action On ActiveMatrix Service Grid 27

Debugging and Logging 28
Debugging and Logging ActiveMatrix Service Grid Environment 28

Troubleshooting 29

Sample Action Source Code 30

Parameters and Action Templates 31

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

3 | Contents

Sample Action Rule Templates and User Interface Files 34

Code Snippets 36

TIBCO Documentation and Support Services 37

Legal and Third-Party Notices 39

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

4 | Introduction to Custom Actions

Introduction to Custom Actions
You can configure and enforce policies for TIBCO ActiveMatrix® Service Grid using
ActiveMatrix® Service Grid Policy Director Governance. ActiveMatrix Service Grid nodes and
ActiveMatrix Service Grid engines have embedded governance agents to enforce policies in
the same JVM as the services. Policy enforcement for services in third-party containers is
achieved using proxy applications deployed in ActiveMatrix Service Grid nodes.

Governance agents intercept service requests, responses, and fault flows and provide these
as Policy Enforcement Points (PEPs) for enforcing policies. When you configure policies, the
following information is passed on to the Governance Agent:

 l The Governed Object for which you want to enforce the policy (service, reference,
and so on.)

 l The PEP where you want to run the action (Message In Flow, Out flow, Fault flow,
and so on.)

 l The action and configuration that makes up the policy (authentication, authorization,
and so on.)

 ActiveMatrix Service Grid Policy Director Governance supports many types of Governed
Objects, PEPs, and actions out-of-the-box. To configure the commonly-used combinations
of actions (and action configurations), the PEPs for execution, and the Governed Object
types, which are applicable, ActiveMatrix Service Grid Policy Director Governance provides
many unconventional Policy Templates. The Security and Logging policies in ActiveMatrix
Service Grid Policy Director Governance are examples of out of the box templates.

However, there might be occasions when you want a custom action with a custom policy
template to run for a given PEP and Governed Object. This document describes how you
can create your own action and define the associated templates and User Interface (UI) to
add to the palette of available policies in ActiveMatrix Service Grid Policy Director
Governance.

For more details on the governance concepts, see TIBCO ActiveMatrix® Service Grid
Concepts.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

5 | Setting up the Eclipse Environment for Plug-in Development

Setting up the Eclipse Environment for Plug-
in Development

Before you begin
 l Set up Eclipse for plug-in development.

 l For this tutorial, TIBCO Business Studio™ - BPM Edition is used as the editor but any
other editor can be used for developing the policy action.

Procedure
 1. Navigate to Window > Preferences > Plug-in Development > Target Platform and

create a target with an empty target definition. Click Next.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

6 | Setting up the Eclipse Environment for Plug-in Development

 2. Select Directory as the source for plug-ins. Click Next.

 3. Click Browse and locate TIBCO_HOME/components/shared/1.0.0 from the directory.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

7 | Setting up the Eclipse Environment for Plug-in Development

Click Apply to complete.

After the Target platform is set and applied, the editor is ready for developing the
custom actions.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

8 | Implementing a Custom Action

Implementing a Custom Action
To implement a working custom action, two classes must be implemented:

 l com.tibco.governance.agent.action.Action

 l com.tibco.governance.agent.action.ActionConfigurationProcessor

The com.tibco.governance.agent.action.Action class instance is created and initialized
by the configuration processor when an action is first deployed and started. It also accepts
an action context parameter by a run method. This run method is called each time the
policy is invoked. This method may implement the complete execution logic.

To create a custom action, create a new Java-plugin project first.

Procedure
 1. Clear the Generate an activator, a Java class that controls the plug-in's life cycle

and This plug-in will make contributions to the UI checkboxes. Click Finish.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

9 | Implementing a Custom Action

An empty plug-in project is created. MANIFEST.MF is created in the META-INF folder.

 2. Open the MANIFEST.MF file. Under Imported Packages, click Add. Add the
com.tibco.governance.agent, com.tibco.governance.agent.action, and
com.tibco.governance.agent.action.api packages. Save the file.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

10 | Implementing a Custom Action

 3. Create a CustomAction class to implement the
com.tibco.governance.agent.action.Action class. Edit the class to implement the
Action Interface and import the package com.tibco.governance.agent.action. Also,
add the not implemented methods.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

11 | Implementing a Custom Action

The class is created as shown:

 4. In addition to the action class, create CustomActionConfigurationProcessor which
implements the
com.tibco.governance.agent.action.ActionConfigurationProcessor. This class
invokes and initializes the action. ActionConfigurationProcessor is the action
manager and it initializes the action class.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

12 | Implementing a Custom Action

 5. After these two classes are created, add the business logic.

For more details on the location of the sample Request Counter, see Request Counter
in Sample Action Source Code.

 6. After the business logic has been added, ensure that the custom action package is
exported into MANIFEST.MF.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

13 | Implementing a Custom Action

The action can now be packaged into an ActiveMatrix composite (to be deployed on
ActiveMatrix).

Packaging the Action for ActiveMatrix® Service
Grid
To deploy the action on ActiveMatrix Service Grid, it must be wrapped as the ActiveMatrix
Service Grid component. A DAA is generated from the ActiveMatrix Service Grid composite.
Which is then deployed on ActiveMatrix Service Grid.

For the ActiveMatrix Service Grid composite to identify that it is an ActiveMatrix Service
Grid extension:

 1. Open the composite file using a text editor.

 2. Add the following scaext: extension tags to the composite file.

<scaext:extension xmi:id="uniqueId" name="amx component name"
requiredVersion="1.0.0"
extensionPoint="com.tibco.governance.agent.amxcomponent.extensionpo
int.actionconfigurationprocessor"/>

Modify sca:composite to include

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

14 | Implementing a Custom Action

xmlns:scaext="http://xsd.tns.tibco.com/amf/models/sca/extensions" .

If the scaeext:extension tag is specified, the ActiveMatrix Service Grid component only
creates an instance of the Action Configuration Processor when deployed (if it does not
exist).

For creating the ActiveMatrix Service Grid composite wrapper, see Creating an ActiveMatrix
Service Grid Composite Wrapper for a Custom Action.

Creating an ActiveMatrix Service Grid
Composite Wrapper for a Custom Action

Procedure
 1. Create an SOA project using TIBCO Business Studio - BPM Edition.

 2. Ensure all the options are selected and click Next.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

15 | Implementing a Custom Action

 3. Create an empty SOA project and click Finish. This creates an empty composite. Add
a Java component to the composite.

 4. Open the composite file in a text editor and add the given tags after substituting the

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

16 | Implementing a Custom Action

customA action name in to the tags:

<scaext:extension xmi:id="_wefwedADASDsada"
name="com.tibco.governance.custom.action.customAction.amxcomponent.CustomActi
onComponent" requiredVersion="1.0.0"
extensionPoint="com.tibco.governance.agent.amxcomponent.extensionpoint.action
configurationprocessor"/>

Also edit the sca:composite tab to define the scaext namespace. For example:
xmlns:scaext=http://xsd.tns.tibco.com/amf/models/sca/extensions

 5. Right-click the Java component and generate the Implementation. Enter the name
of the project and click Finish. This generates two classes:
AbstractCustomActionComponent and CustomActionComponent.

 6. Navigate to MANIFEST.MF of the generated implementation and ensure that the
packages are added. If not, manually add the packages.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

17 | Implementing a Custom Action

 7. Once the setup is complete, in the CustomActionComponent class, import the class
com.tibco.amf.platform.runtime.extension.Extension and add the @Extension
notation at the top of the class declaration.

 8. Import ActionConfigurationProcessor, CustomActionConfigurationProcessor, and
ActionConfigurationProcessorExtensionPoint
(com.tibco.governance.agent.action.ActionConfigurationProcessor). This
component class must implement the
ActionConfigurationProcessorExtensionPoint
(com.tibco.governance.agent.amxcomponent.extensionpoint.ActionConfigurati
onProcessorExtensionPoint) interface. From the init() method of the component
class, call initialize of the CustomActionConfigurationProcessor.

 9. Navigate to the customfeature file under the
com.tibco.governance.custom.action.customaction/DeploymentArtifacts and
ensure that both the amxcomponent plug-ins and the custom action plug-in are
included in the Included Plug-ins tab.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

18 | Implementing a Custom Action

 10. Generate the DAA. The DAA containing the action can now be deployed on
ActiveMatrix Service Grid.

For a completely implemented ActiveMatrix Service Grid component, see Request
Counter in Sample Action Source Code.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

19 | Policy Templates

Policy Templates
Two types of templates need to be created for any action: Action template and Rule
template. An additional Action.xsd schema file must be created. Action.xsd is the
schema for all the parameters that are expected by the policy. For more information on
where these templates and Action.xsd files are to be copied, see Deploying Policy
Templates.

Both policy templates consist of two parts: parameters and configuration.

Parameters take the user inputs, which are then used by the configuration to formulate
policy logic.

The configuration portion of the action template consists of:

 l Action configuration fragment

 l Allowed enforcement point placement information

The configuration portion of the rule template consists of:

 l Exact enforcement point information

 l The types of objects on which the policy can be applied

 l A mapping of the parameters of the actions contained in the rule to the parameters
defined in the rule template

The main difference between the action template and rule templates is that the action
template defines all allowed values of ActionExecution settings and the rule template
defines the one to be used by a particular policy.

For further information on the parameters and the allowed tags, see Parameters and
Action Templates.

Creating an Action Template
This is the first template that needs to be created. It consists of: Parameters, Action
Configuration Fragment, and Enforcement Point Placement.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

20 | Policy Templates

To create the action template, use the CustomAction.atp file from Sample Action Rule
Templates and User Interface Files.

Procedure
 1. Copy the contents of the CustomAction.atp file and rename the file with the custom

action name. For example, in the sample custom action Request Counter, we have
named the action template file RequestCounter.atp.

 2. Change Qname of the action version, specify the category and the subcategory:

 3. Specify the parameters of the action. These parameters are defined inside a
parameter group.

 a. Change ‘$PARAMETERGROUPNAME’ to the name of the parameter group
name.

 b. Change ‘$INPUT1’ to the name of the first input parameter.

 c. Change the ‘$INPUT 1 DISPLAY NAME’ to the name specified in the previous
step or to any alternate name that should be displayed to the user.

 d. Change the ‘$FIRST INPUT’ to enter the description of the parameter that is
being defined.

 e. Set hidden to true/false. If set to true, the parameter is not visible to the user
on the UI, if set to false it is visible on the UI.

 f. Change ‘$TYPE_OF_INPUT’ to the type of the input parameter.

For a list of supported types, see the Parameters and Action Templates.

#GUID-5ED1512B-F39C-422A-B0E7-77DD547E0B86

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

21 | Policy Templates

The parameter tags can be repeated to add additional parameters that are
needed to define the action.

 4. Change the ‘CustomActionAction’ to the name of the custom action. Change the
description, the implementation Id and the Intents.

The implementation Id should be the same as the action qname specified in the
action configuration processor.

 5. Change config fragment as expected by the action. configFragment is interpreted by
the Velocity Engine at run time to produce the XML fragment that is used to initialize
the action. The $INPUT1 and $INPUT2 are the two inputs, which are passed in a
format that can be interpreted by the velocity engine.

 6. Change the ‘$Path_To_CustomAction.xsd’ to point to the path of the Custom Action
schema. ‘useWSPolicySchema’ can be set to true if the custom policy adheres to the
WS Policy schema.

 7. Change the $HOST. The host can be a pipeline or host. $ENFORCEMENTPOINT,
$STAGE, and $INTERVAL need to be changed depending on where the action needs
to be invoked.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

22 | Policy Templates

For a complete set of allowed host, section, enforcement points, stage, and interval,
see the Sample Action Source Code.

The last two tags specify the merge placement and cardinality.
AllowedEnforcementPlacements define all the allowed locations where this action
could be used.

The actual place where this is used is determined in the Rule Template by using this
Action Template. The mergePlacement and mergeCardinality are defined only in the
action template. The Rule template cannot define the placement or cardinality of the
action it is using.

On completion, the custom action template is ready to be used. For a complete
action template refer to the following:

CustomPolicies/samples/requestCounter/template/RequestCounter.atp.

The CustomPolicies folder is at:

TIBCO_HOME/pd/1.2/samples/CustomPolicies

Creating a Rule Template
Rule templates can contain one or more actions.

To create a rule template, use the CustomAction.rtp file from Sample Action Rule
Templates and User Interface Files.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

23 | Policy Templates

Procedure
 1. Replace the string CustomAction with the actual custom action name and modify the

version, category, and subcategory as required.

Parameters : Similar to action template. Action template requires the rule template
to instantiate the policy fragment (unless some parameters are hidden and have a
default value in the ActionTemplate). All parameters which the action template use in
the policy fragment should have a value set or the velocity engine produces an
exception.

 2. Enforcement Point Placement: Unlike the action template, which specifies the
allowed enforcement point placement, the rule template specifies the exact
enforcement point placement for each action referred to in the rule template.

A rule template can contain multiple action templates. These actions are configured

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

24 | Policy Templates

using the parameterSetting tags. There should be a groupParameterSetting for
each action that is contained in the rule template. And for each action, a relationship
between the rule template parameter and the action template parameter is typically
defined using the singleParameterSetting tag as shown in the figure. It is desirable
to have the same parameter and parameter group names in the action and rule
templates.

 3. Target Object Group information: In addition to the parameter group related to the
action, the rule template has another parameter group that is used to define the type
of Object Groups the custom policy can be applied to. The parameter group Default
should not be changed. The valid object types can be specified by replacing
$TYPEOFOBJECT in the template.

For a list of all valid object types, see Parameters and Action Templates.

 4. UI handle: The Rule template additionally has three tags that serve as the UI handle.

Change the uiResourcePath variable to the relative path of the UI resource. The
uiHandlerType is set to default for UIs based on GI. The hidden parameter determines
if the template is visible to the user or not. If set to false, the template is not visible
in the policy creation wizard.

 5. Finally, it is a good practice to elevate the version of the template to a higher number
(ogsei: templateVersion element value)

After these changes are made, the rule template is ready for use. For the complete
rule template, see Sample Action Rule Templates and User Interface Files.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

25 | User Interface

User Interface
Currently, the user interfaces are manually created by the General Interface (GI). The folder
structure consists of Action.js, Descriptor.xml, Controller.js, UI- action.xml, and
JSS- locales.xml.

Note:
Copy the files from the given sample to a corresponding folder for custom
action:

CustomPolicies\samples\requestCounter\ui\requestCounter.

Rename the requestCounter folder to the name of the custom action and
change the files where applicable, as per comments in the template UI files.

 l Action.js: Reads the user input from the wizard and returns the populated
paramGroup.

 l Descriptor.xml: Specifies the controller class needed for the UI. It also specifies the
UI form file, the action.js file, and the locale file.

 l Controller.js: Allows custom code to talk to the wizard manager. It is an
implementation of the IDynamicForms interface.

 l ui (folder)

 o action.xml: This is the actual GI form for the UI.

 l jss (folder)

 o locales.xml: This file contains externalized strings for localization.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

26 | Deploying the Custom Policy

Deploying the Custom Policy
To deploy a custom policy, you must do the following:

 1. Deploy the policy templates

 2. Deploy the user interface

 3. Restart the system node

 4. Deploy the action on ActiveMatrix Service Grid

Deploying Policy Templates

Procedure
 1. Copy the action template into the CONFIG_

HOME/admin/amxadmin/shared/repo/governance/templates/actions/custom folder.
Create it if it does not exist.

 2. Copy the rule template file into the CONFIG_
HOME/admin/amxadmin/shared/repo/governance/templates/rules/custom folder.
Create it if it does not exist.

 3. Copy the action schema file to CONFIG_
HOME/admin/amxadmin/shared/repo/governance/actionschema/custom folder.

Deploying User Interface
Copy the UI folder to the Administration repository at the following location (create the
folder hierarchy if it does not exist):

CONFIG_
HOME/admin/amxadmin/shared/repo/governance/ui/rules/pd/templates/$YourCustomAc
tionName

For example, for a request counter, copy:

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

27 | Deploying the Custom Policy

CustomPolicies\samples\requestCounter\ui\requestCounter

To:

CONFIG_
HOME/admin/amxadmin/shared/repo/governance/ui/rules/pd/templates/requestCounte
r

Restarting the System Node
After you deploy the Policy Templates and UI, restart SystemNode for the changes to take
effect.

Deploying the Action On ActiveMatrix Service
Grid
Deploy the DAA that was created on the ActiveMatrix Service Grid Policy Director
Governance Administrator server.
For a completely implemented ActiveMatrix Service Grid component, see Request Counter
Sample in Sample Action Source Code.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

28 | Debugging and Logging

Debugging and Logging
You can add a debug point in the custom action and remotely debug the action using
Eclipse or TIBCO Business Studio - BPM Edition.

Debugging and Logging ActiveMatrix Service
Grid Environment

Procedure
 1. Navigate to the node directory on which the action is deployed and add the given

line to the DeployedNode.tra file. For example, the custom action is deployed on the
DevNode, so add the given line to the file ~/confighome/tibcohost/Admin-
amxadmin-instanceOne/data_3.2.x/nodes/DevNode/bin/DevNode.tra

java.extended.properties=-Xmx512m -Xms128m -XX:MaxPermSize=192m -
XX:+HeapDumpOnOutOfMemoryError
 -Xdebug -Xnoagent -Djava.compiler=NONE
 -Xrunjdwp:transport=dt_socket,server=y,address=5005,suspend=y

 2. Add a debug point on the execute() method in the custom action and remotely
debug the action using Eclipse or TIBCO Business Studio - BPM Edition by connecting
to the port specified.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

29 | Troubleshooting

Troubleshooting
Issue Resolution

Policy does not appear in the governance
control wizard template even after the
template is copied and tibcohost is
restarted.

Check whether the hidden parameter in the
rule template is set to false. If it is set to
true, change it to false and restart
tibcohost.

 l Errors with the UI.

 l The UI does not load and a blank
screen appears when you select the
policy template in the governance-
control creating wizard.

 1. Check the descriptor.xml UI file and
ensure that the values for the
component and controller.js files
match the actual file.

 2. Ensure that the rule template specified
is correct.

 3. Use Firebug or any other client
debugger to get detailed errors and
debug the client code.

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

30 | Sample Action Source Code

Sample Action Source Code

Sample Custom Action

CustomPolicies/TemplateCustomActionProject/action/src/com/tibco/custom/action/customActi
on/CustomAction.jav

CustomPolicies/TemplateCustomActionProject/action/src/com/tibco/custom/action/customActi
on/CustomActionConfigurationProcessor.java

Request Counter

CustomPolicies/samples/requestCounter/action/com.tibco.governance.custom.action.requestc
ounter/src/com/tibco/governance/custom/action/requestcounter/RequestCounterAction.java

CustomPolicies/samples/requestCounter/action/com.tibco.governance.custom.action.requestc
ounter/src/com/tibco/governance/custom/action/requestcounter/
 RequestCounterActionConfigurationProcessor.java

Hack Alert Action

CustomPolicies/samples/hackAlert/action/com.tibco.governance.custom.action.hackalert/src
/com/tibco/governance/custom/action/hackalert/HackAlertAction.java

CustomPolicies/samples/hackAlert/action/com.tibco.governance.custom.action.hackalert/src
/com/tibco/governance/custom/action/hackalert/HackAlertActionConfigurationProcessor.java

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

31 | Parameters and Action Templates

Parameters and Action Templates
Parameters

Parameters are governed by the Rule Template schemas located at:

CustomPolicies/schemas/RuleTemplate_base.xsd
CustomPolicies/schemas/RuleTemplate.xsd

 l Parameters extract the user-configurable portion out of the configuration. Also, it
carries the information needed for the UI to complete the job of collecting a valid
value for the parameter.

 l A parameter has an attribute type that can be used to indicate the type of the
parameter. It can be used to trigger some special processing on the parameter when
needed. The type could also be used for value validation. Parameter values are
always stored as a string. It is up to the validation method to validate the value. The
following is a list of all supported types:

 o INTEGER

 o STRING

 o COMPLEX

 o DOUBLE

 o BOOLEAN

 o RESOURCE_INSTANCE

 o OBJECT_GROUP

 l Parameters could have default values. Parameters could be configured as hidden. For
a hidden parameter, the default value must exist and be used as the value of the
parameter.

 l The parameter can be set to optional. If a parameter is not optional (the default is
false), its value must be set when the instance is created.

 l Parameter can have valueChoices and if it does, the parameter value must be set
with a value in the valueChoices list unless the flag "openChoice" is set on the

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

32 | Parameters and Action Templates

parameter. For this type of 'choice' parameter, if it is unbounded it is multiple choice
and otherwise, it is single choice. These kinds of parameters are presented on the UI
as checkboxes or pull-down menu. Each value choice for a parameter has an optional
'label' that can be used by the UI to be presented to the users instead of the actual
parameter value if the value is too internal. If the label is not set, then the value is
used.

 l A parameter value type could be COMPLEX where the parameter value must be a list
of "PropertyVal". Each PropertyVal has a name, type, and optional shared resource
association, similar to a regular parameter.

 l Parameters can be organized in groups. Parameters in a group could have values
collected together and can be presented on the UI, for example, as a feature tab. By
default, each template has a 'Default' parameter group. Normally, it is used for
holding general configuration parameters. However, if a template does not need to
separate parameters into multiple groups, all the parameters can be contained in the
"Default" group.

Valid object groups can be created with object of types:

 o RestHttpServiceBindingInstance

 o RestHttpReferenceBindingInstance

 o SoapHttpServiceBindingInstance

 o WebAppComponentInstance

 o SoapServiceBindingInstance

 o SoapJmsServiceBindingInstance

 o SoapHttpReferenceBindingInstance

 o SoapReferenceBindingInstance

 o VirtualizationServiceBindingInstance

 o VirtualizationReferenceBindingInstance

Action Fragment

The action template could have a "template for transformation" stored in
"configFragment". The configFragment is an XML fragment with some transformation
directives in it, based on parameters. A typical transformation includes substituting
substitution variables or optionally ruling out some fragments based on a parameter value.

Policy Enforcement Placement

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

33 | Parameters and Action Templates

The action template defines policy enforcement placements, which inform the agent on
where the policies are to be enforced. A policy can be applied at various stages and
phases.

For more information, see TIBCO ActiveMatrix® Service Grid Concepts.

All the currently supported Policy Enforcement Points are listed in:

CustomPolicies/PolicyConfigurationData.xlsx

The CustomPolicies folder is located at:

TIBCO_HOME/pd/1.2/samples/CustomPolicies

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

34 | Sample Action Rule Templates and User Interface Files

Sample Action Rule Templates and User
Interface Files

Note:
The CustomPolicies folder is located at:

TIBCO_HOME/pd/1.2/samples/CustomPolicies

Action Template (atp) files

Refer to any of the sample action template files located:

CustomPolicies/TemplateCustomActionProject/templates/CustomAction.atp
CustomPolicies/samples/requestCounter/templates/RequestCounter.atp
CustomPolicies/samples/hackAlert/templates/HackAlert.atp

Rule template (rtp) files

Refer to any of the sample rule template files located:

CustomPolicies/TemplateCustomActionProject/templates/CustomAction.rtp
CustomPolicies/samples/requestCounter/templates/RequestCounter.rtp
CustomPolicies/samples/hackAlert/templates/HackAlert.rtp

Controller Javascript files

Refer to any of the sample controller javascripts files located:

CustomPolicies/TemplateCustomActionProject/ui/controller.js
CustomPolicies/samples/requestCounter/ui/requestCounter/controller.js
CustomPolicies/samples/hackAlert/ui/hackalert/controller.js

Action Javascript files

Refer to any of the sample javascript files that push the value of each user input and set it
to the parameters of the corresponding rule template:

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

35 | Sample Action Rule Templates and User Interface Files

CustomPolicies/TemplateCustomActionProject/ui/customaction.js
CustomPolicies/samples/requestCounter/ui/requestCounter/requestcounter.js
CustomPolicies/samples/hackAlert/ui/hackalert/hackalert.js

Descriptor XML files

The sample descriptor XML files are located:

CustomPolicies/TemplateCustomActionProject/ui/descriptor.xml
CustomPolicies/samples/requestCounter/ui/requestCounter/descriptor.xml
CustomPolicies/samples/hackAlert/ui/hackalert/descriptor.xml

Action XML files

The sample action XML files to generate the UI are located:

CustomPolicies/TemplateCustomActionProject/ui/ui/customaction.xml
CustomPolicies/samples/requestCounter/ui/requestCounter/ui/requestcounter.xml
CustomPolicies/samples/hackAlert/ui/hackalert/ui/hackalert.xml

String externalization

The sample locale files for externalizing strings are located:

CustomPolicies/TemplateCustomActionProject/ui/jss/locales.xml
CustomPolicies/samples/requestCounter/ui/requestCounter/jss/locales.xml
CustomPolicies/samples/hackAlert/ui/hackalert/jss/locales.xml

To externalize strings using the locales.xml file, use the dynamics element of General
Interface in your custom action XML.

Example from requestcounter.xml:

Remove the fieldtitletext="Number of Requests" attribute in the strings element:
<strings isrequired="1" hideoptionalstring="0" jsxname="textFieldNoOfRequests"
jsxtitledisplay="" validator="@isPositiveInteger" cdfattribute="NoOfRequests"
fieldtitletext="Number of Requests"/>

Replace it with the following strings and dynamics elements: <strings isrequired="1"
hideoptionalstring="0" jsxname=" textFieldNoOfRequests " jsxtitledisplay="" validator="@isPositiveInteger"

cdfattribute="PollingTime"/> <dynamics fieldtitletext=" requestCounter@NoOfRequests" /> The
fieldtitletext element points to the following entry of your locales.xml file: <record
jsxid="requestCounter@NoOfRequests" jsxtext="Number Of Requests" />

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

36 | Code Snippets

Code Snippets

Using the Action Context Object

A good way to figure out the contents of the Action Context is to turn debugging on and
put a break point in the execute method. For information on how to turn debugging on,
see the Debugging and Logging.

It is useful to inspect the contents of the following objects to know everything you have at
your disposal:

 l _contextDocumentsByQName

 l _contextObjectsByQName

 l _contextPropertiesByQName

Extracting the SOAP envelope in Custom Action’s execute method

Here is a code snippet to extract and parse the message payload when your
action.execute() method is invoked. The code snippet is written assuming that the
payload is a soap envelope:

org.w3c.dom.Document envelope = (Document)(actionContext.getDocument
(ActionConstants.MESSAGE_ENVELOPE));
 if (envelope != null) {
 String envelopeString =
com.tibco.governance.agent.core.utils.DOMUtils.getInstance().getString
(envelope));
 Element soapBody = DOMUtils.getFirstDescendantElementNS
(envelope.getDocumentElement(),
"http://schemas.xmlsoap.org/soap/envelope/", "Body");
 String soapBodyString = DOMUtils.getInstance().getString(soapBody);

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

37 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO ActiveMatrix® Service Grid
Product Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

 l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

 l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://support.tibco.com/
https://support.tibco.com/

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

38 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

39 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix, Business Studio, Enterprise Message Service,
and Hawk are either registered trademarks or trademarks of Cloud Software Group, Inc. in the United
States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO ActiveMatrix® Service Grid Policy Director Governance Custom Actions

40 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Introduction to Custom Actions
	Setting up the Eclipse Environment for Plug-in Development
	Implementing a Custom Action
	Packaging the Action for ActiveMatrix® Service Grid
	Creating an ActiveMatrix Service Grid Composite Wrapper for a Custom Action

	Policy Templates
	Creating an Action Template
	Creating a Rule Template

	User Interface
	Deploying the Custom Policy
	Deploying Policy Templates
	Deploying User Interface
	Restarting the System Node
	Deploying the Action On ActiveMatrix Service Grid

	Debugging and Logging
	Debugging and Logging ActiveMatrix Service Grid Environment

	Troubleshooting
	Sample Action Source Code
	Parameters and Action Templates
	Sample Action Rule Templates and User Interface Files
	Code Snippets
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

