
Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO ActiveMatrix® Service Grid
Spring Component Development
Version 3.4.3 | February 2025

TIBCO ActiveMatrix® Service Grid Spring Component Development

2 | Contents

Contents
Contents 2

Spring Components 4
Creating a Spring Component 4

Updating a Spring Component 5

Component Feature Dependencies 5

Spring Component Reference 7

Spring Component Implementations 10
Spring Bean Configuration Files 11

Data Binding 13
Generating XML Data Binding Classes 14

Data Binding Classes for Abstract and Concrete WSDL Files 15

XML Data Binding Reference 16

Opening a Spring Component Implementation 19

Opening a Spring Bean Implementation 19

Generating a Spring Component Implementation 20

Regenerating a Spring Component Implementation 22

Generate Spring Component Implementation Reference 24

Life Cycle Events 28

Component Context 30

Accessing a Property 30

Accessing a Resource 31
Accessing a Hibernate Resource 32

Accessing a JDBC Resource 34

Accessing JMS Resources 35

Accessing LDAP Connections 37

Accessing SMTP Connections 39

TIBCO ActiveMatrix® Service Grid Spring Component Development

3 | Contents

Accessing a Teneo Resource 40

Invoking an HTTP Request 42
Post Example 43

Invoking a Reference Operation 49

Error Handling 50
Example WSDL File 51

SOAPException Reference 57

Context Parameters 59
Working with Context Parameters 63

Endpoint References 67
Retrieving an Endpoint Reference 67

Creating an Endpoint Reference 68

Referencing an External Spring Application 70

Custom Features 73
Bundles and Plug-in Projects 74
Configuring Dependencies on External Java Classes 77

Versions 79

Default XML to Java Mapping 81

TIBCO Documentation and Support Services 88

Legal and Third-Party Notices 90

TIBCO ActiveMatrix® Service Grid Spring Component Development

4 | Spring Components

Spring Components
Spring components integrate Spring Beans into the TIBCO ActiveMatrix platform.

A Spring component is very similar to Java component, but its implementation can consist
of more than one Java class. The classes are specified in a Spring Bean configuration file.
Each Spring Bean corresponds to a Java class. In Spring components, each service,
reference, and property is associated with a Bean (as opposed to all being associated with
the same Java class in the case of Java components).

Creating a Spring Component
You can create a Spring component by using a wizard or by using a manual procedure.

Choose an option and follow the relevant procedure.

Control Procedure

Wizard 1. Create an SOA project selecting the SOA Project from WSDL project type.

2. In the Component Details page of the wizard, specify Spring for the
component implementation type.

3. Specify code generation details as described in Generate Spring
Component Implementation Reference

Manual 1. Create an SOA project of any type.

2. Open the composite created in the project.

3. l Click the Spring icon in the Palette and click the canvas.

l Click the canvas and click the Spring icon in the pop-up toolbar.

4. Generate the Spring implementation as described in Generating a Spring
Component Implementation

A Spring component is added to the canvas and its implementation is configured.

TIBCO ActiveMatrix® Service Grid Spring Component Development

5 | Spring Components

Updating a Spring Component
You typically update a component after you have configured its implementation. You can
perform the update from the canvas or from the Problems view.

The procedure depends on the control you want to use.

Control Procedure

Canvas 1. Right-click the component and select Refresh from Implementation.

Canvas 1. Right-click a component and select Quick Fixes > Update Component
from Implementation.

Problems
View

1. In the Problems view, right-click an error of the form The component
"ComponentName" is out of sync with its implementation and select
Quick Fix.

2. In the Quick Fix dialog, select Update Component from
Implementation.

3. Click Finish.

All the changes made to the component since the implementation was generated are
discarded and the component is refreshed from the implementation.

Component Feature Dependencies
When a component implementation is dependent on a shared library, the feature
containing the dependency must be specified in the component's Feature Dependencies
table.

By default, a component is configured to depend on the custom features containing:

l The component implementation

l External libraries reference by the component implementation

In both cases, the default version range is set to "[1.0.0.qualifier,1.0.0.qualifier]".

TIBCO ActiveMatrix® Service Grid Spring Component Development

6 | Spring Components

Dependencies

If the qualifier component of a version is set to "qualifier" when you create a DAA, TIBCO
Business Studio replaces "qualifier" with a generated qualifier that defaults to a
timestamp. The effect is that the application requires that the version of the features
installed on a node be a perfect match to a version that includes a timestamp.

External Library Dependencies

It is not possible to know the value of the version's qualifier component for the feature
containing an external library when you package the composite. Therefore, if you are using
an external library, you should "relax" the version range of the feature containing the
library. For example, change the range from "[1.0.0.qualifier,1.0.0.qualifier]" to "
[1.0.0,2.0.0)" as shown in the following screenshot.

Relaxed Feature Dependency

TIBCO ActiveMatrix® Service Grid Spring Component Development

7 | Spring Components

Spring Component Reference

Field Description

Project The name of the Spring plug-in project to contain the implementation.

Default: com.sample.spring.

Bean
Configuration
File

The path to the Spring Bean configuration file relative to the Spring plug-in
project.

Default: config-compositeName-componentName/compositeName_
componentName_beans.xml.

Thread Context
Class Loader
Type

Configures the value returned by the call Thread.currentThread
().getContextClassLoader() inside a Java implementation class (once it
is instantiated):

l component - The thread context class loader is the class loader of
the component configured on the composite.

l bundle - The thread context class loader is the class loader of the
bundle (that is, plug-in) that contains the application context/Spring
Beans XML file.

l none - A null thread context class loader.

Default:

Field Description

Compute
Component
Dependencies

Indicate whether to TIBCO Business Studio - BPM Edition should
compute the component bundle dependencies. When a component is
deployed on a node, ActiveMatrix Service Grid generates a component
bundle. When checked, the component implementation bundles required
by the component bundle are computed and identified when you
package the composite. When unchecked, the Implementation
Dependency and Compute Feature Dependencies fields display and you
can manually specify the dependencies.

Default:

TIBCO ActiveMatrix® Service Grid Spring Component Development

8 | Spring Components

Field Description

l New projects - checked.

l Legacy projects - unchecked.

Implementation
Dependency

Type of the dependency of the component bundle on the component
implementation.

l Require Bundle - The bundle containing the component
implementation is declared as a required bundle. When selected,
the Bundle Name field appears.

l Import Package - The package exported by the component
implementation is declared as an imported package. When
selected, the Import Package field displays.

Default:

l New projects - Require Bundle.

l Legacy projects - Import Package.

Bundle Name Symbolic name of the bundle containing the component
implementation.

Default: The bundle in which the component implementation class is
present.

Import Package Name of the package containing the component implementation.

Default: The package in which the component implementation class is
present.

Version Range Versions of the bundle or package that satisfy the component bundle's
dependency. When specifying a range for a bundle, you can require an
exact match to a version that includes a build qualifier. In contrast, the
range for a package is inexact.

Default:

l Bundle - [1.0.0.qualifier,1.0.0.qualifier].

l Package - [1.0.0, 2.0.0).

TIBCO ActiveMatrix® Service Grid Spring Component Development

9 | Spring Components

Field Description

Compute
Feature
Dependencies

Indicate whether to compute the features on which the component bundle
depends. When unchecked the Feature Dependencies table displays.

Default:

l New projects - checked.

l Legacy projects - unchecked.

Preview A link that when clicked displays a dialog containing a list of the features
on which the component bundle depends.

Field Description

Compute
Feature
Dependencies

Indicate whether to compute the features on which the component bundle
depends. When unchecked the Feature Dependencies table displays.

Default:

l New projects - checked.

l Legacy projects - unchecked.

Preview A link that when clicked displays a dialog containing a list of the features
on which the component bundle depends.

TIBCO ActiveMatrix® Service Grid Spring Component Development

10 | Spring Component Implementations

Spring Component Implementations
A Spring component implementation consists of the abstract and concrete classes that
represent the component and the Spring Bean configuration file.

The abstract class defines service method signatures, reference fields and accessor
methods, and property fields and accessor methods. The concrete class contains the
implementations of the service methods. Spring component implementations are stored in
Spring projects.

Declaring Dependencies on Packages

Normally, if you import packages and do not add them to the manifest, TIBCO Business
Studio displays an error. However, If you import any of the javax.xml.* or org.ietf.jgss
packages and do not declare the import in the manifest, TIBCO Business Studio does not
display an error because TIBCO Business Studio - BPM Edition resolves those packages
from the configured JRE. If you then deploy the application without the declaration in the
manifest, the application does not run. Hence, you must ensure that you import javax.xml
or org.ietf.jgss packages in the manifest file.

For example, if you imported the following classes:

import javax.xml.XMLConstants;
import javax.xml.transform.TransformerFactory;

The corresponding import packages in the manifest should be:

TIBCO ActiveMatrix® Service Grid Spring Component Development

11 | Spring Component Implementations

Note: Each subpackage of javax.xml may have a different version:

Spring Bean Configuration Files
When you generate the implementation for a Spring component, TIBCO Business Studio -
BPM Edition generates the Spring Bean configuration file containing information to access
the services, references, and properties of the component.

Note: The only changes you should make to a generated Spring Bean
configuration file are to import existing Spring Beans.

Limitations

Spring Bean configuration files:

l Do not support the sca:composite tag (that is, it does not support exposing the
Spring application context as a composite.

l Do not support application context XML locations (and their resolution) such as
inside JARs or directories.

l Include TIBCO Business Studio - BPM Edition tags, such as tibco:service-metadata,
are added for supporting TIBCO ActiveMatrix design-time metadata.

TIBCO ActiveMatrix® Service Grid Spring Component Development

12 | Spring Component Implementations

The following XML snippets illustrate the contents of a Spring Bean configuration file for a
Spring component with a HelloWorld service, Date Manager reference, and a
SpringGreeting property.

Define Namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/beans"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:sca="http://www.springframework.org/schema/sca"
xmlns:tibco="http://xsd.tns.tibco.com/2008/amf/extension/spring"
xsi:schemaLocation="http://xsd.tns.tibco.com/2008/amf/extension/spring
http://xsd.tns.tibco.com/schema/sca/tibco-ext-spring-sca.xsd
http://www.springframework.org/schema/sca
http://www.osoa.org/xmlns/sca/1.0/spring-sca.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

Bean Definition

<bean id="HelloWorldPTBean" class="com.tibco.ns.hello.HelloWorldPTImpl"
destroy-method="destroy" init-method="init">

<property name="springGreeting" ref="SpringGreeting" />
</bean>

Component Services

Component services are declared in an SCA service tag and tibco:service-metadata tag.
For example:

<sca:service name="HelloWorldPT" target="HelloWorldPTBean"
type="com.tibco.ns.hello.HelloWorldPT" />

<tibco:service-metadata name="HelloWorldPT"
wsdl-location="/jv.helloworld4.svcs/Service

Descriptors/HelloWorld2.wsdl"
wsdl-interface="http://ns.tibco.com/hello/#HelloWorldPT" />

TIBCO ActiveMatrix® Service Grid Spring Component Development

13 | Spring Component Implementations

Component References

The component references are declared in an SCA reference tag and tibco:reference-
metadata tag. For example:

<sca:reference name="DateManagerPT"
type="com.tibco.ns.date.DateManagerPT" />
<tibco:reference-metadata name="DateManagerPT"

target="HelloWorldPTBean" wsdl-location="/jv.helloworld4.svcs/Service
Descriptors/DateManager.wsdl"

wsdl-interface="http://ns.tibco.com/date/#DateManagerPT" />

Component Properties

Component properties are declared in an SCA property tag. For example:

<sca:property id="SpringGreeting" name="SpringGreeting"
type="java.lang.String" />
</beans>

Data Binding
Data binding is the process of converting objects described in an XML document to Java
objects and vice versa. You can generate data binding classes directly from a WSDL or
schema document or while generating a Java or Spring component implementation.

TIBCO Business Studio - BPM Edition supports two data binding technologies: JAXB and
XMLBeans. The default mapping of WSDL and XSD schema elements to Java programming
language elements is described in Default XML to Java Mapping.

Data Binding Configuration Files

You can change the mapping of XML elements to Java objects by specifying mapping
constraints in a data binding configuration file. Each data binding technology has its own
configuration file format: XMLBeans XSDCONFIG or JAXB XJB. See the XMLBeans and JAXB
specifications for the formats of their configuration files.

For example, the following XMLBeans configuration file maps the target namespace
http://ns.tibco.com/Hello/ to the package com.sample.othername.hello and specifies

http://jcp.org/aboutJava/communityprocess/mrel/jsr222/index2.html
http://xmlbeans.apache.org/

TIBCO ActiveMatrix® Service Grid Spring Component Development

14 | Spring Component Implementations

suffixes, prefixes, and name replacements for generated classes.

<xb:config
xmlns:xb="http://xml.apache.org/xmlbeans/2004/02/xbean/config"

xmlns:ct="http://ns.tibco.com/Hello/">

<xb:namespace uri="http://ns.tibco.com/Hello/ http://someurihere.com">
<xb:package>com.sample.othername.hello</xb:package>

</xb:namespace>

<!--
The ##any value is used to indicate "all URIs".
The <prefix> tag is used to prepend to top-level Java type names

generated in the specified namespace.
The <suffix> tag is used to append to top-level Java types names

generated in the specified namespace.
The <prefix> and <suffix> are not used for inner Java types.

-->

<xb:namespace uri="##any">
<xb:prefix>Xml</xb:prefix>
<xb:suffix>BeanClass</xb:suffix>

</xb:namespace>

<!-- The <qname> tag specifies a Java class name for a qualified name
-->

<xb:qname name="ct:HelloResponse" javaname="TheHelloResponse" />

</xb:config>

Generating XML Data Binding Classes
You can generate XML data binding classes for you SOA project from the Project Explorer.
When you complete the process, a JAR file and optional schema document are created.
Steps 1 through 3 are optional. They are recommended if you want to share the data
binding classes between more than one SOA project.

Procedure
1. Create a SOA project. In the Asset Type Selection screen, clear the TIBCO SOA

Platform checkbox.

TIBCO ActiveMatrix® Service Grid Spring Component Development

15 | Spring Component Implementations

2. Click Finish.

In the Project Explorer, an SOA project is created containing only the Service
Descriptors special folder.

3. Import or create WSDL and schema documents in the Service Descriptors folder.

4. In the Project Explorer, right-click a WSDL or schema document and select Generate
XML Data Bindings.

The XML Data Binding Classes dialog displays.

5. Configure the XML data binding type, Beans, and interface JAR file properties as
described in XML Data Binding Reference.

6. Click Finish.

A JAR file containing the XML data binding classes for each WSDL and schema
document is created in the specified location unless you click the Use this JAR for All
Data Bindings link.

Data Binding Classes for Abstract and Concrete
WSDL Files
Using an abstract WSDL and its generated concrete WSDL in services and references of the
same component requires special consideration if the WSDL contains an embedded
schema. When a concrete WSDL file is generated from an abstract WSDL file that has an
embedded schema, the resulting concrete WSDL file also contains the same embedded
schema. When you generate data binding classes for both WSDL files, the code generator
generates duplicate classes for the embedded schema.

The impact of this is two-fold:

l Generating the data binding classes for the abstract and concrete WSDL files into a
single JAR is not supported.

l When you generate the data binding classes for the two WSDL files into different
bean JARs, both JARs contain the same classes.

For correct operation, you must manually remove one of the resulting bean JARs from the
bundle containing the bean JARs as follows:

1. Open the component implementation bundle's manifest in the Manifest Editor.

TIBCO ActiveMatrix® Service Grid Spring Component Development

16 | Spring Component Implementations

2. Click the Runtime tab, and delete one of the JARs containing the duplicate bean
classes from the Classpath area.

3. Save the manifest.

To avoid having to manually edit the manifest, the recommended method for using
abstract and concrete WSDL files in the same composite is to use only abstract WSDL files
for the component services and references and use the concrete WSDL only for the
corresponding promoted references as follows:

1. Delete the wire between component references and promoted references.

2. Configure the component reference with the abstract WSDL.

3. Configure the promoted reference with the concrete WSDL.

4. Wire the component reference to the promoted reference using the Wire tool in the
Palette.

XML Data Binding Reference

Field Description

Type The type of the data binding being generated: XMLBeans or JAXB.

If a JAR file already exists for the contract selected in the Contracts list,
and you choose a binding type different than the one that exists in the JAR
file or the contract has changed since the JAR file was generated, the
Overwrite Existing JAR checkbox is selected.

Default: XMLBeans.

Note: Generating implementations for two or more components in the
same Java plug-in project using different binding types is not
supported.

Contracts A list of WSDL and schema files for which XML data binding classes are
generated.

JAR Type The type of JAR file being generated: Beans or Interface.

TIBCO ActiveMatrix® Service Grid Spring Component Development

17 | Spring Component Implementations

Field Description

Source File The path to the source file containing the selected contract.

JAR File The path to the generated JAR file.

Default: When generating a component implementation:

l Beans - projectName/libs/contractFileName.wsdl.jar

l Interface - projectName/libs/contractFileName.wsdl_
interface.jar

where contractFileName is the name of the file containing the contract
selected in the Contracts list and projectName is the name of the project
containing the component implementation.

When generating from a contract file:

l Beans - projectName.libs/libs/contractFileName.wsdl.jar

l Interface - projectName.libs/libs/contractFileName.wsdl_
interface.jar

where contractFileName is the name of the file containing the contract
selected in the Contracts list and projectName is the name of the project
containing the contract file.

Use this JAR for
All Data
Bindings

Indicate that all data binding classes should be generated into the JAR file
specified in the JAR File field. You must generate all data binding classes
into a single JAR file whenever there are cyclical references between
schema files.

Set JAR Folder Invokes a dialog where you can set the folder to contain generated JAR
files:

l All Generated JARs - All JAR files are generated in the same folder as
the destination of the currently selected JAR.

l New Generated JARs - Only newly generated JAR files are generated
in the same folder as the destination of the currently selected JAR
file.

TIBCO ActiveMatrix® Service Grid Spring Component Development

18 | Spring Component Implementations

Field Description

Note: Setting the JAR folder affects only the JAR files generated by the
wizard. It has no effect outside the wizard nor on subsequent wizard
runs.

Default: All Generated JARs.

JAR Status The status of the JAR file containing the classes generated for the selected
contract:

l JAR is non-existent and is generated. - The JAR file does not exist.

l Different binding type. JAR must be overwritten. - The value of the
Type field is different than the type of the data binding classes in the
JAR file.

l JAR exists and is overwritten. - The JAR file exists and the Overwrite
Existing JAR checkbox is selected.

l JAR exists and is preserved. - The JAR file exists and the Overwrite
Existing JAR checkbox is clear.

l JAR is outdated and is overwritten. - The selected contract has
changed since the JAR file was generated and the Overwrite
Existing JAR checkbox is selected, so the JAR file is generated.

l JAR is outdated and is preserved. - The selected contract has
changed since the JAR file was generated and the Overwrite
Existing JAR checkbox is clear, so the JAR file is not generated.

Overwrite
Existing JAR

Enabled only when the JAR file exists. When checked, the JAR file is
regenerated. When unchecked, the existing file is reused and is not
modified.

Advanced

Export Data
Binding
Packages

Indicate that all packages of classes generated into the same plug-in as the
component implementation should be exported in the component's
implementation plug-in manifest using the Export-Package directive. This
allows you to reuse data binding JAR files generated into the same plug-in
as the component implementation. However, this is not the recommended

TIBCO ActiveMatrix® Service Grid Spring Component Development

19 | Spring Component Implementations

Field Description

approach for data binding library sharing. Instead, you should generate
data binding JAR files into a separate plug-in project.

Default: Unchecked.

Use
Configuration
File

Indicate that the specified data binding configuration file should be used
when generating JAR files. When you select the checkbox, the text field is
enabled.

Default: Unchecked.

Opening a Spring Component Implementation
You can open a Spring component implementation from the canvas or from the Problem
view.

Choose an initial control and follow the relevant procedure.

Control Procedure

Canvas Double-click the component.

Canvas Right-click the component and select Open Implementation.

Problems View Right-click the implementation file and select Open With > XML Editor.

The Spring bean configuration file opens in the XML editor.

Opening a Spring Bean Implementation
After you have opened a Spring Component implementation, you can open a Spring bean
implementation file.

TIBCO ActiveMatrix® Service Grid Spring Component Development

20 | Spring Component Implementations

Before you begin
Open a Spring component implementation. See Opening a Spring Component
Implementation.

Procedure
1. Open a Spring component implementation.

2. In the Spring bean configuration file, press the Ctrl key and click the class attribute
in the bean element.

The bean implementation file opens in a Java editor.

Generating a Spring Component
Implementation
You can generate a spring component implementation from the Property view, canvas, or
Problems view. The wizard steps you through the implementation.

Procedure
1. Choose an initial control and follow the relevant procedure.

Control Procedure

Properties
View

a. In the Validation Report area on the General tab of the
component's Property View, click the fix link.

b. Select Generate Spring Implementation.

Canvas a. Right-click the component and select Quick Fixes > Generate
Spring Implementation.

Canvas a. Right-click the component and select Generate Spring
Implementation.

TIBCO ActiveMatrix® Service Grid Spring Component Development

21 | Spring Component Implementations

Control Procedure

Problems
View

a. In the Problems view, right-click an error of the form Component
"ComponentName" is not configured and select Quick Fixes.

b. In the Quick Fix dialog, click Generate Spring Implementation.

c. Click Finish.

The Create Spring Bean dialog displays.

2. Configure the project, source, and bean definition file details in the Code Generation
Details screen.

3. If the component has a service or reference, choose a data binding option and follow
the appropriate procedure:

Data Binding
Option

Procedure

Accept Defaults A JAR containing XMLBeans data binding classes with the default
options is generated.

Configure a. Click Next.

b. Configure the data binding type and Beans and interface JAR
properties.

4. If the component has a reference and more than one service, click .

5. Choose the bean to contain the reference element, click OK, and click Next.

6. If the component has a property and more than one service, click .

The Bean Selection dialog displays.

7. Choose the bean to contain the property element, click OK, and click Next.

8. Click Finish.

TIBCO ActiveMatrix® Service Grid Spring Component Development

22 | Spring Component Implementations

Note: When you add a reference or property to a Spring component and
then generate the implementation, TIBCO Business Studio - BPM Edition
displays warnings about a referenced bean not being found in the
Problems view. You can ignore the warning.

Result
The following objects are generated:

l A Java plug-in project containing abstract and concrete implementation classes,
interface, and data binding classes.

l The Spring bean XML configuration file. If the composite name is compositeName and
component name is componentName, the bean XML configuration file is named
compositeName_componentName_beans.xml and is located in the plug-in project
under the folder config-compositeName_componentName.

l A custom feature file that references the Java plug-in in the Deployment Artifacts
special folder in the SOA project.

l Abstract and concrete implementation classes are also generated. If the
implementation class is named ImplClass, the abstract implementation class is
named AbstractImplClass. Additional code is generated based on the component
elements as follows:

o Service - An interface. If the port type is named PortType, the interface is
named PortType. The clause implementsPortType is added to the abstract class.

o Reference - Field and accessor methods are added to the abstract class.

o Property - Field and accessor methods are added to the abstract class.

Regenerating a Spring Component
Implementation
You should regenerate the component implementation after you add a service, reference,
or property to the component or to recreate the data binding classes created by a previous
version of TIBCO Business Studio - BPM Edition. The regeneration recreates the abstract
class, but it does not change or remove any code from the implementation class.

TIBCO ActiveMatrix® Service Grid Spring Component Development

23 | Spring Component Implementations

Before you begin
The implementation must have been originally generated by TIBCO Business Studio -
BPM Edition.

It is possible that the implementation class has errors after regeneration (for example when
the reference has been removed and the implementation is using the reference).

If the implementation was generated with a previous version of TIBCO Business Studio -
BPM Edition, a dialog displays asking if you want to delete legacy JARs. Legacy JARs are
named PortType-timestamp-service-beans.jar and PortType-timestamp-service-
interface.jar.

Procedure
1. Choose an initial control and follow the relevant procedure.

Control Procedure

Canvas a. Right-click the component and select Regenerate Spring
Implementation.

Canvas a. Right-click a component and select Quick Fixes > Update Spring
Configuration.

Properties
View

a. In the Validation Report area on the General tab of the
component’s Properties view click the fix link.

b. Select Update Spring Configuration.

Problems
View

a. In the Problems view, right-click an error of the form The
component "componentName" is out of sync with its
implementation and select Quick Fix.

b. In the Quick Fix dialog, select Update Spring Configuration.

c. Click Finish.

The Spring implementation and bean configuration XML file are updated.

2. Decide how you want to handle legacy JARs and follow the appropriate procedure.

TIBCO ActiveMatrix® Service Grid Spring Component Development

24 | Spring Component Implementations

Legacy
JARs

Procedure

Delete a. Click Yes.

Retain a. Open the META-INF/Manifest.MF file in the component
implementation's Java plug-in project.

b. Delete the legacy JARs from the Bundle-ClassPath property.

c. If the preceding step failed, right-click the Java project and select
PDE Tools > Update classpath.

d. If necessary, remove legacy JARs from the build properties file in the
component implementation's Java plug-in project.

e. Delete the legacy JARs from the project.

f. Fix compilation errors if any.

The implementation is updated to match the component.

Generate Spring Component Implementation
Reference

Code Generation Details

Field Description

Project The name of the Spring plug-in project to contain the implementation.

Default: com.sample.spring.

Source Folder The name of the source folder in the plug-in project.

Default: src.

TIBCO ActiveMatrix® Service Grid Spring Component Development

25 | Spring Component Implementations

Field Description

Bean
Configuration File

The path to the Spring Bean configuration file relative to the Spring plug-
in project.

Default: config-compositeName-componentName/compositeName_
componentName_beans.xml.

XML Data Binding Classes

Field Description

Type The type of the data binding being generated: XMLBeans or JAXB.

If a JAR file already exists for the contract selected in the Contracts list,
and you choose a binding type different than the one that exists in the JAR
file or the contract has changed since the JAR file was generated, the
Overwrite Existing JAR checkbox is selected.

Default: XMLBeans.

Note: Generating implementations for two or more components in the
same Java plug-in project using different binding types is not
supported.

Contracts A list of WSDL and schema files for which XML data binding classes is
generated.

JAR Type The type of JAR file being generated: Beans or Interface.

Source File The path to the source file containing the selected contract.

JAR File The path to the generated JAR file.

Default: When generating a component implementation:

l Beans - projectName/libs/contractFileName.wsdl.jar

l Interface - projectName/libs/contractFileName.wsdl_
interface.jar

TIBCO ActiveMatrix® Service Grid Spring Component Development

26 | Spring Component Implementations

Field Description

where contractFileName is the name of the file containing the contract
selected in the Contracts list and projectName is the name of the project
containing the component implementation.

When generating from a contract file:

l Beans - projectName.libs/libs/contractFileName.wsdl.jar

l Interface - projectName.libs/libs/contractFileName.wsdl_
interface.jar

where contractFileName is the name of the file containing the contract
selected in the Contracts list and projectName is the name of the project
containing the contract file.

Use this JAR for
All Data
Bindings

Indicate that all data binding classes should be generated into the JAR file
specified in the JAR File field. You must generate all data binding classes
into a single JAR file whenever there are cyclical references between
schema files.

Set JAR Folder Invokes a dialog where you can set the folder to contain generated JAR
files:

l All Generated JARs - All JAR files are generated in the same folder as
the destination of the currently selected JAR.

l New Generated JARs - Only newly generated JAR files are generated
in the same folder as the destination of the currently selected JAR
file.

Note: Setting the JAR folder affects only the JAR files generated by the
wizard. It has no effect outside the wizard nor on subsequent wizard
runs.

Default: All Generated JARs.

JAR Status The status of the JAR file containing the classes generated for the selected
contract:

l JAR is non-existent and is generated. - The JAR file does not exist.

l Different binding type. JAR must be overwritten. - The value of the

TIBCO ActiveMatrix® Service Grid Spring Component Development

27 | Spring Component Implementations

Field Description

Type field is different than the type of the data binding classes in the
JAR file.

l JAR exists and is overwritten. - The JAR file exists and the Overwrite
Existing JAR checkbox is selected.

l JAR exists and is preserved. - The JAR file exists and the Overwrite
Existing JAR checkbox is clear.

l JAR is outdated and is overwritten. - The selected contract has
changed since the JAR file was generated and the Overwrite
Existing JAR checkbox is selected, so the JAR file is generated.

l JAR is outdated and is preserved. - The selected contract has
changed since the JAR file was generated and the Overwrite
Existing JAR checkbox is clear, so the JAR file is not generated.

Overwrite
Existing JAR

Enabled only when the JAR file exists.

When selected, the JAR file is regenerated.

When clear, the existing file is reused and is not modified.

Advanced

Export Data
Binding
Packages

Indicate that all packages of classes generated into the same plug-in as the
component implementation should be exported in the component's
implementation plug-in manifest using the Export-Package directive. This
allows you to reuse data binding JAR files generated into the same plug-in
as the component implementation. However, this is not the recommended
approach for data binding library sharing. Instead, you should generate
data binding JAR files into a separate plug-in project.

Default: Unchecked.

Use
Configuration
File

Indicate that the specified data binding configuration file should be used
when generating JAR files. When you select the checkbox, the text field is
enabled.

Default: Unchecked.

TIBCO ActiveMatrix® Service Grid Spring Component Development

28 | Spring Component Implementations

New Bean Definition

Field Description

Service
Name

Read-only. The name of the service for which the bean is being generated.

Bean ID The name of the generated bean.

Default: serviceNameBean.

Package The name of the package of the implementation class.

Class The name of the class of the implementation.

Default: serviceNameImpl. If no service is defined on the component, the
default class name is componentName.

Use Default
Location for
Superclass

Indicate whether to generate the superclass of the implementation class in
the same package as the implementation class and name the class
AbstractComponentName. When unchecked, the Superclass Package and
Superclass fields are enabled.

Default: Checked.

Superclass
Package

The name of the package of the abstract superclass of the implementation
class.

Default: com.sample.projectName.

Superclass The name of the abstract superclass of the implementation class.

Default: AbstractComponentName.

Life Cycle Events
The ActiveMatrix runtime exposes component life cycle events—Init and Destroy—to
component implementations.

Methods annotated with @Init and @Destroy are invoked when the life cycle events trigger.
The following table describes the meaning of each event and how component

TIBCO ActiveMatrix® Service Grid Spring Component Development

29 | Spring Component Implementations

implementations can handle each event.

Event When Invoked

Init When the application containing the component or the component is started.

When this event is triggered all the component's properties, references, and
resources have been initialized.

The method invoked when this event is triggered is typically used to validate
component configuration and open connection to resources.

Destroy When the application containing the component or the component is stopped.

Note: If you open connections to resources in a method that is invoked by an
Init event you must close the connections to the resources in the method that
is invoked by a Destroy event.

Life Cycle Events

When TIBCO Business Studio - BPM Edition generates a Java or Spring component
implementation, it automatically adds the appropriately annotated initialization and
destruction methods:

org.osoa.sca.annotations.Init;
org.osoa.sca.annotations.Destroy;
@Init
public void init()
{

// Component initialization code.
// All properties are initialized and references are injected.

}
@Destroy
public void destroy()
{

// Component disposal code.
// All properties are disposed.

}

You can customize these methods to perform application-specific initialization and
cleanup.

TIBCO ActiveMatrix® Service Grid Spring Component Development

30 | Spring Component Implementations

Component Context
A component context provides access to the context in which a component executes. The
context includes the component's name and containing application name, the node on
which it executes, the host managing the node, context parameters available to the
component, the component's work area, and so on.

To access the component context, add the following declarations to a Java or Spring
component implementation:

import org.osoa.sca.annotations.Context;
import
com.tibco.amf.platform.runtime.extension.context.ComponentContext;
@Context
public ComponentContext componentContext;

These declarations are automatically added to the abstract component implementation
when a context parameter is defined for the component. The TIBCO ActiveMatrix platform
injects the component context object into the component implementation.

If a component implementation wants to create a file, it should do so in the work area
assigned to each component. The TIBCO ActiveMatrix platform ensures that these files are
deleted when the component is undeployed. Work areas are backed up during node
upgrade. A component implementation can retrieve its work area through the component
context's getWorkArea() method which returns the java.io.File object that represents
the work area folder for that component.

Accessing a Property
When you generate a Java or Spring component implementation after adding a property to
the component, TIBCO Business Studio - BPM Edition adds properties and methods to the
component's abstract implementation class:

The following items are added.

l SCA property annotation import

l A field that represents the property

l Accessor methods

TIBCO ActiveMatrix® Service Grid Spring Component Development

31 | Spring Component Implementations

The TIBCO ActiveMatrix platform injects the property object into the component
implementation.

For example, if you add a property named greeting of type String to a component, the
following code is added:

org.osoa.sca.annotations.Property;
private String greeting;

@Property(name = "greeting")
public void setGreeting(String greeting)
{

this.greeting = greeting;
}

public String getGreeting()
{

return greeting;
}

To reference the property invoke the accessor methods. For example:

resp.setHelloResponse(getGreeting() + " " + name + "! "
+ "The current time is " + time + ".");

Accessing a Resource
You can access a resource with an accessor method that is part of the component
implementation.

Procedure
1. Add a property of the resource type to the component.

2. Generate or regenerate the component implementation. TIBCO Business Studio -
BPM Edition adds imports, fields, and resource accessor methods to the component's
abstract implementation class. When the component is instantiated, the TIBCO
ActiveMatrix platform injects the resource object into the component
implementation.

3. Access the resource using the generated accessor methods.

4. After you are finished with the resource and any objects retrieved from the resource,

TIBCO ActiveMatrix® Service Grid Spring Component Development

32 | Spring Component Implementations

close the objects.

Accessing a Hibernate Resource
You can access a Hibernate resource from the Hibernate session that is associated with the
session factory

If you create a property named sessionFactory of type Hibernate Resource Template, TIBCO
Business Studio - BPM Edition adds the following to the abstract implementation class:

import org.osoa.sca.annotations.Property;
import
com.tibco.amf.sharedresource.runtime.core.hibernate.sharedresource.Proxy
SessionFactory;

private ProxySessionFactory sessionFactory;

@Property(name = "sessionFactory")
public void setSessionFactory(ProxySessionFactory sessionFactory)

{
this.sessionFactory = sessionFactory;

}

public ProxySessionFactory getSessionFactory()
{

return sessionFactory;
}

Procedure
1. Retrieve the proxy session factory using the generated getSessionFactory method.

2. Register the model class using the session factory addClass method.

3. Retrieve the Hibernate session from the session factory using the openSession
method.

4. Retrieve a transaction from the session.

5. Create a query.

6. Execute the query.

7. Save the session.

TIBCO ActiveMatrix® Service Grid Spring Component Development

33 | Spring Component Implementations

8. Commit the transaction.

9. Close the session.

10. When the component is destroyed, unregister the model class using the removeClass
method.

import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.Transaction;
...

final Session session = getSessionFactory().openSession();
try

{
/**
* Begin a transaction before performing any queries.
* Closing the session cleans up the transaction.
*/

Transaction tx = session.beginTransaction();
final Query query = session.createQuery("UPDATE ...");
...
int result = query.executeUpdate();
if (result == 0)

{
...
session.save(report);

}
tx.commit();

} finally
{

session.close();
}
...

@Init
public void init()

{
if (getSessionFactory() == null)

{
throw new IllegalStateException("Failed to inject

ProxySessionFactory");
}

/*** Register the ModelClass model class on SessionFactory */
getSessionFactory().addClass(ModelClass.class);

try

TIBCO ActiveMatrix® Service Grid Spring Component Development

34 | Spring Component Implementations

{
// Initializes database data.
initializeDBData();

} catch (Throwable th) {
...

}
}
...
@Destroy
public void destroy()

{
if (getSessionFactory() != null)

{
/**
* Unregister the ModelClass model class from SessionFactory
*/
getSessionFactory().removeClass(ModelClass.class);

}
}

Accessing a JDBC Resource
If you create a property named jdbcr of type JDBC Resource Template, TIBCO Business
Studio - BPM Edition adds the following to the abstract implementation class:

import org.osoa.sca.annotations.Property;
import javax.sql.DataSource;

private DataSource jdbcr;

@Property(name = "jdbcr")
public void setDbr(DataSource jdbcr) {

this.jdbcr = jdbcr;
}

public DataSource getJdbcr() {
return jdbcr;

}

Procedure
1. Invoke the accessor methods in your component implementation.

TIBCO ActiveMatrix® Service Grid Spring Component Development

35 | Spring Component Implementations

import javax.sql.DataSource;
DataSource ds = getJdbcr();
Connection connection = null;

try {
connection = ds.getConnection();
ensureTablesExist(connection);

Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sqlString);
PhoneEntryType entry = null;

while(rs.next()) {
entry = resp.addNewOut();
entry.setEntryId(rs.getString("id"));
entry.setFirstName(rs.getString("firstName"));
entry.setLastName(rs.getString("lastName"));
entry.setPhone(rs.getString("phone"));

}

} catch(SQLException e) {
e.printStackTrace();

} finally {
try{

connection.close();
}catch(Exception e){};

...
}

}

Accessing JMS Resources
To access JMS resources, create JMS Connection Factory and JMS Destination properties. If
you create a property named connectionFactory of type JMS Connection Factory and a
property named destination of type JMS Destination, TIBCO Business Studio - BPM Edition
adds the following to the abstract implementation class:

import javax.jms.ConnectionFactory;
import javax.jms.Destination;

private ConnectionFactory connectionFactory;

@Property(name = "connectionFactory")

TIBCO ActiveMatrix® Service Grid Spring Component Development

36 | Spring Component Implementations

public void setConnectionFactory(ConnectionFactory connectionFactory) {
this.connectionFactory = connectionFactory;

}

public ConnectionFactory getConnectionFactory() {
return connectionFactory;

}

private Destination destination;

@Property(name = "destination")
public void setDestination(Destination destination) {

this.destination = destination;
}

public Destination getDestination() {
return destination;

}

Procedure
1. Invoke the accessor methods in your component implementation.

import javax.jms.Connection;
import javax.jms.Destination;
import javax.jms.JMSException;

import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;

@Init
public void init() throws JMSException {
connection = getConnectionFactory().createConnection();
connection.start();
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
System.out.println(session);
}

@Destroy
public void destroy() throws JMSException {

session.close();
connection.stop();
connection.close();

}

TIBCO ActiveMatrix® Service Grid Spring Component Development

37 | Spring Component Implementations

private String doPublish(String input) throws JMSException {
MessageProducer producer = session.createProducer(getDestination());
TextMessage message = session.createTextMessage("Input from SOAP

Request :" + input);
producer.send(message);
String msg_id = message.getJMSMessageID();
return msg_id;
}

Accessing LDAP Connections
If you create a property named ldapr of type LDAP Connection Resource Template, TIBCO
Business Studio - BPM Edition adds the following to the abstract implementation class:

import org.osoa.sca.annotations.Property;
import javax.naming.ldap.LdapContext;

private LdapContext ldapr;

@Property(name = "ldapr")
public void setLdapr(LdapContext ldapr) {

this.ldapr = ldapr;
}

public LdapContext getLdapr() {
return ldapr;

}

Procedure
1. To update the resource:

...
Attributes attr = new BasicAttributes(true);
Attribute objFact = new BasicAttribute("objectclass");
objFact.add("top");
objFact.add("person");
objFact.add("uidObject");
objFact.add("organizationalPerson");

TIBCO ActiveMatrix® Service Grid Spring Component Development

38 | Spring Component Implementations

attr.put(objFact);
attr.put("uid", uid);
attr.put("cn", commonName);
attr.put("sn", surname);
attr.put("userPassword", password);
Name name = new LdapName("uid=" + uid +

",ou=People,dc=tibco,dc=com");
getLdapr().createSubcontext(name, attr);
...
public void destroy() {

try {
getLdapContext().close();

} catch (NamingException e) {
e.printStackTrace();

}
}

2. To query the resource:

...
StringBuffer sb = new StringBuffer();
NamingEnumeration<SearchResult> results = null;
try {

SearchControls controls = new SearchControls();
controls.setSearchScope(SearchControls.SUBTREE_SCOPE);
MessageFormat format = new MessageFormat("(&(uid={0})

(objectclass=*))");
String format2 = format.format(new Object[] { uid });
results = getLdapr().search("uid=" + uid+

",ou=People,dc=tibco,dc=com",
format2,controls);

while (results.hasMore()) {
SearchResult searchResult = (SearchResult) results.next();
Attributes attributes = searchResult.getAttributes();
NamingEnumeration<? extends Attribute> enumeration =

attributes.getAll();
for (; enumeration.hasMoreElements();) {

Attribute object = (Attribute) enumeration.next();
sb.append(object.toString());
sb.append('\n');
if (logger.isInfoEnabled()) {

logger.info(object.toString());

TIBCO ActiveMatrix® Service Grid Spring Component Development

39 | Spring Component Implementations

}
}

}

} catch (NameNotFoundException e) {
...

} catch (NamingException e) {
...

}

return sb.toString();
...

Accessing SMTP Connections
If you create a property named smtpr of type SMTP Resource Template, TIBCO Business
Studio - BPM Edition adds the following to the abstract implementation class:

import org.osoa.sca.annotations.Property;
import javax.mail.Session;

private Session smtpr;

@Property(name = "smtpr")
public void setSmtpr(Session smtpr) {

this.smtpr = smtpr;
}

public Session getSmtpr() {
return smtpr;

}

Invoke the accessor methods in your component implementation.

import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
...

Transport transport =null;
try{

Session session = getSmtpr();
transport = session.getTransport();

TIBCO ActiveMatrix® Service Grid Spring Component Development

40 | Spring Component Implementations

Message message = new MimeMessage(session);
message.setFrom(new InternetAddress(mailFrom));
InternetAddress dests[] = new InternetAddress[]{ new

InternetAddress(mailTo) };
message.setRecipients(Message.RecipientType.TO, dests);
message.setSubject(subject);

message.setDataHandler(new DataHandler(new ByteArrayDataSource(
requestContent, "text/plain")));

transport.connect();
transport.sendMessage(message, dests);

} catch(Exception exp){
...

}
return false;

} finally {
if (transport != null)

try {
transport.close();

} catch (MessagingException e) {
e.printStackTrace();

}
}

}
return true;

...

Accessing a Teneo Resource
If you create a property named sessionFactory of type Teneo Resource Template, TIBCO
Business Studio - BPM Edition adds the following to the abstract implementation class:

import org.osoa.sca.annotations.Property;
import
com.tibco.amf.sharedresource.runtime.core.teneo.sharedresource.TeneoSess
ionFactory;

private TeneoSessionFactory sessionFactory;

@Property(name = "sessionFactory")
public void setSessionFactory(TeneoSessionFactory sessionFactory) {

this.sessionFactory = sessionFactory;
}

TIBCO ActiveMatrix® Service Grid Spring Component Development

41 | Spring Component Implementations

public TeneoSessionFactory getSessionFactory() {
return sessionFactory;

}

Invoke the accessor methods in your component implementation.

...
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.Transaction;

Session session = null;
Transaction tx = null;
try {

session = getSessionFactory().openSession();
tx = session.beginTransaction();
Query q = session.createQuery("...");
User user = (User)q.uniqueResult();
Trip trip = ...;
...
id = (Long) session.save(trip);
user.getTrips().add(trip);
session.save(user);

}
catch (Throwable th) {

error = true;
result = "failed: " + th.getMessage();
th.printStackTrace();

}
finally {

if (tx != null) {
if (error) {

try {
tx.rollback();

}
catch (Throwable th) {

th.printStackTrace();
}

}
else {

try {
tx.commit();

}
catch (Throwable th) {

th.printStackTrace();
}

}

TIBCO ActiveMatrix® Service Grid Spring Component Development

42 | Spring Component Implementations

}
if (session != null) {

try {
session.close();

}
catch (Throwable th) {

th.printStackTrace();
}

}
...

Invoking an HTTP Request
You can use an HTTP client resource to invoke HTTP requests from component
implementations. A POST example illustrates this.

Procedure
1. Add a property of type HTTP Client Resource Template to the component.

When you regenerate the implementation, TIBCO Business Studio - BPM Edition adds
an HTTP client connection factory property to the abstraction implementation class.
For a property named httpConnectionFactory, TIBCO Business Studio - BPM Edition
adds the following:

import

com.tibco.amf.sharedresource.runtime.core.http.httpclient.HttpClien
tConnectionFactory;

private HttpClientConnectionFactory httpConnectionFactory;

public void setHttpConnectionFactory(
HttpClientConnectionFactory httpConnectionFactory) {
this.httpConnectionFactory = httpConnectionFactory;

}

/**
* @return Returns the HttpClientConnectionFactory
*/

TIBCO ActiveMatrix® Service Grid Spring Component Development

43 | Spring Component Implementations

public HttpClientConnectionFactory getHttpConnectionFactory() {
return httpConnectionFactory;

}

2. Retrieve an HTTP client object from the connection factory.

3. Invoke HTTP methods on the HTTP client object.

Post Example
The following example demonstrates how to invoke an HTTP Post request using an HTTP
client object retrieved from the HTTP client connection factory or using an HTTP
connection:

import org.apache.http.HttpClientConnection;
import org.apache.http.HttpEntity;
import org.apache.http.HttpException;
import org.apache.http.HttpHost;
import org.apache.http.HttpResponse;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.InputStreamEntity;
import org.apache.http.protocol.BasicHttpContext;
import org.apache.http.protocol.BasicHttpProcessor;
import org.apache.http.protocol.ExecutionContext;
import org.apache.http.protocol.HttpRequestExecutor;
import org.apache.http.protocol.RequestConnControl;
import org.apache.http.protocol.RequestContent;
import org.apache.http.protocol.RequestExpectContinue;
import org.apache.http.protocol.RequestTargetHost;
import org.apache.http.protocol.RequestUserAgent;

public GetQuoteResponseDocument getQuote
(GetQuoteDocument parameters) {

String symbol = parameters.getGetQuote().getSymbol();
String value = ERROR_MSG;
try
{
/**
* Two ways of using HTTP client API, randomly selected at runtime:
* a) HTTP Client
* b) HTTP Connection
*/

TIBCO ActiveMatrix® Service Grid Spring Component Development

44 | Spring Component Implementations

if(random.nextBoolean()){
value = getQuoteUsingHttpClient(getHttpConnectionFactory(),

symbol.trim());
}else{

value = getQuoteUsingHttpConnection(getHttpConnectionFactory(),
symbol.trim());

}
} catch (Exception e) {

if(logger.isErrorEnabled()){
logger.error(ERROR_MSG,e);

}
}

GetQuoteResponseDocument responseDoc =
GetQuoteResponseDocument.Factory.newInstance();

responseDoc.addNewGetQuoteResponse().setGetQuoteResult(value);
return responseDoc;
}

/**
* Processes the request using HTTPClient API
*/
private String getQuoteUsingHttpClient(HttpClientConnectionFactory

connectionFactory,
String symbol) throws HttpException, ClientProtocolException,

IOException {
String responseString = ERROR_MSG;
String message = getContent(symbol);
byte[] bytes = message.getBytes();

/** HTTPClient provides a facade to a number of special purpose
handler or strategy

* implementations responsible for handling of a particular
aspect of

* the HTTP protocol such as redirect or authentication handling or
* making decision about connection persistence and keep alive

duration.
* This allows you to selectively replace the default

implementation
* of those aspects with custom, application-specific ones.
*/
HttpClientWrapper httpClient = connectionFactory.getHttpClient();
HttpHost configuration = connectionFactory.getHostConfiguration();

/**
* Construct the request URL

TIBCO ActiveMatrix® Service Grid Spring Component Development

45 | Spring Component Implementations

*/
String url = configuration.getSchemeName() + "://"+

configuration.getHostName()+":"+
configuration.getPort() + "/stockquote.asmx";

/**
* Prepare request object and its header for HTTP Post request
*/
HttpPost httpPost = new HttpPost(url);
httpPost.setHeader("Content-Type", "text/xml; charset=utf-8");
httpPost.setHeader("SOAPAction",

"http://www.webserviceX.NET/GetQuote");

/**
* Sets the Entity to handle content management.
*/
ByteArrayInputStream instream = new ByteArrayInputStream(bytes);
InputStreamEntity e2 = new InputStreamEntity(instream, -1);
httpPost.setEntity(e2);

/**
* Execute the POST URL using HttpClientWrapper which takes care of
* connection management other functionality internally.
*/
HttpResponse response = httpClient.execute(httpPost);
/**
* Get the response Entity which holds the response content from

HttpResponse.
*/
HttpEntity resEntity = response.getEntity();

//Reads the response
responseString = getResponseString(resEntity);
if (resEntity != null) {
/**
* The Method consumeContent() is called to indicate that the

content of this entity
* is no longer required. All entity implementations are expected

to
* release all allocated resources as a result of this method
* invocation.
*/

resEntity.consumeContent();
}

return responseString;

TIBCO ActiveMatrix® Service Grid Spring Component Development

46 | Spring Component Implementations

}

/**
* Processes the request using HTTPConnection API
*/
private String getQuoteUsingHttpConnection

(HttpClientConnectionFactory connectionFactory, String symbol) throws
HttpException, IOException {

String responseString = ERROR_MSG;
String message = getContent(symbol);
byte[] bytes = message.getBytes();

HttpClientConnection httpClientConnection =
connectionFactory.getHttpConnection();

HttpHost configuration = connectionFactory.getHostConfiguration();

/**
* Construct the request URL
*/
String url = configuration.getSchemeName() + "://"+

configuration.getHostName() +":"+
configuration.getPort() + "/stockquote.asmx";

try {

/**
* Prepare request object and its header for HTTP Post request
*/
HttpPost httpPost = new HttpPost(url);
httpPost.setHeader("Content-Type", "text/xml; charset=utf-8");
httpPost.setHeader("SOAPAction",

"http://www.webserviceX.NET/GetQuote");

/**
* Sets the Entity to handle content management.
*/
ByteArrayInputStream instream = new ByteArrayInputStream(bytes);
InputStreamEntity e2 = new InputStreamEntity(instream, -1);
httpPost.setEntity(e2);
/**
* Set HTTP params on Post request object
*/
httpPost.setParams(connectionFactory.getHttpParams());

TIBCO ActiveMatrix® Service Grid Spring Component Development

47 | Spring Component Implementations

/** HttpContext represents execution state of an HTTP process.
* It is a structure that can be used to map an attribute name
* to an attribute value. Internally HTTP context implementations
* are usually backed by a HashMap.
*/
BasicHttpContext basicHttpContext = new BasicHttpContext(null);
// Populate the execution context
basicHttpContext.setAttribute(ExecutionContext.HTTP_

CONNECTION,httpClientConnection);
basicHttpContext.setAttribute(ExecutionContext.HTTP_TARGET_

HOST,connectionFactory.
getHostConfiguration());
basicHttpContext.setAttribute(ExecutionContext.HTTP_REQUEST,

httpPost);

/** HTTP protocol processor is a collection of protocol interceptors
that

* implements the Chain of Responsibility pattern, where each
individual

* protocol interceptor is expected to work on a particular
aspect of the HTTP

* protocol for which the interceptor is responsible.
*/
BasicHttpProcessor httpProcessor = new BasicHttpProcessor();
// Required request interceptors
httpProcessor.addInterceptor(new RequestContent());
httpProcessor.addInterceptor(new RequestTargetHost());
// Recommended request interceptors
httpProcessor.addInterceptor(new RequestConnControl());
httpProcessor.addInterceptor(new RequestUserAgent());
httpProcessor.addInterceptor(new RequestExpectContinue());

/** HttpRequestExecutor is a client side HTTP protocol handler
based on the

* blocking I/O model that implements the essential requirements
of the HTTP

* protocol for the client side message processing
*/
HttpRequestExecutor httpexecutor = new HttpRequestExecutor();

// Prepare request
httpexecutor.preProcess(httpPost, httpProcessor, basicHttpContext);
// Execute request and get a response
HttpResponse response = httpexecutor.execute

TIBCO ActiveMatrix® Service Grid Spring Component Development

48 | Spring Component Implementations

(httpPost,httpClientConnection,
basicHttpContext);

// Finalize response
httpexecutor.postProcess(response, httpProcessor, basicHttpContext);
HttpEntity resEntity = response.getEntity();

//Reads the response
responseString = getResponseString(resEntity);
if (resEntity != null) {
/**
* The Method consumeContent() is called to indicate that the

content of this entity
* is no longer required. All entity implementations are expected

to
* release all allocated resources as a result of this method
* invocation.
*/

resEntity.consumeContent();
}
} finally {

httpClientConnection.close();
}
return responseString;

}

/**
* Reads and returns the string content from response Entity
*/
private String getResponseString(HttpEntity resEntity)

throws IOException {
if (resEntity != null) {

InputStream content = resEntity.getContent();
byte[] cbytes = new byte[new Long(1000).intValue()];
int x = -1;
StringBuilder sb = new StringBuilder();
while ((x = content.read(cbytes)) != -1) {

String reponseContent = new String(cbytes);
sb.append(reponseContent);

}
return getValue(sb.toString().trim());

}
return ERROR_MSG;

}

/**
* Returns the request content.

TIBCO ActiveMatrix® Service Grid Spring Component Development

49 | Spring Component Implementations

* @param symbol
* @return
*/
private String getContent(String symbol) {

return "<soapenv:Envelope
xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"

+ "xmlns:web=\"http://www.webserviceX.NET/\">"
+ "<soapenv:Header/>"
+ "<soapenv:Body>"
+ "<web:GetQuote>"
+ "<web:symbol>"+symbol+"</web:symbol>"
+ "</web:GetQuote>"
+ "</soapenv:Body>"
+ "</soapenv:Envelope>";

}

Invoking a Reference Operation
When you add a reference to a Spring component, TIBCO Business Studio - BPM Edition
adds the following field and accessor methods to the abstract component implementation.
TIBCO ActiveMatrix injects the referenced object into the component implementation.

TIBCO Business Studio - BPM Edition adds the following elements to the abstract
component implementation:

l SCA reference annotation import

l A field that declares the referenced object

l Accessor methods
The TIBCO ActiveMatrix platform injects the referenced object into the component
implementation. For example, if you add a reference to port type DateManagerPT, the
following code is added:

import org.osoa.sca.annotations.Reference;
@Reference(name = "DateManagerPT")
public void setDateManagerPT(DateManagerPT DateManagerPT) {

this.DateManagerPT = DateManagerPT;
}

public DateManagerPT getDateManagerPT() {
return this.DateManagerPT;

}

TIBCO ActiveMatrix® Service Grid Spring Component Development

50 | Spring Component Implementations

Note: When you pass an XMLBeans document object to a reference invocation,
the object is passed by reference. Since the state of an object is not guaranteed
across reference invocations, you cannot access the object after the reference
invocation. If you need to access the object after the invocation, make a deep
copy of the object using the copy method before you invoke the reference. For
example, if you needed to access the req object after the call to
getCurrentTime, make a deep copy of req as follows:

TimeRequestDocument req =
TimeRequestDocument.Factory.newInstance();
req.setTimeRequest("America/Los_Angeles");
TimeRequestDocument reqcopy = (TimeRequestDocument)req.copy();
TimeResponseDocument time = getDateManagerPT().getCurrentTime
(req);
System.out.println("The time in " + reqcopy.getTimeRequest() +
" is " +

time.getTimeResponse());

Add the statement getportType().operation. If the reference is configured for dynamic
wiring, you must define a method to create an endpoint reference (see Creating an
Endpoint Reference) and call the method before invoking the reference object. For
information on wiring, see "Static and Dynamic Wiring" in TIBCO ActiveMatrix® Service Grid
Composite Development.

The following code snippet demonstrates how to invoke the getCurrentTime operation on
the reference configured for dynamic wiring with port type DateManagerPT:

setEPR(targetURI);
String time = currentTime.getTimeResponse();

resp.setHelloResponse(getJavaGreeting() + " " + name + "! "
+ "The current time is " + time + ".");

return resp;

Error Handling
In service-oriented applications, SOAP clients expect a fault message to be returned when
an error occurs during processing. A fault message is a SOAP message

A fault message has the following subelements:

TIBCO ActiveMatrix® Service Grid Spring Component Development

51 | Spring Component Implementations

Subelement Description

faultcode A code that identifies the fault.

faultstring An explanation of the fault.

faultactor Information about what caused the fault to occur.

detail Application-specific information about the fault.

Fault messages defined in the WSDL file are called declared faults. Fault messages that are
not defined in the WSDL file are called undeclared faults. The process for generating a fault
message is implementation dependent and typically depends on whether the fault is
declared or not.

Declared Faults

When you add a service to a Spring component TIBCO Business Studio - BPM Edition
generates a fault exception class for each fault declared in the WSDL file that defines the
service's port type.

Example WSDL File
The following WSDL fragment shows the getWeather operation with two declared faults:
orderFault and orderFault2. The detail element for the orderFault message contains a
ZipCodeFault element. The detail element for the orderFault2 message contains a
CityFault element.

<wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://www.example.org/weatherschema"
targetNamespace="http://www.example.org/weatherschema"

elementFormDefault="unqualified"
attributeFormDefault="unqualified">

<complexType name="WeatherRequestType">
<sequence>
<element name="city" type="string"/>
<element name="state" type="string"/>
<element name="zip" type="string"/>

TIBCO ActiveMatrix® Service Grid Spring Component Development

52 | Spring Component Implementations

</sequence>
</complexType>
<complexType name="WeatherResponseType">

<sequence>
<element name="high" type="float"/>
<element name="low" type="float"/>
<element name="forecast" type="string"/>

</sequence>
</complexType>

<element name="WeatherRequest" type="tns:WeatherRequestType"/>
<element name="WeatherResponse" type="tns:WeatherResponseType"/>
<element name="ZipCodeFault" type="string"/>
<element name="CityFault" type="string" />

</schema>
</wsdl:types>
<wsdl:message name="invalidZipCodeFault">

<wsdl:part name="error" element="ns0:ZipCodeFault"/>
</wsdl:message>
<wsdl:message name="invalidCityFault">

<wsdl:part name="error" element="ns0:CityFault" />
</wsdl:message>
<wsdl:portType name="WeatherReportPT">
<wsdl:operation name="GetWeather">
<wsdl:input message="tns:GetWeatherRequest"/>
<wsdl:output message="tns:GetWeatherResponse"/>
<wsdl:fault name="orderFault" message="tns:invalidZipCodeFault"/>
<wsdl:fault name="orderFault2" message="tns:invalidCityFault" />

</wsdl:operation>
</wsdl:portType>

Code Generation

When TIBCO Business Studio - BPM Edition generates the Spring component
implementation invalidCityFault and invalidZipCodeFault are mapped to the
exceptions:

public class InvalidCityFaultException extends java.lang.Exception
public class InvalidZipCodeFaultException extends java.lang.Exception

and a throws clause containing the generated exceptions is added to the getWeather
method.

To generate the invalidCityFault fault message while processing the getWeather
method, throw InvalidCityFaultException. The faultcode and faultactor subelements

TIBCO ActiveMatrix® Service Grid Spring Component Development

53 | Spring Component Implementations

of the SOAP fault element are predefined as:

Subelement Content

faultcode SOAP-ENV:Server

faultactor DefaultRole

Setting Fault Message Subelements

To customize the values of the faultstring and detail subelements:

1. Create a string object and set it to an informative message. The message is mapped
to the SOAP message's faultstring element.

2. Create a fault document and set the appropriate fault property of the document to
the reason for the error. The reason is mapped to the SOAP message detail element.

3. Create a fault message exception that contains the message and fault document.

For example, if the city element of the request is not set correctly, configure and throw
the fault message exception as follows:

public WeatherResponseDocument getWeather(WeatherRequestDocument
getWeatherRequest)

throws org.example.www.WeatherService.InvalidCityFaultException,
org.example.www.WeatherService.InvalidCityFaultException {

WeatherRequestType weatherRequest = getWeatherRequest.getWeather();
if (weatherRequest.getCity()==null||weatherRequest.getCity().equals

("")) {
CityFaultDocument cityFaultDocument =

CityFaultDocument.Factory.newInstance();

XmlString msg = XmlString.Factory.newInstance();
msg.setStringValue("Error processing getWeather.");

// set detail
cityFaultDocument.setCityFault("Invalid city for zipcode" +

weatherRequest.getZip());
// set faultstring
InvalidCityFaultException invalidCityFaultException =

new InvalidCityFaultException(msg.getStringValue(),
cityFaultDocument);

throw invalidCityFaultException;
}

TIBCO ActiveMatrix® Service Grid Spring Component Development

54 | Spring Component Implementations

...
}

which would generate the following SOAP fault message if getCity does not return a valid
value:

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Error processing getWeather.</faultstring>
<faultactor>DefaultRole</faultactor>
<detail>
<CityFault xmlns="http://www.example.org/weatherschema">

Invalid city for zipcode 95070.</CityFault>
</detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A consumer invoking getWeather should handle the exception as follows:

public WeatherResponseDocument getWeather(WeatherRequestDocument
getWeatherRequest) {

try {
return getWeatherReportPT().getWeather(getWeatherRequest);

}
catch(Exception e) {

if (e instanceof InvalidCityFaultException)
throw (InvalidCityFaultException)e;

else{
System.out.println("Error occured.");
throw new RuntimeException(e.getMessage(),e);

}
}

...
}

Undeclared Faults

When an undeclared fault occurs, the TIBCO ActiveMatrix runtime returns a SOAP fault with
the following subelements:

TIBCO ActiveMatrix® Service Grid Spring Component Development

55 | Spring Component Implementations

Subelement Content

faultcode SOAP-ENV:Server

faultstring java.lang.RuntimeException

faultactor DefaultRole

detail A stack trace indicating where the exception occurred.

If a runtime exception occurs while processing getWeather, the following SOAP fault would
be generated:

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>java.lang.RuntimeException: Undeclared

fault....</faultstring>
<faultactor>DefaultRole</faultactor>
<detail>

<tibco:myFaultDetail xmlns:tibco="http://tibcouri/">
org.osoa.sca.ServiceRuntimeException: java.lang.RuntimeException:

Undeclared fault....
at

com.tibco.amf.platform.runtime.componentframework.internal.proxies.
ProxyInvocationHandler.invoke(ProxyInvocationHandler.java:473)

at $Proxy21.invoke(Unknown Source)
at

com.tibco.amf.binding.soap.runtime.transport.http.SoapHttpInboundEndpoin
t.

processHttpPost(SoapHttpInboundEndpoint.java:250)
at

com.tibco.amf.binding.soap.runtime.transport.http.SoapHttpServer.doPost(
SoapHttpServer.java:103)

...
Caused by: java.lang.RuntimeException: Undeclared fault....
at com.sample.faultservice.Component1.getWeather

(Component1.java:50)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke

(NativeMethodAccessorImpl.java:39)

TIBCO ActiveMatrix® Service Grid Spring Component Development

56 | Spring Component Implementations

at sun.reflect.DelegatingMethodAccessorImpl.invoke
(DelegatingMethodAccessorImpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:585)
at

com.tibco.amf.platform.runtime.componentframework.internal.proxies.
ProxyInvocationHandler.invoke(ProxyInvocationHandler.java:426)

... 20 more
</tibco:myFaultDetail>

</detail>
</SOAP-ENV:Fault>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

To specify SOAP fault subelements for undeclared faults, convert the runtime exception
into a com.tibco.amf.platform.runtime.extension.SOAPException class. The following
code fragment illustrates how to modify the subelements of the SOAP fault:

import com.tibco.amf.platform.runtime.extension.exception.SOAPException;
import com.tibco.amf.platform.runtime.extension.exception.SOAPDetail;
import com.tibco.amf.platform.runtime.extension.exception.SOAPCode;
import java.net.URI;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
...

URI role = null;
try {

role = new URI("http://soapexception.role");
} catch (URISyntaxException e) {

e.printStackTrace();
}
WeatherRequestType weatherRequest =

getWeatherRequest.getWeatherRequest();
Node domNode = weatherRequest.getDomNode();
//Set the original request as the fault detail
SOAPDetail<Element> soapDetail = new SOAPDetail<Element>

(Element.class, (Element)domNode);
SOAPCode soapCode = new SOAPCode(new QName("fault code"));

SOAPException soapException = new SOAPException(soapCode, "reason",
role, soapDetail);

throw soapException;
...

The following example illustrates how to catch the SOAPException exception returned by
an invocation of a referenced service:

TIBCO ActiveMatrix® Service Grid Spring Component Development

57 | Spring Component Implementations

public WeatherResponseDocument getWeather(WeatherRequestDocument
getWeatherRequest)

throws org.example.www.WeatherService.InvalidZipCodeFaultException {
try {

return getWeatherReportPT().getWeather(getWeatherRequest);
} catch (InvalidZipCodeFaultException e) {

System.out.println("=========InvalidZipcodeFaultException========");
throw e;

} catch(Exception e) {
System.out.println("===========Runtime Exception===========");
if(e instanceof ServiceRuntimeException) {

ServiceRuntimeException sre = (ServiceRuntimeException) e;
Throwable cause = sre.getCause();
if(cause instanceof SOAPException) {

SOAPException soapex = (SOAPException) cause;
if (soapex.getCode()!=null) {

System.out("Fault code: " + soapex.getCode().toString());
if (soapex.getRole()!=null) {

System.out("Fault role: " + soapex.getRole().toString());
throw soapex;

}
}
throw new RuntimeException(e);

...
return null;

}

SOAPException Reference
SOAPException has SOAPCode and SOAPDetail in its parameter list. All three are discussed
below.

public SOAPException(final SOAPCode code, final String[] reason, final
URI node, final URI role, final SOAPDetail<T> detail)

The parameters of type SOAPXXX map to subelements of SOAP faults. Some of the
parameters are for future use.

Parameter Description

code Intended for use by software to provide an algorithmic mechanism for

TIBCO ActiveMatrix® Service Grid Spring Component Development

58 | Spring Component Implementations

Parameter Description

identifying the fault.

reason Provides a human readable explanation of the fault.

node A URI that identifies the SOAP node that generated the fault. Its absence
implies that the first recipient of the message generated the fault.

role A URI identifying the source of the fault within the message path.

detail Carries application-specific error information related to the Body element. It
must not be used to carry information about error information belonging to
header entries. Detailed error information belonging to header entries must
be carried within header entries.

public SOAPCode(final QName codeValue, final SOAPCode
subcode)

The type of the code parameter of SOAPException. The structure of the code parameter is
hierarchical. The top-level code is a base fault and must be understood by all SOAP nodes.
Nested codeValues are application-specific, and represent further elaboration or refinement
of the base fault.

Parameter Description

codeValue The Qname that identifies the code for the fault.

subcode An optional subcode. Each child subcode element has a mandatory codeValue
and an optional subcode subelement to support application-specific codes.

public SOAPDetail(final Class<T> detailType, final T detail)

The type of the detail parameter of SOAPException.

TIBCO ActiveMatrix® Service Grid Spring Component Development

59 | Spring Component Implementations

Parameter Description

detailType Type of the detailed data provided to the exception.

detail Detail data provided to the exception. For example: SOAPDetail<Element>
soapDetail = new SOAPDetail<Element>(Element.class,
(Element)domNode);

Context Parameters
A context parameter is a key-value pair passed to a service operation invocation. The values
are populated by bindings, which map transport and binding headers to context
parameters. Context parameters allow component developers to access transport and
binding metadata that could affect the execution of an operation but which is not passed
in the input, output, and fault messages defined by an abstract WSDL file.

A service may be supported on multiple types of transport bindings; each binding protocol
specifies its own headers. For example, HTTP supports a body and headers that specify
metadata that can be mapped to context parameters. The SOAP similarly defines a body
and headers that are different than HTTP headers. The JMS protocol defines headers and
allows developers to define application-specific properties. Typically, a client invoking a
service sets some headers. For example, browsers usually set the HTTP Locale and Referrer
headers.

Component implementations can read and set the values of context parameters and the
values can be used to control service operation logic. The operation behavior thus changes
according to the metadata. For example, consider a service that pays the agent that
referred a customer to a website. To track the referrer on a SOAP/HTTP binding, you would
specify a mapping from the HTTP Referrer header to a context parameter. If the service has
a JMS binding, you would specify a mapping from a JMS message property named
referencedBy to the same context parameter. When the incoming message is SOAP/HTTP,
the HTTP Referrer header is copied into the context parameter and when a JMS message
arrives, the referencedBy property is copied into the context parameter. The following
table lists the header sources for each binding type.

TIBCO ActiveMatrix® Service Grid Spring Component Development

60 | Spring Component Implementations

Binding Type Header Source

SOAP/HTTP HTTP Transport Header, HTTP Context, TCP Context, SOAP Header, SOAP
Fault

SOAP/JMS JMS Header, JMS Application Properties, SOAP Fault, SOAP Header

JMS JMS Header, JMS Application Properties

Header Source

Note: In the TIBCO ActiveMatrix platform, the context parameter key
com.tibco.security.userinformation is used to communicate security
context. It can be retrieved by a component from requestContext. However,
when invoking a reference this context parameter may be overwritten by a
policy agent before the SOAP binding maps it to a HTTP Transport Header or
JMS application property. Therefore, you cannot set this context parameter in a
component before invoking a reference.

The following sections list the headers available in each header source. The tables in each
section list which headers are available in service or reference bindings.

l From: XXX Binding To: Context applies to inbound messages received on either a
service ("in" part of "in-out" MEP) or a reference ("out|fault" part of "in-out" MEP)

l From: Context To: XXX Binding applies to outbound messages sent from either a
service ("out|fault" part of "in-out" MEP) or a reference ("in" part of "in-out" MEP)

HTTP Context

From: SOAP/HTTP Binding (WS-A = OFF) To: Context

Service HTTP-Method, HTTP-FileSpec, HTTP-Version

Reference HTTP-Status-Code, HTTP-Status-Message

TIBCO ActiveMatrix® Service Grid Spring Component Development

61 | Spring Component Implementations

From: SOAP/HTTP Binding (WS-A = ON) To: Context

Service HTTP-Method, HTTP-FileSpec, HTTP-Version

Reference None

TCP Context

From: SOAP/HTTP
Binding

To: Context

Service Local-TCP-Host, Local-TCP-Port, Remote-TCP-Host, Remote-TCP-
Port

Reference None

SOAP Fault

From: SOAP Binding (For Declared Faults) To: Context

Service None

Reference Role, Code

From: Context To: SOAP Binding (For Declared Faults)

Service Role, Code

Reference None

TIBCO ActiveMatrix® Service Grid Spring Component Development

62 | Spring Component Implementations

JMS Header

From: SOAP/JMS Binding To: Context

Service JMSCorrelationID, JMSDeliveryMode, JMSMessageID, JMSType

Reference None

From: Context To: SOAP/JMS Binding

Service None

Reference JMSCorrelationID, JMSDeliveryMode, JMSType

For information on how to create context parameters, see TIBCO ActiveMatrix® Service Grid
Composite Development.

The first time you add a context parameter to a service or reference wired to a Spring
component, an error badge is added to the Spring component and the error is reported in
the Problems view. When you resolve the error by updating the implementation, the
following is added to the abstract component implementation:

import org.osoa.sca.annotations.Context;
import
com.tibco.amf.platform.runtime.extension.context.ComponentContext;

/**
* Use this property to access the context parameters.
* Context parameters for this component are:
* parameterName : DIRECTION
*/
@Context
public ComponentContext componentContext;

For each successive parameter, no error badge is added to the component. To update the
list of context parameters in the comment, update the component implementation.

Methods defined on ComponentContext allow you to retrieve and set a RequestContext,
which in turn has methods for retrieving and setting the context parameters.

TIBCO ActiveMatrix® Service Grid Spring Component Development

63 | Spring Component Implementations

Working with Context Parameters
You can retrieve a context parameter from a request or from a response, and set a context
parameter in a request or a response.

Retrieving a Context Parameter from a Request

Procedure
1. Retrieve the request context:

import
com.tibco.amf.platform.runtime.extension.context.RequestContext;

RequestContext requestContext =

(RequestContext)componentContext.getRequestContext();

2. Retrieve the parameter from the request context:

requestContext.getParameter(parameterName, Type.class);

where Type can take the values String, Integer, Long, Boolean, Map, QName, and URI.

Setting a Context Parameter in a Request

Procedure
1. Create a mutable request context:

import
com.tibco.amf.platform.runtime.extension.context.MutableRequestCont
ext;
MutableRequestContext mutableRequestContext = componentContext.
createMutableRequestContext();

2. Set a parameter on the mutable request context:

mutableRequestContext.setParameter(parameterName,

TIBCO ActiveMatrix® Service Grid Spring Component Development

64 | Spring Component Implementations

Type.class,parameterValue);

3. Set the request context on the component's context to the mutable request context:

componentContext.setRequestContext(mutableRequestContext);

4. Invoke a reference.

Note: The componentContext.getRequestContext() function returns the
request context that corresponds to the last remotable service invocation
whereas componentContext.setContext() assigns the context that gets
used for the next downstream service invocation. For example, in the
following case, curCtx does not equal to newCtx but equals to oldCtx.

RequestContext oldCtx =
(RequestContext)componentContext.getRequestContext();
MutableRequestContext newCtx =
componentContext.createMutableRequestContext();
componentContext.setRequestContext(newCtx);
RequestContext curCtx =
(RequestContext)componentContext.getRequestContext();

Retrieving a Context Parameter from a Response

Procedure
1. Retrieve a callback context from the mutable request context:

import
com.tibco.amf.platform.runtime.extension.context.CallbackContext;

CallbackContext callbackContext
=mutableRequestContext.getCallbackContext();

2. Retrieve a parameter from the callback context:

callbackContext.getParameter(parameterName, Type.class);

TIBCO ActiveMatrix® Service Grid Spring Component Development

65 | Spring Component Implementations

Setting a Context Parameter in a Response

Procedure
1. Retrieve a mutable callback context from the original request context:

import
com.tibco.amf.platform.runtime.extension.context.MutableCallbackCon
text;

MutableCallbackContext mutableCallbackContext =
(MutableCallbackContext)requestContext.getCallbackContext();

2. Set a parameter on the mutable callback context:

mutableCallbackContext.setParameter(parameterName,
Type.class, parameterValue);

Distributed File System Example
A distributed file system component manages files based on the host address of the
machine on which the file was created. The address is tracked in a context parameter
named httpHost:

The file system component is invoked by SOAP clients through a service with a SOAP
binding and by a web application component.

l If a request comes through the SOAP binding, the context parameter is mapped to
the TCP remote host header by the SOAP binding:

l If the request originates from the web application, the parameter value is retrieved
from the HTTP request and manually set by the servlet implementing the web
application component:

TIBCO ActiveMatrix® Service Grid Spring Component Development

66 | Spring Component Implementations

String host = req.getRemoteHost();
MutableRequestContext mutableRequestContext =
componentContext.createMutableRequestContext();
mutableRequestContext.setParameter("httpHost", String.class, host);
componentContext.setRequestContext(mutableRequestContext);

The file system component retrieves the value of the context parameter as follows:

RequestContext requestContext = componentContext.getRequestContext();
String host requestContext.getParameter("httpHost", String.class);

Dynamic Binding Example
Application logic can depend on the value of the application and service name. In
particular, the application logic may be used to dynamically determine the target of a
reference invocation (also referred to as wire by implementation) in a mediation flow. The
following example illustrates how to retrieve the application and service name in a Spring
component that invokes a mediation component service, and set context parameters with
that data:

String appName = componentContext.getApplicationName();
String svcname = componentContext.getRequestContext().getServiceName();
MutableRequestContext mutableRequestContext
=componentContext.createMutableRequestContext();
mutableRequestContext.setParameter("ServiceName",
java.lang.String.class,svcname);
mutableRequestContext.setParameter("ApplicationName",

java.lang.String.class, appName);
componentContext.setRequestContext(mutableRequestContext);

The context parameters are then mapped in the mediation flow's Set Dynamic Reference
task property sheet as follows:

TIBCO ActiveMatrix® Service Grid Spring Component Development

67 | Spring Component Implementations

Endpoint References
If WS-Addressing is enabled on a SOAP binding, endpoint references are accessible from
within Spring component implementations. For information on enabling WS-Addressing
and endpoint references, see "WS-Addressing" in TIBCO ActiveMatrix® Service Grid
Composite Development.

Retrieving an Endpoint Reference

Before you begin
Enable the SOAP binding that delivers the message to the Spring component for WS-
Addressing to use reference parameters.

Procedure
1. Import context, endpoint reference, request context, wildcard extension, and URI

class definitions:

import
com.tibco.amf.platform.runtime.extension.context.ComponentContext;
import
com.tibco.amf.platform.runtime.extension.context.EndpointReference;
import
com.tibco.amf.platform.runtime.extension.context.RequestContext;
import
com.tibco.amf.platform.runtime.extension.context.WildCardExtension;
import java.net.URI;

2. Declare the component context:

@Context
public ComponentContext componentContext;

3. Retrieve the request context:

RequestContext requestContext =
(RequestContext)componentContext.getRequestContext();

4. Retrieve the endpoint reference:

TIBCO ActiveMatrix® Service Grid Spring Component Development

68 | Spring Component Implementations

EndpointReference<Element> endpointReference =
requestContext.getEndpointReference(Element.class);

5. Optionally retrieve the URI and reference parameters from the endpoint reference:

URI uri = endpointReference.getAddress().getURI();
WildCardExtension<Element> refElements =
endpointReference.getReferenceParameters();

Creating an Endpoint Reference

Before you begin
Enable the SOAP binding that delivers the message to the Spring component for WS-
Addressing to use reference parameters.
You must set an endpoint reference object before invoking a reference that is dynamically
wired to a service.

Procedure
1. Import context, endpoint reference, and URI class definitions:

import org.osoa.sca.annotations.Context;
import
com.tibco.amf.platform.runtime.extension.context.ComponentContext;
import
com.tibco.amf.platform.runtime.extension.context.EndpointReference;
import
com.tibco.amf.platform.runtime.extension.context.MutableRequestCont
ext;
import
com.tibco.amf.platform.runtime.extension.support.ElementEndpointRef
erence;
import
com.tibco.amf.platform.runtime.extension.support.ElementWildcardExt
ension;

2. Declare the component context:

TIBCO ActiveMatrix® Service Grid Spring Component Development

69 | Spring Component Implementations

@Context
public ComponentContext context;

3. Create an endpoint reference:

EndpointReference<Element> epr = new ElementEndpointReference
(targetURI);

4. Optionally create and set a list of parameters. For example:

String property1= "<property1 " + "xmlns=\"" + WSQName +
"\">value1</property1>";
String property2= "<property2 " + "xmlns=\"" + WSQName +
"\">value2</property2>";
List<Element> elements = Arrays.asList(

DOMUtils.getDOMNode(property1).getDocumentElement(),
DOMUtils.getDOMNode(property2).getDocumentElement());
ElementWildcardExtension refParams = new

ElementWildcardExtension(null, elements);
epr.setReferenceParameters(refParams);

5. Create a mutable request context object:

MutableRequestContext mctxt =
(MutableRequestContext)context.createMutableRequestContext();

6. Set the endpoint reference of the mutable context object:

mctxt.setEndpointReference(epr);

7. Set the request context of the component context to the mutable request context:

context.setRequestContext(mctxt);

import org.osoa.sca.annotations.Context;
import
com.tibco.amf.platform.runtime.extension.context.ComponentContext;
import
com.tibco.amf.platform.runtime.extension.context.EndpointReference;
import
com.tibco.amf.platform.runtime.extension.context.MutableRequestContext;

TIBCO ActiveMatrix® Service Grid Spring Component Development

70 | Spring Component Implementations

import
com.tibco.amf.platform.runtime.extension.support.ElementEndpointReferenc
e;
import
com.tibco.amf.platform.runtime.extension.support.ElementWildcardExtensio
n;
import java.net.URI;
import java.util.List;
import java.util.Arrays;
@Context
public ComponentContext context;
public static final String WSQName = "com.ws.base";
private void setEPR(URI targetURI) {

EndpointReference<Element> epr = new ElementEndpointReference
(targetURI);

String property1= "<property1 " + "xmlns=\"" + WSQName +
"\">value1</property1>";

String property2= "<property2 " + "xmlns=\"" + WSQName +
"\">value2</property2>";

List<Element> elements = Arrays.asList(
DOMUtils.getDOMNode(property1).getDocumentElement(),
DOMUtils.getDOMNode(property2).getDocumentElement());
ElementWildcardExtension refParams = new ElementWildcardExtension

(null, elements);
epr.setReferenceParameters(refParams);

MutableRequestContext mctxt = (MutableRequestContext)
context.createMutableRequestContext();

mctxt.setEndpointReference(epr);
context.setRequestContext(mctxt);
}

Referencing an External Spring Application

Procedure
1. Import the external Spring application into the workspace as a plug-in project.

a. Create a new plug-in project using the Plug-in Development > Plug-in from
existing JAR archives.

b. In the JAR selection screen, click Add External and select the external Spring

TIBCO ActiveMatrix® Service Grid Spring Component Development

71 | Spring Component Implementations

application JAR file.

c. Enter the plug-in properties and clear the Unzip the JAR archives into the
project checkbox.

2. Edit the external Spring application to export the packages referenced by the Spring
component implementation.

a. Expand the META-INF directory of the external Spring application plug-in
project.

b. Double-click MANIFEST.MF.

c. In the Manifest editor, click the Runtime tab.

d. In the Exported Packages area, click Add and select the Show non Java
Packages checkbox.

e. Select the library JAR file and click OK to add it.

3. Configure dependencies as described in Configuring Dependencies on External Java
Classes.

4. Edit the Spring Bean configuration file:

a. Add the import statement to the bean definition that points to the location of
the external Spring application configuration file:

<import resource="classpath:/location_of_external_springbean.xml">

b. Add the property tags from the external Spring application to the bean
definition:

<property name="propertyName" ref="BeanId_External">

5. Edit the Spring component's implementation class to delegate calls to the external
Spring application's classes.

The following example illustrates how to delegate calls from class HelloWorldPTImpl
to the external Spring class MyLegacyJavaClass:

public class HelloWorldPTImpl extends AbstractHelloWorldPTImpl {
/**
* Initialization of ReuseLegacySpringComponent component.

TIBCO ActiveMatrix® Service Grid Spring Component Development

72 | Spring Component Implementations

*/
private MyLegacyJavaClass legacyBean;
public void init() {
// Component initialization code.
// All properties are initialized and references are injected.
if(this.legacyBean !=null){

System.out.println("Legacy Bean Initilized...");
System.out.println(this.legacyBean.sayHello("World"));

} else {
throw new IllegalStateException("Injected bean is null");
}

}
/**
* Disposal of ReuseLegacySpringComponent component.
*/
@Destroy
public void destroy() {

// Component disposal code.
// All properties are disposed.

}
/**
* Implementation of the WSDL operation: sayHello */
public HelloResponseDocument sayHello(HelloRequestDocument

firstName) {
HelloResponseDocument

hrd=HelloResponseDocument.Factory.newInstance();
hrd.setHelloResponse(getLegacyBean().sayHello(

firstName.getHelloRequest()).toString());
return hrd;

}
public MyLegacyJavaClass getLegacyBean() {

return legacyBean;
}
public void setLegacyBean(MyLegacyJavaClass legacyBean) {

this.legacyBean = legacyBean;
}

}

TIBCO ActiveMatrix® Service Grid Spring Component Development

73 | Custom Features

Custom Features
A feature is a software package that contains plug-ins, which in turn contain component
implementations and libraries. A feature is identified by an ID, a multi-part version, and its
dependencies on other features. There are two types of features: system and shared
library.

System features are part of a TIBCO ActiveMatrix product or contain the drivers that are
installed using TIBCO Configuration Tool. Shared library features contain component
implementations and libraries. When you create a distributed application archive
containing a composite, you can package the composite's required features in the
application archive or you can package the features as a standalone distributed application
archive.

When you upload a distributed application archive containing a composite in Administrator
you can optionally import the features contained in the archive into the Administrator
software repository. When you deploy an application, the Administrator automatically
distributes the features (and any features that it depends on) to the host that manages the
nodes on which the application is distributed and installs the features on those nodes. You
can also manually install features on the other nodes managed by that host.

Version Numbers

A version number is a multicomponent number of the form major. minor. service.qualifier.
Changes in the value of each component reflect different types of changes in the versioned
object:

l major - Reflects breaking changes to the interface.

l minor - Reflects non-breaking changes in an externally visible way. Examples of
externally visible changes include binary compatible changes, significant
performance changes, major code rework, and so on.

l service - Reflects changes that are not visible in the interface. For example, a bug has
been fixed in the code, documentation has changed, compiler settings have changed,
and so on.

l qualifier - Identifies when and where the object was built or packaged.
When you create an object in TIBCO Business Studio - BPM Edition, the version is set to

TIBCO ActiveMatrix® Service Grid Spring Component Development

74 | Custom Features

"1.0.0.qualifier". If the qualifier component of a version is set to "qualifier" when you create
a DAA, TIBCO Business Studio - BPM Edition replaces "qualifier" with a generated qualifier
that defaults to a timestamp. You can customize the format of the generated qualifier by
specifying a qualifier replacement.

Version Ranges

Some fields require you to specify a version range. For example, a feature may have a
dependency on a range of versions of another feature. A version range is an interval
specified as: bracketlower limit, upper limitbracket, where bracket can be “[” or “]”, which
denotes an inclusive end of the range or “(” or “)”, which denotes an exclusive end of the
range. If one end of the range is to be included and the other excluded, the range can
contain a square bracket with a round bracket.

There are three common use cases:

l A strict version range, such as [1.0.0,1.0.0], denotes version 1.0.0 and only that
version.

l A half-open range, such as [1.0.0,2.0.0),which has an inclusive lower limit and an
exclusive upper limit, denotes version 1.0.0 and any later version, up to, but not
including, version 2.0.0.

l An unbounded open range expressed as a single number such as 2.0.0, which is
equivalent to the range [2.0.0, infinity), denotes version 2.0.0 and any later version.

A custom feature named compositeName.customfeature.id containing the component
implementation plug-in is created automatically when you generate a component
implementation. The custom feature file is stored in the Deployment Artifacts folder of
the SOA project.

Bundles and Plug-in Projects
A bundle is an OSGI mechanism for grouping Java classes into a modular, sharable unit. In
TIBCO Business Studio - BPM Edition, a plug-in project implements a bundle.

Plug-in properties, including the packages it exports and the objects on which it depends,
are described in the plug-in manifest. The manifest file is located in plug-
inFolderNameMETA-IF/MANIFEST.MF. The default editor for the file is a manifest editor
which displays OSGi headers in property sheets and in the MANIFEST.MF source view. The
following table summarizes the best practices you should follow when configuring plug-ins.

TIBCO ActiveMatrix® Service Grid Spring Component Development

75 | Custom Features

Property Manifest
Editor UI

OSGi Header
in Source
View

Best Practice

Unique
Identifier

Overview > ID Bundle-
SymbolicName

Give the plug-in a symbolic name that
follows Java package name
conventions. That is,
com.companyName.plug-inName.

Version Overview >
Version

Bundle-
Version

Follow the recommendations in
Versions.

Display Name Overview >
Name

Bundle-Name Give the plug-in an appropriate,
descriptive display name.

Dependencies Dependencies
>

Imported
Packages

Required Plug-
ins

Import-
Package

Require-
Bundle

l Express dependencies based on
the contents of the plug-in:

o For plug-ins that you create
or if you want tight control
of the dependency, specify
the dependency as a
required bundle. You can
(but are not required to)
indicate a perfect match to
a specific plug-in and build.
For example, when TIBCO
Business Studio -
BPM Edition generates a
component
implementation, the
component's dependency
on the plug-in containing
the component
implementation is
expressed as
[1.0.0.qualifier,1.0.0.qualifie
r].

Plug-in Project Best Practices

TIBCO ActiveMatrix® Service Grid Spring Component Development

76 | Custom Features

Property Manifest
Editor UI

OSGi Header
in Source
View

Best Practice

o For third-party plug-ins,
specify the dependency as
an imported package. To
allow packages to be
upgraded without requiring
plug-ins dependent on
those packages to be
upgraded, specify package
dependency ranges of the
form [x.y.z,x+1.0.0). That is,
up to, but not including the
next major version. For
example, [2.3.0, 3.0.0).

l Minimize or eliminate optional
imports.

Exported
Packages

Runtime >
Exported
Packages

Export-
Package

l Export only those packages
imported by other plug-ins.

l Put classes that are not exported
in packages that are not exported.

l Specify versions of all exported
packages.

l Import all exported packages,
with a range floor of the exported
package version, and a range
ceiling of the next major version
exclusive, per the range definition
above.

l If the classes in the exported
packages use other classes (for
example, they extend classes from
another package or the classes
appear in method signatures) add

TIBCO ActiveMatrix® Service Grid Spring Component Development

77 | Custom Features

Property Manifest
Editor UI

OSGi Header
in Source
View

Best Practice

the uses directive to the export
package definition.

Configuring Dependencies on External Java Classes
Java and Spring component implementations can use Java classes contained in a library
plug-in project in the same workspace as the component implementation. You must
configure the dependency in both the component implementation and component.

Procedure
1. Expand the META-INF directory of plug-in project containing the component

implementation.

2. Double-click MANIFEST.MF.

The manifest opens in the manifest editor.

3. Click the Dependencies tab.

4. Follow the appropriate procedure based on the dependency type.

Dependency
Type

Procedure

Plug-in a. Click Add to the right of the Required Plug-ins table.

b. Select the plug-in containing the referenced class.

c. Click OK.

For example, if you reference a temperature conversion plug-in
in a Spring component implementation, add
tempconversion.jv as a required plug-in:

TIBCO ActiveMatrix® Service Grid Spring Component Development

78 | Custom Features

Dependency
Type

Procedure

Package a. Click Add to the right of the Imported Packages table.

b. Click the referenced package.

c. Click OK.

For example, if you reference a logging class in a Spring
component implementation, add org.slf4j as an imported
package:

5. If the library plug-in is packaged and deployed separately from the component
implementation:

a. Open the composite.

b. Click the Spring component.

c. In the Properties view, click the Implementation tab.

d. Clear the Package Implementation Bundle with Application and Compute
Feature Dependencies checkboxes.

TIBCO ActiveMatrix® Service Grid Spring Component Development

79 | Custom Features

The Features Dependencies table displays.

e. In the Feature Dependencies table, click the feature that contains the library
plug-in.

f. Relax value of the version as described in External Library Dependencies.

Versions
A version is a property that controls how an object is treated at installation or deployment.
Versions are specified in TIBCO Business Studio - BPM Edition and cannot be modified in
Administrator.

The following objects have versions:

l Composites and application templates.

l Components - During application upgrade, Administrator compares component
versions to determine whether the component needs to be upgraded.

l Features

l Plug-ins

l Packages

Version Numbers

A version number is a multicomponent number of the form major. minor. service.qualifier.
Changes in the value of each component reflect different types of changes in the versioned
object:

l major - Reflects breaking changes to the interface.

l minor - Reflects non-breaking changes in an externally visible way. Examples of
externally visible changes include binary compatible changes, significant
performance changes, major code rework, and so on.

l service - Reflects changes that are not visible in the interface. For example, a bug has
been fixed in the code, documentation has changed, compiler settings have changed,
and so on.

l qualifier - Identifies when and where the object was built or packaged.
When you create an object in TIBCO Business Studio - BPM Edition, the version is set to

TIBCO ActiveMatrix® Service Grid Spring Component Development

80 | Custom Features

"1.0.0.qualifier". If the qualifier component of a version is set to "qualifier" when you create
a DAA, TIBCO Business Studio - BPM Edition replaces "qualifier" with a generated qualifier
that defaults to a timestamp. You can customize the format of the generated qualifier by
specifying a qualifier replacement.

Version Ranges

Some fields require you to specify a version range. For example, a feature may have a
dependency on a range of versions of another feature. A version range is an interval
specified as: bracketlower limit, upper limitbracket, where bracket can be “[” or “]”, which
denotes an inclusive end of the range or “(” or “)”, which denotes an exclusive end of the
range. If one end of the range is to be included and the other excluded, the range can
contain a square bracket with a round bracket.

There are three common use cases:

l A strict version range, such as [1.0.0,1.0.0], denotes version 1.0.0 and only that
version.

l A half-open range, such as [1.0.0,2.0.0),which has an inclusive lower limit and an
exclusive upper limit, denotes version 1.0.0 and any later version, up to, but not
including, version 2.0.0.

l An unbounded open range expressed as a single number such as 2.0.0, which is
equivalent to the range [2.0.0, infinity), denotes version 2.0.0 and any later version.

TIBCO ActiveMatrix® Service Grid Spring Component Development

81 | Default XML to Java Mapping

Default XML to Java Mapping
When you generate a Spring component implementation or XML data binding classes,
TIBCO Business Studio - BPM Edition maps WSDL and XSD schema elements to Java
programming language elements.

The following sections describe the default mappings of WSDL definitions, types,
portType, operation, message, part, and fault elements to Java.

Note: Generating implementations for two or more components in the same
Java plug-in project using different binding types is not supported.

Note: The payload for a xsd:gMonth datatype is converted incorrectly if you use
JAXB data binding.

wsdl:definitions

The wsdl:definitions element's targetNamespace attribute is mapped to a Java package.
By default, for a target namespace whose structure is: http://rootPart/subPart, the order of
the elements in the root part of the target namespace are reversed in the package name.
Subparts appearing after the root part separated by slashes are appended to the root part
with a period (.). For example, the namespace http://ns.tibco.com/StockQuote becomes the
package com.tibco.ns.stockQuote. If the first character of a namespace identifier is
invalid, the preprocessor prepends an underscore _ in front of the identifier.

wsdl:portType

A wsdl:portType element is mapped to a Java interface. The name of the interface is the
value of the name attribute of the corresponding wsdl:portType element.

The generated interface contains Java methods mapped from the wsdl:operation
subelements of the wsdl:portType element. Since WSDL 1.1 does not support port type
inheritance, each generated interface contains methods for all the operations in the
corresponding port type.

TIBCO ActiveMatrix® Service Grid Spring Component Development

82 | Default XML to Java Mapping

wsdl:operation
Each wsdl:operation element is mapped to a Java method in the corresponding Java
interface. The name attribute of the wsdl:operation element determines the name of the
generated method. If the wsdl:operation element contains a wsdl:fault message, the
fault is mapped to a Java exception that appears in the throws clause of the generated
method. See also wsdl:fault .

wsdl:output, wsdl:input, and wsdl:part

The name attribute of the part element of the wsdl:output message is mapped to the
return type of the generated Java method according to the XML data binding type as
follows:

l JAXB - name

l XMLBeans - nameDocument

The method for accessing components of request parameters and defining response
objects depends on the type of data binding you choose.

JAXB

The type or element attribute of the part element of the wsdl:input message is mapped
to the type of the input parameter of the generated Java method. The name attribute of the
part element of the wsdl:input message is mapped to the name of an input parameter of
the generated Java method.You can directly access components of a request parameter as
follows:

public AddPhoneResponse addPhone(AddPhoneRequest addPhoneParameters) {
...
String firstName = addPhoneParameters.getFirstName();
String lastName = addPhoneParameters.getLastName();
String phone = addPhoneParameters.getPhone();

To create a response object or a complex object defined in the WSDL document:

1. Import packageName.ObjectFactory, where packageName is the package name
generated from the WSDL document namespace.

2. Create an instance of ObjectFactory.

3. Create an object of type Type with the createType method.
For example:

TIBCO ActiveMatrix® Service Grid Spring Component Development

83 | Default XML to Java Mapping

import com.tibco.ns.hello.phonebook.ObjectFactory;
import com.tibco.ns.hello.phonebook.GetPhoneResponse;
...
ObjectFactory objectFactory = new ObjectFactory();
GetPhoneResponse phoneResponse = objectFactory.createGetPhoneResponse();

try{
...
PhoneEntryType entry = objectFactory.createPhoneEntryType();
while(rs.next()){

entry.setEntryId(rs.getString("id"));
entry.setFirstName(rs.getString("firstName"));
entry.setLastName(rs.getString("lastName"));
entry.setPhone(rs.getString("phone"));

}
}catch(SQLException e){

...
}
return phoneResponse;

Note: When implementing a JAXB-based Spring component service, users
typically form a response object in their service method, populate it with some
response data, and return it from the method. Such a returned object is then
marshaled into an XML (DOM) payload by the platform. While the platform code
is marshaling this payload, if the user code manipulates the contents of the
same object, the JAXB marshaller throws a
java.util.ConcurrentModificationException. Make sure the contents of the
response object returned from the service method are not modified by multiple
threads.

XMLBeans

There are two ways to specify the type of a message part: indirectly through an element
attribute that is defined in the wsdl:types element or directly with a type attribute. If you
use XMLBeans binding, the generated Java code depends on how you specify the types of
message parts.

When you define the types of the parts through the element, attribute classes named
ElementNameDocument, where ElementName is the input and output message type element
name with the first letter capitalized, are generated. The generated Java method accepts a
document type named ElementNameDocument. The generated method returns a document

TIBCO ActiveMatrix® Service Grid Spring Component Development

84 | Default XML to Java Mapping

type similarly named according to the element that specifies the type of the output
message part.

In the following WSDL document, the types of the message parts are defined through an
element attribute:

<wsdl:definitions
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ns.tibco.com/StockQuote/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://ns.tibco.com/StockQuote/">

<wsdl:types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="unqualified"

elementFormDefault="qualified"
targetNamespace="http://ns.tibco.com/StockQuote/">

<xs:element name="symbol" type="xs:string"/>
<xs:element name="quote" type="xs:float"/>

</xs:schema>
</wsdl:types>
<wsdl:message name="OperationRequest">

<wsdl:part name="stockQuoteRequest" element="tns:symbol"/>
</wsdl:message>
<wsdl:message name="OperationResponse">

<wsdl:part name="stockQuoteResponse" element="tns:quote"/>
</wsdl:message>
<wsdl:portType name="StockPT">

<wsdl:operation name="getQuote">
<wsdl:input message="tns:OperationRequest"/>
<wsdl:output message="tns:OperationResponse"/>

</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

The following code fragment shows the generated Java class implementation:

import com.tibco.stockQuote.SymbolDocument;
import com.tibco.stockQuote.QuoteDocument;

public class StockQuoteServiceImpl extends AbstractStockQuoteServiceImpl
{

public QuoteDocument getQuote(SymbolDocument stockQuoteRequest)
{

String sym = stockQuoteRequest.getSymbol();
float quote = quoteLookup(sym);

TIBCO ActiveMatrix® Service Grid Spring Component Development

85 | Default XML to Java Mapping

QuoteDocument response = QuoteDocument.Factory.newInstance();
response.setQuote(quote);
return response;

}
}

The relationships between the message part, message part type, message type element,
and document type are:

Message Part Type Element Document Type

stockQuoteRequest xs:string tns:symbol SymbolDocument

stockQuoteResponse xs:float tns:quote QuoteDocument

The value of the request message part is retrieved from the document using bean-style
accessors. In the example, the stock symbol is retrieved from the SymbolDocument object
with the getSymbol method.

You create a response document, of type QuoteDocument, by calling the newInstance
method of the document factory class. Finally, you set the value of the response message
part by calling the setQuote method on the response document.

In the following WSDL document, the types of the message parts are specified through a
type attribute:

<wsdl:definitions
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ns.tibco.com/StockQuote/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
name="Untitled" targetNamespace="http://ns.tibco.com/StockQuote/">

<wsdl:message name="OperationRequest">
<wsdl:part name="symbol" type="xs:string"/>

</wsdl:message>
<wsdl:message name="OperationResponse">

<wsdl:part name="quote" type="xs:float"/>
</wsdl:message>
<wsdl:portType name="StockPT">

<wsdl:operation name="getQuote">
<wsdl:input message="tns:OperationRequest"/>
<wsdl:output message="tns:OperationResponse"/>

TIBCO ActiveMatrix® Service Grid Spring Component Development

86 | Default XML to Java Mapping

</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

For this WSDL document, the generated Java code references the message parts directly,
instead of through documents. However, the types of the message parts are XMLBeans
types, which means that you must use the XMLBeans API to access the XML data bound to
Java objects and convert between XMLBeans types and native Java types in your method
implementation. To perform this conversion, you use [get|set]TypeValue methods, where
Type is the native Java type. Like the document types described earlier, you create
XMLBeans objects by calling the newInstance method of the type’s Factory class.

import org.apache.xmlbeans.XmlFloat;
import org.apache.xmlbeans.XmlString;

public class StockQuoteServiceImpl extends AbstractStockQuoteServiceImpl
{

public XmlFloat getQuote(XmlString symbol){
float quote = quoteLookup(symbol.getStringValue());
XmlFloat resp = XmlFloat.Factory.newInstance();
resp.setFloatValue(quote);
return resp;

}
}

wsdl:fault

A wsdl:fault element is mapped to a Java exception. The generated exception class
extends the class java.lang.Exception. The name of the exception is formed by
concatenating the name attribute of the wsdl:message referenced by the wsdl:fault
element with Exception. For the following WSDL fragment, the exception class would be
named GetCurrentTimeFaultMsgException.

<schema>
...
<element name="CurrentTimeFault" type="string"/>
...
</schema>
<wsdl:message name="getCurrentTimeFaultMsg">

<wsdl:part element="tns:getCurrentTimeFault" name="faultInfo"/>

TIBCO ActiveMatrix® Service Grid Spring Component Development

87 | Default XML to Java Mapping

</wsdl:message>
<wsdl:portType name="DateManagerPT">

<wsdl:operation name="getCurrentTime">
<wsdl:input message="tns:OperationRequest"/>
<wsdl:output message="tns:OperationResponse"/>
<wsdl:fault message="ns0:getCurrentTimeFaultMsg" name="faultMsg"/>

</wsdl:operation>
</wsdl:portType>

XMLBeans

A fault object named faultDocument is generated, where fault is the type of the fault
message's part. For the preceding WSDL fragment,the fault object would be named
GetCurrentTimeFaultDocument.

TIBCO ActiveMatrix® Service Grid Spring Component Development

88 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO ActiveMatrix® Service Grid
Product Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://support.tibco.com/
https://support.tibco.com/

TIBCO ActiveMatrix® Service Grid Spring Component Development

89 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/

TIBCO ActiveMatrix® Service Grid Spring Component Development

90 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix, Business Studio, Enterprise Message Service,
and Hawk are either registered trademarks or trademarks of Cloud Software Group, Inc. in the United
States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO ActiveMatrix® Service Grid Spring Component Development

91 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Spring Components
	Creating a Spring Component
	Updating a Spring Component
	Component Feature Dependencies
	Spring Component Reference

	Spring Component Implementations
	Spring Bean Configuration Files
	Data Binding
	Generating XML Data Binding Classes
	Data Binding Classes for Abstract and Concrete WSDL Files
	XML Data Binding Reference

	Opening a Spring Component Implementation
	Opening a Spring Bean Implementation
	Generating a Spring Component Implementation
	Regenerating a Spring Component Implementation
	Generate Spring Component Implementation Reference
	Life Cycle Events
	Component Context
	Accessing a Property
	Accessing a Resource
	Accessing a Hibernate Resource
	Accessing a JDBC Resource
	Accessing JMS Resources
	Accessing LDAP Connections
	Accessing SMTP Connections
	Accessing a Teneo Resource

	Invoking an HTTP Request
	Post Example

	Invoking a Reference Operation
	Error Handling
	Example WSDL File
	SOAPException Reference

	Context Parameters
	Working with Context Parameters
	Retrieving a Context Parameter from a Request
	Setting a Context Parameter in a Request
	Retrieving a Context Parameter from a Response
	Setting a Context Parameter in a Response
	Distributed File System Example
	Dynamic Binding Example

	Endpoint References
	Retrieving an Endpoint Reference
	Creating an Endpoint Reference

	Referencing an External Spring Application

	Custom Features
	Bundles and Plug-in Projects
	Configuring Dependencies on External Java Classes

	Versions

	Default XML to Java Mapping
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

