TIBCS

TIBCO ActiveMatrix® Service Grid
REST Binding Development Guide

Version 3.4.3 | February 2025

@ CLOUd Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

2 | Contents

Contents

CONteNtS 2
TIBCO ActiveMatrix Binding Type for REST Overview ... 5
REST Binding Type Key Terms 5
REST Binding Type USage ... 7
REST Binding Type Key Features ... 8
Easy-to-Use Configuration GUI ... 8
Message Exchange Patterns ... 9
Error Handling ... 9
Complex XSD Constructs Mapping Rules ... 10
REST Binding Development 12
Payload Generation ... 12
Generating XML Payloads ... 12
Generating Badgerfish JSON Payloads ... 13
Overriding Media Types (For Service Only) ... 13
Configuring REST Bindings ... 14
Generating a Swagger JSON File from TIBCO Business Studio - BPM Edition ... 16
Overview of the Swagger JSON File 17
Sample Swagger JSON File ... 18
Sending and Consuming HTTP Headers ... 21
Creating and Mapping Context Parameters 22
For REST Service Binding 23
For REST Reference Binding ... 26
Mapping HTTP Status Code and Status Message ... 28
Modifying a REST Resource Configuration File ... 28
Policies SUPPOIrted . 32

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

3| Contents

Sample Projects 33
Executing the Bookstore Sample 34
Importing the Bookstore Sample Project 34
Reviewing the WSDL that Defines the Service Interface ... 35
Reviewing the Composite Configuration 36
Running the Bookstore Sample 37
Executing the MultipleComplexTypes Sample ... 37
Importing the MultipleComplexTypes Sample Project ... 38
Reviewing the Mediation Flow ... 38
Running the MultipleComplexTypes Sample ..., 39
Executing the Bookstore Client Sample (Reference) ... 40
Importing the Bookstore Client Sample Project ... 40
Reviewing the REST Resource Configuration File That Defines the REST Service
INterface . 41
Running the Bookstore Client Sample ... 41
Executing the Facebook Client Sample (Reference) ... 41
Importing the Facebook Client Sample Project 42
Running the Facebook Client Sample ... 42
Executing the Pass-Through Mode Sample (Reference) ... 43
Executing the rest.context Sample 44
Running the rest.context Example ... 45
Breakdown of the rest.context Scenario ... 46
REST-Java-REST: Success Scenario of REST-Java ... 47
REST-Java-REST: Fault Scenario of REST-Java ... 49
Executing the rest.extendedJSONConversion Sample ... 50
Running the rest.extendedJSONConversion Example ... 52
REST-Java-REST: Runtime Node Logs for Rest-Java ... 54
Limitations .. 58
General Limitations ... 58
Validation Limitations 59
Service Limitations ... 59

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

4| Contents

Schema Limitations 60
Troubleshooting 61
TIBCO Documentation and Support Services ... 63
Legal and Third-Party Notices 65

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

5 | TIBCO ActiveMatrix Binding Type for REST Overview

TIBCO ActiveMatrix Binding Type for REST
Overview

TIBCO ActiveMatrix Binding Type for REST allows you to map SCA services to REST, so that
thin-clients such as scripting, mobile, and Web clients can directly invoke these services.

TIBCO ActiveMatrix Binding Type for REST makes client development simpler and cheaper
by not requiring a SOAP stack on the client side. Clients can use HTTP methods such as
GET, POST, PUT, and POST with XML or JSON to invoke backend SCA services. During
configuration, you can choose the XML, JSON, or BJSON media type in TIBCO Business
Studio™ - BPM Edition.

When you configure a SOAP service, WSDL becomes the contract between service provider
and consumer. In contrast, REST service providers do not use WSDL but use out-of-band
mechanisms such as sample payloads to communicate with REST service consumers. This
release of TIBCO ActiveMatrix Binding Type for REST does not include tools for generating
these payloads but includes an example and documentation.

REST Binding Type Key Terms

HTTP Connector, Context Root, Media Type, Path Parameters, and Query Parameters are a
few key terms used while discussing about the TIBCO ActiveMatrix Binding Type for REST.

For a discussion of general TIBCO ActiveMatrix® Service Grid terms, see the ActiveMatrix®
Service Grid documentation. The following list presents the key terms for the TIBCO
ActiveMatrix Binding Type for REST.

HTTP Connector

Name of the HTTP Connector resource instance that provides the HTTP transport for
Binding Type for REST. Both HTTP and HTTPS are supported. The default is HTTP. You
define and name the HTTP Connector at the design-time. At runtime, you need to create
a resource of the type HTTP Connector and assign it the name you used at the design-
time.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

6 | TIBCO ActiveMatrix Binding Type for REST Overview

Context Root

Defines the base path for the URLs exposed by the REST binding.

Media Type

Format of the payload that ActiveMatrix Binding Type for REST accepts and produces.
On the reference side, XML and standard JSON are supported. On the service side, XML,
Standard JSON, and Badgerfish JSON are supported.

Path

You can specify Path as part of the configuration. Path can be any URI on which a given
operation can be exposed.

Path Parameters
Path parameters can be configured on the service side and reference side.

On the service side, path parameters should map to the part name defined in the WSDL.
Path parameters can be defined on the operation by using the Path field in the Ul. For
example, if you want to invoke a backend service operation getBookByTitle(title),
you can configure the path as /book/{title}. Path parameters are supported by parts
that are simple types. On the reference side, path parameters can be configured by
adding them in the 'Resource Path' field (for example, '/{<pathParameter1>}'). For the
above getBookByTitle(title) operation, 'title' can be added as a path parameter
using the syntax: /book/{title}. Here, /book is the Resource Path and /{title} is the
Path parameter.

Query Parameters
Query parameters can be configured on the service side and reference side.

On the Service side, query parameters are not configured as part of the path for the
operation. TIBCO ActiveMatrix Binding Type for REST expects that the query parameter
name matches the part name of the WSDL operation. If you want to use a query
parameter, the part name must be a simple type such as string, boolean, int, and so on.

On the reference side, you can configure query parameters by adding them in the
"Request Parameters" section of the REST Resource Configuration file.

o Note: You cannot add Content-Type oOr Accept as a Request Parameter.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

7 | TIBCO ActiveMatrix Binding Type for REST Overview

REST Binding Type Usage

TIBCO ActiveMatrix Binding Type for REST allows you to integrate your SCA services with
clients that use HTTP instead of SOAP to invoke services.

ActiveMatrix service development typically starts with WSDL, which defines the service
interfaces. Developers expose SOAP or JMS services by adding SOAP or JMS bindings on a

promoted component service.

TIBCO ActiveMatrix Binding Type for REST allows you to expose those services as REST
services that can consume Badgerfish JSON, Standard JSON, or XML. You can add multiple
bindings and multiple types of bindings on the same composite service. That means the
same service can expose SOAP, JMS, and REST interfaces to service consumers at the same

time.
Typical use cases include the following.
» Mobile clients have to consume an ActiveMatrix SCA service.
» Web clients or scripting clients (thin clients) participate in SCA.

e Mashups or websites have to expose services as APIs.

The REST bindings are especially helpful in the following situations.
* Mobile devices need to interact with back-end applications and services.

» Mobile application developers find it difficult to program the SOAP stack on the client
side.

» Developers use modern scripting languages like JavaScript and Ruby, which provide
first-class support for JSON and XML processing.

In these cases, TIBCO ActiveMatrix Binding Type for REST allows the clients to easily invoke
ActiveMatrix SCA services.

If you want to expose existing services, you might have to use mediation. When an existing
ActiveMatrix service is using WSDLs with multiple parts of complex type, the mediation
service can normalize the WSDL to have a single part of complex type. See Executing the
MultipleComplexTypes Sample.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

8 | TIBCO ActiveMatrix Binding Type for REST Overview

REST Binding Type Key Features

Using a configuration GUI and a robust error handler, TIBCO ActiveMatrix Binding Type for
REST allows users to map SCA services as REST services and also allows users to consume
a REST service using a REST reference.

Easy-to-Use Configuration GUI

TIBCO ActiveMatrix Binding Type for REST provides a custom binding palette to add,
configure, and remove a REST binding using the TIBCO Business Studio.

This easy-to-use interface simplifies configuration. You can add, edit, or remove bindings.
In addition, you can perform the following tasks specific to a service or a reference:

For a Service
e Specify a name, context root, HTTP connector, and media type for the binding.
» Configure the operation to use one of the supported HTTP methods.

© Use HTTP GET or HTTP DELETE when the target WSDL operation has parts
(single or multiple parts) of simple type.

© Use HTTP POST or HTTP PUT to send XML, Standard JSON, and Badgerfish
JSON payloads. Only one complexType is allowed when the input message is a
multi-part message. Use a mediation component if your source has multiple
complex types.

* Use a mediation component if you have to map a WSDL that uses multiple parts of a
complex type. See Complex XSD Constructs Mapping Rules.

* You can choose Standard JSON, Badgerfish JSON, or XML as the media type.

o Standard JSON: TIBCO ActiveMatrix Binding Type for REST can consume and
produce JSON as defined by the standard convention.

o Badgerfish JSON: TIBCO ActiveMatrix Binding Type for REST can consume and
produce JSON as defined by the Badgerfish convention. Badgerfish JSON is
being used because it maps XML constructs such as namespaces to JSON.

° XML: TIBCO ActiveMatrix Binding Type for REST can consume and produce XML.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

9 | TIBCO ActiveMatrix Binding Type for REST Overview
The XML payload must be schema-compliant.

For a Reference

Specify a name, description, REST resource configuration file, HTTP Client, enable or
disable Pass Through Mode.

For more information on modifying the REST resource configuration file, see Modifying a
REST Resource Configuration File.

Message Exchange Patterns

Clients of TIBCO ActiveMatrix Binding Type for REST can invoke backend services that are
exposing IN-ONLY or IN-OUT message exchange patterns using HTTP operations (GET, PUT,
POST, and DELETE).

For a Service

* IN-ONLY operations return HTTP code 200 OK for success or an HTTP error code in
case of failure.

e IN-OUT operations return a response or a fault in the HTTP body for success or
failure. An HTTP error code is returned for protocol errors.

For a Reference

Configuring the Out-Only operation in the REST Resource Configuration file results in the
addition of the dummy query parameter naming 'AmxIinOutBoolean’' for that operation.

Error Handling

The TIBCO ActiveMatrix Binding Type for REST returns an error in the response body in
case there is fault in a request or a component.

TIBCO ActiveMatrix Binding Type for REST handles errors as follows:

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

10 | TIBCO ActiveMatrix Binding Type for REST Overview

Service

e System errors such as invalid requests are returned as protocol errors, that is, HTTP
error codes.

* When a wired service returns a SOAP fault, the REST binding returns a 200 0K code
by default. A fault message is returned as a response body.

e The component that implements the WSDL service can override the HTTP response
code by using a context parameter named HTTP_RESP_CODE. This parameter is of type
int.

If a component throws an undeclared-fault or a runtime exception, TIBCO
ActiveMatrix Binding Type for REST returns an Internal Server Error with HTTP Code
500 and an HTTP_RESP_CODE. If any context variables are set, they are ignored.

Reference

* All errors for a specific operation can be configured in the REST resource
configuration file.

* Implementation Type consuming REST reference can receive HTTP Status Code and
Status Message of the response received using Context Parameters.

Direction: Output
Data Type: Int (for statusCode) and String (for Status Message)

Header Name: statusCode (for HTTP Status Code) / statusMsg (for HTTP Status
Message)

Context Parameter Name: statusCode (for HTTP Status Code) / statusMsg (for HTTP
Status Message)

Complex XSD Constructs Mapping Rules

If backend services are using complex XSD constructs for WSDL operation signatures, such
as multiple parts with complex types, you can use a mediation component between the
Implementation Type for REST component and the backend component.

Follow these rules when mapping WSDL operation arguments (message parts) to HTTP
operations.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

11 | TIBCO ActiveMatrix Binding Type for REST Overview

e Multi-part Operation

° Simple types, or built-in simple XSD types such as string, float, boolean,
integer, and so on, must be passed as query or path parameters.

° The name of the query parameter or path parameter must match the part
name.

o Complex types, such as xsd:complexType must be passed as the HTTP body.

TIBCO ActiveMatrix Binding Type for REST supports backend WSDL operations
with only one part of complexType in the operation signature for multipart
WSDL.

Executing the MultipleComplexTypes Sample illustrates how to use mediation
to expose a multi-part WSDL to REST clients.

e Single-part Operation

o Simple types, or built-in simple XSD types such as string, float, boolean,
integer, and so on, must be passed as query or path parameters.

° Complex types, such as xsd:complexType must be passed as the HTTP body.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

12 | REST Binding Development

REST Binding Development

Create and configure a binding for REST with TIBCO Business Studio - BPM Edition and
package the binding into a distributed application archive (DAA).

TIBCO Business Studio - BPM Edition is a standards-based, unified business process
modeling and development environment for modeling, developing, and deploying business
process applications. TIBCO ActiveMatrix Binding Type for REST is integrated with TIBCO
Business Studio - BPM Edition so you can configure and test the REST bindings from there.

For more information about TIBCO Business Studio - BPM Edition, see the Workbench User
Guide in the Workbench online help. To view the online help, select Help > Help Contents.

After you configure and test the REST binding, you can create and deploy a distributed
application archive from your project. For more information, see the ActiveMatrix Service
Grid documentation.

Payload Generation

TIBCO ActiveMatrix Binding Type for REST supports XML, Standard JSON, and Badgerfish
JSON payloads. You can generate an XML file from a WSDL file, and then using a tool
included with TIBCO ActiveMatrix Binding Type for REST, you can generate a Badgerfish
JSON payload.

Generating XML Payloads

Generate an XML file based on where the part types definitions are defined.

e Part types are defined in the XSD, imported from WSDL.
Right-click the .xsd file and select Generate > XML file.

» Part types are defined in WSDL.

In Eclipse, make a copy of the WSDL and change the extension to .xsd. Or, right-click
the .xsd file and select Generate > XML file.

The generated XML file is a valid XML payload for methods exposed over HTTP POST.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

13 | REST Binding Development

Generating Badgerfish JSON Payloads

You can generate the payload for JSON with xmltojsontool, included in the installation.

Procedure
1. Go to TIBCO_HOME/amx/<version_number>/samples/rest/tools.

2. Run xmltojsontool. You pass in the XML file that you generated from Eclipse, see
Generating XML Payloads.

Result
For more information, see the readme of the tool.

Overriding Media Types (For Service Only)

You can override the media types to be consumed or produced by using HTTP headers.

The Media Type configured in the Ul serves as the default media type for both the HTTP
Request body content type and for the HTTP Response body content type.

Note: You need to specify this information only if your REST client has to
override the media type on a per message basis. In most cases, the configuration
specifies the media type that is used throughout the application.

Override the content type based on the message type.

Option Description
Request Set the Content-Type header in the HTTP RequestClients to override the
request body content type. The values are:
e Content-Type: application/json
e Content-Type: application/xml

e Content-Type: application/bjson

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

14 | REST Binding Development

Option Description
Response Set the Accept header in the HTTP RequestClients to override the response
content type. The values are:
e Accept: application/json
e Accept: application/xml

e Accept: application/bjson

Configuring REST Bindings

Specify various details after adding the REST binding type to the composite service or
reference using TIBCO Business Studio - BPM Edition.

Before you begin
Install all four profiles of ActiveMatrix Service Grid or ActiveMatrix Service Bus.

You can add a REST binding to the composite service or reference from the TIBCO Business
Studio - BPM Edition Composite Editor.

Procedure

1. Import an existing project or create a new project in TIBCO Business Studio -
BPM Edition. See the ActiveMatrix Service Grid documentation set.

2. Add a REST binding from the canvas view or the properties view.

Option Description

Canvas view Right-click the service or reference and select Add > REST Binding
from the popup menu.

Properties Click the service or reference on the canvas.
view e In the Properties view, click the Bindings tab.

e Click Add Binding.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

15 | REST Binding Development

3. Select the service or reference and display its properties.

4. For a promoted service, specify the following details in the right pane of the
Properties view.

Option Description

Name Name of the REST binding.

HTTP HTTP Connector and Context Root together define the URL that is
Connector used at runtime.

You define and name the HTTP Connector at the design-time. At
runtime, you need to create a resource of the type HTTP Connector
and assign it the name you used at the design-time.

Context Root HTTP Connector and Context Root together define the URL that is
used at runtime.

Media Type Select Standard JSON, Badgerfish JSON, or XML from the pull-down
menu to specify the media type for the request or the response
message.

Exclude Excludes namespaces from the response message.

namespaces

This option is displayed only when Media Type is set to Badgerfish

from response
JSON.

5. For a promoted reference, specify the following details in the right pane of the
Properties View.

Option Description

Name Name of the REST binding.

Description Short description of the REST binding.

Media Type (read-only field). The media type can be set from the REST resource

configuration file.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

16 | REST Binding Development

Option
Rest resource

configuration
file

HTTP Client

Enable pass
through mode

Description

Location of the REST resource configuration file.

A resource configuration file is not set by default. To create a
resource configuration file, click the -not set- link or click the picker
icon, and then click Create New. When you click Finish in this
wizard, a new resource configuration file (.rrc) is created with the
default media type (JSON) and resource base URI.

Note: The .rrc file must be placed in the Service Descriptor folder
of the SOA project.

Select the HTTP client.

Enables the pass through mode. In the pass through mode, a fixed
WSDL is configured on the REST binding. In the pass through mode,
ActiveMatrix Binding Type for REST behaves like the HTTP Binding

Type.

Generating a Swagger JSON File from TIBCO
Business Studio - BPM Edition

Swagger is a set of open-source tools that can help you design, build, document, and
consume REST APIs. Swagger scans the application code and exposes the documentation
on the URL. You can consume this URL (a JSON document) to understand the capabilities
of the REST service without accessing the actual source code and documentation. You can
now generate a Swagger.json file from TIBCO Business Studio - BPM Edition as mentioned

in the following steps.

Procedure

1.
2.
3.

Click a promoted service.

In the Properties view, click the Bindings tab.

Select REST binding.

. In the right pane of the Properties view, click the Generate Swagger link at the

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

17 | REST Binding Development

bottom. The Swagger Generation dialog displays.

Seqoe Ul 10 e I AN A ol oo B > || 100% " B &
5 Project Explorer & 4 " & *“test.composite =
@ test — o .fPalcttE
’r & Compon..
Sarp. ™ Reference
T #) Swagger Generation u] x ® Sonvice
Swagger Generation & sz
Property
Select location for the concrete Json file.
& Compon..
Sprin:
Enter o select the parent folder: et
5 % WebApp
test/Service Descriptors &
| Composits
~ B test I
® Mediation

& Composites
3 Deployment Artifacts
Mediation Flows.

& Resource Templates
& Service Descriptors

File name:

I Properties * & Problgms MDAt Saurce BXploTer

= Promoted Service

General v \ﬁ\rtuahzatmn] ~ REST Binding
— Bindings R Intents » -
== Outline : § T % Policy Sets Name: RESTService_Binding1
% ~ & RESTService_Binding1 2 HTTP Connector: | httpConnector
ppearance g
® NewOperation Context Root: | /Sample
* Context Parameter Mappin
i ; k) x| MediaType: Standard JSON v
% Intents.
& Policy Sets
nerate S 3 RESTService Binding1' binding

5. Enter or select the parent folder field. Accept the default folder or select a new one.

6. In the File name field, accept the default name (swagger_gen.json) or type a new
one.

7. Click Next. The Concrete JSON Settings screen displays.

8. Accept the default values of host, port, and scheme. Optionally, you can enter new
values. Click Finish.

A Swagger JSON file is generated in the parent folder and the file is opened in the
editor.

Overview of the Swagger JSON File

The swagger.json file is a specification file that describes the REST APIs in accordance
with the Swagger specification. The file describes details such as available endpoints,
operations on each endpoint, input and output parameters for each operation,
authentication methods, and other information.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

18 | REST Binding Development

The swagger.json file can be written in YAML or JSON.

For a sample file, see Sample swagger.json File.

Basic Structure of a File

For more information on the basic structure of the swagger.json file, refer to
http://docs.swagger.io/spec.html#52-api-declaration.

The Swagger representation can be specified in a single file or split into separate files, at
your discretion. If it is split across files, you can use $ref fields in the specification to
reference parts in different files. For more information on the $ref field, refer to
https://swagger.io/docs/specification/using-ref.

Required Fields

For a complete list of all the objects and fields that can be defined in the swagger.json
file, refer to https://github.com/OAl/OpenAPI-Specification/.

Sample Swagger JSON File

A sample Swagger . json file of the BookStore example is available in <TIBCO_
HOME>/amx /3.4 /samples/rest/samples/bookstore/.

An overview of the fields from the sample Swagger.json file is provided below. For a
complete list of all the objects and fields that can be defined in the swagger.json file, refer
to https://github.com/OAI/OpenAPI-Specification/.

Field Name Description

swagger Specifies the Swagger Specification version being used. For example:
"swagger" : "2.0"

info Provides metadata about the API. For example, the Application API version,

title, and port type of service.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

http://docs.swagger.io/spec.html#52-api-declaration
https://swagger.io/docs/specification/using-ref
https://github.com/OAI/OpenAPI-Specification/
https://github.com/OAI/OpenAPI-Specification/

19 | REST Binding Development

Field Name Description

"info"

{"version" : "1.0",
"title":"com.tibco.restbt.sample.bookstore",
"description" :

"Port Type:BookStoreResource"}

basePath The base URL of the server. All APl endpoints are relative to the base URL.
The base URL is of the following format:

scheme://host[:port][/path] [parameters]

Some examples are:

http://localhost:8080/bookstore/books
http://localhost:8080/bookstore/books/{title} (with path
parameters)
http://localhost:8080/bookstore/books?storename=demo (with
query parameters)

host The host of the Service. For example:
"host" : "localhost:9009"
schemes The type of the security scheme supported for authentication. For example:

"schemes" : ["http"]

paths The relative paths to the individual endpoints and their operations. The
path is appended to the base URL to construct the full URL.

tags A list of tags applicable for the operation. Tags can be used for logical
grouping of operations. For example:

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

20 | REST Binding Development

Field Name

description

operationId

produces

consumes

parameters

responses

Description

"tags" : ["BookStoreResource"]

An explanation of the operation.

"description" : "getBookList"

A unique string used to identify the operation. For example:

"operationId" : '"getBookList"

A list of MIME types the operation can produce. For example:

"produces" : ["application/json", "application/bjson",
"application/xml"]

A list of MIME types the operation can consume. For example:

"consumes" : ["application/json", "application/bjson",
"application/xml"]

A list of parameters that are applicable for the operation. For example:

"parameters" : [{

"name" : "storename",

"description" : "getBookListRequest",

"schema" : {
"description" : "getBookList",
lltypell : llstr-i ngll

I

ll-inll : llqueryll

3]

A list of possible responses returned by executing the operation. For

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

21 | REST Binding Development

Field Name Description
example, a successful response is:

"responses" : {

"ee" {
"description" : "Successful Response",
"schema" : {

"$ref" : "#/definitions/getBookListResponse"

}

}

}

sref Refer to other components in the specification, internally and externally.
For example:

"Sref" : "#/definitions/getBookListResponse"

Sending and Consuming HTTP Headers

You can send and consume HTTP headers from the REST operation invocations, using
context parameters on REST reference and service bindings. The values populated by the
REST binding map HTTP Transport headers to context parameters.

In the case of REST reference bindings, using context mapping, the values set by the
Implementation type can be sent as HTTP Headers as part of the REST request. Also, the
HTTP Headers received as part of the REST response, can be made available to the
Implementation Type.

In the case of REST service bindings, using context mapping, the values of the HTTP
Transport Headers can be made available to the Implementation Type (for example, Java
IT). Also, the values set by the Implementation Type can be sent as HTTP Transport
Headers as part of the REST response.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

22 | REST Binding Development

o Note: The Content-Type or Accept headers are not supported in the context
parameters and the REST Resource Configuration (RRC) file. That is, you cannot
add a context parameter with the name as Content-Type or Accept. In the RRC
file, you cannot add Content-Type or Accept as a Request Parameter.

For details on configuring the Inbound, Outbound, and Fault messages for service and
reference, refer to the following sections. A sample project is provided as part of the
installation in TIBCO_HOME/amx/<version>/samples/rest/samples/rest.context to
elaborate on the same. Refer to the /rest.context/Readme.pdf for details.

Creating and Mapping Context Parameters

You can add context parameters to REST bindings in the Context Parameters section of the
General tab.

Procedure

1. Navigate to the General tab > Context Parameters section of a Promoted Service or
Reference.

2. Add a new Context Parameter. Select one or more Operations it applies to, the
Direction (Input, Output or Fault), and the Type (Basic or Bag). For Basic Context
Parameters, select a Definition, to describe the data type of the parameter.

[Properties 3, . Problems [Data Source Explorer | ' Search oo =10
= Promoted Service
General Name: |RESTServicel
Bindings WSDL Interface
Policies

Port Type: © BookStoreResource - http://ns.tibco.com =%
Appearance

WSDL Location: /com.tibco.restbt.context.sample.soa/Service Descriptors /BookStoreResource.wsd|

~ Context Parameters

Name ‘Operations Direction Type Definition

[lbookNamecP

@ bookIDCP getBookList Input Basic int [®]

@ requestHeadersAllCP getBookList Input Bag
@ bookCategoryCP getBookList Output Basic
@ bookQuantityCP getBookList Output Basic
@4 responseHeadersAllCP getBookList Output Bag

@ notFoundBookIDCP getBookList Fault : bookNotFound Basic string

string
int

» Advanced

For instance, bookNameCP is a Basic string context parameter that applies to the
input flow of the getBookList operation. The name bookNameCP is used for context

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

23 | REST Binding Development

parameter mapping in the next step, and is also referred to by IT Implementation.

3. Navigate to the Bindings tab in the REST Binding Context Parameter Mapping
section and specify the HTTP header name in the Header Name column.

[JProperties 8, "' Problems & Data Source Explorer| & Search w o v=-no

» Promoted Service

General | & RESTService_Binding1

2 % getBookList
w = Context Parameter Mapping

Policies Eglntents

REST Binding Context Parameter Mapping

Direction Header Source Header Name
INPUT ~ HTTP_HEADERS bookName
Appearance » EjPolicy Sets bookiDCP INPUT HTTP_HEADERS bookID
requestHeadersAlICP INPUT HTTP_HEADERS

bookCategoryCP OUTPUT HTTP_HEADERS bookCategory
bookQuantityCP OUTPUT HTTP_HEADERS beokQuantity
responseHeadersAllCP OUTPUT ~ HTTP_HEADERS

notFoundBookIDCP FAULT HTTP_HEADERS notFoundBookID

4. If the selected type is Basic, specify the HTTP header name in the Header Name
column.

The specified Header Name appears as an HTTP Header on the wire and the context
Parameter name is used by Java IT for the Get and Set methods. For instance, the
Basic string context parameter bookNameCP is mapped to HTTP Header Name
bookName. That is, when a REST service binding intercepts a request, it retrieves the
value of the HTTP Header bookName and makes it available to IT Implementation as a
value of context parameter bookNameCP.

5. Generate the Java IT Implementation and add the following declaration to the
Implementation class:

//org.osoa.sca.annotations.Context
@Context

//com.tibco.amf.platform.runtime.extension.context.ComponentContext
public ComponentContext componentContext;

For REST Service Binding

To configure the inbound and outbound messages, see:
Configuring for Request (Inbound) Flow

Configuring for Response (Outbound or Fault) Flow

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

24 | REST Binding Development

Configuring for Request (Inbound) Flow

You can configure inbound messages received on a service by configuring the following:
e Supported Type: Basic, Bag
e Supported Header Source: HTTP_HEADERS

* Direction: Inbound
Add the following code after receiving the service operation response:

To retrieve a 'Basic' context parameter:

//Retrieve requestContext from componentContext which contains the
inbound context parameters from Service-side
RequestContext originalRequestContext = (RequestContext)

componentContext.getRequestContext();
originalRequestContext.getParameter ("bookNameCP", String.class));

The return value of the above getParameter () call corresponds to the HTTP Header value
of the bookName header (corresponding to the context parameter bookNameCP) in the
incoming REST Request.

To retrieve the context parameter 'Bag":

//Retrieve requestContext from componentContext which contains the
inbound context parameters from Service-side

RequestContext originalRequestContext = (RequestContext)
componentContext.getRequestContext();

HashMap<String, String> requestHeadersAllCP_service_map =
(HashMap<String, String>) originalRequestContext.getParameter
("requestHeadersAllCP", Map.class);

The HashMap requestHeadersAl1CP_service_map contains all the HTTP Headers (user-
defined and native HTTP Headers, corresponding to context parameter
requestHeadersAl1CP) in the incoming REST Request.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

25 | REST Binding Development

Configuring for Response (Outbound or Fault) Flow

You can configure outbound messages sent from a service by configuring the following:
e Supported Type: Basic, Bag
e Supported Header Source: HTTP_HEADERS

¢ Direction: Outbound / Fault
Add the following code.

To set a 'Basic' context parameter:

//Create a Mutable callbackContext (Response flow) from the original
RequestContext

MutableCallbackContext originalCallbackContext =
(MutableCallbackContext) originalRequestContext.createCallbackContext();

originalCallbackContext.setParameter ("bookCategoryCP", String.class,
"Classic");

The value Classic is set for the HTTP Header bookCategory (corresponding to the context
parameter bookCategoryCP) in the outgoing REST Response.

To set a context parameter 'Bag':

//Create a Mutable callbackContext (Response flow) from the original
RequestContext

MutableCallbackContext originalCallbackContext =
(MutableCallbackContext) originalRequestContext.createCallbackContext();

HashMap<String, String> responseHeadersAllCP_service_map = new
HashMap<String, String>();
responseHeadersA1l1CP_service_map.put("bookAuthor", "Harper Lee");
responseHeadersA1l1lCP_service_map.put("bookPublishYear", "1960");
originalCallbackContext.setParameter ("responseHeadersAllCP", Map.class,
responseHeadersAl1lCP_service_map);

The contents of the HashMap responseHeadersA11CP_service_map is set as HTTP Headers
(user-defined, corresponding to context parameter responseHeadersA11CP) in the outgoing
REST response. Setting native HTTP Headers is not permitted.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

26 | REST Binding Development

For REST Reference Binding

To configure the inbound and outbound messages, see the following sections.
Configuring for Request (Outbound) Flow

Configuring for Response (Inbound or Fault) Flow

Configuring for Request (Outbound) Flow

You can configure outbound messages sent from a reference by configuring the following:
e Supported Type: Basic, Bag
e Supported Header Source: HTTP_HEADERS
* Direction: Outbound

Add the following code.

To set a 'Basic' context parameter:

//Create a new Mutable requestContext from componentContext to set
context parameters for Reference-side

MutableRequestContext createMutableRequestContext =
componentContext.createMutableRequestContext() ;

createMutableRequestContext.setParameter ("bookNameCP", String.class,
"How to Kill a Mockingbird");

The value How to Kill a Mockingbird is set for the HTTP Header bookName
(corresponding to the context parameter bookNameCP) in the outgoing REST request.

To set a context parameter 'Bag':

//Create a new Mutable requestContext from componentContext to set
context parameters for Reference-side

MutableRequestContext createMutableRequestContext =
componentContext.createMutableRequestContext() ;

HashMap<String, String> requestHeadersAllCP_reference_map = new
HashMap<String, String>();
requestHeadersAllCP_reference_map.put("bookAuthor", "Harper Lee");
requestHeadersAl1lCP_reference_map.put("bookPublishYear", "1960");

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

27 | REST Binding Development

createMutableRequestContext.setParameter ("requestHeadersAll1CP",
Map.class, requestHeadersAllCP_reference_map);

The contents of the HashMap requestHeadersAl1CP_reference_map are set as HTTP
Headers (user-defined, corresponding to the context parameter requestHeadersA11CP) in
the outgoing REST request.

Configuring for Response (Inbound or Fault) Flow

You can configure inbound messages received on a reference ("out|fault" part of "in-out"
MEP) by configuring the following:

e Supported Type: Basic, Bag
e Supported Header Source: HTTP_HEADERS
¢ Direction: Inbound/Fault
Add the following code after receiving the service operation response:

To retrieve a 'Basic' context parameter:

//Retrieve the callbackContext (Response/Fault flow) from the
mutableRequestContext

CallbackContext callbackContext =
createMutableRequestContext.getCallbackContext();

callbackContext.getParameter ("bookCategoryCP", String.class));

The return value of the above getParameter () call corresponds to the HTTP Header value
of the bookCategory header (corresponding to the context parameter bookCategoryCP) in
the incoming REST response.

To retrieve a context parameter 'Bag':

//Retrieve the callbackContext (Response/Fault flow) from the
mutableRequestContext

CallbackContext callbackContext =
createMutableRequestContext.getCallbackContext();

HashMap<String, String> responseHeadersAllCP_reference_map =

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

28 | REST Binding Development

(HashMap<String, String>)callbackContext.getParameter
("responseHeadersAllCP", Map.class);

The HashMap responseHeadersAl1CP_reference_map contains all HTTP Headers (user-
defined and native HTTP Headers, corresponding to context parameter
responseHeadersAl1CP) in the incoming REST response.

Mapping HTTP Status Code and Status Message

You can find out the HTTP status code and status message of every REST response
received by a REST reference binding. You can then map the HTTP status code and status
message to a context parameter. This is helpful when you intend to make decisions based
on the HTTP status code of the response received.

Configure the following:

Supported Type: Basic
Supported Header Source: HTTP_HEADERS
Direction: Output

Header Name: statusCode (for HTTP Status Code)/statusMsg (for HTTP Status
Message)

Context Parameter Name: statusCode (for HTTP Status Code)/statusMsg (for HTTP
Status Message)

Modifying a REST Resource Configuration File

Procedure

1.
2.

Select a REST Binding on a reference.

In the Properties View, click the hyperlink of the REST resource configuration file.

This displays the REST Resource Configuration File Editor.

Specify the Context Root.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

29 | REST Binding Development

4. Select the Media Type - Standard JSON or XML. The default is Standard JSON.

o Note: This Media Type applies to all operations. You cannot set the Media
Type at an operation level. This Media Type applies to both the request
and response of each operation, that is, the default value of "Content-
Type" and "Accept" header is derived from Media Type.

5. Click to add a resource. In the Details Section, specify the following resource

details.
* Resource Name: resource name must be unique.

e Resource Path: Resource Path is the path used to access a resource. It is
appended to the value of Context Root.

o Note:

The URL is a combination of the following: <machine_
name>:<port>/<ContextRoot>/<Resource>.

In TIBCO ActiveMatrix, a WSDL is usually created with operations in
it. If a REST service hosts this WSDL, each operation name has a
'Path' (or Resource Path) associated with the operation. The 'Path’
may be different from the Operation Name. This 'Path' must be
mapped to the corresponding 'Resource' in the REST Resource
Configuration file on a reference.

e Path Parameters: To create a path parameter, create a Path variable
represented as {path parameter}. For example, Resource path to access a book
with Id is "/book/{id}" where {id} is Path Parameter. Path Parameters are
added automatically to the table based on the Resource Path value. In the
table, you can edit the data type but you cannot add or remove parameters.
Path Parameters cannot be null or empty.

6. Click to add an operation to a resource. In the Details Section, specify operation

details such as Operation Name and HTTP Method. Operation Name must be
unique across all resources. You can select GET, PUT, POST, or DELETE as the HTTP
Method. The default is GET. For each operation, specify the following request and
response details, as appropriate.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

30 | REST Binding Development

Request or Response

Request

A request configuration includes

query parameters, header, and body.

Query parameter and header name
cannot be null or empty. The header
name cannot be "Accept" or
"Content-Type".

NOTE: The Body (JSON) or Body

(XML) sections are not displayed if
the HTTP Method is set to GET or
DELETE.

Type of
Request or
Response

Standard

JSON
Request

XML Request

Procedure

In the Rest Resources section,
select Request under
Operation.

In the Details Section, click
to add the query

parameters or header. In the
Body (JSON) section, provide
the JSON payload details.

In the Rest Resources section,
select Request under
Operation.

In the Details Section, click
to add the query

parameters or header. In the
Body (XML) section, select the
XSD element by clicking -not
set- hyperlink or by clicking (]

NOTE: All the XSD files needed
for the configuration of the RRC
must be placed in the Service
Descriptors folder. This
includes all imported XSDs
from within an XSD.

XSD Element picker only shows
XSD Element and not XSD
Types.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

31 | REST Binding Development

Request or Response

Response

A response configuration includes a
body.

Type of
Request or
Response

Standard
JSON
Response

XML
Response

7. Click to add an error type to an operation.

Procedure

In the Rest Resources section,
select Response under
Operation.

In the Details Section, specify
the details in the Body (JSON)
section or select the JSON file
using the file picker.

In the Rest Resources section,
select Response under
Operation.

In the Details Section, select
the XSD in the Body (XML)
section.

One operation can have multiple error types. Every error type must be associated
with either a single or a list of HTTP Status codes. If a list of status codes needs to be

specified, separate them with a comma.

8. To generate a WSDL file from the .rrc file, select the . rrc file in the Project Explorer
window, and then select Generate WSDL from the shortcut menu.

A WSDL along with XSD (in case of Standard JSON) is generated.

9. Configure the reference using the WSDL generated in step 8.

o Note: On the REST reference side, you must use only the WSDL generated
from the REST Resource Configuration File Editor to configure the
reference. Do not manually edit a WSDL generated from the REST Resource
Configuration File Editor. Make sure that the WSDL and the .rrc file are
always in sync with each other. If you make changes in the REST Resource
Configuration File Editor, always regenerate the WSDL file.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

32 | REST Binding Development

Policies Supported

TIBCO ActiveMatrix® Binding Type for REST supports the following policies. For additional
information on these policies, refer to the ActiveMatrix Service Grid or TIBCO ActiveMatrix®
Service Bus documentation.

Service Side

Policy

Basic
Authentication

Basic or
Username token
authentication

Authorization by

role

Authentication
by Kerberos

Authentication
by Siteminder

Reference Side

Policy

Basic
Credential

Mapping

Description

Basic Authentication is a security policy that ensures that a consumer
request is validated based on the credentials in the header.

Username Token Authentication is a security policy that ensures that a
consumer request is validated based on the username token & credentials
in the header.

Authorization by Role is a security policy that ensures that a request is
authorized based on the role used in the Security Assertion Markup
Language (SAML) tokens.

Authentication by Kerberos is a security policy to ensure that consumer
requests provide their credentials as Special Negotiation (SPNEGO) tokens
using Kerberos authentication.

Authentication by SiteMinder is a security policy to ensure that the
consumer credentials are validated as username tokens using the
SiteMinder protocol.

Description

Basic Credential Mapping is a policy to ensure that the credentials in the
consumer request are validated once and propagated across domains.
Credentials are mapped using a password identity provider.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

33 | Sample Projects

Sample Projects

TIBCO ActiveMatrix Binding Type for REST installation includes sample programs, which
demonstrates use of the HTTP operations and mediation component.

Service Side

TIBCO ActiveMatrix Binding Type for REST includes the following sample programs for the
service side in the TIBCO_HOME\amx\<version>\samples\rest directory.

* Bookstore sample: Implemented in Java. Exposes a potential interaction of a
bookstore administrator with the bookstore inventory. The sample includes two
HTTP GET operations, getBookList and getBookByTitle, and one HTTP POST
operation, addBook.

e Multiplecomplextypes sample: Demonstrates the use of a Mediation component to
expose a WSDL operation with multiple parts of complex type. Your application might
need to perform such mediation because the Binding Type for REST only supports
WSDL operations with a single part of a complex type.

Reference Side

TIBCO ActiveMatrix Binding Type for REST includes the following sample programs for the
reference side in the TIBCO_HOME\amx\<version>\samples\rest directory.

» Bookstore client sample: This sample is configured with REST Binding Type on
reference with XML media-type. It consumes the 'bookstore' sample service included
in the product.

» Facebook client sample: This sample is configured with REST Binding Type on
reference with Standard JSON as the media-type. It invokes an external Facebook
service.

e Pass-Through Mode Sample: This sample is configured with REST Binding Type on
reference to demonstrate the Pass Through Mode.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

34 | Sample Projects

Executing the Bookstore Sample

Deploy the Bookstore sample using TIBCO Business Studio - BPM Edition, review the
composite configuration and then run the sample to understand about HTTP operations.

Before you begin
» Before running the samples, ensure that all the required software has been installed
and is operating correctly.

Note: If you install only the Administration profile and not the SOA
Development profile, the samples are not included in the installation.

e Download a REST client such as:
°© POSTMAN REST client: https://www.getpostman.com/postman

° GitHub RESTClient: https://github.com/wiztools/rest-client/

The REST client offers an easy to use interface for setting HTTP headers and a simple
text box for sending payload in the HTTP body. If you do not download a REST client,
you can see results of GET operations in a Web browser, but you cannot perform
HTTP POST operations.

The service operations are implemented in Java, and the service interface is defined in
WSDL.

Load the project in TIBCO Business Studio - BPM Edition in order to run the sample.

The bookstore sample illustrates how a bookstore administrator might look up the
inventory and add new books. Lookup is by title, or the administrator can get a list of
books. Lookup can happen from a Web browser or a REST client. Adding new books can be
done from a REST client.

Importing the Bookstore Sample Project

Load the project in TIBCO Business Studio - BPM Edition to run the sample.

Procedure
1. Start TIBCO Business Studio - BPM Edition.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

https://www.getpostman.com/postman
https://github.com/wiztools/rest-client/

35 | Sample Projects

2. From the File menu, select Import.

3. In the Import dialog, select General > Existing Projects into Workspace and click
Next.

4. Select the root directory of the sample project. Select the Copy projects into
workspace checkbox.

5. Click Finish.

Reviewing the WSDL that Defines the Service
Interface

Explore the WSDL properties to understand input and output operations for the component
service.

Procedure

1. In the Project Explorer, select the bookstore project
(com.tibco.restbt.sample.bookstore) and open Composites.

2. Traverse the hierarchy to get to the BookstoreResource component service, which
displays in the Properties tab.

=l Properties 0 [l Problems | % Data Source Explarer =& ~ =08
Z» Component Service

General Mame: | BookStoreResource

Policies WSDL Interface
Resource

Part Type: (1) BookStoreResource - http:fins. tiboo .. comiBookStoreResources E]

Copy Parameters...

» Advanced

3. Click the WSDL link to display the WSDL in the modeling pane, and explore the inputs
and outputs for the different operations.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

36 | Sample Projects

9 BooksStoreResource

48 getBookList

L#linput [storename [8] getBoakList

<11 oukput [getBookListResponse [8] getBookListResponse
48 getBookBy Tittle

[¥linput [tittle [&] getBookByTittle

<11 oukput [booklist [&] getBookByTittleRespanse

[Fault [Faul [&] getBookBy TittleFault
48 addBook

L#linput [book [&] addBook.

<11 oukput [parameters [8] addBookResponse

Reviewing the Composite Configuration

Explore the URL and operations associated with the REST bindings.

The composite includes the Java component and the composite service on which the REST
bindings are defined.

Procedure

1. In the design window, select the BookstoreResource icon.

2. In the Promoted Service pane, examine RESTService_Bindingl and the operations
that are associated with it.

| Properties &2 [/ Problems| ¥ Data Source Explorer| Bl Conscle
Z Promoted Service
General 4 L_é’_\u‘ir‘tualization
Cg Intents
Bindi -
! : |.ngs » £ Policy Sets
el 4 (§ RESTService Bindingl
Appearance 4 getBookList
getBookByTittle
% addBook
§## getBookByTittleCategory
E% Intents
> EE‘} Policy Sets

3. Select RESTService_Bindingl to examine the HTTP Connector and context root
associated with the binding. The two together form the URL that the service uses.

4. Examine the operation. Each operation maps to a WSDL implemented in Java. The
Path field shows the URL where the operation is exposed.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

37 | Sample Projects

Running the Bookstore Sample

Start the application and test the HTTP GET and POST operations. You can run the sample
from TIBCO Business Studio - BPM Edition.

Procedure
1. Right-click the design panel background and select Debug in RAD to start the
application.

2. Use an HTTP client such as a Web browser or a REST client tool to invoke one of the
HTTP GET method.

For example, to test getBooklist, specify the http://host:port/bookstore/books
URL in a Web browser or a REST client.

e host and port are required by HTTP. You can find the port by choosing the bug
icon in the title bar and selecting Debug Configuration. You see that
information only after you have run the sample once.

* /bookstore is the context root for RESTService_Bindingl.
e /books is the 'Path' of getBookList.

For samples of calling each method, see the sample_payloads. txt file.

3. To test the HTTP POST operation addBook, you need a REST client. You can specify
the XML code for the book you want to add in the POST request.

Executing the MultipleComplexTypes Sample

Deploy and run the MultipleComplexTypes project to understand the use of mediation
component for operations with complex types.

TIBCO ActiveMatrix Binding Type for REST supports operations with complex types, but
does not allow more than one complex type per operation. At times, you might have a
service that is implemented in Java, which has operations with multipart messages with
complex types. If you want to make that information available to a REST client, you can
use a mediation component. The MultipleComplexTypes sample illustrates this.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

38 | Sample Projects

Importing the MultipleComplexTypes Sample
Project

Load the project in TIBCO Business Studio - BPM Edition to run the sample.

Procedure

1. Start TIBCO Business Studio - BPM Edition.

2. From the File menu, select Import.

3. In the Import dialog, select General > Existing Projects into Workspace and click
Next.

4. Select the root directory of the sample project. Select the Copy projects into
workspace checkbox.

5. Click Finish.

Reviewing the Mediation Flow

Explore the mediation flow to see how multiple parts are mapped to a single field.

Procedure

1.
2.
3.

In the Project Explorer, select the multiplecomplextype composite.
Examine the SingleToMultipe mediation component in the design window.
Double-click the pre-defined mediation flow to open the Mediation Flow Editor.

Double-click the addCustomer operation to display the mapping properties in the
Input tab of the Transform Mediation Task panel. You can see that the source has
multiple parts (Name, Address, Contactinfo) while the mediation context maps the
information to a single Customerlnput field.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

39 | Sample Projects

&8 Transform Mediation Task
General Mediation Operation Context Target Operation Context
Input Data Source | Functions | Constants ¥Path Expression
Cutput =-$= $MediationFlowProperties (= 52 MessageData
=-E] properties == & addcustomerRequest
10 YALIDATE_MESSAG = E] Name
=-$= $MessageData | ——————— B firsthlame $MessageDatafxsd: addCustomerRequest fxsd:Cu...
== addCustomerRequest ~|—————BL lastMame $MessageDatafxsd: addCustomerRequest fxsd:Cu...
=-E] CustomerInfo ——— [E] address
=-E] CustomerInfo ~| ———————RBL strest $MessageDatafxsd: addCustomerRequest fxsd:Cu...
fBL FirstMarne ~|———— BB city $MessageDatalxsd:addCustomerRequestxsd:Cu. ..
fBL lastMamne | ——— 1213 zipCode $MessageDatalxsd:addCustomerRequestxsd:Cu. ..
fIBC street — = [E] ContactInfo
fBL city ~| ————— Bt phone $MessageDatalxsd:addCustomerRequestxsd:Cu. ..
123 zipCode — -|———— Bt email $MessageDatalxsd:addCustomerRequestxsd:Cu. ..
Bt phorne —
fiBL emal —
<] 1l (]

Running the MultipleComplexTypes Sample

Start the sample project by using TIBCO Business Studio - BPM Edition and run it using a
REST client.

Procedure
1. In TIBCO Business Studio - BPM Edition, click the design panel background and select
Debug in RAD .

2. Open a REST client and set the host and port to match your system and the port on
which the service runs.

3. Set the application type to JSON.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

40 | Sample Projects

WizTools.org RESTClient 2.3.3
File Edit Tools Help

HTTP Request

URL: http://172. 02 /customerservice /customer | |¥

[Method = Headers Body Auth = SSL Etc. = Test Script |

application/json; charset=UTF-8 |G2)

(La) |

2 "gl:CustomerInfo” :{
3 "@xmlns":{"g0":"http:\/\/sample.restbt.tibco.com"},
4 "gl:firstName": ":"Moiz"

i "gl:lastHame" :{
6 "gO:street”:{"3
7 "gheity":{"$":"
8 "gl:zipCode": {
9

10

11

12

"gl:phone”:{"$":"54321"},
"gO:email":{"$":"mEt"}

HTTP Response
Status: HTTP/1.1 200 OK

[Headers = Body Test Result |

1 {"$":"\n","ns:CustomerId”:{"@xmlns":{"ns":"http:\/\/sample.restbt.tibco.com"},"$":"1571665104"}}

4. Select the Body tab and enter one of the sample body strings from the sample_
payloads.txt file.

Executing the Bookstore Client Sample
(Reference)

Procedure
1. Deploy the Bookstore client sample by using TIBCO Business Studio - BPM Edition.

2. Review the composite configuration.

3. Run the sample to understand HTTP operations.

Importing the Bookstore Client Sample Project

Load the project in TIBCO Business Studio - BPM Edition to run the sample.
Procedure

1. Start TIBCO Business Studio - BPM Edition.

2. From the File menu, select Import.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

41 | Sample Projects

In the Import dialog, select General > Existing Projects into Workspace and click
Next.

Select the root directory of the sample project. Select the Copy projects into
workspace checkbox.

Click Finish.

Reviewing the REST Resource Configuration File
That Defines the REST Service Interface

Procedure

1.
2.

In the Project Explorer, select the bookstore client project and open Composites.

Traverse the hierarchy to get to the BookstoreResource component reference, which
displays in the Properties tab.

Select RESTReference_Bindingl and click the REST Resource Configuration File
link.

Review the REST resource configuration file.

Running the Bookstore Client Sample

Start the application and test the HTTP GET and POST operations. You can run the sample
from TIBCO Business Studio - BPM Edition.

Procedure

1.

Right-click the design panel background.

2. Select Debug in RAD to start the application.

Executing the Facebook Client Sample
(Reference)

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

42 | Sample Projects

Procedure
1. Deploy the Facebook client sample by using TIBCO Business Studio - BPM Edition.

2. Review the composite configuration.

3. Run the sample to understand HTTP operations.

Importing the Facebook Client Sample Project

Load the project in TIBCO Business Studio - BPM Edition.

Procedure
1. Start TIBCO Business Studio - BPM Edition.
2. From the File menu, select Import.
3. In the Import dialog, select General > Existing Projects into Workspace . Click Next.
4. Select the root directory of the sample project. Select the Copy projects into
workspace checkbox.
5. Click Finish.

Running the Facebook Client Sample

Start the application and test the HTTP GET and POST operations. You can run the sample
from TIBCO Business Studio - BPM Edition.

Procedure

1.

Deploy the DAA located in Deployment Artifacts:

- Facebook Graph APIs are SSL protected and hence the client must be SSL-enabled.
The certificate file (.crt) and keystore (.jks) file are packaged along with this sample.

- The above keystore is referred by Resource
Template/FacebookKeystoreProviderResource.cred. Update it with the absolute

path to the keystore.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

43 | Sample Projects

o Note: If the keystore has expired, download it from the Facebook site.

2. Right-click the design panel background.

3. Select Debug in RAD to start the application.

4. Use the URL http://<Host>:<Port>/fBGraphService?wsdl to load the WSDL in the
SOAP Ul or in the WebService Explorer.

You can see an operation getUserProfile which accepts two arguments - user and
access_token. The access_token argument is the OAuth token required by the
Facebook REST API and user is the username or id or me (currently logged in user).

5. Get an Access Token:

a.

Open Facebook Graph Explorer using the following URL:
https://developers.facebook.com/tools/explorer/?method=GET&path=me.

After authentication, click Get Acces Token on the right side in Graph API
Explorer.

After you get the Access Token, use it while invoking the getUserProfile
operation.

Executing the Pass-Through Mode Sample
(Reference)

Procedure

1. Import the Pass Through Model sample project in TIBCO Business Studio -
BPM Edition.

a.

b.

Start TIBCO Business Studio - BPM Edition.
From the File menu, select Import.

In the Import dialog, select General > Existing Projects into Workspace and
click Next.

Select the root directory of the sample project. Select the Copy projects into
workspace checkbox.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

44 | Sample Projects

e.

Click Finish.

2. Review the composite configuration.

3. Deploy the DAA in ActiveMatrix Service Grid Administrator.

4. Test the HTTP operations.

Executing the rest.context Sample

The rest.context sample includes:

e REST SOA projects (/rest-soap-projects/):

© /Jcom.tibco.restbt.context.sample.soa/Composites/rest-java.composite

(/com.tibco.restbt.context.sample.soa/Deployment Artifacts/rest-
java.daa): REST-Java (Backend REST App)

/com.tibco.restbt.context.sample.restjava: Sample Java IT Provider
Implementation for REST-Java App (1)

/com.tibco.restbt.context.sample.soa/Composites/restjavarest.composi
te ((/com.tibco.restbt.context.sample.soa/Deployment Artifacts/rest-
java-rest.daa): REST-Java-REST (Frontend REST App that connects with the
Backend REST-Java App via REST Reference (1))

/com.tibco.restbt.context.sample.restjavarest: Sample JavalT
Provider/Consumer Implementation for REST-Java-REST App (3)

» SoapUl projects to invoke the REST Apps (/SoapUIprojects/):

o

context-REST-Java-REST-soapui-project: SOAPUI project to send a REST
Request to the REST-Java-REST App (3) with the HTTP Headers

context-REST-Java-soapui-project.xml: SOAPUI project to send a REST
Request to the REST-Java App (1) with the HTTP Headers

» SoapUl projects to invoke the REST Apps (/SoapUI-projects/):

o

context-REST-Java-REST-soapui-project: SOAPUI project to send a REST
Request to the REST-Java-REST App (3) with the HTTP Headers

°© context-REST-Java-soapui -project.xml: SOAPUI project to send a REST

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

45 | Sample Projects

Request to the REST-Java App (1) with the HTTP Headers

Running the rest.context Example

Procedure
1. Launch ActiveMatrix Service Grid Administrator.

2. Create an HTTP Connector Resource Template httpConnector with host as
localhost and port as 9897.

3. Create and install the corresponding HTTP Connector Resource Instance
httpConnector on Runtime Node.

4. For REST-Java App, deploy the following DAA:

com.tibco.restbt.context.sample.soa/Deployment Artifacts/restjava.daa

5. For REST-Java-REST App, deploy the following DAA:

com.tibco.restbt.context.sample.soa/Deployment Artifacts/restjavarest.daa

6. To send a REST Request to the REST-Java App, open the SOAP Ul project context-
REST-Java-soapui-project.xml using SOAP Ul 5.0.0, and send the following REST
Request:

il Context REST Java

v X http://localhost:9897
v GetBookList [/BookStoreBackend/getBookList
v GET GetBookList
8 Request 1

7. To send a REST Request to the REST-Java-REST App, open the SOAP Ul project
context-REST-Java-REST-soapui-project.xml using SOAP Ul 5.0.0, and send the
following REST Request:

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

46 | Sample Projects

@) Context REST Java REST
v I http://localhost:9897
v BookStoreResource [/BookStoreResource/getBookList
v %ET BookStoreResource

&t Request 1

Breakdown of the rest.context Scenario

When a REST Request is sent to the REST-Java-REST App with the HTTP Headers (for
example, bookName and bookID) using the SOAP Ul project context-REST-Java-REST-
soapui-project.xml:

1.

They are mapped to context parameters that can be retrieved in the Java IT
Implementation (“Javal (service-inbound)” in the Runtime Node logs shown later).

The new basic header values and a collection of headers are sent to the REST-Java
App via context parameters (“Javal (reference-inbound)” in the Runtime Node logs
shown later).

The headers are retrieved in the REST-Java App’s Java IT implementation (“Java2
(service-inbound)” in the Runtime Node logs shown later).

New outbound headers are set in the REST-Java App’s Java IT implementation (basic
and bag) to be sent back to the REST-Java-REST App (Java2 (service-outbound) in
the Runtime Node logs shown later).

The headers sent by REST-Java App are retrieved in REST-Java-REST App’s Java IT
implementation (“Javal reference-outbound)” in the Runtime Node logs shown
later).

Some headers are set in REST-Java-REST App’s Java IT implementation to be sent
back to the originating client (“Javal (service-outbound)” or “Javal (service-fault)” in
the Runtime Node logs shown later, depending on the value of “storename”
(“success” and “fault” respectively)).

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

47

| Sample Projects

REST-Java-REST: Success Scenario of REST-Java

. Method Endpoint Resource Parameters \
LA = GET ¥ htup://localhost: 9897 v /BookStoreResource/getBookList ?storename=success iR @‘
<
ELWE e a e’ Bk
Name Value Style. Level
storena. [Success | QUERY RESOUR... <
</ b >
</ getBookListResponse >
</Response >
z
=]
[y
3
3
a £
av 3
Required Sets if paran &
Type
Options: b
I
Ao) | Header Value
s Value bookPublishYear 1960
bookiD 1602 l:oo::u(hor Elarpe_?r Lee
bookName The Kite Runner gortaegery 288l
Date Thu, 08 Oct 2015 20:26:09 GMT
HkQuantitv 50
Content-Length 11T
#status# HTTP/1.1 200 OK
Expires Thu, 01 Jan 1970 00:00:00 CMT
Set-Cookie ISESSIONID=xjdvhk5v8i7pLft4i0dryxwn4; Path=/BookStoreResource; ...
Content-Type application/json; charset=UTF-8
. | He.. Atta... Repre... M... IMS Headers (10) Attachments (0) S50 Info Representations (7) Schema (conflicts) JMS (0)
Runtime Node Logs
[INFO] [rest-java-rest] stdout - -————————- Javal(service-inbound) ----
[INFO] [rest-java-rest] stdout - storename = success
[INFO] [rest-java-rest] stdout - --———--——-—- Javal(service-inbound) ----

[INFO] [rest-java-rest] stdout - Getting bookName = The Kite Runner
[INFO] [rest-java-rest] stdout - Getting bookID = 1602

[INFO] [rest-java-rest] stdout - Getting requestHeadersAllCP =
{Host=1localhost:9897, User-Agent=Apache-Http-Client/4.1.1 (java
1.5),bookID=1602, Connection=Keep-Alive,bookName=The Kite Runner}

[INFO] [rest-java-rest] stdout - --————-——- Javal(reference-inbound) --
[INFO] [rest-java-rest] stdout - Setting bookName = How to Kill a
Mockingbird

[INFO] [rest-java-rest] stdout - Setting bookID = 1501

[INFO] [rest-java-rest] stdout - Setting requestHeadersAllCP =
{bookPublishYear=1960, bookAuthor=Harper Lee}

[INFO] [rest-java] stdout - —--———-——-——- Java2 (service-inbound) --—-———--—-

[INFO] [rest-java] stdout - storename = success

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

48 | Sample Projects

[INFO] [rest-java] stdout - —--—————--—- Java2 (service-inbound) ---——-—-
[INFO] [rest-java] stdout - Getting bookName = How to Kill a
Mockingbird

[INFO] [rest-java] stdout - Getting bookID = 1501

[INFO] [rest-java] stdout - Getting requestHeadersAllCP =
{bookPublishYear=1960, bookAuthor=Harper
Lee,Cookie=JSESSIONID=1wt523hzhwphvlgyxxt8frpsu, Cookie2=$Version=1,
Host=1localhost:9897, Accept-Charset=UTF-8, BookID=1501, Connection=Keep-
Alive, Accept=application/json, ContentType=application/json;
charset=UTF-8, bookName=How to Kill a Mockingbird}

[INFO] [rest-java] stdout - —--———-——-——- Java2 (service-outbound) ------—-
[INFO] [rest-java] stdout - Setting bookCategory = Classic

[INFO] [rest-java] stdout - Setting bookQuantity = 50

[INFO] [rest-java] stdout - Setting responseHeadersAll: =
{bookPublishYear=1960, bookAuthor=Harper Lee}

[INFO] [rest-java-rest] stdout - —--————-——- Javal(reference-outbound) -
[INFO] [rest-java-rest] stdout - Getting bookCategory = Classic

[INFO] [rest-java-rest] stdout - Getting bookQuantity = 50

[INFO] [rest-java-rest] stdout - Getting responseHeadersAll: =
{bookPublishYear=1960, bookAuthor=Harper Lee, bookCategory=Classic,
bookQuantity=50, Date=Thu, 08 Oct 2015 21:04:22 GMT, Content-Length=111,
ContentType=application/json; charset=UTF-8} 08 Oct 2015 14:04:22,798
[httpConnector_10]

[INFO] [rest-java-rest] stdout - —--————-——- Javal(service-outbound) ---
[INFO] [rest-java-rest] stdout - Setting bookCategory = Classic
[INFO] [rest-java-rest] stdout - Setting bookQuantity = 50

[INFO] [rest-java-rest] stdout - Setting responseHeadersAll: =
{bookPublishYear=1960, bookAuthor=Harper Lee}

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

49 | Sample Projects

REST-Java-REST: Fault Scenario of REST-Java

i Method Endpoint Resource Parameters —
= | GET * | http://localhost:9897 ~ /BookStoreResource/getBoaokList 2storename="fault S
i v e s 0 ; E kRespanse ocalhost/BookStoreRescurce/getBookList”
Lo 2 S

Name Walue Style Level =

storena... QUERY RESOUR...

>Dan Brown</author >

<category >Fiction </category :
<tittle >TheDavinciCode </tittle>

HTML Json BT
— |
2
3

o

</o>
</booklist >

s ! .R-.'fgel.[louk].:_:(!.l’\e.:fpnn:ir_ >
</Response >
Required Sets if param r:_
Type
Options:
|l
AL &) Header Value
= Vaue - |n0tFuundBoule Book ID Not Found
hookID 1602 zale . - ;;;, UB U 2UT5 2U°26:48 GMT
bookName The Kite Runner #;)tl;tlir:t‘_ AL HTTP/1.1 200 OK
Expires Thu, 01 Jan 1970 00:00:00 GMT
Set-Cockie JSESSIONID=0okaplcyvar9rimpi97xsc5g5l;Path=/BookStoreResource...
Content-Type application/json; charset=UTF-8
. PHe..| Atta.. Repre.. M. JMS Headers (7) | Attachments (0) S50 Info Representations {7) Schema (conflicts) M5 {0)
response time: 18ms (252 bytes) i
Runtime Node Logs
[INFO] [rest-java-rest] stdout - --————-—--—- Javal (service-inbound) --
[INFO] [rest-java-rest] stdout - storename = fault
[INFO] [rest-java-rest] stdout - -————----—- Javal (service-inbound) --

[INFO] [rest-java-rest] stdout - Getting bookName = The Kite Runner
[INFO] [rest-java-rest] stdout - Getting bookID = 1602

[INFO] [rest-java-rest] stdout - Getting requestHeadersAllCP =
{Host=1localhost:9897, User-Agent=Apache-Http-Client/4.1.1 (java
1.5),bookID=1602, Connection=Keep-Alive,bookName=The Kite Runner}

[INFO] [rest-java-rest] stdout - --———--—-——- Javal (reference-inbound)
[INFO] [rest-java-rest] stdout - Setting bookName = How to Kill a
Mockingbird

[INFO] [rest-java-rest] stdout - Setting bookID = 1501

[INFO] [rest-java-rest] stdout - Setting requestHeadersAllCP =
{bookPublishYear=1960, bookAuthor=Harper Lee}

[INFO] [rest-java] stdout - --——--—--—-- Java2 (service-inbound) -------

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

50 | Sample Projects

[INFO] [rest-java] stdout storename = fault

[INFO] [rest-java] stdout - -——-—————-——- Java2 (service-inbound) -------
[INFO] [rest-java] stdout - Getting bookName = How to Kill a
Mockingbird

[INFO] [rest-java] stdout Getting bookID = 1501

[INFO] [rest-java] stdout Getting requestHeadersAllCP =
{bookPublishYear=1960, bookAuthor=Harper Lee, Host=localhost:9897,
Accept-Charset=UTF-8, bookID=1501, Connection=Keep-Alive,
Accept=application/json, Content-Type=application/json; charset=UTF-8,
bookName=How to Kill a Mockingbird}

[INFO] [rest-java] stdout - —-——-———-—-——- Java2 (service-outbound) —------

[INFO] [rest-java] stdout - Setting bookCategory = Classic

[INFO] [rest-java] stdout - Setting bookQuantity 50

[INFO] [rest-java] stdout - Setting responseHeadersAll: =
{bookPublishYear=1960, bookAuthor=Harper Lee}

[INFO] [rest-java-rest] stdout - -————-—-——- Javal (reference-outbound)

[INFO] [rest-java-rest] stdout - Getting bookCategory = Classic

[INFO] [rest-java-rest] stdout - Getting bookQuantity 50

[INFO] [rest-java-rest] stdout - Getting responseHeadersAll: =
{bookPublishYear=1960, bookAuthor=Harper Lee, bookCategory=Classic,
bookQuantity=50, Date=Thu, 08 Oct 2015 21:03:43 GMT, Content-Length=
252, Expires=Thu, 01 Jan 1970 00:00:00 GMT, Set-
Cookie=JSESSIONID=1wt523hzhwphvlgyxxt8frpsu;Path=/BookStoreBackend;HttpO
nly, Content-Type=application/json; charset=UTF-8}

[INFO] [rest-java-rest] stdout - -———----——- Javal (service-fault) —----
[INFO] [rest-java-rest] stdout - Setting notFoundBookID = Book ID Not
Found

Executing the rest.extendedJSONConversion
Sample

The rest.extendedJSONConversion sample includes:

e REST SOA projects (/rest-soa-projects/):

°© restbt.sample.extended.json.conversion/Composites/restbt.sample.exte
nded.json.conversion.composite (

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

51 | Sample Projects

restbt.sample.extended.json.conversion/DeploymentArtifacts/restbt.sa
mple.extended.json.conversion.daa): REST-Java (Provider) and REST-Java-
REST (Client) components to demonstrate the enhancements

°© com.sample.restbt.sample.extended.json.conversion: Provider and Client
Java Implementations

» SoapUl projects to invoke the REST Apps (/SoapUI-projects/REST-
ExtendedJSONConversion-soapui-project.xml):

° Service “InvokeRESTProvider”: SOAPUI project to send a REST request to the
REST Provider (REST-Java)

° Service “InvokeRESTClient”: SOAPUI project to send a REST request to the
REST Client (REST-Java-REST) which in turns sends a REST request to the REST
Provider (REST-Java)

Note: The SOAP Ul projects work as-is if the REST Service Bindings (that use
HTTP Connector “httpConnector”) are deployed on localhost:9897.

Provider side (Service/Outbound/Response): XML-to-JSON Conversion of
String XSD Element

Consider an XSD element that is defined as a “string” in the Provider-side WSDL Schema
(identified by the "type" attribute, which must be set to XSD string, for example
'type="xsd:string"" where "xsd" points to the XML Namespace
"http://www.w3.org/2001/XMLSchema").

If the XML Response contains a non-numeric string as the value for that XSD element (for
example "teststring" or "test1234"), the JSON Response object is serialized correctly as part
of the standard XML-to-JSON Conversion that is as a JSON String ("teststring" or
"test1234”).

However, if the XML response contains a purely numeric String as the value for that XSD
element (for example "1234"), then the standard XML-to-JSON Conversion converts the
element to a JSON Number (for example 1234 as opposed to "1234" that is not a JSON
string), which would result in an inconsistent conversion.

This holds true for other JSON types as well, for example, Double, Boolean, and so on. With
this release, the XSD Element's (in the sample scenario, the “Value” element in
Sample.wsdl) "type" attribute is factored into the XML-to-JSON Conversion specifically for

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

52 | Sample Projects

JSON Strings that is if the XSD Element is of type "string", the resultant JSON Object is a
JSON String as well and not a JSON Number.

This affects the service-side RESPONSE. The REQUEST is not affected.

Client side (Reference/Inbound/Request): XML-to-JSON Conversion of
String XSD Element

Whether an element is of type “string” is inferred from the Reference-side REST Resource
Configuration (RRC) file, specifically from the “Request” of the “POST” method.

In the sample scenario that would be the “Request” of the “addOperation”. If you indicate
via the RRC file that “Value” is a string (by use of “"Value”:”123”’), then with this release,
the POST Request generation honors the “string” type by sending a JSON string, even if the
“Value” contains only a purely numeric value.

This affects the POST method’s REQUEST. The POST method’s RESPONSE is not affected.

This behavior is demonstrated in the “Test Scenario” section below.

Note: Only inline schemas are supported on the Service-side that is the XSD
elements (of type string) that are of interest to this sample must be present in
the Service-side WSDL.

Running the rest.extendedJSONConversion Example

Procedure
1. Launch ActiveMatrix Service Grid Administrator.

2. Set the TRA property

com.tibco.amf.runtime.bindingtype.rest.extendedJsonConversion to true for

the appropriate Runtime Node (via Administrator Ul or by adding the line
java.property.com.tibco.amf.runtime.bindingtype.rest.extendedJsonConversi

on=true in the .tra file of the Runtime Node) and restart the Runtime Node.
3. Enable the com.tibco.amx.bt.rest logger in the DEBUG level on the Runtime Node.

4. Create an HTTP Connector Resource Template httpConnector with host as
localhost and port as 9897.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

53 | Sample Projects

5. Create and install the corresponding HTTP Connector Resource Instance
“httpConnector” on Runtime Node.

6. For both REST-Java and REST-Java-REST appliations, deploy the following DAA:

/rest-soa-
projects/restbt.sample.extended.json.conversion/DeploymentArtifacts/restb
t.sample.extended.json.conversion.daa

7. To send a REST Request to the REST-Java (Provider) App, open the SOAP Ul project
REST-ExtendedJSONConversion-soapui-project.xml using SOAP Ul 5.0.0, and use
the “InvokeRESTProvider” service. This sends a REST request to the REST-Java app
and demonstrates the Provider-side (Service) behavior.

o Note: Set the HTTP Request Header to Accept = application/json.

GET method’s RESPONSE (returnOne)
Request URL: http://localhost:9897/Sample/returnOne (HTTP method: GET)
Sample Response (Standard JSON)

{"returnOneResponse": {"Flights": [{

"Arrdival": "arrival",
"Departure": "123"
133

Note the [] indicating that Flights is an Array, based on the schema. Also, “123” is a
string, which is schema-compliant.

8. To send a REST Request to the REST-Java-REST (Client) App, open the SOAP Ul
project REST- ExtendedJSONConversion-soapui-project.xml using SOAP Ul 5.0.0,
and use the “InvokeRESTClient” service. This sends a REST request to the REST-
Java-REST app, which in turn sends a rest to the REST-Java app. This demonstrates
the client-side (Reference) behavior.

POST method’s REQUEST (addOperation)

Request URL: http://localhost:9897/SampleClient/addOperation (HTTP method:
POST)

Set HTTP Request Header:

Accept = application/json and Content-Type = application/json

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

54 | Sample Projects

SOAPUI Request to first REST Service Endpoint:

{"addOperation": {"Arrays":[{"Key":"ABC","Value":"123"}]}}

POST Request generated by REST Reference Endpoint:

{"Arrays": [{"Key":"ABC","Value":"123"}]}

Note the [] indicating that Arrays is an Array, based on the schema. Also, “123” is a
string, based on the schema.

Response (Standard JSON):

{"addOperationResponse": {"Arrays": [{
llKeyll: HABCH 5

"Value": "123"

13}

Note the [] indicating that Arrays is an Array, based on the schema. Also, “123” is a
string, based on the schema.

REST-Java-REST: Runtime Node Logs for Rest-Java

25 Jan 2016 17:23:22,168 [httpConnector_2] [DEBUG] []
com.tibco.amx.bt.rest.RESTDispatcherServliet - TIBCO-AMX-BT-REST-300100:
Request Message from External Consumer to REST Promoted Service.
PromotedServiceName=SampleClient/Sample, BindingName=RESTService_
Bindingl, BindingType=REST,
URL=http://localhost:9897/SampleClient/addOperation,
ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversi
on/JavaClient_1.0.0.v2016-01-25- 1703_inbound_service_
SampleClient/Sample_RESTService_Bindingl, OperationName=
{http://HdrTest/Sample/}addOperation, CorrelationID=1ed56457-33c4-47e0-
aff4-e91b03b4cb92, ContextID=1ed56457-33c4-47e0-aff4-e91b03b4cb92,
ParentContextID=null, RequestHeaders={RequestAttributes :
amx.connector.name = httpConnector; org.mortbay.jetty.newSessionId =
hxepj3z2tOwde68d04zk9x40; component.URI =
urn:amx:DevEnvironment/restbt.sample.extended.json.conversion#servicebin
ding(SampleClient/RESTService_Bindingl)___1.0.0.v2016-01-25-1703; }
{RequestParameters : } { Protocol = HTTP/1.1 } { RequestURI =
/SampleClient/addOperation } { Method = POST } { HTTPHeader : Content-
Type = application/json; Content-Length = 58; Host = localhost:9897;

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

55 | Sample Projects

Connection = Keep- Alive; User-Agent = Apache-HttpClient/4.1.1 (java
1.5); }{ QueryString : null }{PathInfo : /addOperation }

25 Jan 2016 17:23:22,254 [httpConnector_2] [DEBUG]
[restbt.sample.extended.json.conversion]
com.tibco.amx.bt.rest.RESTHttpClient -

Request Message from REST Promoted Reference to External Service.
PromotedReferenceName=extendedConversionRrcResource,
BindingName=RESTReference_Bindingl, BindingType=REST,
URL=http://localhost:9897/Sample/addOperation,
ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversii
on/JavaClient_1.0.0.v2016-01-25-
1703_outbound_reference_extendedConversionRrcResource_RESTReference_
Bindingl,

OperationName=
{http://ns.tibco.com/RSBT/extendedConversionRrcResource}add
Operation, CorrelationID=1ed56457-33c4-47e0-aff4-e91b03b4ch92,
ContextID=f4261c98-e8c5-46d0-99a7-d8c93747003f,
ParentContextID=1ed56457-33c4-47e0-aff4-e91b03b4chb92, Method=POST,
SchemeName=http, HostName=localhost, Port=9,897,
RequestURI=/Sample/addOperation, Headers=[Content-Type:
application/json; charset=UTF-8, Accept: application/json, Accept-
Charset: UTF-8],

body={"Arrays":[{"Key":"ABC","Value":"123"}]}

25 Jan 2016 17:23:22,290 [httpConnector_4] [DEBUG] []
com.tibco.amx.bt.rest.RESTDispatcherServlet - TIBCO-AMX-BT-REST-300100:
Request Message from External Consumer to REST Promoted Service.
PromotedServiceName=Sample/Sample, BindingName=RESTService_Bindingl,
BindingType=REST, URL=http://localhost:9897/Sample/addOperation,
ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversi
on/JavaProvider_1.0.0.v2016-01-25-1703_inbound_service_Sample/Sample_
RESTService_Bindingl, OperationName=
{http://HdrTest/Sample/}addOperation, CorrelationID=46080a36-a928-46db-
be47-2da6cb475b16, ContextID=46080a36-a928-46db-be47-2da6cb475b16,
ParentContextID=null, RequestHeaders={RequestAttributes
amx.connector.name = httpConnector; org.mortbay.jetty.newSessionId =
lutc7734evusblod1ldb0fspx60; component.URI =
urn:amx:DevEnvironment/restbt.sample.extended.json.conversion#servicebin
ding(Sample/RESTService_Bindingl)___1.0.0.v2016-01-25-1703; } {
RequestParameters : } { Protocol = HTTP/1.1 } { RequestURI =
/Sample/addOperation } { Method = POST } { HTTPHeader : Content-Type =
application/json; charset=UTF-8; Accept = application/json; Accept-
Charset = UTF-8; Content-Length = 40; Host = localhost:9897; Connection
= Keep-Alive; }{ QueryString : null }{ PathInfo : /addOperation }

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

56 | Sample Projects

25 Jan 2016 17:23:22,298 [httpConnector_4] [DEBUG]
[restbt.sample.extended.json.conversion]

com.tibco.amx.bt.rest. ESTGenericReplyCallback - TIBCO-AMX-BT-REST-
300103:

Response (Reply) Message from REST Promoted Service to External
Consumer. PromotedServiceName=Sample/Sample, BindingName=RESTService_
Bindingl, BindingType=REST,
URL=http://localhost:9897/Sample/addOperation,
ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversi
on/JavaProvider_1.0.0.v2016-01-25- 1703_1inbound_service_Sample/Sample_
RESTService_Bindingl, OperationName=
{http://HdrTest/Sample/}addOperation, CorrelationID=46080a36-a928-46db-
be47-2da6ch475b16, ContextID=46080a36-a928-46db-be47-2da6cb475b16,
ParentContextID=null, Message={ Content-Type : application/json;
charset=UTF-8 }{ HTTP Status Code: 200 }{ HTTPBody
{"addOperationResponse": {"Arrays":[{"Key":"ABC","Value":"123"}]}} }

25 Jan 2016 17:23:22,312 [httpConnector_2] [DEBUG]
[restbt.sample.extended.json.conversion]
com.tibco.amx.bt.rest.RESTOutboundEndpoint - Response Message from
External Service to REST Promoted Reference.
PromotedReferenceName=extendedConversionRrcResource,
BindingName=RESTReference_Bindingl, BindingType=REST, URL=N/A,

ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversi
on/JavaClient_1.0.0.v2016-01-25-
1703_outbound_reference_extendedConversionRrcResource_RESTReference_
Bindingl,

OperationName=
{http://ns.tibco.com/RSBT/extendedConversionRrcResource}addOperation,
CorrelationID=1ed56457-33c4-47e0-aff4-e91b03b4ch9o2,
ContextID=f4261c98-e8c5-46d0-99a7-d8c93747003f,
ParentContextID=1ed56457-33c4-47e0-aff4-e91b03b4cb92, HTTP
Response=HTTP Response { Status Code=200, Status Line=0K, Headers=[Date:
Tue, 26 Jan 2016 01:23:22 GMT, Expires: Thu, 01 Jan 1970 00:00:00 GMT,
Set-

Cookie: JSESSIONID=1utc7734evusblodldbO@fspx60;Path=/Sample;HttpOnly,
Content-Type: application/json; charset=UTF-8, Content-Length: 65],
Body={"addOperationResponse": {"Arrays":[{"Key":"ABC","Value":"123"}]}}}

25 Jan 2016 17:23:22,318 [httpConnector_2] [DEBUG]
[restbt.sample.extended.json.conversion]
com.tibco.amx.bt.rest.RESTGenericReplyCallback - TIBCO-AMX-BT-REST-
300103:

Response (Reply) Message from REST Promoted Service to External
Consumer. PromotedServiceName=SampleClient/Sample,

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

57 | Sample Projects

BindingName=RESTService_Bindingl, BindingType=REST,
URL=http://localhost:9897/SampleClient/addOperation,

ComponentURI=urn:amx:DevEnvironment/restbt.sample.extended.json.conversi
on/JavaClient_1.0.0.v2016-01-25-
1703_inbound_service_SampleClient/Sample_RESTService_Bindingl,
OperationName={http://HdrTest/Sample/}addOperation,
CorrelationID=1ed56457-33c4-47e0-aff4-e91b03b4ch92, ContextID=1ed56457-
33c4-47e0-aff4-e91b03b4ch92, ParentContextID=null, Message={ Content-
Type

application/json; charset=UTF-8 }{ HTTP Status Code: 200 }{ HTTPBody
{"addOperationResponse": {"Arrays":[{"Key":"ABC","Value":"123"}]}} }

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

58 | Limitations

Limitations

This section lists the limitations and usage guidelines.

General Limitations

Trailing Slash in Request URL

» A REST BT service does not differentiate between a URL ending with a trailing slash
(/) and one without a trailing slash.

» A REST BT reference differentiates between a URL ending with a trailing slash and a
URL not ending with a trailing slash. The reference treats them as different URLs and
depends on how you have configured the resource path in the resource configuration
file. For example:

° If the resource path is books/ (with a trailing /), the resulting URL is
http://host:port/Context-Root/books/.

° If the resource path is books, the resulting URL is http://host:port/Context-
Root/books.

° If the resource path is books/ and a minimum of one query parameter (for
example, ID), the resulting URL is http://host:port/Context-
Root/books?ID=value.

Numbers and Special Characters

» Numbers and special characters (period, comma, hyphen, or hash) are not supported
in a standard JSON payload key.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

59 | Limitations

Validation Limitations

Design-time

For a standard JSON, if you configure the resource configuration file from payloads that do
not have a well-defined root-level element, you must map the response and faults body to
a unique status code.

Service Limitations

You cannot override the default status code (200) returned from a REST service.

Query and Path Parameters

e Mixing of path parameters and path parts in a resource URI is not supported. For
example, an online bookstore has a service to update (add/delete) the number of
books in the inventory based on ISBN. The resource URI of the update operations is:

http://host:port/store/books/{ISBN}/addToStore/{number-of-books} - where
{ISBN} and {number-of-books} are path parameters.

http://host:port/store/books/{ISBN}/subtractFromStore/{number-of-books}

Such resource URIs are not supported. However, the current implementation of REST
BT supports the resource URI where all the path parameters are suffixed. For
example:

http://host:port/store/books/addToStore/{ISBN}/{number-of-books} - where
{ISBN} and {number-of-books} are the path parameters.

» Usage guidelines for query and path parameters:

(e]

o

Path parameters and query parameters must be of Simple type.

Query parameters are optional, if not specified.

Configuring a custom default value for a query parameter is not supported.
The key of the query parameter is the WSDL part name.

Path parameters and query parameters must map to a WSDL part. The
implementation does not receive query parameters that are not mapped to any

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

60 | Limitations
WSDL part name.

Request Response

e REST Request body - There can be at the most one WSDL part referring to a Complex-
Type element, which if present is considered as an HTTP body.

e REST Request/Response - The WSDL part representing the REST body, must refer to
Element and not the Type. Simple type in the body is not supported. However, you
can construct a Simple type as Complex-TypeElement in @ WSDL.

Schema Limitations

Standard JSON

e Standard JSON is not namespace-aware. All the elements, types, and attributes must
be in a single namespace. No foreign namespace elements or attributes are
supported.

* Global attributes are not supported in the schema, for a REST service with standard
JSON as the media type.

e For Standard JSON, the elementFormDefault attribute must always be set to
qualified.

e To pass an attribute using JSON, you must represent it as "@Key": "Value". That is,
prefix the key with "e@". For example, the following payload works:

{

"PersonDetailsInputNestedElements": {
"PersonDetailsInputElementComplexType":
{ "@PersonDOB": "2001-10-26T21:32:52", "@PersonName": "Mr Person" }

)
"FriendDetailsInputElementComplexType":
{ "@PersonDOB": "2001-10-26T21:32:52", "@PersonName": "Mr Friend" }

}
X

This convention is not specified by Standard JSON. It is specific to the TIBCO
implementation.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

61 | Troubleshooting

Troubleshooting

Issue Workaround

For a REST BT Reference, the RRC file shows error messages even Clean the project.
when the validation shows no errors in the file. Error massages similar
to the following are displayed in the Problems window:

"NewRrcResourcel.rrc' has some error. Please validate

manually.
REST_Binding: 'NewRrcResourcel.rrc' has some error.
Please validate manually.

For a REST BT Reference, the RRC to WSDL generation does not Make sure that the
generate an array type in XSD if the JSON payload has an array array has at least
represented by []. As an example, for the following payload: two elements.

{getMeresponseType: {
"id": "100006769630394",
"work": [
{
"employer": {
"id": "47358345258",
"name" :"TIBCO Software Inc."

}

1}

The generated XSD must look like:

<xs:complexType name="getMeresponseType">
<Xs:sequence>

<xs:element type="xs:long" name="id" />
<xs:element type="workType" name="work"
maxOccurs="unbounded" minOccurs="0" /> //array
</xs:sequence>

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

62 | Troubleshooting

Issue Workaround

</xs:complexType>

If you send a request from a REST client running on the same machine Make sure the IPv4
where REST Service is deployed, you may see the REST client IP value DNS resolution is
as [0:0:0:0:0:0:0:1] on the TIBCO Service Performance Manager used in the REST
dashboard. Client setting.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

63 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services

For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO ActiveMatrix® Service Grid
Product Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

e To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

e To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://support.tibco.com/
https://support.tibco.com/

64 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

https://ideas.tibco.com/
https://community.tibco.com/

65 | Legal and Third-Party Notices

Legal and Third-Party Notices

SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix, Business Studio, Enterprise Message Service,
and Hawk are either registered trademarks or trademarks of Cloud Software Group, Inc. in the United
States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

https://www.cloud.com/legal
https://scripts.sil.org/OFL

66 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO ActiveMatrix® Service Grid REST Binding Development Guide

https://www.tibco.com/patents

	Contents
	TIBCO ActiveMatrix Binding Type for REST Overview
	REST Binding Type Key Terms
	REST Binding Type Usage
	REST Binding Type Key Features
	Easy-to-Use Configuration GUI
	Message Exchange Patterns
	Error Handling

	Complex XSD Constructs Mapping Rules

	REST Binding Development
	Payload Generation
	Generating XML Payloads
	Generating Badgerfish JSON Payloads

	Overriding Media Types (For Service Only)
	Configuring REST Bindings
	Generating a Swagger JSON File from TIBCO Business Studio - BPM Edition
	Overview of the Swagger JSON File
	Sample Swagger JSON File
	Sending and Consuming HTTP Headers
	Creating and Mapping Context Parameters
	For REST Service Binding
	Configuring for Request (Inbound) Flow
	Configuring for Response (Outbound or Fault) Flow

	For REST Reference Binding
	Configuring for Request (Outbound) Flow
	Configuring for Response (Inbound or Fault) Flow

	Mapping HTTP Status Code and Status Message

	Modifying a REST Resource Configuration File
	Policies Supported

	Sample Projects
	Executing the Bookstore Sample
	Importing the Bookstore Sample Project
	Reviewing the WSDL that Defines the Service Interface
	Reviewing the Composite Configuration
	Running the Bookstore Sample

	Executing the MultipleComplexTypes Sample
	Importing the MultipleComplexTypes Sample Project
	Reviewing the Mediation Flow
	Running the MultipleComplexTypes Sample

	Executing the Bookstore Client Sample (Reference)
	Importing the Bookstore Client Sample Project
	Reviewing the REST Resource Configuration File That Defines the REST Service ...
	Running the Bookstore Client Sample

	Executing the Facebook Client Sample (Reference)
	Importing the Facebook Client Sample Project
	Running the Facebook Client Sample

	Executing the Pass-Through Mode Sample (Reference)
	Executing the rest.context Sample
	Running the rest.context Example
	Breakdown of the rest.context Scenario
	REST-Java-REST: Success Scenario of REST-Java
	REST-Java-REST: Fault Scenario of REST-Java

	Executing the rest.extendedJSONConversion Sample
	Running the rest.extendedJSONConversion Example
	REST-Java-REST: Runtime Node Logs for Rest-Java

	Limitations
	General Limitations
	Validation Limitations
	Service Limitations
	Schema Limitations

	Troubleshooting
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

