TIBCS

TIBCO ActiveMatrix® Service Grid
WebApp Component Development

Version 3.4.3 | February 2025

@ CLOUd Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.



2 | Contents

Contents

Contents . 2
OVEIVIOW 4
Introduction . 4
Approaches 5
Web Application Components ... .. 7
Creating a WebApp Component ... 7
Creating an SOA Project ... 7
Adding an Empty WebApp Component ... 8
Starting With an Existing Implementation ... ... 8
0SGi-enabled WebApp Component ... ... . 8
Creating an OSGi-enabled WebApp Component ... 11
Configuring a Web Application Component ... 11
Configuring a WebApp Components Custom Feature ... 11
Configuring a WebApp Components External Custom Feature ... 12
WebApp Component Reference ... 13
Adding Configuring a WebApp Components Security ... 16
Updating a WebApp Component ... 21
ZeroConfiguration DAA Creation Using WAR ... ... 22
Limitations on WAR Files .. . 23
Web Application Component Implementations ... 25
Opening an Implementation ... . 25
Generating an Implementation ... . 25
Generate WebApp Component Implementation ... 26
Regenerating an Implementation ... .. 31
Refreshing an Implementation ... .. .. 31

TIBCO ActiveMatrix® Service Grid WebApp Component Development



3| Contents

Accessing a Property ..l 32
Invoking a Reference Operation ... 32
Enabling a Reference Injection ... . . . 33
Adding a Reference to a WebApp Component with Implementation Type as WAR ..... 34
WebApp Component Testing ... 45
RAD Communication ... 46
JAD Communication ... 46
Lo giN G 47
Handling Errors ... 48
URL Mappings .. 49
Use of URL Paths ... 49
Specification of Mappings ... 50
Implicit MappPiNgs .. 50
TIBCO Documentation and Support Services ... 52
Legal and Third-Party Notices ... . ... .. 54

TIBCO ActiveMatrix® Service Grid WebApp Component Development



4| Overview

Overview

WebApp components can be created by bringing in an existing Web application in the
TIBCO ActiveMatrix® Service Grid platform.

Introduction

A Web application is a group of HTML pages, Java Server Pages (JSP) files, Java servlets,
resources, and source files, which can be managed as a single unit.

Web applications can be simple (consisting of only static Web pages) or they can be
advanced and include JSP files and Java servlets. During development, these resources,
along with an XML deployment descriptor (and other Web resources), are contained within
a Web project.

When you are ready to publish the Web application to the Web, you deploy the Web project
to the server as a Web archive (WAR) file. The end user can then view the Web application

as a website from a URL.

Note: In ActiveMatrix® Service Grid, all the resources are archived in the
distributed application archive (DAA), which then internally deploys the required
WAR file.

The structure of a standard web module is shown in the following diagram.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



5 | Overview

[ Assembly I
Root

JSP pages,
static HTML pages,
applet classes, etc.

IZ] classes I tags
o M

(]

.

web.xml
sun-web.xmil
*tid
Library All server-side All .tag files
archive files .class files for for this
this web module web module

The WebApp component integrates Java EE web applications into ActiveMatrix Service Grid
and TIBCO ActiveMatrix BPM platform. The integration conforms to the SCA Java EE
Integration Specification (https://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=sca-j).

Approaches

You can create a WebApp component either top-down, or bottom-up, or by bringing an
existing Web application into the ActiveMatrix Service Grid platform.

Top-down approach:

* You can configure the component reference implementation by using a WTP (Web
Tools Platform) project created in the SOA Development Studio (SDS) during the
Generate Servlet Implementation.

e Plugin project: Use this option to create an OSGi-enabled web application.

Bottom-up approach : You bring an existing Web application into the ActiveMatrix Service
Grid platform. The existing Web application can be a WAR (Web Archive) file, WTP project,
or an OSGi-fied WebApp. If you start with an existing:

* WAR file: You cannot add properties or references on a component. The DAA has the

TIBCO ActiveMatrix® Service Grid WebApp Component Development


https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-j
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-j

6 | Overview
WAR file bundled in it.

e WTP project: You can add servlets, references, and properties if required. The WTP
project is exported into a WAR file and bundled inside the DAA.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



7 | Web Application Components

Web Application Components

WebApp components can be created, configured, and updated. You can configure a
WebApp component's custom feature or external custom feature. You can create a
ZeroConfiguration DAA if needed.

Creating a WebApp Component

To create a WebApp component, you can add an empty WebApp component or use an
existing implementation.

Creating an SOA Project

A new SOA project can be created from an existing WAR file or WTP project.

Procedure
1. Select File > New > TIBCO SOA Resources.
2. Click TIBCO SOA Project and click Next.
3. In the Project Name field, type a name for the project and click Next twice.
4. In the Project Types list, choose one of the following ways to create the project:
a. SOA Project From Implementation: You can create a Web application project
from an existing WAR file or WTP project.
b. Empty SOA Project
c. Basic SOA Project
5. Click Finish.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



8 | Web Application Components

Adding an Empty WebApp Component

There are several ways to add an empty WebApp component. To add an empty WebApp
component, do one of the following:

e Right-click the composite canvas and select Add > WebApp, or
e Click the canvas and click the WebApp icon in the pop-up toolbar, or

¢ Click the WebApp icon in the Palette and click the canvas.

Starting With an Existing Implementation

You can create an SOA project from an existing implementation either using a bottom-up
approach or a top-down approach.

e Bottom-up approach :

° Method 1: Drag the existing WAR file from the Project Explorer to the composite
canvas.

°© Method 2: In the Properties tab, select Implementation > Basic, and specify a
WTP project or WAR file. WTP project as the default option.

e Top-down approach:
1. Drag the WebApp component on the composite canvas.

2. Add a reference on the WebApp component and attach the WSDL port type to
the reference.

3. On the Properties tab, select WTP Project or Plugin Project.

4. Select Generate Servlet Implementation.
a. If you have selected the WTP Project, a WTP project is generated.

b. If you have selected the Plugin Project, a plug-in project is generated.

OSGi-enabled WebApp Component

You can create an OSGi-enabled web application by selecting the implementation type as a
Plugin Project. When the web application is OSGi-enabled, a web. xm1 file is packaged in
the OSGi plug-in. The advantages of creating an OSGi-enabled WebApp component are:

TIBCO ActiveMatrix® Service Grid WebApp Component Development



9 | Web Application Components

e Loads all the resources from the Implementation Bundle (OSGi-enabled WebApp)
using the Implementation Bundle Class Loader instead of the Component Bundle
Class Loader.

* Removes overhead of exporting all the resources from the Implementation Bundle
(which require user inference and is error prone).

» Behaves as a self-justifying bundle where all the dependencies can be specified in its
own MANIFEST.MF file instead of specifying them in the component's .requirement
file.

Structure of a Bundle

The WebApp component is composed as a set of OSGi bundles. OSGi bundles are JAR files
that typically contain Java class files of the service interfaces, their implementation, and
some meta information in a META-INF/manifest.mf file. Services are Java interfaces. After
the bundle is registered as a service with the OSGi framework, other bundles can use the
"published" service. You can add servlets, references, and properties if required. The
Servlets and all static content (HTML, JPEG files, and so on) reside in Java plug-ins.

The typical directory structure is shown below:

TIBCO ActiveMatrix® Service Grid WebApp Component Development



10 | Web Application Components

0SGi-enabled WebApp Project
//Root
0SGi plug-in nature WebContent META-INF
MANIFEST.MF
WEB.INF //Export-
Package:WehContent. WEB.INF
Web.xml

» Static resources such as HTML files or image files can be directly placed in the
WebContent directory or in a sub-directory.

» All dependencies of the Implementation Bundle need to be specified in its own
MANIFEST.MF file instead of a .requirement file.

e The WebApp component has a require-bundle dependency to its implementation.

Web.xml File

The web. xml file is generated using a Generate Servlet Implementation wizard. This
wizard generates a default web.xml. Using any other existing web.xml is not allowed. The
default values in web.xml are inline with the Generate WTP Wizard provided by Eclipse.
The default web.xml has version 2.4. Selecting different versions of web.xml while
generating the implementation is not supported. If required, you need to manually change
the version of web.xml. Supported versions are 2.4, 2.5, 3.0, and 3.1.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



11 | Web Application Components

Creating an OSGi-enabled WebApp Component

Procedure
1. Create an empty SOA project as described in Creating an SOA Project.

2. Create an empty WebApp component as described in Adding an Empty WebApp
Component.

3. In the Properties tab, select Plugin Project.

4. Select the WebApp component created, right-click, and select Generate Servlet
Implementation. After the implementation is generated successfully, the:

e Plugin Project and Deployment Descriptor (web.xml) File fields are
populated.

e The implementation bundle includes the web.xm1 file (see the Project Explorer
view).

e MANIFEST.MF file is created (see the Project Explorer view).

Configuring a Web Application Component

You can configure a WebApp component's custom feature or external custom feature. You
can also use the ZeroConfiguration WAR file.

Configuring a WebApp Components Custom Feature

One option to configure a WebApp component is to use the custom feature.

When you generate a web application whose implementation type is Plugin Project, a
custom feature is automatically created and configured. A custom feature is not
automatically created if you choose the WTP and WAR file options. For more information
on custom features, see TIBCO ActiveMatrix® Service Grid Java Component Development.

If you manually configure the component's implementation, you must manually create and
configure the custom feature by selecting File > New > Other > Custom Feature. If the
component implementation uses a library, add the custom feature containing the library in
the Properties view.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



12 | Web Application Components

Procedure
1. In the Properties view, click the component.
2. Click the Implementation tab.
3. Click the & button to the right of the Features tables.
The Select a Feature dialog displays.
4. In the Select an item to open field, type a partial feature name.
The feature that matches the name displays in the Matching items list.
5. Click a feature and click OK.

The feature is added to the Features list.

Configuring a WebApp Components External
Custom Feature

One option to configure a WebApp component is to use the external custom feature.

If your WebApp component implementation references a plug-in containing a shared
library, you must add the custom feature that contains the plug-in to the WebApp
component’s configuration. For more information on custom features, see TIBCO
ActiveMatrix® Service Grid Java Component Development.

Procedure

1.
2.
3.

Click the component.

In the Properties view, click the Implementation tab.
Click the button to the right of the Features table.
The Select a Feature dialog displays.

Click OK.

The feature is added to the component’s Features list.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



13 | Web Application Components

WebApp Component Reference

Field Description
WTP Start with the Eclipse WTP project containing the WebApp component
Project implementation. Alternatively, you can create a new WTP project from the

generate servlet implementation.

WAR Start with the WAR file containing the WebApp component implementation.
Plugin Creates a plug-in project implementation.
Project

Properties

The contextRoot and Connector Name properties must always be set.

Field

contextRoot

defaultConnector

Description

The context root of a web application determines which URLs are to be
delegated to your web application. If your application's context root is
myapp, any request for /myapp or /myapp/* are handled. For example,
http://localhost:8080/myapp/index.html.

NOTE:

¢ A WebApp component must have a unique context root.

¢ The contextRoot property must have only one element.
This property defines the name for an HTTP Inbound connector. For a
web application, a browser is the only way of communication and a
browser uses HTTP to communicate with any web application. In
ActiveMatrix Service Grid, you need to configure this Httplnbound

Resource template in the Administrator before deploying a web
application.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



14 | Web Application Components

Compute Feature Dependencies

Field Description
Compute Indicates whether to compute the features on which the component
Feature bundle depends. When cleared, the Feature Dependencies table displays.

Dependencies
P Default:

* New projects - selected.

* Legacy projects - cleared.

Preview Displays a dialog containing a list of features on which the component
bundle depends.

Features Dependencies

Column Description
Feature ID ID of the feature.
Version Range A range of feature versions.

By default, the table lists the details of the automatically-generated feature containing the
component implementation bundle.

Plugin Project

Field Description
Plugin Project  Selected plug-in project implementation.
Deployment Location of the web. xm1 file.

Descriptor
(web.xm1) File

TIBCO ActiveMatrix® Service Grid WebApp Component Development



15 | Web Application Components

Field

Thread
Context Class
Loader Type

Description

Configures the Thread Context Class Loader property:

» component - The class loader of the component bundle. The class
loader has visibility to the component bundle class path space,
Import-Package, and Require-Bundle entries from the component.

e bundle - The class loader of the implementation bundle. The class
loader has visibility to the bundle class path space and the Class-
Space because of entries in the MANIFEST.MF file.

¢ none - A null thread context class loader.

Default: component

Package the Implementation Bundle with the Application

Field

Package the
implementation
bundle with the
application

Implementation
Dependency

Description

Indicates whether to compute the component bundle dependencies.
When a component is deployed on a node, ActiveMatrix Service Grid
generates a component bundle. When selected, the component
implementation bundles required by the component bundle are
computed and identified when you package the composite. When
cleared, the Implementation Dependency and Compute Feature
Dependencies fields display. You can manually specify the
dependencies.

Default:

e New projects - selected.

e Legacy projects - cleared.
Type of the dependency of the component bundle on the component
implementation.

e Require Bundle - The bundle containing the component
implementation is declared as a required bundle. When selected,
the Bundle Name field displays.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



16 | Web Application Components

Field

Bundle Name

Package Name

Version Range

Description

Default: Require Bundle

Symbolic name of the bundle containing the component
implementation.

Default: The bundle in which the component implementation class is
present.

Name of the package containing the component implementation.
Default: The package in which the component implementation class is

present.

Versions of the bundle or package that satisfy the component bundle's
dependency. When specifying a range for a bundle, you may require an
exact match to a version that includes a build qualifier. In contrast, the
range for a package is inexact.

Default:
e Bundle - [1.0.0.qualifier,1.0.0.qualifier].
e Package - [1.0.0, 2.0.0).

Adding Configuring a WebApp Components Security

Resources of a web application are secured using security policies that provide
authentication, access control for resources, and confidentiality or data privacy.

Authentication: The means by which communicating entities prove to one another that
they are acting on behalf of specific identities authorized for access.

Access control for resources: The means by which interactions with resources are limited
to collections of users or programs to enforce integrity, confidentiality, or availability

constraints.

Confidentiality or data privacy: The means used to ensure that information is made
available only to users who are authorized to access it.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



17 | Web Application Components

The WebApp component provides the Form-based Authentication and the Security
Constraint policies to implement security policies for authentication and authorization of
resources.

If a WebApp component is created from a WAR file or WTP project, which already contains
the security configuration in web.xm1, the security configuration from web.xml is mapped
to the WebApp’s policy configuration.

o Note: Do not add or modify the form-based authentication data directly in
web.xml. You must use the provided interface (Implementation > Security tab or
Policies tab) to do this.

Using Form-based Authentication Policy

The authentication mechanism provides the means for verifying user access to the
website’s protected area, based on username and password. The form-based
authentication mechanism lets you set up the look and feel of login as well as error
screens.

Login screens present a form to enter a username and a password while accessing a
protected resource. The login module checks user authority to access the resource. If the
user is not authenticated, the error page is returned.

o Note: Form-based login uses sessions for login. The system automatically logs
out a user from the application if the session is invalidated.

Adding Configuring Form-based Authentication Policy

WebApp components can be configured for form-based authentication.

Procedure
1. Select the WebApp component that you need to configure in the editor.

2. Select the Properties view and use either of the following approaches to open the
Form-based Authentication Configuration wizard window:

e Approach 1: In the Properties view, click the Implementation vertical tab and

TIBCO ActiveMatrix® Service Grid WebApp Component Development



18 | Web Application Components

select the Security tab. Under the Authentication section, select Form as the
authentication type from the dropdown.

» Approach 2: In the Properties view, click the Policies vertical tab and click the
Add Policy Set icon. Select Embedded as the Policy Set type, and Form-Based
Authentication Policy under the System Policies list and click Next.

3. In the Form-based Authentication Configuration wizard window, specify the
following parameters:

a. Login page: This page contains fields for entering username and password.
Click Browse to select the desired login page from the project resource list and
click OK.

b. Error page: This page displays if authentication fails. Click Browse to select the
desired error page from the project resource list and click OK.

c. Login module: Resource instance for LDAP configuration.

4. Click Finish.

Security Constraint Policy

A security constraint associates authorization and user data constraints with HTTP
operations on web resources. A Security Constraint policy allows you to set security
constraints on one or more web resource collections.

A security constraint, which is represented by security-constraint in the deployment
descriptor, consists of two main elements:

» Web resource collection: The HTTP operations and web resources to which a
security constraint applies (that is, the constrained requests) are identified by one or
more web resource collections (web-resource-collection in the deployment
descriptor). A web resource collection consists of URL patterns (url-pattern in
deployment descriptor), and HTTP methods (http-method in deployment descriptor).

o Authorization constraint: An authorization constraint (auth-constraint in the
deployment descriptor) establishes a requirement for authentication, and names the
authorization roles permitted to perform the constrained requests. A user must be a
member of at least one of the named roles to be permitted to perform the
constrained requests. An authorization constraint consists of the role name element
(role-name in the deployment descriptor).

TIBCO ActiveMatrix® Service Grid WebApp Component Development



19 | Web Application Components

Note: The special role name “*” is a shorthand for all role names defined, while
an authorization constraint that names no roles indicates that access to the
constrained requests is not permitted under any circumstances.

Security Constraint Definition Example

The following is a sample web.xml code to define a security constraint.

<web-app
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">
<display—-name>Test WebApp</display—-name>
<security-constraint>
<web-resource-collection>
<web-resource-name>Admin Role</web-resource-name>
<url-pattern>/dump/auth/admin/x</url-pattern>
<url-pattern>*.htm</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>content-administrator</role-name>
</auth-constraint>
</security-constraint>
<security-constraint>
<web-resource-collection>
<web-resource-name>Super User Role</web-resource-name>
<url-pattern>/dump/auth/admin/*</url-pattern>
<url-pattern>/dump/auth/display/*</url-pattern>
<http-method>HEAD</http-method>
</web-resource-collection>
<web-resource-collection>
<web-resource—-name>Super User Role</web-resource-name>
<url-pattern>/dump/auth/system/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>Super-User</role-name>
</auth-constraint>
</security-constraint>
</web-app>

TIBCO ActiveMatrix® Service Grid WebApp Component Development



20 | Web Application Components

Adding or Configuring a Security Constraint Policy

In TIBCO Business Studio - BPM Edition, you can add or configure a security constraint
policy using a wizard.

Procedure

1. Open the Configure Web Security Constraint wizard using either of the following
approaches:

e Approach 1: In the Properties view, click the Implementation vertical tab and
select the Security tab.

Under the Web Security Constraint section, either click the policy set to
configure it, or click the -not set- hyperlink to add a new Web Security
Constraint policy set.

e Approach 2: In the Properties view, click the Policies vertical tab, and click the
Add Policy Set icon.

Select Embedded as the Policy Set type, Web Security Constraint Policy under
the System Policies list, and click Next.

2. Select the security constraint and rename the security constraint if required.

3. Click the add web resource collection icon to add web resources under the

security constraint or select an existing web resource collection to update.
4. Type the Name and Description of the web resource collection.

5. In the URL pattern field, click the plus icon to add a URL pattern. Double-click a
listed URL pattern to modify it.

6. Check the HTTP methods to be allowed for the web resource collection. The default
is "all" HTTP methods. If no methods are selected, then "all" HTTP methods option is
checked.

7. Click the add auth-constraint icon to add an authorization constraint.

8. Type the Description.

9. Click the plus icon to add a role name to the permissible roles list for the security
constraint. Click a listed role name to modify the role name.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



21 | Web Application Components

4 {7 securityConstraintl | {5 Description:
l'g' webResourceCollectionl c
. ample .
{4} authConstraint
- Roles:
:
Rolel
Role2
Role3
14 | m |y

10. Click the add security constraint icon to add another security constraint to the
policy and repeat steps 2 through step 9.

11. Click Finish when you are done updating the security constraint policy.

Updating a WebApp Component

You can update a component after you have configured its implementation.

Follow the steps in the table below to update a component.

Control Procedure
Canvas Right-click the component and select Refresh from Implementation.
Canvas Right-click the component and select Quick Fixes > Update Component from

Implementation. (The "Quick Fixes" option is available when you add, delete
or update a service, reference and property from the WebApp component.)

Properties 1. Select Properties > General > Validation Report and click the fix link.

View 2. Select Generate Servlet Implementation.

Problems 1. In the ProblemsView, right-click an error of the form "The component

TIBCO ActiveMatrix® Service Grid WebApp Component Development



22 | Web Application Components

Control Procedure

View <ComponentName> s out of sync with its implementation" and
select Quick Fix. (The "Quick Fix" option is available when you add,
delete or update a service, reference and property from the WebApp
component.)

2. In the Quick Fix dialog, select Update Component from
Implementation.

3. Click Finish.

ZeroConfiguration DAA Creation Using WAR

ZeroConfiguration DAA creation supports existing WebApps that do not invoke an SCA
reference. ZeroConfiguration DAA creation is based on SDS command-line support.

You can create a DAA using existing WebApp components (WAR files) on the ActiveMatrix
Service Grid platform without using the composite editor. For details, refer to SDS
Commandline help.

You must not bundle any of the following files inside the WAR file:
e WEB-INF/lib: j2ee.jar
e jasper-*.jar
e jsp-api.jar
e rt.jar
e tools.jar
e servlet.jar
» servlet-api.jar
e Xxerce.jar
e Xxerces.jar

e xerceslmpl.jar

TIBCO ActiveMatrix® Service Grid WebApp Component Development



23 | Web Application Components

Limitations on WAR Files

If the web application code in the WAR file uses APIs from the following packages, perform
the steps listed in this section.

e javax.xml.x

e org.xml.*

e org.w3c.x*

e org.apache.commons.logging.*

e org.apache.log4j.*

Imports in .requirements File for Necessary APlIs

Make sure that all the packages and sub-packages from the above list are declared as
imports in the .requirements file of the WebApp IT component.

For example, if the web application uses the javax.xml.transform package, add it in the
.requirements file as follows:

1. Search for the required package using the Plugin Registry View in TIBCO Business
Studio - BPM Edition.

2. Override the .requirements file of the WebApp IT component and add the necessary
import package entry.

Remove APl implementation from WAR

When any of the above mentioned APIs are being imported, remove the conflicting
implementation JARs from the WAR (using a tool such as 7-zip).

For example, let us say that your application uses the JAXP APIs. You have added the
necessary import packages in the .requirements file for the APl packages. The WAR file
bundles the Apache Xalan JAR file that provides the implementation of these APIs. In this
case, you need to remove the Xalan JAR from the WAR's 1ib folder.

Declaring Dependencies on org.ietf.jgss Packages

Normally, if you import packages and do not add them to the manifest, TIBCO Business
Studio - BPM Edition displays an error. However, if you import any of the org.ietf.jgss

TIBCO ActiveMatrix® Service Grid WebApp Component Development



24 | Web Application Components

packages and do not declare the import in the manifest, TIBCO Business Studio -

BPM Edition does not display an error because TIBCO Business Studio - BPM Edition
resolves those packages from the configured JRE. If you then deploy the application
without the declaration in the manifest, the application does not run. You must ensure that

you import the org.ietf.jgss package in the manifest file.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



25 | Web Application Component Implementations

Web Application Component
Implementations

WebApp component implementations can be generated, regenerated, and refreshed. You
can access properties and invoke reference options, as well as test your components.

Opening an Implementation

For WTP and Plugin Project options, the web.xm1 file is opened. For a WAR file, the WAR file
is just highlighted in the Project Explorer.

The following table explains how to open an implementation.

Control Procedure
Canvas Double-click the component.
Project Explorer  Select the WTP project and open the implementation.

Canvas Right-click the component and select Open Implementation.

Generating an Implementation

You can generate an implementation by generating the servlet and then using the Code
Generation Details dialog.

Procedure
1. Select Properties General > Validation Report, and click the fix link.

2. Click Generate Servlet Implementation.

3. Using the Canvas control, right-click the component and select Quick Fixes >

TIBCO ActiveMatrix® Service Grid WebApp Component Development



26 | Web Application Component Implementations

Generate Servlet Implementation.
4. Right-click the component and select Generate Servlet Implementation.

5. In the Problems view, right-click an error of the form "Component <ComponentName>
is not configured" and select Quick Fix.

6. In the Quick Fix dialog, click Generate Servlet Implementation.

7. Click Finish.
The Code generation details dialog displays.

8. Complete the process described in Generate WebApp Component Implementation.

9. Click Finish.
A WTP implementation is generated.

The webContent folder contains items to be published to the server. By default, this
folder is named wWebContent for newly created static and dynamic Web projects.

e META-INF — This directory contains the MANIFEST.MF file, which is used to map
class paths for dependent JAR files that exist in other projects in the same
Enterprise Application project. An entry in this file updates the run-time project
class path and Java build settings to include the referenced JAR files.

e WEB-INF — The directory where supporting Web resources for a Web
application are kept (for example: .xml files, .xm1 files, and web.xm1.)

Generate WebApp Component Implementation

To generate a WebApp component implementation, refer to the following tables describing
the Code Generation Details dialog, the XML Data Binding Classes dialog, and the Create
Servlet dialog.

Code Generation Details Dialog

Refer to this table when generating a WebApp component implementation.

Field Description

Project The name of the web application project to contain the

TIBCO ActiveMatrix® Service Grid WebApp Component Development



27 | Web Application Component Implementations

Field

Source Location

Package

Class

Use default location for
generated superclass

Superclass package

Superclass class

Description

implementation.
Default:
* For WTP: "WebApp" + <name of composite>.

e For plug-in project: "com.webapp" + <name of
composite in lower case>.

The name of the source folder in the plug-in project.

Default: src.
The name of the package of the implementation.

The name of the class of the implementation.

Default: The name of the component is the default class
name.

Default: checked.

The name of the package of the abstract superclass of the
implementation class.

The name of the abstract superclass of the
implementation class.

Default: Abstract<WebappComponentName>.

o Note: Normally, if you import packages and do not add them to the manifest,
TIBCO Business Studio - BPM Edition displays an error. However, if you import
any of the javax.xml.* or org.ietf.jgss packages and do not declare the
import in the manifest, TIBCO Business Studio - BPM Edition does not display an
error because TIBCO Business Studio - BPM Edition resolves those packages
from the configured JRE. If you then deploy the application without the
declaration in the manifest, the application does not run. Hence, you must
ensure that you import javax.xml or org.ietf.jgss packages in the manifest

file.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



28 | Web Application Component Implementations

XML Data Binding Classes Dialog

Refer to this table when generating a WebApp component implementation.

The XML Data Binding Classes dialog appears if the WebApp component is wired to any

reference.

WebApp component supports code generation based on JAXB and XMLBeans. For details,
see TIBCO ActiveMatrix® Service Grid Java Component Development.

Field

Type

Contracts
Details

Contracts

JAR Type

Source File

JAR File

Description

The type of the data binding being generated: XMLBeans or JAXB.

If a JAR file exists for the contract selected in the Contracts list, and you
choose a binding type different than the one that exists in the JAR file, or
the contract has changed since the JAR file was generated, the Overwrite
Existing JAR checkbox is selected.

Default: XMLBeans.

A list of WSDL and schema files for which XML data binding classes are
generated.

The type of JAR file being generated: Beans or Interface. (read only)
The path to the source file containing the selected contract. (read only)

The path to the JAR file.
Default: When generating a component implementation:
e Beans

° For a plug-in project:
projectName/libs/contractFileName.wsdl.jar.

° For a WTP project: /projectName/WebContent/WEB-
INF/1lib/contractFileName.wsdl.jar.

e |nterface

TIBCO ActiveMatrix® Service Grid WebApp Component Development



29 | Web Application Component Implementations

Field

Set JAR
Destination
Folder

JAR Status

Description

° For a plug-in project:

projectName/libs/contractFileName.wsdl_interface.jar.

° For a WTP project: /projectName/WebContent/WEB-
INF/lib/contractFileName.wsdl_interface.jar.

Where contractFileName is the name of the file containing the contract
selected in the Contracts list and projectName is the name of the project
containing the component implementation.

Invokes a dialog where you can set the folder to contain generated JAR
files:

» All Generated JARs: All JAR files are generated in the same folder as
the destination of the currently selected JAR.

e New Generated JARs: Only newly generated JAR files are generated
in the same folder as the destination of the currently selected JAR
file.

Setting the JAR folder affects only the JAR files generated by the wizard. It
has no effect outside the wizard nor on subsequent wizard runs.

Default: All Generated JARs.
The status of the JAR file containing the classes generated for the selected
contract:

e JAR is non-existent and is generated: The JAR file does not exist.

« Different binding type. JAR must be overwritten: The value of the
Type field is different than the type of the data binding classes in the
JAR file.

¢ JAR exists and is overwritten: The JAR file exists and the Overwrite
Existing JAR checkbox is selected.

* JAR exists and is preserved: The JAR file exists and the Overwrite
Existing JAR checkbox is clear.

¢ JAR is outdated and is overwritten: The selected contract has
changed since the JAR file was generated and the Overwrite
Existing JAR checkbox is selected, so the JAR file is generated.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



30 | Web Application Component Implementations

Field

Overwrite
Existing JAR

Advanced

Use
Configuration
File

Description

e JAR is outdated and is preserved: The selected contract has changed
since the JAR file was generated and the Overwrite Existing JAR
checkbox is clear, so the JAR file is not generated.

Enabled only when the JAR file exists.
When selected, the JAR file is regenerated.

When clear, the existing file is reused and is not modified.

Indicate that the specified data binding configuration file should be used
when generating JAR files.

When you select the checkbox, the text field is enabled.

Default: Unchecked.

Create Servlet Dialog

Refer to this table when generating a WebApp component implementation.

Field

Name
Description
Initialization

Parameters

URL Mappings

Description

Name of the servlet.

Description of the servlet.

Name-value initialization parameters are used to convey setup information.
Typical examples are a Webmaster’s e-mail address, or the name of a

system that holds critical data.

On receipt of a client request, the URL mappings determine the Web
application to which to forward it. For more details, see URL Mappings.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



31 | Web Application Component Implementations

Regenerating an Implementation

You can regenerate an implementation without recreating everything. For example, if you
have a Web application with a Java SOA project, each can have their respective
implementations.

After developing the component, if you need to make changes in the WSDL (for example, a
change to the datatype), you can use this option to change the existing implementation to
apply the updated WSDL instead of creating everything from scratch again.

The implementation must have been originally generated before you can regenerate.

You should regenerate the component implementation after you add (or delete) a service,
reference, or property to the component.

Control Procedure

Canvas Right-click the component and select Regenerate Servlet Implementation.

Problems 1. In the Problems view, right-click an error of the form "The component

View <ComponentName> 1is out of sync with its implementation" and select
Quick Fix.

2. In the Quick Fix dialog, select Update Component from Implementation or
Update/Create Servlet.

3. Click Finish.

The implementation is updated to match the component.

Refreshing an Implementation

This option updates the SDS WebApp component based on an underlying implementation.
For example, a WebApp component is configured with two properties and an
implementation is generated. If one of the properties is accidentally deleted, you can use
the Refresh option. The SDS component reads the underlying implementation and
refreshes the Ul with the two properties.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



32 | Web Application Component Implementations

The following table explains how to refresh an implementation.

Control Procedure

Canvas Right-click the component and select Refresh from Implementation.

Problems 1. In the Problems view, right-click an error of the form "The component

View <ComponentName> 1is out of sync with its implementation" and select
Quick Fix.

2. In the Quick Fix dialog, select Update Component from Implementation or
Update/Create Servlet.

3. Click Finish.

Accessing a Property

When you generate a WebApp component implementation for a component with a
property, TIBCO Business Studio - BPM Edition adds a field that represents the property
and accessor methods to the WebApp component's abstract implementation servlet.

For more information, see TIBCO ActiveMatrix® Service Grid Java Component Development.

Invoking a Reference Operation

You can add a reference to a WebApp component. When you add a reference to a WebApp
component, TIBCO Business Studio - BPM Edition adds a field and accessor methods to the
abstract component implementation. ActiveMatrix Service Grid injects the referenced
object into the component implementation.

You can add a reference to a WebApp component with the following implementation types:

» WTP Project: For more information, see the "Invoking a Reference Operation"
section of TIBCO ActiveMatrix® Service GridJava Component Development.

* Plugin Project: For more information, see the "Invoking a Reference Operation"
section of TIBCO ActiveMatrix® Service Grid Java Component Development.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



33 | Web Application Component Implementations

* WAR: For more information, see Adding a Reference to a WebApp Component with

Implementation Type as WAR.

Enabling a Reference Injection

Reference injection in a WebApp Component with implementation type as WAR is not
enabled by default. To enable a reference injection for an implementation type as WAR:

'9 Preferences

type filter text

Model Validation
openArchitectureV
Plug-in Developm
Report Design
Run/Debug
Server
Services
Spring
Team

~ TIBCO SOA Platfor

Composite Diat
Excluded Custo
Health Check A
Mediation IT
Platform Installs
Runtime Artifac
Web-App IT
WSDL Validatio «
>

Web-App IT Prvovry

Allow Reference Injection to WAR Type Web app.

@

Apply and Close Cancel

Procedure
1. Select Window > Preferences.

2. Select TIBCO SOA Platform > Web-App IT.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



34 | Web Application Component Implementations

3. Select Allow Reference injection to WAR Type Web app. By default, this option is
disabled.

4. Click Apply and Close.

Adding a Reference to a WebApp Component with
Implementation Type as WAR

You can begin by creating a WAR file with the reference details in TIBCO Business Studio -
BPM Edition itself or begin by using a WAR file created outside of TIBCO Business Studio -
BPM Edition. In both cases, make sure:

» Reference code is defined using @Reference annotations in the servlet file.

 All the servlets using the @Reference annotation are defined in the web. xm1 file.

e The interface JAR files of the WSDL file are available in the WEB-inf/1ib folder.
For more information about creating the WAR file, see the following sections.

e In TIBCO Business Studio - BPM Edition: See Adding a Reference in TIBCO Business
Studio

e Outside of TIBCO Business Studio - BPM Edition: See Adding a Reference Outside of
TIBCO Business Studio

Adding a Reference in TIBCO Business Studio -
BPM Edition

To add a reference in TIBCO Business Studio - BPM Edition, you need to:

1. Create a WAR file with the reference details.

For more information, see Creating a WAR File with the Reference Details.

2. Create a new SOA project and add a WebApp component to it using the WAR file
created in step 1.

For more information see, Adding a WebApp Component Using the WAR File.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



35 | Web Application Component Implementations

Creating a WAR File with the Reference Details

Procedure
1. Create a WTP or dynamic project for the WAR project.

25 Project Explorer 22 2| | G 7 = O |[@) webapphelloworld2.soa.composite 52 | =g
I webzpp.helloworld2,jv ( ~rear Tl ~ | 5 palette
v |2 webapp.helloworld2.s0a haa
v & Composites r:“ R
| webapp.helloworld2.soa.composite [ Component
[ Deployment Aifacts 41l Generic Component
3 Mediation Flows =] & > Reference
2l Resource Templates S
~ [ service Descriptors & = senvice
9 HelloWorld2.wsdl o+ Wire
= WebAppHelloComponent
2] .config pp! P »
[ .project 2 [F=] Property
2 webapp.helloworld2.wtp =3 ] Component Types &
#7 spring
JavaHelloComponent @ Webhpp
iigh Composite
v
= Java
< > =
[ Properties 53 & =18
< > .
@ Component
oz -5
82 Outline 52 | [ Deployment Server = e~ _Secutty | N
i |
Properties Options:
Services @ WTP Project (OWAR (O Plugin Project
References
Policies WTP Project: webapp helloworld2.wtp - | [%
e
[“] Compute Feature Dependencies "

2. Generate the interface JAR files (using JAXB or XMLBeans) using the WSDL.
a. Select the WSDL file associated with the WebApp component.

b. Right-click and select Generate XML Data Bindings. The XML Data Binding
Classes dialog is displayed. For more information about the fields in the XML
Data Binding Classes dialog, see XML Data Binding Classes Dialog.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



36 | Web Application Component Implementations

#) Interface Generation Wizard a x>

XML Data Binding Classes

Type: | KMLBeans ~
Contracts:

@ HelloWorld2.wsdl
(& HelloWorld2.wsdl

JAR Type: | Beans JAR |

Source File: | fwebapp.helloworld2.soa/Service Descriptors/HelloWorld2wsdl |
JAR File:

| webapp.helloworld2 soa.libs/libs/HelloWorld2.wsdl jar ||--

Use this JAR for All Data Bindings 5et JAR Folder
JAR. Status: | JAR is non-existent and will be generated. |

Owerwrite Existing JAR

< >

b Advanced

c. Select the Type as JAXB or XMLBeans. The default is XMLBeans.
d. Note the location of the JAR file in the JAR File field.
e. Click Finish.

3. Add the JAR file mentioned in the location in item d of step 2 to the WEB-INF/1lib
folder of the WTP project.

4. Create the reference in the servlet file using the @reference annotation (Java
resources > src > <name>.wtp). For example, for the <TIBCO_

HOME>/amx/<version>/samples/webapp/helloworld2 sample, copy the code as
documented below.

e From:

TIBCO ActiveMatrix® Service Grid WebApp Component Development



37 | Web Application Component Implementations

Java resources > src > com.webapp.helloworld2.wtp >
AbstractWebAppHelloComponent.java

e Copy code:

private HelloWorldPT HelloWorldPT;

@Reference(name = "HelloWor1ldPT")

public void setHelloWorldPT(HelloWorldPT HelloWor1ldPT)
{

this.HelloWorldPT = HelloWorldPT;

}
public HelloWorldPT getHelloWorldPT()

{
return this.HelloWorldPT;

}

e To:

Java resources > src > com.webapp.helloworld2.wtp >
WebAppHelloComponent.java

&5 Project Bxplorer 22| = %] % & = = O [[®) webapphelloworld2.soa.composite | 1] AbstractWebAppHlloComponent java 3¢ | 1] “WebAppHelloComponent java =g
g Mediation Flows ~ * gGenerated TEMPLOO3 =
 E2 Resource Templates o
> Y SubstitutionVariables.substvar W public abstract class AbstractWebAppHelloComponsnt extends HrtpServlet {
v [ Service Descriptors

> 3 HelloWorld2wsdl jprivate HelloWorldPT HelloWorldPT:
2/ config
|¥] .project
5 & webapp.helloworld2.soa libs
v 2 webapp.helloworldZ.wip
> ‘2w Deployment Descriptor: webapp. helloworld2.wip
v 4 Java Resources

v @ s S public HelloWorldPT getHelloWorldPT() {
return this.HelloWorldPT:

v [ comawebapphelloworld2.wtp
v [I] AbstractWebAppHelloComponent.java
> § AbstractWebAppHelloCompenent s
v [I] WebAppHelloComponent java v
5 £ WebAppHelloComponent Q >
> Eh Libraries
5 m JavaScript Resources [ properties % ExD|é& ~= 0
> [ settings ¥ || Property Value
8= Outline 52 | [ Deployment Server ODELases v= 0O
#  com.webapp.helloworld2wtp
v (3" AbstractWebAppHelloComponent
HelloWorldPT : Helle\WorldPT
o setHelloWorldPT(HelloWorldPT) : void
©  getHelloWorldPT(): HelloWorldPT

}

| Wiitable [ smertinsert [ 25:5 Code Generation

5. Add the code to call the reference (to WebAppHelloComponent.java in this example).

TIBCO ActiveMatrix® Service Grid WebApp Component Development



38 | Web Application Component Implementations

25 Project Explorer 12 | E/5| & 4 ~ = O |[®) websppheloworld2soa.composite | ] AbstractWebAppHelloComponentjava | J] "WebAppHelloComponentjava 32| = O
5 Mediation Flows ~ . ~ml
v E Resource Templates * Inplementation of the WSDL operation: sayHello
@ SubstitutionVariables.substvar public HelloResponseDocument sayHello(HelloRequestDocument firstMame) {
. System.out.println(*- > Generating Java Hello Component Response...®);
~ [ Service Descriptors HelloRequestDocument req = HelloRequestDocument.Factory.nawinstance()]
2 HelloWorld2wsdl raq. sethel LoRequest (*Hello®);
- HelloResponseDacument resp = getHelloworldPT() . sayHello(req);
2] .config

return resp;
[%] .project ¥

f webapp.helloworld2.soa.libs
v 2 webapp.helloworld2wtp
Ba Deployment Descriptor: webapp.hellowerld2.wtp g @Reference(name = "HelloWorldPT*)

private HelloWorldPT HelloWorldPT;

public void setkelloWorldPT(HelloworldPT HelloworldPT) {

~ 8 Java Resources
this.HelloworldPT = HellowWorldPT;|

v 3 s
v B comwebapp.helloworld2.wtp
~ [J] AbstractWebAppHelloComponentjava
£ AbstractWebAppHelloComponent s
~ )] WebAppHelloComponent.java - v
{9 WebAppHelloComponent 7 B

public HelloworldPT getHelloWorldPT() {
return this. KelloWorldpPT;

B Libraries
= JavaScript Resources [T Properties &2 =
£ settings ¥ || property Value

5= Outline 55 | [ Deployment Server EARE e v= 0O
© .. setHelloWorldPT(HelloWorldPT) : void "

. init(ServietCanfig) - void

© ... destroy(: void

© .. getSenvletConfig): ServlctConfig

. getServletinfal) : Sting

© .. service(SenvletRequest, SenvletResponse) : voidl

© .. getHelloWorldPT( : HelloWorldPT

b

Eol® ~- 5

[ witable [ Smartinsert [ 102:5 T Erm

6. Make sure all the servlets using the @Reference annotation are declared in the
web. xml file. For example:

<servlet>

<display-name>WebAppHelloComponent</display-name>
<servlet-name>WebAppHelloComponent</servlet-name>

<servlet-
class>com.webapp.helloworld2.wtp.WebAppHelloComponent</servliet-
class>

</servlet>

<servlet>
<display-name>AbstractWebAppHelloComponent</display-name>
<servlet-name>AbstractWebAppHelloComponent</servlet-name>
<servlet-class>com.webapp.helloworld2.wtp.
AbstractWebAppHelloComponent</servlet-class>

</servlet>

7. Export the WTP project or dynamic project to a WAR file. Right-click the composite
and select Export > WAR file.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



39 | Web Application Component Implementations

D Export O *
WAR Export 2
Export Web project to the local file system. e
1 —
Web project: | webapp.helloworldZwip “
Destination: | Citempiwebapp.helloworld2owtpovar “ | | Browsze...

Target runtime

[ ] Optimize for a specific server runtime

J2EE Preview

[ ] Export source files
[ ] Overwrite existing file

@ Finish Cancel

8. Click Finish.

Adding a WebApp Component Using the WAR File

Procedure
1. Create an empty SOA project.

2. Import the generated WAR file to the Service Descriptors folder.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



40 | Web Application Component Implementations

2 Import O X
File system
Import resources from the local file system. @
-
From directory: | chtemp V| | Browse... |
> [m] = temp [] El InitsonlnSve.dat
] E] InitlsonCutSve.dat
] [El OPInstall.log
= webapp.helloworld2.wtp.war
| FilterTypes.. | SelectAll | Deselect Al
Into folder: | Webapp_WAR_reference/Service Descriptors | | Browse...
Opticns
[] Overwrite existing resources without warning
Create top-level folder
@ Next > Finish | | Cancel

3. Add a WebApp component.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



41 | Web Application Component Implementations

25 Project Explorer 2 | D&% # 7 = O ||®) webapphelloworid2... | 1] AbstractWebAppHell.. | [J] WebAppHelloCompon... | [ webxml || "Webapp_WAR referen... 03| = O
Test g N =%
’ < Webapp_WAR _reference ~ |5 Palette
~ [ Webapp_WAR_reference NEEY=E
+ Fg, Composites — =
» B * Webapp_WAR,reference.composite [ Component
[ Deployment Artifacts 4l Generic Component
£ Mediation Flows 5 Reference
5 El Resource Templates
v [ Service Descriptors = senvice
[2 webapp.helloworldZwtp.war @ 43 Wire
|£ -config [ Property
%] project WebApp
5 [ webapp-helloworld2jy ] Component Types &
> |2 webapp.helloworld2.s0a # Spring
5 | webapp.helloworld2.soalibs @ Webhpp
@
bapp.helloworld2.wt
5 2 webapp-helloworld2wtp  Composis
= Java
& Mediation
< > <
oz - =
= Outline 2 | 4 Deployment Server B 8
g
17_ [ Properties &2 & =8
i# Composite
. . ~
@ General Name: Webapp_WAR reference
r - Version: | 1.00.qualifier
Properties
Mamespace: | http://www.example.com/Webapp_WAR reference
Services
Description:
= v
Code Generation

4. Select the WAR file as the implementation.

5 Project Bxplorer &2 | =2 % % 4 7 = O @ webapphelloworid2... | [J| AbstractWebAppHell.. | L] WebAppHelloCompon.. | X webxml |8 "Webapp WAR referen.. £ = [
5 (9 Test ( Webapp_WAR_reference ) # | 23 Palette 4
~ (2 Webapp_WAR reference % aa

v g, Composites B =
> | " Webapp_WAR_reference.composite [i5 Compenent

[ Deployment Artifacts

3 Generic Compenent
5 Mediation Flows

5 2l Resource Templates > Reference
v [ Service Descriptors 5B Senvice
2 webapp.helloworld2.wtp.war 0 Wire
[ .config 5 Property
|%] .project
5 [ webapp.helloworld2.jv @ Component Types ©
> |2 webapp.helloworld2.s0a # Spring
> % webapp helloworld2.s0a libs @ Webapp

5> 22 webapp helloworld2.wtp

v | @ Composite

= Java, -
1 Properties 5 | Ml& =10
S > || @ Component
o - = Py A
8= Outline £ | [ Deployment Server 5@ = O ; - OWTP Preject OP\ungrmm
= e
= = WarFile: ./Service Descriptor 2 wipwar [ %
i Compute Feature Dependencies
Policies Provin
Appearance
v

Code Generation

TIBCO Business Studio - BPM Edition scans the servlet classes declared in the
web.xml file of the WAR file. If the @Reference annotation is found in a servlet class,

is displayed on the WebApp component in TIBCO Business Studio - BPM Edition.

5. Add the WSDL file to the component reference. Use the same WSDL file that was used
for generating interface JARs. Select the reference and specify the WSDL Interface
details (Port Type and WSDL Location).

TIBCO ActiveMatrix® Service Grid WebApp Component Development



42 | Web Application Component Implementations

25 Project Explorer 32 | 5| % 4 T = 0O [& webapphelioworid2.. | [) AbstractWebAppHell.. | 1] WebAppHelloCompon... | [X] webxml | & “Webapp WAR_referen... 5| = O
v 2 Webapp_WAR _reference " ~ | palette
~ [, Composites e
5 B * Webapp_WAR_reference.composite RN
5 Deployment Artifacts [55 Component
L Mediation Flows = 41l Generic Component
gic Ipm—
» Ed Resource Templates 5 Reference
v [ Service Descriptors
> & HelloWorld2wsdl @ > Senvice
=] webapp.hellowarld2.wip.war e 43 Wire
config App Propery
.project
5 [ webapp.helloword2jv |0 ETararsri U= @
~ |2 webapp.helloworld2.s0a # Spring
v
> [ Composites @ WebApp
> [ Deployment Artifacts =
gl Mediation Flows [ Properties 52 & v = o
> 2 Resource Templates B
~ [ Service Descriptors @ Component
5 B HelloWorld2.wsdl v
< 5 General > HelloWerldPT El Mame: | HelloWorldPT ‘
Implementati
85 Outtine 50 | [£3 Deployment Server % |2 = O || _melementation El WSDL Interface
o Propertics
= Services Port Type: © HelioWorldPT - hito//nsitibco.comyhello/ || (3]
References WSDL Location: /Webapp_WAR_reference/Serv..scriptors/HelloWorld2 wsdl
Policis
e » Context Parameters Copy Parameters...
Appearance
» Advanced
Code Generation

6. Promote the component reference. Select the component reference, right-click, and
select Promote.

[ Project Explorer 57 | %] % & 7 = O[@ webapphelloworld2... | [1] AbstractWebAppHell.. | [J] WebAppHelloCompon.. | [X] webxml [ *Webapp WAR referen... 3| = O
Webapp_WAR_ref ~ ~la
h QP_E PP- ) -IEerEnce Webapp_WAR _reference ‘ Lo Palette [
~ [ Composites NCETEE
> | * Webapp_WAR_reference.composite -
F4 Deployment Artifacts [ Component
L@ Mediation Flows <4 Generic Component
> Edl Resource Templates 5 Reference
~ [ Service Descriptors
o 2@ HelloWorld2.wsdl B Service
webapp.helloworld2.wip.war o Wire
config [ Property
%) project WebApp1
5 [ webapp helloworld2 ju S % | Component Types @
v |2 webapp helloworld2.soa 7 Spring
> i@ Composites @ WebApp
> [ Deployment Artifacts N
< it
g Mediation Flows 1 Composite
> 2 Resource Templates = Java
~ [ Service Descriptors @@ Medistion
> A3 HelloWorld2.wsd! v
< > v
85 Outtine 72 |9 Deployment Server| B = O
[ Properties &2 Ml ~= 0
i Composite
=
Referances | *>HelloWorldPT1 El Name: | HelloWorldPT1 e
Loicies El WSDL Interface
Rulers & Grid
= Port Type: © HelloWorldPT - httpy//ns.tibco.com/Hello, || [] v
Code Generation

7. Create a DAA. Right-click the composite and select Create DAA.

8. In ActiveMatrix Service Grid Administrator, deploy the DAA and invoke the
application.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



43 | Web Application Component Implementations

v ﬁ Create Configure promoted references

v & Distribute

A& & References < All references are configured

. Webapp_WAR_refe...
0
1l 190 SOAP. Application:myhelloworld2.soa
Service:HelloWorldPT

The reference application is called.

Adding a Context Parameter to an Implementation of Type
WAR

Before you begin

For more information about context parameters, see the "Context Parameters" section of
TIBCO ActiveMatrix® Service Grid Java Component Development. The steps specific to a
WebApp component (with implementation type of WAR) are listed in this section.

Procedure
1. Add a context parameter to the servlet class as follows:

@Context public ComponentContext componentContext;

2. For a WAR file that uses the @Context annotation, copy
com.tibco.amf.platform.common_1.4.0.001.jar and
com.tibco.amf.platform.runtime.extension_1.6.0.004.jar from <TIBCO_
HOME> /component/shared/1.0.0/plugins to the system's %temp%/ . SDSWAR-<WAR
filename>/WEB-INF/lib folder.

3. Clean the SOA WebApp project using Project > Clean and rebuild it.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



44 | Web Application Component Implementations

Adding a Dynamic Endpoint Reference to an Implementation
of Type WAR

Before you begin

For information on endpoint references, refer to the "Endpoint References" section of
TIBCO ActiveMatrix® Service Grid Java Component Development. Only steps specific to the
WebApp component are listed in this section.

Procedure

1. Add the endpoint reference, as documented in the "Endpoint References" section of
TIBCO ActiveMatrix® Service Grid Java Component Development.

2. Enable Wired by Implementation for the Promoted Reference (at the interface level,
not the binding level).

a. Select the promoted reference.

b. In the Properties View, click General > Advanced.

c. Select Wired by Implementation.

5 Project Explorer 52 = O ||&) "webapp.helloworld2.s0a.. | [1] AbstractWebAppHelloCo... [1] WebAppHelloComponent,... X webxml | @ "Webapp WAR_referencec.. 5| = O [ &
& - a2
Bl S Webapp_WAR reference | ~ | Palette bo|Es
(= bsProject ~ L& & 2]
(= .com.tibco.amx.rad o =]
D Test [ Component
v (3? Webapp_WAR _reference : <4 Generic Component
~ [ Composites i HelppWo... 5D Reference
8| * Webapp_WAR_reference.composite EE = Senice
[ Deployment Artifacts ‘:4 -
£ Mediation Flows @ (== e Wire
EZl Resource Templates [] Property
WebApp1
E Serwf:a[!es:nptors App &) Component Types -
2 .config
[¥] .project # Spring
2 wersion @ WebApp
v [ webapp.helloworld2 jv =
(e HelloWerldPT-6f87292-service-beans jar [T Properties 52 =1 ¥ = 8
4 HelloWorldPT-6f87292-service-interface,
% e 1 *» Component Reference
=4 JRE Svsten Library [JavaSE-1.61 s | ey Port Typer © HelloWorldPT - hitp:/ns.tibco.com/Hello/ =[] =
Pol WSDL Location: /Webapp_WAR reference/Service Descriptors/HelloWorld2.wsdl
B2 Qutline 32 | B Deployment Server = O | PP P
= GERCSNCER (77 Context Parametors Copy Parameters...
——==—+ ~ Advanced
3 L [] Wired by Implementation
@
[ Conversational
v

Result

The binding type sends the message to the complete URI specified in the code in step 1
instead of the URL that it is configured with (via binding or HTTP client).

TIBCO ActiveMatrix® Service Grid WebApp Component Development



45 | Web Application Component Implementations

Adding a Reference Outside of TIBCO Business Studio -
BPM Edition

Using a WAR file that was not created in TIBCO Business Studio - BPM Edition, you can add
a reference to a WebApp component.

To do this:

Procedure

1. Ensure that the reference code is added using @Reference annotations and is made
available through the CLASSPATH.

2. Use the command-line or Eclipse to generate the interface JAR files from the WSDL.
The WSDL can also be generated using JAXB or XMLBeans.

3. Place the interface JAR files in the WEB-INF/14b folder.

4. Copy com.tibco.amf.platform.common_1.4.0.001.jar and
com.tibco.amf.platform.runtime.extension_1.6.0.004. jar from <TIBCO_
HOME>/component/shared/1.0.0/plugins to the WEB-INF/11ib folder of the WTP or
dynamic web project.

5. Create a WAR file from the dynamic web project.

6. Using a ZIP utility, remove the JAR files copied in step 4 from the WEB-INF/11ib folder
of the exported WAR file.

7. Write the code to invoke the reference.

8. Follow the procedure documented in the Adding a WebApp Component Using the
WAR File section.

WebApp Component Testing

When AMX composite applications run in RAD, or a remote admin is connected through
TIBCO Business Studio - BPM Edition, you can view information about the WebApp
components using the internal WebApp component testing servlet.

The WebApp component testing servlet opens the OSGi-based Jetty server that hosts the
WebApp component to be tested. It opens the WebApp component in the Eclipse internal
browser.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



46 | Web Application Component Implementations

To test the WebApp component, right-click the WebApp component running in the
Administrator Explorer view, and select Invoke WebApp with Web Explorer.

The application detects if the WebApp component is running in a RAD environment or at a
remote machine (JAD environment). Based on the communication environment, the
WebApp component is processed.

RAD Communication

If the WebApp component is running in RAD, the launch configuration is resolved as
follows:

Procedure
1. The launch configuration for the web application DAA or composite file is resolved.

e If launched from DAA, the web.xm1 file is extracted from the composite file.

e If launched from the composite file, web.xml is resolved from the Eclipse
workspace.

2. The contextRoot and defaultConnector property values are extracted from the
composite resource. The HTTP port number associated with the defaultConnector
property is then extracted from the Debug/Run Configuration > Advanced > HTTP
Connectors section.

3. Atest URL using contextRoot and HTTP port number (http://localhost:port
number/contextRoot) is constructed. It opens it in the Eclipse internal browser.

e If contextRoot is mapped to a welcome page, the browser displays the
welcome page.

» If contextRoot is not mapped to a welcome page, the browser loads the RAD
testing page, which displays all the servlets and their mappings from web. xm1.
Click any servlet link in the RAD testing page to load the associated web page in
other frame.

JAD Communication

If the web application runs in a remote machine (JAD environment), administrator web
services are invoked using SOAP requests to retrieve the properties for the WebApp
component.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



47 | Web Application Component Implementations

Procedure
1. The values of the contextRoot and defaultConnector properties are extracted from
the property map. If the properties are substitutable, the composite properties are
resolved from an administrator. This is a recursive process until the final value of the
substitution is not found.

2. The HTTP host address and HTTP port number are extracted from
defaultConnector. Then, the following information is retrieved:

a. Node on which component is running.

b. Resource instance of the defaultConnector on the node.
c. Resource template for the resource instance.

d. HTTP port number from the resource template.

e. HTTP host address from the node.

3. Atest URL is constructed using contextRoot, the HTTP port number, and the HTTP
host address (http://host address:port number/contextRoot). It is opened in the Eclipse
internal browser.

* |If contextRoot is mapped to a welcome page, the browser displays the
welcome page.

» If contextRoot is not mapped to a welcome page, the browser displays the Page
Not Found error page.

Logging

ActiveMatrix Service Grid supports logging to standard out and using a logging API. For
applications, which require a simple demonstration, you can log to SDTOUT. However, for
product applications you should use the logging API.

o Note: For WebApp implementations of type WAR or WTP (non-OSGified
WebApp), application-level loggers work only when the loggers are defined in
servlets and filters. If loggers are defined in any other class in the web-inf/lib
folder or a separate jar file, it does not use the application-level logging
configuration. Such classes use the node-level logging configuration.

For more information, see TIBCO ActiveMatrix® Service Grid Java Component Development.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



48 | Web Application Component Implementations

Handling Errors

The WebApp component handles errors in the same way as the Java component. For more
information about handling declared and undeclared faults, see TIBCO ActiveMatrix® Service

Grid Java Component Development.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



49 | URL Mappings

URL Mappings

The path used for mapping to a servlet is the request URL from the request object minus
the context path and the path parameters. The URL path mapping rules follow a prescribed
order.

There are explicit mappings, and in certain cases, implicit mappings are allowed.

Use of URL Paths

Upon receipt of a client request, the Web container determines the Web application to
which to forward it. The Web application selected must have the longest context path that
matches the start of the request URL.

The matched part of the URL is the context path when mapping to servlets. The Web
container next must locate the servlet to process the request, using the path mapping
procedure described below.

The path used for mapping to a servlet is the request URL from the request object, minus
the context path and the path parameters. The URL path mapping rules below are followed
in sequence. The first successful match is used with no further matches attempted.

Procedure
1. The container looks for an exact match of the path of the request to the path of the
servlet. A successful match selects the servlet.

2. The container recursively attempts to match the longest path-prefix. This is done by
stepping down the path tree a directory at a time, using the ’/’ character as a path
separator. The longest match determines the servlet selected.

3. If the last segment in the URL path contains an extension (for example, jsp), the
servlet container tries to match a servlet that handles requests for the extension. An
extension is defined as the part of the last segment after the last ’.” character

4. If neither of the previous three rules result in a servlet match, the container tries to
serve content appropriate for the resource requested. If a "default" servlet is defined
for the application, it is used. The container must use case-sensitive string

TIBCO ActiveMatrix® Service Grid WebApp Component Development



50 | URL Mappings

comparisons for matching.

Specification of Mappings
In the Web application deployment descriptor, the following syntax is used to define
mappings.

» A string beginning with a ¢/’ character and ending with a ‘/*’ suffix is used for path
mapping.
e A string beginning with a “*.” prefix is used as an extension mapping.

e A string containing only the ’/’ character indicates the "default" servlet of the
application. The servlet path is the request URI minus the context path, and the path
info is null.

 All other strings are used for exact matches only.

Implicit Mappings

If the container has an internal JSP container, the %.jsp extension is mapped to it,
allowing JSP pages to be executed on demand. This mapping is termed an implicit
mapping. If a x.jsp mapping is defined by the Web application, its mapping takes
precedence over the implicit mapping.

A servlet container is allowed to make other implicit mappings as long as explicit mappings
take precedence. For example, an implicit mapping of *.shtml could be mapped to include
functionality on the server.

Example Mapping Set

Consider the following set of mappings:

Path Pattern Servlet
/foo/bar/* servletl
/bar/* servlet2

TIBCO ActiveMatrix® Service Grid WebApp Component Development



51 | URL Mappings

Path Pattern Servlet
/catalog servlet3
*.bop servlet4

The following behavior would result:

Incoming Path Servlet Handling Request
/foo/bar/index.html servletl
/foo/bar/index.bop servletl

/bar/index.bop servlet2

/catalog servlet3
/catalog/index.html "default" servlet
/catalog/racecar.bop serviet4

/index.bop servlet4

Note: In the case of /catalog/index.html and /catalog/racecar.bop, the
servlet mapped to "/catalog" is not used because the match is not exact.

TIBCO ActiveMatrix® Service Grid WebApp Component Development



52 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services

For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO ActiveMatrix® Service Grid
Product Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

e To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

e To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

TIBCO ActiveMatrix® Service Grid WebApp Component Development


https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://support.tibco.com/
https://support.tibco.com/

53 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

TIBCO ActiveMatrix® Service Grid WebApp Component Development


https://ideas.tibco.com/
https://community.tibco.com/

54 | Legal and Third-Party Notices

Legal and Third-Party Notices

SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix, Business Studio, Enterprise Message Service,
and Hawk are either registered trademarks or trademarks of Cloud Software Group, Inc. in the United
States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

TIBCO ActiveMatrix® Service Grid WebApp Component Development


https://www.cloud.com/legal
https://scripts.sil.org/OFL

55 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO ActiveMatrix® Service Grid WebApp Component Development


https://www.tibco.com/patents

	Contents
	Overview
	Introduction
	Approaches

	Web Application Components
	Creating a WebApp Component
	Creating an SOA Project
	Adding an Empty WebApp Component
	Starting With an Existing Implementation
	OSGi-enabled WebApp Component
	Creating an OSGi-enabled WebApp Component

	Configuring a Web Application Component
	Configuring a WebApp Components Custom Feature
	Configuring a WebApp Components External Custom Feature
	WebApp Component Reference
	Adding Configuring a WebApp Components Security
	Using Form-based Authentication Policy
	Adding Configuring Form-based Authentication Policy

	Security Constraint Policy
	Security Constraint Definition Example
	Adding or Configuring a Security Constraint Policy



	Updating a WebApp Component
	ZeroConfiguration DAA Creation Using WAR
	Limitations on WAR Files

	Web Application Component Implementations
	Opening an Implementation
	Generating an Implementation
	Generate WebApp Component Implementation
	Code Generation Details Dialog
	XML Data Binding Classes Dialog
	Create Servlet Dialog


	Regenerating an Implementation
	Refreshing an Implementation
	Accessing a Property
	Invoking a Reference Operation
	Enabling a Reference Injection
	Adding a Reference to a WebApp Component with Implementation Type as WAR
	Adding a Reference in TIBCO Business Studio - BPM Edition
	Creating a WAR File with the Reference Details
	Adding a WebApp Component Using the WAR File
	Adding a Context Parameter to an Implementation of Type WAR
	Adding a Dynamic Endpoint Reference to an Implementation of Type WAR

	Adding a Reference Outside of TIBCO Business Studio - BPM Edition


	WebApp Component Testing
	RAD Communication
	JAD Communication

	Logging
	Handling Errors

	URL Mappings
	Use of URL Paths
	Specification of Mappings
	Implicit Mappings


	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

