
Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO ActiveMatrix® Service Grid
WebApp Component Development
Version 3.4.3 | February 2025

TIBCO ActiveMatrix® Service Grid WebApp Component Development

2 | Contents

Contents
Contents 2

Overview 4
Introduction 4

Approaches 5

Web Application Components 7
Creating a WebApp Component 7

Creating an SOA Project 7

Adding an Empty WebApp Component 8

Starting With an Existing Implementation 8

OSGi-enabled WebApp Component 8

Creating an OSGi-enabled WebApp Component 11

Configuring a Web Application Component 11
Configuring a WebApp Components Custom Feature 11

Configuring a WebApp Components External Custom Feature 12

WebApp Component Reference 13

Adding Configuring a WebApp Components Security 16

Updating a WebApp Component 21

ZeroConfiguration DAA Creation Using WAR 22

Limitations on WAR Files 23

Web Application Component Implementations 25
Opening an Implementation 25

Generating an Implementation 25
Generate WebApp Component Implementation 26

Regenerating an Implementation 31

Refreshing an Implementation 31

TIBCO ActiveMatrix® Service Grid WebApp Component Development

3 | Contents

Accessing a Property 32

Invoking a Reference Operation 32
Enabling a Reference Injection 33

Adding a Reference to a WebApp Component with Implementation Type as WAR 34

WebApp Component Testing 45
RAD Communication 46

JAD Communication 46

Logging 47

Handling Errors 48

URL Mappings 49
Use of URL Paths 49

Specification of Mappings 50
Implicit Mappings 50

TIBCO Documentation and Support Services 52

Legal and Third-Party Notices 54

TIBCO ActiveMatrix® Service Grid WebApp Component Development

4 | Overview

Overview
WebApp components can be created by bringing in an existing Web application in the
TIBCO ActiveMatrix® Service Grid platform.

Introduction
A Web application is a group of HTML pages, Java Server Pages (JSP) files, Java servlets,
resources, and source files, which can be managed as a single unit.

Web applications can be simple (consisting of only static Web pages) or they can be
advanced and include JSP files and Java servlets. During development, these resources,
along with an XML deployment descriptor (and other Web resources), are contained within
a Web project.

When you are ready to publish the Web application to the Web, you deploy the Web project
to the server as a Web archive (WAR) file. The end user can then view the Web application
as a website from a URL.

Note: In ActiveMatrix® Service Grid, all the resources are archived in the
distributed application archive (DAA), which then internally deploys the required
WAR file.

The structure of a standard web module is shown in the following diagram.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

5 | Overview

The WebApp component integrates Java EE web applications into ActiveMatrix Service Grid
and TIBCO ActiveMatrix BPM platform. The integration conforms to the SCA Java EE
Integration Specification (https://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=sca-j).

Approaches
You can create a WebApp component either top-down, or bottom-up, or by bringing an
existing Web application into the ActiveMatrix Service Grid platform.

Top-down approach:

 l You can configure the component reference implementation by using a WTP (Web
Tools Platform) project created in the SOA Development Studio (SDS) during the
Generate Servlet Implementation.

 l Plugin project: Use this option to create an OSGi-enabled web application.

Bottom-up approach : You bring an existing Web application into the ActiveMatrix Service
Grid platform. The existing Web application can be a WAR (Web Archive) file, WTP project,
or an OSGi-fied WebApp. If you start with an existing:

 l WAR file: You cannot add properties or references on a component. The DAA has the

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-j
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-j

TIBCO ActiveMatrix® Service Grid WebApp Component Development

6 | Overview

WAR file bundled in it.

 l WTP project: You can add servlets, references, and properties if required. The WTP
project is exported into a WAR file and bundled inside the DAA.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

7 | Web Application Components

Web Application Components
WebApp components can be created, configured, and updated. You can configure a
WebApp component's custom feature or external custom feature. You can create a
ZeroConfiguration DAA if needed.

Creating a WebApp Component
To create a WebApp component, you can add an empty WebApp component or use an
existing implementation.

Creating an SOA Project
A new SOA project can be created from an existing WAR file or WTP project.

Procedure
 1. Select File > New > TIBCO SOA Resources.

 2. Click TIBCO SOA Project and click Next.

 3. In the Project Name field, type a name for the project and click Next twice.

 4. In the Project Types list, choose one of the following ways to create the project:

 a. SOA Project From Implementation: You can create a Web application project
from an existing WAR file or WTP project.

 b. Empty SOA Project

 c. Basic SOA Project

 5. Click Finish.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

8 | Web Application Components

Adding an Empty WebApp Component
There are several ways to add an empty WebApp component. To add an empty WebApp
component, do one of the following:

 l Right-click the composite canvas and select Add > WebApp, or

 l Click the canvas and click the WebApp icon in the pop-up toolbar, or

 l Click the WebApp icon in the Palette and click the canvas.

Starting With an Existing Implementation
You can create an SOA project from an existing implementation either using a bottom-up
approach or a top-down approach.

 l Bottom-up approach :

 o Method 1: Drag the existing WAR file from the Project Explorer to the composite
canvas.

 o Method 2: In the Properties tab, select Implementation > Basic, and specify a
WTP project or WAR file. WTP project as the default option.

 l Top-down approach:

 1. Drag the WebApp component on the composite canvas.

 2. Add a reference on the WebApp component and attach the WSDL port type to
the reference.

 3. On the Properties tab, select WTP Project or Plugin Project.

 4. Select Generate Servlet Implementation.

 a. If you have selected the WTP Project, a WTP project is generated.

 b. If you have selected the Plugin Project, a plug-in project is generated.

OSGi-enabled WebApp Component
You can create an OSGi-enabled web application by selecting the implementation type as a
Plugin Project. When the web application is OSGi-enabled, a web.xml file is packaged in
the OSGi plug-in. The advantages of creating an OSGi-enabled WebApp component are:

TIBCO ActiveMatrix® Service Grid WebApp Component Development

9 | Web Application Components

 l Loads all the resources from the Implementation Bundle (OSGi-enabled WebApp)
using the Implementation Bundle Class Loader instead of the Component Bundle
Class Loader.

 l Removes overhead of exporting all the resources from the Implementation Bundle
(which require user inference and is error prone).

 l Behaves as a self-justifying bundle where all the dependencies can be specified in its
own MANIFEST.MF file instead of specifying them in the component's .requirement
file.

Structure of a Bundle

The WebApp component is composed as a set of OSGi bundles. OSGi bundles are JAR files
that typically contain Java class files of the service interfaces, their implementation, and
some meta information in a META-INF/manifest.mf file. Services are Java interfaces. After
the bundle is registered as a service with the OSGi framework, other bundles can use the
"published" service. You can add servlets, references, and properties if required. The
Servlets and all static content (HTML, JPEG files, and so on) reside in Java plug-ins.

The typical directory structure is shown below:

TIBCO ActiveMatrix® Service Grid WebApp Component Development

10 | Web Application Components

 l Static resources such as HTML files or image files can be directly placed in the
WebContent directory or in a sub-directory.

 l All dependencies of the Implementation Bundle need to be specified in its own
MANIFEST.MF file instead of a .requirement file.

 l The WebApp component has a require-bundle dependency to its implementation.

Web.xml File

The web.xml file is generated using a Generate Servlet Implementation wizard. This
wizard generates a default web.xml. Using any other existing web.xml is not allowed. The
default values in web.xml are inline with the Generate WTP Wizard provided by Eclipse.
The default web.xml has version 2.4. Selecting different versions of web.xml while
generating the implementation is not supported. If required, you need to manually change
the version of web.xml. Supported versions are 2.4, 2.5, 3.0, and 3.1.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

11 | Web Application Components

Creating an OSGi-enabled WebApp Component

Procedure
 1. Create an empty SOA project as described in Creating an SOA Project.

 2. Create an empty WebApp component as described in Adding an Empty WebApp
Component.

 3. In the Properties tab, select Plugin Project.

 4. Select the WebApp component created, right-click, and select Generate Servlet
Implementation. After the implementation is generated successfully, the:

 l Plugin Project and Deployment Descriptor (web.xml) File fields are
populated.

 l The implementation bundle includes the web.xml file (see the Project Explorer
view).

 l MANIFEST.MF file is created (see the Project Explorer view).

Configuring a Web Application Component
You can configure a WebApp component's custom feature or external custom feature. You
can also use the ZeroConfiguration WAR file.

Configuring a WebApp Components Custom Feature
One option to configure a WebApp component is to use the custom feature.

When you generate a web application whose implementation type is Plugin Project, a
custom feature is automatically created and configured. A custom feature is not
automatically created if you choose the WTP and WAR file options. For more information
on custom features, see TIBCO ActiveMatrix® Service Grid Java Component Development.
If you manually configure the component's implementation, you must manually create and
configure the custom feature by selecting File > New > Other > Custom Feature. If the
component implementation uses a library, add the custom feature containing the library in
the Properties view.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

12 | Web Application Components

Procedure
 1. In the Properties view, click the component.

 2. Click the Implementation tab.

 3. Click the button to the right of the Features tables.

The Select a Feature dialog displays.

 4. In the Select an item to open field, type a partial feature name.

The feature that matches the name displays in the Matching items list.

 5. Click a feature and click OK.

The feature is added to the Features list.

Configuring a WebApp Components External
Custom Feature
One option to configure a WebApp component is to use the external custom feature.

If your WebApp component implementation references a plug-in containing a shared
library, you must add the custom feature that contains the plug-in to the WebApp
component’s configuration. For more information on custom features, see TIBCO
ActiveMatrix® Service Grid Java Component Development.

Procedure
 1. Click the component.

 2. In the Properties view, click the Implementation tab.

 3. Click the button to the right of the Features table.

The Select a Feature dialog displays.

 4. Click OK.

The feature is added to the component’s Features list.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

13 | Web Application Components

WebApp Component Reference

Field Description

WTP
Project

Start with the Eclipse WTP project containing the WebApp component
implementation. Alternatively, you can create a new WTP project from the
generate servlet implementation.

WAR Start with the WAR file containing the WebApp component implementation.

Plugin
Project

Creates a plug-in project implementation.

Properties

The contextRoot and Connector Name properties must always be set.

Field Description

contextRoot The context root of a web application determines which URLs are to be
delegated to your web application. If your application's context root is
myapp, any request for /myapp or /myapp/* are handled. For example,
http://localhost:8080/myapp/index.html.

NOTE:

 l A WebApp component must have a unique context root.

 l The contextRoot property must have only one element.

defaultConnector This property defines the name for an HTTP Inbound connector. For a
web application, a browser is the only way of communication and a
browser uses HTTP to communicate with any web application. In
ActiveMatrix Service Grid, you need to configure this HttpInbound
Resource template in the Administrator before deploying a web
application.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

14 | Web Application Components

Compute Feature Dependencies

Field Description

Compute
Feature
Dependencies

Indicates whether to compute the features on which the component
bundle depends. When cleared, the Feature Dependencies table displays.

Default:

 l New projects - selected.

 l Legacy projects - cleared.

Preview Displays a dialog containing a list of features on which the component
bundle depends.

Features Dependencies

Column Description

Feature ID ID of the feature.

Version Range A range of feature versions.

By default, the table lists the details of the automatically-generated feature containing the
component implementation bundle.

Plugin Project

Field Description

Plugin Project Selected plug-in project implementation.

Deployment
Descriptor
(web.xml) File

Location of the web.xml file.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

15 | Web Application Components

Field Description

Thread
Context Class
Loader Type

Configures the Thread Context Class Loader property:

 l component - The class loader of the component bundle. The class
loader has visibility to the component bundle class path space,
Import-Package, and Require-Bundle entries from the component.

 l bundle - The class loader of the implementation bundle. The class
loader has visibility to the bundle class path space and the Class-
Space because of entries in the MANIFEST.MF file.

 l none - A null thread context class loader.

Default: component

Package the Implementation Bundle with the Application

Field Description

Package the
implementation
bundle with the
application

Indicates whether to compute the component bundle dependencies.
When a component is deployed on a node, ActiveMatrix Service Grid
generates a component bundle. When selected, the component
implementation bundles required by the component bundle are
computed and identified when you package the composite. When
cleared, the Implementation Dependency and Compute Feature
Dependencies fields display. You can manually specify the
dependencies.

Default:

 l New projects - selected.

 l Legacy projects - cleared.

Implementation
Dependency

Type of the dependency of the component bundle on the component
implementation.

 l Require Bundle - The bundle containing the component
implementation is declared as a required bundle. When selected,
the Bundle Name field displays.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

16 | Web Application Components

Field Description

Default: Require Bundle

Bundle Name Symbolic name of the bundle containing the component
implementation.

Default: The bundle in which the component implementation class is
present.

Package Name Name of the package containing the component implementation.

Default: The package in which the component implementation class is
present.

Version Range Versions of the bundle or package that satisfy the component bundle's
dependency. When specifying a range for a bundle, you may require an
exact match to a version that includes a build qualifier. In contrast, the
range for a package is inexact.

Default:

 l Bundle - [1.0.0.qualifier,1.0.0.qualifier].

 l Package - [1.0.0, 2.0.0).

Adding Configuring a WebApp Components Security
Resources of a web application are secured using security policies that provide
authentication, access control for resources, and confidentiality or data privacy.

Authentication: The means by which communicating entities prove to one another that
they are acting on behalf of specific identities authorized for access.

Access control for resources: The means by which interactions with resources are limited
to collections of users or programs to enforce integrity, confidentiality, or availability
constraints.

Confidentiality or data privacy: The means used to ensure that information is made
available only to users who are authorized to access it.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

17 | Web Application Components

The WebApp component provides the Form-based Authentication and the Security
Constraint policies to implement security policies for authentication and authorization of
resources.

If a WebApp component is created from a WAR file or WTP project, which already contains
the security configuration in web.xml, the security configuration from web.xml is mapped
to the WebApp’s policy configuration.

Note: Do not add or modify the form-based authentication data directly in
web.xml. You must use the provided interface (Implementation > Security tab or
Policies tab) to do this.

Using Form-based Authentication Policy
The authentication mechanism provides the means for verifying user access to the
website’s protected area, based on username and password. The form-based
authentication mechanism lets you set up the look and feel of login as well as error
screens.

Login screens present a form to enter a username and a password while accessing a
protected resource. The login module checks user authority to access the resource. If the
user is not authenticated, the error page is returned.

Note: Form-based login uses sessions for login. The system automatically logs
out a user from the application if the session is invalidated.

Adding Configuring Form-based Authentication Policy
WebApp components can be configured for form-based authentication.

Procedure
 1. Select the WebApp component that you need to configure in the editor.

 2. Select the Properties view and use either of the following approaches to open the
Form-based Authentication Configuration wizard window:

 l Approach 1: In the Properties view, click the Implementation vertical tab and

TIBCO ActiveMatrix® Service Grid WebApp Component Development

18 | Web Application Components

select the Security tab. Under the Authentication section, select Form as the
authentication type from the dropdown.

 l Approach 2: In the Properties view, click the Policies vertical tab and click the
Add Policy Set icon. Select Embedded as the Policy Set type, and Form-Based
Authentication Policy under the System Policies list and click Next.

 3. In the Form-based Authentication Configuration wizard window, specify the
following parameters:

 a. Login page: This page contains fields for entering username and password.
Click Browse to select the desired login page from the project resource list and
click OK.

 b. Error page: This page displays if authentication fails. Click Browse to select the
desired error page from the project resource list and click OK.

 c. Login module: Resource instance for LDAP configuration.

 4. Click Finish.

Security Constraint Policy
A security constraint associates authorization and user data constraints with HTTP
operations on web resources. A Security Constraint policy allows you to set security
constraints on one or more web resource collections.

A security constraint, which is represented by security-constraint in the deployment
descriptor, consists of two main elements:

 l Web resource collection: The HTTP operations and web resources to which a
security constraint applies (that is, the constrained requests) are identified by one or
more web resource collections (web-resource-collection in the deployment
descriptor). A web resource collection consists of URL patterns (url-pattern in
deployment descriptor), and HTTP methods (http-method in deployment descriptor).

 l Authorization constraint: An authorization constraint (auth-constraint in the
deployment descriptor) establishes a requirement for authentication, and names the
authorization roles permitted to perform the constrained requests. A user must be a
member of at least one of the named roles to be permitted to perform the
constrained requests. An authorization constraint consists of the role name element
(role-name in the deployment descriptor).

TIBCO ActiveMatrix® Service Grid WebApp Component Development

19 | Web Application Components

Note: The special role name “*” is a shorthand for all role names defined, while
an authorization constraint that names no roles indicates that access to the
constrained requests is not permitted under any circumstances.

Security Constraint Definition Example
The following is a sample web.xml code to define a security constraint.

<web-app
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">
 <display-name>Test WebApp</display-name>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin Role</web-resource-name>
 <url-pattern>/dump/auth/admin/*</url-pattern>
 <url-pattern>*.htm</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>content-administrator</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Super User Role</web-resource-name>
 <url-pattern>/dump/auth/admin/*</url-pattern>
 <url-pattern>/dump/auth/display/*</url-pattern>
 <http-method>HEAD</http-method>
 </web-resource-collection>
 <web-resource-collection>
 <web-resource-name>Super User Role</web-resource-name>
 <url-pattern>/dump/auth/system/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Super-User</role-name>
 </auth-constraint>
 </security-constraint>
 </web-app>

TIBCO ActiveMatrix® Service Grid WebApp Component Development

20 | Web Application Components

Adding or Configuring a Security Constraint Policy
In TIBCO Business Studio - BPM Edition, you can add or configure a security constraint
policy using a wizard.

Procedure
 1. Open the Configure Web Security Constraint wizard using either of the following

approaches:

 l Approach 1: In the Properties view, click the Implementation vertical tab and
select the Security tab.

Under the Web Security Constraint section, either click the policy set to
configure it, or click the -not set- hyperlink to add a new Web Security
Constraint policy set.

 l Approach 2: In the Properties view, click the Policies vertical tab, and click the
Add Policy Set icon.

Select Embedded as the Policy Set type, Web Security Constraint Policy under
the System Policies list, and click Next.

 2. Select the security constraint and rename the security constraint if required.

 3. Click the add web resource collection icon to add web resources under the

security constraint or select an existing web resource collection to update.

 4. Type the Name and Description of the web resource collection.

 5. In the URL pattern field, click the plus icon to add a URL pattern. Double-click a
listed URL pattern to modify it.

 6. Check the HTTP methods to be allowed for the web resource collection. The default
is "all" HTTP methods. If no methods are selected, then "all" HTTP methods option is
checked.

 7. Click the add auth-constraint icon to add an authorization constraint.

 8. Type the Description.

 9. Click the plus icon to add a role name to the permissible roles list for the security
constraint. Click a listed role name to modify the role name.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

21 | Web Application Components

 10. Click the add security constraint icon to add another security constraint to the

policy and repeat steps 2 through step 9.

 11. Click Finish when you are done updating the security constraint policy.

Updating a WebApp Component
You can update a component after you have configured its implementation.

Follow the steps in the table below to update a component.

Control Procedure

Canvas Right-click the component and select Refresh from Implementation.

Canvas Right-click the component and select Quick Fixes > Update Component from
Implementation. (The "Quick Fixes" option is available when you add, delete
or update a service, reference and property from the WebApp component.)

Properties
View

 1. Select Properties > General > Validation Report and click the fix link.

 2. Select Generate Servlet Implementation.

Problems 1. In the ProblemsView, right-click an error of the form "The component

TIBCO ActiveMatrix® Service Grid WebApp Component Development

22 | Web Application Components

Control Procedure

View <ComponentName> is out of sync with its implementation" and
select Quick Fix. (The "Quick Fix" option is available when you add,
delete or update a service, reference and property from the WebApp
component.)

 2. In the Quick Fix dialog, select Update Component from
Implementation.

 3. Click Finish.

ZeroConfiguration DAA Creation Using WAR
ZeroConfiguration DAA creation supports existing WebApps that do not invoke an SCA
reference. ZeroConfiguration DAA creation is based on SDS command-line support.

You can create a DAA using existing WebApp components (WAR files) on the ActiveMatrix
Service Grid platform without using the composite editor. For details, refer to SDS
Commandline help.

You must not bundle any of the following files inside the WAR file:

 l WEB-INF/lib: j2ee.jar

 l jasper-*.jar

 l jsp-api.jar

 l rt.jar

 l tools.jar

 l servlet.jar

 l servlet-api.jar

 l xerce.jar

 l xerces.jar

 l xercesImpl.jar

TIBCO ActiveMatrix® Service Grid WebApp Component Development

23 | Web Application Components

Limitations on WAR Files
If the web application code in the WAR file uses APIs from the following packages, perform
the steps listed in this section.

 l javax.xml.*

 l org.xml.*

 l org.w3c.*

 l org.apache.commons.logging.*

 l org.apache.log4j.*

Imports in .requirements File for Necessary APIs

Make sure that all the packages and sub-packages from the above list are declared as
imports in the .requirements file of the WebApp IT component.

For example, if the web application uses the javax.xml.transform package, add it in the
 .requirements file as follows:

 1. Search for the required package using the Plugin Registry View in TIBCO Business
Studio - BPM Edition.

 2. Override the .requirements file of the WebApp IT component and add the necessary
import package entry.

Remove API implementation from WAR

When any of the above mentioned APIs are being imported, remove the conflicting
implementation JARs from the WAR (using a tool such as 7-zip).

For example, let us say that your application uses the JAXP APIs. You have added the
necessary import packages in the .requirements file for the API packages. The WAR file
bundles the Apache Xalan JAR file that provides the implementation of these APIs. In this
case, you need to remove the Xalan JAR from the WAR's lib folder.

Declaring Dependencies on org.ietf.jgss Packages

Normally, if you import packages and do not add them to the manifest, TIBCO Business
Studio - BPM Edition displays an error. However, if you import any of the org.ietf.jgss

TIBCO ActiveMatrix® Service Grid WebApp Component Development

24 | Web Application Components

packages and do not declare the import in the manifest, TIBCO Business Studio -
BPM Edition does not display an error because TIBCO Business Studio - BPM Edition
resolves those packages from the configured JRE. If you then deploy the application
without the declaration in the manifest, the application does not run. You must ensure that
you import the org.ietf.jgss package in the manifest file.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

25 | Web Application Component Implementations

Web Application Component
Implementations
WebApp component implementations can be generated, regenerated, and refreshed. You
can access properties and invoke reference options, as well as test your components.

Opening an Implementation
For WTP and Plugin Project options, the web.xml file is opened. For a WAR file, the WAR file
is just highlighted in the Project Explorer.

The following table explains how to open an implementation.

Control Procedure

Canvas Double-click the component.

Project Explorer Select the WTP project and open the implementation.

Canvas Right-click the component and select Open Implementation.

Generating an Implementation
You can generate an implementation by generating the servlet and then using the Code
Generation Details dialog.

Procedure
 1. Select Properties General > Validation Report, and click the fix link.

 2. Click Generate Servlet Implementation.

 3. Using the Canvas control, right-click the component and select Quick Fixes >

TIBCO ActiveMatrix® Service Grid WebApp Component Development

26 | Web Application Component Implementations

Generate Servlet Implementation.

 4. Right-click the component and select Generate Servlet Implementation.

 5. In the Problems view, right-click an error of the form "Component <ComponentName>
is not configured" and select Quick Fix.

 6. In the Quick Fix dialog, click Generate Servlet Implementation.

 7. Click Finish.

The Code generation details dialog displays.

 8. Complete the process described in Generate WebApp Component Implementation.

 9. Click Finish.

A WTP implementation is generated.

The WebContent folder contains items to be published to the server. By default, this
folder is named WebContent for newly created static and dynamic Web projects.

 l META-INF — This directory contains the MANIFEST.MF file, which is used to map
class paths for dependent JAR files that exist in other projects in the same
Enterprise Application project. An entry in this file updates the run-time project
class path and Java build settings to include the referenced JAR files.

 l WEB-INF — The directory where supporting Web resources for a Web
application are kept (for example: .xml files, .xml files, and web.xml.)

Generate WebApp Component Implementation
To generate a WebApp component implementation, refer to the following tables describing
the Code Generation Details dialog, the XML Data Binding Classes dialog, and the Create
Servlet dialog.

Code Generation Details Dialog
Refer to this table when generating a WebApp component implementation.

Field Description

Project The name of the web application project to contain the

TIBCO ActiveMatrix® Service Grid WebApp Component Development

27 | Web Application Component Implementations

Field Description

implementation.

Default:

 l For WTP: "WebApp" + <name of composite>.

 l For plug-in project: "com.webapp" + <name of
composite in lower case>.

Source Location The name of the source folder in the plug-in project.

Default: src.

Package The name of the package of the implementation.

Class The name of the class of the implementation.

Default: The name of the component is the default class
name.

Use default location for
generated superclass

Default: checked.

Superclass package The name of the package of the abstract superclass of the
implementation class.

Superclass class The name of the abstract superclass of the
implementation class.

Default: Abstract<WebappComponentName>.

Note: Normally, if you import packages and do not add them to the manifest,
TIBCO Business Studio - BPM Edition displays an error. However, if you import
any of the javax.xml.* or org.ietf.jgss packages and do not declare the
import in the manifest, TIBCO Business Studio - BPM Edition does not display an
error because TIBCO Business Studio - BPM Edition resolves those packages
from the configured JRE. If you then deploy the application without the
declaration in the manifest, the application does not run. Hence, you must
ensure that you import javax.xml or org.ietf.jgss packages in the manifest
file.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

28 | Web Application Component Implementations

XML Data Binding Classes Dialog
Refer to this table when generating a WebApp component implementation.

The XML Data Binding Classes dialog appears if the WebApp component is wired to any
reference.

WebApp component supports code generation based on JAXB and XMLBeans. For details,
see TIBCO ActiveMatrix® Service Grid Java Component Development.

Field Description

Type The type of the data binding being generated: XMLBeans or JAXB.

If a JAR file exists for the contract selected in the Contracts list, and you
choose a binding type different than the one that exists in the JAR file, or
the contract has changed since the JAR file was generated, the Overwrite
Existing JAR checkbox is selected.

Default: XMLBeans.

Contracts
Details

Contracts A list of WSDL and schema files for which XML data binding classes are
generated.

JAR Type The type of JAR file being generated: Beans or Interface. (read only)

Source File The path to the source file containing the selected contract. (read only)

JAR File The path to the JAR file.

Default: When generating a component implementation:

 l Beans

 o For a plug-in project:
projectName/libs/contractFileName.wsdl.jar.

 o For a WTP project: /projectName/WebContent/WEB-
INF/lib/contractFileName.wsdl.jar.

 l Interface

TIBCO ActiveMatrix® Service Grid WebApp Component Development

29 | Web Application Component Implementations

Field Description

 o For a plug-in project:
projectName/libs/contractFileName.wsdl_interface.jar.

 o For a WTP project: /projectName/WebContent/WEB-
INF/lib/contractFileName.wsdl_interface.jar.

Where contractFileName is the name of the file containing the contract
selected in the Contracts list and projectName is the name of the project
containing the component implementation.

Set JAR
Destination
Folder

Invokes a dialog where you can set the folder to contain generated JAR
files:

 l All Generated JARs: All JAR files are generated in the same folder as
the destination of the currently selected JAR.

 l New Generated JARs: Only newly generated JAR files are generated
in the same folder as the destination of the currently selected JAR
file.

Setting the JAR folder affects only the JAR files generated by the wizard. It
has no effect outside the wizard nor on subsequent wizard runs.

Default: All Generated JARs.

JAR Status The status of the JAR file containing the classes generated for the selected
contract:

 l JAR is non-existent and is generated: The JAR file does not exist.

 l Different binding type. JAR must be overwritten: The value of the
Type field is different than the type of the data binding classes in the
JAR file.

 l JAR exists and is overwritten: The JAR file exists and the Overwrite
Existing JAR checkbox is selected.

 l JAR exists and is preserved: The JAR file exists and the Overwrite
Existing JAR checkbox is clear.

 l JAR is outdated and is overwritten: The selected contract has
changed since the JAR file was generated and the Overwrite
Existing JAR checkbox is selected, so the JAR file is generated.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

30 | Web Application Component Implementations

Field Description

 l JAR is outdated and is preserved: The selected contract has changed
since the JAR file was generated and the Overwrite Existing JAR
checkbox is clear, so the JAR file is not generated.

Overwrite
Existing JAR

Enabled only when the JAR file exists.

When selected, the JAR file is regenerated.

When clear, the existing file is reused and is not modified.

Advanced

Use
Configuration
File

Indicate that the specified data binding configuration file should be used
when generating JAR files.

When you select the checkbox, the text field is enabled.

Default: Unchecked.

Create Servlet Dialog
Refer to this table when generating a WebApp component implementation.

Field Description

Name Name of the servlet.

Description Description of the servlet.

Initialization
Parameters

Name-value initialization parameters are used to convey setup information.
Typical examples are a Webmaster’s e-mail address, or the name of a
system that holds critical data.

URL Mappings On receipt of a client request, the URL mappings determine the Web
application to which to forward it. For more details, see URL Mappings.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

31 | Web Application Component Implementations

Regenerating an Implementation
You can regenerate an implementation without recreating everything. For example, if you
have a Web application with a Java SOA project, each can have their respective
implementations.

After developing the component, if you need to make changes in the WSDL (for example, a
change to the datatype), you can use this option to change the existing implementation to
apply the updated WSDL instead of creating everything from scratch again.

The implementation must have been originally generated before you can regenerate.

You should regenerate the component implementation after you add (or delete) a service,
reference, or property to the component.

Control Procedure

Canvas Right-click the component and select Regenerate Servlet Implementation.

Problems
View

1. In the Problems view, right-click an error of the form "The component
<ComponentName> is out of sync with its implementation" and select
Quick Fix.

2. In the Quick Fix dialog, select Update Component from Implementation or
Update/Create Servlet.

3. Click Finish.

The implementation is updated to match the component.

Refreshing an Implementation
This option updates the SDS WebApp component based on an underlying implementation.
For example, a WebApp component is configured with two properties and an
implementation is generated. If one of the properties is accidentally deleted, you can use
the Refresh option. The SDS component reads the underlying implementation and
refreshes the UI with the two properties.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

32 | Web Application Component Implementations

The following table explains how to refresh an implementation.

Control Procedure

Canvas Right-click the component and select Refresh from Implementation.

Problems
View

1. In the Problems view, right-click an error of the form "The component
<ComponentName> is out of sync with its implementation" and select
Quick Fix.

2. In the Quick Fix dialog, select Update Component from Implementation or
Update/Create Servlet.

3. Click Finish.

Accessing a Property
When you generate a WebApp component implementation for a component with a
property, TIBCO Business Studio - BPM Edition adds a field that represents the property
and accessor methods to the WebApp component's abstract implementation servlet.

For more information, see TIBCO ActiveMatrix® Service Grid Java Component Development.

Invoking a Reference Operation
You can add a reference to a WebApp component. When you add a reference to a WebApp
component, TIBCO Business Studio - BPM Edition adds a field and accessor methods to the
abstract component implementation. ActiveMatrix Service Grid injects the referenced
object into the component implementation.

You can add a reference to a WebApp component with the following implementation types:

 l WTP Project: For more information, see the "Invoking a Reference Operation"
section of TIBCO ActiveMatrix® Service GridJava Component Development.

 l Plugin Project: For more information, see the "Invoking a Reference Operation"
section of TIBCO ActiveMatrix® Service Grid Java Component Development.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

33 | Web Application Component Implementations

 l WAR: For more information, see Adding a Reference to a WebApp Component with
Implementation Type as WAR.

Enabling a Reference Injection
Reference injection in a WebApp Component with implementation type as WAR is not
enabled by default. To enable a reference injection for an implementation type as WAR:

Procedure
 1. Select Window > Preferences.

 2. Select TIBCO SOA Platform > Web-App IT.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

34 | Web Application Component Implementations

 3. Select Allow Reference injection to WAR Type Web app. By default, this option is
disabled.

 4. Click Apply and Close.

Adding a Reference to a WebApp Component with
Implementation Type as WAR
You can begin by creating a WAR file with the reference details in TIBCO Business Studio -
BPM Edition itself or begin by using a WAR file created outside of TIBCO Business Studio -
BPM Edition. In both cases, make sure:

 l Reference code is defined using @Reference annotations in the servlet file.

 l All the servlets using the @Reference annotation are defined in the web.xml file.

 l The interface JAR files of the WSDL file are available in the WEB-inf/lib folder.

For more information about creating the WAR file, see the following sections.

 l In TIBCO Business Studio - BPM Edition: See Adding a Reference in TIBCO Business
Studio

 l Outside of TIBCO Business Studio - BPM Edition: See Adding a Reference Outside of
TIBCO Business Studio

Adding a Reference in TIBCO Business Studio -
BPM Edition
To add a reference in TIBCO Business Studio - BPM Edition, you need to:

 1. Create a WAR file with the reference details.

For more information, see Creating a WAR File with the Reference Details.

 2. Create a new SOA project and add a WebApp component to it using the WAR file
created in step 1.

For more information see, Adding a WebApp Component Using the WAR File.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

35 | Web Application Component Implementations

Creating a WAR File with the Reference Details

Procedure
 1. Create a WTP or dynamic project for the WAR project.

 2. Generate the interface JAR files (using JAXB or XMLBeans) using the WSDL.

 a. Select the WSDL file associated with the WebApp component.

 b. Right-click and select Generate XML Data Bindings. The XML Data Binding
Classes dialog is displayed. For more information about the fields in the XML
Data Binding Classes dialog, see XML Data Binding Classes Dialog.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

36 | Web Application Component Implementations

 c. Select the Type as JAXB or XMLBeans. The default is XMLBeans.

 d. Note the location of the JAR file in the JAR File field.

 e. Click Finish.

 3. Add the JAR file mentioned in the location in item d of step 2 to the WEB-INF/lib
folder of the WTP project.

 4. Create the reference in the servlet file using the @Reference annotation (Java
resources > src > <name>.wtp). For example, for the <TIBCO_
HOME>/amx/<version>/samples/webapp/helloworld2 sample, copy the code as
documented below.

 l From:

TIBCO ActiveMatrix® Service Grid WebApp Component Development

37 | Web Application Component Implementations

Java resources > src > com.webapp.helloworld2.wtp >
AbstractWebAppHelloComponent.java

 l Copy code:

private HelloWorldPT HelloWorldPT;
 @Reference(name = "HelloWorldPT")
 public void setHelloWorldPT(HelloWorldPT HelloWorldPT)
 {
 this.HelloWorldPT = HelloWorldPT;
 }
 public HelloWorldPT getHelloWorldPT()
 {
 return this.HelloWorldPT;
 }

 l To:

Java resources > src > com.webapp.helloworld2.wtp >
WebAppHelloComponent.java

 5. Add the code to call the reference (to WebAppHelloComponent.java in this example).

TIBCO ActiveMatrix® Service Grid WebApp Component Development

38 | Web Application Component Implementations

 6. Make sure all the servlets using the @Reference annotation are declared in the
web.xml file. For example:

<servlet>
 <display-name>WebAppHelloComponent</display-name>
 <servlet-name>WebAppHelloComponent</servlet-name>
 <servlet-
class>com.webapp.helloworld2.wtp.WebAppHelloComponent</servlet-
class>
 </servlet>

 <servlet>
 <display-name>AbstractWebAppHelloComponent</display-name>
 <servlet-name>AbstractWebAppHelloComponent</servlet-name>
 <servlet-class>com.webapp.helloworld2.wtp.
AbstractWebAppHelloComponent</servlet-class>
 </servlet>

 7. Export the WTP project or dynamic project to a WAR file. Right-click the composite
and select Export > WAR file.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

39 | Web Application Component Implementations

 8. Click Finish.

Adding a WebApp Component Using the WAR File

Procedure
 1. Create an empty SOA project.

 2. Import the generated WAR file to the Service Descriptors folder.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

40 | Web Application Component Implementations

 3. Add a WebApp component.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

41 | Web Application Component Implementations

 4. Select the WAR file as the implementation.

 TIBCO Business Studio - BPM Edition scans the servlet classes declared in the
web.xml file of the WAR file. If the @Reference annotation is found in a servlet class,

 is displayed on the WebApp component in TIBCO Business Studio - BPM Edition.

 5. Add the WSDL file to the component reference. Use the same WSDL file that was used
for generating interface JARs. Select the reference and specify the WSDL Interface
details (Port Type and WSDL Location).

TIBCO ActiveMatrix® Service Grid WebApp Component Development

42 | Web Application Component Implementations

 6. Promote the component reference. Select the component reference, right-click, and
select Promote.

 7. Create a DAA. Right-click the composite and select Create DAA.

 8. In ActiveMatrix Service Grid Administrator, deploy the DAA and invoke the
application.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

43 | Web Application Component Implementations

The reference application is called.

Adding a Context Parameter to an Implementation of Type
WAR

Before you begin
For more information about context parameters, see the "Context Parameters" section of
TIBCO ActiveMatrix® Service Grid Java Component Development. The steps specific to a
WebApp component (with implementation type of WAR) are listed in this section.

Procedure
 1. Add a context parameter to the servlet class as follows:

@Context public ComponentContext componentContext;

 2. For a WAR file that uses the @Context annotation, copy
com.tibco.amf.platform.common_1.4.0.001.jar and
com.tibco.amf.platform.runtime.extension_1.6.0.004.jar from <TIBCO_
HOME>/component/shared/1.0.0/plugins to the system's %temp%/.SDSWAR-<WAR
filename>/WEB-INF/lib folder.

 3. Clean the SOA WebApp project using Project > Clean and rebuild it.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

44 | Web Application Component Implementations

Adding a Dynamic Endpoint Reference to an Implementation
of Type WAR

Before you begin
For information on endpoint references, refer to the "Endpoint References" section of
TIBCO ActiveMatrix® Service Grid Java Component Development. Only steps specific to the
WebApp component are listed in this section.

Procedure
 1. Add the endpoint reference, as documented in the "Endpoint References" section of

TIBCO ActiveMatrix® Service Grid Java Component Development.

 2. Enable Wired by Implementation for the Promoted Reference (at the interface level;
not the binding level).

 a. Select the promoted reference.

 b. In the Properties View, click General > Advanced.

 c. Select Wired by Implementation.

Result
The binding type sends the message to the complete URI specified in the code in step 1
instead of the URL that it is configured with (via binding or HTTP client).

TIBCO ActiveMatrix® Service Grid WebApp Component Development

45 | Web Application Component Implementations

Adding a Reference Outside of TIBCO Business Studio -
BPM Edition
Using a WAR file that was not created in TIBCO Business Studio - BPM Edition, you can add
a reference to a WebApp component.

To do this:

Procedure
 1. Ensure that the reference code is added using @Reference annotations and is made

available through the CLASSPATH.

 2. Use the command-line or Eclipse to generate the interface JAR files from the WSDL.
The WSDL can also be generated using JAXB or XMLBeans.

 3. Place the interface JAR files in the WEB-INF/lib folder.

 4. Copy com.tibco.amf.platform.common_1.4.0.001.jar and
com.tibco.amf.platform.runtime.extension_1.6.0.004. jar from <TIBCO_
HOME>/component/shared/1.0.0/plugins to the WEB-INF/lib folder of the WTP or
dynamic web project.

 5. Create a WAR file from the dynamic web project.

 6. Using a ZIP utility, remove the JAR files copied in step 4 from the WEB-INF/lib folder
of the exported WAR file.

 7. Write the code to invoke the reference.

 8. Follow the procedure documented in the Adding a WebApp Component Using the
WAR File section.

WebApp Component Testing
When AMX composite applications run in RAD, or a remote admin is connected through
TIBCO Business Studio - BPM Edition, you can view information about the WebApp
components using the internal WebApp component testing servlet.

The WebApp component testing servlet opens the OSGi-based Jetty server that hosts the
WebApp component to be tested. It opens the WebApp component in the Eclipse internal
browser.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

46 | Web Application Component Implementations

To test the WebApp component, right-click the WebApp component running in the
Administrator Explorer view, and select Invoke WebApp with Web Explorer.

The application detects if the WebApp component is running in a RAD environment or at a
remote machine (JAD environment). Based on the communication environment, the
WebApp component is processed.

RAD Communication
If the WebApp component is running in RAD, the launch configuration is resolved as
follows:

Procedure
 1. The launch configuration for the web application DAA or composite file is resolved.

 l If launched from DAA, the web.xml file is extracted from the composite file.

 l If launched from the composite file, web.xml is resolved from the Eclipse
workspace.

 2. The contextRoot and defaultConnector property values are extracted from the
composite resource. The HTTP port number associated with the defaultConnector
property is then extracted from the Debug/Run Configuration > Advanced > HTTP
Connectors section.

 3. A test URL using contextRoot and HTTP port number (http://localhost:port
number/contextRoot) is constructed. It opens it in the Eclipse internal browser.

 l If contextRoot is mapped to a welcome page, the browser displays the
welcome page.

 l If contextRoot is not mapped to a welcome page, the browser loads the RAD
testing page, which displays all the servlets and their mappings from web.xml.
Click any servlet link in the RAD testing page to load the associated web page in
other frame.

JAD Communication
If the web application runs in a remote machine (JAD environment), administrator web
services are invoked using SOAP requests to retrieve the properties for the WebApp
component.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

47 | Web Application Component Implementations

Procedure
 1. The values of the contextRoot and defaultConnector properties are extracted from

the property map. If the properties are substitutable, the composite properties are
resolved from an administrator. This is a recursive process until the final value of the
substitution is not found.

 2. The HTTP host address and HTTP port number are extracted from
defaultConnector. Then, the following information is retrieved:

 a. Node on which component is running.

 b. Resource instance of the defaultConnector on the node.

 c. Resource template for the resource instance.

 d. HTTP port number from the resource template.

 e. HTTP host address from the node.

 3. A test URL is constructed using contextRoot, the HTTP port number, and the HTTP
host address (http://host address:port number/contextRoot). It is opened in the Eclipse
internal browser.

 l If contextRoot is mapped to a welcome page, the browser displays the
welcome page.

 l If contextRoot is not mapped to a welcome page, the browser displays the Page
Not Found error page.

Logging
ActiveMatrix Service Grid supports logging to standard out and using a logging API. For
applications, which require a simple demonstration, you can log to SDTOUT. However, for
product applications you should use the logging API.

Note: For WebApp implementations of type WAR or WTP (non-OSGified
WebApp), application-level loggers work only when the loggers are defined in
servlets and filters. If loggers are defined in any other class in the web-inf/lib
folder or a separate jar file, it does not use the application-level logging
configuration. Such classes use the node-level logging configuration.

For more information, see TIBCO ActiveMatrix® Service Grid Java Component Development.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

48 | Web Application Component Implementations

Handling Errors
The WebApp component handles errors in the same way as the Java component. For more
information about handling declared and undeclared faults, see TIBCO ActiveMatrix® Service
Grid Java Component Development.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

49 | URL Mappings

URL Mappings
The path used for mapping to a servlet is the request URL from the request object minus
the context path and the path parameters. The URL path mapping rules follow a prescribed
order.

There are explicit mappings, and in certain cases, implicit mappings are allowed.

Use of URL Paths
Upon receipt of a client request, the Web container determines the Web application to
which to forward it. The Web application selected must have the longest context path that
matches the start of the request URL.

The matched part of the URL is the context path when mapping to servlets. The Web
container next must locate the servlet to process the request, using the path mapping
procedure described below.

The path used for mapping to a servlet is the request URL from the request object, minus
the context path and the path parameters. The URL path mapping rules below are followed
in sequence. The first successful match is used with no further matches attempted.

Procedure
 1. The container looks for an exact match of the path of the request to the path of the

servlet. A successful match selects the servlet.

 2. The container recursively attempts to match the longest path-prefix. This is done by
stepping down the path tree a directory at a time, using the ’/’ character as a path
separator. The longest match determines the servlet selected.

 3. If the last segment in the URL path contains an extension (for example, jsp), the
servlet container tries to match a servlet that handles requests for the extension. An
extension is defined as the part of the last segment after the last ’.’ character

 4. If neither of the previous three rules result in a servlet match, the container tries to
serve content appropriate for the resource requested. If a "default" servlet is defined
for the application, it is used. The container must use case-sensitive string

TIBCO ActiveMatrix® Service Grid WebApp Component Development

50 | URL Mappings

comparisons for matching.

Specification of Mappings
In the Web application deployment descriptor, the following syntax is used to define
mappings.

 l A string beginning with a ‘/’ character and ending with a ‘/*’ suffix is used for path
mapping.

 l A string beginning with a ‘*.’ prefix is used as an extension mapping.

 l A string containing only the ’/’ character indicates the "default" servlet of the
application. The servlet path is the request URI minus the context path, and the path
info is null.

 l All other strings are used for exact matches only.

Implicit Mappings
If the container has an internal JSP container, the *.jsp extension is mapped to it,
allowing JSP pages to be executed on demand. This mapping is termed an implicit
mapping. If a *.jsp mapping is defined by the Web application, its mapping takes
precedence over the implicit mapping.

A servlet container is allowed to make other implicit mappings as long as explicit mappings
take precedence. For example, an implicit mapping of *.shtml could be mapped to include
functionality on the server.

Example Mapping Set

Path Pattern Servlet

/foo/bar/* servlet1

/bar/* servlet2

Consider the following set of mappings:

TIBCO ActiveMatrix® Service Grid WebApp Component Development

51 | URL Mappings

Path Pattern Servlet

/catalog servlet3

*.bop servlet4

The following behavior would result:

Incoming Path Servlet Handling Request

/foo/bar/index.html servlet1

/foo/bar/index.bop servlet1

/bar/index.bop servlet2

/catalog servlet3

/catalog/index.html "default" servlet

/catalog/racecar.bop servlet4

/index.bop servlet4

Note: In the case of /catalog/index.html and /catalog/racecar.bop, the
servlet mapped to "/catalog" is not used because the match is not exact.

TIBCO ActiveMatrix® Service Grid WebApp Component Development

52 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO ActiveMatrix® Service Grid
Product Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

 l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

 l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://support.tibco.com/
https://support.tibco.com/

TIBCO ActiveMatrix® Service Grid WebApp Component Development

53 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/

TIBCO ActiveMatrix® Service Grid WebApp Component Development

54 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix, Business Studio, Enterprise Message Service,
and Hawk are either registered trademarks or trademarks of Cloud Software Group, Inc. in the United
States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO ActiveMatrix® Service Grid WebApp Component Development

55 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Overview
	Introduction
	Approaches

	Web Application Components
	Creating a WebApp Component
	Creating an SOA Project
	Adding an Empty WebApp Component
	Starting With an Existing Implementation
	OSGi-enabled WebApp Component
	Creating an OSGi-enabled WebApp Component

	Configuring a Web Application Component
	Configuring a WebApp Components Custom Feature
	Configuring a WebApp Components External Custom Feature
	WebApp Component Reference
	Adding Configuring a WebApp Components Security
	Using Form-based Authentication Policy
	Adding Configuring Form-based Authentication Policy

	Security Constraint Policy
	Security Constraint Definition Example
	Adding or Configuring a Security Constraint Policy

	Updating a WebApp Component
	ZeroConfiguration DAA Creation Using WAR
	Limitations on WAR Files

	Web Application Component Implementations
	Opening an Implementation
	Generating an Implementation
	Generate WebApp Component Implementation
	Code Generation Details Dialog
	XML Data Binding Classes Dialog
	Create Servlet Dialog

	Regenerating an Implementation
	Refreshing an Implementation
	Accessing a Property
	Invoking a Reference Operation
	Enabling a Reference Injection
	Adding a Reference to a WebApp Component with Implementation Type as WAR
	Adding a Reference in TIBCO Business Studio - BPM Edition
	Creating a WAR File with the Reference Details
	Adding a WebApp Component Using the WAR File
	Adding a Context Parameter to an Implementation of Type WAR
	Adding a Dynamic Endpoint Reference to an Implementation of Type WAR

	Adding a Reference Outside of TIBCO Business Studio - BPM Edition

	WebApp Component Testing
	RAD Communication
	JAD Communication

	Logging
	Handling Errors

	URL Mappings
	Use of URL Paths
	Specification of Mappings
	Implicit Mappings

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

