TIBCS

TIBCO ActiveMatrix® Service Grid

Java Component Development

Version 3.4.3 | February 2025

@ CLOUd | Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

2 | Contents

Contents

CONteNtS 2
Java Components ... 4
Creating a Java Component 4
Configuring a Java Components Implementation ... 6
Updating a Java Component 7
Configuring a Java Components Custom Feature ... 8
Upgrading a Java Component ... 8
Component Feature Dependencies ... 10
Java Component Reference ... 11
Java Component Implementations 15
Data Binding ... 16

Generating XML Data Binding Classes ... 17

Data Binding Classes for Abstract and Concrete WSDL Files ... 18

XML Data Binding Reference 19
Opening a Java Component Implementation ... 22
Generating a Java Component Implementation 23
Generate Java Component Implementation Reference ... 24
Regenerating a Java Component Implementation ... 29
Upgrading a Java Component Implementation ... 30
Life Cycle EVENtS . 31
Component CoNtext ... 32
ACCeSSING A Property . 33
AccessiNg @ ReSOUNCel 34

Accessing a Hibernate Resource ... 34

Accessing @ JDBC ReSOUICe 37

Accessing JMS RESOUICES ... 38

TIBCO ActiveMatrix® Service Grid Java Component Development

3| Contents

Accessing LDAP Connections 40
Accessing SMTP ConnectionS ... 42
Accessing a Teneo ReSOUICe ... 43
Invoking an HTTP Request ... 45
POSt EXaMIPlE 46
Invoking a Reference Operation 52
Error Handling ..l 53
Example WSDL File ... 54
SOAPException Reference 60
Context Parameters 62
Working with Context Parameters 66
Endpoint References ... 70
Retrieving an Endpoint Reference 70
Creating an Endpoint Reference 71
Custom Features ... 74
Bundles and Plug-in Projects 75
Configuring Dependencies on External Java Classes ... 78
VEISIONS | 79
Converting Migrated Java Component Implementations ... 82
Creating an Abstract Class ...l 82
Editing a Manifest . . 88
Regenerating a Component Implementation 89
Removing 2.x Data Binding JAR Files 89
Correcting Custom Feature File 90
Default XML to Java Mapping ... 92
TIBCO Documentation and Support Services ... 99
Legal and Third-Party Notices 101

TIBCO ActiveMatrix® Service Grid Java Component Development

4 | Java Components

Java Components

Java components integrate Java classes into the TIBCO ActiveMatrix platform.

The integration conforms to SCA-J specifications. Java components support service
implementation using the flexibility and power of a general purpose programming
language.

TIBCO Business Studio facilitates Java component implementation by providing a rich set
of automatic code generation and synchronization features. TIBCO Business Studio
supports both WSDL-first and code-first development.

You can develop Java components and generate classes that conform to the WSDL
interface specification of the component's services and references. When you add a service,
reference, or property to a Java component and regenerate the implementation, TIBCO
Business Studio adds fields and methods that represent the service, reference, or property
to the component's implementation class.

You can also configure an existing Java class as the implementation of a Java component
and update component properties to match the implementation.

For information on Java components, see Java Component Development .

Creating a Java Component

You can create a Java component by starting with a WSDL file and generating the
component implementation, or by creating the component and configuring it with an
existing implementation.

Choose an option and follow the relevant procedure:

Option Description

Wizard 1. Create an SOA project selecting the SOA Project from WSDL project type.

TIBCO ActiveMatrix® Service Grid Java Component Development

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-j

5 | Java Components

Option Description

Manual 1.

Comman 1.
d-Line

Note: You can generate Java component with two or more WSDLs
containing the same operation name.

In the Component Details page of the wizard, specify Java for the
component implementation type.

Specify code generation details as described in Generate Java Component
Implementation Reference.

Create an SOA project of any type.
Open the composite created in the project.
Do one of the following:

o Click the Java icon "= in the Palette and click the canvas.
o Click the canvas and click the Java icon “=* in the pop-up toolbar.

Generate the Java implementation as described in Generating a Java
Component Implementation or configure an existing implementation as
described in Configuring a Java Components Implementation.

Create a command-line build file and specify an sds.createComponent task.
Use <param name="..." value="..."/> subelements to specify details
about the containing the plug-in that contains the component
implementation. For example:

<sds.createComponent projectName="NewSoaProject"
compositeName="MyComposite"
componentName="MyJavaComponent"
implementationLoc="/MyJavaProject/src/com/example/impl/MyJa
vaComponentImpl.java">

<param name="feature.id" value="my.custom.feature"/>
<param name="feature.file.path"
value="/NewSoaProject/Deployment
Artifacts/MyCustomFeature.customfeature"/>

<param name='"create.new.feature" value="false"/>

<param name="use.existing.feature" value="true"/>
<param name="feature.version" value="1.0.0.qualifier"/>
</sds.createComponent>

TIBCO ActiveMatrix® Service Grid Java Component Development

6 | Java Components

Option Description

2. Run the command-line with the build file.

A Java component is added to the composite and its implementation is configured.

Configuring a Java Components
Implementation

When you generate a Java component implementation or create an SOA project from a
Java implementation, the component's Implementation field is configured automatically.

You can also manually configure an existing Java class in the workspace as the
implementation of a Java component. The class must be contained within a Java plug-in
project. If you configure a class that is not contained within a plug-in project, TIBCO
Business Studio converts the project to a plug-in project when you configure the
implementation.

o Note: The Java class must conform to 3.x format as described in Converting

Migrated Java Component Implementations to be able to regenerate the class
after adding references, services, or properties. If your class does not conform to
3.x format, follow the procedures in the section to migrate the implementation
class to 3.x format.

Procedure

1.
2.
3.

Click the component.
In the Properties view, click the Implementation tab.

Click Browse at the right of the Class field.

The Select Implementation Class displays.

In the Select Entries field, type a partial class name.

The classes that match the name display in the Matching types list.
Click a class and click OK.

TIBCO ActiveMatrix® Service Grid Java Component Development

7| Java Components

The Class and Location fields are populated. An error badge is added to the
component. To resolve the error, configure the component's custom feature and
update the component.

Updating a Java Component

You typically update a component after you have configured its implementation. You can
perform the update from the canvas or from the Problems view.

Procedure
1. The procedure depends on the control you want to use.

Control Procedure

Canvas a. Right-click the component and select Refresh from
Implementation.

Canvas a. Right-click a component and select Quick Fixes > Update
Component from Implementation.

Problems a. In the Problems view, right-click an error of the form The
View component "ComponentName" is out of sync with its
implementation and select Quick Fix.

b. In the Quick Fix dialog select Update Component from
Implementation.

c. Click Finish.

All the changes made to the component since the implementation was generated are
discarded and the component is refreshed from the implementation.

TIBCO ActiveMatrix® Service Grid Java Component Development

8 | Java Components

Configuring a Java Components Custom
Feature

When you generate a Java component implementation or create an SOA project from a
Java implementation, the component's custom feature field is automatically created and
configured. If you manually configure the component's implementation, you must
manually create and configure the custom feature. If the component implementation uses
a library, add the custom feature containing the library in the Properties view.

Procedure
1. Choose an initial control and follow the relevant procedure.

Initial Procedure

Control

Properties a. Click the component.
View

b. In the Properties view, click the Implementation tab.

c. Click the button to the right of the Features table.

Quick Fix a. Right-click the component and select Quick Fixes > Select
Custom Feature

The Select a Feature dialog displays.

2. In the Select an item to open field, type a partial feature name.

The feature that matches the name displays in the Matching items list.

3. Click a feature and click OK.

The feature is added to the Features list.

Upgrading a Java Component

After you modify a Java component and its implementation you should update the relevant
plug-in, feature, and component versions. Observe the following guidelines for updating
version components according to the type of modification you make:

TIBCO ActiveMatrix® Service Grid Java Component Development

9 | Java Components

» Major - Deleting a property, service, reference, or component and any code changes
that are not backward compatible.

» Minor - Adding a property, service, reference or component and any changes that are
backward compatible.

» Service - Modifying a property, service, reference, or components that is backward
compatible. For example, if you make a minor change to the implementation.

Procedure
1. Open the plug-in manifest of the plug-in containing the component implementation.

a. In the Overview tab, increment the appropriate version component of the plug-
in. For example, if you add a property, change 1.0.0.qualifier to 1.1.0.qualifier.

b. In the Runtime tab, increment the appropriate version component of the
exported package. For example, if you add a property, change 1.0.0.qualifier to
1.1.0.qualifier.

c. Save the manifest.
2. Open the custom feature containing the plug-in.

a. In the Overview tab, increment the appropriate version component of the
feature. For example, if you add a property, change 1.0.0.qualifier to
1.1.0.qualifier.

b. In the Plug-ins tab, increment the appropriate version component of the
included plug-in. For example, if you add a property, change 1.0.0.qualifier to
1.1.0.qualifier.

c. Save the feature.
3. Click the modified component.

a. In the General tab, increment the appropriate version component of the
component. For example, if you add a property, change 1.0.0.qualifier to
1.1.0.qualifier.

b. In the Implementation tab, if the Compute Component Dependencies and
Feature Dependencies checkboxes are clear, update the version ranges for the
component implementation bundle or package and feature as appropriate. For
example, if you add a property, change the version range from [1.0.0, 2.0.0) to
[1.1.0, 2.0.0). If the checkboxes are selected, TIBCO Business Studio
automatically updates the applicable version ranges.

TIBCO ActiveMatrix® Service Grid Java Component Development

10 | Java Components

4. Save the composite.

5. Create a DAA containing the upgraded composite and feature.

Component Feature Dependencies

When a component implementation is dependent on a shared library, the feature

containing the dependency must be specified in the component's Feature Dependencies
table.

By default, a component is configured to depend on the custom features containing:
e The component implementation
e External libraries reference by the component implementation

In both cases, the default version range is set to "[1.0.0.qualifier,1.0.0.qualifier]".

Dependencies

[Praperties & | Prablems| ¥ Data Source Explorer

General Project: com.sample.spring

Implementation Bean Configuration File: config-SpringProject-Component1/SpringProject_Component1_beansxml
Properties Thread Context Class Loader Type: componen v
Services

| [] Compute Component Dependencies
References

Implementation Dependency: @ Require-Bundle O Import-Package
1 Bundle Name: com.sample.spring
{ Version Range: [1.00.qualifier, 1.0.0.qualifi v

Folicies
Appearance

[Compute Feature Dependencies

Feature Dependencies:

Feature ID Version Range [[

SpringProject.customfeature.id [1.0.0.qualifier,1.0.0.qualifier]

If the qualifier component of a version is set to "qualifier" when you create a DAA, TIBCO
Business Studio replaces "qualifier" with a generated qualifier that defaults to a
timestamp. The effect is that the application requires that the version of the features
installed on a node be a perfect match to a version that includes a timestamp.

External Library Dependencies

It is not possible to know the value of the version's qualifier component for the feature
containing an external library when you package the composite. Therefore, if you are using

TIBCO ActiveMatrix® Service Grid Java Component Development

11 | Java Components

an external library, you should "relax" the version range of the feature containing the
library. For example, change the range from "[1.0.0.qualifier,1.0.0.qualifier]" to "
[1.0.0,2.0.0)" as shown in the following screen shot.

Relaxed Feature Dependency

Feature Dependencies:

Feature ID

je.helloworldd . sves.feature

[1.0.0,200) @
jw.helloworldd.soa.customfeature.id [1.0.0.qualifier,1.0.0.qualifier]

Version Range @
%]

Java Component Reference

Field
Class
Location

Thread Context
Class Loader Type

Compute
Component
Dependencies

Description
Fully-qualified name of the class that implements the component.
Location of the class in the workspace.

Configures the value returned by the call Thread.currentThread
() .getContextClasslLoader () inside a Java implementation class (once
it is instantiated):

e component - The class loader of the component configured
through the component requirements

e bundle - The class loader of the bundle (that is, plug-in) that
contains the Java implementation class.

¢ none - A null thread context class loader.

Indicate whether to TIBCO Business Studio should compute the
component bundle dependencies. When a component is deployed on a
node, ActiveMatrix generates a component bundle.

When selected, the component implementation bundles required by the
component bundle are computed and identified when you package the
composite.

TIBCO ActiveMatrix® Service Grid Java Component Development

12 | Java Components

Field

Implementation
Dependency

Bundle Name

Package Name

Version Range

Description

When clear, the Implementation Dependency and Compute Feature
Dependencies fields display and you can manually specify the
dependencies.

Default:

* New projects - selected.

e Legacy projects - clear.
Type of the dependency of the component bundle on the component
implementation.

e Require Bundle - The bundle containing the component
implementation is declared as a required bundle. When selected,
the Bundle Name field appears.

e Import Package - The package exported by the component
implementation is declared as an imported package. When
selected, the Import Package field displays.

Default:

* New projects - Require Bundle.

* Legacy projects - Import Package.
Symbolic name of the bundle containing the component
implementation.
Default: The bundle in which the component implementation class is
present.
Name of the package containing the component implementation.
Default: The package in which the component implementation class is

present.

Versions of the bundle or package that satisfy the component bundle's
dependency. When specifying a range for a bundle, you can require an
exact match to a version that includes a build qualifier. In contrast, the
range for a package is inexact.

TIBCO ActiveMatrix® Service Grid Java Component Development

13 | Java Components

Field Description

Default:
e Bundle - [1.0.0.qualifier,1.0.0.qualifier].
e Package - [1.0.0, 2.0.0).

Compute Feature Indicate whether to compute the features on which the component
Dependencies bundle depends. When clear, the Feature Dependencies table displays.
Default:

* New projects - selected.

 Legacy projects - clear.

Preview A link that when clicked displays a dialog containing a list of the features
on which the component bundle depends.

Features Dependencies

The features on which the component bundle depends.

Column Description
Feature ID ID of the feature.
Version Range Range of feature versions.

By default the table contains the automatically generated feature containing the
component implementation bundle.

sds.CreateComponent Command-Line Task

Element or Parameter Description
implementationLoc Workspace relative path to the implementation class.

feature.id ID of the feature.

TIBCO ActiveMatrix® Service Grid Java Component Development

14 | Java Components

Element or Parameter Description

feature.file.path Workspace relative path to the feature file.
create.new.feature Indicates whether to create a new feature.
use.existing.feature Indicates whether to use an existing feature.
feature.version Feature version.

TIBCO ActiveMatrix® Service Grid Java Component Development

15 | Java Component Implementations

Java Component Implementations

A Java component implementation consists of the abstract and concrete classes that
represent the component. The abstract class defines service method signatures, reference
fields and accessor methods, and property fields and accessor methods. The concrete class
contains the implementations of the service methods. Java component implementations
are stored in Java plug-in projects.

Declaring Dependencies on Packages

Normally, if you import packages and do not add them to the manifest, TIBCO Business
Studio - BPM Edition displays an error. However, If you import any of the javax.xml.x or
org.ietf.jgss packages and do not declare the import in the manifest, TIBCO Business
Studio - BPM Edition does not display an error because TIBCO Business Studio -

BPM Edition resolves those packages from the configured JRE. If you then deploy the
application without the declaration in the manifest, the application does not run. You must
ensure that you import javax.xml or org.ietf.jgss packages in the manifest file.

For example, if you imported the following classes:

import javax.xml.XMLConstants;
import javax.xml.transform.TransformerFactory;

The corresponding import packages in the manifest should be:

Imported Packages

Specify packages on which this plug-in depends without explicith: identiFying
their originating plug-in,

FH com.tibco, matrix. java.annotakions [1.0,0,2.0,0)
H javam.eml [1.3.0,2.0,00

B java . eml bransform [1.3.0,2.0,00
£ org.apache. xmibeans [2.5.0,3.0.00
£ org. apache. xmlbeans.impl. schema [2.3.0,3.0.0)

£ org.apache. xmibeans.impl. values [2.3.0,3.0.00

HH org.osoa.sca,annotations [1.0,0,2.0,0)

TIBCO ActiveMatrix® Service Grid Java Component Development

16 | Java Component Implementations

o Note: Each subpackage of javax.xml may have a different version:

B java.oml (1.3.00

B4 javar.xoml.bind (2.1.00

£ javas.xml.bind. annokation (2.1.0)
B4 javax.xml.bind. annokation, adapters {2,1.0%
B java.xml.bind. attachment {2, 1.00
B iavax.xml.bind helpers {2,1.0%

B iava . xomlbindutil {2,1.00

B java . cml.crvpto

B3 javaz. ml.crypto. dom

B javas.xml. crypro.dsig

B javas.ml.crvpto, dsig. dom

B javax.xml.crypto.dsig, kevinfo

B javax.xml.crypto. dsig. spec

B javax.xml datatvpe 1.5.00

B javax.xml.namespace {1,1.0

B javax.xml.parsers (1.5.00

Data Binding

Data binding is the process of converting objects described in an XML document to Java
objects and the opposite way. You can generate data binding classes directly from a WSDL
or schema document or while generating a Java or Spring component implementation.

TIBCO Business Studio supports two data binding technologies: JAXB and XMLBeans. The
default mapping of WSDL and XSD schema elements to Java programming language
elements is described in Default XML to Java Mapping.

Data Binding Configuration Files

You can change the mapping of XML elements to Java objects by specifying mapping
constraints in a data binding configuration file. Each data binding technology has its own
configuration file format: XMLBeans XSDCONFIG or JAXB XJB.

For the formats of their configuration files, see the XMLBeans and JAXB specifications

For example, the following XMLBeans configuration file maps the target namespace
http://ns.tibco.com/Hello/ to the package com.sample.othername.hello and specifies
suffixes, prefixes, and name replacements for generated classes.

TIBCO ActiveMatrix® Service Grid Java Component Development

http://jcp.org/aboutJava/communityprocess/mrel/jsr222/index2.html
http://xmlbeans.apache.org/

17 | Java Component Implementations

<xb:config
xmlns:xb="http://xml.apache.org/xmlbeans/2004/02/xbean/config"
xmlns:ct="http://ns.tibco.com/Hello/">

<xb:namespace uri="http://ns.tibco.com/Hello/ http://someurihere.com">
<xb:package>com.sample.othername.hello</xb:package>
</xb:namespace>

Sl ==
The ##any value is used to indicate "all URIs".
The <prefix> tag is used to prepend to top-level Java type names
generated in the specified namespace.
The <suffix> tag is used to append to top-level Java types names
generated in the specified namespace.
The <prefix> and <suffix> are not used for 1inner Java types.
-=>

<xb:namespace uri="##any">
<xb:prefix>Xml</xb:prefix>
<xb:suffix>BeanClass</xb:suffix>
</xb:namespace>

<!-- The <gname> tag specifies a Java class name for a qualified name
-=>
<xb:gname name="ct:HelloResponse" javaname="TheHelloResponse" />

</xb:config>

Generating XML Data Binding Classes

You can generate XML data binding classes for you SOA project from the Project Explorer.
When you complete the process, a JAR file and optional schema document are created.
Steps 1 through 3 are optional. They are recommended if you want to share the data
binding classes between more than one SOA project.

Procedure
1. Create a SOA project. In the Asset Type Selection screen, clear the TIBCO SOA
Platform checkbox.

2. Click Finish.

TIBCO ActiveMatrix® Service Grid Java Component Development

18 | Java Component Implementations

In the Project Explorer, an SOA project is created containing only the Service
Descriptors special folder.

3. Import or create WSDL and schema documents in the Service Descriptors folder.

4. In the Project Explorer, right-click a WSDL or schema document and select Generate
XML Data Bindings.

The XML Data Binding Classes dialog displays.

5. Configure the XML data binding type, Beans, and, interface JAR file properties as
described in XML Data Binding Reference.

6. Click Finish.

A JAR file containing the XML data binding classes for each WSDL and schema
document is created in the specified location unless you click the Use this JAR for All
Data Bindings link.

Data Binding Classes for Abstract and Concrete
WSDL Files

Using an abstract WSDL and its generated concrete WSDL in services and references of the
same component requires special consideration if the WSDL contains an embedded
schema. When a concrete WSDL file is generated from an abstract WSDL file that has an
embedded schema, the resulting concrete WSDL file also contains the same embedded
schema. When you generate data binding classes for both WSDL files, the code generator
generates duplicate classes for the embedded schema.

The impact of this is two-fold:

e Generating the data binding classes for the abstract and concrete WSDL files into a
single JAR is not supported.

* When you generate the data binding classes for the two WSDL files into different
bean JARs, both JARs contain the same classes.

For correct operation, you must manually remove one of the resulting bean JARs from the
bundle containing the bean JARs as follows:

Procedure
1. Open the component implementation bundle's manifest in the Manifest Editor.

TIBCO ActiveMatrix® Service Grid Java Component Development

19 | Java Component Implementations

2. Click the Runtime tab, and delete one of the JARs containing the duplicate bean
classes from the Classpath area.

3. Save the manifest.

To avoid having to manually edit the manifest, the recommended method for using
abstract and concrete WSDL files in the same composite is to use only abstract WSDL files
for the component services and references and use the concrete WSDL only for the
corresponding promoted references as follows:

Procedure

1. Delete the wire between component references and promoted references.

2. Configure the component reference with the abstract WSDL.

3. Configure the promoted reference with the concrete WSDL.

4. Wire the component reference to the promoted reference using the Wire tool in the

Palette.

XML Data Binding Reference

Field

Type

Contracts

Description

The type of the data binding being generated: XMLBeans or JAXB.

If a JAR file already exists for the contract selected in the Contracts list,
and you choose a binding type different than the one that exists in the JAR
file or the contract has changed since the JAR file was generated, the
Overwrite Existing JAR checkbox is selected.

Default: XMLBeans.

Note: Generating implementations for two or more components in the
same Java plug-in project using different binding types is not
supported.

A list of WSDL and schema files for which XML data binding classes are
generated.

TIBCO ActiveMatrix® Service Grid Java Component Development

20 | Java Component Implementations

Field Description

JAR Type The type of JAR file being generated: Beans or Interface.
Source File The path to the source file containing the selected contract.
JAR File The path to the generated JAR file.

Default: When generating a component implementation:
e Beans - projectName/libs/contractFileName .wsdl. jar

¢ Interface - projectName/1libs/contractFileName .wsd1_
interface.jar

where contractFileName is the name of the file containing the contract
selected in the Contracts list and projectName is the name of the project
containing the component implementation.

When generating from a contract file:
e Beans - projectName.libs/1libs/contractFileName .wsdl.jar

* Interface - projectName.libs/1libs/contractFileName .wsdl_
interface.jar

where contractFileName is the name of the file containing the contract
selected in the Contracts list and projectName is the name of the project
containing the contract file.

Use this JAR for Indicate that all data binding classes should be generated into the JAR file

All Data specified in the JAR File field. You must generate all data binding classes

Bindings into a single JAR file whenever there are cyclical references between
schema files.

Set JAR Folder Invokes a dialog where you can set the folder to contain generated JAR
files:

» All Generated JARs - All JAR files are generated in the same folder as
the destination of the currently selected JAR.

* New Generated JARs - Only newly generated JAR files are generated
in the same folder as the destination of the currently selected JAR
file.

TIBCO ActiveMatrix® Service Grid Java Component Development

21 | Java Component Implementations

Field

JAR Status

Overwrite
Existing JAR

Advanced

Export Data
Binding
Packages

Description

Note: Setting the JAR folder affects only the JAR files generated by the
wizard. It has no effect outside the wizard nor on subsequent wizard
runs.

Default: All Generated JARs.
The status of the JAR file containing the classes generated for the selected
contract:

e JAR is non-existent and is generated. - The JAR file does not exist.

 Different binding type. JAR must be overwritten. - The value of the
Type field is different than the type of the data binding classes in the
JAR file.

¢ JAR exists and is overwritten. - The JAR file exists and the Overwrite
Existing JAR checkbox is selected.

¢ JAR exists and is preserved. - The JAR file exists and the Overwrite
Existing JAR checkbox is clear.

e JAR is outdated and is overwritten. - The selected contract has
changed since the JAR file was generated and the Overwrite
Existing JAR checkbox is selected, so the JAR file is generated.

¢ JAR is outdated and is preserved. - The selected contract has
changed since the JAR file was generated and the Overwrite
Existing JAR checkbox is clear, so the JAR file is not generated.

Enabled only when the JAR file exists.
When selected, the JAR file is regenerated.

When clear, the existing file is reused and is not modified.

Indicate that all packages of classes generated into the same plug-in as the
component implementation should be exported in the component's
implementation plug-in manifest using the Export-Package directive. This
allows you to reuse data binding JAR files generated into the same plug-in

TIBCO ActiveMatrix® Service Grid Java Component Development

22 | Java Component Implementations

Field Description

as the component implementation. However, this is not the recommended
approach for data binding library sharing. Instead, you should generate
data binding JAR files into a separate plug-in project.

Default: Clear.

Use Indicate that the specified data binding configuration file should be used
Configuration when generating JAR files. When you select the checkbox, the text field is
File enabled.

Default: clear.

Opening a Java Component Implementation

You can open a Java component implementation from the canvas, the Properties view, or
the project explorer.

Choose an initial control and follow the relevant procedure.

Control Procedure
Canvas Double-click the component.
Properties View 1. Click the Implementation tab.

2. Click the Class field label.
Project Explorer Right-click the implementation file and select Open With > Java Editor.

Canvas Right-click the component and select Open Implementation.

The implementation file opens in the Java editor.

TIBCO ActiveMatrix® Service Grid Java Component Development

23 | Java Component Implementations

Generating a Java Component Implementation

You can start the wizard for generating a Java component implementation from the
canvase, from the Property view, or from the Problems view.

Procedure
1. Choose an initial control and follow the relevant procedure.

Control Procedure
Properties a. In the Validation Report area on the General tab of the
View component's Property View, click the fix... link.

b. Select Generate Java Implementation.

Canvas a. Right-click the component and select Quick Fixes > Generate
Java Implementation.

Canvas a. Right-click the component and select Generate Java
Implementation.

Problems a. In the Problems view, right-click an error of the form Component
View "ComponentName" is not configured and select Quick Fixes.

b. In the Quick Fix dialog, click Generate Java Implementation.

c. Click Finish.

The Generate Java Implementation dialog displays.

2. Configure the project, package, and class details in the Generate Java Component
Implementation Reference screen.

3. If the component has a service or reference, choose a data binding option and follow
the appropriate procedure:

TIBCO ActiveMatrix® Service Grid Java Component Development

24 | Java Component Implementations

Data Procedure

Binding

Option

Accept A JAR containing XMLBeans data binding classes with the default options
Defaults is generated.

Configure a. Click Next.

b. Configure the data binding type and Beans and interface JAR
properties as described in XML Data Binding Reference

4. Click Finish.

The following objects are generated:

e A Java plug-in project containing abstract and concrete implementation
classes. If the component has a service or reference, interface and data binding
classes are also generated.

» A custom feature file that references the Java plug-in in the Deployment
Artifacts special folder in the SOA project. The component is configured to
depend on the generated custom feature. If the component implementation
depends on a data binding library plug-in, the component is configured to
depend on the custom feature containing the data binding library.

» Objects that map to the following component elements:

o Service - An interface. If the port type is named PortType, the interface is
named PortType. The clause implementsPortType is added to the abstract
class.

° Reference - Field and accessor methods are added to the abstract class.

° Property - Field and accessor methods are added to the abstract class.

Generate Java Component Implementation
Reference

When you generate a Java implementation you specify the project location, package, and
names of the implementation classes and the type of the XML data binding classes and

TIBCO ActiveMatrix® Service Grid Java Component Development

25 | Java Component Implementations

location of the JAR file containing the classes.

Implementation Classes

Field

Project

Source
Folder

Package

Class

Overwrite
Concrete
Class

Use Default

Location for
Superclass

Superclass
Package

Superclass

Description

The name of the plug-in project to contain the implementation.

Default: com.sample.soaprojectname.

The name of the source folder in the plug-in project.

Default: src.

The name of the package of the implementation class.

Default: com.sample.soaprojectname.

The name of the implementation class.

Default: ComponentName, where ComponentName is the name of the
component.

Indicate whether to overwrite the implementation class if it already exists.

Default: Clear.

Indicate whether to generate the superclass of the implementation class in
the same package as the implementation class and name the class
AbstractComponentName. When unchecked, the Superclass Package and
Superclass fields are enabled.

Default: Selected.

The name of the package of the superclass of the implementation class.

Default: com.sample.soaprojectname.

The name of the superclass of the implementation class.

Default: AbstractComponentName.

TIBCO ActiveMatrix® Service Grid Java Component Development

26 | Java Component Implementations

XML Data Binding Classes

Note: If the component does not have any services or references, this screen
does not display.

Field Description

Type The type of the data binding being generated: XMLBeans or JAXB.

If a JAR file already exists for the contract selected in the Contracts list,
and you choose a binding type different than the one that exists in the JAR
file or the contract has changed since the JAR file was generated, the
Overwrite Existing JAR checkbox is selected.

Default: XMLBeans.

Note: Generating implementations for two or more components in the
same Java plug-in project using different binding types is not

supported.
Contracts A list of WSDL and schema files for which XML data binding classes are
generated.
JAR Type The type of JAR file being generated: Beans or Interface.
Source File The path to the source file containing the selected contract.
JAR File The path to the generated JAR file.

Default: When generating a component implementation:
e Beans - projectName/libs/contractFileName .wsdl. jar

* Interface - projectName/libs/contractFileName .wsd1_
interface.jar

where contractFileName is the name of the file containing the contract
selected in the Contracts list and projectName is the name of the project
containing the component implementation.

TIBCO ActiveMatrix® Service Grid Java Component Development

27 | Java Component Implementations

Field

Use this JAR for
All Data
Bindings

Set JAR Folder

JAR Status

Description

When generating from a contract file:
e Beans - projectName.libs/1libs/contractFileName.wsdl.jar

* Interface - projectName.libs/1libs/contractFileName .wsdl_
interface.jar

where contractFileName is the name of the file containing the contract
selected in the Contracts list and projectName is the name of the project
containing the contract file.

Indicate that all data binding classes should be generated into the JAR file
specified in the JAR File field. You must generate all data binding classes
into a single JAR file whenever there are cyclical references between
schema files.

Invokes a dialog where you can set the folder to contain generated JAR
files:

e All Generated JARs - All JAR files are generated in the same folder as
the destination of the currently selected JAR.

* New Generated JARs - Only newly generated JAR files are generated
in the same folder as the destination of the currently selected JAR
file.

Note: Setting the JAR folder affects only the JAR files generated by the
wizard. It has no effect outside the wizard nor on subsequent wizard
runs.

Default: All Generated JARs.
The status of the JAR file containing the classes generated for the selected
contract:

e JAR is non-existent and is generated. - The JAR file does not exist.

« Different binding type. JAR must be overwritten. - The value of the
Type field is different than the type of the data binding classes in the
JAR file.

e JAR exists and is overwritten. - The JAR file exists and the Overwrite

TIBCO ActiveMatrix® Service Grid Java Component Development

28 | Java Component Implementations

Field

Overwrite
Existing JAR

Advanced

Export Data
Binding
Packages

Use
Configuration
File

Description

Existing JAR checkbox is selected.

* JAR exists and is preserved. - The JAR file exists and the Overwrite
Existing JAR checkbox is clear.

e JAR is outdated and is overwritten. - The selected contract has
changed since the JAR file was generated and the Overwrite
Existing JAR checkbox is selected, so the JAR file is generated.

¢ JAR is outdated and is preserved. - The selected contract has
changed since the JAR file was generated and the Overwrite
Existing JAR checkbox is clear, so the JAR file is not generated.

Enabled only when the JAR file exists.
When selected, the JAR file is regenerated.

When clear, the existing file is reused and is not modified.

Indicate that all packages of classes generated into the same plug-in as the
component implementation should be exported in the component's
implementation plug-in manifest using the Export-Package directive. This
allows you to reuse data binding JAR files generated into the same plug-in
as the component implementation.

However, this is not the recommended approach for data binding library
sharing. Instead, you should generate data binding JAR files into a separate
plug-in project.

Default: clear.

Indicate that the specified data binding configuration file should be used
when generating JAR files.

When you select the checkbox, the text field is enabled.

Default: clear.

TIBCO ActiveMatrix® Service Grid Java Component Development

29 | Java Component Implementations

Regenerating a Java Component
Implementation

You should regenerate the component implementation after you add a service, reference,
or property to the component or to recreate the data binding classes created by a previous
version of TIBCO Business Studio - BPM Edition. The regeneration recreates the abstract
class, but it does not change or remove any code from the implementation class.

Before you begin
The implementation must have been originally generated by TIBCO Business Studio -
BPM Edition.

It is possible that the implementation class has errors after regeneration (for example when
the reference has been removed and the implementation is using the reference).

If the implementation was generated with a previous version of TIBCO Business Studio -
BPM Edition, a dialog displays asking if you want to delete legacy JARs. Legacy JARs are
named PortType-timestamp-service-beans.jar and PortType-timestamp-service-
interface.jar.

Procedure
1. Choose an initial control and follow the relevant procedure.

Control Procedure

Canvas a. Right-click the component and select Regenerate Java
Implementation.

Problems a. In the Problems view, right-click an error of the form The
View component "ComponentName" is out of sync with its
implementation and select Quick Fix.

b. In the Quick Fix dialog select Update Implementation Class.

c. Click Finish.

Command a. Create a command-line build file and specify an

TIBCO ActiveMatrix® Service Grid Java Component Development

30 | Java Component Implementations

Control Procedure

Line sds.javait.regenerateComponent task. For example:

<sds.javait.regenerateComponent
projectName="MyProject" compositeName="MyComposite"
componentName="MyJavaComponent" />

b. Run the command-line with the build file.

2. Decide how you want to handle legacy JARs and follow the appropriate procedure.

Legacy Procedure

JARs

Delete a. Click Yes.

Retain a. Open the META-INF/Manifest.MF file in the component

implementation's Java plug-in project.
b. Delete the legacy JARs from the Bundle-ClassPath property.

c. If the preceding step failed, right-click the Java project and select
PDE Tools > Update classpath.

d. If necessary, remove legacy JARs from the build properties file in the
component implementation's Java plug-in project.

e. Delete the legacy JARs from the project.

f. Fix compilation errors if any.

The implementation is updated to match the component.

Upgrading a Java Component Implementation

Perform these steps after you modify a component implementation.

Procedure

TIBCO ActiveMatrix® Service Grid Java Component Development

31 | Java Component Implementations

1. Open the plug-in manifest of the plug-in containing the component implementation.

a. In the Overview tab, increment the appropriate version component of the plug-
in. For example, if you add a property, change 1.0.0.qualifier to 1.1.0.qualifier.

b. In the Runtime tab, increment the appropriate version component of the
exported package. For example, if you add a property, change 1.0.0.qualifier to
1.1.0.qualifier.

c. Save the manifest.
2. Open the custom feature containing the plug-in.

a. In the Overview tab, increment the appropriate version component of the
feature. For example, if you add a property, change 1.0.0.qualifier to
1.1.0.qualifier.

b. In the Plug-ins tab, increment the appropriate version component of the
included plug-in. For example, if you add a property, change 1.0.0.qualifier to
1.1.0.qualifier.

c. Save the feature.

Life Cycle Events

The ActiveMatrix runtime exposes component life cycle events—Init and Destroy—to
component implementations.

Methods annotated with @Init and @Destroy are invoked when the life cycle events trigger.
The following table describes the meaning of each event and how component
implementations can handle each event.

Life Cycle Events

Event When Invoked

Init When the application containing the component or the component is started.

When this event is triggered all the component's properties, references, and
resources have been initialized.

The method invoked when this event is triggered is typically used to validate
component configuration and open connection to resources.

TIBCO ActiveMatrix® Service Grid Java Component Development

32 | Java Component Implementations

Event When Invoked
Destroy When the application containing the component or the component is stopped.

Note: If you open connections to resources in a method that is invoked by an
Init event you must close the connections to the resources in the method that
is invoked by a Destroy event.

When TIBCO Business Studio generates a Java or Spring component implementation, it
automatically adds the appropriately annotated initialization and destruction methods:

org.osoa.sca.annotations.Init;
org.osoa.sca.annotations.Destroy;
@Init
public void init()
{
// Component 1initialization code.
// ALl properties are initialized and references are injected.

}
@Destroy
public void destroy()

{
// Component disposal code.
// All properties are disposed.

}

You can customize these methods to perform application-specific initialization and
cleanup.

Component Context

A component context provides access to the context in which a component executes. The
context includes the component's name and containing application name, the node on
which it executes, the host managing the node, context parameters available to the
component, the component's work area, and so on.

To access the component context, add the following declarations to a Java or Spring
component implementation:

TIBCO ActiveMatrix® Service Grid Java Component Development

33 | Java Component Implementations

import org.osoa.sca.annotations.Context;

import
com.tibco.amf.platform.runtime.extension.context.ComponentContext;
@Context

public ComponentContext componentContext;

These declarations are automatically added to the abstract component implementation
when a context parameter is defined for the component. The TIBCO ActiveMatrix platform
injects the component context object into the component implementation.

If a component implementation wants to create a file, it should do so in the work area
assigned to each component. The TIBCO ActiveMatrix platform ensures that these files are
deleted when the component is undeployed. Work areas are backed up during node
upgrade. A component implementation can retrieve its work area through the component
context's getWorkArea () method which returns the java.1io.File object that represent the
work area folder for that component.

Accessing a Property

When you generate a Java or Spring component implementation after adding a property to
the component, TIBCO Business Studio adds properties and methods to the component's
abstract implementation class:

The following items are added.
e SCA property annotation import
e Afield that represents the property
e Accessor methods

The TIBCO ActiveMatrix platform injects the property object into the component
implementation.

For example, if you add a property named greeting of type String to a component, the
following code is added:

org.osoa.sca.annotations.Property;
private String greeting;

@Property(name = "greeting")
public void setGreeting(String greeting)

TIBCO ActiveMatrix® Service Grid Java Component Development

34 | Java Component Implementations

{
this.greeting = greeting;
}
public String getGreeting()
{
return greeting;
}

To reference the property, invoke the accessor methods. For example:

resp.setHelloResponse(getGreeting() + " " + name + "! "
+ "The current time is " + time + ".");

Accessing a Resource

You can access a resource with an accessor method that is part of the component
implementation.

Procedure
1. Add a property of the resource type to the component.

2. Generate or regenerate the component implementation. TIBCO Business Studio adds
imports, fields, and resource accessor methods to the component's abstract
implementation class. When the component is instantiated, the TIBCO ActiveMatrix
platform injects the resource object into the component implementation.

3. Access the resource using the generated accessor methods.

4. After you are finished with the resource and any objects retrieved from the resource,
close the objects.

Accessing a Hibernate Resource

You can access a Hibernate resource from the Hibernate session that is associated with the
session factory.

If you create a property named sessionFactory of type Hibernate Resource Template, TIBCO
Business Studio adds the following to the abstract implementation class:

TIBCO ActiveMatrix® Service Grid Java Component Development

35 | Java Component Implementations

import org.osoa.sca.annotations.Property;

import
com.tibco.amf.sharedresource.runtime.core.hibernate.sharedresource.Proxy
SessionFactory;

private ProxySessionFactory sessionFactory;

@Property(name = "sessionFactory'")
public void setSessionFactory(ProxySessionFactory sessionFactory)
{
this.sessionFactory = sessionFactory;
}
public ProxySessionFactory getSessionFactory()
{
return sessionFactory;
+
Procedure
1. Retrieve the proxy session factory using the generated getSessionFactory method.

2.

10.

Register the model class using the session factory addClass method.

Retrieve the Hibernate session from the session factory using the openSession
method.

Retrieve a transaction from the session.
Create a query.

Run the query.

Save the session.

Commit the transaction.

Close the session.

When the component is destroyed, unregister the model class using the removeClass
method.

import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.Transaction;

TIBCO ActiveMatrix® Service Grid Java Component Development

36 | Java Component Implementations

final Session session = getSessionFactory().openSession();

try
{
[**
* Begin a transaction before performing any queries.
* Closing the session cleans up the transaction.
*/
Transaction tx = session.beginTransaction();
final Query query = session.createQuery("UPDATE ...");
int result = query.executeUpdate();
if (result == 0)
{
session.save(report);
}
tx.commit();
} finally
{
session.close();
}
@Init
public void init()
{
if (getSessionFactory() == null)
{

throw new IllegalStateException("Failed to inject
ProxySessionFactory");

+
/*** Register the ModelClass model class on SessionFactory */
getSessionFactory().addClass (ModelClass.class) ;
try
{
// Initializes database data.
initializeDBData();
} catch (Throwable th) {
}
}
@Destroy
public void destroy()
{

TIBCO ActiveMatrix® Service Grid Java Component Development

37 | Java Component Implementations

if (getSessionFactory() != null)
{
[**
* Unregister the ModelClass model class from SessionFactory
*/
getSessionFactory() .removeClass (ModelClass.class) ;
}
}

Accessing a JDBC Resource

If you create a property named jdbc of type JDBC Resource Template, TIBCO Business
Studio - BPM Edition adds the following to the abstract implementation class:

import org.osoa.sca.annotations.Property;
import javax.sql.DataSource;

private DataSource jdbcr;

@Property(name = "jdbcr")

public void setDbr(DataSource jdbcr) {
this.jdbcr = jdbcr;

+

public DataSource getJddbcr() {
return jdbcr;

}

Invoke the accessor methods in your component implementation.

import javax.sql.DataSource;
DataSource ds = getJdbcr();
Connection connection = null;

try {
connection = ds.getConnection();
ensureTablesExist(connection);

Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(sqlString);
PhoneEntryType entry = null;

while(rs.next()) {

TIBCO ActiveMatrix® Service Grid Java Component Development

38 | Java Component Implementations

entry = resp.addNewOut();
entry.setEntryId(rs.getString("id"));
entry.setFirstName(rs.getString("firstName"));
entry.setLastName(rs.getString("lastName"));
entry.setPhone(rs.getString("phone"));

b

} catch(SQLException e) {
e.printStackTrace();
} finally {

try{
connection.close();
}catch(Exception e){};

}

Accessing JMS Resources

To access JMS resources, create JMS Connection Factory and JMS Destination properties. If
you create a property named connectionFactory of type JMS Connection Factory and a
property named destination of type JMS Destination, TIBCO Business Studio adds the
following to the abstract implementation class:

import javax.jms.ConnectionFactory;
import javax.jms.Destination;

private ConnectionFactory connectionFactory;

@Property(name = "connectionFactory")
public void setConnectionFactory(ConnectionFactory connectionFactory)
{
this.connectionFactory = connectionFactory;
}
public ConnectionFactory getConnectionFactory()
{
return connectionFactory;
+

private Destination destination;

@Property(name = "destination")

TIBCO ActiveMatrix® Service Grid Java Component Development

39 | Java Component Implementations

public void setDestination(Destination destination)

{
this.destination = destination;
}
public Destination getDestination()
{
return destination;
+

Invoke the accessor methods in your component implementation.

import javax.jms.Connection;
import javax.jms.Destination;
import javax.jms.JMSException;

import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;

@Init

public void init() throws JIMSException

{
connection = getConnectionFactory().createConnection();
connection.start();
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE) ;
System.out.println(session);

@Destroy
public void destroy() throws JMSException
{

session.close();

connection.stop();

connection.close();

}

private String doPublish(String input) throws JIMSException
{

MessageProducer producer = session.createProducer (getDestination());
TextMessage message = session.createTextMessage("Input from SOAP

Request :" + {dnput);
producer.send(message) ;
String msg_id = message.getIMSMessagelID();
return msg_-id;

}

TIBCO ActiveMatrix® Service Grid Java Component Development

40 | Java Component Implementations

Accessing LDAP Connections

If you create a property named ldapr of type LDAP Connection Resource Template, TIBCO
Business Studio adds the following to the abstract implementation class:

import org.osoa.sca.annotations.Property;
import javax.naming.ldap.LdapContext;

private LdapContext ldapr;

@Property(name = "ldapr")

public void setlLdapr(LdapContext ldapr) {
this.ldapr = ldapr;

}

public LdapContext getlLdapr() {
return ldapr;

}

Procedure
1. To update the resource:

Attributes attr = new BasicAttributes(true);

Attribute objFact = new BasicAttribute("objectclass");
objFact.add("top");

objFact.add("person");

objFact.add("uidObject");
objFact.add("organizationalPerson");

attr.put(objFact);

attr.put("uid", uid);

attr.put("cn", commonName) ;

attr.put("sn", surname);

attr.put("userPassword", password);

Name name = new LdapName("uid=" + uid +
", ou=People,dc=tibco,dc=com");

getLdapr().createSubcontext(name, attr);

public void destroy() {

try {
getlLdapContext().close();

TIBCO ActiveMatrix® Service Grid Java Component Development

41 | Java Component Implementations

} catch (NamingException e) {
e.printStackTrace();
}

2. To query the resource:

StringBuffer sb = new StringBuffer();
NamingEnumeration<SearchResult> results = null;
try
{
SearchControls controls = new SearchControls();
controls.setSearchScope(SearchControls.SUBTREE_SCOPE) ;
MessageFormat format = new MessageFormat(" (&(uid={0})
(objectclass=*x))");
String format2 = format.format(new Object[] { uid 1});
results = getLdapr().search("uid=" + uid+
" ou=People,dc=tibco,dc=com",
format2,controls);

while (results.hasMore())
{
SearchResult searchResult = (SearchResult) results.next();
Attributes attributes = searchResult.getAttributes();
NamingEnumeration<? extends Attribute> enumeration =
attributes.getAll();
for (; enumeration.hasMoreElements();)
{
Attribute object = (Attribute) enumeration.next();
sb.append(object.toString());
sb.append('\n'");
if (logger.isInfoEnabled())
{
logger.info(object.toString());
}
h
h

} catch (NameNotFoundException e) {
} catch (NamingException e) {

}

TIBCO ActiveMatrix® Service Grid Java Component Development

42 | Java Component Implementations

return sb.toString();

Accessing SMTP Connections

If you create a property named smtpr of type SMTP Resource Template, TIBCO Business
Studio adds the following to the abstract implementation class:

import org.osoa.sca.annotations.Property;
import javax.mail.Session;

private Session smtpr;

@Property(name = "smtpr")
public void setSmtpr(Session smtpr) {
this.smtpr = smtpr;

}

public Session getSmtpr() {
return smtpr;

}

Invoke the accessor methods in your component implementation.

import javax.mail.Message;

import javax.mail.MessagingException;
import javax.mail.Session;

import javax.mail.Transport;

Transport transport =null;
try{

Session session = getSmtpr();

transport = session.getTransport();

Message message = new MimeMessage(session);
message.setFrom(new InternetAddress(mailFrom));
InternetAddress dests[] = new InternetAddress[]{ new

InternetAddress(mailTo) };
message.setRecipients(Message.RecipientType.TO, dests);
message.setSubject(subject);

message.setDataHandler (new DataHandler (new ByteArrayDataSource(
requestContent, "text/plain")));

TIBCO ActiveMatrix® Service Grid Java Component Development

43| Java Component Implementations

transport.connect();
transport.sendMessage(message, dests);
} catch(Exception exp){

}
return false;
} finally {
if (transport != null)
try {
transport.close();
} catch (MessagingException e) {
e.printStackTrace();
}
}
}

return true;

Accessing a Teneo Resource

If you create a property named sessionFactory of type Teneo Resource Template, TIBCO
Business Studio adds the following to the abstract implementation class:

import org.osoa.sca.annotations.Property;

import
com.tibco.amf.sharedresource.runtime.core.teneo.sharedresource.TeneoSess
jonFactory;

private TeneoSessionFactory sessionFactory;
@Property(name = "sessionFactory")
public void setSessionFactory(TeneoSessionFactory sessionFactory) {

this.sessionFactory = sessionFactory;

}

public TeneoSessionFactory getSessionFactory() {
return sessionFactory;

}

Invoke the accessor methods in your component implementation.

import org.hibernate.Query;

TIBCO ActiveMatrix® Service Grid Java Component Development

44 | Java Component Implementations

import org.hibernate.Session;

import org.hibernate.Transaction;
Session session = null;
Transaction tx = null;

try {

}

session = getSessionFactory().openSession();
tx = session.beginTransaction();

Query g = session.createQuery("...");
User user = (User)q.uniqueResult();
Trip trip = ...;

id = (Long) session.save(trip);
user.getTrips().add(trip);
session.save(user);

catch (Throwable th) {

}

error = true;
result = "failed: " + th.getMessage();
th.printStackTrace();

finally {

if (tx != null) {
if (error) {
try {
tx.rollback();
}
catch (Throwable th) {
th.printStackTrace();

b
b
else {
try {
tx.commit();
}
catch (Throwable th) {
th.printStackTrace();
b
b
b
if (session != null) {
try {
session.close();
}
catch (Throwable th) {
th.printStackTrace();
b
b

TIBCO ActiveMatrix® Service Grid Java Component Development

45 | Java Component Implementations

Invoking an HTTP Request

You can use an HTTP client resource to invoke HTTP requests from component
implementations. A POST example illustrates this.

Procedure
1. Add a property of type HTTP Client Resource Template to the component.

When you regenerate the implementation, TIBCO Business Studio adds an HTTP
client connection factory property to the abstraction implementation class. For a
property named httpConnectionFactory, TIBCO Business Studio adds the following:

import

com.tibco.amf.sharedresource.runtime.core.http.httpclient.HttpClien
tConnectionFactory;

private HttpClientConnectionFactory httpConnectionFactory;

public void setHttpConnectionFactory(
HttpClientConnectionFactory httpConnectionFactory)

{
this.httpConnectionFactory = httpConnectionFactory;

+
[**

* @return Returns the HttpClientConnectionFactory

*/

public HttpClientConnectionFactory getHttpConnectionFactory()

{
return httpConnectionFactory;
+

2. Retrieve an HTTP client object from the connection factory.

3. Invoke HTTP methods on the HTTP client object.

TIBCO ActiveMatrix® Service Grid Java Component Development

46 | Java Component Implementations

Post Example

The following example demonstrates how to invoke an HTTP Post request using an HTTP
client object retrieved from the HTTP client connection factory or using an HTTP
connection:

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

public
{

org.apache.http.HttpClientConnection;
org.apache.http.HttpEntity;
org.apache.http.HttpException;
org.apache.http.HttpHost;
org.apache.http.HttpResponse;
org.apache.http.client.ClientProtocolException;
org.apache.http.client.methods.HttpPost;
org.apache.http.entity.InputStreamEntity;
org.apache.http.protocol.BasicHttpContext;
org.apache.http.protocol.BasicHttpProcessor;
org.apache.http.protocol.ExecutionContext;
org.apache.http.protocol.HttpRequestExecutor;
org.apache.http.protocol.RequestConnControl;
org.apache.http.protocol.RequestContent;
org.apache.http.protocol.RequestExpectContinue;
org.apache.http.protocol.RequestTargetHost;
org.apache.http.protocol.RequestUserAgent;

GetQuoteResponseDocument getQuote(GetQuoteDocument parameters)

String symbol = parameters.getGetQuote().getSymbol();
String value = ERROR_MSG;

try
{
[**
* Two ways of using HTTP client API, randomly selected at runtime:
* a) HTTP Client
* b) HTTP Connection
*/
if(random.nextBoolean())
{
value = getQuoteUsingHttpClient(getHttpConnectionFactory(),
symbol.trim());
}else{
value = getQuoteUsingHttpConnection(getHttpConnectionFactory(),
symbol.trim());

}

}catch (Exception e)

TIBCO ActiveMatrix® Service Grid Java Component Development

47 | Java Component Implementations

if(logger.isErrorEnabled())
{
logger.error (ERROR_MSG,e) ;
+
+

GetQuoteResponseDocument responseDoc =
GetQuoteResponseDocument.Factory.newInstance();
responseDoc.addNewGetQuoteResponse () .setGetQuoteResult(value);
return responseDoc;

}

[**
* Processes the request using HTTPClient API
*/
private String getQuoteUsingHttpClient(HttpClientConnectionFactory
connectionFactory,
String symbol) throws HttpException, ClientProtocolException,
IOException {
String responseString = ERROR_MSG;
String message = getContent(symbol);
byte[] bytes = message.getBytes();

/**x HTTPClient provides a facade to a number of special purpose handler
or strategy
* implementations responsible for handling of a particular aspect of
* the HTTP protocol such as redirect or authentication handling or
* making decision about connection persistence and keep alive
duration.
* This allows you to selectively replace the default implementation
* of those aspects with custom, application-specific ones.
*/
HttpClientWrapper httpClient = connectionFactory.getHttpClient();
HttpHost configuration = connectionFactory.getHostConfiguration();

[**

* Construct the request URL

*/
String url = configuration.getSchemeName() + "://"+
configuration.getHostName()+":"+
configuration.getPort() + "/stockquote.asmx";

[*x*
* Prepare request object and its header for HTTP Post request

*/

TIBCO ActiveMatrix® Service Grid Java Component Development

48 | Java Component Implementations

HttpPost httpPost = new HttpPost(url);
httpPost.setHeader ("Content-Type", "text/xml; charset=utf-8");
httpPost.setHeader ("SOAPAction", "http://www.webserviceX.NET/GetQuote");

[**

* Sets the Entity to handle content management.

*/

ByteArrayInputStream instream = new ByteArrayInputStream(bytes);
InputStreamEntity e2 = new InputStreamEntity(instream, -1);
httpPost.setEntity(e2);

[**

* Execute the POST URL using HttpClientWrapper which takes care of
* connection management other functionality internally.

*/

HttpResponse response = httpClient.execute(httpPost);

[**

* Get the response Entity which holds the response content from
HttpResponse.

*/

HttpEntity resEntity = response.getEntity();

//Reads the response
responseString = getResponseString(reskntity);
if (reskEntity != null) {
[**
* The Method consumeContent() is called to indicate that the content of
this entity
* is no longer required. All entity implementations are expected to
* release all allocated resources as a result of this method
* invocation.
*/
resentity.consumeContent();

}

return responseString;

[*x*

* Processes the request using HTTPConnection API

x/

private String getQuoteUsingHttpConnection(HttpClientConnectionFactory
connectionFactory,

String symbol) throws HttpException, IOException {

TIBCO ActiveMatrix® Service Grid Java Component Development

49 | Java Component Implementations

String responseString = ERROR_MSG;
String message = getContent(symbol);
byte[] bytes = message.getBytes();

HttpClientConnection httpClientConnection =
connectionFactory.getHttpConnection();
HttpHost configuration = connectionFactory.getHostConfiguration();

[**

* Construct the request URL

*/

String url = configuration.getSchemeName() + "://"+
configuration.getHostName() +":"+
configuration.getPort() + "/stockquote.asmx";

try {
[**
* Prepare request object and its header for HTTP Post request
*/
HttpPost httpPost = new HttpPost(url);
httpPost.setHeader ("Content-Type", "text/xml; charset=utf-8");
httpPost.setHeader ("SOAPAction","http://www.webserviceX.NET/GetQuote");

[*x*

* Sets the Entity to handle content management.

*/

ByteArrayInputStream instream = new ByteArrayInputStream(bytes);
InputStreamEntity e2 = new InputStreamEntity(instream, -1);
httpPost.setEntity(e2);

[*x*

* Set HTTP params on Post request object

*/

httpPost.setParams(connectionFactory.getHttpParams());

/**x HttpContext represents execution state of an HTTP process.
* It is a structure that can be used to map an attribute name
* to an attribute value. Internally HTTP context implementations
* are usually backed by a HashMap.

*/

BasicHttpContext basicHttpContext = new BasicHttpContext(null);

// Populate the execution context

basicHttpContext.setAttribute(ExecutionContext.HTTP_

CONNECTION,httpClientConnection);

basicHttpContext.setAttribute(ExecutionContext.HTTP_TARGET_

HOST,connectionFactory.

getHostConfiguration());

TIBCO ActiveMatrix® Service Grid Java Component Development

50 | Java Component Implementations

basicHttpContext.setAttribute(ExecutionContext.HTTP_REQUEST,httpPost);

/**x HTTP protocol processor is a collection of protocol interceptors
that

* 1implements the Chain of Responsibility pattern, where each
individual

* protocol interceptor is expected to work on a particular aspect of
the HTTP

* protocol for which the -interceptor is responsible.

*/

BasicHttpProcessor httpProcessor = new BasicHttpProcessor();

// Required request interceptors

httpProcessor.addInterceptor (new RequestContent());
httpProcessor.addInterceptor(new RequestTargetHost());

// Recommended request interceptors

httpProcessor.addInterceptor(new RequestConnControl());
httpProcessor.addInterceptor (new RequestUserAgent());
httpProcessor.addInterceptor (new RequestExpectContinue());

/** HttpRequestExecutor is a client side HTTP protocol handler based on
the

* blocking I/0 model that implements the essential requirements of the
HTTP

* protocol for the client side message processing

*/

HttpRequestExecutor httpexecutor = new HttpRequestExecutor();

// Prepare request

httpexecutor.preProcess(httpPost, httpProcessor, basicHttpContext);
// Execute request and get a response

HttpResponse response = httpexecutor.execute
(httpPost,httpClientConnection,

basicHttpContext);

// Finalize response

httpexecutor.postProcess(response, httpProcessor, basicHttpContext);
HttpEntity resEntity = response.getEntity();

//Reads the response
responseString = getResponseString(reskntity);
if (reskEntity != null) {
[**
* The Method consumeContent() is called to indicate that the content of
this entity
* is no longer required. All entity implementations are expected to

TIBCO ActiveMatrix® Service Grid Java Component Development

51 | Java Component Implementations

* release all allocated resources as a result of this method
* jnvocation.
*/
reseEntity.consumeContent();
+
} finally {
httpClientConnection.close();
3
return responseString;

}

[**
* Reads and returns the string content from response Entity
*/
private String getResponseString(HttpEntity resEntity)
throws IOException {
if (reskEntity != null) {
InputStream content = resEntity.getContent();
byte[] cbytes = new byte[new Long(1000).intValue()];

int x = -1;
StringBuilder sb = new StringBuilder();
while ((x = content.read(cbytes)) != -1) {

String reponseContent = new String(cbytes);
sb.append(reponseContent) ;
+
return getValue(sb.toString().trim());
}
return ERROR_MSG;

}

[*x*

* Returns the request content.

* @param symbol

* @return

*/

private String getContent(String symbol) {
return "<soapenv:Envelope
xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"
+ "xmlns:web=\"http://www.webserviceX.NET/\">"
"<soapenv:Header/>"
"<soapenv:Body>"
"<web:GetQuote>"
"<web:symbol>"+symbol+"</web:symbol>"
"</web:GetQuote>"
""</soapenv:Body>"
""</soapenv:Envelope>";

+ + + + + + +

TIBCO ActiveMatrix® Service Grid Java Component Development

52 | Java Component Implementations

Invoking a Reference Operation

When you add a reference to a Spring component, TIBCO Business Studio - BPM Edition
adds following a field and accessor methods to the abstract component implementation.
ActiveMatrix Service Grid injects the referenced object into the component implementation.

TIBCO Business Studio - BPM Edition adds the following elements to the abstract
component implementation:

» SCA reference annotation import
» A field that declares the referenced object

» Accessor methods
The TIBCO ActiveMatrix platform injects the referenced object into the component
implementation. For example, if you add a reference to port type DateManagerPT, the

following code is added:

import org.osoa.sca.annotations.Reference;

@Reference(name = "DateManagerPT")

public void setDateManagerPT(DateManagerPT DateManagerPT) {
this.DateManagerPT = DateManagerPT;

}

public DateManagerPT getDateManagerPT() {
return this.DateManagerPT;

}

TIBCO ActiveMatrix® Service Grid Java Component Development

53 | Java Component Implementations

o Note: When you pass an XMLBeans document object to a reference invocation,
the object is passed by reference. Since the state of an object is not guaranteed
across reference invocations, you cannot access the object after the reference
invocation. If you need to access the object after the invocation, make a deep
copy of the object using the copy method before you invoke the reference. For
example, if you needed to access the req object after the call to
getCurrentTime, make a deep copy of req as follows:

TimeRequestDocument req =
TimeRequestDocument.Factory.newInstance();
req.setTimeRequest("America/Los_Angeles");

TimeRequestDocument reqcopy = (TimeRequestDocument)req.copy();
TimeResponseDocument time = getDateManagerPT().getCurrentTime

(req);
System.out.println("The time in " + reqcopy.getTimeRequest() +
n -is 1] db

time.getTimeResponse());

Add the statement getportType () .operation. If the reference is configured for dynamic
wiring, you must define a method to create an endpoint reference (see Creating an
Endpoint Reference) and call the method before invoking the reference object. For
information on wiring, see "Static and Dynamic Wiring" in TIBCO ActiveMatrix® Service
GridComposite Development.

The following code snippet demonstrates how to invoke the getCurrentTime operation on
the reference configured for dynamic wiring with port type DateManagerPT:

setEPR(targetURI);
String time = currentTime.getTimeResponse();

resp.setHelloResponse(getJavaGreeting() + " " + name + "! "
+ "The current time is " + time + ".");
return resp;

Error Handling

In service-oriented applications, SOAP clients expect a fault message to be returned when
an error occurs during processing. A fault message is a SOAP message

A fault message has the following subelements:

TIBCO ActiveMatrix® Service Grid Java Component Development

54 | Java Component Implementations

Subelement Description

faultcode A code that identifies the fault.

faultstring An explanation of the fault.

faultactor Information about what caused the fault to occur.
detail Application-specific information about the fault.

Fault messages defined in the WSDL file are called declared faults. Fault messages that are
not defined in the WSDL file are called undeclared faults. The process for generating a fault
message is implementation dependent and typically depends on whether the fault is
declared or not.

Declared Faults

When you add a service to a Spring component TIBCO Business Studio generates a fault
exception class for each fault declared in the WSDL file that defines the service's port type.

Example WSDL File

The following WSDL fragment shows the getWeather operation with two declared faults:
orderFault and orderFault2. The detail element for the orderFault message contains a
ZipCodeFault element. The detail element for the orderFault2 message contains a
CityFault element.

<wsdl:types>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://www.example.org/weatherschema"
targetNamespace="http://www.example.org/weatherschema"
elementFormDefault="unqualified"
attributeFormDefault="unqualified">
<complexType name="WeatherRequestType'">
<sequence>
<element name="city" type="string"/>
<element name="state" type="string"/>
<element name="zip" type="string"/>
</sequence>

TIBCO ActiveMatrix® Service Grid Java Component Development

55 | Java Component Implementations

</complexType>
<complexType name="WeatherResponseType">
<sequence>
<element name="high" type="float"/>
<element name="low" type="float"/>
<element name="forecast" type="string"/>
</sequence>
</complexType>

<element name="WeatherRequest" type="tns:WeatherRequestType"/>
<element name="WeatherResponse" type="tns:WeatherResponseType'"/>
<element name="ZipCodeFault" type="string"/>
<element name="CityFault" type="string" />
</schema>
</wsdl:types>
<wsdl:message name="invalidZipCodeFault">
<wsdl:part name="error" element="ns0:ZipCodeFault"/>
</wsdl:message>
<wsdl:message name="invalidCityFault">
<wsdl:part name="error" element="nsO:CityFault" />
</wsdl:message>
<wsdl:portType name="WeatherReportPT">
<wsdl:operation name="GetWeather">
<wsdl:input message="tns:GetWeatherRequest"/>
<wsdl:output message="tns:GetWeatherResponse"/>
<wsdl:fault name="orderFault" message="tns:invalidZipCodeFault"/>
<wsdl:fault name="orderFault2" message="tns:invalidCityFault" />
</wsdl:operation>
</wsdl:portType>

Code Generation

When TIBCO Business Studio generates the Spring component implementation
invalidCityFault and invalidZipCodeFault are mapped to the exceptions:

public class InvalidCityFaultException extends java.lang.Exception
public class InvalidZipCodeFaultException extends java.lang.Exception

and a throws clause containing the generated exceptions is added to the getWeather
method.

To generate the invalidCityFault fault message while processing the getWeather
method, throw InvalidCityFaultException. The faultcode and faultactor subelements
of the SOAP fault element are predefined as:

TIBCO ActiveMatrix® Service Grid Java Component Development

56 | Java Component Implementations

Subelement Content
faultcode SOAP-ENV:Server
faultactor DefaultRole

Setting Fault Message Subelements

To customize the values of the faultstring and detail subelements:

1. Create a string object and set to an informative message. The message is mapped to
the SOAP message's faultstring element.

2. Create a fault document and set the appropriate fault property of the document to
the reason for the error. The reason is mapped to the SOAP message detail element.

3. Create a fault message exception that contains the message and fault document.

For example, if the city element of the request is not set correctly, configure and throw
the fault message exception as follows:

public WeatherResponseDocument getWeather (WeatherRequestDocument
getWeatherRequest)
throws org.example.www.WeatherService.InvalidCityFaultException,
org.example.www.WeatherService.InvalidCityFaultException {
WeatherRequestType weatherRequest = getWeatherRequest.getWeather();
if (weatherRequest.getCity()==null||weatherRequest.getCity().equals(""))
{
CityFaultDocument cityFaultDocument =
CityFaultDocument.Factory.newInstance();
XmlString msg = XmlString.Factory.newInstance();
msg.setStringValue("Error processing getWeather.");
// set detail
cityFaultDocument.setCityFault("Invalid city for zipcode " +
weatherRequest.getZip());
// set faultstring
InvalidCityFaultException invalidCityFaultException =
new InvalidCityFaultException(msg.getStringValue(),
cityFaultDocument) ;
throw 1invalidCityFaultException;}

TIBCO ActiveMatrix® Service Grid Java Component Development

57 | Java Component Implementations

which would generate the following SOAP fault message if getCity does not return a valid
value:

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Server</faultcode>

<faultstring>Error processing getWeather.</faultstring>

<faultactor>DefaultRole</faultactor>

<detail>

<CityFault xmlns="http://www.example.org/weatherschema">
Invalid city for zipcode 95070.</CityFault>

</detail>

</SOAP-ENV:Fault>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A consumer invoking getWeather should handle the exception as follows:

public WeatherResponseDocument getWeather (WeatherRequestDocument
getWeatherRequest) {
try {
return getWeatherReportPT() .getWeather (getWeatherRequest) ;
}
catch(Exception e) {
if (e instanceof InvalidCityFaultException)
throw (InvalidCityFaultException)e;
else{
System.out.println("Error occured.");
throw new RuntimeException(e.getMessage(),e);
}
}

Undeclared Faults

When an undeclared fault occurs, the TIBCO ActiveMatrix runtime returns a SOAP fault with
the following subelements:

TIBCO ActiveMatrix® Service Grid Java Component Development

58 | Java Component Implementations

Subelement Content

faultcode SOAP-ENV:Server

faultstring java.lang.RuntimeException

faultactor DefaultRole

detail A stack trace indicating where the exception occurred.

If a runtime exception occurs while processing getWeather, the following SOAP fault would
be generated:

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>java.lang.RuntimeException: Undeclared
fault....</faultstring>
<faultactor>DefaultRole</faultactor>
<detail>

<tibco:myFaultDetail xmlns:tibco="http://tibcouri/">

org.osoa.sca.ServiceRuntimeException: java.lang.RuntimeException:
Undeclared fault....

at
com.tibco.amf.platform.runtime.componentframework.internal.proxies.

ProxyInvocationHandler.invoke(ProxyInvocationHandler.java:473)

at S$SProxy2l.1invoke(Unknown Source)

at
com.tibco.amf.binding.soap.runtime.transport.http.SoapHttpInboundEndpoin
€o

processHttpPost (SoapHttpInboundEndpoint.java:250)

at

com.tibco.amf.binding.soap.runtime.transport.http.SoapHttpServer.doPost(
SoapHttpServer.java:103)

Caused by: java.lang.RuntimeException: Undeclared fault....
at com.sample.faultservice.Componentl.getWeather
(Componentl.java:50)
at sun.reflect.NativeMethodAccessorImpl.invoke®(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke
(NativeMethodAccessorImpl.java:39)

TIBCO ActiveMatrix® Service Grid Java Component Development

59 | Java Component Implementations

at sun.reflect.DelegatingMethodAccessorImpl.invoke
(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method. invoke(Method.java:585)
at
com.tibco.amf.platform.runtime.componentframework.internal.proxies.
ProxyInvocationHandler.invoke (ProxyInvocationHandler.java:426)
20 more
</tibco:myFaultDetail>
</detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

To specify SOAP fault subelements for undeclared faults, convert the runtime exception
into a com. tibco.amf.platform.runtime.extension.SOAPException class. The following
code fragment illustrates how to modify the subelements of the SOAP fault:

import com.tibco.amf.platform.runtime.extension.exception.SOAPException;
import com.tibco.amf.platform.runtime.extension.exception.SOAPDetail;
import com.tibco.amf.platform.runtime.extension.exception.SOAPCode;
import java.net.URI;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

URI role = null;
try {
role = new URI("http://soapexception.role");
} catch (URISyntaxException e) {
e.printStackTrace();
}
WeatherRequestType weatherRequest =
getWeatherRequest.getWeatherRequest();
Node domNode = weatherRequest.getDomNode() ;
//Set the original request as the fault detail
SOAPDetail<Element> soapDetail = new SOAPDetail<Element>
(Element.class, (Element)domNode);
SOAPCode soapCode = new SOAPCode(new QName ("fault code")) ;

SOAPException soapException = new SOAPException(soapCode, '"reason",

role, soapDetail);
throw soapException;

The following example illustrates how to catch the SOAPException exception returned by
an invocation of a referenced service:

TIBCO ActiveMatrix® Service Grid Java Component Development

60 | Java Component Implementations

public WeatherResponseDocument getWeather (WeatherRequestDocument
getWeatherRequest)
throws org.example.www.WeatherService.InvalidZipCodeFaultException {
try {
return getWeatherReportPT().getWeather (getWeatherRequest);
} catch (InvalidZipCodeFaultException e) {

System.out.println("=========InvalidZipcodeFaultException========");
throw e;

} catch(Exception e) {
System.out.println("===========Runtime Exception===========");

if(e instanceof ServiceRuntimeException) {
ServiceRuntimeException sre = (ServiceRuntimeException) e;
Throwable cause = sre.getCause();
if(cause instanceof SOAPException) {
SOAPException soapex = (SOAPException) cause;
if (soapex.getCode()!=null) {
System.out("Fault code: " + soapex.getCode().toString());

if (soapex.getRole()!=null) {
System.out("Fault role: " + soapex.getRole().toString());

throw soapex;
}
}

throw new RuntimeException(e);

return null;

}

SOAPException Reference

SOAPException has SOAPCode and SOAPDetail in its parameter list. All three are discussed
below.

public SOAPException(final SOAPCode code, final Stringl[]
reason, final URI node, final URI role, final SOAPDetail<T> detail)

The parameters of type SOAPXXX map to subelements of SOAP faults. Some of the
parameters are for future use.

Parameter Description

code Intended for use by software to provide an algorithmic mechanism for

TIBCO ActiveMatrix® Service Grid Java Component Development

61 | Java Component Implementations

Parameter Description
identifying the fault.
reason Provides a human readable explanation of the fault.

node A URI that identifies the SOAP node that generated the fault. Its absence
implies that the first recipient of the message generated the fault.

role A URI identifying the source of the fault within the message path.

detail Carries application-specific error information related to the Body element. It
must not be used to carry information about error information belonging to
header entries. Detailed error information belonging to header entries must
be carried within header entries.

public SOAPCode(final QName codeValue, final SOAPCode subcode)

The type of the code parameter of SOAPException. The structure of the code parameter is
hierarchical. The top-level code is a base fault and must be understood by all SOAP nodes.
Nested codeValues are application-specific, and represent further elaboration or refinement
of the base fault.

Parameter Description
codeValue The Qname that identifies the code for the fault.
subcode An optional subcode. Each child subcode element has a mandatory codeValue

and an optional subcode subelement to support application-specific codes.

public SOAPDetail(final Class<T> detailType, final T
detail)

The type of the detail parameter of SOAPException.

TIBCO ActiveMatrix® Service Grid Java Component Development

62 | Java Component Implementations

Parameter Description

detailType Type of the detail data provided to the exception.

detail Detail data provided to the exception. For example: SOAPDetail<Element>
soapDetail = new SOAPDetail<Element>(Element.class,
(Element)domNode) ;

Context Parameters

A context parameter is a key-value pair passed to a service operation invocation. The values
are populated by bindings, which map transport and binding headers to context
parameters. Context parameters allow component developers to access transport and
binding metadata that could affect the execution of an operation but which is not passed
in the input, output, and fault messages defined by an abstract WSDL file.

A service may be supported on multiple types of transport bindings; each binding protocol
specifies its own headers. For example, HTTP supports a body and headers that specify
metadata that can be mapped to context parameters. The SOAP similarly defines a body
and headers that are different than HTTP headers. The JMS protocol defines headers and
allows developers to define application-specific properties. Typically, a client invoking a
service sets some headers. For example, browsers usually set the HTTP Locale and Referrer
headers.

Component implementations can read and set the values of context parameters and the
values can be used to control service operation logic. The operation behavior thus changes
according to the metadata. For example, consider a service that pays the agent that
referred a customer to a website. To track the referrer on a SOAP/HTTP binding, you would
specify a mapping from the HTTP Referrer header to a context parameter. If the service has
a JMS binding, you would specify a mapping from a JMS message property named
referencedBy to the same context parameter. When the incoming message is SOAP/HTTP,
the HTTP Referrer header is copied into the context parameter and when a JMS message
arrives, the referencedBy property is copied into the context parameter. The following
table lists the header sources for each binding type.

TIBCO ActiveMatrix® Service Grid Java Component Development

63 | Java Component Implementations

Header Source

Binding Type Header Source

SOAP/HTTP HTTP Transport Header, HTTP Context, TCP Context, SOAP Header, SOAP

Fault
SOAP/JMS JMS Header, JMS Application Properties, SOAP Fault, SOAP Header
JMS JMS Header, JMS Application Properties

o Note: In the TIBCO ActiveMatrix platform, the context parameter key
com.tibco.security.userinformation is used to communicate security
context. It can be retrieved by a component from requestContext. However,
when invoking a reference this context parameter may be overwritten by a
policy agent before the SOAP binding maps it to a HTTP Transport Header or
JMS application property. Therefore, you cannot set this context parameter in a
component before invoking a reference.

The following sections list the headers available in each header source. The tables in each
section list which headers are available in service or reference bindings.

e From: XXX Binding To: Context applies to inbound messages received on either a
service ("in" part of "in-out" MEP) or a reference ("out|fault" part of "in-out" MEP)

» From: Context To: XXX Binding applies to outbound messages sent from either a
service ("out|fault" part of "in-out" MEP) or a reference ("in" part of "in-out" MEP)

HTTP Context

From: SOAP/HTTP Binding (WS-A = OFF) To: Context
Service HTTP-Method, HTTP-FileSpec, HTTP-Version

Reference HTTP-Status-Code, HTTP-Status-Message

TIBCO ActiveMatrix® Service Grid Java Component Development

64 | Java Component Implementations

From: SOAP/HTTP Binding (WS-A = ON) To: Context
Service HTTP-Method, HTTP-FileSpec, HTTP-Version
Reference None

TCP Context

From: SOAP/HTTP To: Context

Binding

Service Local-TCP-Host, Local-TCP-Port, Remote-TCP-Host, Remote-TCP-
Port

Reference None

SOAP Fault

From: SOAP Binding (For Declared Faults) To: Context

Service None

Reference Role, Code

From: Context To: SOAP Binding (For Declared Faults)

Service Role, Code

Reference None

TIBCO ActiveMatrix® Service Grid Java Component Development

65 | Java Component Implementations

JMS Header

From: SOAP/JMS Binding To: Context

Service JMSCorrelationlID, JMSDeliveryMode, JMSMessagelD, JMSType
Reference None

From: Context To: SOAP/JMS Binding

Service None

Reference JMSCorrelationlID, JMSDeliveryMode, JMSType

For information on how to create context parameters, see Composite Development.

The first time you add a context parameter to a service or reference wired to a Spring
component, an error badge is added to the Spring component and the error is reported in
the Problems view. When you resolve the error by updating the implementation, the
following is added to the abstract component implementation:

import org.osoa.sca.annotations.Context;

import
com.tibco.amf.platform.runtime.extension.context.ComponentContext;
[**
* Use this property to access the context parameters.
* Context parameters for this component are:
* parameterName . DIRECTION
*/
@Context

public ComponentContext componentContext;

For each successive parameter, no error badge is added to the component. To update the
list of context parameters in the comment, update the component implementation.

Methods defined on ComponentContext allow you to retrieve and set a RequestContext,
which in turn has methods for retrieving and setting the context parameters.

TIBCO ActiveMatrix® Service Grid Java Component Development

66 | Java Component Implementations

Working with Context Parameters

You can retrieve a context parameter from a request or from a response, and set a context
parameter in a request or a response.

Retrieving a Context Parameter from a Request

Procedure
1. Retrieve the request context:

import
com.tibco.amf.platform.runtime.extension.context.RequestContext;

RequestContext requestContext =

(RequestContext)componentContext.getRequestContext();

2. Retrieve the parameter from the request context:

requestContext.getParameter (parameterName, Type.class);

where Type can take the values String, Integer, Long, Boolean, Map, QName, and URI.

Setting a Context Parameter in a Request

Procedure
1. Create a mutable request context:

import

com.tibco.amf.platform.runtime.extension.context.MutableRequestCont

ext;
MutableRequestContext mutableRequestContext = componentContext.

createMutableRequestContext();

2. Set a parameter on the mutable request context:

mutableRequestContext.setParameter (parameterName,

TIBCO ActiveMatrix® Service Grid Java Component Development

67 | Java Component Implementations

Type.class,parameterValue);

3. Set the request context on the component's context to the mutable request context:

componentContext.setRequestContext(mutableRequestContext) ;

4. Invoke a reference.

o Note: The componentContext.getRequestContext() function returns the
request context that corresponds to the last remotable service invocation
whereas componentContext.setContext() assigns the context that gets
used for the next downstream service invocation. For example, in the
following case, curCtx does not equal to newCtx but equals to oldCtx.

RequestContext oldCtx =
(RequestContext)componentContext.getRequestContext();
MutableRequestContext newCtx =
componentContext.createMutableRequestContext();
componentContext.setRequestContext (newCtx) ;
RequestContext curCtx =
(RequestContext)componentContext.getRequestContext();

Retrieving a Context Parameter from a Response
Procedure
1. Retrieve a callback context from the mutable request context:
import
com.tibco.amf.platform.runtime.extension.context.CallbackContext;

CallbackContext callbackContext
=mutableRequestContext.getCallbackContext();

2. Retrieve a parameter from the callback context:

callbackContext.getParameter (parameterName, Type.class);

TIBCO ActiveMatrix® Service Grid Java Component Development

68 | Java Component Implementations

Setting a Context Parameter in a Response

Procedure
1. Retrieve a mutable callback context from the original request context:

import
com.tibco.amf.platform.runtime.extension.context.MutableCallbackCon

text;
MutableCallbackContext mutableCallbackContext =
(MutableCallbackContext)requestContext.getCallbackContext()

2. Set a parameter on the mutable callback context:

mutableCallbackContext.setParameter (parameterName,
Type.class, parameterValue);

Distributed File System Example

A distributed file system component manages files based on the host address of the
machine on which the file was created. The address is tracked in a context parameter
named httpHost:

Name D pesations Directian Type Drefinition
httpH cest prepareFragmentediaite, write Irpust Basic shing

The file system component is invoked by SOAP clients through a service with a SOAP
binding and by a web application component.

* If a request comes through the SOAP binding, the context parameter is mapped to
the TCP remote host header by the SOAP binding:

S0AP Binding Context Parameter M.

" Contest Parametsr Diection Header Souce Heades Mame:
hittpH ot INFUT TCP remateHast

 If the request originates from the web application, the parameter value is retrieved
from the HTTP request and manually set by the servlet implementing the web
application component:

TIBCO ActiveMatrix® Service Grid Java Component Development

69 | Java Component Implementations

String host = req.getRemoteHost();

MutableRequestContext mutableRequestContext =
componentContext.createMutableRequestContext();
mutableRequestContext.setParameter ("httpHost", String.class, host);
componentContext.setRequestContext(mutableRequestContext) ;

The file system component retrieves the value of the context parameter as follows:

RequestContext requestContext = componentContext.getRequestContext();
String host requestContext.getParameter ("httpHost", String.class);

Dynamic Binding Example

Application logic can depend on the value of the application and service name. In
particular, the application logic may be used to dynamically determine the target of a
reference invocation (also referred to as wire by implementation) in a mediation flow. The
following example illustrates how to retrieve the application and service name in a Spring
component that invokes a mediation component service, and set context parameters with
that data:

String appName = componentContext.getApplicationName();

String svcname componentContext.getRequestContext().getServiceName();

MutableRequestContext mutableRequestContext

=componentContext.createMutableRequestContext();

mutableRequestContext.setParameter ("ServiceName",

java.lang.String.class,svcname);

mutableRequestContext.setParameter ("ApplicationName",
java.lang.String.class, appName);

componentContext.setRequestContext (mutableRequestContext) ;

The context parameters are then mapped in the mediation flow's Set Dynamic Reference
task property sheet as follows:

=% Set Dynamic Reference

General Mediation Operation Context Target Operation Contest
Input Diata Source | Functions Constants #Path Expression
= -$_= $MediztionFlowProperties = 53 Task Input
i Bl propeties ~— 1= B ApplicationNameService am
=-§= $MessageContext ABL ApplicationMame 3 Context/ns:M geContert/nsp AngdpplicationMame

| B Bl MessageContext ABL ServiceMame wad MCN ame|$h essageContext./ns: M Context/r: sers/ng: Servicel ame]
! == parameters?
ABL ServiceMame?

~ABE ApplicabonMame?

TIBCO ActiveMatrix® Service Grid Java Component Development

70 | Java Component Implementations

Endpoint References

If WS-Addressing is enabled on a SOAP binding, endpoint references are accessible from
within Spring component implementations. For information on enabling WS-Addressing
and endpoint references, see WS-Addressing in Composite Development.

Retrieving an Endpoint Reference

Before you begin

Enable the SOAP binding that delivers the message to the Spring component for WS-
Addressing to use reference parameters.

Procedure

1. Import context, endpoint reference, request context, wildcard extension, and URI

class definitions:

import

com.tibco.amf.platform.

import

com.tibco.amf.platform.

import

com.tibco.amf.platform.

import

com.tibco.amf.platform.

import java.net.URI;

runtime.extension.

runtime.extension.

runtime.extension.

runtime.extension.

2. Declare the component context:

@Context

public ComponentContext componentContext;

3. Retrieve the request context:

RequestContext requestContext =
(RequestContext)componentContext.getRequestContext();

4. Retrieve the endpoint reference:

context.ComponentContext;
context.EndpointReference;
context.RequestContext;

context.WildCardExtension;

TIBCO ActiveMatrix® Service Grid Java Component Development

71 | Java Component Implementations

EndpointReference<Element> endpointReference =
requestContext.getEndpointReference(Element.class);

5. Optionally retrieve the URI and reference parameters from the endpoint reference:

URI uri = endpointReference.getAddress().getURI();
WildCardExtension<Element> refElements =
endpointReference.getReferenceParameters();

Creating an Endpoint Reference

Before you begin

Enable the SOAP binding that delivers the message to the Spring component for WS-
Addressing to use reference parameters.

You must set an endpoint reference object before invoking a reference that is dynamically
wired to a service.

Procedure
1. Import context, endpoint reference, and URI class definitions:

import org.osoa.sca.annotations.Context;

import
com.tibco.amf.platform.runtime.extension.context.ComponentContext;
import
com.tibco.amf.platform.runtime.extension.context.EndpointReference;
import
com.tibco.amf.platform.runtime.extension.context.MutableRequestCont
ext;

import
com.tibco.amf.platform.runtime.extension.support.ElementEndpointRef
erence;

import
com.tibco.amf.platform.runtime.extension.support.ElementWildcardExt
ension;

2. Declare the component context:

TIBCO ActiveMatrix® Service Grid Java Component Development

72 | Java Component Implementations

@Context
public ComponentContext context;

3. Create an endpoint reference:

EndpointReference<Element> epr = new ElementEndpointReference
(targetURI);

4. Optionally create and set a list of parameters. For example:

String propertyl= "<propertyl " + "xmlns=\"" + WSQName +

"\">valuel</propertyl>";

String property2= "<property2 " + "xmlns=\"" + WSQName +

"\">value2</property2>";

List<Element> elements = Arrays.aslList(
DOMUtils.getDOMNode (propertyl) .getDocumentElement(),
DOMUtils.getDOMNode (property2) .getDocumentElement());
ElementWildcardExtension refParams = new

ElementWildcardExtension(null, elements);
epr.setReferenceParameters(refParams);

5. Create a mutable request context object:

MutableRequestContext mctxt =
(MutableRequestContext)context.createMutableRequestContext();

6. Set the endpoint reference of the mutable context object:

mctxt.setEndpointReference(epr);

7. Set the request context of the component context to the mutable request context:

context.setRequestContext(mctxt) ;

import org.osoa.sca.annotations.Context;

import
com.tibco.amf.platform.runtime.extension.context.ComponentContext;
import
com.tibco.amf.platform.runtime.extension.context.EndpointReference;
import
com.tibco.amf.platform.runtime.extension.context.MutableRequestContext;

TIBCO ActiveMatrix® Service Grid Java Component Development

73 | Java Component Implementations

import
com.tibco.amf.platform.runtime.extension.support.ElementEndpointReferenc
€,
import
com.tibco.amf.platform.runtime.extension.support.ElementWildcardExtensio
n;
import java.net.URI;
import java.util.List;
import java.util.Arrays;
@Context
public ComponentContext context;
public static final String WSQName = "com.ws.base";
private void setEPR(URI targetURI) {

EndpointReference<Element> epr = new ElementEndpointReference
(targetURI);

String propertyl= "<propertyl " + "xmlns=\"" + WSQName +
"\">valuel</propertyl>";

String property2= "<property2 " + "xmlns=\"" + WSQName +
"\">value2</property2>";

List<Element> elements = Arrays.aslList(
DOMUtils.getDOMNode (propertyl) .getDocumentElement (),
DOMUtils.getDOMNode (property2) .getDocumentElement());

ElementWildcardExtension refParams = new ElementWildcardExtension

(null, elements);
epr.setReferenceParameters(refParams);

MutableRequestContext mctxt = (MutableRequestContext)
context.createMutableRequestContext();

mctxt.setEndpointReference(epr);

context.setRequestContext(mctxt);

TIBCO ActiveMatrix® Service Grid Java Component Development

74 | Custom Features

Custom Features

A feature is a software package that contains plug-ins, which in turn contain component
implementations and libraries. A feature is identified by an ID, a multi-part version, and its
dependencies on other features. There are two types of features: system and shared
library.

System features are part of a TIBCO ActiveMatrix product or contain the drivers that are
installed using TIBCO Configuration Tool. Shared library features contain component
implementations and libraries. When you create a distributed application archive
containing a composite, you can package the composite's required features in the
application archive or you can package the features as a standalone distributed application
archive.

When you upload a distributed application archive containing a composite in Administrator
you can optionally import the features contained in the archive into the Administrator
software repository. When you deploy an application, Administrator automatically
distributes the features (and any features that it depends on) to the host that manages the
nodes on which the application is distributed and installs the features on those nodes. You
can also manually install features on the other nodes managed by that host.

Version Numbers

A version number is a multicomponent number of the form major. minor. service.qualifier.
Changes in the value of each component reflect different types of changes in the versioned
object:

» major - Reflects breaking changes to the interface.

e minor - Reflects non-breaking changes in an externally visible way. Examples of
externally visible changes include binary compatible changes, significant
performance changes, major code rework, and so on.

* service - Reflects changes that are not visible in the interface. For example, a bug has
been fixed in the code, documentation has changed, compiler settings have changed,
and so on.

 qualifier - Identifies when and where the object was built or packaged.
When you create an object in TIBCO Business Studio, the version is set to "1.0.0.qualifier".

TIBCO ActiveMatrix® Service Grid Java Component Development

75 | Custom Features

If the qualifier component of a version is set to "qualifier" when you create a DAA, TIBCO
Business Studio replaces "qualifier" with a generated qualifier that defaults to a
timestamp. You can customize the format of the generated qualifier by specifying a
qualifier replacement.

Version Ranges

Some fields require you to specify a version range. For example, a feature may have a
dependency on a range of versions of another feature. A version range is an interval
specified as: bracketlower limit, upper limitbracket, where bracket can be “[” or “]”, which
denotes an inclusive end of the range or “(” or “)”, which denotes an exclusive end of the
range. If one end of the range is to be included and the other excluded, the range can
contain a square bracket with a round bracket.

There are three common use cases:

e A strict version range, such as [1.0.0,1.0.0], denotes version 1.0.0 and only that
version.

* A half-open range, such as [1.0.0,2.0.0),which has an inclusive lower limit and an
exclusive upper limit, denotes version 1.0.0 and any later version, up to, but not
including, version 2.0.0.

e An unbounded open range expressed as a single number such as 2.0.0, which is
equivalent to the range [2.0.0, infinity), denotes version 2.0.0 and any later version.

A custom feature named compositeName.customfeature.id containing the component
implementation plug-in is created automatically when you generate a component
implementation. The custom feature file is stored in the Deployment Artifacts folder of
the SOA project.

Bundles and Plug-in Projects

A bundle is an OSGI mechanism for grouping Java classes into a modular, sharable unit. In
TIBCO Business Studio, a plug-in project implements a bundle.

Plug-in properties, including the packages it exports and the objects on which it depends,
are described in the plug-in manifest. The manifest file is located in plug-
inFolderNameMETA-IF/MANIFEST.MF. The default editor for the file is a manifest editor
which displays OSGi headers in property sheets and in the MANIFEST.MF source view. The
following table summarizes the best practices you should follow when configuring plug-ins.

TIBCO ActiveMatrix® Service Grid Java Component Development

76 | Custom Features

Plug-in Project Best Practices

Property

Unique
Identifier

Version

Display Name

Dependencies

Manifest
Editor Ul

Overview > ID

Overview >
Version

Overview >
Name

Dependencies
>

Imported
Packages

Required Plug-
ins

0SGi Header
in Source
View

Bundle-
SymbolicName

Bundle-
Version

Bundle-Name

Import-
Package

Require-
Bundle

Best Practice

Give the plug-in a symbolic name that
follows Java package name
conventions. That is,
com.companyName.plug-inName.

Follow the recommendations in
Versions.

Give the plug-in an appropriate,
descriptive display name.

e Express dependencies based on
the contents of the plug-in:

° For plug-ins that you create
or if you want tight control
of the dependency, specify
the dependency as a
required bundle. You can
(but are not required to)
indicate a perfect match to
a specific plug-in and build.
For example, when TIBCO
Business Studio generates a
component
implementation, the
component's dependency
on the plug-in containing
the component
implementation is
expressed as
[1.0.0.qualifier,1.0.0.qualifie

r].
° For third-party plug-ins,

TIBCO ActiveMatrix® Service Grid Java Component Development

77 | Custom Features

Property Manifest OSGi Header Best Practice
Editor Ul in Source
View

specify the dependency as
an imported package. To
allow packages to be
upgraded without requiring
plug-ins dependent on
those packages to be
upgraded, specify package
dependency ranges of the
form [x.y.z,x+1.0.0). That is,
up to, but not including the
next major version. For
example, [2.3.0, 3.0.0).

¢ Minimize or eliminate optional

imports.
Exported Runtime > Export- e Export only those packages
Packages Exported Package imported by other plug-ins.
Packages

¢ Put classes that are not exported
in packages that are not exported.

e Specify versions of all exported
packages.

e Import all exported packages,
with a range floor of the exported
package version, and a range
ceiling of the next major version
exclusive, per the range definition
above.

¢ |f the classes in the exported
packages use other classes (for
example, they extend classes from
another package or the classes
appear in method signatures) add
the uses directive to the export
package definition.

TIBCO ActiveMatrix® Service Grid Java Component Development

78 | Custom Features

Configuring Dependencies on External Java Classes

Java and Spring component implementations can use Java classes contained in a library
plug-in project in the same workspace as the component implementation. You must
configure the dependency in both the component implementation and component.

Procedure
1. Expand the META-INF directory of plug-in project containing the component
implementation.

2. Double-click MANIFEST.MF.

The manifest opens in the manifest editor.
3. Click the Dependencies tab.

4. Follow the appropriate procedure based on the dependency type.

Dependency Procedure
Type
Plug-in a. Click Add to the right of the Required Plug-ins table.

b. Select the plug-in containing the referenced class.
c. Click OK.

For example, if you reference a temperature conversion plug-in
in a Spring component implementation, add
tempconversion.jv as a required plug-in:

TITITITRE
Py H

aaaaaa

%) Dependency Analysis

Package a. Click Add to the right of the Imported Packages table.

TIBCO ActiveMatrix® Service Grid Java Component Development

79 | Custom Features

Dependency Procedure
Type

b. Click the referenced package.
c. Click OK.

For example, if you reference a logging class in a Spring
component implementation, add org.s1f4j as an imported
package:

% Dependencies DR 0]

Required Plug ins 13, | imported Packages
Specify the lst of plug-ins required for the operation of this plug-in.

Fressssag |

5. If the library plug-in is packaged and deployed separately from the component
implementation:

a. Open the composite.

b. Click the Spring component.

c. In the Properties view, click the Implementation tab.

d. Clear the Package Implementation Bundle with Application and Compute
Feature Dependencies checkboxes.
The Features Dependencies table displays.

e. In the Feature Dependencies table, click the feature that contains the library
plug-in.

f. Relax value of the version as described in External Library Dependencies.

Versions

A version is a property that controls how an object is treated at installation or deployment.
Versions are specified in TIBCO Business Studio and cannot be modified in Administrator.

TIBCO ActiveMatrix® Service Grid Java Component Development

80 | Custom Features

The following objects have versions:
e Composites and application templates.

e Components - During application upgrade, Administrator compares component
versions to determine whether the component needs to be upgraded.

e Features
e Plug-ins

» Packages

Version Numbers

A version number is a multicomponent number of the form major. minor. service.qualifier.
Changes in the value of each component reflect different types of changes in the versioned
object:

» major - Reflects breaking changes to the interface.

e minor - Reflects non-breaking changes in an externally visible way. Examples of
externally visible changes include binary compatible changes, significant
performance changes, major code rework, and so on.

* service - Reflects changes that are not visible in the interface. For example, a bug has
been fixed in the code, documentation has changed, compiler settings have changed,
and so on.

 qualifier - Identifies when and where the object was built or packaged.
When you create an object in TIBCO Business Studio, the version is set to "1.0.0.qualifier".
If the qualifier component of a version is set to "qualifier" when you create a DAA, TIBCO
Business Studio replaces "qualifier" with a generated qualifier that defaults to a
timestamp. You can customize the format of the generated qualifier by specifying a
qualifier replacement.

Version Ranges

Some fields require you to specify a version range. For example, a feature may have a
dependency on a range of versions of another feature. A version range is an interval
specified as: bracketlower limit, upper limitbracket, where bracket can be “[” or “]”, which
denotes an inclusive end of the range or “(” or “)”, which denotes an exclusive end of the
range. If one end of the range is to be included and the other excluded, the range can
contain a square bracket with a round bracket.

TIBCO ActiveMatrix® Service Grid Java Component Development

81 | Custom Features

There are three common use cases:

e A strict version range, such as [1.0.0,1.0.0], denotes version 1.0.0 and only that
version.

* A half-open range, such as [1.0.0,2.0.0),which has an inclusive lower limit and an
exclusive upper limit, denotes version 1.0.0 and any later version, up to, but not
including, version 2.0.0.

e An unbounded open range expressed as a single number such as 2.0.0, which is
equivalent to the range [2.0.0, infinity), denotes version 2.0.0 and any later version.

TIBCO ActiveMatrix® Service Grid Java Component Development

82 | Converting Migrated Java Component Implementations

Converting Migrated Java Component
Implementations

To regenerate a Java component implementation that has been migrated from 2.x to 3.x,
you must manually convert the implementation to the 3.x structure.

In TIBCO ActiveMatrix 2.x, Java component implementations are generated into a single
class. In TIBCO ActiveMatrix 3.x, Java component implementations are generated into two
classes: an abstract class and a concrete class.

e The abstract class contains all the service method declarations, references, and
properties and their respective accessor methods.

» The concrete class contains stubs of the service methods, which you complete with
business logic.

When you regenerate a 3.x Java component implementation (for example, after adding a
property or service), only the abstract class is overwritten unless you specify that the
concrete class should be overwritten by selecting the Overwrite Concrete Class checkbox.

When a Java component implementation is migrated from 2.x to 3.x, the 2.x class is not
converted to the 3.x structure. If you want to be able to regenerate a Java component
implementation that has been migrated from 2.x to 3.x, you must manually convert the
implementation to the 3.x structure following the procedures in this section.

Creating an Abstract Class

You can create an abstract class in the Project Explorer view.

Procedure
1. In the Project Explorer view, copy the component implementation class and add the
prefix Abstract to the class name of the copy. For example, if the component class is
named ClassName, then rename the copy to AbstractClassName.

2. Edit the abstract component implementation class AbstractClassName.

TIBCO ActiveMatrix® Service Grid Java Component Development

83 | Converting Migrated Java Component Implementations

h.

. Delete the service method implementations and the life cycle methods (@Init

and @Destroy).

Errors are displayed.
Add the abstract declaration to AbstractClassName.

Add the abstract declaration to each service method.

. Set the access level of properties (eProperty) and references (@Reference) to

private.

Add the javadoc annotation @Generated TEMPLOO3 at the class level:

[**
* @Generated TEMPLOO3
*/

public abstract class AbstractClassName
Move custom user members and methods from AbstractClassName to
ClassName.

If any of the import statements displays a warning icon , left-click the icon
and click Organize imports: in the pop-up that displays.

4 * Remove unused import
@ Organize imports L})ﬂ
@ Add @SuppressWarhnings ‘unused’ to 'AbstractComponent’

Save the abstract class.

3. Edit the component implementation class ClassName.

a.

ClassName implements one or more port types. Replace all the implements
declarations with extends AbstractClassName.

Remove all reference and property declarations and all accessor methods from
the component implementation class.

Edit method implementations to use accessor methods for property and
reference objects.

. If any of the import statements displays a warning icon , left-click the icon

and click Organize imports: in the pop-up that displays.

TIBCO ActiveMatrix® Service Grid Java Component Development

84 | Converting Migrated Java Component Implementations

4 * Remove unused import
@ Organize imports L})ﬂ
@ Add @SuppressWarhings 'unused’ to 'AbstractComponent’

e. Save the concrete class.

Before Concrete Class

public class Foo implements Calculator, AreaService {

input)

input)

input)

public CalculatorQutputDocument add(CalculatorInputDocument

{

return CalculatorOutputDocument.Factory.newInstance();

}

public CalculatorOutputDocument divide(CalculatorInputDocument

{

return CalculatorOutputDocument.Factory.newInstance();

}

public CalculatorOutputDocument multiply(CalculatorInputDocument

{

return CalculatorOutputDocument.Factory.newInstance();

}

public CalculatorOutputDocument substract

(CalculatorInputDocument input)

{

return CalculatorOutputDocument.Factory.newInstance();
+
@Reference

Phonebook Referencel;

public Phonebook getReferencel()
{

return Referencel;

}

TIBCO ActiveMatrix® Service Grid Java Component Development

85 | Converting Migrated Java Component Implementations

public void setReferencel(Phonebook Referencel)

{

this.Referencel = Referencel;
}
@Reference

AreaService Reference2;

public AreaService getReference2()

{
return Reference2;
}
public void setReference2(AreaService Reference2)
{
this.Reference2 = Reference2;
}
public AreaDocument calculateRectArea(ParametersDocument
parameters)
{
return AreaDocument.Factory.newInstance();
}
@Property

String MyPropertyl;

public String getMyPropertyl()

{
return MyPropertyl;
}
public void setMyPropertyl(String MyPropertyl)
{
this.MyPropertyl = MyPropertyl;
}
@Property

String MyProperty2;

public String getMyProperty2()

{
return MyProperty2;

}

TIBCO ActiveMatrix® Service Grid Java Component Development

86 | Converting Migrated Java Component Implementations

public void setMyProperty2(String MyProperty2)
{

this.MyProperty2 = MyProperty2;
}

After Abstract Class

[**
* @Generated TEMPLOO3
*/

public abstract class AbstractFoo implements Calculator, AreaService

{
@Reference
private Phonebook Referencel;

public Phonebook getReferencel()

{ return Referencel;

;ublic void setReferencel(Phonebook Referencel)
' this.Referencel = Referencel;

}

@Reference

private AreaService Reference2;

public AreaService getReference2()

' return Reference2;

iublic void setReference2(AreaService Reference2)
' this.Reference2 = Reference2;

}

@Property

private String MyPropertyl;

public String getMyPropertyl()

{
return MyPropertyl;
}
public void setMyPropertyl(String MyPropertyl)
{

TIBCO ActiveMatrix® Service Grid Java Component Development

87 | Converting Migrated Java Component Implementations

this.MyPropertyl = MyPropertyl;
}

@Property
private String MyProperty2;

public String getMyProperty2()

{
return MyProperty2;
}
public void setMyProperty2(String MyProperty2)
{
this.MyProperty2 = MyProperty2;
}

public abstract CalculatorOutputDocument add
(CalculatorInputDocument dinput);

public abstract CalculatorOutputDocument divide
(CalculatorInputDocument input);

public abstract CalculatorOutputDocument multiply
(CalculatorInputDocument input);

public abstract CalculatorOutputDocument substract
(CalculatorInputbDocument tinput);

public abstract AreaDocument calculateRectArea
(ParametersDocument parameters);

}

After Concrete Class

public class Foo extends AbstractFoo

{
public CalculatorOutputDocument add(CalculatorInputDocument
input)
{
return CalculatorOutputDocument.Factory.newInstance();
}
public CalculatorOutputDocument divide(CalculatorInputDocument
input)
{
return CalculatorOutputDocument.Factory.newInstance();
}

TIBCO ActiveMatrix® Service Grid Java Component Development

88 | Converting Migrated Java Component Implementations

public CalculatorOutputDocument multiply(CalculatorInputDocument
input)
{

return CalculatorOutputDocument.Factory.newInstance();

}

public CalculatorQOutputDocument substract
(CalculatorInputDocument +dinput)

{
return CalculatorOutputDocument.Factory.newInstance();
}
public AreaDocument calculateRectArea(ParametersDocument
parameters)
{
return AreaDocument.Factory.newInstance();
}
}

Editing a Manifest

You can edit a manifest from the Project Explorer.

Procedure
1. In the Project Explorer view, double-click the META-INF/MANIFEST.MF file of the Java
component implementation's plug-in project.

The manifest file opens in the manifest editor.
2. Click the Runtime tab.
3. In the Exported Packages pane, select all the packages and click Remove.

4. Click Add.
The Exported Packages dialog displays.

5. In the Exported Packages dialog, click the package containing the component
implementation's classes and click OK.

The package is added to the Exported Packages list.

TIBCO ActiveMatrix® Service Grid Java Component Development

89 | Converting Migrated Java Component Implementations

o

Click Properties.

7. In the Version field, set the version to the same value as that of the Java component
implementation plug-in, without the literal "qualifier" component.

8. Click the MANIFEST.MF tab. If there is a Bundle-Localization attribute, click the Build
tab and ensure that the plugin.properties checkbox is selected.

9. Save the manifest file.

Regenerating a Component Implementation

You can regenerate a component implementation from the Project Explorer.

Procedure
1. In the Project Explorer view, double-click the composite containing the Java
component to regenerate.

2. Right-click the Java component and select Regenerate Java Component.

* If a dialog displays with the message "The Java file corresponding to this
component was not generated by studio and 1is not supported.
Proceeding with code generation will overwrite this Java class. Do

you want to continue?", click No. Ensure that the abstract class has a
javadoc comment containing the tag @Generated TEMPL003.

 If a dialog displays with the message "There are multiple elements with
the same QName (namespace + name combination) in the WSDL files or
schemas referenced by the component. This will result in duplicated

classes, an invalid Java project, and an out-of-sync component.",
click Continue.

Removing 2.x Data Binding JAR Files

You can remove 2.x data binding JAR files from the Project Explorer.

Before you begin
Identify the JARs generated for the 2.x project. New JARs contain a hash number in the
name (for example, AreaService-b58a5fc-service-beans.jar), so JARs that don't have it were

TIBCO ActiveMatrix® Service Grid Java Component Development

90 | Converting Migrated Java Component Implementations

generated by a 2.x product.

Procedure
1. In the Project Explorer view, right-click the Java component implementation project
and select Properties.
2. Click the Libraries tab.
3. Select the 2.x JAR files and click Remove.
4. Click OK.
5. In the Project Explorer view, expand the 1ib folder in the Java component
implementation project.
6. Select the 2.x JAR files, then right-click and select Delete.
A confirmation dialog displays.
7. Click OK.
8. In the Project Explorer view, double-click the META-INF/MANIFEST.MF file of the Java
component implementation's plug-in project.
9. Click the Runtime tab.
10. In the Classpath pane, select the deleted JARs and click Remove.
11. Save the manifest file.

Correcting Custom Feature File

You can correct custom feature files from the Project Explorer.

Procedure

1.

In the Project Explorer view, expand the Deployment Artifacts folder in the SOA
project and double-click the component implementation custom feature.

The custom feature opens in a custom feature editor.

Click the Plug-ins tab. If the Java component implementation plug-in is listed more
than once, delete the plug-in duplicates. Ensure that the version of the plug-in
contained in the custom feature exactly matches the version of the plug-in it refers
to.

TIBCO ActiveMatrix® Service Grid Java Component Development

91 | Converting Migrated Java Component Implementations

3. Ensure the custom feature file does not appear in more than one subfolder of the
SOA project. Delete any duplicates so that each Java component implementation
plug-in is contained in only one custom feature in the workspace.

4. Save the custom feature file.

TIBCO ActiveMatrix® Service Grid Java Component Development

92 | Default XML to Java Mapping

Default XML to Java Mapping

When you generate a Spring component implementation or XML data binding classes,
TIBCO Business Studio maps WSDL and XSD schema elements to Java programming
language elements.

The following sections describe the default mappings of WSDL definitions, types,
portType, operation, message, part, and fault elements to Java.

Note: Generating implementations for two or more components in the same
Java plug-in project using different binding types is not supported.

Note: The payload for the xsd:gMonth datatype is converted incorrectly if you
use JAXB data binding.

wsdl:definitions

The wsdl:definitions element's targetNamespace attribute is mapped to a Java package.
By default, for a target namespace whose structure is: http://rootPart/subPart, the order of
the elements in the root part of the target namespace are reversed in the package name.
Subparts appearing after the root part separated by slashes are appended to the root part
with a period (.).

For example, the namespace http://ns.tibco.com/StockQuote becomes the package
com.tibco.ns.stockQuote. If the first character of a namespace identifier is invalid, the
preprocessor prepends an underscore (_) in front of the identifier.

wsdl:portType

A wsdl:portType element is mapped to a Java interface. The name of the interface is the
value of the name attribute of the corresponding wsdl:portType element.

The generated interface contains Java methods that are mapped from the wsdl:operation
subelements of the wsdl:portType element. Since WSDL 1.1 does not support port type
inheritance, each generated interface contains methods for all the operations in the
corresponding port type.

TIBCO ActiveMatrix® Service Grid Java Component Development

93 | Default XML to Java Mapping

wsdl:operation

Each wsdl:operation element is mapped to a Java method in the corresponding Java
interface. The name attribute of the wsd1:operation element determines the name of the
generated method. If the wsdl:operation element contains a wsdl: fault message, the
fault is mapped to a Java exception that appears in the throws clause of the generated
method. See also wsdl:fault .

wsdl:output, wsdl:input, and wsdl:part

The name attribute of the part element of the wsdl:output message is mapped to the
return type of the generated Java method according to the XML data binding type as
follows:

e JAXB - name

e XMLBeans - nameDocument

The method for accessing components of request parameters and defining response
objects depends on the type of data binding you choose.

JAXB

The type or element attribute of the part element of the wsd1l:input message is mapped
to the type of the input parameter of the generated Java method. The name attribute of the
part element of the wsdl:input message is mapped to the name of an input parameter of
the generated Java method. You can directly access components of a request parameter as
follows:

public AddPhoneResponse addPhone(AddPhoneRequest addPhoneParameters) {

String firstName = addPhoneParameters.getFirstName() ;
String lastName = addPhoneParameters.getlLastName();
String phone = addPhoneParameters.getPhone();

To create a response object or a complex object defined in the WSDL document:

1. Import packageName.ObjectFactory, where packageName is the package name
generated from the WSDL document namespace.

2. Create an instance of ObjectFactory.

3. Create an object of type Type with the createType method.
For example:

TIBCO ActiveMatrix® Service Grid Java Component Development

94 | Default XML to Java Mapping

import com.tibco.ns.hello.phonebook.ObjectFactory;
import com.tibco.ns.hello.phonebook.GetPhoneResponse;

ObjectFactory objectFactory = new ObjectFactory();
GetPhoneResponse phoneResponse = objectFactory.createGetPhoneResponse();

try{

PhoneEntryType entry = objectFactory.createPhoneEntryType();
while(rs.next()){
entry.setEntryId(rs.getString("id"));
entry.setFirstName(rs.getString("firstName"));
entry.setLastName(rs.getString("lastName"));
entry.setPhone(rs.getString("phone"));

}
}catch(SQLException e){

}

return phoneResponse;

o Note: When implementing a JAXB-based Spring component service, users
typically form a response object in their service method, populate it with some
response data, and return it from the method. Such a returned object is then
marshalled into an XML (DOM) payload by the platform. While the platform code
is marshalling this payload, if the user code manipulates the contents of the
same object, the JAXB marshaller throws a
java.util.ConcurrentModificationException. Make sure the contents of the
response object returned from the service method are not modified by multiple
threads.

XMLBeans

There are two ways to specify the type of a message part: indirectly through an element
attribute that is defined in the wsdl:types element or directly with a type attribute. If you
use XMLBeans binding, the generated Java code depends on how you specify the types of
message parts.

When you define the types of the parts through the element, attribute classes named

ElementNameDocument, where ElementName is the input and output message type element
name with the first letter capitalized, are generated. The generated Java method accepts a
document type named ElementNameDocument. The generated method returns a document

TIBCO ActiveMatrix® Service Grid Java Component Development

95 | Default XML to Java Mapping

type similarly named according to the element that specifies the type of the output
message part.

In the following WSDL document, the types of the message parts are defined through an
element attribute:

<wsdl:definitions
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ns.tibco.com/StockQuote/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://ns.tibco.com/StockQuote/">
<wsdl:types>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://ns.tibco.com/StockQuote/">
<xs:element name="symbol" type="xs:string"/>
<xs:element name="quote" type='"xs:float"/>
</xs:schema>
</wsdl:types>
<wsdl:message name="OperationRequest">
<wsdl:part name="stockQuoteRequest" element="tns:symbol"/>
</wsdl:message>
<wsdl:message name="OperationResponse'">
<wsdl:part name="stockQuoteResponse" element="tns:quote"/>
</wsdl:message>
<wsdl:portType name="StockPT">
<wsdl:operation name="getQuote">
<wsdl:input message="tns:0OperationRequest"/>
<wsdl:output message="tns:OperationResponse'"/>
</wsdl:operation>
</wsdl:portType>
</wsdl:definitions>

The following code fragment shows the generated Java class implementation:

import com.tibco.stockQuote.SymbolDocument;
import com.tibco.stockQuote.QuoteDocument;

public class StockQuoteServiceImpl extends AbstractStockQuoteServiceImpl

{
public QuoteDocument getQuote(SymbolDocument stockQuoteRequest)

{
String sym = stockQuoteRequest.getSymbol();
float quote = quoteLookup(sym);

TIBCO ActiveMatrix® Service Grid Java Component Development

96 | Default XML to Java Mapping

QuoteDocument response = QuoteDocument.Factory.newInstance();
response.setQuote(quote);
return response;

The relationships between the message part, message part type, message type element,
and document type are:

Message Part Type Element Document Type
stockQuoteRequest xs:string tns:symbol SymbolDocument
stockQuoteResponse xs:float tns:quote QuoteDocument

The value of the request message part is retrieved from the document using bean-style
accessors. In the example, the stock symbol is retrieved from the SymbolDocument object
with the getSymbol method.

You create a response document, of type QuoteDocument, by calling the newInstance
method of the document factory class. Finally, you set the value of the response message
part by calling the setQuote method on the response document.

In the following WSDL document, the types of the message parts are specified through a
type attribute:

<wsdl:definitions
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ns.tibco.com/StockQuote/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
name="Untitled" targetNamespace="http://ns.tibco.com/StockQuote/">
<wsdl:message name="OperationRequest">
<wsdl:part name="symbol" type='"xs:string"/>
</wsdl:message>
<wsdl:message name="OperationResponse'">
<wsdl:part name="quote" type="xs:float"/>
</wsdl:message>
<wsdl:portType name="StockPT">
<wsdl:operation name="getQuote">
<wsdl:input message="tns:OperationRequest" />
<wsdl:output message="tns:OperationResponse'"/>

TIBCO ActiveMatrix® Service Grid Java Component Development

97 | Default XML to Java Mapping

</wsdl:operation>
</wsdl:portType>
</wsdl:definitions>

For this WSDL document, the generated Java code references the message parts directly,
instead of through documents. However, the types of the message parts are XMLBeans
types, which means that you must use the XMLBeans API to access the XML data bound to
Java objects and convert between XMLBeans types and native Java types in your method
implementation. To perform this conversion, you use [get|set] TypeValue methods, where
Type is the native Java type. Like the document types described earlier, you create
XMLBeans objects by calling the newInstance method of the type’s Factory class.

import org.apache.xmlbeans.XmlFloat;
import org.apache.xmlbeans.XmlString;

public class StockQuoteServiceImpl extends AbstractStockQuoteServiceImpl
{

public XmlFloat getQuote(XmlString symbol){
float quote = quotelLookup(symbol.getStringValue());
XmlFloat resp = XmlFloat.Factory.newInstance();
resp.setFloatValue(quote);
return resp;

wsdl:fault

A wsdl:fault element is mapped to a Java exception. The generated exception class
extends the class java.lang.Exception. The name of the exception is formed by
concatenating the name attribute of the wsdl:message referenced by the wsdl: fault
element with Exception. For the following WSDL fragment, the exception class would be
named GetCurrentTimeFaultMsgException.

<schema>
<element name="CurrentTimeFault" type="string"/>
</schema>
<wsdl:message name="getCurrentTimeFaultMsg">
<wsdl:part element="tns:getCurrentTimeFault" name="faultInfo"/>

TIBCO ActiveMatrix® Service Grid Java Component Development

98 | Default XML to Java Mapping

</wsdl:message>
<wsdl:portType name="DateManagerPT">
<wsdl:operation name="getCurrentTime">
<wsdl:input message="tns:OperationRequest" />
<wsdl:output message="tns:OperationResponse'"/>
<wsdl:fault message="ns0:getCurrentTimeFaultMsg" name="faultMsg"/>
</wsdl:operation>
</wsdl:portType>

XMLBeans

A fault object named faultDocument is generated, where fault is the type of the fault
message's part. For the preceding WSDL fragment, the fault object would be named
GetCurrentTimeFaultDocument.

TIBCO ActiveMatrix® Service Grid Java Component Development

99 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services

For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO ActiveMatrix® Service Grid
Product Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

e To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

e To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

TIBCO ActiveMatrix® Service Grid Java Component Development

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://support.tibco.com/
https://support.tibco.com/

100 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

TIBCO ActiveMatrix® Service Grid Java Component Development

https://ideas.tibco.com/
https://community.tibco.com/

101 | Legal and Third-Party Notices

Legal and Third-Party Notices

SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix, Business Studio, Enterprise Message Service,
and Hawk are either registered trademarks or trademarks of Cloud Software Group, Inc. in the United
States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

TIBCO ActiveMatrix® Service Grid Java Component Development

https://www.cloud.com/legal
https://scripts.sil.org/OFL

102 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2010-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO ActiveMatrix® Service Grid Java Component Development

https://www.tibco.com/patents

	Contents
	Java Components
	Creating a Java Component
	Configuring a Java Components Implementation
	Updating a Java Component
	Configuring a Java Components Custom Feature
	Upgrading a Java Component
	Component Feature Dependencies
	Java Component Reference

	Java Component Implementations
	Data Binding
	Generating XML Data Binding Classes
	Data Binding Classes for Abstract and Concrete WSDL Files
	XML Data Binding Reference

	Opening a Java Component Implementation
	Generating a Java Component Implementation
	Generate Java Component Implementation Reference
	Regenerating a Java Component Implementation
	Upgrading a Java Component Implementation
	Life Cycle Events
	Component Context
	Accessing a Property
	Accessing a Resource
	Accessing a Hibernate Resource
	Accessing a JDBC Resource
	Accessing JMS Resources
	Accessing LDAP Connections
	Accessing SMTP Connections
	Accessing a Teneo Resource

	Invoking an HTTP Request
	Post Example

	Invoking a Reference Operation
	Error Handling
	Example WSDL File
	SOAPException Reference

	Context Parameters
	Working with Context Parameters
	Retrieving a Context Parameter from a Request
	Setting a Context Parameter in a Request
	Retrieving a Context Parameter from a Response
	Setting a Context Parameter in a Response
	Distributed File System Example
	Dynamic Binding Example

	Endpoint References
	Retrieving an Endpoint Reference
	Creating an Endpoint Reference

	Custom Features
	Bundles and Plug-in Projects
	Configuring Dependencies on External Java Classes

	Versions

	Converting Migrated Java Component Implementations
	Creating an Abstract Class
	Editing a Manifest
	Regenerating a Component Implementation
	Removing 2.x Data Binding JAR Files
	Correcting Custom Feature File

	Default XML to Java Mapping
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

