TIBCO ActiveMatrix® BPM
Mediation Component Development

Software Release 4.2
August 2017

| (:l)
Two-Second Advantage® I B /‘

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws
and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO and Two-Second Advantage are either registered trademarks or trademarks of TIBCO Software
Inc. in the United States and/or other countries.

Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise
Edition (J2EE), and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT
ALL OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED
AT THE SAME TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE
VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 2010-2017 TIBCO Software Inc. All rights reserved.
TIBCO Software Inc. Confidential Information

TIBCO ActiveMatrix® BPM Mediation Component Development

Contents
I UIES . oo e e 8
TIBCO Documentation and SUPPOIt SEIVICES .. v vttt ttt et iteiie e eeereesenseneensenesaesossaananns 9
INtroduction tO Medialion . ..o v vttt it it ittt ettt ittt tine i iasectneecnnesennasennasns 11
MEAIBLION FIOWS ettt ettt ettt et e e e e e e e ettt e e 12
MesSage EXChaNge Patternsttt et e et e et et e e e e e e e e 13
Mediation FIOW INTEITACESot e e ettt e e e e e e e e 13
Planning Target and Mediation INTEITaCESottt e e e e e e ettt ettt e e eeneaneas 14
Paths ina Mediation FIOW e e e 15
1 1=T0 = 14T o T =] 16
/1Yo [F= Lo I (o =3 T [17
Designing Mediation FIOWSttt et et e ettt e e ettt et e et et e e e 18
Working with Mediation FIOWSttt i it it ittt iat et tat e ennesanneeannns 20
Starting the Mediation FIOW WIzZardt e e et et et ettt e ettt aaeanans 20
Creating a New, Empty Mediation FIOWot e e e e e e ettt e e e e e neaenns 20
Creating New Mediation Flows from EXiSting WED SEerviCesttt e e e 21
Editing Mediation FIow Editor PreferEnCesoviti ittt e ettt ettt e e e i aiaans 24
Working with Mediation FIOW Propertiesttt ettt et et e ettt e e e e eneenns 25
Validation Of IMESSATE . . .« vttt ettt e e e e e e et e et e e e e e e e e e e 25
Adding a Mediation FloW PrOperty . ..ottt e e et e e e e ettt et et et e ettt 25
Deleting a Mediation FIOW PrOpertyttt e et et ettt e et e e e e e i eaeaenns 26
WOTKING WIth INTEITACES . . .ottt ettt e e et et e e e e e e e e e et e e e e 26
Adding Interfaces to Mediation FIOWSttt e e e e e et e e e e ittt a e 26
Deleting Interfaces from Mediation FIOWS e e e e e e ettt 27
Moving Mediation INtEITACES e e e e e e e e e 27
UsiNg the AULOMEIate FEATUIEttt et ettt et et e et e et et et et e e e e i eneanennan 27
Creating LOCal W SDL FIlESttt e e e e e e e e e ettt et et e e e e e i eieaenns 28
YU o] oo (=T N o 1o = AP 28
Working With Mediation Paths i it e e et e e ettt ettt e e e e i eieaaas 28
Changing Mediation Paths e e e e et e e e ettt e 29
Deleting Mediation Paths e e e e e e 29
Working with Message ContEXt PrOPEITIESttt ettt ettt et et e e ettt a e eneaneanens 29
CONEXE ParameLerSottt e e e 30
Mediation CoNteXt ParamMetersttt ettt e e et e et et 30
Undeclared Fault HEAUEISot e e ettt et 32
Context Parameters in Mediation COMPONENTSttt ettt et e e e et a et e e e aeeaeenns 32
Adding CoNteXt ParamMetersttt ettt e e e et e e e e e e e 32

TIBCO ActiveMatrix® BPM Mediation Component Development

Deleting CONtEXt PAraMEtErSttt ettt ettt et ettt et e e e et e e e et a e aeaenens 33

Defining the Scope of CoNtext Parametersttt e ettt eaeaen 33
Working with EXChange Variables e e e e ettt e e ettt 34
Defining Exchange Variables e e e 34

Setting Exchange Variable e 35
Creating SimMPle SCREMASottt e et e et e et e e e et et e e e 36
WOPKING WIth TASKS . . . ettt ettt e et ettt e ettt 37
Adding a Task to @ Patho e 37
Deleting a Task From a Path i e e e e et ettt et e e et e 38
Mediation COMPONENTSttt ettt ettt e et et e e et et e e e et e e et e e e et et et e e e et e e e a et eenen 38
INVOKING @N OPEIatiON . v vttt ittt ettt ittt ettt teeeaeeneeaasaesnnseesansoeesassnesaasaasansanns 39
Configuring INVOKE OPEration TasSKSttt ittt ettt et et ettt et et e e et et ieaeaneanannenns 39
Logging Mediation Exchange INformation iurintintint ittt it ieeeeeeeaeneeneenaeneennanns 41
Mediation ApPeNnders @nd LOGUELSttt ettt e et ettt et e ettt e e e e e e e e e e e 41

(@])10 18131 aTo = 8 o T RN =T G 42
Routing Messages in a Mediation FIOWttt ittt it ittt ittt et tneeneeneenesnnennennenns 44
Paths and ROULE TASKSttt ettt ettt et ettt e e e et e e e e e e et 45
DefiNiNg @ ROULEttt e e e e e e e e e e e 46

Yo (o T aTo I 2 {10 1 g To T O T - 47
Specifying Case Targets in the Decision Table e a7
MOdIfyiNg Cas@ NAIMESttt ettt ettt e et et e e e et 48
0o e 1Y/ TaTo T =T £ =i o T 48

MOVING CaseS IN the LISt e et e ettt e ettt e e ieaens 48

[7=1 =] 1T T = 1= PP 48

Nesting MUIIPIE ROULE TaSKSttt ittt ettt e ettt e et et e e et e e e e e aeeeanennenens 49

Adding and Deleting Variables e e e e 50
Mapping Data to Variables e e e 51
Lo 10 1] o @0 o[o AP 51
Editing Route Task CONAItIONSttt e ettt e e et e e e e e e e e eaeaees 52
Conditions for XPath ROULE TaSKSttt et 53
Changing Route Tasks to XPath ROULE TasKSvuiiniii i e e et e e e e iaenns 53
TraANSTOIMING TaSKS + vttt ittt ettt ittt et ittt et et eeeeeeeneeneeneenesassnssnssasssseeaeaneonannns 55
Example of Transformationo ettt e e e e e e 56

2 F TS (o 1V =T o o 1T PP 56
USING XPAth EQITOr . ..ottt et ettt e e e ettt et e et e e et et 57
Data Contribution to the Mediation EXChange e et 58
External Stylesheets for Data Transformationo.ui it e e e e ettt ettt et e et e e anens 58
Specifying an External Stylesheet for Data TransSformation ... et 59
SCheMA COMPONENLESttt ettt ettt e e e e e e e e e et et et e e e e e e e e et et et e e 60

TIBCO ActiveMatrix® BPM Mediation Component Development

CONtEXt PaNel s 61
MESSAGE PaNel e e 62
Data and FUNCHON Tabs e e e e e e e e 63
TIBCO XPath FUNCHONSttt ettt ettt et et e et e et e e e e e e e e aeaes 64
Creating Custom XPath FUNCHONSttt et et e e e e e e et 65
Exporting Custom XPath FUNCHONSttt ettt e e ettt et et et e e et aeaennanns 66
Deploying Custom XPath FUNCHONSttt ettt et eae e eenes 67

Testing Custom XPath FUNCHONSt e ettt e e et 67

[V/E= Vo] o= i Koo | o F= Y gl =0 1 o] o1 PP 67
Right-Click Menu in the Message Panel i e e e 68
Surrounding a Component With @ Choose Statement e e 69

L IRS] £= 1 =T 0 0T £ 70

FOr EACh STAtEMENLSttt ettt e et ettt et e e e et e e e et e e 71

Adding a Variable t0 @ MapPingottt et e e e e 71

/= U F= T 11 o 1Y F=T o1 T =S 72
Repairing INCOrreCt MapPINgS c ittt ettt ettt ettt et e e e et e e e e et et et e e et 73
Mapping an EMPty COmMPIEX TYPE ...ttt ettt et ettt et e e et et e et e et e e et e e et 73

USING XPath . .o e e e e e e e e e, 73
Transforming XML with Related TaSKSttt e e e e e et 76
Querying aDatabaseoo i i i e et et e et i e 77
| S O =T To U fod =T F=T 0] o] = =Y 77
Defining a RESOUICE TEMPIALEttt e et ettt et e et e et e e e et e e i e e e 77
Configuring @ JDBC DIIVETttt et e e et e et e e e e e e e e e e e e e e e e e 78
y=To 1S (=T To =1 = T I V=T 78
Configuration Tabs of the Query Database Task et 79

DY NAMIC REOUESES & o ittt ittt ittt ettt et taeeaeeaeseesaoeeneeneeaesaesnesossassssesassnesaannns 82
Service Providers for Dynamic COmMpPOSIte REIEIENCESttt e e ettt et ie i aiaanns 82
Configuring DYNaMIC BINAING . .. v vttt ettt et e et et ettt et et e e et e e e e et e et e 83
Configuring Dynamic Target INterfaCest e ettt e 84
Pattern Variables USagettt et ettt et et ettt et e e e e, 84
Dynamic ReferenCe Task S NGcuuinri it et e e e e ettt et e e e e e e i 85
General Tab ConfigUIationt ettt et et e e e e e e e e 87

0] 018 QRS o 1Yo o= L1 [P 88
Configuring Dynamic References in COMPOSITEttt ettt et ettt et et e e e e ieeieanans 89
Creating and Deploying Composites Used By Dynamic BiNdiNgc.uouii e eeens 89
REPIYING 10 MBS S A0S « vttt ittt ittt ettt teeeneeneeneeneeaeeaneoneeneeneenesneeneeoeesneanannns 90
Fault Processing in a Mediation FIOWttt i ittt ittt ttetneeneeneenneenaaneanaens 92
Throwing Faults in Mediation FIOWSttt e et e e e ae e 93
FaUlt Paths ... e e e 93

TIBCO ActiveMatrix® BPM Mediation Component Development

Catch Fault ConfIQUIAtIoNttt ettt ettt et e e e ettt e e e 94
Catching Faults from the Mediation FIOW e ettt 95
Sending Faults to the INVOKET e e e e e e e 96
CUSTOM Mediation TASKS « ..ttt ittt ittt ittt ittt et etnnneeseeennnnneseennnnnns 97
Migrating Custom Mediation TaSKSttt et e e e e e 97
ECliPSE PlUG-in REIEIENCE . ..ottt e e e e et ettt et e e ettt 98
YU o] o Yo o 1= P 99
Creating the Model PIUG-iNt e e ettt e e e e e e e e e 99
Creating the Ul PIUG-iN ..ottt e ettt et et et e e e ettt et et et e e e ettt 102
Creating the RUNIIME PlUG-IN e e e e e e e e ettt ettt et e e e e i eieanans 103
Writing Custom Mediation COOEttt ettt e e e e e e e e e e et 104
Accessing Task INPUI/OULPUL SCREMIAttt e e e ettt e e e ettt et e eaeeneanens 105
Modifying the Mediation TASK Dataottt ettt et e et ettt e ettt et e e e e e eieaennens 105
Defining Model AWIDULESottt e e e et e e ettt e e e e 106
Custom Mediation TasK CategOrieS v ittt ettt ettt ettt e et et et et e e e e e ettt eateateaneneaneanens 106
TRIOWN FaAUILS . .o e e e e 107
RUNIIME EXCEPLIONS . ..ottt ettt et e et e ettt e eaaeaaes 107
Installing Custom Mediation TaskSc.ui it e e 107
Deploying Custom Mediation TASKSt e 107
Testing Custom Mediation TASKSttt e ettt e e e 108
LS =T =T T 109
CatCh FaUI . ..o e 109
[0 Y 1= o T o P 109
(CT=T =T =Y LT =T o] Y/ 111
[P2 LT [T =T o 112
L[01Y0] G @] o 7T = 1o o PN 112
10 PP 113
Information for Standard LOG MESSAQESttt ettt ettt et et e et et et e et e e e e e 114
Information for CUStOM LOG MESSAGESttt ettt ettt e e e et e ettt 115
ParSe XML ..ottt e e e s 116
(@ U= V= = o - T - 118
L= 6 1= 121
ROULE TaSK . . ettt et e e e e e 122
SN FaUIt . ..o e 125
SOl GO « .ottt e 125
St DY NAMIC RE B ENCE ..ttt ettt e ettt e et ettt et et e e e e e, 126
Set EXChange Variable e e 129
TRIOW FAUIL . . oot ettt e e 130
JLLEZ U0 530 02 130

TIBCO ActiveMatrix® BPM Mediation Component Development

Validate XML . ..ottt e ettt e 132
XPAth ROULE . ..ottt e e e et e e e e et e e e e e e e 134
TIBCO AutoMediate Command-Line TOOIuu ittt ittt e iiiiaee s 137
AutoMediate Command-Line TOOI FIOW e e e 137
Running the AutoMediate Command-Ling TOOIt e e e e 138
AutoMediate Command Syntax and OPtioNSintitiit ittt et e ettt i 139
AutoMediate ANT Command SyntaxX and OPtiONSttt e e ettt e e e e eieanennens 142
Introduction to XML APPHCAtIONS ..ottt it ittt ittt ittt titeetnesennesennesonnessnnsens 143
Developing gXML APPICALIONSttt ettt e e e e e e e e et e e e e e 143
IMplementing GXAPPIICALIONttt et e e e ettt e et et e e e e e, 143
IMpPlEMENtiNg GXCALAIOQottt ettt e ettt e e e e e e e et e e e e et 145
IMpIeMENTING GXRESOIVETttt e et e et et e e e ettt 145

L =11 T T 51 147
OXMIL R CIPES . ettt ittt et e e e et e e e e e e e e e e e e e e e e 148
Parsing a Character Stream and @ Byte Streamiitii it i ittt e et e e i 148
Constructing a Data Model Tree Programmaticallyo.uiniintitii i e e e et eenenens 149

V22 [Te =] T P 156

[N P2 V7o = 1o) o P 157

Y U= o 159
SeMAlIZALION . ..ot 160

D2 = L1 2 161
65 8 164

D 1T 168
ValidALION « ..ottt e e 172

TIBCO ActiveMatrix® BPM Mediation Component Development

Figures

Mediation COMPONENES . . . oottt ettt ettt e e e e e e e 11
Mediation EXamIDIE . . o e 12
The Mediation FIOW EQitOrttt e e et ettt et et e e et e e et e e 12
Paths in a mediation flow for each message exchange patterno 15
Mediation exchange INfOrmMatioN ettt 17
An example of USING ROULE TaSKot e e e e e e e e e e e e 44
L@ UL o101 = g I (o] = T o U= 45
FaUlt path fOr @ 10U ettt ettt e 46
Yo (o [T Yo =T (o011 T o= 1 47
MappPINg ValUEs 10 Variables e e e et 51
Routing conditions for ROULE TaSK oo e e e e e e e 52
Routing with more than one Variable 53
The Input tab of a Transform tasko 55
A travel reservation mediation flow: the input path ... 56
A DaSIC MaPPING EXAMPIE . ..t e e e e 57
The XPath EAITOr WINGOWttt ettt ettt ettt e ettt 57
Dragging a data element into @ fUNCHION oot et 58
An example of Ch00SE STAIEMENT e et 70
Example Of If Statement e e 70
Example of FOr EaCh Statement e e e e 71
An example of adding a variable t0 @ MaPPINgoiriiii e e 72
Static and dynamic DINAINGo 82
Service providers and pass-through COMPOSITESt e e 83
Dynamic and statiC target INterfaCes o e e e 84
An example Of pattern Variables o e 85
Sending @ rePlY MESSAgEot 90
An example of fault path e 92
Configuring @ CatCh faUlt taSKo e e e 94
Removing specific faults from the target operation fault path ... 95
Catch fault task for the mediation flOW 95

TIBCO ActiveMatrix® BPM Mediation Component Development

TIBCO Documentation and Support Services

Documentation for this and other TIBCO products is available on the TIBCO Documentation site. This
site is updated more frequently than any documentation that might be included with the product. To
ensure that you are accessing the latest available help topics, visit:

https://docs.tibco.com

Product-Specific Documentation

Documentation for TIBCO products is not bundled with the software. Instead, it is available on the
TIBCO Documentation site.

The following documents form the documentation set:

Concepts: Read this manual before reading any other manual in the documentation set. This manual
describes terminology and concepts of the platform. The other manuals in the documentation set
assume you are familiar with the information in this manual.

Development Tutorials: Read this manual for a step-by-step introduction to the process of creating,
packaging, and running composites in TIBCO Business Studio.

Composite Development: Read this manual to learn how to develop and package composites.

Java Component Development: Read this manual to learn how to configure and implement Java
components.

Mediation Component Development : Read this manual to learn how to configure and implement
Mediation components.

Mediation API Reference : Read this manual to learn how to develop custom Mediation tasks.

Spring Component Development : Read this manual to learn how to configure and implement Spring
components.

WebApp Component Development : Read this manual to learn how to configure and implement Web
Application components.

Administration Tutorial: Read this manual for a step-by-step introduction to the process of creating
and starting the runtime version of the product, starting TIBCO ActiveMatrix servers, and
deploying applications to the runtime.

Administration: Read this manual to learn how to manage the runtime and deploy and manage
applications.

Hawk ActiveMatrix Plug-in User’s Guide: Read this manual to learn about the Hawk plug-in and its
optional configurations.

Installation and Configuration: Read this manual to learn how to install and configure the software.

Release Notes: Read this manual for a list of new and changed features, steps for migrating from a
previous release, and lists of known issues and closed issues for the release.

The documentation for the following features is installed separately:

TIBCO ActiveMatrix Implementation Type for C++

TIBCO ActiveMatrix Binding Type for EJB

TIBCO ActiveMatrix Binding Type for Adapters

TIBCO ActiveMatrix Implementation Type for TIBCO Adapters
TIBCO ActiveMatrix Implementation Type for Microsoft CLR
TIBCO ActiveMatrix Binding Type for REST

TIBCO ActiveMatrix® BPM Mediation Component Development

https://docs.tibco.com

10

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, contact TIBCO Support:

e For an overview of TIBCO Support, and information about getting started with TIBCO Support,
visit this site:

http://www.tibco.com/services/support

o If you already have a valid maintenance or support contract, visit this site:
https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user name, you can
request one.

How to Join TIBCO Community

TIBCO Community is an online destination for TIBCO customers, partners, and resident experts. It is a
place to share and access the collective experience of the TIBCO community. TIBCO Community offers
forums, blogs, and access to a variety of resources. To register, go to the following web address:

https://community.tibco.com

TIBCO ActiveMatrix® BPM Mediation Component Development

http://www.tibco.com/services/support
https://support.tibco.com
https://community.tibco.com

Introduction to Mediation

11

Mediation involves virtualizing and managing service interactions between communicating

participants.

Mediation is part of a Service Oriented Architecture (SOA) for applications. ActiveMatrix implements a
component-based platform to implement SOA within an enterprise.

Advantages of a mediation component are:

e Shields service consumers from the service provider’s physical location from both the design-time

and run-time perspective.

» Isresponsible for delivering requests to a service provider.

e Provides a mechanism for handling changing service requirements.

» Service providers can respond to requests delivered by mediation components without needing to

know the point of origin of the message.

Mediation Components

Service Consumers

Software f
Applications

< c Component

Mediation Components

i

)

Service Providers

—

Service

The below example shows a mediation component that provides approvals for loan applications. The
existing loan service might require credit scores, loan amount, employment history, and so on. To

enable quick turnaround for smaller loans, you might want to provide a new service that approves loan

requests for under $50,000 for all applicants with credit scores above 700.

TIBCO ActiveMatrix® BPM Mediation Component Development

12

Mediation Example

Existing Loan
Approval Service
Requires:

Mediation Component Loan Amount

Loan Credit Score
requestor Routes all loan Employment History
requests under $50K Investment Information
with credit score above

700 to New Loan

Service. All other loan
requests are routed to
Existing Loan Service.

A J

New Loan
Approval Service
Requires:

Loan Amount
Credit Score

Instead of rewriting your existing service to handle new types of requests, a mediation component can
accept requests that contain information from the loan requestor and then submit the request to the
appropriate service for approval.

Using the Mediation Flow Editor, you can easily create mediation components that operate within the
SOA-based ActiveMatrix platform.

Mediation Flows
A mediation flow is a graphical representation of the business logic for a mediation component.

Mediation flows are created and managed within the Mediation Flow Editor, in TIBCO Business Studio.
Mediation flow resources are stored in the Mediation Flows folder within a ActiveMatrix SOA project.
See the Composite Development Guide for more information about creating and managing
ActiveMatrix SOA Projects.

The Mediation Flow Editor

=0
; - e k Select
Medistion Inkerfaces —| [{ =~ Mediation Paths] <l ‘B, Target Interfaces
Input | Output Fault = Action -
u
= Invoke Operation
T 0 QueryGDs - T 0 QuerycDs T é% "
" q Query Database
2] searchairline T 2] searchairline L 2 Log
2] searchcar A it ite LIRS e 2] searchcar =
5 Lat] L . = Data *
2] searchHotel 2] searchHotel —
&6 Transform
; Parse XML
Otherwise (23 X .
’,?n ¥ & QueryGDS_dsia i, Render hL
2] searchairiine ﬁ Sat_Exchange
2] searchCar Varisble
2] searchHotel L= Carttral b
1%. Route
‘g ¥Path Route

= ueryGDS_Europe
© QueryGbs Eurcp /ﬁ?nThrow Fault

E] searchairline ‘“é\ Generate Reply
2] searchCar %3 Set Dynamic
2] searchHotel Reference

T 0 QueryGDs_Us

2] searchairline
2] searchcar
2] searchHotel

TIBCO ActiveMatrix® BPM Mediation Component Development

13

A mediation flow includes several parts:
e Mediation interfaces: One or more mediation interfaces provide the interface for the mediation
components that you expose to consumers of your applications.

e Mediation paths: Depending on the message exchange pattern of the mediation interface, there can
be an input, output, and fault path from each operation in the mediation interface to operations in
the target interfaces.

o Target interfaces: These interfaces to existing services in your enterprise provide implementation of
the operations for the associated mediation operations.

e Mediation tasks: You can place mediation tasks, such as Log or Route, on mediation paths to
perform business logic your application requires.

Message Exchange Patterns

A message exchange pattern (MEP) is a template that describes the message exchange pattern between
two communicating parties.

Mediation flows support two web service MEP for mediation and target operations:

e One-way (in-only): A message consumer sends a message to a provider.

In this exchange, the mediation flow allows only an input path from the mediation operation. No
output path is used. Fault paths exist to handle any errors produced by mediation tasks executing
on the input path.To terminate the mediation of a one-way operation without invoking a target
operation, use the End Medjiation task.

» Request-response (in-out): A message consumer sends a message to a provider, and the provider
sends a response message back to the consumer.

In this exchange, the mediation flow has three paths:

1. Aninput path for the message from the consumer to the provider
2. An output path for the reply message

3. A fault path for any faults that are encountered during processing

To mediate different operations with a target operation of a different message exchange pattern, use the
Invoke Operation and Generate Reply mediation tasks. See Generate Reply and Invoke Operation for
more information.

Mediation Flow Interfaces
Web Service Description Language (WSDL) files define the interface to a web service.

WSDL is a standard maintained by the World Wide Web Consortium; it is beyond the scope of this
guide to describe WSDL syntax and functionality in detail. You can learn more about WSDL from
http://www.w3.org/TR/wsdl; commercial publications about Web Services and WSDL files are also
available.

Mediation flows have two types of interfaces:
o Target interfaces are interfaces to the actual services that make up your enterprise application.
These interfaces appear on the right side of a mediation flow in the Mediation Flow Editor.

» Mediation interfaces are interfaces that you expose to the consumers of your services. Mediation
interfaces can have the same number and type of operations as target operations, or they can be
different from the target interfaces. Mediation interfaces appear on the left side of a mediation flow
in the Mediation Flow Editor.

See Mediation Flows.

TIBCO ActiveMatrix® BPM Mediation Component Development

14

Interfaces (also called port types) in mediation flows are references to abstract web services that a
WSDL file defines—interfaces in a mediation flow do not have concrete bindings. The WSDL files you
use in a mediation flow might have concrete bindings, but the mediation flow is concerned only with
receiving the message from the mediation operation, processing the message, and forwarding it to its
target operation. Binding occurs when a mediation flow is placed into an ActiveMatrix mediation
component, using the Composite Editor. See Mediation Components for more information about
components.

You can add the same interface more than once to either the mediation or target interface list. Adding
the same interface several times to the mediation interfaces list enables you to offer the same interface
to consumers with different mediation implementations.

This functionality can be used to offer different qualities of service to different consumers of the service.
Adding the same interface several times to the target interfaces list enables you to bind the same
interface to different providers, if you have more than one provider of the same service.

Planning Target and Mediation Interfaces
Designing a mediation flow requires planning how services will be exposed by mediation interfaces.

The requirements of the application will drive the design of the mediation flows. There may be a one-
to-one mapping of target and mediation interfaces, or you may expose mediation interfaces that are
very different from your target interfaces.

For example, you may have target services that are offered from a third party and therefore cannot
change the target interfaces. In this case, if you want to offer a service that uses the third-party services
but has different operations and message schemas, you must create your own interface/WSDL file
describing the service to offer, and use that interface file as the mediation interface.

Before starting your project, consider the requirements of your application, plan and develop the
required interfaces, and determine how the mediation interfaces will use the target interfaces.

TIBCO ActiveMatrix® BPM Mediation Component Development

15

Paths in a Mediation Flow

Each incoming message for an operation in a mediation interface follows an input path to a target
operation, or a task that terminates the input path. Depending on the message exchange pattern, there
could also be an output path for reply messages and a fault path for fault messages.

Paths in a mediation flow for each message exchange pattern

One-Way Message Exchange Pattern

Mediation Interface Target Interface
Input Path
Operation1 » OperationA

Request-Response Message Exchange Pattern

Mediation Interface Target Interface
Input Path
Operation1 ; » OperationA
A A
! Fault Path

Output Path

For operations that use the one-way message exchange pattern, there is only an input path from the
mediation operation to the target operation. Operations that use the request-response message
exchange pattern have an input path, an output path, and a fault path. Fault paths handle faults
wherever they occur in a mediation flow —either during processing within the mediation flow, or
during processing by the target operation.

The Mediation Flow Editor enables you to view the input, output, and fault paths for an operation by
selecting the mediation operation, and then clicking on the appropriate button in the mediation paths
area of the editor. Only the path for the currently selected mediation operation appears in the
mediation paths area.

When the input path for a mediation operation is defined or changed, the output and fault paths are
automatically changed to reflect the input path. Output or fault messages must be returned to the
original invoker, so that the input, output, and fault paths are automatically kept compatible.

You can use Route tasks to divide a mediation path into multiple sub-paths to potential target
operations. Route tasks allow the mediation path to be split into multiple sub-paths to potential target
operations. While the path shows multiple potential destinations, each message is only sent to one
destination. The path in the Mediation Flow Editor is like a map that describes the potential places
where a message can go. When the mediation flow is executed, however, each message travels to only
one target operation.

You can use multiple, nested route tasks to send a single message to a target in several different ways.
Rather than using a single route task with compound conditions, the use of nested routes enables you
to make complex routing decisions that are easier to follow.

TIBCO ActiveMatrix® BPM Mediation Component Development

16

Mediation Tasks

You can place mediation tasks on input, output, or fault paths, to perform business logic required by
your application.

For example, if the schema of the input message of your mediation operation does not match the
schema of the input message of the target operation, you can use a Transform task to change the
schema to the desired format.

The Mediation Flow Editor includes a variety of mediation tasks:

Invoke Operation: Enables you to invoke an operation of an interface in the target interface list
during processing of an input, output, or fault path. For example, you can invoke an operation on
the input mediation path and use the data in the reply message in subsequent tasks in the input
path before the mediation flow invokes the specified target operation. See Invoking an Operation.

Query Database: Performs a SQL SELECT statement on a database. The task can specify one or
more tables in the FROM clause of the SELECT statement, one or more columns to return in the
SELECT list, and one or more conditions in the WHERE clause. Optionally, you can specify the
maximum number of rows to return. See Querying a Database.

Log: Writes information to the log file. You can use this task for auditing, security, or other purposes.
See Logging Mediation Exchange Information.

Transform: Takes information from the mediation exchange (described in Mediation Exchange on
page 10) and changes it to the appropriate format. See Transform Tasks.

Parse XML: Used when you have an XML document stored in a string or binary field. This task
produces a tree representation of the XML that can be used by subsequent tasks in the mediation
flow. This task can be paired with the Render XML task to convert the parsed XML back into a
string or binary field for transmission within a message. See Parse XML.

Render XML: Converts an XML tree for a specified schema to a string or binary element that
contains the XML document. This task can be paired with the Parse XML task to convert the parsed
XML back into a string or binary field for transmission within a message. See Render XML.

Validate XML: Provides validation of XML messages using an XML Schema that is configured at
design time or specified dynamically at runtime. Validation errors may be caught and handled in
the current flow path, or handled by the fault catch mechanism. See Validate XML.

Set Context: Provides a way to set HTTP header values or JMS user property values of the
operations within a mediation flow. See Working with Message Context Properties and Set Context.

Set Exchange Variable: Sets the value of the items within the exchange variable. The Input tab of the
Set Exchange Variable task is a mapper panel that enables you to set the exchange variable for the
currently selected operation. See Setting the Exchange Variable, and Set Exchange Variable.

Route and XPath Route: Route tasks enable you to specify more than one potential destination for
messages sent by a mediation operation. The message is sent to the appropriate target operation
based on criteria you specify. In Route tasks, the criteria for routing conditions are simple
comparison operations. XPath Route tasks are similar to Route tasks, but you can specify more
complex criteria for routing conditions. See Routing Messages in a Mediation Flow.

Throw Fault: Stops processing in the current mediation flow and transfers control to the fault path.
This task is useful if a mediation operation is deprecated and you want to return a fault to the
requestors of the operation. This task is also useful if you want to specify fault conditions for Route
or XPath route tasks. See Fault Processing in a Mediation Flow for more information about faults
and the Throw Fault task.

TIBCO ActiveMatrix® BPM Mediation Component Development

17

» Generate Reply and Handle Reply: In some situations, you might want to send a reply message to
a consumer without invoking the target operation. The Generate Reply and Handle Reply tasks
enable you to bypass the target operation and send reply messages to the consumer directly from
the mediation flow. See Replying to Messages.

o End Mediation: Ends a one-way (in-only) message exchange pattern for operations that don’t
involve a response. End Mediation includes a message re-delivery feature, so that you can request
that a message be re-delivered if it encounters a fault during processing. See End Mediation.

o Set Dynamic Reference: Provides the values needed for resolving a service provider in a dynamic
target interface. Each Set Dynamic Reference task sets the value of the service provider for the
specified dynamic target interface. The value is then used by the next service invocation that refers
to that dynamic target interface. See Set Dynamic Reference Task.

8 You can extend the functionality of mediation flows by creating your own Custom tasks. See Custom
Mediation Tasks.

Mediation Exchange

When a mediation operation receives a message, a mediation exchange is created to hold information
related to the message and the mediation flow. Information in the mediation exchange is available to
tasks in the mediation flow.

Mediation exchange information

Mediation Exchange

Mediation flow properties

Mediation flow content

Message context

Message data

Exchange variable

Contributed data

The mediation exchange consists of this information:

o Mediation flow properties: You can define properties on a mediation flow to store information used
within the flow. For example, you might create a property to store currency exchange rates, or
calendar holidays for system down time.

e Mediation flow context: Includes information such as component name and mediation flow

information, if the Mediation Flow Context option is set on the Advanced tab of the mediation
operation’s Properties view. See Working with Message Context Properties.

TIBCO ActiveMatrix® BPM Mediation Component Development

18

o Message context: The context of the message sent to the mediation operation. Message context
includes information about the message transport (for example, HTTP o JMS message headers) and
security context information about the message. You can use the Set Context task to set HTTP
header values and JMS user property values within a mediation flow — see Working with Message
Context Properties and Set Context .

» Message data: Content of the message. The content of this item depends on the processing within a
mediation flow. For example, for input paths this component contains the schema of the input
message of the mediation or the target operation. For output paths, this component contains the
schema of the reply message of the mediation or the target operation. Similarly, for fault paths this
component contains the schema of the fault message.

Some mediation tasks, such as Transform, can change the contents of the message data.

o Exchange variable: A defined schema to hold data that persists through all paths of a mediation
operation (input, output, and fault paths). You can use any schema stored in the project to define the
structure of the exchange variable. The value of the variable is set during execution of the mediation

path with the Set Exchange Variable task. See Working with Exchange Variables and Set Exchange
Variable.

e Contributed data: Mediation tasks, such as the Transform task or a custom mediation task, can add
— contribute —data to the mediation exchange. When the data is added, subsequent tasks can
access each task’s added data. An option on some mediation tasks enables you to specify whether
you want the task to change the existing message data in the mediation exchange, or place the
results of the task into a new data item in the mediation exchange.

Designing Mediation Flows

You can design mediation flows from the top down, or from the bottom up. That is, you can start with
interfaces and mediation flows, or you can start by designing composites and components.

If you start with interfaces, you can create mediation flows from the interfaces. If you start with
components, you can assign a mediation flow as the implementation of the component after specifying
the services and references in the Composite editor.

1. Create an ActiveMatrix SOA project and import the WSDL files.

2. Virtualize interfaces.

a. Create a mediation flow.
b. Specify the mediation and target interfaces.
c. Create mediation paths.

3. Select a mediation patterns.

The most cited ESB (mediation) patterns are these:

e VETO (Validate, Enhance, Transform, Operate)
e VETRO (Validate, Enrich, Transform, Route, Operate)
Mediation provides the Validate, Transform and Route tasks.

The Enrich task can be achieved using the Query DB task, the Invoke Operation task, or a customer-
created task.

The Operate task makes the target service call.

4. Configure mediation patterns using tasks.

¢ Add and remove tasks.

TIBCO ActiveMatrix® BPM Mediation Component Development

19

» Configure task properties.
e Handle faults.
5. Bind and deploy.

e Create composite and components.
» Specify bindings.

e Assemble and run.

Before you package and deploy your project, ensure that all validation errors are resolved. An error
icon appears on the operation name of mediation interfaces with errors.

Errors occur because of an invalid configuration. Each error is logged on the Problems tab of the
mediation flow.

For more information about the process of designing a mediation flow, consult these resources:

o Composite Development Guide describes the first step in the process, creating the project and obtain
the interfaces.

» Working with Mediation Flows describes steps 2 through step 4a in more detail.

o Composite Development Guide describes how to create service assemblies for deployment and
execution.

o Administration Guide describes how to deploy and run your project.

TIBCO ActiveMatrix® BPM Mediation Component Development

20

Working with Mediation Flows

You use the mediation flow wizard to create new mediation flows and mediation flows from existing
web services.

Before creating mediation flows, you should have at least one WSDL file that defines the target interface
that you plan to mediate. For more information about folders in ActiveMatrix SOA projects, see the
Installation.

Starting the Mediation Flow Wizard

Use the following steps to start the mediation flow wizard.

Procedure

1. Right-click the Mediation Flows folder in the Project Explorer.

2. Choose New > Mediation Flow from the pop-up menu.
The Create Mediation Flow dialog opens.

The default option is to create an empty mediation flow.

M Create Mediation Flow x|

Create Mediation Flow =
Select the method ko create a mediation Flow @

Select Method

%' Single empty mediation flow

~ Multiple mediation Flows using existing web services

[Create Composite

(7] = Back | Mexk = | Finish I Cancel

Creating a New, Empty Mediation Flow

Creating a new, empty mediation flow enables you to start a mediation flow from scratch.
Prerequisites

You should at least have one WSDL file that describes the interface that you plan to mediate, but you
can have zero or more target interfaces.

Procedure

1. Start the mediation flow wizard.
a) Right-click the Mediation Flows folder in the Project Explorer.

TIBCO ActiveMatrix® BPM Mediation Component Development

21

b) Choose New > Mediation Flow from the pop-up menu.
The Create Mediation Flow dialog opens. The default option to create an empty mediation flow
is active.

You can also select the Create Composite checkbox if you want to create a corresponding
composite for this mediation flow. See Mediation Components for information about working
with components and composites.

2. Click Next.
3. Supply a name in the Mediation Flow Name field.

If you chose to create a composite to correspond to the mediation flow, you can also name the
composite in the Composite Name field.

You can also specify a different folder in the project for the mediation flow (and composite, if one is
created).

4. Click Finish.
The Mediation Flow Editor opens. You can begin to add interfaces and configure your mediation
flow.

Creating New Mediation Flows from Existing Web Services
To mediate existing web services, you can create new mediation flows for each interface. This is useful

if there are multiple services and you want to create one mediation flow for each service.

Prerequisites

Before creating mediation flows, ensure that the WSDL files that describe the interfaces have been

imported into the project. See Composite Development for more information about importing WSDL
files.

Procedure

1. Start the mediation flow wizard.

a) Right-click the Mediation Flows folder in the Project Explorer.
b) Choose New > Mediation Flow from the pop-up menu.

2. Select the option Multiple Mediation Flows Using Existing Web Services.

* You can also select the Create Composite checkbox if you want to create a corresponding
composite for the mediation flows.

See Mediation Components for more information about working with components and
composites.

TIBCO ActiveMatrix® BPM Mediation Component Development

22

3. Click Next to select the interfaces for the mediation flow.

™ Create Mediation Flow k % ‘
Create Mediation Flows
Choose web services ko mediate %
All Interfaces Selected Interfaces
= Add all ==
= = am_sh
El& Service Descripkors
[b
b [®] QueryEDs_asia.wsdl RIS
i %] QueryGDS_Furope.wsdl < Remave Al

LW rwieeerEnS 1S medl

Mediation Flow Folder: | fam_sh/Medistion Flows

3

4. Select the WSDL files to use when you create mediation flows.

e You can select and add WSDL files individually, or click the Add All>> button to add all files to
the Selected Interfaces list.

* You can remove one or more WSDL files using the <Remove and <<Remove All buttons.

A mediation flow is created for each WSDL file. The target interfaces and mediation interfaces are

the same, and a path is automatically created between operations of the same name. If a WSDL file

includes more than one port type, each port type is added to the mediation flow created for the file.
5. The next step depends on whether you checked the Create Composite option:

a) If you did not check the Create Composite option, click Finish to create the mediation flows and
composite.

b) If you checked the option to create a composite, click Next to specify the binding type — JMS,
SOAP/HTTP, SOAP/JMS.

If you select SOAP/HTTP, additionally specify the Connector.

Click Finish to create the mediation flows and composite.

TIBCO ActiveMatrix® BPM Mediation Component Development

23

' Create Mediation Flow

TIBCO ActiveMatrix® BPM Mediation Component Development

24

Editing Mediation Flow Editor Preferences

You can set preferences for the Mediation Flow Editor.

Procedure

1. Select Window > Preferences to open the Preferences dialog.

wgy Preferences ==l

type filter text Mediation IT & - v

» JavaScript 2
» Model Validation
openArchitecturey

Mediation Flow -

Mediation Flow Name in Wizard: default

» Plug-in Developm Mediation Flow Folder Name:; Mediation Flows|
» Report Design 7 Enable Di Toolti
|+| Enable Diagram Tooltips
» Run/Debug - : 2
Server || Enable Connection Animation
Services Mediation Task Icon Size
© Spring @ Small Icons (16x16) () Large Icons (32%32)
> Team =
4 TIRCO SOA Platfor Mediation Task Mapper Tree Expansion Level T
Composite Diag Default Mapper Tree Expansion Level: 5
Excluded Custo = Live Database Walidation For Queny Database Task
Mediation IT ==
. Platform Install. | | Walidate Query Database Task Data
Runtime Artifac Reload Database Data When Validation

WSDL Walidatic
TIBECOmmunity RS
User Profile

> Yalidation

ek
4| 3

-

2. Set values in the Mediation Flow section.

In the Mediation Flow Name in Wizard text box, provide the default name of mediation flows
that you create with the Single Empty Mediation Flow option in the wizard.

In the Mediation Flow Folder Name, provide the name of the folder in which to store
mediation flows.

Clear the Enable Diagram Tooltips check box if you want to disable the tooltips.

Clear the Enable Connection Animation check box if you want to disable animation.

3. Set values in the Mediation Task Icon Size section.

Check the Small Icons (16x16) radio button to display small icons in mediation flows and the
palette.

Check the Large Icons (32x32) radio button to display icons in mediation flows and the palette.

4. In the Mediation Task Mapper Tree Expansion Level text box, type the default value for the depth
you want to expand the left and right sides of the mapper.

TIBCO ActiveMatrix® BPM Mediation Component Development

25

5. Set values in the Live Database Validation For Query Database Task section.

e Check the Validate Query Database Task Data checkbox to connect to the database during
validation to determine if the Query Database task configuration is correct. The information
being queried is the structure (tables and columns) of the database.

e Inthe Validation Timeout field, provide the timeout (in seconds) for the validation task.

. Check the Reload Database Data When Validation checkbox, if the database structure is
changing, to query the database each time the validation process is run.

Working with Mediation Flow Properties

Mediation flow properties can be defined to store information such as values for current price markups,
currency rates, or user names.

The properties are stored in the mediation exchange, and tasks in a mediation flow can use them.
Properties are defined and removed using the Properties view of the mediation flow.

Validation of Message
When a mediation flow is created, a property called VALIDATE_MESSAGE_DATA is added by default.

At design time, a property VALIDATE_MESSAGE_DATA is defined in the mediation flow implementation.
When set to true, this property is used to validate the incoming message. This property is accessed by
the mediation component in the composite is exposed at the composite level as
MEDIATE_VALIDATE_MESSAGE_DATA.

Having this property at the mediation component level allows for fine-grained control compared to
defining it at the mediation implementation level.

A property VALIDATE_MESSAGE_DATA is available at the mediation implementation level when viewed
using the Administrator UL The default value of this property is false. Set this property to true to
enable validation of message data received by the mediation component. Validation of message data
happens for both the component service and reference.

Setting this property to true at the mediation implementation level enables validation on every
mediation component on that particular node.

The value of the property set at the mediation component level takes precedence over the value set at
the mediation implementation level. At runtime, when the incoming message (either a request message
on the mediation interface or a reply message on the target interface) into mediation fails validation, an
undeclared fault is returned to the consumer. The fault message will only indicate that a validation
failure has occurred with no details provided. For more details about the cause of the validation failure
will be contained in the log files.

Adding a Mediation Flow Property

You can define mediation flow property to store information.

Procedure

1. Click the ellipsis (...) in the Name field, or click the Add button to the right of the table.

.
& Mediation Flow

General ‘ Name | Type | value
—_— r__-

Properties [=lproperty1

JDBC Resource Template

TIBCO ActiveMatrix® BPM Mediation Component Development

26

2. Specify a name, data type, and value for the property. You can select one of four property types:

e String
e Integer
e Boolean

o JDBC Resource Template

You can also specify properties when you create a mediation component. Component-level
properties override the values of properties with the same name specified on the mediation flow.

Deleting a Mediation Flow Property

You can easily delete a mediation flow property.

Procedure

1. Select the property row in the table.
2. Press the Delete key or click the Delete button to the right of the table.

Working with Interfaces
Interfaces are collections of operations that WSDL files define.

WSDL files are typically contained in the Service Descriptors special folder in a project. You can obtain
interfaces in a variety of ways, usually by importing WSDL files into a project or by using a UDDI
registry service.

Composite Development describes the folders in an ActiveMatrix SOA project and how to obtain
WSDL files and use UDDI registry services.

Adding Interfaces to Mediation Flows

There are many ways to add interfaces to a mediation flow, the method you use depends upon the
requirements of your application.

Prerequisites

Before you add interfaces to your mediation flow, plan the needs of your application and determine
which target and mediation interfaces you need. Some planning considerations are discussed in
Planning Target and Mediation Interfaces.

Procedure

® You can add interfaces to a mediation flow using one of the following choices:

e If you plan to have a one-to-one relationship between target and mediation interfaces, you
might use the technique described in Creating New Mediation Flows From Existing Web
Services.

o If a WSDL file contains more than one port type, you can expand the WSDL file in the project
tree and select only the interface you want to drag and drop into the mediation flow. You can
also drag and drop the top-level WSDL file to add all interfaces within the WSDL file to the
mediation flow.

o If your target interfaces and mediation interfaces have different operations and schemas, drag
and drop each interface from the Project Explorer into the appropriate area of the mediation
flow.

TIBCO ActiveMatrix® BPM Mediation Component Development

27

Dragging and dropping an interface onto the mediation side of a flow creates an
untargeted flow for each operation. When you select the mediation operation for an
N untargeted flow, the flow appears as a line ending in a question mark. You can then
use a Generate Reply, Throw Fault, or End Mediation task on the flow without
having to add a target interface. You can also drag and drop an untargeted flow to a
target interface and mediate that interface.

Another way to add an interface to the target or mediation interface list is to use the menu icon
—at the top of the Mediation Interfaces area and Target Interfaces area of the mediation flow.
The menu contains an Add Mediation Interface or Add Target Endpoint item, depending upon
which side of the mediation flow you use. The Add menu opens a Select WSDL Port Type
dialog where you can choose an interface to add.

You can add more than one copy of the same interface to the mediation interfaces
side of the mediation flow. Doing so allows you to specify different business logic for
the same interface. You can then expose each implementation of the interface to

& different clients.

For example, you could use this functionality to offer different qualities of service to
different clients.

Deleting Interfaces from Mediation Flows
You can delete interfaces from either side of the mediation flow.

Procedure

1. Click the interface menu icon _. in the title bar of each interface.

=

2. Select Delete from the pop-up menu.

Moving Mediation Interfaces
Interfaces can be moved within the target and mediation interface list.

Procedure

1. Click the header of the interface you want to move.

2. Drag the interface to the new location in the list of interfaces.

Using the AutoMediate Feature

The AutoMediate mechanism in the Mediation Flow Editor allows users to quickly add identical
interfaces to both the target and mediation interface sides of the mediation flow with corresponding
mediation paths between operations of the same name.

Procedure

e You can use AutoMediate using one of the following choices:

Drag and drop an interface to either the target or mediation interface area. Select the interface
you have added to the mediation flow, then click and drag it to the opposite side of the
mediation flow.

Drag and drop an interface to the target interface area. Then, click the projection icon in the
title bar of the interface.

Drag and drop an interface onto the mediation paths area (the center area) of a mediation flow.

All mediation operations are connected to their corresponding target operations.

TIBCO ActiveMatrix® BPM Mediation Component Development

28

You can use the TIBCO AutoMediate Command Line tool to use existing services as input

& to create a fully functional composite application that generates a DAA that you can
deploy into an ActiveMatrix runtime environment. See TIBCO AutoMediate Command-
Line Tool for detailed information.

Creating Local WSDL Files

If you automatically create mediation interfaces, you may want to create local copies of the WSDL files.
Creating local copies enables you to make changes to the copies without affecting other services or
clients that use those WSDL files.

Procedure

1. In your mediation flow, locate the mediation interface you want to include in the local WSDL file.

2. Click the menu icon in the title bar of the interface and choose Copy Interface from the pop-up
menu.
The Mediation Flow Editor creates a local WSDL file and places it in the same folder as the
mediation flow. The name of the file is the same as the name of the mediation flow, with the file
extension .wsdl.

& Include additional mediation interfaces in the local WSDL file by repeating Step 2 for each
interface.

Each interface you copy is placed into the same local WSDL file so that you can edit the file using
the standard WSDL editor.

Supported Policies

Mediation interfaces supports intents.

Intents Description

At least once Specifies that the provider must receive every message sent to it by
consumers at least once.

Transacted one way Specifies that references must send all out-only messages within a
global transaction, and the ActiveMatrix framework must deliver the
message only after the transaction commits.

See Composite Development for more information on intents and
policies.

Working with Mediation Paths
Paths are created by dragging and dropping a mediation operation onto a target operation.

Paths can be automatically created in mediation flows, as described in Adding Interfaces to Mediation
Flows. Creating an input path also creates corresponding output and fault paths. You can click the
Input, Output, and Fault icons at the top of the mediation paths area to view the corresponding path for
each mediation operation.

The path for only one mediation operation appears in the mediation paths area. Select a mediation
operation to view its path.

Mediation operations must have an input path. Typically, the input path leads to a target operation, but
there can also be a route task that splits the path into more than one destination, or the path can lead to
one of these tasks:

e A Throw Fault task

TIBCO ActiveMatrix® BPM Mediation Component Development

29

» A Generate Reply task
¢ An End Mediation task

If a mediation operation is not implemented — that is, if it does not have an input path — an error icon

%% —

#| appears in the bottom left corner of the operation’s icon. You must implement all mediation
operations in a mediation flow before deploying the project.

Changing Mediation Paths

On the input path, a small circle appears next to the directional arrow of the path _}.@| This allows
you to change a path.

Procedure

e You can modify the target opearation using the follwowing choices:

Goal Procedure
Move path to a different target Click the circle and drag the path to a new location.
opeeration
Move target operation on an output Click and drag the circle next to the target operation
path
_O .
Result

The input and fault paths are automatically updated.

Deleting Mediation Paths
Mediation paths can be easily deleted.

Procedure

1. Select the path.
2. Press Delete, or right-click while hovering over the path and select Delete from the pop-up menu.

Route tasks create sub-paths and have some additional characteristics. See Routing Messages in a
Mediation Flow for more information about working with route tasks.

Working with Message Context Properties

In a mediation exchange, the context of the message sent to the mediation operation includes
information about the message transport (for example, HTTP headers or JMS message headers/
properties), and security information.

TIBCO ActiveMatrix provides a way for the mediation flow to receive message context information and
access its values in the mediation path. It also provides a mechanism for setting the message context
data for the input message of the target operation and the output message of the mediation operation.

The Mediation Flow also allows you to configure an additional type of context parameter called
Mediation. This type provides the security context, endpoint reference, and request message
mechanisms.

TIBCO ActiveMatrix® BPM Mediation Component Development

Context Parameters

30

Context Parameters are variables stored the application session. These are useful when there is the need
to share a parameter in several points in the application.

The context parameters available on the left side of the input mapper are contained under the root
element MessageContext. Context parameters can be used like other elements in the tree.

The following figure shows the mapping of a context parameter, userlD.

El Properties £2 rLS_ Problems} E Data Source E)q:ﬂorer)

| B 2|lugY™O

¥ Log Mediation Task

General Mediation Operation Context

Target Operation Context

Log Data Source | Functions | Constants

| XPath Expression

=l & $= SMediationFlowProperties
&l properties
$= SMessageContext
BB MessageContext
E@ parameters?
Bt userID?
= $= SMessagelata
B8] searchairineRequest
E||§| parameters
E@ searchAirling

Bl S TaskInput

+—F] [E] logParameters

[[E] message
£ xmlString

E Bl messagelp?
ABL riame?
123 coge?
RBL rofe?

4

SMessageContext/mediation:MessageContext/mediation:para

| 2

The Set Context mediation task is used to set values for the context parameters. The input mapper for
the Set Context task shows the context parameters defined for the target interface or the mediation
interface if the Set Context task is on the output or fault path.

The following figure shows the mapping of two context parameters. The parameters userID and
userVal are defined for mediation interfaces, and the parameters ID and Val are defined the target

interface.

E P!Opef‘hesfig i [3_‘ Problems) ﬁ Data Source Explorer]

GBE[DE~ -5

= Set Context Mediation Task

General Mediation Operation Context

Input Data Source] Functions | Constants |

Target Operation Context

| ¥Path Expression |

4| 2-%= sMediationFlonwPraperties

=] properties

= sMessageContext

L—_||§| MessageContext o

=-E] parameters? —/

~fBE userID?

P ABE userVal?
E-$= &MessageData

E@ searchairlineRequest
E||§| parameters

E-E] searchairline

10 roundTrip
;l ~BE origin

El i Task Input

=—[[E] MessageContext

=12 [E] parameters
ABL D7
RBL val?

tMessageContext/mediation:MessageContext/mediation:pa. ..
&MessageContext/mediation:MessageContext/mediation:pa. ..

Mediation Context Parameters

Mediation context parameter is available for the input direction only and provides functionality for

security context.

The mediation component in the Composite Editor does not use these parameters. The values for these
parameters are automatically passed to the mediation component and require no additional

configuration.

TIBCO ActiveMatrix® BPM Mediation Component Development

31

Security Context

When a parameter of type Mediation and definition mechanism Security Context is added to the
interface, the security context and the SAML assertion data is available for security context-based
routing, transformations, or to log security context data.

The following figure show a simple mapping of the SAML assertion data:

L=—| wahﬁs% \.ﬁ Data Source E)q)lorer] [:_, Problems |

& =0
%8 Transform Mediation Task

General Mediation Operation Context

Input Data Source] Functions | Constants
Output ;I =8 $_= EMessageContext
- - El-{E] MessageContext ~—F1 & OperationRequest
El@ parameters? 2 = B firstiame
BB secChe r|— — — - BBl HelloRequest
E||§| Assertion™ f

Target Operation Context

| xPath Expression |

= = MessageData

\sMessageContext/ns:MessageContext/ns:parameters/ns:sec ;I |
Ct/fsaml: Assertion[1] /saml:Subject/saml:NameID

fiBL @version /

ABL Issuer LI
El Signature?
B subjectz
=l conditions
+-=] Advice?
@ (Statemem
LI I'—_'I-"s_= SMessageData

(ol i

Endpoint Reference

A parameter of type Mediation and definition mechanism Endpoint Reference provides access to the
endpoint reference schema for the mediation interface.

The Set Dynamic Reference task is used to provide the endpoint reference to the target invocation. The
following screen shows one such mapping between the context parameters of the service and the
reference.

= Properties &3 (=i Problems] B8 Data Source Explorer}

=¥ Set Dynamic Reference

General Mediation Operation Context

Input Data Source] Functions | Constants

IRl

Target Operation Context

| XPath Expression |

ediaﬁonFIowProperﬁegé

properties
=] $= SMessageContext
: E|!§| MessageContext
E||§| parameters?
E||§| epr?
...@ to?
E-E] faultta?
@ replyTo?
SMessageData

El 5 Task Input
=—FI [E] serviceReference
A ———B% to - [Copy-0fl

frk————— El"g faultTo - [Copy-Of]

r —El’ig replyTo - [Copy-Of]

SMessageContext/mediation:MessageContext/mediation:parame. ..
SMessageContext/mediation:MessageContext/mediation:parame. ..
SMessageContext/mediation:MessageContext/mediation:parame. ..

The Endpoint Reference Mechanism of the Set Dynamic Reference task is set to WS-A Endpoint
Reference. See Set Dynamic Reference.

Request Message Context

Provides access to the CorrelationID, ContextID, and ParentContextID parameters.

TIBCO ActiveMatrix® BPM Mediation Component Development

32

Undeclared Fault Headers

A context parameter of type Mediation and direction Fault is used to access the undeclared headers
(code, role, and reason) provided by SOAP.

Using this type of context parameter requires the target interface to be bound to a SOAP endpoint, but
no validation can be done to ensure that. The developer of the system just has to know that SOAP is
being used.

The following screen shows the mapping between the context parameters on the Fault path of the
Target interface and that of the Mediation interface.

Mediation Interfaces = [# = Mediation Paths]] ‘83‘;, Target Interfaces B E - i
Input Cutput | Fault
¥ & QueryGDS = i Q_‘; QueryGDS l:—EI - | =
s - & o
2] searchairline (=) searchairine_faultMsg = 2] eearchAirine
#] searchCar @ hil] #] searchCar
2] searchHotel % TimeoutFault, #] searchHotel
UndedaredFault,
(28| MediationTaskFault =
§<§ Alf=]
@ MediationTaskRuntimeFault
%]
E

| Properties s = Problems]@Dam Source E)cplorer} [| 2 08 ‘ s &g T T O

[F Set Context Mediation Task

General Mediation Fault Context Mediation Fault Context

Input

Data Snurcel Functions ‘ Constants |

| XPath Expression

«| =-4= sMediationFlowProperties

@ properties

El-$= gMessageContext

EEI MessageContext

i E||§| parameters?

E-E val?
BB fault?

- BL code
i--fiBE role
“-fB0 reason
ﬂ E|"'$_= SMessageData

(il (PSS O VRN N ey

[52 Task Input
o—F E] MessageContext
o——F [E] parameters
= B userval_fault
B B fadt
REBE code
RBL role
ABE reason

£MessageContext/mediation:MessageContext/mediation:parameters/mediati...
SMessageContext/mediation:MessageContext/mediation:parameters mediati. .,
SMessageContext/mediation:MessageContext/mediation:parameters mediati. ..

Context Parameters in Mediation Components
Context parameters added to the interface or operation are propagated to the mediation component in
the Composite Editor. The General tab of the Component Service and the Component Reference
element has a section for context parameters.

All context parameters defined in the mediation flow will be exposed in the mediation component,
except for the context parameters of type Mediation.

Context parameters can be added to the Component Service or Component Reference. These context
parameters can then be pushed down to the implementation level. Context parameters of type
Mediation cannot be added to the Component Service or Component Reference.

Adding Context Parameters
Context parameters can be configured at a mediation interface level, target interface level, or for an
operation contained in the interfaces. Parameters added at the interface level are available for use by all
the containing operations. Parameters added at the operation level can be used by those operations

only.

Context parameters for the Mediation and Target interfaces are independent of each other. The Set
Context mediation task is used to map values of the defined context parameters.

TIBCO ActiveMatrix® BPM Mediation Component Development

33

Procedure

1. Choose the interface or operation.

2. Select the General tab from the Properties view.
The Operation Context Parameters table is initially empty.

Click the | * | button located on the right side of the table.

Specify the parameter properties:

o Name: Name of the parameter.

o Direction: Choose between Input, Output, and Fault.

o Type: Choose between Basic, Message, Bag, Mediation.
o Definition: This is the definition mechanism.

If you chose Mediation as the context parameter type, the available definitions are Security Context,
Endpoint Reference, and Request Message Context.

If the Direction is Fault and the Type is Mediation, the Definition mechanism is set to Undeclared
Fault Context. See Undeclared Fault Headers.

The context parameter is added to the chosen interface or operation.

Deleting Context Parameters
Context parameters can be deleted at either the interface level or the operation level.

Procedure

e To delete context parameters from the Mediation or Target interface, choose the context parameter

and click | # | the button.

o If the context parameter is deleted at the interface level, the parameter is deleted from all the
operations.

o If the context parameter is deleted from the operation level, the parameter is deleted from that
operation only. If that operation was the last operation to which the context parameter was
applied it is then removed from the interface as well.

Defining the Scope of Context Parameters

Parameters added at the interface level are available for use by all the containing operations.
Parameters added at the operation level are only available for that specific operation.

Procedure

® You can define the scope of context parameter using the following options:

e A parameter defined for operation A can be made available to operation B by selecting the

parameter in operation B and clicking the B | button.

e A parameter defined for an operation can be made available to all other operations by selecting

the parameter at the interface level and clicking the B | button.

TIBCO ActiveMatrix® BPM Mediation Component Development

34

o The scope of a parameter used by operations A and B can be reduced by selecting the

parameter in the operation where the parameter will not be used and clicking the # | button.
The operation will remain in the table but the tooltip will display the reduced scope.

Working with Exchange Variables

You can define an exchange variable for each mediation operation in your mediation flow. An exchange
variable provides a location that stores data for use in all paths for a particular mediation operation.

or example, you might want to store a field from an incoming message, such as a correlation ID in a
JMS header for the message. After it is stored, this data is available for all tasks in the input, output, or
fault paths of a mediation operation.

Each mediation operation has one exchange variable. The exchange variable can have any structure. For
example, the exchange variable can have repeating elements, if it is necessary to hold multiple instances
of the same element.

After it is defined, the exchange variable is available for all tasks that can access the meditation
exchange in the input, output, and fault paths of your mediation flow. The values of the fields of the
exchange variable are empty until they are set using the Set Exchange Variable mediation task. See
Setting the Exchange Variable.

Defining Exchange Variables

Exchange variables are defined in the Advanced section of the properties view of a mediation
operation.

Procedure

1. Select a mediation operation in the mediation editor.

2. Expand the Advanced option from the General tab.

o = 5
= Properties &3 '\xl_.-f-_ Problems] ﬁ Data Source Exp{orer| (%3 Ll

Mediation Operation

ml Operation Name: sayHello

= Target Operation: | Hello\“.n'orld_f_savHeIlo E

Qutput ¥ Operation Context Parameters
Fault
~ Advanced

O show Mediation Flow Context

Exchange Variable Schema: | /demeintent/Service Descriptors/simple. xsd=group E_t

3. Specify a schema for the exchange variable in the Exchange Variable Schema field.

Set Exchange Variable supports only XSD elements, so the schema definition for the exchange
variable must be stored in an XSD within your workspace.

You can use the following options to create an XSD (XML schema definition).
4. Use the following chices to create an XSD (XML schema definition).
Starting Point Procedure

Browse button Use the simple XSD editor with the Create button.

See Creating Simple Schemas for information about the Simplified Schema
Editor that opens when you click the Create button.

TIBCO ActiveMatrix® BPM Mediation Component Development

35

Starting Point Procedure
TIBCO Business Use the XSD editor.
Studio

See the Eclipse documentation, XSD Developer Guide, for more information
about the XSD editor in TIBCO Business Studio.

XSD editor plug-in

Use your own plug-in.

Setting Exchange

Variable

The Set Exchange Variable task sets the value of the items within the exchange variable. The Input tab
of the Set Exchange Variable task is a mapper panel that enables you to set any portion of the exchange
variable for the currently selected operation.

Procedure

1. Use the General tab to specify a name and description for the task.

This tab is useful for providing documentation for tasks in your mediation flows.

4
Mediation Interfaces —| ¥ = Mediation Paths]] B!, Target Interfaces [v
Input Qutput Faulk “
—
¥ 3 Helloworld = T &3 HelloWorld o = T
o
] sayHello _iﬁi) %] savHella ‘n‘.
=l
Mroblems|Registries| & = | Elj &g ¥ 70

General

Input

& Set Exchange Yariable

Mediation Operation Context

Data Source] Functions | Constants |

Target Operation Conkext

| %Path Expression

;I |_:_|$= $Messageontext
=[] MessageContext

[= =t Task Input
s [IBL namE

$MessageData/ns: savHelloRequest fns: namefns0:Mam. ..

&-/E] transport?
@ security?
E-$= $MessageData
E@ sayHelloReguest
E-Bl name
E@ Mame
HBE
“-fiBE Lastharne

..

Assign a name to the task, to identify the task in the mediation flow.

This name appears in the tooltip that opens when you hover the cursor over the task icon in the
mediation flow.

Describe the task briefly.

This description appears in the tooltip that opens when you hover the cursor over the task icon in
the mediation flow.

Click the Input tab.

This contains a mapping panel for mapping data from the mediation exchange to the input fields of
this task. See Transform Tasks for using a mapping panel.

To set the exchange variable, map values from the mediation exchange to the exchange variable
element.

TIBCO ActiveMatrix® BPM Mediation Component Development

36

Creating Simple Schemas
You might need a schema for an exchange variable that is not stored in the project. The Create button in
the Exchange Schema field opens a simplified schema editor dialog that you can use to create basic
schemas. The simplified schema editor creates and stores the XSD file for the schema you create in the
specified location in the project.

Procedure

1. Use the three fields of the simplified schema editor.

. Schema: the structure of the schema. Use the buttons to add, move, and delete schema
elements. Only elements can be created using this editor. If you must add attributes or create
types, use the XSD editor in TIBCO Business Studio. Table 4 describes each of the buttons in the
Schema field.

o Resource Name: the name of the schema to create.

e Workspace Location: the location in the workspace where the schema will be stored. Use the
Browse button to locate a folder in another workspace.

2. Use the buttons for creating schema elements.

Button

Description

Adds a group to the schema. You can specify a name for the group and the type of group
from one of these options:

e sequence in order —the elements in the group must appear in the order in which they
are specified in the schema.

o choice of one—the group is a choice group where only one of the elements in the
group can appear at a time.

o allin any order—all elements contained in the group can appear in any order.

Adds a complex element to the schema that can contain other elements. You can specify a
name for the complex element, a type (from another stored schema), and the minimum
and maximum number of occurrences of the element.

Adds a primitive element to the schema. You can specify a name for the primitive
element, a primitive type (string, integer, and so on), the minimum number of
occurrences, and the maximum number of occurrences of the element.

Adds a reference element. A reference element refers to a top-level element, allowing
elements to be reused by reference. References in other schema resources are
automatically maintained using imports.

The Simplified Schema Editor does not support duplicate namespaces. The
assumption is that a given namespace is only imported once, and is associated
with a single prefix.

Moves the currently selected element up one position in the schema.

TIBCO ActiveMatrix® BPM Mediation Component Development

37

Button | Description

L | Moves the currently selected element down one position in the schema.

b 4 Deletes the currently selected element.

3. After creating a schema, click OK to save the schema to the project.

Working with Tasks

Several operations are the same for all tasks within a mediation flow. Most operations can be undone
by using the Edit > Undo menu item.

Details on how to work with each task in a mediation flow are described in the following topics:

¢ Invoking an Operation

» Logging Mediation Exchange Information

o Routing Messages in a Mediation Flow

o Transforming Data in a Mediation Exchange

* Replying to Messages

o TFault Processing in a Mediation Flow

See Reference, for information about any tasks not mentioned in the list above.

Adding a Task to a Path
Before you add tasks, expand the palette on the Mediation Flow Editor to show the list of tasks

available.

Not all tasks can be added to all paths. See the description of each task in Chapter 12, Reference, for
more information about the type of path where you can use the task.

Procedure

1. You can add single tasks to a mediation path using the following options:

Operation

Procedure

Select

Select the task in the palette, and click the path line where you want to add the task.

Drag

Drag a task from the palette to a path. Hold the mouse button until the cursor is over
the path.

o When a task can be added to the path, the path line becomes bold and the cursor changes to

this icon to indicate the task can be added.

o If the task cannot be added to the path, the cursor changes to this icon @

o If tasks are already on the current path, a vertical line appears on the path to show where the
new task will be inserted. Move the cursor before or after the existing task to add the task to a
specific location.

2. You can add multiple tasks of the same type to a mediation path.

a) Select the task in the palette.
b) Press the Ctrl key while clicking on the path.

TIBCO ActiveMatrix® BPM Mediation Component Development

38

Route tasks cause the path to split into sub-paths. If your mediation flow requires routing, add
the route tasks to the path first. Adding a route task to a specific location can be difficult when
other tasks are already on the path.

Deleting a Task From a Path

Deleting a route task deletes all sub-paths and tasks after the route task.
You can delete Throw Fault and Generate Reply tasks, but the flow becomes untargeted. If you delete
these tasks, you must retarget them as necessary.

Procedure

e To delete a tasks from a path use one of the options:

Option | Procedure

Mouse Select the task in the path, right-click while hovering the cursor over the task, and
choose Delete from the pop-up menu.

Keyboard | Select the task, and press the Delete key on your keyboard.

Mediation Components
Mediation flows provide implementations for mediation components.
Each mediation interface becomes a component service of the mediation component.

Each mediation flow property becomes a component property. You can override the values specified for
mediation properties at the component or composite level.

Composite Development provides a complete description of composites and components and how they
operate within the TIBCO ActiveMatrix architecture. You should be familiar with the procedures in that
manual before attempting to work with mediation components.

You can create wires between composite services and component services, to provide bindings for
mediation service consumers. You can also create wires between component references and composite
references, to provide bindings to actual service providers for target interfaces. You can also create
wires from other component services and references to and from the component services and references
for a mediation component.

TIBCO ActiveMatrix® BPM Mediation Component Development

39

Invoking an Operation

The Invoke Operation task enables you to call an operation of any interface during processing of an
input, output, or fault path The Invoke activity can choose any operation from any interface in the
target interface list.

For example, you can invoke an operation on the input mediation path and use the data in the reply
message in subsequent tasks in the input path before the mediation flow invokes the specified target
operation.

These examples describe use cases for the Invoke Operation task:

» Invoking a service to retrieve information, such as item price for a purchase order, a zip code for a
city, or a shipping quote from a shipping service.

e Coordinating with non-automated processes, such as invoking a service to send an email message
after the target operation returns a reply message.

» Basic orchestration with other services, such as invoking an approval service before invoking a
target operation to allow a merchandise return.

An invoked operation can be either a one-way or request-response message exchange pattern.

If the invoked operation uses the request-response pattern, the mediation flow suspends execution until
a reply is received from the invoked operation. The reply message from an invoked operation is placed
in the mediation exchange in an element corresponding to the name of the Invoke Operation task.
Subsequent tasks in the path can then access the reply message.

Fault Handling for Invoke Opearations

Faults declared by an operation that an invoke activity references are caught and processed on the fault
path. See Fault Processing in a Mediation Flow.

Invoking Operations on Dynamic Interfaces

You can use the Invoke Operation task to invoke operations contained in a dynamic target interface.
Dynamic target interfaces require a Set Dynamic Reference task that specifies the actual service to
invoke. See Dynamic Requests for more information about dynamic target interfaces.

If the Invoke Operation receives a fault from the target service, the fault flow of the mediation is
activated. The Catch Fault task has all target faults that might be generated by all of the invoke tasks, so
you can mediate faults that are returned.

Configuring Invoke Operation Tasks

The operation to be invoked by the Invoke Operation task must be contained in an interface in the
target interface list.

Input Tab

The Invoke Operation task requires an input message for the invoked operation. To construct the input
message, use the Input tab of the Invoke tab. The Input tab is a mapper panel, similar to the mapper
available in the Transform task. See Transform Tasks for more information about using the mapper
panel.

Output Tab

When the message exchange pattern of the invoked operation is request-reply, the Output tab displays
a static schema tree to represent the output message of the invoked operation. If the message exchange
pattern of the invoked operation is one-way, the Output tab of the Invoke Operation Mediation Task
displays No Output Configured. The Output tab of the Mediation Operation is empty.

TIBCO ActiveMatrix® BPM Mediation Component Development

40

Procedure

1. Add an Invoke task to a path.
2. Select Properties View > General tab > Target Operations, and open the drop-down list to select an
operation to invoke.

You can also press the Shift key and drag the task onto the operation in one of the target interfaces.
(Dragging a task without using the Shift key rearranges the task on a path.)

When the Target Operation is selected for the Invoke Operation task, a green hint line appears to
indicate which operation the task invokes.

- -
I:_J Properties £3 . [gi;PfoblemSWﬁR.egish'iesw G 2 = | Az =
4% Invoke Operation Mediation Task
General | Mediation Operation Context Target Operation Context
W Data Source | Functions | Constants | | Path Expression I
' Output | =-$= isMediationFlowProperties | B 5 Task Input
e B properties =—[E [E] searchairineRequest

B-$= SMessageData =——0 [E] parameters
E@ searchalRequest 3 [searchairline
E2-B] parameters ~|——————— ¥ roundTrip SMessageData/nsise. ..
=] searchal /B origin $MessageData/nsise...
E‘El Ear RIS ",- ———————————— RBE destination SMessageData/ns:se...
Eolel roundTrip '_ B @ departureDate SMessageData/ns:se...
Bt orign ——— /", Al EH returnDate? SMessageData/nsise...
. L-fiBE destination /123 noOfPassengers $MessageData/ns:se. .,
;I o[departureDate. —— | ——————— BB timePreference SMessageDatajns:se...

TIBCO ActiveMatrix® BPM Mediation Component Development

41

Logging Mediation Exchange Information

Log tasks allow mediation flows to send data to a file (appender). By default, the appender for the
mediation task is not configured.

You can place a log task on any input, output, or fault path. You can configure the log task to send any
or all of these items to the log file.

e Mediation flow properties are the properties defined for the mediation flow. These properties are
defined either on the Properties tab of the mediation flow, or in the composite or component
containing the mediation flow. You can select all mediation flow properties, or you can select
individual properties to log.

» Mediation flow context logs message context such as component name and mediation flow
information, if the Mediation Flow Context option is set on the Advanced section of the mediation
operation’s General tab.

* Message context is information about the transport or security details of the message. See Working
with Message Context Properties for information about the Mediation Flow Context option.

» Message data is the content of the message. Some tasks, such as custom tasks or Transform tasks,
can change the content of the message. The Log task can be used to output the message content at
any point in the mediation flow. You can use this information for debugging, auditing, or other
purposes.

e Contributed data Mediation tasks, such as the Transform task or custom tasks, can add or
contribute data to the mediation exchange. For example, the Log task can be used to output any
data that previously executed mediation tasks contributed to the mediation exchange.

» Exchange Variable If the mediation operation has an exchange variable set, the exchange variable
appears as one of the items to log. If Log All Items is selected, the Exchange Variable is
automatically logged if it is used.

Mediation Appenders and Loggers

By default, the runtime informational (INFO), warning (WARN) and error (ERROR) messages logged
by the mediation component or the mediation log tasks are sent to the log file of the ActiveMatrix node
or the associated appender.

Using the TIBCO ActiveMatrix Administrator to specify a unique appender for the mediation
component or the mediation log tasks is also possible. The Administrator allows the user to configure
logger and corresponding appenders at application or component level. Refer to Administration Guide
for more details on application or component logger configuration.

Two mediation loggers are available:

e com.tibco.amx.it.mediation

The logger named com.tibco.amx.it. mediation is used by the mediation component to log runtime
error, warning, informational or debug messages and must be applied to the node were the
mediation application is running.

e com.tibco.amx.it.mediation.logTask

The logger named com.tibco.amx.it. mediation.logTask is used by the mediation log tasks and must
be applied to the mediation application. This logger is available only if it has been configured at
design time.

To send the data logged by the mediation log tasks to a specific appender, either one of the two logger
names can be used in the Administrator to configure the application or component level loggers.

TIBCO ActiveMatrix® BPM Mediation Component Development

&

42

However, to isolate the data logged by the mediation log tasks from rest of the mediation component
messages, the logger named com.tibco.amx.it. mediation.logTask must be used.

By default only the informational (INFO), warning (WARN) and error (ERROR) messages are written to
the log file of the node or the associated appender. The Mediation component or mediation log task's
debug (DEBUG) or trace (TRACE) messages are not written to the log file of the node. To view debug or
trace level messages, a logging appender must be configured at a debug level.

Configuring a Log Task

After adding a log task to a path within a mediation flow, specify the type of information you want to
log. The Log tab of the Log task configures the information to send to the log file.

Procedure

1. Give the task a name and description.

mroblemS|Registies‘ - = 5
General = Log Mediation Task

Log Hame: I HelloWorldLog
Description: l
Log Role: |INFO ;I

lse Transform Data: [J

2. Choose the role level of logging for the task.

3. Set the Use Transform Data option.

This option controls the appearance of the Log tab, where you configure the information to send to
the log file.

o If Use Transform Data is not selected (the default) on the General tab of the Log Task, the Log
tab appears and shows top-level message information, and you select the items to send to the
log file. To send all available information to the log file, select the Log All Items box.

(-E Froperties &3 ;iﬁ’._-. Problems}EData Source Explorerw = | fo & B | vl &g ¥ = O

' Log Mediation Task
209

E‘D = mediation Flow Properties

- [JE] vaLIDATE_MESSAGE_DATA :
[OEl Message Context

E|D =] Message Data

------ OE savHeloRequest

General

Log

TIBCO ActiveMatrix® BPM Mediation Component Development

43

If the Use Transform Data option is selected on the General tab of the Log task, the Log tab
appears as a mapping panel. You can use this panel to build custom log messages.

= !
IE¢ Log Mediation Task

General Mediation Operation Context

. E{_-_ Problems] i Regisiﬂ'es}

&% 2 |laEGYEO

Target Operation Context

Log Data Source | Functions | Constants

| XPath Expression

El-$= sMediationFlowProperties
@ properties
B-$= SMessageData
BB searchAirlineRequest
B parameters

B 5 TaskInput
B B fogParameters
E B message

El B messageip?
RBE name?
123 code?
RBE rode?

4]

@ xmiString [@y element)

Message mapped to the message element

This example shows part of a message mapped to the message element:

General
[oo

el

Ed Log Mediation Task

Mediation Operation Context

Data Source] Functions | Constants

Target Operation Context

| XPath Expression

;I @ properties
$= SMessageData
EI@ searchAirlineRequest
EI@ parameters

El@ searchAirline
0 roundTrip
--HEC
-ABE destination
- departureDat
@ returnDate?
123 noOfPasseng

----- IBL timePreferen

-

[=5 TaskInput

~— [E] logParameters

e———F] [=] message

£20 xmiString

B Bl messagein?
RBE name?
123 codle?

ABC rok?

&MessageData/ns:searchAirineRequest/ns:parameters/. ..

The messageID element is useful if you need to specify a code, or map from a code that is
included in a message. See Information for Custom Log Messages for detailed information
about the messageID element.

You can set a property on the mediation flow for the Log task to use at run-time, to override the
Log Role setting in the General tab if they are different. For example, you might set the Log
Role to debug during development, but set the run-time property to info.

See Transform Tasks for more information about using a mapping panel.

TIBCO ActiveMatrix® BPM Mediation Component Development

44

Routing Messages in a Mediation Flow

Route tasks are used to specify that messages can be delivered to different destinations based on values
within the message data or within other data in the mediation exchange, such as the security context.

Route tasks enable you to send messages to a specific destination based on conditions that you specify.
Data from the mediation exchange, such as the message context or the message body, can be used to
construct the routing conditions. For example, you might route incoming messages to a local server
from 9:00 a.m. to 5:00 p.m., but outside of those times, route incoming messages to a different server.

An example of using Route Task

] | 1] 1B, Target Interfaces B E -

Mediation Interfaces = [# = Mediation Paths |
|Ln|3ut Qutput Fault

-
Ta QueryGDS = Ta Queryaha '}U e —

?u] searchairling %] searchairling
'?u] searchCar ; ?g] searchCar
‘?u] searchHotel l%b CasehyGity Pl ?u] searchHotel

¥ & QueryGDS_psia &
_‘?ﬂ] searchairling
%]search(:ar

CasefsianCity D_- @% paf ?m]searchHotel

Ta QueryGDS_Europe 'Eﬂ i

%] searchairling -
‘?u] searchCar
&l

searchHotel

CaseEuropeanCity @@ bl

T
4

¥ & QueryGDS_US

_?u] searchairling
@ searchCar

Casel5City {-.zy] E‘é} Pl c'%]searchHotel

COtherwise B4

=

The example shows the input path of a system that searches for travel reservations. For the
searchHotel mediation operation, incoming messages are routed to the appropriate service, based on
the city specified in the search request:

o If the city is that of the requestor, the message is sent to the QueryGDS service.

o If the city is in Asia, the message is sent to the QueryGDS_Asia service.

o If the city is in Europe, the message is sent to the QueryGDS_Europe service.

» If the city is in the United States, the message is sent to the QueryGDS_US service.

» A faultis thrown if the city is not the requestor city, or in Asia, Europe, or the United States.

The two types of route taks are, Route and XPath Route.
» Route task enables you to define basic route conditions.

« XPath Route task allows more flexibility in the expressions you can use to define a route condition.

The type of condition that you must define determines which route task is appropriate for your
application. See Routing Conditions.

8 If you create Route tasks and later decide that a more complex routing condition is required, you can
easily convert the Route task to an XPath Route task. See Changing Route Tasks to XPath Route Tasks.

TIBCO ActiveMatrix® BPM Mediation Component Development

45

Paths and Route Tasks
Route tasks can be added only to input paths.

Route tasks send each incoming message to a single destination based on which route case evaluates to
true, or to a single destination designated as otherwise if none of the cases evaluate to true.

Paths on the input flow to a target operation correspond to paths on the output and fault flow from that
target operation. Paths ending in Throw Fault have a corresponding mediation fault path on the Fault
flow. Paths ending in a Generate Reply task have a single, common Handle Reply path on the Output

flow.
& You can only introduce the route in the input path, and the response (output or fault) always returns to
the original requester —the requester that invoked the mediation operation.
Output path for a route
Mediation Interfaces = [F = Mediation Paths Pl | @ (B, TagetInterfaces O [{ —
Input | Output Fault
¥ €8 QueryGDS i ¥ & QueryaDs € v —
?E] searchailing ?m] searchairline
.%] searchCar ?d searchCar
?E] searchHokel 4 o %] searchHotel

¥ O QueryGDS_Asia o0
?m] searchairline

?d searchCar
&

searchHotel

¥ & QuerycDS_Europe {0
?m] searchairline -

searchiCar

&l
@_o %] searchHotel

0 QueryGDs_ s o0

?m] searchairline
?d searchCar

@_o %] searchHotel

=l

Mediation tasks can be added to sub-paths after a route activity. Typically, you use a Transform task
when the input, output, or fault message schema does not match the mediation operation message
schema.

TIBCO ActiveMatrix® BPM Mediation Component Development

Fault path for a route

46

Mediation Interfaces

i 1] QueryicDs

1

[+ = Mediation Paths

?ﬁ] searchairline
4%] searchiCar
&

searchHotel

C

Input Cukpuk

(Fault) searchHokel_Fau...

@ TirmeoukFaulk

L)

IUndeclaredFault

o

searchHotel_FaultMsg
@ G

TirneoukFaulk
5

Undeclaredrault

(Fault) searchHotel_Fau...

=

o

@ TimeoukFaulk
la=]

UndeclaredFault

(Fault) searchHoktel_Fau...

)

(=5 TimeoutFault

1)
UndeclaredFault

o

= MediationT askFaulk
8 ©

SEEEEREEEREEE

@ MediationT askR.untimer aulk
e/

B, TargetInterfaces [&
Eault

a1 | CQueryGDS

T

?ﬂ] searchairline
?m] searchCar
&

searchHobel

Te QuetyaDS_Asia éﬂ

?ﬂ] searchAitling
?m] searchCar
?ﬁ] searchHotel

T €% QueryGDS_Furope 30

?E] searchairline
?m] searchCar
533] searchHotel

T 6 QuerysDs Us 0

seatchairline
searchCar
searchHokel

&
&
&

| »

Defining a Route

The steps for defining a route task are the same regardless of the type of route task you are using.

Prerequisites

Before creating a route, your mediation operation must contain the mediation interface and one or more
target interfaces that contain operations between which you route messages.

Procedure

1. Add a Route or XPath Route task to an existing input path. If you have not yet created any input
paths in your mediation flow, draw the path between your mediation operation and one of the
target operations that you want for the destination for the route.

After a route task is added to an input path, a default case and an Otherwise case are created. Cases
are the conditions that are evaluated to determine which sub-path a message takes. The Otherwise
case is always present, and is used when all other cases evaluate to false.

o Create more cases for the route, to create sub-paths to other target operations in your
mediation flow.

Add variables to hold the value of data from the message content or message context. These
variables are used in the routing conditions you specify in each routing case.

Specify the routing conditions for each case, using the variables that you have defined for the route.

Use the Input tab on the route task to map data from the message context or message content to the
variables you defined in step 2.

TIBCO ActiveMatrix® BPM Mediation Component Development

Adding Routing Cases

Routing cases define the potential destination for the route. Each case leads to a different potential

target operation. You must specify two things for each routing case: a name for the case and the
destination to which the case leads.

Each routing case leads to one potential target operation. Target operations cannot be shared among

routing cases. The relationship between routing cases and target operations must be one-to-one.

Adding a routing case

Mediation Interfaces

= @ QueryicDs

= [# = Mediation Paths

%] searchiirline
ﬁ,] searchiCar
4%] searchHotel

pl 4
Input Cutput Fault

By

z CaseMyCountry
—Me

casel

Procedure

e Use one of the following starting points to define a routing case.

Otherwise 5
&)

>

Target Interfaces [0 [—
¥ @ QueryaDs &0 =
5’@] searchailing

%]search(:ar

.E%] searchHokel

T e QueryaDa_fsia oo

13

E;l searchairling
‘?n] searchCar
%] searchHokel

|»

47

Starting
Point

Procedure

Input task

1. Click the route task in the input path of the mediation flow.

2. Drag the cursor to the destination.

The sub-path is automatically drawn, and a case with a default name is added to

the Decision tab.

Decision tab

1. Open the Decision tab of the route task.

2. Click the Add Case button E[',E_. on the toolbar.

The Add Case button creates a case, but it does not lead to a specific target
operation. The image shows the sub-path that is displayed in this situation. The

sub-path leads to an error icon.

See Modifying Case Names or Destinations for details on how to change the
destination of the routing case to a valid target operation.

Specifying Case Targets in the Decision Table

You can specify a target in the route task Decision table. If you retarget a Route task, the entire nested

routing structure is replaced.

Procedure

1. Click inside the cell where the target is located.

2. Choose a target from the drop-down list.

TIBCO ActiveMatrix® BPM Mediation Component Development

48

o Target operations that are not already targeted.
» Generate Reply or Throw Fault mediation tasks.
» End Mediation task for one-way (in-only) operations.

» Route and XPath Route mediation tasks, which enables you to build nested routing structures.

Modifying Case Names

Use the Decision tab on the route task to change the name of the routing case.

Procedure

1. Click the name in the Case column.

2. Edit the name in the text box.

Modifying Destinations
Use the Decision tab on the route task to change the destination of the routing case.

Procedure

1. Click the name in the Case column.

2. Select the option that matches your goal.

o For selecting a new target operation, use the drop-down list in the Target Service/Operation
field on the Decision tab to specify the new target operation.

o For newly created routing cases that point to an error icon, click the error icon and drag the
cursor to the target operation.

o For routing cases that point to a valid target operation, click the round ball at the end of the
input path, and drag the cursor to the target operation.

Moving Cases in the List

Cases are evaluated in the order in which they appear in the list. The first case whose condition
evaluates to true is taken, so you might need to move cases up or down in the list.

Procedure
1. Select the row of the case.

2. Click the Move Up 4} icon on the toolbar to move a a case up on the list.

. Click the Move Down - icon on the toolbar to move a case down on the list.

Deleting Cases
You can delete a routing case in two ways.

Procedure

TIBCO ActiveMatrix® BPM Mediation Component Development

49

Starting Point | Procedure

Mediation flow . _
1. Select the sub-path of the routing case in the mediation flow.

2. Right-click and select Delete from the menu, or press Delete.

Route task . .
1. Select the row of the routing case on the Decision tab of the route task.

2. Click the Delete Case icon % on the toolbar.

Nesting Multiple Route Tasks
You can use multiple, nested Route tasks to send a message to a target operation. Doing so enables you
to create complex mediation paths with multiple conditions.
When you use nested Route tasks, the mediation path shows whether a route goes directly to a target
operation, or goes through another Route task first. When multiple Route tasks are in the mediation
path, the task output details (or case paths) from only one of the Route tasks is visible at a time.

Procedure

1. To see the output details of another Route task in the mediation path, click the button next to the
Route task icon, or use the outline view to navigate to a specific Route task.

2. To see the level of a route in a nested set of Route tasks, place the cursor over the " button next to
the Route task icon.
In this example image, the top-level Route task shows nested routes in a mediation flow in the red
circle. Nested routes appear in the Outline view in the blue circle.

TIBCO ActiveMatrix® BPM Mediation Component Development

50

[i“_-, *Project Explorer &3

= = =
B || | *queryGsinvoke mediation 23 =
|
= & = 7
=) ﬁ‘>| G Mediation Interfaces <= Mediation Paths »] &l 2y tinterfaces [[H +— i
j%mediaﬁun‘querygds.invuke.jv [trunkfesb-dey forods Input Qutput Fault
El&ﬂ mediation, querygds.invoke. soa [trunk/esb-devfpro =
Elkkg mediation.queryads.soa [trunk/esb-dev/product/szl|| T € QueryGDS = T @ QueryGD '}U | Tl
2] searchairline 2] searchairline
#] searchcar 2] searchcar
2] searchHotel e& e 2] searchHotel
%] searchall 2] searchal
casel %
' gl
case3 Al
|7
cased]
Otherwise L
W&
i | =
5= outtine 52 " [E3 Deplomentsarver} =0 Rl
L g Ak = -
H i @&| searchairiine =
2] searchCar EZl Properties 2 I_:__ Problems] L5 Registries (%3 e
=] 2
e £ Route Mediation Task
: |
18] casat Gkl Namfa:. irequestchange !
B8 requestChange 2 Description: | |
B8] casel
2] searchairine ot
E| Q] cased
?] searchCar
El-8] Otherwise
‘ ./A\n throw 1
5] case2
5] case3
EH-5] case4
E=-Bp] Otherwise
[1
...] cazrchall LI
Lo | | & ¥

Adding and Deleting Variables

Variables hold the data that you use in expressions for each routing case. Variables are managed on the
Decision tab of the route task.

&

After a variable is created, you cannot change its name or data type. To change a variable, you must
delete the variable and create a new one.

Procedure

® You can add or delete a variable.

Task

Procedure

Add a variable

Click the Add Variable icon 'ﬁ- on the toolbar of the Decision tab. These data
types are available:

o String (default)

o Integer
e Boolean
o Float

o Double

TIBCO ActiveMatrix® BPM Mediation Component Development

51

Task

Procedure

e Decimal

Delete a variable | Click the Delete Variable # icon on the toolbar.

Mapping Data to Variables

After creating a variable, you must map data from the mediation operation to provide a value for the

variable.

Procedure

1. Click the Input tab of the route task.

In the Input tab of a route task, the right-hand panel is labeled Rule Variables. The schema in the
right-hand panel contains a list of the variables that you have defined for the route task.

2. Use XPath expressions to provide a value for each variable in this schema.
In the example shown, one variable named city is used to determine the destination of the message.
In this example, the city specified in the search request is mapped to the variable named city. The
value of the variable is then used in routing conditions to determine which target operation should
receive the message.

Mapping values to variables

5

,L_'_l Properties &5 . _|:d Proble1115|iiRegish'1es] Gy 9 W | e ¥ | A b = i

£» Route Mediation Task

ABL o Target Service/Operation
QueryGDS/searchHotel

=Mumbai' QueryGDS_AsiafsearchHotel
CaseEuropeanCity ='Paris' QueryGDS_Europefseard1Hotelg
CasellSCity ="NMew York' QueryGDS_US/searchHotel
Otherwise Throw Fault
< i 3

The section Schema Components explains that schema components on the left side of the
mapper are not validated against the message schema, and their data types are thus not
guaranteed. Therefore, data used within XPath expressions on the right side of the mapper
is treated as untyped strings. Simple drag-and-drop mappings are not affected. However,
if you want to perform data type-dependent comparisons or operations, you must use the
Constructor Functions on the Functions tab (for example, xsd:int()) to correctly specify
the data type. For example, to add two integers, the XPath expression would be:

xsd:int($MessageData/intl) + xsd:int($MessageData/int2)

Routing Conditions

Routing conditions determine which sub-path a message takes. Routing conditions are specified in
order, and the message is sent along the sub-path corresponding to the first condition that evaluates to
true. The Decision tab of the route tab contains the routing conditions for the route.

Routing conditions are XPath expressions, but each type of route task has a different method of
specifying routing conditions:

TIBCO ActiveMatrix® BPM Mediation Component Development

52

o The Route task enables you to specify basic comparison expressions for each variable you have
defined.

o The XPath Route task enables you to use more complex XPath expressions.
The type of route you use depends on the complexity of the routing conditions you need to define.
Conditions for Route Tasks

Route tasks create a simple comparison condition for each variable you have defined. A Route task is
useful in situations where a basic comparison of a few variables can be specified.

Routing conditions for Route task

,L_'_n Properties &3 L'L Problems];iiRegism'es] & LI\'.E.. &. | T | HE AL T]

£ Route Mediation Task
|

General ! | ABL dﬁ | Target Service/Operation
Decision iCas QueryGDS /searchHotel
Input CasehsianCity =Mumbai' QueryGDS_Asia/searchHotel
CaseEuropeanCity ='Paris’ QueryGDS_EuropefsearchHoteE
CasellSCity ="Mew York' QueryGDSs_Us /zearchHotel
Otherwize Throw Fault

In this example, basic equality comparisons are performed for each case. When the city variable is equal
to Palo Alto, the case named CaseMyCity evaluates to true, and its corresponding sub-path is taken. If
none of the routing conditions evaluate to true, the sub-path for the Otherwise case is taken.

Editing Route Task Conditions

The Route task is useful in some sitatuions where a basic comparison of a few variables can be
specified.

Procedure

1. Click the cell for each variable and each case.

2. Specify a comparison operator and a constant value for comparison.

Basic comparison operators are available in a drop-down list in the condition:

e =(equal)

e !=(notequal)

e <(less than)

e <=(less than or equal)

e > (greater than)

e >=(greater than or equal)

o =true() (only for variables of type boolean)

» =false() (only for variables of type boolean)

All conditions for each case must evaluate to true for the condition to be true.

In the example loan application shown, the operation SimpleLoanPortType/SimpleRequestLoan can
be used in two circumstances:

TIBCO ActiveMatrix® BPM Mediation Component Development

53

o For loan amounts that are less than or equal to $50,000.

o When the applicant has a credit score above 700.

If neither of these conditions is true, the LoanPortType/RequestLoan operation that requires more
information from the applicant must be used.

Routing with more than one variable

= Properties £3 \Eroblems|Registries| % % | o | qp A e
- e
Eerieral £ Route Mediation Task
I
| Decision Case || ABE amaunt | BBL creditscore Target Service/Operation
Input SimpleLoanRequast £=50000 =700 SimpleLoanPort Type/SimpleRequestLoan
LoanRequest =0 LoanPortType/Requestloan
Otherwise I ThrowFault
A | =

Conditions for XPath Route Tasks

&

XPath Route tasks allow more complex comparisons for each case than does a Route task. You can
specify an XPath expression for each case that examines the value of one or more of the variables that
you have defined.

For example, you can create an expression that specifies a range of time (such as 9AM to 5PM), or you
can create an expression that compares two or more variables. Your expressions are not limited to
simple comparisons, and you do not need to use any of the variables you have defined in the
expressions.

XPath Route tasks are more flexible than Route tasks, but specifying the expression is more complex.
You must type the XPath expression in the condition field next to each routing case.

Variables are referenced in the XPath expressions for each routing case by their names. Unlike XPath
expressions in the Transform task, you do not need to use a dollar sign to specify the root of the path to
the variable. For example, the expression to determine if the city variable is equal to Palo Alto would be:

city = "Palo Alto”

The Transform task has a graphical XPath editor that you can use as a reference for creating XPath
functions for the route task. See Using XPath and Data Function Tabs for more information about
XPath.

As noted in Mapping Data to Variables, data type-dependent comparisons and operations should use
constructor functions to typecast the data.

Changing Route Tasks to XPath Route Tasks

&

You can change a Route task to an XPath Route task if, for example, you originally create Route tasks
then later realize that a more complex routing condition is required. Instead of removing the existing
Route task, you can convert a Route task into an XPath Route task.

Converting a Route task to an XPath Route task is a one-way operation. You cannot convert an XPath
Route task to a Route task.

TIBCO ActiveMatrix® BPM Mediation Component Development

54

Procedure

1. Select the Route task to convert in a mediation flow diagram.

2. Right-click the Route task and select Convert to XPath Route from the menu.
All variables and cases are maintained, and routing conditions are converted to the correct XPath
syntax.

3. Change the condition for each case, as necessary.

TIBCO ActiveMatrix® BPM Mediation Component Development

55

Transforming Tasks

Transform tasks, used to manipulate data available in a mediation exchange, are necessary when the
schema of the input, output, or fault message does not match the schema of the message of the expected
recipient.

Transform tasks enables to achieve several goals:

e Create a mediation operation that allows new clients to use legacy services with different schemas.
Your new client might need a service that returns an integer for salary information, but the legacy
service returns a string.

o Contribute data to the mediation exchange for use in subsequent mediation tasks. For example, you
might want to place into a string the time a message was sent, the sender of the message, and the
value of one of the elements within a message. You can then use a log task to write the contents of
that constructed string to the log file.

e Manipulate and store data in the mediation exchange without changing the actual message content.

Transform tasks have an Input tab that contains the expected schema of the recipient’s message and the
data available in the mediation flow.

The Input tab of a Transform task

C__EPropﬁﬁes X\ _Eﬂ Data Source Explorer]Lf_,Problems] rf%:) 0 S | Eﬂ E! i 1|

22 Transform Mediation Task

S
General Mediation Operation Context

Input Data Source] Functions | Constants
Output El-$= gMediationFlowProperties
- El properties

Target Operation Context

l XPath Expression |

=l 5= MessageData
[B searchHotelRequest

E-$= SMessageData
searchHotelRequest
[=] E parameters
& searchHotel
-fBE country
B ity
~fiBL state
~ABE nearAddress? —
~fBE hotelMame? ——
@ checkInDate —
@ checkQutDate —

[=] parameters

Bl B searchHotel

RBL country

-RBE oty

- RBE state
RBC landmark?
ABL hotelName?
@ checkInDate
@ checkQutDate
123 noCfRooms

- 1 nonSmoking?

SMessageData/ns:searchHotelRequest/ns:parameters /nsd:sear. ..
SMessageData/ns:searchHotelRequest/ns:parameters/ns0:sear. ..
SMessageData/ns:searchHotelRequest/ns:parameters/nsd:sear. ..
SMessageData/ns:searchHotelRequest/ns:parameters nslisear. ..
SMessageData/ns:searchHotelRequest/ns:parameters/nsl:sear, ..
SMessageData/ns:searchHotelRequest/ns:parameters /insd:sear. ..
EMessageData/ns:searchHotelRequest/ns:parameters /ms0:sear. .
SMessageData/ns:searchHotelRequest/ns:parameters/nsl:sear. ..
SMessageData/ns:searchHotelRequest/ns:parameters nslisear. ..

23 rooms

1 nonSmoking? —

The message panel contains an XSLT stylesheet that creates the message that the recipient expects. The
message panel initially displays the expected schema of the recipient’s message, to give you hints about
constructing the message.

The Mediation Operation Context panel contains the data available from the message sender. You can
drag items from the context panel to the message panel to perform simple mappings. More complex
mappings are also possible through the XPath expression field and by using the right-click menu in the
message panel to add XSLT statements.

XPath and XSLT are standard tools for data transformation. Extensive knowledge of XPath or XSLT is
not necessary to use the mapper effectively. You can accomplish most transformation usage cases with
information available in this chapter and in the Help text available for each XPath function in the
product.

If you perform more complex transformations, however, it is helpful to have some detailed references
on XPath and XSLT. It is beyond the scope of this manual to provide a complete reference for these
tools. You can find the complete XPath and XSLT specification at www.w3.org, and several third-party
commercial books are available on both XPath and XSLT.

TIBCO ActiveMatrix® BPM Mediation Component Development

http://www.w3.org

56

Example of Transformation
In this example of using the Transform task, the mediation flow is for a travel reservation service.

The mediation operation exposes the service as a single interface, but the mediation flow routes
incoming requests to the appropriate local service based on the location of the hotel. Different
continents have different target services that perform the hotel reservation. The schemas for different
locations are slightly different, and so some transformation might be necessary.

A travel reservation mediation flow: the input path

Mediation Intetfaces = ¥ = Mediation Paths]] iﬁ:_‘ Target Interfaces E E =
Input Qutput Fault

'\E‘f-
4
|

To QueryGDS s i 1] QueryGDS

?u] searchairline | ‘?n] searchairline
?u] searchCar) ?n] searchCar
2 Lasehivab; ?ﬁ] searchHokel

&

r\g
4

1] QueryGDS_Asia
‘?n] searchairling
?n] searchCar

CasehsianCity @_@) ?ﬁ] searchHokel

To QueryGDS_Europe ‘Eﬂ =

?u] searchiirline
?n] searchCar
?ﬁ] searchHokel

-

CaseEuropeanCity @_@
Ejs

r\g
q

¥ 2 QueryGDs_US

_‘?n] searchairline
‘?n] searchCar
?ﬁ] searchHokel

CasellSCity @@
= o

Ctherwise @_@ NED
=1 |

v

=

Transform tasks are required when requests come in for any city other than the local city, because the
schemas for the other target operations are different from the mediation operation. The image shows
the transform task for the case when a reservation is requested for an Asian city.

Basic Mapping

The schemas for the mediation operation and the target operation are similar, except that the mediation
operation has an element named nearAddress and the corresponding element in the target operation is
named landmark. For all other elements, you can drag and drop the data component in the mediation
operation to the corresponding data component in the target operation, and the appropriate XPath
expression is placed in the XPath field.

For the nearAddress and landmark elements, you might need to manipulate the data to transform it to
the expected format.

TIBCO ActiveMatrix® BPM Mediation Component Development

A basic mapping example

Mediation Operation Contexk

57

Target Operation Message

Data Source] Functions | Coristants |

I %Path Expression

[fl"'$= $MediationFlowProperties

= $MessageContext

= 4= $Messagelata

searchHotelRequest:

== parameters
El-E] searchHakel

- fBE country

-fiBE city

- fBE state

- 123 rooms

- fiBE nearaddress? a
- fBE hoteltlame? ;
B checkinDate — i
@ checkQutDate — =

- 10 nonSmoking?

[l 5 MessageData

[B searchHotelRequest
] [E] parameters

E B searchHatel
-|———————— 0BL country
-f————RBL ity
e -

-|—————————RBL hotelName?
@ checkInDate
——————— @ checkOutDate
—————— 123 noOfRooms
10 nonSmoking?

$MessageData/ns: searchHaotelRequestins: parameters/nsl: sear. .
$MessageData/ns: searchHaotelRequestins: parametars/ns: sear. .
$MessageData/ns: searchHaotelRequestins: parametars/nsl: sear. .

$MessageData/ns: searchHotelRequestins: parameters/ns: sear. ..
$MessageData/ns: searchHotelRequestins: parametersfns:sear. ..
$MessageData/ns: searchHotelRequestins: parametersfns:sear. ..
$MessageData/ns: searchHotelRequestins: parametersfns:sear. ..
$Messagelata/ns: searchHotelRequestins: parameters/ns:sear. ..

In this example, the nearAddress element contains the name of the location separated by a comma,
followed by the actual address. The 1andmark element is expecting only the name of the location. To
make the data match the target operation’s expectations, you need to take the substring of the
nearAddress element up to the comma that separates the name of the location from the address.

Using XPath Editor

When you drag functions from the Functions tab to the XPath Expression window, the function shows
markers in double angle brackets (for example, <<string>>) for completing the function. You can drag
data components and constants from the Data Source or Constants tab to complete the function. You
can also type in the XPath Expression window to replace the markers manually.

The XPath Editor Window

Filker: |

Target Operation Message

l ¥Path Expression

Data Source [Functions] H

E-(= String Furctions |
skring

string-lzngth _J

cancat
i skring-join
normalize-space
substring
substring-before

i W substring-after ¥
1I I 3

Eeturns that part of :I
the first argument that

nrecedes the first T
4l | B

Procedure

Bl &2 MessageData
E B searchHotelRequest
B E] parameters
E B searchHatel

ABL country
ABL city
ABL state
ABL landmark
ABL hoteltamer?
F checkInDate
FH checkoutDate
123 noofRooms
V@ nonsmoking?

$Messagelata/ns:searchHokelRequest ns: par ameters/ns0: searchHotelfcountry
$Messagelata/ns:searchHotelRequest ins: par ameters/ns0: searchHotel ity
$Messagelata/ns:searchHotelRequest ins: parametersfns0: searchHotelfstate
ubstring-beforel < < string ==, <= before-string ==}

=

H

1. Click the XPath Expression field next to the landmark element in the target operation message

schema.

The field expands to a larger text box so that you can edit the expression easily.

Click the Functions tab on the at the top of the context panel.
Expand the String functions folder in the functions list and locate the subtring-before function.

Drag the substring-before function into the XPath Expression window.

In the example, you would replace the <<before-string>> marker with a comma and then drag
the nearAddress element onto the <<string>> marker. The image shows dragging the data
components into an XPath function.

TIBCO ActiveMatrix® BPM Mediation Component Development

58

Dragging a data element into a function

Mediation Operation Context Target Operation Message
Data Source] Functions | Constants | I %Path Expression
E-$= $MedistionFlawProperties El & MessageData
"$= 4MessageContext =— [E] searchHotelRequest
E-$= $MessageData a0 [E] parameters
E-E searchHotelRequest B [E searchHotel
BEI parameters i’ ————————— HBL courtry $MessageData/ns:searchHotelRequestns: parametersfnsi: searchHotelf . ..
ElLE_l searchHatel _.-"f,‘_ ———————fBL ity $MessageDatalns:searchHotelRequest/ns: parameters/ns: searchHatelf. ..
- fBE country _-’l_,f'l__r —————————HBI state $MessageData/ns:searchHotelRequest ins: parametersfns: searchHotelf. ..
—BL city f}f' & [IBL landmark ubstring-before<frgbing =en =]
fBL state - for—————— ABL hotelMame?
- fBL nearfddressr / r|———— B checkinDate
B hatelamer /7| —— B3 checkoutDate
[checkInDate .-"I,-";,- ————————— 123 noOfR.ooms
----- F checkoutDate "}",f" — ¥l nonSmaking? ;I
123 rooms '_;J
----- 10 nonsmoking: ©

More complex transformations are possible with the features available in the Input tab.

Data Contribution to the Mediation Exchange

The Transform task can modify the message data within the mediation exchange, and contribute new
data to the mediation exchange.

On the General tab of the Transform task, the checkbox labeled Contribute Output to Mediation
Exchange specifies how the Transform task results are handled.

o If Contribute Output to Mediation Exchange is cleared, the results of the transformation is used to
construct a new message. This option is cleared by default.

o If Contribute Output to Mediation Exchange is selected, the results of the Transform task are
added to the mediation exchange as a new data element. The new data element is available to
subsequent mediation tasks along the same path, and the name of the data element is the same as
the name assigned to the Transform task.

The Contribute Output to Mediation Exchange option is automatically selected if you use an external
stylesheet for data transformation. See External Stylesheets for Data Transformation.

External Stylesheets for Data Transformation

&

External, third-party XSLT stylesheet can be used for data transformation using the Transform task.
This enables you to specify the transformation mapping in your workspace, outside the mediation flow.

It is possible to specify an external XSLT stylesheet for transformation in two ways using reference
types.

» A static reference can be used to select a single (static) stylesheet from a folder in your project.

e A dynamic reference can be used to select a set of stylesheets from a folder in your project. At run-
time one of the stylesheets in the list is used dynamically, based on the value provided for the
stylesheetURI element in the Input tab of the mediation task.

For example, if the folder specified for the dynamic reference is MySOAProject/Service Descriptors
and the stylesheet is in the folder MySOAProject/Service Descriptors/folderl/sample.xsl, the
value that must be provided for the stylesheetURI element would be folderl/sample.xsl.

‘ The stylesheet for a reference must be located in the same project as the mediation flow that uses it.

TIBCO ActiveMatrix® BPM Mediation Component Development

Specifying an External Stylesheet for Data Transformation

Procedure

1. On the General tab of the Transform task, select the checkbox labeled Use External Stylesheet.

The stylesheet selection options open on the General tab.

| Properties &% z _ﬁ Data Source E:cplorer] |:_ Problems‘|

e

£ Transform Mediation Task

1 Mame: | transform2
General et :
Description:
Input =
Output Contribute Qutput to Mediation Exchange:
———— | Lise External Stylesheet:
Input and Output Style: ':Text B
Stylesheet Reference Type: [5tatic E
& Not Set -

Static Stylesheet Reference:

o]

59

2. Open the Input Style drop-down menu and specify how the XML should appear.
o Text Specified with a string.
e Binary Specified with a binary value.
o Tree Specified with a type of any, enabling you transform data that is already in an XML
document
Contribute Output to Mediation Exchange is automatically selected for this type of
transformation, which prevents the MessageData from being overwritten when an
& external transformation is used. Also, the input and output of the transformation task
always match the Input Style you select. For example, if the input is text, the output is also
be text.
3. Open the Stylesheet Reference Type drop-down menu of the General tab and select the type of

reference for the Transform task to use:

Option | Description

arrives, the value is transformed using the specified stylesheet.

Static
reference | 1- Browse and select a stylesheet from the stylesheets you have saved in your project.
type 2. Open the Input tab of the Transform task and map the data, so that when the data

General #£ Transform Mediation Task

Input
L Mediation Opsration Contaxt Target Operation Context
Output

Data Source | Functions | Constants | | | #Path Expression

Bl $ $MedlatlonF\owPropert\es [5} MessageData
= properties = [E] =TransformymistringInputst:

G$ $MessageData REE xmiString $MessageDataftns InOutRequest/tns:parameters/tns:InOutfin
=2 InoutRequest I Bl paramater®
= E] parameters
=8 D InOut
= |

TIBCO ActiveMatrix® BPM Mediation Component Development

60

Option | Description

Dynamic
re¥erence 1. Open the Dynamic Stylesheet Folder drop-down menu of the General tab and
type select the folder where one or more stylesheets are located.

2. Open the Input tab of the Transform task and provide the stylesheet name as a
parameter in the message data.

General %2 Transform Mediation Task
Input
Mediation Operation Context Target Operation Context

Output

Data Source | Functions | Constants | | | #Path Expression

E-$= §MediationFlowProperties B Ei MessageData
H Bl properties B Bl xransformxmiStringinpueDy
214= §MessageData RBE xmistring
E-E] InoutRequest ABL stpbshestirs i |
5B parameters Bl paramater

At run-time, ActiveMatrix searches for this name in the folder you specified.

If the xsl file is in a sub-folder, the name must include the relative path name. For example, in the
case where the xsl file is located in company/dept/app.xs1, the top-level folder (in this example, /
toplevel) is prepended to locate the exact location for the file in the project:

/toplevel/company/dept/app.xsl

See Transform for reference information about the Transform task.

Schema Components

The message panel and context panel each contain schemas that contain data components. The icons
represent the general data type of the component. To see the exact data type, hover the cursor over a
component to open a pop-up.

Icons for schema components

Icon Description

5 Complex element that is a container for other datatypes. This is also called a parent
in the schema tree.
String or character value.
RBC
Integer value.
123
00 Decimal (floating point) value.
Boolean value.
10
Date value.
H=
@ Time value.

TIBCO ActiveMatrix® BPM Mediation Component Development

| (o]
iy

Icon Description
0l Binary (base 64()) value.

Choice of multiple values. The actual data value can be one of a specified set of
4 datatypes.

To improve performance, data contained within schema components in the left side of the mapper are
& not validated against the message schema for the operation. Therefore, data used within XPath
expressions on the right side of the mapper are treated as untyped strings.

To perform datatype-dependent comparisons or operations, use the Constructor Functions on the
Functions tab (for example, xsd:int()) to correctly specify the datatype. For example, to add two
integers, the XPath expression would be:

xsd:int($MessageData/intl) + xsd:int($MessageData/int2)
Qualifier Characters

Schema data components can have additional characters to the right of the element name that specify
additional information. If there is no qualifier, the schema component is required and you must provide
a mapping that results in a value for the schema component.

Qualifier Description
none Element is required.
? Element is optional.

Element repeats zero or more times.

+ Element repeats one or more times.

Context Panel

The name of the context panel is based on the type of path where the Transform task appears.

Input Mediation Operation Context
Output Target Operation Context
Fault Mediation Fault Context

The context panel always displays the schemas that define the data for the current mediation
properties, message flow context, and message data. Regardless of the type of path, the schema of the
mediation properties and message flow context are always the same. The schema for the message data
varies depending upon the schema of the recipient’s expected message.

TIBCO ActiveMatrix® BPM Mediation Component Development

62

Schema for message properties and message flow context

Schema Component Description

MediationFlowProperties This schema component contains an element named properties that
is of type complex that contains the properties defined on the
Properties tab of the mediation flow. See Adding a Mediation Flow
Propery.

MessageFlowContext This schema component contains the defined context parameters.
See Working with Message Context Properties.

MessageData The MessageData component contains the message of the expected
recipient.

For example, for input paths this component contains the schema of
the input message of the mediation or the target operation. For
output paths, this component contains the schema of the reply
message of the mediation or the target operation. Similarly, for fault
paths this component contains the schema of the fault message. For
fault paths, this component contains a choice element that contains
either one of the faults returned by the target operation or a generic
Undeclared fault message

Message Panel

The message panel contains the schema of the message that the recipient expects. The name of the
message panel is based on the type of path where the Transform task appears.

Message panel
Input Target Operation Context
Output Mediation Operation Context
Fault Mediation Fault Context

You can use the data in the schemas from the context panel to construct the content of the message
expected by the receiver. The message panel is actually an Extensible Stylesheet Language
Transformation (XSLT) template that specifies how data will be transformed to produce the expected
message.

You do not need detailed knowledge of XSLT to create the mappings for the message. Most mappings
can be accomplished by simple dragging from the context panel to the message panel, and also possibly
using a few XPath functions for simple data manipulation. If you want to see the XSLT template that is
created from your mappings, click the Show Edit Tab icon on the toolbar, then click the XSLT Source
tab at the top of the XPath editor dialog.

See Data and Function Tabs and Managing Mappings for more information about using XPath
functions and creating mappings.

TIBCO ActiveMatrix® BPM Mediation Component Development

63

Data and Function Tabs

Use the tabs at the top of the context panel to select items to drag to the message panel.

Data and Function Tabs

Tab Description

Data Source Contains the schemas for the mediation flow properties, message flow
context, and message data. This tab is selected by default when you
view the Input tab. See Context Panel.

Functions Contains a set of XPath functions organized into related functional
groups. XPath (XML Path Language) is an expression language
developed by the World Wide Web Consortium (W3C). XPath
functions perform data manipulation, such as mathematical functions,
string manipulation, or logic operators.

You can select and drag XPath functions in this tab to the XPath
expression field or to the Show Edit Tab dialog in the message panel.

Each function has help text to describe the function’s use and syntax.
The help for the function is displayed below the function list in the
Functions tab.

See TIBCO XPath Functions that describes the functions added by
Mediation.

Constants Contains constants such as whitespace or symbol characters that can
be used in XPath expressions.

When you drag data, a function, or a constant to the right-hand panel and hover over an existing
expression in an XPath editing window, the background color of the text underneath the cursor
changes. The new color indicates the result of placing the item at that point:

o Light turquoise - The highlighted text is the first parameter of the dropped function.

o Light pink - The dropped item replaces the existing text.

As noted in Schema Components, data in schema components on the Data Source tab are not validated

& and checked against the types in the message schema. Therefore, data is coerced into an untyped string.
The Constructor Functions on the Functions tab must be used on data to correctly evaluate most
functions and operators.

TIBCO ActiveMatrix® BPM Mediation Component Development

64

TIBCO XPath Functions
TIBCO XPath Functions describe the functions added by Mediation.

TIBCO XPath Functions

Function Name Description

base64ToString Converts a base64 binary encoded string to a string using the specified
encoding. If encoding is not specified, UTE-8 is used.

Template
base64ToString(<< encodedString >>, << optional encoding >>)
Return Type

string

stringToBase64 Converts a string to a base64 binary encoded string.
Template
stringToBase64 (<< stringToEncode >>)
Return Type

string

hexToString Converts a hex string to a string using the specified encoding. If encoding is
not specified, UTF-8 is used.

Template
hexToString(<< encodedString >>, << optional encoding >>)
Return Type

string

stringToHex Converts a string to a hex encoded string.
Template
stringToHex (<< stringToEncode >>)
Return Type

string

timestamp Returns the number of milliseconds since midnight, January 1, 1970 UTC, at
the instance of the call to this function

Template
timestamp()
Return Type

long

TIBCO ActiveMatrix® BPM Mediation Component Development

65

Creating Custom XPath Functions

Procedure

10.

11.

12.
13.

Run TIBCO Business Studio from the Start menu.
For example, select Start > All Programs > TIBCO_Home > TIBCO Business Studio N.N > Studio
for Designers

Select File > New > Project
In the New Project dialog under Plug-in Development, select Plug-in Project and click Next.

Specify a name for the project that reflects the XPath functions (for example, My Custom Functions).
Accept all other defaults and click Next.

On the Plug-in Content page, locate the Plug-in Options group, and clear these options:

* Generate an activator, a Java class that controls the life cycle of the plug-in.
e This plug-in will make contributions to the UL

Accept all other defaults, and click Next.

In the Templates page, select Custom XPath Function Wizard and click Next.

In the Custom XPath Function Group dialog box, provide values:

o Category: This is the name of the category that will include the custom XPath function.
e Prefix: The prefix for the functions

» Namespace: The namespace for the functions.

o Help Text: The description of the functions.

Click Next to continue.

The XPath Function Group Creation Section dialog is displayed. Here you specify the function and
function parameters.

Click the Add button located on the right side of the XPath Function table and provide values.

¢ Name: The name of the function.
e Return Type: The return type of the function.
¢ Description: The description of the function.

Click the Add button located on the right side of the XPath Function Parameters table.

e Name: The name of the parameter.

e Type: The data type of the parameter.

e Optional: Select the check box if the parameter is optional.
Click Finish.

TIBCO Business Studio opens the Open Associated Perspective dialog, which asks if you want to
open the Plug-in Development perspective.

e Optionally, select the check box Remember my decision. Click Yes.

TIBCO Business Studio opens the custom XPath function plug-in and the Plug-in Development
perspective.

Result

Along with the custom XPath plug-in, a SOA Project < plug-in project name>.deploy.soa is created.

TIBCO ActiveMatrix® BPM Mediation Component Development

66
Your custom code is written in < plug-in project name>\src\<plug-in project name>\<category name>.java.

Exporting Custom XPath Functions
You can install a custom XPath function in TIBCO Business Studio.

Procedure

1. To create a feature project specify the plug-in to package into the new feature.

See Supplemental Eclipse Help > Plug-in Development Environment Guide > Reference >
Wizards and Dialogs > New Project Creation Wizards for more information.

2. Export the feature project
Make sure you select the check box for the Generate metadata repository option.

See Supplemental Eclipse Help > Plug-in Development Environment Guide > Reference >
Wizards and Dialogs > Export Wizards > Export Feature for more information.

3. Install the feature using Help > Install New Software.

Specify the location where you exported the feature project. Unselect the check box for the Group
items by category option which will then list the feature project.

Result

The custom XPath function is ready for use and can be accessed from the Input path of the data
transform function.

=1 properties. £2 .. W Data Source E!q:»lureq [Prcblems]

&8 Transform Mediation Task

General Filter: |
Input Data Source | Functions | Constants
Dutput - {= Numeric Functions

-l String Functions

[Boolean Functions
[Date,/Time Functions
oy Aggregate Functions
(== QName Functions
-[Z% Node Functions

[Sequence Functions
[Context Functions
= URI Functions

[z Constructor Functions
- Operators

EE General Information
Bl (2= Tibeo XPath Functions
B2 My Custom Functions
o MyFunction

B e e e B

&

This is a custom xpath function.

Template

MyFunction (<< input param 1 >>,
<< input param 2 >>)

Return Type

string ll

TIBCO ActiveMatrix® BPM Mediation Component Development

67

Deploying Custom XPath Functions
After the file < plug-in project name>\src\<plug-in project name>\<category name>.java is
updated with the custom code, the deployable artifacts can be generated.

Procedure

1. Make sure the Target Platform points to TIBCO ActiveMatrix Runtime and no errors occur in the
custom XPath function plug-ins.

See Composite Development for information on switching the Target Platform.
2. In the Project Explorer pane, expand the < plug-in project name>.deploy.soa project.
Expand the Composites folder.

4. Right-click < plug-in project name>.apt.composite and click Create DAA.

Result

The Create Deployment Archive wizard is invoked. Refer to Composite Development for more
information on using this wizard.

& Deploy this deployment archive, the DAA, like any other SOA project. Refer to Administration for
information on uploading and deploying the DAA.

Testing Custom XPath Functions
Custom XPath function can be tested in RAD by creating a Run As or Debug As configuration

Procedure

1. Add one of the following to the Functions list along with the main composite:

e A composite generated by the Custom XPath Function wizards to the list.
e A DAA created from the composite.

Make sure that the composite or DAA that holds Custom XPath Function is at the top of the list of
Composite/DAA(s), before the SOA DAA/Composite.

2. Select Apply and Run/Debug.

Mapper Toolbar Buttons

The toolbar contains icons to perform various functions in the mapper.

Mapper toolbar buttons

Button Description

Pins the property view to the current selection.

— Click this button to view errors for the selected element or children.

TIBCO ActiveMatrix® BPM Mediation Component Development

68

Button Description

- Click to remove the selected mapping. This button is available only when a
- mapping is selected in the message panel.

If you remove the mapping when a parent node in the schema tree is selected,
all mappings for child nodes of the parent are also removed.

Deletes XSLT statements that you have added using the right-click menu, such
as variables, comments, or choose statements. This button is available only
when a statement you have added is selected.

Opens the Show Check and Repairs dialog.
See Repairing Incorrect Mappings.

Opens a larger Show Edit Tab XPath editing window for the selected element in
&= the message panel. The window gives you access to a larger XPath viewer, the
XSLT source, and controls that enable you to further edit the XSLT statements.

Click this icon a second time to make the Show Edit Tab XPath editing window
disappear.

Right-Click Menu in the Message Panel

Right-clicking on a data component in the message panel opens a popup menu with several choices.

Right-click menu in the message panel

Menu Item Description

Show Mappings Expands the selected component to show all sub-components with
mappings. Also expands any data components in the left-hand panel
that correspond to mappings so that all mapping lines are shown.

If no component is selected, the operation is performed on the root of
the schema tree.

Show Errors Expands the selected data component to show all sub-components
that have errors.

If no component is selected, the operation is performed on the root of
the schema tree.

Expand All Expands all sub-components of the selected data component.

If no component is selected, the operation is performed on the root of
the schema tree.

Surround With > Surround Surrounds the selected data component with a Choose statement. See
With Choose Surrounding a Component With a Choose Statement.

Surround With > Surround Surrounds the selected data component with an If statement. See If
With If Statements.

TIBCO ActiveMatrix® BPM Mediation Component Development

69

Menu Item Description

Surround With > Surround Surrounds the selected data component with a For Each statement.

With ForEach See For Each Statements.

Surround With > Surround

With ForEach Group

Add Child > Variable Adds a sub-component to the selected data component. The child
component will be a variable. Variables can be set to a constant value
and used in other mappings in the message panel. See Adding a
Variable to a Mapping.

Add Child > Comment Adds a sub-component to the selected data component. The child
component will be a comment. See Surrounding a Component With a
Choose Statement.

Add Sibling > Variable Adds a data component at the same level as the selected component.
The new component will be a variable. Variables can be set to a
constant value and used in other mappings in the message panel. See
Adding a Variable to a Mapping.

Add Child > Comment Adds a data component to the same level as the selected component.
The new component will be a comment. See Surrounding a
Component With a Choose Statement.

Toolbar icons The selections from the toolbar are also available in the right-click
menu. See Mapper Toolbar Buttons.

Surrounding a Component With a Choose Statement
Choose statements enable you to conditionally specify the mapping based on an expression. Choose
statements consist of a When clause to specify the condition you want to test, the mapping you want to
perform if the condition is true, and an Otherwise clause to contain a mapping to perform if no
conditions evaluate to true.

Procedure

1. Select the component to surround, right-click, and choose Surround > Surround with Choose...
from the menu.

2. In the Surround With Choose dialog, enter the number of When conditions to test against, and also
specify whether to include an Otherwise clause for any unhandled conditions.

3. For each When clause, create an XPath expression that evaluates to a boolean.

Under each When clause, provide the XPath expression for the mapping that occurs if the When
condition evaluates to true.

5. If an Otherwise clause is specified, provide an XPath expression for the mapping that occurs if no
When conditions evaluate to true.
An example of using a Choose statement is when more than one fault message is handled by the
same Catch Fault task. The figure below shows a Transform task on a fault path that handles two
faults. The Choose statement specifies that when the searchHotel_faultMsg is returned, send the
value of the searchHotel_fault element. Otherwise, send the value of the message element.

TIBCO ActiveMatrix® BPM Mediation Component Development

An example of choose statement

Target Fault Context

;I El properties
$MessageiConkext
[E] MessageContext
L: El transport?
#-E] security?
$MessageData

B =l TargetFauls

Mediation Fault Message

| »Path Expression

[= 5 Messagelata
e—[] [E MedistionOperationRuntimeFault
= *** message - [Choose]
= 7= [when]
ABL message?
E & [Ctherwise]
ABL message?

$MessageDatafns1:TargetFaults/ns sea. ..
$MessageDatafns1:TargetFauls/ns isea..

$MessageData/ns1:TargetFaultstns: Ta. ..

70

EI--([:-_) (searchHotel_faultMsg? | TargetOperationRuntimerault?)

searchHotel_fault

----- fBE szarchHotel_fadk ——— ."I

E|I§| TargetOperationRuntimeFault?
= - ne

Data SourcelI Functions | Constants |

If Statements

If statements enable you to specify a condition, and if the condition is met, then the specified mapping
is output.

When you chose this option, an If statement appears before the selected element, and you must place an
XPath expression in the If statement that evaluates to a boolean. If the expression evaluates to true, the
specified mapping is performed. If the expression evaluates to false, the mapping is not performed and
no value is set for the item. Do not place an If statement around schema data components that are
marked as required.

Example of If statement

Mediation Operation Context Target Operation Message

Data Source | Functions | Constants | | %Path Expression
[fl"'$= $MedistionFlowProperties
"$= $MessageContext
=-$= $MessageData
searchAirineRequest
E-[E] parameters 3 18 roundTrip
E-E] searchaidine P REBL origin $MessageDatajns: searchAitineRequestins:parametersinsiisea, .
-|——————————— B destination $MessageData/ns: searchairineRequestins: parameters/nsi:sea. .
@ departureDate $MessageData/ns:searchairineRequestins: parametersinsiisea...
El <) peturnDate - [IF] stringi$Messagelatains: searchailineRequest/nsiparamatersin...
F departureDate — 3 B returnDate? $MessageDatafns:searchirlineRequest/nsiparameters/nsisea. .,
EA returnbDate? —— = 123 noCfPassengers $MessageData/ns:searchAirineRequestins:parameters/nsiisea. ..
123 noOfPassengers — i -|—————— BBl timePreference $MessageData/ns: searchAirineRequestns: parameters/nsiisea. ..

- fiBL timePreference —

[l 52 MessageData
[E] searchaitlineRequest
& B parameters
E = searchairline

$Messagelata/ns: searchairineRequestins: parameters/nslisea. ..

10 roundTrip ———
fiBL origin
fBL destination —— 5

The example requires a comparison of the value of a boolean element. To obtain the value of the
element, the element is coerced into a string using the string() function and then compared to the
value of the string "true". See Testing Boolean Values for more information about comparing the value
of boolean data components.

In this example, the returnDate schema element is optional. The returnDate element is surrounded by
an If statement that evaluates whether the roundTrip element is true. If roundTrip is true, then the
element is output, if roundTirp is false, the returnDate element is not output. The expression in the If
statement is:

string($MessageData/ns:searchAirlineRequest/ns:parameters/ns0:searchAirline/
roundTrip) = "true"

TIBCO ActiveMatrix® BPM Mediation Component Development

71

For Each Statements
For Each statements enable you to execute one or more statements once for each data element in a list.

When you choose this option, a For Each statement appears before the selected data component, and
you must place an XPath expression in the For Each statement that evaluates to a list of zero or more
items. This is useful when you want to manipulate sequences or repeating elements.

Example of For Each statement

Mediation Operation Conkext Tatget Operation Message

Data Source | Functions | Conskants \ I #Path Expression |
B-$= $MediationFlawProperties Bl 5= MessageData
Tﬂ$= $MessageContext =—[[E] GetLastTradePricelnput

= = body
= [E] TradePriceRequest

E-$= $MessageData &
E-E] GetLastTradsPricelnput &

E-E body ;| BBL brokertame? $MessageDatafns | :Getlast TradePriceInputns1 :body fns: TradePriceR equest brokerMame
B B TradePriceRequest r:"_- —0a T;j, tickerList - [For-Each] $MessageDatafns | GetLast TradePriceInputins1:body fns: TradePriceRequest ftickerList
- fIBL brokerName? ',"'" = () tickerList - [IF] exchange = "NVSE"
B =] tickerList? 7”/ - =l [tickerList
ABL tickerSymbal? 7£-’ ABE tickersymbol? tickerSymbol

fl - ABE exchange? exchange

In this example, the requestor sends a list of ticker symbols and the stock exchanges on which they are
traded. The mediation flow routes the request to different services for each stock exchange. The For
Each statement takes the list of ticker symbols and executes the remaining statements once for each
symbol in the list. The If statement examines the exchange element and outputs only the ticker symbols
for the "NYSE" stock exchange.

Adding a Variable to a Mapping
Variables can be used in any XPath expression within the message panel.
Choosing this option opens a dialog that enables you to specify the name of the variable. You can
change the name of the variable at a later time by selecting the variable and clicking the Show Edit Tab
button in the toolbar. The Variable Name field can be used to change the variable’s name.

Procedure

1. The value of the variable is specified by supplying an XPath expression, either by mapping data
from the context panel or by using XPath functions or constants.

2. Once the variable’s contents have been supplied, the variable can be referenced within the scope
that it has been defined. That is, you can r eference a variable from within the same component or
within sub-components of the component in which the variable is defined.

Adding a variable is useful if you perform the same computation repeatedly. You can refer to the
results of the computation in several message elements instead of recreating the computation for
each item.

In this example, the variable uses the mediation flow property USDtoYenXChangeRate to get the
value of the current exchange rate. That value is then multiplied by 1.02 to add a 2% markup. The
variable can then be referenced in subsequent statements in the mapping.

TIBCO ActiveMatrix® BPM Mediation Component Development

72

An example of adding a variable to a mapping

Mediation Operation Context Target Operation Message
Data Source | Functions | Constants | | #Path Expression |
E-$= $MediationFlowProperties Bl S MessageData
|:_|!§| propettiss B Bl searchibtelReguest
; --fiBL USDto¥en¥changeRate §= [currPlusMarkup=] MediationFIowProperties,l’ns:properties,l'USDto'\"eanhangeRate_A_I
_-RBL CarType ® = parameters *1.02

E|$= $MessageConkext
EI@ MessageContext
: Iﬂ@ transport?
: E@ security? :J
E-$= $MessageData
[—|!§| searchHotelRequest
[E@ parameters

Managing Mappings
A mapping correlates data from the schema in the context panel with a data component in the message
panel.

Procedure

e You can create and manage mappings using several functions:

Function Procedure

Creating a mappin
& Pping 1. Drag and drop data components from the left-hand panel to
the right-hand panel.

2. The appropriate XPath expression is displayed in the XPath
Expression field.

Adding functions or constants | Use the tabs at the bottom of the context panel (described in Data

to an XPath expression Function Tabs).

Opening a larger window in | Click an expression in the XPath Expression field, or click the
which to view or edit an Show Edit Tab button on the toolbar.

XPath statement

» Lines appear between data components that are mapped to each other. The lines are blue when
both components are visible, but the lines turn into a dashed green line when one or more
mapped components are collapsed into its parent in the schema tree.

o Data components in the message panel are initially displayed in italics. Italic text indicates that
the components are hints to the potential mappings you can create.

» Once you create a mapping for a data component, the hint changes from italics to non-italic font.
Non-italic font indicates that the mapping is now an XSLT statement that transforms the data
into the specified component. You can change a hint into a statement without performing a
mapping by selecting a component in a message schema and dragging it past the dividing line
between the left and right panels.

o Data components on the right-hand side of a mapping can be either black or red. If the
component is black, the XSLT statement for the component is valid and complete. If the
component is red, that indicates the statement for the component is an error and must be
repaired as described in the next section.

TIBCO ActiveMatrix® BPM Mediation Component Development

73

Repairing Incorrect Mappings
Any incorrect statements are displayed in red in the message panel. Errors can occur for a number of
reasons. Correct any errors before attempting to execute your mediation flow.
The reasons for errors coule be:

* A required component has no statement and therefore must be specified.

o The message schema has changed, and existing statements may no longer be valid.

o The XPath formula for a component may contain an error.

Procedure

1. If you hover the cursor over any red component name in the message panel, a pop up describing the
error opens.
2. Find potential problems in your mappings and correct them.

a) Click the Show Check and Repairs button on the toolbar. This button opens a dialog with all
potential problems in the specified mappings.

b) Select the Fix checkbox for potential errors, and the software will attempt to automatically fix the
problem.

Some potential problems in the Show Check and Repairs dialog cannot be fixed easily, and no
check box for these items appears in the Fix column. For example, if a component expects a
string and you supply a complex type, the corrective action to fix the problem is not clear. The
problem cannot be automatically fixed. You must repair these items manually.

3. You can delete mappings by selecting one and clicking Remove Mappings.

e If a child component is selected, the component is returned to its original state and no mapping
is specified.

o Ifaparent component is selected, mappings for all child components are also removed.
Mapping an Empty Complex Type

Procedure

1. In the Generate Replly Mediation Task pan select an object.

2. Drag the empty complex object from the Target Operation Context pane on the right to the
Mediation Operation Context pane on the left side.

Using XPath

The Input tab uses XPath as the language for locating and manipulating data. XPath (XML Path
Language) is an expression language developed by the World Wide Web Consortium (W3C) for
addressing parts of XML documents.

XPath also provides basic manipulation functions for strings, numbers, and booleans. To use XPath in
the Input tab, you need only be familiar with the basic XPath concepts, but you might want to learn
more about XPath when building complex expressions. For a complete description of XPath, refer to the
XPath specification (which can be obtained from www.w3.org).

Addressing Schema Components

All data in the context and message panel is represented as an XML schema. The data can be a simple
(strings, numbers, booleans, and so on) or a complex component. Complex components are structures
that contain other schema components, either simple components or other complex components. Both

TIBCO ActiveMatrix® BPM Mediation Component Development

http://www.w3.org

74

simple and complex components can also repeat. That is, they can be lists that store more than one
component of the given type.

XPath is used to specify which schema component you would like to refer to. For example, this schema
may be available in the context panel.

Mediation Operation Context

Data Source | Functions | Constants |
EI---$= sMediationFlowProperties
|§| properties
E|$= SMessageContext
: ElEI MessageContext
; #-E] parameters?
E-8= &MessageData

- searchHoteRequest
EI|§| parameters
I'_—'I:_E_l searchHotel
Bt country

- fBL city

~fiBL state

~fiBE nearaddress?

~fiBE hotelMame?

----- @ checkInDate

----- @ checkOutDate

123 rooms

----- 18 nonSmoking?

The context panel of the example shows the schema available for a mediation operation.
Three top-level items, each a root node in the context panel, are present:

» MediationFlowProperties
» MessageContext

e and MessageData

Each of these nodes has its own associated structure. MediationFlowProperties has a complex
component named properties and MesageData has a complex component named searchHotelRequest.

References to a particular data item in any of these schema start with the root node and slashes (/)
indicate a path to the data component. For example, the country element in the SearchHotel complex
component that is in the paramenters component would look like this in an XPath mapping field:

$MessageData/searchHotelRequest/parameters/searchHotel/country

The path starts with a dollar sign, then continues with node names using slashes, like a file or directory
structure, until the location is named.

Some schema components must be prefixed with their namespace prefix. The prefix is automatically
added to components that require this when dragging and dropping data in the XPath Expression field.

TIBCO ActiveMatrix® BPM Mediation Component Development

75

Evaluation Context

XPath also has a method for referencing relative paths from a particular node. If you have an evaluation
context, or a particular starting node in a schema tree, you can specify the relative path to other
elements in the tree.

For example, if your evaluation context is $MessageData/searchHotelRequest/parameters/
searchHotel, you can reference the sub-items of ShipName without specifying the entire path. If you
want to reference $MessageData/searchHotelRequest/parameters/searchHotel/country, the
relative path would be . /country. The path is relative to the evaluation context — country is at the
same level in the schema tree as the evaluation context.

Search Predicates

An XPath expression can have a search predicate. The search predicate is used to locate a specific
element of a repeating schema item. For example, consider a schema where the $MessageData/
searchReservations/todaysReservations item is a repeating element. If you want to select only the
first item in the repeating element, you would specify this:

$MessageData/searchReservations/todaysReservations[1]
The [1] specifies the first element of a repeating item.

Sub-items can also be examined and used in a search predicate. For example, to select the element
whose reservationld is equal to "3A54", you would specify:

$MessageData/searchReservations/todaysReservations[reservationId= "3A54"]

In the example above, the evaluation context of a predicate is set to the item containing the predicate.
Therefore, reservationld is assumed to be within the todaysReservations component.

You can also use functions and expressions in the search predicate. For example, if you want to find all
elements after the first, you would specify:

$MessageData/searchReservations/todaysReservations[position()>1]

Testing Boolean Values

To test the value of a boolean node, you can use the data() function to obtain the value of the node. A
common error in XPath functions is to supply a boolean node in a condition and expect that the
condition will evaluate to true or false based on the value in the node. For example:

if ($MessgeData/searchHotelRequest/parameters/searchHotel/nonSmoking) then ...

The condition in the if statement above would return true when the nonSmoking component is present,
regardless of whether the value of the component is true or false. To evaluate the value of a boolean
element, use this expression:

if (data($MessageData/searchHotelRequest/parameters/searchHotel/nonSmoking))
then ...

You can also use the string() function to coerce the comparison to the string value of the Boolean
node and then compare to the value of "true" or "false". For example:

string($MessageData/searchHotelRequest/parameters/searchHotel/ nonSmoking) = "true"

Comments

You can add comments to XPath expressions using the XPath 2.0 syntax for comments. The syntax is:
{-- <comment here> --}

For example, this XPath expression contains a comment:

TIBCO ActiveMatrix® BPM Mediation Component Development

76

$MessageData/searchHotelRequest/parameters/searchHotel/country {-- returns the
country --}

Transforming XML with Related Tasks

In addition to the Transform mediation task, ActiveMatrix provides tasks that enable you to manipulate
XML data in text, binary, or tree formats.

The Parse XML Task

The Parse XML task is used when you have an XML document stored in a string or binary field. This
task produces a tree representation of the XML that can be used by subsequent tasks in the mediation
flow. You can pair the Parse XML task with the Render XML task to convert the parsed XML back into a
string or binary field for transmission within a message. See Parse XML for reference information about
this task.

The Render XML Task

The Render XML task takes an XML tree for a specified schema and converts it to a string or binary
element that contains the XML document. You can pair the Render XML task with the Parse XML task
to convert the parsed XML back into a string or binary field for transmission within a message. See
Render XML on page 195 for reference information about this task.

The Validate XML Task

You can use the Validate XML task to validate message data, a WSDL message, XML text, binary, or
XML tree formats against a schema. The output of the Validate XML task is contributed to the
mediation exchange, and can be used by downstream tasks. See Validate XML for reference information
about this task.

In addition to the Validate XML task, the message received by the mediation component can be
validated using the VALIDATE_MESSAGE_DATA property that is added by default to mediation flows. See
Validation of Message.

TIBCO ActiveMatrix® BPM Mediation Component Development

77

Querying a Database

The Query Database task performs a SQL SELECT statement on a database.
The task can specify three types of records:

e One or more tables in the FROM clause of the SELECT statement

¢ One or more columns to return in the SELECT list

e One or more conditions in the WHERE

You also have the option to specify the maximum number of rows to return.

The Query Database task can be used to look up data in a database table to enrich the data available in
a mediation flow.

These are two usage scenarios:

e Store service names and namespaces for dynamically bound service references in a database table.
You can then update the database table when a new service becomes available, and the mediation
flow does not need to be changed to obtain the information about the new service.

o Use a database query to add information to an incoming request. For example, an incoming request
may specify a US postal zip code, and a database query can be used to look up the city and state to
add this information to the request.

JDBC Resource Templates

&

A JDBC resource template can be used to establish a connection to a database and obtain table and
column information to complete the SELECT statement. This resource template is only used during
design. When the mediation flow is used in a composite and deployed, the resource template is
ignored.

Resource templates are defined on the mediation flow and are used to specify a resource (such as a
database connection) that can be used by one or more tasks in a mediation flow.

The property specified on the Properties tab of the mediation flow provides the database connection
used for each Query Database task.

To connect to more than one database or use different user accounts, create one resource template for
each database connection. Query Database tasks that use the same resource template will use the same
database connection.

Resource templates must be associated with JDBC resource templates at the component or composite
level, and you can also override JDBC resources at deployment time in the ActiveMatrix Administrator
interface. See Composite Development Guide for more information about resource templates and the
Administrator interface.

Defining a Resource Template

Resource templates are defined on the mediation flow and are used to specify a resource (such as a
database connection) that can be used by one or more tasks in a mediation flow.

Procedure

1. Navigate to the Properties tab of a mediation flow by clicking on the canvas of a mediation flow in
the editor window.

2. Click the g icon to add a new property.

TIBCO ActiveMatrix® BPM Mediation Component Development

78

By default, the property name is specified as propertyn (where each newly added profile
increments n). Specify a new name for the profile, if desired.

The value in the Type column must be JDBC Resource Template. This value is read-only.

3. In the Value column, click the ellipsis (...) and choose a previously defined template from the Select
JDBC Resource Template dialog box.

4. Click OK.

Result

The JDBC Resource Template is created and is ready for use by the Query Database task.

Configuring a JDBC Driver
The JDBC driver referenced by the JDBC Resource Template must be configured before it can be used.

Prerequisites

Configure the JDBC Resource Template.

Procedure

Navigate to Window > Preferences > Data Management > Connectivity > Driver Definitions.

* You can optionally specify a JDBC Resource Templates for use while creating Query Database
tasks. JDBC Resource Templates define connections to databases. See Composite Development
Guide.

Registering a JDBC Driver

To connect to a database at design time from within the Query Database task, you must first register the

JDBC driver.
Procedure
1. Navigate to the Data Source Explorer tab.
2. Right-click Database Connections and select New... .
The Connection Profile pane displays.
3. Select the driver from the list of Connection Profile Types and click Next.
The Specify and Driver and Connection Details pane displays.
4. Click the New Driver Definition icon location to the right of the Drivers drop-down list.
The New Driver Definition dialog box displays.
5. Select the JDBC Driver in the Available driver templates list of the Name/Type tab.
6. Navigate to the Jar List tab.
The jar file for the selected database is listed in the list of driver files..
7. Select the JAR file (generated according to the selected JDBC driver) and click Remove JAR/Zip.
8. Click Add JAR/Zip.
9. In the Select the file dialog box select the driver appropriate for your database, and click Open.
10. Click OK.
Result

The database is now registered and is ready to be used within the Query Database task.

TIBCO ActiveMatrix® BPM Mediation Component Development

79

Configuration Tabs of the Query Database Task
The configuration tabs of the Query Database task are described.

General Tab

¢ On the General properties tab, you can specify a name and description. You must also select one of
the resource templates defined for the meditation flow. See JDBC Resource Templates.

o The Max Row Count field specifies the maximum number of rows to accept from the query results.
For example, a positive integer of 1 returns only one row. The choice of Unlimited allows an
unlimited number of rows in the result set.

e The Query Timeout field specifies the timeout, in seconds, for a query statement to execute before
an exception is thrown.

Query Tab

You use the Query tab to define the SELECT statement for the query.

If you specified a JDBC property in the mediation flow Properties tab, clicking the connection icon ?li
opens a connection and compares the table and column data with the metadata from the database. If
the connection is not successful, an error notifies you of the reason.

Three lists enable you to select tables, input data, and output columns for use in the WHERE clause of
your SELECT statement.

Input data is used in the WHERE clause of your SELECT statement. Use the add (+) and delete (x) icons
to the right of each list to add and delete items from each list:

» When a database connection is present and valid, the + icons display information from the database
for selecting tables and output columns.

* When no database connection is present, the +icons allow you to add items to each list, but you
must name each item and specify a type if necessary.

Clicking the + and x icons on the Input table attempt an automatic update of the WHERE condition. If
you have modified the WHERE condition, the delete might not update it and you must fix it manually.

Use the Where Condition field on the Query tab to edit the WHERE clause of the query. You can add an
input variable to a condition by typing a question mark (?) in the condition. Each input variable appears
in the mapper panel on the Input tab, and you can supply data from the mediation exchange for the
input variable. For example, if you want to create a condition where you look up a ZIP code supplied in
the input message, you can add the condition table.zZIP = ?. When you add a question mark into the
WHERE clause, an input variable appears in the Input Data list. Supply a name for the input variable,
then data from the mediation exchange can be mapped to the input variable.

Table join conditions are never automatically added to the WHERE clause. To specify any join
conditions for your query, you must manually edit the WHERE clause.

The SQL Statement field displays a read-only version of the query you have specified. Length
parameters are stripped from the SQP Type, and only the base type is used in the mapping. For
example, char(12) becomes char.

Supported SQL types and their mappings to XML

SQL/92 Data Type XML Type Equivalent

TINYINT short

TIBCO ActiveMatrix® BPM Mediation Component Development

80

SQL/92 Data Type XML Type Equivalent

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT float

DOUBLE double

CHAR string

VARCHAR string

NCHAR string (multi-byte)
NVARCHAR?2 string (multi-byte)
DATE date

TIME time

TIMESTAMP dateTime

Vendor-specific types are cast to string. You can enable the mapper to automatically recognize these
types in two ways:

o Force vendor-specific types to a compatible XML type using the mapper cast.
e Opverride the type that is retrieved from the database for the column to a similar SQL/92 type.

Binary or other complex data types such as JAVA_OBJECT are not supported.

Input Tab

The Input tab is a mapping panel for mapping data from the mediation exchange to the input fields of
this task. See Transforming Data in a Mediation Exchange for information on using a mapping panel.

Output Tab

The Output tab is a read-only display of the output schema for this task. The output schema is
determined by the output columns selected on the Query tab.

Test Tab

Use the Test tab to supply test data for values of input variables and test the query against the database
associated with the specified JDBC resource template. To test the statement, a valid database connection
must be present.

You can use a custom JDBC driver to test the database query. For information about configuring a
custom JDBC driver, see Composite Development.

You must have a valid JDBC resource template associated with the shared resource profile used by this
task. The JDBC shared resource is used only in the design environment.

TIBCO ActiveMatrix® BPM Mediation Component Development

81

N Ensure that the JDBC resource template you use for testing in the design environment connects to a
database that is similar to the database used when the project is put into production.

TIBCO ActiveMatrix® BPM Mediation Component Development

82

Dynamic Requests

Dynamic binding enables routing of incoming requests to target services as they are needed at runtime.

The target interfaces in a mediation flow correspond to component references in an ActiveMatrix
composite. Typically, a component reference is wired to a composite reference that points to a service
provider. This static binding is specified when the mediation component and composite are designed,
and the service binding is hard-coded into the composite.

Dynamic binding allows components to supply a reference to the service provider when the deployable
application archive (DAA) created from the composite is running.

The below diagram shows the differences between static and dynamic binding in composite references.

Static and dynamic binding

Service Providers

Composite

Composite
Service

Composite
Reference

Dynamic
Composite
Reference

NS
Mediation Component N =
\\
\
\
AY
‘.

The composite reference is statically bound to Service A. However, the dynamic composite reference
can invoke Service B, Service C, or Service X without having to specify a static configuration at design
time.

Dynamic references allow the component to specify which service to invoke. Therefore, new services
can be started and a component can invoke those services without redesigning the composite and
restarting the DAA created from the composite.

One example of using dynamic references is a set of services that return information for United States
postal ZIP codes. The consumer sends a message to a mediation component containing the ZIP code.
The service provider can implement a number of services for particular ZIP codes. When new ZIP
codes are introduced, dynamic binding allows the service provider to create and start a new service for
the new ZIP codes without changing any existing composites. Requests for information about new ZIP
codes are handled without system downtime.

Service Providers for Dynamic Composite References

Dynamic composite references can refer only to bindings of type virtualization. That is, the service type
in the provider composite cannot be JMS or SOAP. If your service provider uses the SOAP or JMS
protocol, you can create a simple pass-through composite that passes the message to the ultimate
service provider.

The diagram shows a dynamic composite reference using a composite that implements a service and
also using a pass-through composite for referencing a SOAP service.

TIBCO ActiveMatrix® BPM Mediation Component Development

83

Service providers and pass-through composites

Service Providers

- Pass- Through
Composite Composite
Composits X Dynamic AMX SOAP N
Service Composte - % 1 posite Composite [Service B
- Reference” Service Reference L y
Mediation "
Component i
\\
\\
\ :
Y Composite
b Implementing a
\ Service

AMX
Sarvice

Referring to Service Providers

The component implementation determines the service that is invoked for a dynamic reference. To
specify the service, the implementation supplies the application name and service name. ActiveMatrix
resolves the application name and service name to the correct running service.

The service name is the name specified for the promoted service in the composite.

Configuring Dynamic Binding

There are four high-level steps for configuring dynamic binding. Perform the four procedures to
configure an application to use dynamic binding.

Procedure
1. Configuring Dynamic Binding.

* Add target interfaces to a mediation component.
o Specify that the interfaces are dynamic.

2. Set the dynamic reference task.

e Add the Set Dynamic reference task to your mediation path.

3. Configure dynamic references in the composite.

e Create a component reference and specify that it is wired by implementation.

e Wire the dynamic component reference of the mediation component to the dynamic composite
reference.

4. Create and deploy composites used by dynamic binding.

* You can create composites with service virtualization that either implement the service or pass-
through to a SOAP or JMS service.

TIBCO ActiveMatrix® BPM Mediation Component Development

84

Configuring Dynamic Target Interfaces

You can specify whether a target interface is static or dynamic. By default, target interfaces are static.
The target interface corresponds to a component reference that is wired to a composite reference in a

composite. Dynamic target interfaces correspond to dynamic component references that are wired to
dynamic composite references.

Procedure
1. Go to the General tab of the Properties view of the target interface.

2. Select the Wired by Implementation field.

Dynamic and static target interfaces

Medistion Interfaces [—] [= Mediation Paths ‘ o <] LB\; Target Interfaces =) [—
[Imput Cutput Fault
rF
T & Helloworld ~ e Q} Helowordd €8 =
?ﬂ]sayHello b ?ﬁ]sayHelln
=
o P
E properties 22 g Problems | Eﬂ Diaka Source Explnrer] Fa |
£ Target Interface
General Target Interface Name: | Helloworld
Variables wired by Inplementation
Pattern Map
WS5DL Interface
Part Type: €3 HelloWorld - http:jcom.bbeo.ams.it. mediation. sample HelloWorldfdefinitions
WSDL Location: [mediation.helloworld, context, soafService Descriptors/HelloWorld. wsdl
b Interface Context Parameters
1]

The title bars of the target interfaces is shaded yellow, and a lightning bolt icon is added.

Pattern Variables Usage

Once a target interface is marked as dynamic, the application name and service name must be supplied
in the mediation flow. You can optionally specify pattern variables to aid in the mapping of data in the
mediation exchange to create the appropriate application name and service name.

For example, you can have six operations in your dynamic target interface. All service providers that
are referenced use the same application name, and service name follows the pattern service data, where
data is a variable portion of the service name. The value of data is supplied in an incoming message.

Instead of providing a mapping for each of the six operations, you can specify one pattern variable to
represent the variable portion of the service name, and then create one mapping for all operations on

the Pattern Map tab of the Properties view of the target interface. The figure below shows the Pattern
Map tab of this example.

TIBCO ActiveMatrix® BPM Mediation Component Development

85

An example of pattern variables

= Properties 23 {2 Problems}EﬂDab Source Explorer} & | . = | fAamT ==
C,‘; Target Interface
General
Variables Data Sourcei Functions | Constants | | XPath Expression |
Pattern Map B $= ¢EPRVariables B 52 EPRHellowWorld

[E@ EPRVariables e—H B applicationMameServiceMame

Il -ABE Country ——— | ——— MBI ApplicationName SEPRVariables ns:EPRVariables Country

‘ : 1l ServiceMame SEPRVariablesfns:EPRVariables/Continent

To supply the value of the pattern variable, you can perform one simple mapping in a Set Dynamic
Reference task on the path for each mediation operation.

See Dynamic Reference Task Setting.

Dynamic Reference Task Setting

The Set Dynamic Reference task provides the values needed for resolving a service provider in a
dynamic target interface.

Each Set Dynamic Reference task sets the value of the service provider for the specified dynamic target
interface. The value is then used by the next item that refers to a dynamic target interface — either the
end of the mediation path points to a dynamic target interface, or an Invoke task invokes an operation
on a dynamic target interface.

You may need more than one Set Dynamic Reference task along a mediation path in these situations:

o The target interface is marked as dynamic and there is an Invoke task on the path configured invoke
a different dynamic target interface.

e More than one Invoke tasks are on a path, and each task invokes a different dynamic target
interface.

* You want to Invoke the same operation on a dynamic target interface more than once, and each time
you want to set the dynamic reference to a different value.

Some use cases of the Set Dynamic Reference task are given below:

o One dynamic target interface and one Set Dynamic Reference task.

Machstion Inbarfaces. —| & = Hesfistion Patre % |] B TergetIntefaces -4 H =
rpat | Cutput Pk
0 ooy = ™ G ZpCodePretType) e
& Requestylode pal | 2 Mewdpanalion

o Two dynamic target interfaces and two Set Dynamic Reference task. The first Set Dynamic Reference
task sets the reference for the target operation. The second Set Dynamic Reference task sets the
reference for the Invoke task.

TIBCO ActiveMatrix® BPM Mediation Component Development

86

¥ i3 BookReservalion - e ¥ ¥ BockRessrvation £9

%] bockarReservation _@'IE.I Dﬁ po| | 2] bookirReservation

2] bookCarReservation | 2] boakCarResarvation
%] bockHoteiReseryation 2] bookHotelReservation

o ¥ O wydlsetrofle f0

| Z] creasreliger
emmccccccccncc e menea cneea g | F] queryliser

o Two Invoke tasks, each executing different operations on the same interface. The first Set Dynamic
Reference task sets the reference for the first Invoke task. The second Set Dynamic Reference task
sets the reference for the second Invoke task. A different service provider can be invoked by each
Invoke task.

T &3 BookReservakion = ¥ i BockRessrvation t0
#] baokairReseryation % bookntR esarvation
2] baokCarReservation 2| bookCarmeservation
£ bookHobeR eservation _Iiiﬁ{.h{& ot | 2] bookHokelResereation
i i
! & & Search e
i - _3 5] searchirlin 1
i i i i 2] searchicar
2] searchHceel

A grey hint line appears between the Set Dynamic Reference task and the corresponding dynamic
target interface. A yellow hint line appears between a Set Dynamic Reference task and the
corresponding Invoke task when you select a Set Dynamic Reference task in the mediation flow. The
diagrams have been changed to show all hint lines, even though only the hint lines for the selected task
can be viewed in the mediation editor.

The Set Dynamic Reference task is typically used on input mediation paths. It can be used on output or
fault paths when an Invoke task that invokes an operation on a dynamic target interface appears on an
output or fault path.

TIBCO ActiveMatrix® BPM Mediation Component Development

87

General Tab Configuration

Use the General tab to specify the name and description of the Set Dynamic Reference task, and to set
the target interface and endpoint reference mechanism.

Name Description

Dynamic Target Interface Specifies the name of the dynamic target interface for which this task
is supplying the service name and namespace. By default, this field is
automatically set to the dynamic target interface at the other end of
the path. If there is an Invoke task on the path, this field may be set
by default to the first dynamic target interface in the target interface
list. You might need to set this field when the default choice does not
match the dynamic target interface that you want to set.

Endpoint Reference Select the mechanism to use for setting the application and service
Mechanism name

o Prublems}ﬁt}ata Source Exp\weﬂ #|&% =0

= Set Dynamic Reference
=

General

Name: | set_dynamic_refersnce

Description:
Dynamic Target Interface: QueryGDS E
Endpaint Reference Mechanism:

Input

LIRT
Pattern Variables

Application & Service Name Select to supply the application name and service name. This option
requires two inputs for mapping on the Input tab —
ApplicationName and ServiceName.

Application & Service URI Select to supply the exact URI of the endpoint. This is useful if, for
example, someone sends you the URI—you can simply copy and
paste it into the ApplicationServiceURI parameter on the Input tab.

URI Select this option to specify the URI in the Input tab.

Pattern Variables Select to use pattern variables from the dynamic target interface. This
is useful if several operations in a dynamic target interface use a
similar pattern for the application name and service name. You can
specify the mapping once on the dynamic target interface and use
variables to supply the variable portion. The variables you create on
the dynamic target interface appear in the Input tab when this
option is selected.

By default, the Endpoint Mechanism field is set to Application & Service Name when the dynamic
target interface has no pattern variables.

If the dynamic target interface has pattern variables, the Endpoint Mechanism field is set to Pattern
Variables by default.

TIBCO ActiveMatrix® BPM Mediation Component Development

88

Input Specification

Field Input Value

General > Endpoint Reference The input elements for this task are ApplicationName and
Mechanism > Application & Service = ServiceName. Any value you specify for these input
Name elements override the value specified on the Pattern Map

tab of the specified dynamic target interface.

o ApplicationName refers to the application name provided
during deployment of a composite, to uniquely identify
an instance of an application template.

o ServiceName is the name of the composite service that is
contained in the target composite.

General > Endpoint Reference The pattern variables defined on the specified dynamic

Mechanism > Pattern Variables target interface are the input elements. This enables you to
specify simple mappings of data from the mediation
exchange to the variable values. The variable values are then
passed to the mapping supplied on the Pattern Map tab of
the dynamic target interface.

General > Endpoint Reference The input element for the Set Dynamic Reference task is
Mechanism > Applicaton & Service ~ ApplicationServiceURI. The data type of the
URI ApplicationServiceURI input field is a URI of the format

urn:amx: EnvironmentName/
ApplicationName#service(ServiceName)

The variables EnvironmentName, ApplicationName, and
ServiceName refer to the environment and service that are
being invoked.

o EnvironmentName is the name of the TIBCO ActiveMatrix
environment that contains the target service.

General > Endpoint Reference The input elements for the Set Dynamic Reference task are
Mechanism > URI URL

e SOAP over HTTP
e SOAP over]MS

e ActiveMatrix Service Virtualization

Use any data available in the mediation exchange on the left side of the mapper panel to provide data
to the input values. See Transforming Tasks for information on mapping data in the Input tag.

The content of the Input tab depends on which Endpoint Reference Mechanism you select on the
General tab — Application & Service Name, Application & Service URI, URI, or Pattern Variables.

TIBCO ActiveMatrix® BPM Mediation Component Development

89

Configuring Dynamic References in Composite

Dynamic target interfaces in a mediation flow correspond to dynamic component references in
mediation components that use the mediation flow as an implementation. Dynamic component
references must be wired to dynamic composite references in a TIBCO ActiveMatrix composite.
See Composite Development Guide for more information about creating and configuring composite
references.

Procedure

1. Open the General tab of the promoted reference.

2. Inthe Advanced section, select the Wired by Implementation field.
The references and services must be promoted to the composite level for this setting to take effect.

Creating and Deploying Composites Used By Dynamic Binding

TIBCO ActiveMatrix resolves the application and service names provided by a component to a running
application that contains the corresponding service of binding type virtualization. The composite with
the corresponding service can implement a service or it can pass through to another service using the
SOAP or JMS protocol.

See Service Providers for Dynamic Composite References. You can create composites using the
Composite Editor, or you can use the automatic mechanism in the Mediation Editor to create composite
services that a dynamic target interface can use.

Procedure

1. Click the down-arrow icon in the title bar of a dynamic target interface in a mediation flow and
select Create Dynamic Provider from the menu.
This Create Dynamic Provider dialog opens.

2. Specify the Service Name, the Namespace and the Workspace Location in the fields provided.

3. Click the Browse button next to the Workspace location field to locate the project and folder in your
workspace where you want to place the composite.

4. Click OK.
Result
The provider composite created with the wizard is configured with a service with the specified name

and namespace. The port type and WSDL location for the service are set to the target interface in the
mediation flow.

TIBCO ActiveMatrix® BPM Mediation Component Development

90

Replying to Messages

Generate Reply and Handle Reply tasks can be used to send reply messages without invoking target
operations.

In a typical mediation flow for an operation with an in-out message exchange pattern, incoming
messages travel along the input path until the message is delivered to the target operation or until a
fault is encountered.

In some situations, you might want to send a reply message to the consumer without invoking the
target operation. For example, an operation might return the name of the target service. The mediation
flow already has the target service name, so you can improve performance and return that information
without additional network traffic to the target service.

Another example is a mediation flow with a route task for processing incoming requests. Your
mediation flow might return an unchangeable message for one or more routing cases. In that case, you
can reply to the consumer without invoking the target service.

You can place the Generate Reply task on an input path to terminate the path and pass control to the
output path of the mediation flow. You must map the output message in the Generate Reply Input tab,
so that the output message is created in the task.

On the output path, the Handle Reply task intercepts messages from any Generate Reply tasks on the
input path and starts the mediation reply path for processing the reply message before it is sent to the
consumer.

The diagram shows the operation of the Generate Reply and Handle Reply tasks. In this example, a
mediation flow for the createUser operation first invokes the queryUser operation to determine if the
user exists. If the user does not exist, the message is delivered to the createUser target operation. If the
user already exists, the Generate Reply task is used to return a message notifying the consumer that the
user already exists.

Sending a reply message

e 4

Mediation Interfaces = [# ~ Mediation Paths e |] !B, Target Interfaces B EH =
Input Qutput Fault “
o
=
T &8 =¥ZUserProfile =g T w¥ZlUserProfile o o T
:)
P createlser &= £ DSErb0RSnEE it pof | Z] createliser ni
2] queryUser 5.'] querylser | |

Otherwise

[
Mediakion Inkerfaces —| [# ~ Mediation Paths o]] B!y Target Interfaces - e
Input | Qutput Faulk H
iy
=
¥ @ vZUserProfile ~ 0 HvZUserProfile & v g
HL
2] createlser ¢ 2] createlser TJ'

2] queryUser 2] queryUser

Placing a Generate Reply task in the Input path automatically creates a mediation reply path with a
Handle Reply task. The same Handle Reply task performs all Generate Reply tasks in the Input path.

The Generate Reply task terminates an input path before reaching a target operation. However, you can
have more than one Generate Reply task on an input path when a route task splits the input path into

TIBCO ActiveMatrix® BPM Mediation Component Development

91

multiple sub-paths. One or more sub-paths can end in a Generate Reply task. Generate Reply tasks are
executed based on how they are configured in the input flow paths. The Handle Reply task is on the
output flow.

After a Generate Reply task is executed, control is passed to the Handle Reply task on the output path.
One Handle Reply task accepts reply messages from any Generate Reply task on the input path. The
Handle Reply task starts the mediation reply path. Optionally, you can place tasks on the mediation
reply path to perform additional processing before the reply message is sent to the consumer. The
Handle Reply task and the mediation reply path are automatically placed into the mediation flow when
a Generate Reply task is placed on the input path.

TIBCO ActiveMatrix® BPM Mediation Component Development

92

Fault Processing in a Mediation Flow

Faults are errors that can occur at any point along the mediation path. Faults are caused by the target
service while processing messages. Faults can also explicitly occur during a mediation flow to specify
that an unhandled case has occurred. The Mediation Flow Editor enables you to specify a fault path for
processing to occur when a fault is encountered.

Invoke tasks, like any other task, can generate faults. If an operation referenced by an Invoke activity
declares faults, those faults can be caught and processed in the fault path. For example, if the operation
declares that it can throw FaultA and FaultB, these faults appear in the Fault Path as faults that can be
caught and processed.

» Faults can occur when receiving the message and creating the mediation flow context.

o Faults can occur when executing tasks in input or output or fault paths of the mediation flow.

» Faults can occur when executing the target operation.

An example of fault path
Mediation [nterfaces = [# = Mediation Paths]] :B\;_ Target Interfaces Fl &~
Input Qutput | Fault
¥ €& QueryiDs = ¥ & QueryaDs o v —
2

F’n] searchairline |
o

&
‘ ?n] searchHotel

5 searchairline
] searchcar
%] searchHatel

A4

b

(Fault) searchiCar_faulkMsg (a
2y TimeoutFault
15=!
UndeclaredFault

(57 MediationTaskFault

(a2 MediationTaskRuntimeFault
=2

When a fault is encountered, processing of the current path is immediately halted, and control is passed
to the fault path. The fault path enables you to catch explicitly declared faults or unhandled faults.
However, if a fault is encountered when receiving the message, the mediation flow has not yet started,
so the fault is immediately returned to the sender and no fault processing can be done in the mediation
flow.

By default, each target operation has one Catch Fault task with sub-paths.

e A sub-path for each declared fault that can be thrown by the operation.
e One sub-path to handle any undeclared faults.

¢ One sub-path for timeout faults.
There is also one Catch Fault task for faults that occur during processing of the mediation flow.

You can configure each Catch Fault task to have fewer sub-paths, if desired. When you remove sub-
paths from a Catch Fault task, the Catch All path is automatically added to catch any faults where there
is no specific sub-path for fault handling.

Each sub-path from each Catch Fault task leads to a Send Fault task. The Send Fault task sends a fault
back to the original sender of the message. By default, the Send Fault task is configured to send the
specific fault caught by the sub-path. You can configure the Send Fault task on a either a target or
mediation fault sub-path to send either a generic UndeclaredFault or one of the specific fault messages
defined on the mediation operation.

When the fault sent by the Send Fault task does not match the fault caught by the sub-path, a Transform
activity is required to transform the fault message into the required format. For faults on the mediation
fault path, the Transform activities are added by default, but if you change the configuration of the
Send Fault or Catch Fault tasks, you must provide the correct Transform task as well.

TIBCO ActiveMatrix® BPM Mediation Component Development

93

You can place mediation tasks along the sub-paths between the Catch Fault activities and Send Fault
activities to perform post-fault processing before the fault is returned to the original message sender.

For more information about how to configure the Catch Fault and Send Fault tasks, see Working with
Fault Paths.

When faults are encountered while processing tasks in a mediation flow, the execution of the path is
terminated, and the control sent to the mediation fault path. This includes faults that occur when
processing taks on any of the following paths:

¢ Mediation Input Path

e Mediation Output Path

* Mediation Reply Path

* Mediation Target Fault Path

When a fault is encountered on the Mediation Fault Path, the path terminates and a fault is sent to the
consumer.

Throwing Faults in Mediation Flows

The Throw Fault mediation task enables you to explicitly throw a fault during processing on the input
path of a mediation flow.
This is useful in two situations:

* You want to deprecate a mediation operation, and therefore a fault is sent to all clients that request
that operation.

* You want to specify routing cases where a fault is sent.

For example, if a loan processing application cannot process loans over $5,000,000, then you would
configure a routing case for the loan request operation to examine the loan amount and place a Throw
Fault task on the sub-path for the case where the loan amount was over $5,000,000.

The Throw Fault task enables you to browse through available service descriptors and select messages
from the service to send as the fault message. You also can select which MediationTaskFault message to
send. If you have more than one Throw Fault task and you want to perform specific processing for each
task, configure each task to send a specific message.

Procedure

1. On the General tab, click Browse to select a service descriptor containing the fault message to send.
2. On the Select WSDL Message dialog, select the WSDL file in the Matching Resources field.

3. The Throw Fault activity is configured to throw the message, and you can navigate to the WSDL by
clicking the WSDL Location field label.

Fault Paths

Fault paths enable you to specify tasks to perform when a fault is thrown.

To view the fault path for the currently selected mediation operation, use the Show Fault Direction
button at the top of the mediation paths area of the mediation flow editor. There is one Catch Fault task
for each target operation in the mediation flow, and one Catch Fault task for faults encountered while
processing the mediation flow.

Each target operation in a mediation flow has a Catch Fault task that catches faults thrown by the target
operation. The faults can be either explicitly defined faults in the target operation’s service description,
or they can be unhandled exceptions encountered during processing (for example, a
NullPointerException).

TIBCO ActiveMatrix® BPM Mediation Component Development

94

The default Catch Fault task for a target operation has sub-paths for each declared fault in the target
operation and one sub-path each for a time out fault and any undeclared faults. You can place
mediation tasks on each sub-path to perform any post-fault processing for each fault.

To specify the same processing for multiple faults, you can configure the Catch Fault task to have fewer
sub-paths by unselecting the Catch and Handle field for the fault. When you eliminate one or more
sub-paths, the Catch All sub-path is required, and it is automatically enabled. Any faults that do not
have a defined sub-path are sent to the Catch All sub-path.

Catch Fault Configuration

The General tab of the Catch Fault task that allows you to configure the sub-paths for the faults to
catch.

Configuring a catch fault task

JjPﬂ.pe{tiesE@ \ {2 Problems zfi.RegistriesW gy

(T catch Target Fault
e Catch and Handle

General

L=}

Fault

(fault) searchairline_faultMsg {http:/fwww. tibco, com/mediation/QueryGDS}
UndedaredFault {http: /{schemas. tibco.comfamsb/rt/exceptions} b
TimeoutFault {hitp: /fschemas. tibco.com famsb,rtfexceptions}
Catch all L

O0REE

In the above example Catch fault task, one fault message is defined on the target operation named
searchAirline_faultMsg. The Catch Fault task also has the following faults listed for all target

operations:

Faults Description

UndeclaredFault Catches any undeclared faults encountered while executing the target
operation.

Catch All Catches all remaining faults that are not explicitly defined. By default, this
option is cleared. This option becomes required and is automatically
selected if you clear the Catch and Handle field for any other faults.

Timeout Fault Catches any timeouts encountered while executing the target operation.

When you select the check box in the Catch and Handle column for a fault, the Catch All sub-path is
automatically added. The following figure shows the fault path that results when the Catch and Handle
check box is cleared for searchAirline_faultMsg, Undeclared Fault, and TimeoutFault.

TIBCO ActiveMatrix® BPM Mediation Component Development

95

Removing specific faults from the target operation fault path

Mediation Interfaces = [= Mediation Paths (=) L] fb'\-r, Target Interfaces [e g
Input Cutput | Eault
F FY
¥ €& QueryaDs - ¥ 3 QueryaDs ol =
3 = & R
) searchairling catch Al) searchairling
%]search(:ar [(Q ¢ %]search':ar
o MediationTaskFault o
% searchHotel @ EERHONT o, U e) searchHatel
(Eg) MediationTaskRunkimeFault

E:

Catching Faults from the Mediation Flow

One Catch Fault task catches faults encountered while processing the mediation flow.
Faults in a mediation flow can occur in the following situations:
e An explicit fault is thrown with the Throw Fault task. This task can either throw the

MediationTaskFault message or it can be configured to throw a different message defined in a
service descriptor in the project.

* A mediation task throws the declared MediationTaskFault fault during processing (this also applies
to tasks on target fault paths).

» Anundeclared exception occurs during mediation processing. In this case, the
MediatinTaskRuntimeFault is thrown.

Catch fault task for the mediation flow

General Gj Catch Mediation Task Fault
Cakch and Handle Fault
MediationTaskFault {http://schemas.tibco, com/amsbrt fexceptions)
MediationTaskRuntimeFault {http:ffschemas, tibco,.comyamsb | rtfexceptions
F Catch al

The above figure shows the Catch Fault task for the mediation flow. In this example, the mediation flow
has a Throw Fault task that throws the searchHotel_ faultMsg fault, and the MediationTaskFault,
MediationTaskRuntimeFault, and catch all options are present in all Catch Fault tasks for mediation
flows.

By default, the MediationTaskFault and MediationTaskRuntimeFault sub-paths are configured with
Transform tasks that transform the caught fault into an UndeclaredFault message. If you check the
Catch and Handle field for any faults declared on the target operation, you must configure the
corresponding Send Fault task and provide any required transformations by adding a Transform task
to the sub-path, if necessary.

Catching All Faults

If you choose not to catch specific faults from the target operation or the mediation flow, the Catch All
fault option remains selected. In this case, the Fault to Send field of the Send Fault task contains an
option Original Fault That Was Thrown. When this option is selected, all encountered faults are
passed on the caller as they occur without any transformation.

TIBCO ActiveMatrix® BPM Mediation Component Development

96

Sending Faults to the Invoker

The Send Fault task sends a fault message back to the original process that invoked the mediation
operation.
You can configure the Send Fault task to specify what fault message to send:

e One of the fault messages declared on the mediation operation

e The UndeclaredFault message
Procedure
1. Inthe Send Fault task select General > Fault to Send.

2. Specify the fault message to return.

3. Once you specify the fault message to return, place a Transform task on the fault path to convert the
message sent by the Catch Fault task to the format of the fault message you are returning.

Result

The message panel of the Transform task on a fault path is labeled Mediation Fault Message, and the
schema of the fault message matches the schema of the message specified in the Send Fault task on the
path.

TIBCO ActiveMatrix® BPM Mediation Component Development

97

Custom Mediation Tasks

Custom mediation tasks are user-defined mediation tasks written to perform specific mediation
functions.

Migrating Custom Mediation Tasks

If you created and deployed custom mediation tasks in earlier versions of TIBCO ActiveMatrix, and
you want to use them with this version, you must migrate them to TIBCO ActiveMatrix 3.x.

Procedure

1. Import your TIBCO ActiveMatrix 2.x model and UI plug-ins into your workspace.

2. The Model plug-in uses import packages. Replace all Required-Bundles with:

com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
org.
org.

org.

org

org.

org

org.
org.
org.
org.
org.

org.

org

tibco.
tibco.
tibco.
tibco.
tibco.
tibco.
tibco.
tibco.
tibco.
tibco.
tibco.

tibco.

.eclipse.emf.

.eclipse.emf.

eclipse

eclipse

amsb.
amsb.
amsb.
amsb.
amsb.
amsb.
amsb.
amsb.
amsb.
amsb.
amsb.

amsb.

eclipse.emf

eclipse.emf.

eclipse.emf.
eclipse.emf.
eclipse.emf.
eclipse.emf.
eclipse.emf.

eclipse.emf.

.eclipse.wst

core

core.

core

core

core

core

core

core.
core.
core.
task.

core.

.mediation.model.report.impl

componentType

.mediationbpel.custom.task.persistence
.mediationextmodel
.mediationextmodel.impl
.mediation.model.ext.internal

.querymodel

task.model.ext
task.model.report
taskdescriptormodel
common.validation

task.validation.constraints

.core.runtime

.bpel.model

. common

ecore

ecore.xmi
ecore.impl
validation
common.util
ecore.plugin
common.notify
common.notify.impl

ecore.xmi.impl

.wsdl org.eclipse.xsd

3. Delete the methods getStaticInputTypeSchemaStream() and
getStaticOutputTypeSchemaStream() methods from class
<TaskName>MediationTaskReport.java.

4. Delete the class <TaskName>MediationTaskValidator.java after plugging out the validation code
as the 3.x validation is based on EMF model constraints. The CMT developer must migrate the
existing validation to EMF model constraints.

Remove its extension entry in plugin.xml by deleting
com.tibco.amsb.core.mediation.model.ext.MediationTaskValidationExtension entry.

TIBCO ActiveMatrix® BPM Mediation Component Development

5.

8.
9.

98

Update the the Ul plug-ins.

a) Update the following dependencies from:
com.tibco.amsb.core.mediation.model
com.tibco.amsb.core.mediation.model.report
com.tibco.amsb.core.mediation.model.ext
to
com.tibco.amsb.core.mediation.model.eclipse
com.tibco.amsb.core.mediation.model.report.eclipse
com.tibco.amsb.core.mediation.model.ext.eclipse

b) Add the dependency: com. tibco.xml.mapper.schema.emfapi.

Re-compile the plug-ins by doing a clean build.

Re-create your runtime plug-in, and port your custom code using the Mediation API.

See Creating the Runtime Plug-in.

Re-create the DAA in the SOA project that is created. See Deploying Custom Mediation Tasks.

Install the custom mediation task. See Writing Custom Mediation Code.

Eclipse Plug-in Reference

A custom mediation task consists of three Eclipse plug-ins.

Custom mediation task plug-ins

Plug-in Description

Model

The basis of automatic code generation for the design and runtime
environments. The model contains attribute-value pairs that can be used in
both environments. This plug-in consists of metada based on the Eclipse
Modeling Framework (EMF).

This plug-in is used in both the design and runtime environments.

See Creating the Model Plug-in.

Ul

The user interface code and icons. This plug-in has extension points for the
Properties view and the Mediation Palette in the Mediation Flow Editor.

This plug-in refers to the model and is used in the design environment.

See Creating the UI Plug-in.

Runtime

The Java code that performs the mediation logic.
This plug-in refers to the model and is used in the runtime environment.

See Creating the Runtime Plug-in.

TIBCO ActiveMatrix® BPM Mediation Component Development

99

Support Files

A custom mediation task might depend on support files such as schema files and graphic files. Schema
files describe the schemas of messages, and graphic files are used as icons for the custom mediation
task. The icon formats can be GIF, JPEG, or PNG formats.

Icon Where Displayed Recommended Dimensions

Small Mediation Palette: When the Use Large Icons optionis 16 x 16 pixels
not selected

Paths: When Small Icons is selected in the preferences ~ Defaulticon: 'ﬁ.r

large Mediation Palette: When the Use Large Icons optionis 32 x 32 pixels
selected

Paths: When Large Icons is selected in the preferences
Default icon:

In the palette, icons appear on a light gray background. On the canvas, icons appear on a yellow
& gradient. For this reason, consider using a combination of hard edges (rather than anti-aliasing) and
transparency when designing icons.

Creating the Model Plug-in

You can create the model plug-in for the custom mediation task.

Procedure

1. Run TIBCO Business Studio from the Start menu.

For example, select Start Programs > TIBCO_Home > TIBCO Business Studio N.N > TIBCO
Business Studio.

2. Select File > New > Project
In the New Project dialog under Plug-in Development, select Plug-in Project and click Next.

4. Specify a name for the project that reflects the mediation task name and that identifies this as the
model plug-in. For example, type LookupTaskModel.

5. Accept all other defaults and click Next.

TIBCO ActiveMatrix® BPM Mediation Component Development

100

ﬂNew Plug-in Project [_ O]
Plug-in Project) l -

Create a new plug-in project

Project name: I LookupTaskRuntime|

W Use defaul location

LLacation: |C:'|,Dncurnent:= and Settings\pprasadiworkspace32 _MED_Screensho Browse.., |

—Project Settings
¥ Createa Java project

Source folder: I srC

Output folder; I hin

r~ Targek Platform
This plug-in is kargeted to run with:

¢ Erlipse version: IS.? "I
" an OSGi Framework: IEqmng)c 'I

—Waorking sets

[~ Add project ko working sets

Working seks; j Seleck,, |

@' < Back I Next = I Firisty | Cancel |

On the Plug-in Content page, locate the Plug-in Options group and clear these options.

» Generate an activator, a Java class that controls the life cycle of the plug-in.
e This plug-in will make contributions to the UI

Accept all other defaults and click Next.

On the Templates page, select Mediation Task Model Wizard and click Next.

On the Mediation Task Model page, for the Mediation Task Model Name replace the string within
the brackets with another of your choice. This prefix will be used for the Mediation Task Names for
the Ul and Runtime plug-ins.

The below figure highlights the string to replace:

TIBCO ActiveMatrix® BPM Mediation Component Development

101

'”New Mediation Task Model plug-in project =]

Mediation Task Model ,=: I: e

@ Invalid Mediation Task name. Mediation Task name must contain
alphanumeric characters and MUST be suffixed by "MediationTask"

Mediation Task Maodel Mame:; | e ediationT ask,

Java Package Mame: I lnokuptaskmodel

@;l < Back ext = | Eirish I Cancel

10. Specify the Java Package Name for the model plug-in for the custom mediation task. Click Next.
By default the Java package name is the same as the project name.

11. (Optional) Select a schema element for the custom mediation task input/output in the Input/Output
Schema Selection dialog.
a) Type the name of the schema.
b) Click Browse to see all the schemas in the workspace, or click Create to create a new schema.
Clicking Create opens the Simplified Schema Editor. See Creating Simple Schemas.
12. Specify model attributes that the custom mediation task will use. Model attributes can be given

values for each instance of the task, by specifying the values on the General tab in the Properties
view for the task.

e To add an attribute, click Add. Edit the attribute name and add default values for the attribute.
Click the Types cell to select the attribute type.

e Toremove an attribute, highlight the row for the attribute by clicking in one of the cells on the
row, and click Remove.

The following figure shows an example of a new model attribute:

TIBCO ActiveMatrix® BPM Mediation Component Development

102

Model Creation Section .

add the model attribukes that will be used by Mediation Task. Click on the add
button to add an attribute,
Model Attributes:

Aktribute
address

Default Walue

| | Atribute value

e Remowve
E

@ i Finish ” Cancel

13. Click Finish.

14. TIBCO Business Studio opens the Open Associated Perspective dialog, which asks if you want to
open the Plug-in Development perspective.

e Optionally, check the check box Remember my decision. Select Yes. TIBCO Business Studio
opens the model plug-in and the Plug-in Development perspective.

Result

The model plug-in for the custom mediation task is created.

Creating the Ul Plug-in

UI plug-in refers to the model and is used in the design environment.
Prerequisites
Before you begin, close your runtime plug-in project.

Procedure

1. Close the RT project.
Run TIBCO Business Studio.

Select Start > All Programs > TIBCO_HOME > TIBCO Business Studio N.N > TIBCO Business
Studio.

4. Select File > New > Project
In the New Project dialog under Plug-in Development, select Plug-in Project and click Next.

Specify a name for the project that reflects the mediation task name and that identifies this as the Ul
plug-in — for example, LookupTaskUI.

TIBCO ActiveMatrix® BPM Mediation Component Development

103

7. Accept all other defaults and click Next.
8. On the Plug-in Content page, accept all defaults and click Next.
9. On the Templates page, select Mediation Task UI Wizard and click Next.

10. In the Mediation Task Model Selection Section, choose the mediation task model plug-in and click
Next.

11. On the mediation Task Ul page, the prefix that was chosen for the Mediation Task Name for the
Model appears. Accept the default or specify a new one.

12. Specify the Java Package Name that will be used for the UI plug-in for the custom mediation task,
or accept the default value. Click Next.

By default, the Java package name is the same as the project name.

13. Specify the location of the small icon for the custom mediation task. The location should be the
complete path to the file on your local hard drive. Click Browse to locate and select the file.

14. Specify the location of the large icon for the custom mediation task. The location should be the
complete path to the file on your local hard drive. Click Browse to locate and select the file.

15. Click Finish.
Result

The Ul plug-in for the custom mediation task is created.

You can now install the custom mediation tasks. See Installing Custom Mediation Tasks.

& In case you see compilation errors switch the Target Platform to TIBCO ActiveMatrix SOA Studio. See
Composite Development for information on switching the Target Platform.

Creating the Runtime Plug-in

The plug-in refers to the model and is used in the runtime environment.
Prerequisites
Before you begin, close your Ul plug-in project and your feature project.

Procedure

Close the feature/UI project that was created when the custom mediation tasks were installed.
Run TIBCO Business Studio.
Start > All Programs > TIBCO_HOME > TIBCO Business Studio N.N > TIBCO Business Studio.

Select File > New > Project

S A N

Specify a name for the project that reflects the mediation task name and that identifies this as the
runtime plug-in, for example, LookupTaskRuntime.

*

Accept all other defaults and click Next.
7. On the Plug-in Content page, locate the Plug-in Options group and deselect these options:

* Generate an activator, a Java class that controls the life cycle of the plug-in
e This plug-in will make contributions to the UI
8. Accept all other defaults and click Next.
9. On the Templates page of the wizard, select Mediation Task Runtime Wizard and click Next.

10. On the Mediation Task Model Selection Section, choose the mediation task model plug-in and click
Next.

TIBCO ActiveMatrix® BPM Mediation Component Development

11.

12.

13.

14.

104

Specify the Mediation Task Name. This is a unique name that reflects the nature of the custom
mediation task, for example, LookupTask.

Specify the Java Package Name for the runtime plug-in for the custom mediation task. Click Next.
By default, the Java package name is the same as the project name.

Click Finish.

TIBCO Business Studio opens the Open Associated Perspective dialog, which asks if you want to
open the Plug-in Development perspective.

(Optional) Select Remember my decision check box and click Yes.
TIBCO Business Studio opens the runtime plug-in and the Plug-in Development perspective.

Along with the Runtime plug-in, a SOA Project <runtime plug-in project name>.deploy.soa is
created as shown in the following figure:

I_—_Ilg LookupTaskRuntime.deploy.soa

: E [= Composites
ol LpokupTaskRuntime, apt.composite
E-[= Deployment Artifacts

------ 4+ LookupTaskRuntime. deploy.soa_Lookup, customfeature

This SOA project contains the Custom Mediation Task Extension component that refers to the
runtime plug-in.

Your custom code is written in <runtime plug-in project name>\src\<runtime plug-in
project name>\<cutom mediation task name>RT.java.

Do not update or delete the generated <runtime plug-in project
name> . apt.composite. This composite is generated for the sole purpose of packaging the
& custom tasks plug-ins into deployable artifacts.

If you see compilation errors, switch the Target Platform to TIBCO ActiveMatrix Runtime.
See Composite Development Guide for information on switching the Target Platform.

Writing Custom Mediation Code

Custom mediation code performs operations on Mediation Exchange in paths, and on specific elements
of the message and path contexts.

Prerequisites

Before modifying the Task EMF Model, import the required plug-ins:

Procedure

S T e

Make sure the target platform is set to TIBCO ActiveMatrix Runtime.

Select Import > Plug-in Development > Plug-ins and Fragments.

Click Next.

Make sure the check box for importing from the active target platform setting is selected.
Click Next.

Import the following plug-ins by selecting them in the Plug-ins and Fragments Found table and
clicking Add -->:

com.tibco.amsb.core.model

com.tibco.amsb.core.mediation.model.ext

TIBCO ActiveMatrix® BPM Mediation Component Development

105

7. Click Finish.

Accessing Task Input/Output Schema

&

To access the input or output element declaration at runtime, you must initialize a mediation task
report object MediationTaskNameReport. This object has the accessor methods to get the input or the
output element declaration as XSDElementDeclaration.

The following code shows how to get the input or the output element schemas:
public void init() throws TaskLifeCycleFault { }

public void destroy() throws TaskLifeCycleFault { }

public N execute(final N input, final Exchange<N> exchange)
throws TaskFault {
<TaskName>MediationTask task = this.getContext().getTaskConfiguration();
TaskName>MediationTaskReport report = new <TaskName>MediationTaskReport(task);

/Task input type as schema element declaration
XSDElementDeclaration inputType = report.getCustomInputType();

//Task output type as schema element declaration
XSDElementDeclaration outputType = report.getCustomOutputType();

return exchange.getMessageData();

The return type of the execute method in a custom mediation task’s runtime class that extends
MediationTaskRT must be an instance of the output schema defined for the task. If no output schema
is defined, output defaults to message data mediationExchange.getMessageData().

Modifying the Mediation Task Data

The execute method of the mediation task runtime class has MediationExchange and the task input as
its arguments. The mediation exchange holds the mediation message and the exchange variable as a
generic Uxmal node N. Mediation Properties are held as strings.

The mediation message and properties constitute mediation task data.

As message data. or any data including exchange variables and contributed data. is based on generics,
use XML API that is data model agnostic to process message data. For data manipulation you must use
gXML. TIBCO gXML is an XML API that is based on generics and is data model agnostic.

This sample code shows processing message data:

public class HelloWorldRT<I, U, N extends I, A extends I, S, T, X> extendsTask<I,
U, N, A, S, T, X>

{
public void init() throws TaskLifeCycleFault { }

public void destroy() throws TaskLifeCycleFault { }

public N execute(final N input, final Exchange<N> exchange)
throws TaskFault
{

final GxProcessingContext<I, U, N, A, S, T, X> pcx =
exchange.getXMLProcessingContext();

final GxDocumentSerializerFactory<N, S> sf = new
DocumentSerializerFactory<I, U, N, A, S, T, X>(pcx);

// Configure for "pretty" printing.
sf.setIndent(Boolean.TRUE);
sf.setMethod(new QName("xml")) ;
sf.setOmitXmlDeclaration(false);

final StringWriter sw = new StringWriter();
final GxDocumentSerializer<N> serializer = sf.newDocumentSerializer(sw);

TIBCO ActiveMatrix® BPM Mediation Component Development

106

if(input != null){ serializer.serialize(input); }else{ serializer.serialize
(exchange.getMessageData()); }

Logger logger = LoggerFactory.getLogger(HelloWorldRT.class);
logger.info(sw.toString());
return exchange.getMessageData();
s
}

Defining Model Attributes

A user-defined mediation task can support attributes that refer to a JDBC property. Developers of the
mediation task can use a property to access JDBC connections using the mediation task API provided.

To create such a task, define a Property attribute type during the model-generation phase, using the
model creation page in the mediation task model wizard.

_|of x|
Meodel Creation Section) —
=

Add the model atiributes that will be used by Mediation Task. Click on the add

button to add an attribute.
Model Attributes:

Attribute | Type | Default value | Add

EString EString Attribute Value

EShort Eshart 10 Remove |

Eint EInt 10

Elong Elong 10

EFloat EFloat 10.0

EDouble EDouble 10.0

EBoolean EBoolean frue

EDate EDate Tue Mar 09 12:35:25 ...

Profilel Property 1

EFloat
EDouble
EBoclean
EDate

(7) < Back et > | Finish I Cancel

This attribute type is projected by the mediation task's user interface as a combination box that holds
references to attributes defined at the mediation flow level.

Custom Mediation Task Categories

To create categories of custom mediation tasks, add the methodgetPaletteGroup method to the
MediationTask Ul factory class as shown in this example:

public String getPaletteGroup(){
return "Samples";

}

This example creates the category Samples.

TIBCO ActiveMatrix® BPM Mediation Component Development

107

Thrown Faults

The runtime class for a custom mediation task has an execute method that throws the fault TaskFault. A
developer of a custom mediation task can throw this fault explicitly.

Runtime Exceptions

Path Exception Handling

Input Path control is transferred to the Catch Mediation Fault task in the fault path. A
Send Fault task in that path sends a message to the service consumer.

Output Path control is transferred to the Catch Mediation Fault task in the fault path. A
Send Fault task in that path sends a message to the service consumer.

Fault A fault message is sent to the service consumer.

Installing Custom Mediation Tasks

To make your custom mediation tasks available in the Mediation Flow Editor, you must first install and
deploy the plug-ins.

Procedure

1. Create a feature project.
Specify the plug-in to package into the new feature.
See Supplemental Eclipse Help > Plug-in Development Environment Guide > Reference >
Wizards and Dialogs > New Project Creation Wizards for more information.

2. Export the feature project.
Make sure you check the check box for the Generate metadata res po si tory option.
See Supplemental Eclipse Help > Plug-in Development Environment Guide > Wizards and
Dialogs > Export Wizards Feature Export for more information.

3. Install the feature using Help > Install New Software...

Specify the location where you exported the feature project. Clear the check box for the Group
items by category option which lists the feature project.

The custom task is ready for use and can be accessed from the palette.

Deploying Custom Mediation Tasks

After the file <runtime plug-in project name>\src\<runtime plug-in project name>
\<MediationTaskName>rt.java is updated with the custom code, the deployable artifacts can be
generated.

Procedure

1. Make sure the Target Platform points to ActiveMatrix Runtime.

See Composite Development Guide for information on switching the Target Platform.
2. Verify that the Model and Runtime plug-ins have no complilation errors.

3. In the Project Explorer pane, expand the <runtime plug-in project name>.deploy.soa
project.

TIBCO ActiveMatrix® BPM Mediation Component Development

108

4. Expand the Composites folder.

5. Right-click <runtime plug-in project name>.apt.composite, and click Create DAA.

Result

The Create Deployment Archive wizard is invoked.

Refer to Composite Development Guide for more information on using this wizard. Deploy the DAA that
packages the custom mediation task Runtime plug-ins before deploying the mediation application that
uses the custom task.

Refer to Administration Guide for information on uploading and deploying the deployment application
archive (.daa).

Testing Custom Mediation Tasks

You can test the custom mediation task in RAD by creating a Run As/Debug As configuration

Procedure

1. Add one of the following to the Functions list along with the main composite:

» A composite generated by the Custom Mediation Task wizards to the list.

* A DAA created from the composite.

Make sure that the composite or DAA that holds Custom Mediation Task is at the top of the list of
Composite/DAA(s), before the SOA DAA/Composite.

2. Select Apply and Run/Debug.

TIBCO ActiveMatrix® BPM Mediation Component Development

109

Reference

Reference describes the configuration tabs for tasks and resources used in mediation flows. They are
organized topically.

Catch Fault

The Catch Fault task specifies the faults to catch from a target operation or a mediation flow.
Catch Fault tasks appear automatically in Fault paths. Catch Fault tasks do not appear in the palette,
and cannot be added manually.

See Fault Processing in a Mediation Flow.

Use the General tab to select or clear specific faults to catch and handle. Selecting specific faults to catch
creates a sub-path for each selected fault so that you can specify processing to perform for that fault
before the fault is returned to the original environment.

Select the box in the Catch and Handle column for the fault you want to catch. The Fault column
provides a number of fault types

Item in Fault Column Description

Declared Fault Message The target operation, the Throw Fault task, and the
Invoke Operation task can throw a declared fault
message. The content and structure of the message
varies, depending upon its declaration in the WSDL
file.

UndeclaredFault An undeclared fault that occurs while invoking the
target operation returns this fault message.

UndeclaredFault A declared fault that is thrown by one of the tasks in
the mediation operation.

MediationTaskRuntimeFault An undeclared fault that is thrown by one of the tasks
in the mediation operation.

TimeoutFault The TimeoutFault is returned when the invoked
operation does not return in a specified time. The
timeout value is configurable in the composite
application.

Catch All This item is always present and is selected when one
or more other faults in the list are cleared. This item
corresponds to the path for any faults that are not
explicitly handled by other fault paths.

End Mediation

@LThe End Mediation task ends a one-way (in-only) or a Request-Response (in-out) message
exchange pattern operation.

One-way operations provide a way for service consumers to initiate operations for which they won’t
receive a response —the End Medjiation task is an orderly way to end the mediation execution. For

TIBCO ActiveMatrix® BPM Mediation Component Development

110

example, you can log the operation's input data using the Log task and then terminate the input path of
the mediation operation with an End task.

The End Mediation task can be also configured for both in-only operation and in-out operation to signal
the framework to redeliver the request message or stop re-delivery of the request message.

The mediation input path of a one-way message exchange pattern operation can contain other
mediation tasks before terminating with the End Mediation task. However, if any of the other tasks in
the mediation input path produces a fault at run-time, this will terminate the execution of the
mediation input path and transfer control to the mediation fault path. No reply is sent to the consumer,
because the fault path also terminates with an End Mediation task.

You can mediate a one-way (in-only) message exchange pattern operation to a request-response (in-out)
target operation. Although the mediation input path operation in this case is similar to that of a
mediation flow containing a one-way operation to a request-response target operation, the behavior in
the output and fault paths are different.

When mediating a one-way operation to a request-response operation, the target operation can either
return a reply or throw a fault; Mediation Flow automatically terminates both with an End Mediation
task:

» If the target operation returns a reply, the output path is executed and the path is terminated by the
End Medjiation task without sending a response to the requestor.

» If the target operation returns a fault, the target fault path is executed and the path is terminated by
the End Mediation task without sending a fault to the requestor.

For a in-only message exchange pattern operation, if the end task is configured with either a Redeliver
Message or Stop redeliver message option, an intent type of either At Least Once or One Way
Transaction has to be defined for the mediation interface.

For a in-out message exchange pattern operation, if the end task is configured with either a Redeliver
Message or Stop Redeliver Message option, an intent type of At Least Once has to be defined for the
mediation interface.

When mediating one-way operations to request-response target operations, it is good practice to set a
Log task to capture the response message on the output and fault paths, before the path execution stops
at the End Mediation task.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

TIBCO ActiveMatrix® BPM Mediation Component Development

111

Field Description

End Type Specifies how the End Mediation task exits.

» Normal stops the mediation flow immediately.

o Redeliver Message |g=) redelivers the message that initiated the
mediation flow, re-executing the entire mediation flow.

o Stop-Redeliver Message @ stops the redelivery of messages.

« Signal an Exception @ generates an exception without enforcing an
intent type of either At Least Once or One Way Transaction on the
mediation flow and component.

Generate Reply

The Generate Reply task is used to create a reply to a mediation operation without passing the
low of control on to a target operation.

The Generate Reply task terminates an input path and passes control to the Handle Reply task on the
output path.

See Replying to Messages for more information on the Generate Reply task.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for providing
documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in
the mediation flow. This name appears in the
tooltip that opens when you hover the cursor
over the task icon in the mediation flow.

Description Describe the task briefly. This description
appears in the tooltip that opens when you
hover the cursor over the task icon in the
mediation flow.

Input Tab

The Input tab is a mapping panel that you use to map the mediation exchange to the output message of
the operation. See Transforming Tasks for more information about using a mapping panel.

TIBCO ActiveMatrix® BPM Mediation Component Development

112

Handle Reply

]\JE The Handle Reply is the start of the mediation reply path for handling reply messages created
by any Generate Reply task on the input path.

A Handle Reply task appears automatically in the output path when a Generate Reply task is placed on
the input path. Handle Reply tasks do not appear in the palette, and you cannot add these tasks
manually.

See Replying to Messages for more information about the Handle Reply task.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for providing
documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in
the mediation flow. This name appears in the
tooltip that opens when you hovers the cursor
over the task icon in the mediation flow.

Description Describe the task briefly. This description
appears in the tooltip that opens when you
hover the cursor over the task icon in the
mediation flow.

Invoke Operation

The Invoke Operation task enables you to invoke an operation of an interface in the target
interface list during processing of an input, output, or fault path. The operation can be one-way or
request-reply. If the operation is request-reply, the reply message is stored in the mediation exchange
for use by subsequent tasks in the mediation path.

General Tab

See Invoking an Operation for more information about the Invoke Operation task.

Use the General tab to specify a name and description for the task. This tab is useful for providing
documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

TIBCO ActiveMatrix® BPM Mediation Component Development

Log

113

Description
Target Operation The operation to invoke. The drop-down list is populated with all
operations from the interfaces in the target interface list of the mediation
flow.
Input Tab

The Input tab is a mapping panel for mapping data from the mediation exchange to the input fields of
this task. See Transforming Tasks for more information about using a mapping panel.

Description

Task Input A complex element containing the input message for the invoked operation. The
structure of the sub-elements depends on the structure of the input message for the
operation.

You can also can input the required value for fields directly into the input schema.

Output Tab

The Output tab contains a static tree representation of the reply message schema for the invoked
operation. Subsequent tasks in the mediation flow will have access to the reply message. The reply
message is stored in an element within the mediation exchange whose root is named the same as the
Invoke Operation task name specified on the General tab.

Subsequent tasks also have access to the message context properties in the reply message. See Working
with Message Context Properties.

If the message exchange pattern for the operation is one-way, the output is null.

I*| | The Log task sends information from the mediation flow context to the log. The Log task can be
placed on an input, output, or fault path.

General Tab

For more information about the Log task, see Logging Mediation Exchange Information. For
information about configuring the log, see Configuring a Log Task.

Use the General tab to specify a name and description for the task. This tab is useful for providing
documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

TIBCO ActiveMatrix® BPM Mediation Component Development

114

Field Description

Log Role Select the role for log messages —INFO, WARN, DEBUG, or ERROR. Each
is handled separately, and each has its own log.

Use Transform Data Select this option to display the Log tab as a mapping panel that shows the
schema with the elements message, messagelD, and role, so that you can
build custom log messages. See Information for Custom Log Messages.

If this option is not set, the Log tab displays information from the
mediation exchange for you to specify which information to send to the log
file. See Information for Standard Log Messages.

The Use Transform Data option is cleared by default.

Log Tab

The appearance of the Log tab depends on whether the option Use Transform Data is selected on the
General tab.

o If Use Transform Data is clear (the default), the Log tab shows top-level message information, from
which you choose the information to log. See Information for Standard Log Messages.

o If Use Transform Data is selected, the Log tab appears as a mapping panel so that you can build
custom log messages. See Information for Custom Log Messages.

Information for Standard Log Messages
If the Use Transform Data option is not selected in the General tab, you use the Log tab to specify what
top-level information from the mediation exchange to send to the log file.

Item Description

Log All Items Selects all sub-items on this tab and sends all information in the
mediation flow context to the log.

Mediation Flow Properties The properties defined for the mediation flow. These properties can
be defined on the Properties tab of the mediation flow.

You can select the parent item to send all mediation flow properties to
the log, or you can select individual properties to send the properties
to the log.

Mediation Flow Context Logs message context such as component and mediation flow name
information, if the Mediation Flow Context option is set on the
Advanced tab of the mediation operation Properties view.

See Working with Message Context Properties for information about
the Mediation Flow Context option.

Message Context Logs all message context information. The message context includes
information about the transport used for the message and the security
context for the message.

You can optionally select either the transport or security information
if you do not want the entire message context sent to the log.

TIBCO ActiveMatrix® BPM Mediation Component Development

115

Item Description

Message Data The content of the message.

Contributed Data Some mediation tasks, such as Transform or custom tasks, can
contribute additional data items to the mediation exchange. Each
contributed data item is named for the task that contributes the data.
You can send any contributed data item to the log.

Exchange Variable You can send exchange variable information to the log if you have
specified an exchange variable on the mediation operation, and have
set it using the Set Exchange Variable task.

Information for Custom Log Messages

If the Use Transform Data option is selected on the General tab, the Log tab is a mapping panel, where
you can map mediation information to build custom log tasks.

Field Description

message Specify the data from the mediation exchange to log.

You can log any data available in the mapper —the message element
allows logging of a simple message, and also allows mapping XML
documents in a serialized text form.

If the Mediation Flow Context option is set on the Advanced tab of the
mediation operation’s Properties view, you can map message context
information to the message element. See Working with Message Context
Properties for information about the Mediation Flow Context option.

messagelD Optionally specify a message ID value to be included as part of the
message that is being logged. The message ID consists of two elements,
name and code. The name element is a string type and the code element
is integer type.

At run-time, the value in the name element and the value in the code
element are combined to form a message ID that has the syntax name-
code. For example, if the name element contains the value Mail and the
code element contains the value 1000 then the message ID will be
Mail-1000. However, if you only provide the value for the name
element, a default value of 0 will be used for the code element. Similarly,
if you only provide the value for code element, the default value for the
name element will be AMSB. LogTask.

role Optionally specify a logging-level role for run-time.
Values can be info, warn, debug, or error. Values are not case-sensitive.

If you map to this role, the value you give its property overrides the Log
Role setting in the General tab.

TIBCO ActiveMatrix® BPM Mediation Component Development

116

Parse XML
The Parse XML task is used when you have an XML document stored in a string or binary field.

This task produces a tree representation of the XML that can be used by subsequent tasks in the
mediation flow. This task can be paired with the Render XML task to convert the parsed XML back into
a string or binary field for transmission within a message.

XML documents are sometimes stored in string or binary fields to improve the performance of message
transmission or for other reasons. You may want to view or manipulate the data within the document
then replace the document in the message before transmission to a target operation or mediation
operation. Also, the target or mediation operation in your mediation flow may expect to receive all or a
subset of the fields within the document.

To parse an XML document, you must provide the schema definition for the data. The schema
definition must be stored in an XSD within your project. You can use an existing XSD, create an XSD
with the XSD editor within TIBCO Business Studio, or you can use your own XSD editor plug-in. See
the Eclipse XSD Developer Guide for more information about the XSD editor within TIBCO Business
Studio.

The output of the Parse XML task is placed into the contributed data portion of the mediation
exchange. An element with the same name as the Parse XML task is placed into the mediation
exchange. The XSD specified in the Output Schema field determines the structure of the element.

The Parse XML task can be placed on an input, output, or fault path.

General Tab

Field Description

Name Assign a name to the task, to identify the task in
the mediation flow. This name appears in the
tooltip that opens when you hover the cursor
over the task icon in the mediation flow.

This is also the name of the element in the
mediation exchange that stores the output of this
task.

Description Describe the task briefly. This description
appears in the tooltip that opens when you
hover the cursor over the task icon in the
mediation flow.

Output Schema An XSD stored in the workspace that describes
the structure of the XML document you want to
parse. The output of this task is a parsed XML
tree containing the data in the XML document
supplied in the Input tab. This output schema is
the structure of the element added to the
mediation exchange containing the output of
this task.

TIBCO ActiveMatrix® BPM Mediation Component Development

117

Field Description

Binary Input Select this box when the XML document is
stored in binary format instead of text format.
When this box is not selected, the XML
document is expected to be text.

This field controls the input element on the
Input tab of this task. When you do not select
this field, the input element is a string named
xmlString. When you select this field, the input
element is a binary element named xmlBinary.

Validate Input Select this box to enable schema validation of the

task input.

If you select this box and the schema validation
fails, the error results in a mediation task fault.

If you do not select this box, validation is not
performed. A fault is thrown only if a parse
error occurs

Input Tab

The Input tab is a mapping panel for mapping data from the mediation exchange to the input fields of
this task. See Transforming Tasks for more information about using the mapping panel.

Field Description

TaskInput A complex element to hold the input for this task. The sub-element of
this element is the XML document that you want to parse. The Binary
Input field on the General tab controls which of the following
elements appear.

ParseXmlStringInput Appears when the Binary Input field on the General tab is not
selected. Map this element to a string element in the Mediation
Exchange that holds the XML document you want to parse.

ParseXmlBinarylnput Appears when the Binary Input field on the General tab is selected.
Map this element to a binary element in the Mediation Exchange that
holds the XML document you want to parse.

Output Tab

The Output tab is a read-only display of the output schema for this task.

TIBCO ActiveMatrix® BPM Mediation Component Development

118

Query Database

The Query Database task is used to construct a SQL SELECT statement query to a database.

This task is useful for performing basic queries for looking up information stored in a database table
that will be used in the mediation flow.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for providing
documentation for tasks in your mediation flows

Field Description

Name Assign a name to the task, to identify the task in
the mediation flow. This name appears in the
tooltip that opens when you hover the cursor
over the task icon in the mediation flow.

This is also the name of the element in the
mediation exchange that stores the output of this
task.

Description Describe the task briefly. This description
appears in the tooltip that opens when you
hover the cursor over the task icon in the
mediation flow.

Shared Resource Property Use the drop-down list on the field to select the
available shared resource property. Shared
resource properties define database connections
that are used to perform the query. Shared
resource properties are defined on the Shared
Resource Properties tab of the mediation flow.

Max Row Count The maximum number of rows to retrieve. The
default value is 1. Specify a positive integer, or
use the drop-down menu on the field to select
Unlimited to return an unlimited number of
TOWS.

Query Timeout (sec) The timeout for the query.

Query Tab

You use the Query tab to define the SELECT statement for the query.

Click the connection button fij to test the connection and to verify the table and column data. Clicking
this button opens a connection, if you have specified a JDBC property in the mediation flow Properties
tab, and compares the table and column data with the metadata from the database. If the connection is
not successful, an error notifies you of the reason.

Three lists enable you to select tables, input data, and output columns for use in the WHERE clause of
your SELECT statement

TIBCO ActiveMatrix® BPM Mediation Component Development

119

Input data is used in the WHERE clause of your SELECT statement. Use the add (+) and delete (x)
buttons to the right of each list to add and delete items from each list.

o When a database connection is present and valid, the + buttons display information from the
database for selecting tables and output columns.

e When no database connection is present, the + buttons allow you to add items to each list, but you
must name each item and specify a type if necessary.

Clicking the + and x buttons on the Input table attempt an automatic update of the WHERE condition.
If you have modified the WHERE condition, the delete might not update it and you must fix it
manually.

Use the Where Condition field on the Query tab to edit the WHERE clause of the query. You can add
an input variable to a condition by typing a question mark (?) in the condition. Each input variable
appears in the mapper panel on the Input tab, and you can supply data from the mediation exchange
for the input variable. For example, if you want to create a condition to look up a zip code supplied in
the input message, you can add the condition table.ZIP = ?. When you add a question mark into the
WHERE clause, an input variable appears in the Input Data list. Supply a name for the input variable,
then data from the mediation exchange can be mapped to the input variable.

Table join conditions are never automatically added to the WHERE clause, so you must manually edit
the WHERE clause to specify any join conditions for your query.

The SQL Statement field displays a read-only version of the query you have specified. The following
table lists the supported SQL types and how they map to XML. Note that length parameters are
stripped from the SQP Type, and only the base type is used in the mapping — for example, char(12)
becomes char.

Supported SQL types and their mapping to XML

SQL/92 Data Types XML Type Equivalent

TINYINT short

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT float

DOUBLE double

CHAR string

VARCHAR string

NCHAR string (multi-byte)
NVARCHAR?2 string (multi-byte)
DATE date

TIBCO ActiveMatrix® BPM Mediation Component Development

120

SQL/92 Data Types XML Type Equivalent

TIME time

TIMESTAMP dateTime

Vendor-specific types are cast to string. You can enable the mapper to automatically recognize these
types in one of these ways:

» Force vendor-specific types to a compatible XML type using the mapper cast.
e Opverride the type that is retrieved from the database for the column to a similar SQL/92 type.

Binary or other complex data types such as JAVA_OBJECT are not supported.

Input Tab

The Input tab is a mapping panel for mapping data from the mediation exchange to the input fields of
this task. See Transform Tasks for more information about using a mapping panel.

Field Description

InputValues A complex element to hold the input for this

task. The sub-elements of this element are the
input variables defined on the Query tab. Each
input variable corresponds to a question mark
(?) that appears in the WHERE clause of the

query.
Map values from the mediation exchange to

fields in the input schema to supply values for
the input variables of the query.

Output Tab

The Output tab is a read-only display of the output schema for this task. The output schema is
determined by the output columns selected on the Query tab.

Test Tab

The Test tab is used to test the database query. You must have a valid JDBC template associated with
the JDBC property used by this task. The JDBC resource template is used only in the design
environment.

You can use a custom JDBC driver to test the database query. For information about configuring a
custom JDBC driver, see Composite Development Guide.

It is important for you to ensure that the JDBC resource template you use for testing in the design
environment connects to a database that is similar to the database used when the project is put into
production.

TIBCO ActiveMatrix® BPM Mediation Component Development

121

Render XML

The Render XML task takes an XML tree for a specified schema and converts it to a string or
binary element that contains the XML document. This task can be paired with the Parse XML task to
convert the parsed XML back into a string or binary field for transmission within a message.

XML documents are sometimes stored in string or binary fields to improve the performance of message
transmission or for other reasons. You may want to view or manipulate the data within the document
then replace the document in the message before transmission to a target operation or mediation
operation. Also, the target or mediation operation in your mediation flow may expect to receive all or a
subset of the fields within the document.

To render an XML document, you must provide the schema definition for the data. The schema
definition must be stored in an XSD within your project. You can use an existing XSD, create an XSD
with the XSD editor within TIBCO Business Studio, or you can use your own XSD editor plug-in. See
the Eclipse XSD Developer Guide for more information about the XSD editor within TIBCO Business
Studio.

The output of the Render XML task is placed into the contributed data portion of the mediation
exchange. An element with the same name as the Render XML task is placed into the mediation
exchange. The contents of the element is either a string or binary element containing the XML
document.

The Render XML task can be placed on an input, output, or fault path.
General Tab

Use the General tab to specify a name, description, and input schema for the task. If the XML document
will be stored in binary format instead of text format, you can specify that on the General Tab.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow.

This name appears in the tooltip that opens when you hover the cursor
over the task icon in the mediation flow.

This is also the name of the element in the mediation exchange that
stores the output of this task.

Description Describe the task briefly. This description appears in the tooltip that
opens when you hover the cursor over the task icon in the mediation
flow.

Input Schema An XSD stored in the project that describes the structure of the XML
document you want to render. The specified schema is used to
determine the input schema for this task.

Binary Output Select this box when the XML document will be stored in binary format
instead of text format. When this box is cleared, the XML document is
stored in a text field.

Encoding Use this field to specify the character encoding used to render the XML
string. A list of encodings is provided. If the field is empty the default
system encoding is used.

TIBCO ActiveMatrix® BPM Mediation Component Development

122

Field Description

Validate Output Select this box to enable schema validation of the task output.
If this box is selected and the schema validation fails, the error results in
a mediation task fault.
If this box is not selected, validation is not performed; a fault is thrown
only if a parse error occurs.
Input Tab

The Input tab is a mapping panel for mapping data from the mediation exchange to the input fields of
this task. See Transform Tasks for more information about using a mapping panel.

Description

TaskInput A complex element to hold the input for this task. The sub-element of this
element is the schema specified in the Input Schema field on the General tab.
Map values from the mediation exchange to fields in the input schema to
create the XML document.
Output Tab

The Output tab is a read-only display of the output schema for this task.

Route Task

The Route task sends messages to a specific destination based on specified conditions. Data
rom the mediation flow context, such as the security information or message body, can be used to
specify the conditions of the route.

You can only introduce the route in the input path. The response (output or fault) always returns to the
original requester —that is, to the same mediation operation.

Route tasks send each incoming message to a single destination based on which route case evaluates to
true, or to a single destination designated as otherwise if none of the cases evaluate to true.

You can use multiple, nested Route tasks to send a single message to a target in several different ways,
based on the routing cases, conditions, and variables you set for each task in the Decision tab.

You can configure multiple routes in an input flow, nesting them to any depth, and you can place
mediation tasks on flow paths before or after any route task. This enables users to decide which tasks
are executed in common and which are executed only for specific route cases.

See Routing Messages in a Mediation Flow for more information about the Route task.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for providing
documentation for tasks in your mediation flows.

TIBCO ActiveMatrix® BPM Mediation Component Development

123

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This name
appears in the tooltip that opens when you hover the cursor over the task icon
in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Decision Tab

Use the Decision tab to create routing cases, routing conditions, and variables to hold data that will be
evaluated in the routing conditions. The Decision tab has a toolbar for adding and deleting cases and

conditions.

Toolbar Icon Description

%

Add Case

Adds a routing case to the table on this tab. A new case appears in the table
on this tab with a default name, and the case is drawn in the mediation flow
diagram.

By default, new cases created with this icon point to an error icon until a
Target Service/Operation is specified for the case.

%

Delete Case

Deletes the selected routing case.

W

Add Variable

Adds a variable to use in routing conditions. Clicking this icon opens a
dialog that enables you to specify the name and data type of the variable.
These datatypes are available:

e string

e integer
e boolean
o date

e time

o float

Each variable appears as a column between the Case column and the Target
Service/Operation column.

¥,

Delete Variable

Opens a dialog for you to select the variable to delete.

The Decision tab includes a table containing all of the routing cases.

TIBCO ActiveMatrix® BPM Mediation Component Development

124

Column Description

Case Name of the routing case. Click in the cell to edit the name.

Variable List Variables created with the Add Variable icon appear as columns in this
table. You must specify a comparison operator and a constant to
compare for each variable. Click the cell to select the comparison
operator from a drop-down list and edit the value of the constant in the
text field.

You can specify comparison operators:

e =(equal)

* I=(not equal)

e < (less than)

e <=(less than or equal)
» > (greater than)

e >=(greater than or equal)

All variable conditions that you specify for each case must evaluate to
true for the case to evaluate to true.

Target Service/Operation =~ The name of the Target Service and target operation that is the
destination for this case. If you drag the path for the case to a target
operation in the mediation flow, this field is automatically set to the
correct value. You can also click this field to either type or select the
target operation.

At the bottom of the Decision tab is the configuration for the Otherwise case for the route. The
Otherwise case is taken when all other cases evaluate to false. You can specify the target operation for
this case in the Target Service/Operation field.

Also at the bottom of the Decision tab is a drop-down list of choices for setting the case target to a
specific type of mediation task. For example, selecting Throw Fault sets the target to a new Throw Fault
task.

Targets you can specify are:

o Targeted operations that are not already targeted
» Generate Reply, Throw Fault for mediation tasks
e End Mediation for one-way (in-only) operations.

» Route tasks and XPath Route tasks, which enables you to build nested routing structures.

& ‘ Any change you make to a nested routing structure replaces the entire nested structure.

Input Tab

Use the Input tab to map data from the mediation exchange into the list of variables that you have
created for the Route task. See Transform Tasks for a complete description of how to perform mapping.

TIBCO ActiveMatrix® BPM Mediation Component Development

125

Send Fault

{(t
The Send Fault task returns a fault message to the original process that invoked the mediation
task. Send Fault tasks appear automatically in Fault paths. Send Fault tasks do not appear in the palette,
and you cannot add these tasks manually.

General Tab

See Fault Processing in a Mediation Flow for more information about fault processing.

Use the Fault tab to specify the fault to send to the original environment.

Description

Fault to Send A drop-down list of declared fault messages on the mediation operation. You
can also choose to send the UndeclaredFault message.

Set Context

The Set Context task provides a way to set the values for the message context properties of the
target operation's input message and the message context properties of the mediation operation's
output message.

This allows the mediation path to set the message context data (such as HTTP header or JMS user
properties) for the output message of the mediation operation and the input message of the target
operation.

The schema that appears on the Set Context task is configured in the Properties view of the mediation
operation or target operation. On the Advanced tab, you can set the field Message Context Properties
(outbound) of the mediation operation, or the Message Context Properties (inbound) field of the target
operation.

See Working with Message Context Properties.

General Tab

Use the General tab to specify a name and description for the task, and to identify the operation for
which to set the context.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This name
appears in the tooltip that opens when you hover the cursor over the task icon in
the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens when
you hover the cursor over the task icon in the mediation flow.

TIBCO ActiveMatrix® BPM Mediation Component Development

126

Field Description

Operation The operation for the Set Context task. The drop-down list is populated with all
operations from the interfaces in the target interface list of the mediation flow.

If the path is leading to the mediation Operation (for example, the Output path),
you can select the mediation operation and set the context properties of the
mediation output message. The Operation field identifies this case by identifying
the interface. For example, [Mediation Interface]:HelloWorld/sayHello).

Input Tab

he Input tab is a mapping panel for mapping data from the mediation exchange to the input fields of
this task. See Transform Tasks for more information about using a mapping panel.

The input context for the target operation appears in the right side of the mapper. The task input
structure provides context properties.
o Of the operation’s outbound message, if a mediation operation is selected in the General tab.

o Of the operation’s inbound context message, if a target operation is selected in the General tab.

Set Dynamic Reference

! The Set Dynamic Reference task provides the values needed for resolving a service provider in

a dynamic target interface.

Each Set Dynamic Reference task sets the value of the service provider for the specified dynamic target
interface—either the end of the mediation path points to a dynamic target interface, or an Invoke task
invokes an operation on a dynamic target interface.

General Tab

Use the General tab to specify a name and description of the Set Dynamic Reference task, and to set the
target interface and endpoint reference mechanism.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow.
This name appears in the tooltip that opens when you hover the cursor
over the task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that
opens when you hover the cursor over the task icon in the mediation
flow.

TIBCO ActiveMatrix® BPM Mediation Component Development

127

Field Description

Dynamic Target Interface The name of the dynamic target interface for which this task is
supplying the service name and namespace.

By default, this field is automatically set to the dynamic target interface
at the other end of the path. If an Invoke task is on the path, this field
may be set by default to the first dynamic target interface in the target
interface list. You might need to set this field when the default choice
does not match the dynamic target interface that you want to set.

The name of the dynamic target interface for which this task is
supplying the application and service name. By default, this field is set
to the dynamic target interface at the other end of the path. If there is an
Invoke task on the path, this field can be set by default to the first
dynamic target interface in the target interface list. You might need to
set this field when the default choice does not match the dynamic target
interface that you want to set.

Endpoint Reference Select an option for the mechanism to use for setting the application
Mechanism and service name:

o Application & Service Name: Select to supply the application name
and service name. This option requires two inputs for mapping on
the Input tab— ApplicationName and ServiceName.

e Application & Service URI: Select to supply the exact URI of the
endpoint. This is useful if, for example, someone sends you the URI
—you simply copy and paste it into the ApplicationServiceURI
parameter on the Input tab.

o URI: Select this option to specify a URL

 Pattern Variables: Select to use pattern variables from the dynamic
target interface. This is useful if several operations in a dynamic
target interface use a similar pattern for the application name and
service name. You can specify the mapping once on the dynamic
target interface and use variables to supply the variable portion. The
variables you create on the dynamic target interface appear in the
Input tab when this option is selected.

By default, the Endpoint Mechanism field is set to Application &
Service Name when the dynamic target interface has no pattern
variables.

If the dynamic target interface has pattern variables, the Endpoint
Mechanism field is set to Pattern Variables by default.

Input Tab

When the Endpoint Reference Mechanism field on the General tab is set to Service & Namespace, the
input elements for this task are serviceName and serviceNamespace. Any value you specify for these
input elements overrides the value specified on the Pattern Map tab of the specified dynamic target
interface.

When the Endpoint Reference Mechanism field on the General tab is set to Pattern Variables, then the
pattern variables defined on the specified dynamic target interface are the input elements. This enables
you to specify simple mappings of data from the mediation exchange to the variable values. The
variable values are then passed to the mapping supplied on the Pattern Map tab of the dynamic target
interface.

TIBCO ActiveMatrix® BPM Mediation Component Development

128

Use any data available in the mediation exchange on the left side of the mapper panel to provide data

to the input values.

The content of the Input tab depends on which Endpoint Reference Mechanism you select on the
General tab — Application & Service Name, Application & Service URI, or Pattern Variables:

Application & Service Name

When the Endpoint Reference Mechanism field on the
General tab is set to Application & Service Name, the input
elements for the Set Dynamic Reference task are
ApplicationName and ServiceName:

o ApplicationName refers to the application name provided
during deployment of a composite, to uniquely identify an
instance of an application template.

o ServiceName is the name of the composite service that is
contained in the target composite.

Application & Service URI

When the Endpoint Reference Mechanism field on the General
tab is set to Application & Service URI, the input element for
the Set Dynamic Reference task is ApplicationServiceURL

The data type of the ApplicationServiceURI input field is a
URI of the format

urn:amx: EnvironmentName/
ApplicationName#service(ServiceName)

The variables EnvironmentName, ApplicationName, and
ServiceName refer to the environment and service that are being
invoked:

o EnvironmentName is the name of the ActiveMatrix
environment that contains the target service.

o ApplicationName refers to the application name that is
provided during deployment of a composite, to uniquely
identify an instance of an application template.

o ServiceName is the name of the composite service that is
contained in the target composite.

URI

When the Endpoint Reference Mechanism field on the

General tab is set to URI, the input elements for the Set

Dynamic Reference task are URL.:

e SOAP over HTTP
http://<HostName>:<PortNumber>/<Path>
<PortNumber> and <Path> are optional elements.

e SOAP over JMS: Specify the queue as

jms:queue:<QueueName>
e ActiveMatrix Service Virtualization

urn:amx:<EnvironmentName>/
<ApplicationName>#service(<PromotedServiceName>)

TIBCO ActiveMatrix® BPM Mediation Component Development

129

Pattern Variables When the Endpoint Reference Mechanism field on the
General tab is set to Pattern Variables, the pattern variables that
are defined on the specified dynamic target interface are the
input elements.

This enables you to specify simple mappings of data from the
mediation exchange to the variable values. The variable values
are then passed to the mapping supplied on the Pattern Map
tab of the dynamic target interface. You can use any data
available in the mediation exchange on the left side of the
mapper panel to provide data to the input values.

Set Exchange Variable

The Set Exchange Variable task sets the value of the exchange variable mediation exchange.
The Set Exchange Variable task can be placed on an input, output, or fault path.

The Set Exchange Variable task sets the value of the entire exchange variable — if you need to set
several attributes, set them all at once, using one Set Exchange Variable task.

See Working with Exchange Variables for a description of how to define exchange variables for

mediation operations.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for providing
documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This name
appears in the tooltip that opens when you hover the cursor over the task icon in
the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens when
you hover the cursor over the task icon in the mediation flow.

Input Tab

The Input tab contains a mapping panel for mapping data from the mediation exchange to the input
fields of this task. See Transform Tasks for more information about using a mapping panel.

Description

ExchangeVariable The exchange variable element defined in the mediation operation General tab
appears on the right side of the mapper.

To set the exchange variable, map values from the mediation exchange to the
exchange variable element.

TIBCO ActiveMatrix® BPM Mediation Component Development

Throw Fault

D

130

/'[@| The Throw Fault task enables you to explicitly throw a fault in a mediation flow.

This task can be placed only on the input path. The Throw Fault task is useful in these situations:

* You want to deprecate a mediation operation, and send a fault to all clients that request that

operation.

» You want to specify routing cases where a fault should be sent. For example, if a loan processing
application cannot process loans over $5,000,000, then you would configure a routing case for the
loan request operation to examine the loan amount and place a Throw Fault task on the sub-path
when the loan amount is over $5,000,000.

See Fault Processing in a Mediation Flow.

General Tab

e Use the General tab to select the fault to throw.

* You can choose to throw the MediationTaskFault message, or you can click Browse to open a
dialog of service descriptors.

* You can choose from the list of messages in the selected service descriptors to send a specific
message when a fault is thrown. When a message in a service descriptor is selected, the WSDL
Location field appears.

* You can click the field label link to view the service descriptor in the WSDL editor.

Transform

=% | The Transform task is used to manipulate the data available in a mediation flow so that the

expected input, output, or fault message can be created.

Transform tasks can be placed on input, output, or fault paths. See Transform Tasks.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for providing
documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over the
task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

TIBCO ActiveMatrix® BPM Mediation Component Development

131

Field Description

Contribute Outputto When not selected, this option signifies that the output of the Transform
Mediation Exchange 55k should change the message data.

When this option is selected, the message data is left unchanged, and the
output of this task is added as another data item within the mediation
exchange. The data contributed by this task is available to subsequent
mediation tasks along the same path.

If you select Use External Stylesheet on this tab, the Contribute Output to
Mediation Exchange option is automatically selected and cannot be

cleared.
Use External Select to use an external stylesheet for data transformation. This enables
Stylesheet you specify the transformation mapping in your workspace, outside the

mediation flow.

ISnPIUt and Output Appears only if you select Use External Stylesheet.
tyle
Y Specify how the XML will appear:

o Text Specified with a string.
e Binary Specified with a binary value.

o Tree Specified with an any element, so that you can transform data
already in an XML document.

Stylesheet Reference Appears only if you select Use External Stylesheet.

Type
Select the type of reference for the Transform task:

e A static reference enables you to select a single (static) stylesheet from a
folder that is in your project.

» A dynamic reference enables you to select a set of stylesheets from a
folder in the project. At run-time one of the stylesheets in the list will be
used dynamically, based on the value provided for the stylesheetURI
element that is in the Input tab of the mediation task.

For example, if the folder specified for the dynamic reference is
MySOAProject/Service Descriptors and the stylesheet is in the folder
MySOAProject/Service Descriptors/folderl/sample.xsl, the
value that must be provided for the stylesheetURI element must be
folderl/sample.xsl.

When you specify a folder for dynamic reference, ActiveMatrix
recursively includes the stylesheets under this folder and its sub-folders.

Static Style Sheet Appears if you select a static stylesheet reference type. Click Browse to
Reference select a single (static) stylesheet that is in your workspace.

Dynamic Stylesheet Appears if you selected a dynamic stylesheet reference type. Chose a value
Folder available in the drop-down list. At run-time, one of the style sheets in the
list will be used dynamically, based on the input to the mediation task.

TIBCO ActiveMatrix® BPM Mediation Component Development

132

Input Tab

Use the Input tab to map data from the mediation exchange into the expected message schema.

Field Description

xmlString Specify an XML document serialized as a string.

xmlBinary Specify an XML document serialized in Base64Binary format.

xmlTree Specify an XML document.

stylesheetURI Specify the schema URI, so that ActiveMatrix can locate it at run time and

use it for the transformation.

parameter A stylesheet can expect zero, one or more parameter(s) for its execution at
runtime:
o Parameter Name — Name of the parameter the stylesheet expects.
o Parameter Value — Value of the parameter.
Output Tab

The Output tab shows a tree representation of the Transform task output. Depending on the input style
chosen, the output can be:

e xmlString — XML document serialized as string

e xmlBinary — XML document serialized in Base64Binary format

e xmlTree — XML document

Validate XML

&

The Validate XML task is used to validate message data, a WSDL message, XML text, binary, or
XML tree formats against a schema.

The output of the Validate XML task is contributed to the mediation exchange, and can be used by
downstream tasks. Validate XML processes an XML document against an XML schema, to report any
errors found. It does not produce a parsed tree.

You choose the schema against which validation is to be performed by first specifying its reference type
in the General tab of the Validate XML task:
» A static reference enables you to select a single (static) schema from a folder that is in your project.

* A dynamic reference enables you to select a set of schemas from a folder that is in your project. At
run-time one of the schemas in the list will be used dynamically for validation, based on the input to
the mediation task. When you specify a folder for dynamic reference, ActiveMatrix recursively
includes the schemas under this folder and its sub-folders

‘ The schema for a reference must be located in the same project as the mediation flow that uses it.

TIBCO ActiveMatrix® BPM Mediation Component Development

133

General Tab

On the General tab you specify a name and description for the task, and specify the type of schema to
be used during verification.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This
name appears in the tooltip that opens when you hover the cursor over
the task icon in the mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens
when you hover the cursor over the task icon in the mediation flow.

Thr.ow Fault on When this option is set, an error in the Validate XML task results in a
Validation Error MediationTaskFault.

When this check box is not selected, an error in the Validate XML task
produces output that contains two fields:

valid has two values: true if the XML is valid; false if the XML is invalid.

error appears if the XML validation fails, and contains an errorCode and
an errorMessage. These codes follow the W3C specification for XML
schema.

Input Select the input type:

* MessageData— Validates the mediation or target operation’s input
data. This option reads the input message itself, so no mapping is
required. MessageData is the default input type.

» WSDL Message — Validates the input or output of any operation in the
WSDL. When you select the WSDL Message option, the Schema
Source field opens. Select the mediation or target option, and the
message type (input or output).

o Text

¢ Binary

e XML Tree
Schema Reference When you select an input type of Text, Binary, or XML Tree, you can
Type choose a static or dynamic reference type:

» A static reference enables you to select a single (static) schema from a
folder that is in your project.

* A dynamic reference enables you to select a set of schemas from a
folder that is in your project. At run-time one of the schemas in the list
will be used dynamically for validation, based on the input to the
mediation task. When you specify a folder for dynamic reference,
ActiveMatrix recursively includes the schemas under this folder and
its sub-folders.

TIBCO ActiveMatrix® BPM Mediation Component Development

134

Field Description

Schema Element or This field is based on whether you choose a static or dynamic reference
Schema Folder type:

o If you choose Static Reference Type, the Schema Element field
appears. Specify the XML schema document against which the
incoming XML will be validated.

» If you choose Dynamic Reference Type, the Schema Folder field
appears. Specify the folder where schema resources are located.

Input Tab

The content of the Input tab depends on the Input type you selected on the General tab.

Field Description

MessageData No mapping is required in the Input tab.

WSDL Message Displays a message tree corresponding to the operation and message
selected in the General tab.

Text Specify the xmlString input to validate.

If you chose a Dynamic Reference Type in the General tab, you can
specify an optional elementName.

Binary Specify the xm1Binary input to validate.

If you chose a Dynamic Reference Type in the General tab, you can
specify an optional elementName.

Tree In the xm1Tree node, specify any element to validate.

If you chose a Dynamic Reference Type in the General tab, you can
specify an optional elementName.

Output Tab

The Output tab of the Validate XML task shows the results of the validation, indicating whether the
incoming XML is valid or invalid, after being verified against the specified schema.

If validation fails, an error description identifies the cause of the failure. You can log this error
description for design-time troubleshooting.

If the Throw Fault field is selected, no output is produced by this task. The Output tab shows a tree
with the message No Output Configured.

XPath Route

e
The XPath Route task enables you to send messages to a specific destination based on
conditions that you specify.

Data from the mediation exchange, such as the security information or message body, can be used to
specify the conditions of the route.

TIBCO ActiveMatrix® BPM Mediation Component Development

135

XPath Route tasks can only be placed on input paths, but specifying an XPath Route task on the input
path automatically creates the correct output and fault paths.

See Routing Messages in a Mediation Flow for more information about the XPath Route task.

General Tab

Use the General tab to specify a name and description for the task. This tab is useful for providing
documentation for tasks in your mediation flows.

Field Description

Name Assign a name to the task, to identify the task in the mediation flow. This name
appears in the tooltip that opens when you hover the cursor over the task icon in the
mediation flow.

Description Describe the task briefly. This description appears in the tooltip that opens when
you hover the cursor over the task icon in the mediation flow.

Decision Tab

Use the Decision tab to create routing cases, routing conditions, and variables to hold data that will be
evaluated in the routing conditions. The Decision tab includes a toolbar for adding and deleting cases
and conditions

Toolbar Icon Description

Adds a routing case to the table on this tab. A new case appears in the table
EP‘E—* on this tab with a default name, and the case is drawn in the mediation flow
diagram. By default, new cases created with this icon point to an error icon

Add Case until a Target Service/Operation is specified for the case.

Deletes the selected routing case.

%

Delete Case

— Adds a variable to use in routing conditions. Clicking this icon opens a

U dialog that enables you to specify the name and data type of the variable:
Add Variable o String
o Integer
e Boolean
o Float
e Double

e Decimal

Each variable appears as a column between the Case column and the Target
Service/Operation column.

—_— Opens a dialog for you to select the variable to delete.

Delete Variable

TIBCO ActiveMatrix® BPM Mediation Component Development

136

The Decision tab includes a table containing all of the routing cases.

Column Description

Case Name of the routing case. Click the cell to edit the name.

Variable The name of each variable that you create appears in at the top of the middle
Names column of the table. The middle column is used to specify the XPath expression for
the routing condition for each case. Your expressions are not limited to simple
comparisons, and you do not need to use any of the variables you have defined in
the expressions.

(routing
condition)

You must type the XPath expression in the condition field next to each routing case,
or select the field and use the Xpath Editor field at the bottom of the tab to edit the
expression.

Variables are referenced in the XPath expressions for each routing case by their
names. Unlike XPath expressions in the Transform task, you do not need to use a
dollar sign to specify the root of the path to the variable. For example, the
expression to determine if the city variable is equal to "Palo Alto" would be: city =
"Palo Alto"

The Transform task has a graphical XPath editor that you can use as a reference for
creating XPath functions for the route task. See Using XPath on page 107 and Data/
Function Tabs on page 91 for more information about XPath.

Target The name of the Target Service and target operation that is the destination for this

Service/ case. If you drag the path for the case to a target operation in the mediation flow,

Operation this field is set automatically to the correct value. You can also click this field to
either type or select the target operation.

At the bottom of the table is the configuration for the Otherwise case for the route. The Otherwise case
is taken when all other cases evaluate to false. Use the Target Service Operation field to specify the
target operation to perform for this case.

You can use the XPath editor window at the bottom of the Decision tab to edit the XPath expressions
for each routing condition.

Input Tab

Use the Input tab to map data from the mediation exchange into the list of variables that you have
created for the XPath Route task. See Transform Tasks for a description of how to use a mapping panel.

TIBCO ActiveMatrix® BPM Mediation Component Development

137

TIBCO AutoMediate Command-Line Tool

TIBCO AutoMediate Command Line is an independent command-line tool that enables you to quickly
on-ramp a large number of existing services, without having to use TIBCO Business Studio, the
Mediation Flow Editor, or the Composite Editor to build the necessary design-time components.

The AutoMediate Command Line tool uses existing services as input, specified in a concrete WSDL, to
create a fully functional composite application with pass-through mediation capabilities. The tool
generates a deployment artifact archive that you can deploy into the runtime environment as the first
step in establishing an Enterprise Service Bus (ESB).

By establishing an ESB pattern using the AutoMediate Command Line tool and ActiveMatrix, you
virtualize existing provided or consumed services so that they become location-transparent and more
adaptable to change.

e Virtualizing provided services hides the location of service providers, helping to avoid interrupting
clients that are using the services.

e Virtualizing consumed services hides the details of how the services are provided, helping to avoid
interrupting logic that depends on the services.

The AutoMediate Command Line tool builds SOA projects that contain these components.

e A pass-through mediation flow.

» A composite that contains the mediation component wired to services and references, depending on
the number of ports specified in the concrete WSDL.

o The deployment artifact file for the generated composite application.

You can save these components in your source control system, then add mediation capabilities — for
example routing, transformation, and validation — whenever changes are necessary.

AutoMediate Command-Line Tool Flow

The AutoMediate Command Line tool creates a SOA project from a concrete WSDL with HTTP service
bindings.

In the following diagram:

o The Service is a SOAP service. The host can be configured during deployment using HTTP
connector name generated for the service.

e The AutoMediate Command Line tool extracts binding information from the WSDL and uses it in

the Reference. The tool also specifies the binding information as a substitution variable that can be
replaced at run-time, if the Reference has changed its location.

TIBCO ActiveMatrix® BPM Mediation Component Development

138

H AutoMediate :
Command-line Tool

Depkyment :
— Composite Application . Application Archive | :
- Specilication(.daa | :

T spec)

YRR : ", | Application
C mediation Heference > [Archivefile (daa)
component

Running the AutoMediate Command-Line Tool
The AutoMediate Command-Line tool creates a SOA project from a concrete WSDL with HTTP service
bindings.

Procedure

1. The AutoMediate Command-Line tool is available in the <TIBCO_HOME>/amx_it_mediation/
<version>/bin location. Navigate to this folder and open a command window.

2. At the prompt, type the AutoMediate command, specifying the concrete WSDL and any options.
See AutoMediate Command Syntax and Options.

& The WSDL files you specify must be concrete WSDLs. This release of the AutoMediate
Command-Line tool does not support abstract WSDLs.

The AutoMediate Command-Line tool executes, creating a SOA project from the concrete WSDL.

3. Import your SOA project into TIBCO Business Studio.
The new project includes the deployment application specification and the application archive file
that contains the composite application.

After the AutoMediate Command Line creates your SOA project, you can deploy its
deployment application archive (.daa file) directly into the runtime environment. See
TIBCO ActiveMatrix Administration Guide for more information.

TIBCO ActiveMatrix® BPM Mediation Component Development

139

AutoMediate Command Syntax and Options

The AutoMediate command uses concrete WSDL file or directory locations as input and generates a
composite application that provides pass-through mediation capabilities for existing web services.

Syntax

AutoMediate [-projectName project_name] [-projectDir project_dir] [-serviceHost host_name] |-
servicePort port] wsdl location

AutoMediate Command Options

Option Description

-projectName The name of the SOA project:

» If you specify a name, a single SOA project is created. A single
project is created even if you specify multiple WSDL files.

» If you do not specify a name, all the projects are generated
based on the @name attribute of the WSDL definitions
element.

If the @name attribute is not specified in the WSDL, the name
of the WSDL file is used.

-projectDir The directory where generated projects are to be created.

If this option is not specified, generated projects are created in the
current working directory.

-serviceHost The host name for the service endpoint using SOAP over JMS.

If this option is specified, the AutoMediate Command Line tool
overwrites the host name field in the Naming Provider URL field
in the generated resource template.

-servicePort The port number for the service endpoint using SOAP over JMS.

If this option is specified, the AutoMediate Command Line tool
overwrites the port in the Naming Provider URL in the generated
resource template.

wsdl location Specify the location of the source WSDL files:

o If you use a single WSDL file, specify the name of the source
WSDL file or directory location.

e If you use multiple WSDL files, specify the name of the
directory containing the source WSDL files.

If you do not specify a -projectName when you use multiple
WSDL files, the AutoMediate Command Line tool creates one
ActiveMatrix SOA project for each concrete WSDL file in the
source directory.

TIBCO ActiveMatrix® BPM Mediation Component Development

140

Option Description

-httpConnectorName The name of the HTTP connector for services bound using SOAP
over HTTP.

If this option is not specified, HTTP connector name is the service
name plus the port name. It is ignored for web services that are
bound using SOAP over JMS.

The JMS connection factory JNDI name for the resource template

serzriceJ ms§°nFaCt°rYJ ndiNa that is generated to configure a SOAP over JMS service endpoint.

me (optiona

P If this field is specified, the AutoMediate Command Line tool will
overwrite the connection factory JNDI name in the generated JMS

connection factory resource template for the service endpoint.

-serviceJmsDestJIndiName The JMS destination JNDI name for the resource template that is
(optional) generated to configure a SOAP over JMS service endpoint.

If this field is specified, the AutoMediate Command Line tool will
overwrite the destination JNDI name in the generated JMS
destination resource template for the service endpoint.

-refimsConFactoryJndiName The JMS connection factory JNDI name for the resource template
(optional) that is generated to configure a SOAP over JMS reference
endpoint.

If this field is specified, the AutoMediate Command Line tool will
overwrite the connection factory JNDI name in the generated JMS
connection factory resource template for the reference endpoint.

-refJmsDestIndiName The JMS destination JNDI name for the resource template that is
(optional) generated to configure a SOAP over JMS reference endpoint.

If this field is specified, the AutoMediate Command Line tool will
overwrite the destination JNDI name in the generated JMS
destination resource template for the reference endpoint.

-daaOnly (optional) Used to generate only the DAA file.

AutoMediate Command Examples

Example Description
AutoMediate -projectName SOA Automatically mediates one or more web
webservice.wsdl services defined by single WSDL file.

TIBCO ActiveMatrix® BPM Mediation Component Development

141

Example Description

AutoMediate -projectName SOA Automatically mediates web services.
webservice.wsdl webservicel.wsdl
webservice2.wsdl

AutoMediatec: /tibco/SOAP/wsdls
e cc:/tibco/SOAP/wsdlsl
e c:/tibco/SOAP/wsdls?2

AutoMediate webservice.wsdl c:/tibco/
SOAP/wsdls webservicel.wsdl

AutoMediate -projectDir C:/tibco/SOA/ Automatically mediates one or more web
mediation/workspace webservice.wsdl services and writes generated SOA project to a
specific directory.

AutoMediate -projectDir C:/tibco/SOA/ Automatically mediates one or more web
mediation/workspace -serviceHost services, generates a SOA project in a specific
localhost -servicePort 9897 directory, and updates the host and port for the
webservice.wsdl service.

AutoMediate -projectDir C:/tibco/SOA/ Automatically mediates web services defined by
mediation/workspace the WSDL files contained in the specified folder.

c:/tibco/wsdls

AutoMediate webservice.wsdl -daaOnly - Automatically mediates one or more web
projectDir services and generates the DAA in the specified
directory.

C:/tibco/SOA/mediation/workspace

AutoMediate Command-Line Exception

Exception Description

WSDLFileNotFoundException The WSDL location passed to the AutoMediate
Command Line tool is invalid.

NoWSDLServiceDefinedException The WSDL passed to the AutoMediate Command
Line tool does not have any services defined.

AutoMediate Command Line supports only concrete
WSDLs for this add-on pack release.

NoWSDLServiceBindingException The port child element of a WSDL service element
has a missing binding attribute.

Binding must be provided for AutoMediate
Command Line to generate a fully functional
composite application.

TIBCO ActiveMatrix® BPM Mediation Component Development

142

Exception Description

NoWSDLBindingPortTypeException A WSDL binding has a missing port type attribute.

The port type must be provided for AutoMediate
Command Line to generate a fully functional
composite application.

AutoMediate ANT Command Syntax and Options

The AutoMediate ANT command generates a composite application that provides pass-through
mediation capability for an existing web service or web-services. The WSDL URI format must be in
EMF URI format.

Syntax

amx_eclipse_ant.exe [-DprojectDir=project_dir] [-DprojectName=project_name] [-DserviceHost
host_name] [-DservicePort port] [-DwsdlLocation wsdl location] [-DwsdlLocations=wsdl location] [-
buildfile build_file]

The AutoMediate ANT command is located in the <TTBCO_HOME>\studio\<version>\eclipse
directory

See AutoMediate Command and Syntax Options.

AutoMediate ANT Command-Line Examples

Automatically mediates one or more web
services defined by single WSDL file.

amx_eclipse_ant.exe -DprojectName=S0A
webservice.wsdl -buildfile build.xml

amx_eclipse_ant.exe -DprojectName= SOA - Automatically mediates web services.
DwsdlLocation=webservice.wsdl;webservice

1.wsdl;webservice2.wsdl -buildfile

build.xml

amx_eclipse_ant.exe -DprojectName= SOA -
DwsdlLocation=c:\tibco\SOAP\wsdll;c:
\tibco\SOAP\wsdl2;c:\tibco\SOAP\wsdl3 -
buildfile build.xml

amx_eclipse_ant.exe -DprojectDir= c:/ Automatically mediates one or more web
tibco/SOA/mediation/workspace - services and writes generated SOA project to a
DwsdlLocation=webservice.wsdl -buildfile specific directory.

build.xml

amx_eclipse_ant.exe -DprojectDir=C:/ Automatically mediates one or more web
tibco/SOA/mediation/workspace - services, generates a SOA project in a specific
serviceHost localhost -servicePort 9897 directory, and updates the host and port for the
webservice.wsdl -buildfile build.xml service.

amx_eclipse_ant.exe -daaOnly - Automatically mediates one or more web
DprojectDir= c:/tibco/SOA/mediation/ services and generates the DAA in the specified

workspace -DwsdlLocation=webservice.wsdl directory.
-buildfile build.xml

TIBCO ActiveMatrix® BPM Mediation Component Development

143

Introduction to gXML Applications

gXML is a way of writing XML code in the Java language. The code that you write to the gXML API can
be run against any data model that supports the gXML bridge.

A Generic Java API for XQuery Data Model (XDM) and eXtensible Markup Language (XML)
Processing, gXML also provides a cohesive suite of XML processing implementations such as XPath,
XSLT, XQuery, Serialization, W3C XML Schema and Validation.

This flexibility offers several benefits:

» Minimizes expensive conversion overhead.

» Increases opportunities for performance optimization.

» Increases code reuse.

e Minimizes risks associated with locking into one Data Model.

gXML currently supports Parsing, Serialization, XDM Data Model, XPath 2, XSLT 2 and XQuery, W3C
XML Schema and Validation.

o A gXML bridge is provided for org.w3c.dom.Node.

o A gXML bridge for a high performance proprietary implementation is complete but not yet
released.

o A gXML bridge for a reference implementation is complete but not yet released. A gXML bridge for
AxiOM is in the works.

Developing gXML Applications

All gXML processors, including custom processing, run within a GxProcessingContext instance that
provides necessary metadata. A GxProcessingContext instance in turn is created through a
GxApplication instance.

You must write a class that provides an instance of GxApplication. The best way to do this is to write
an abstract class that implements all but the newProcessingContext method of GxApplication. This
approach allows you to write your application generically and then inject the choice of
parameterization as late as possible for maximum code reuse and flexibility.

This, of course, is not the only way to use gXML. An existing architecture may force the choice of
parameterization and create silos of XML processing. The degree of integration in this case may be less
that is possible with a homogeneous solution.

Whatever the approach, the best way to use gXML is to write generic, parameterized, and XML
processing code whenever possible.

Implementing GxApplication
You must write a class that provides an instance of GxApplication. The best way to do this is to write
an abstract class that implements all but the newProcessingContext method of GxApplication.

001 package org.gxml.book.common;

002

003 import java.io.StringWriter;

004 import java.net.URI;

005 import java.net.URISyntaxException;
006

007 import junit.framework.TestCase;
008

009 import org.gxml.sa.GxApplication;
010 import org.gxml.sa.GxModel;

011 import org.gxml.sa.GxNameBridge;
012 import org.gxml.sa.GxProcessingContext;

TIBCO ActiveMatrix® BPM Mediation Component Development

013 import org.gxml.sa.GxSequenceHandler;

014 import org.gxml.xdm.Resolver;

015

016 import com.tibco.gxml.sa.api.common.util.PreCondition;

017 import com.tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;
018 import com.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;
019

020 public abstract class SampleApp<I, U, N extends I, A extends I, S, T, X>
extends TestCase implements GxApplication<I, U, N, A, S, T, X>

021 {

144

022 public Resolver getResolver()

023 {

024 try

025 {

026 return new SampleResolver(new URI("../../plugins/org.gxml.book/
resources/foo.xml"));

027

028 catch (final URISyntaxException e)

029 {

030 throw new AssertionError(e);

031 }

032 3

033

034 protected String serialize(final N node, final GxProcessingContext<I, U, N,
A, S, T, X> pcx)

035 {

036 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

037

038 // Configure for "pretty" printing.

039 sf.setIndent(Boolean.TRUE) ;

040

041 final StringWriter w = new StringWriter();

042

043 final GxSequenceHandler<A, S, T> handler = sf.newSerializer(w);
044

045 final GxModel<N, A, S, T> model = pcx.getModel();

046

047 handler.startDocument(null);

048 try

049 {

050 model . stream(node, true, true, handler);

051 }

052 finally

053 {

054 handler.endDocument() ;

055 +

056

057 return w.toString();

058 }

059

060 /355

061 * Some bridge implementations may use {@link String} directly for symbols.
They must make them behave according to

062 * symbol semantics (==, toString).

063 “/

064 public void assertNodeSymbolSemantics(final N node, final
GxProcessingContext<I, U, N, A, S, T, X> pcx)

065 {

066 final GxModel<N, A, S, T> model = pcx.getModel();

067 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
068

069 switch (model.getNodeKind(node))

070 {

071 case ELEMENT:

072 {

073 assertSymbolSemantics(model.getNamespaceURI(node), nameBridge);
074 assertSymbolSemantics(model.getLocalName(node), nameBridge);
075 ¥

076 case TEXT:

077 case DOCUMENT:

078 {

TIBCO ActiveMatrix® BPM Mediation Component Development

145

079

080 }

081 break;

082 default:

083 {

084 throw new AssertionError(model.getNodeKind(node)) ;
085 }

086 }

087 }

088

089 public void assertSymbolSemantics(final S symbol, final GxNameBridge<S>
nameBridge)

090 {

091 PreCondition.assertArgumentNotNull(symbol, "symbol");

092 PreCondition.assertArgumentNotNull (nameBridge, "nameBridge");
093 assertSame(symbol, nameBridge.symbolize(symbol.toString()));
094 assertSame(symbol, nameBridge.symbolize(copy(symbol.toString())));
095 }

096

097 /88

098 * Do anything to manufacture a String that is equal, but not identical
(the same), as the original.

099 * <p>

100 * This method has the post-condition that the strings are equal but not
the same.

101 * </p>

102 @

103 * @param original

104 G The original.

105 * @return A copy of the original string.

106)

107 private String copy(final String original)

108 {

109 final String copy = original.concat("junk").substring(O0,
original.length());

110 // Post-conditions verify that this actually works and isn't
"optimized" out.'

111 assertEquals(original, copy);

112 assertNotSame(original, copy);

113 // Be Paranoid

114 assertTrue(original.equals(copy));

115 assertFalse(original == copy);

116 // OK. That'll do.'

117 return copy;

118 }

119 }

Implementing GxCatalog
A catalog provides the means to isolate your application from the physical location of file resources.
Writing a catalog means implementing the GxCatalog interface so that it maps form the logical
locations specified in code or XML resources to the corresponding physical location.

001
002
003
004
005
006

package org.gxml.book.common;

public class SampleCatalog
{

}

Implementing GxResolver
A resolver takes a base-uri and an href and uses these two values to return a stream.

001
002
003
004
005
006
007

package org.gxml.book.common;

import java.io.File;

import java.io.FileNotFoundException;
import java.io.IOException;

import java.io.InputStream;

import java.net.URI;

TIBCO ActiveMatrix® BPM Mediation Component Development

146

008 import java.net.URISyntaxException;
009 import java.net.URL;

010

011 import org.gxml.xdm.Resolved;
012 import org.gxml.xdm.Resolver;

013

014 import com.tibco.gxml.sa.api.common.util.PreCondition;

015

016 publ
017 {
018

019

020

021

022

023

024

025

026

027

028
performs
029

030

031

032

ic final class SampleResolver implements Resolver
final URI baseURI;

public SampleResolver(final URI baseURI)
{

this.baseURI = PreCondition.assertArgumentNotNull(baseURI, "baseURI");
+

/7’::‘:

* Convert a URI relative to a base URI into an input source.

* <p/>

* This default implementation requires that neither parameter be null, and
the expected action to retrieve

* the input source (which may involve network access).

*

@param baseURI
© the base URI against which the target is to be resolved; must

not be null

033
034
035
036
037
TOExcept
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
throws I
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075

* @param location
© the URI to resolve; must not be null
* @return a pair of InputStream and resolved URI.
*/
public Resolved<InputStream> resolvelInputStream(final URI location) throws
ion
{
PreCondition.assertArgumentNotNull(location, "uri");
if (location.isAbsolute())
{

3

else

{

return retrieve(location, location);

PreCondition.assertArgumentNotNull (baseURI, "baseURI");

final URI base = baseURI.normalize();
final URI resolved = base.resolve(location);

return retrieve(location, resolved);
}
private Resolved<InputStream> retrieve(final URI location, final URI uri)
OException
{ PreCondition.assertArgumentNotNull (uri, "uri");

final URL toRetrieve;

if (!uri.isAbsolute()) // assume local file

{
final File canonFile = new File(uri.toString()).getCanonicalFile();
toRetrieve = canonFile.toURI().toURL();
¥
else
{
toRetrieve = uri.toURL();
¥
if (toRetrieve == null)
{
throw new FileNotFoundException(uri.toString());
+

TIBCO ActiveMatrix® BPM Mediation Component Development

147

076 final InputStream stream = toRetrieve.openStream();
077 if (stream == null)

078 {

079 throw new FileNotFoundException(toRetrieve.toString());
080 }

081 try

082 {

083 return new Resolved<InputStream>(location, stream,
toRetrieve.toURI());

084

085 catch (final URISyntaxException e)

086 {

087 throw new AssertionError(e);

088 }

089 }

090 }

Injecting DOM
The final task in providing a concrete GxApplication class is to implement the newProcessingContext
method on a derived class. You choose the tree, atomic values, metadata and symbols that your
application will use. In many cases you can use an off-the-shelf processing context class, but you can
also assemble or build your own.

If you are going to use gXML with org.w3c.dom.Node, you have choices for the atomic values that
your system will use as well as the metadata implementation. This example uses atomic values that are
mostly Java wrapper types and the reference sequence type implementation, SmSequenceType.

001 package org.gxml.book.parsing;

002

003 import org.gxml.sa.GxMetaBridge;

004 import org.gxml.sa.GxNameBridge;

005 import org.gxml.sa.mutable.GxApplicationMutable;

006 import org.gxml.sa.mutable.GxProcessingContextMutable;

007 import org.gxml.xs.SmMetaBridge;

008 import org.gxml.xs.SmSequenceType;

009 import org.w3c.dom.Node;

010

011 import com.tibco.gxml.sa.api.common.datatype.StringNameBridge;

012 import com.tibco.gxml.sa.common.atom.AtomBridge;

013 import com.tibco.gxml.sa.common.helpers.GxMetaBridgeOnSmMetaBridgeAdapter;
014 import com.tibco.gxml.sa.common.helpers.SmAtomBridgeOnGxAtomBridgeAdapter;
015 import com.tibco.gxml.sa.xdm.dom.DomProcessingContext;

016 import com.tibco.gxml.xs.SmMetaBridgeFactory;

017

018 /-1.- %

019 * Demonstration of constructing a concrete GxApplication(Mutable)
implementation

using the DOM processing context.

020 */

021 public final class DomValidatingParsingSample extends
BookValidatingParsingSample<Object, Object, Node, Object, String,
SmSequenceType<Object,

String>, Object> implements GxApplicationMutable<Object, Object, Node, Object,

String,

SmSequenceType<Object, String>, Object>

022 {

023 public final GxProcessingContextMutable<Object, Object, Node, Object,
String,

SmSequenceType<Object, String>, Object> newProcessingContext()

024 {

025 // The name bridge is created along with the processing context for
maximum

concurrency.

026 final GxNameBridge<String> nameBridge = new StringNameBridge();
027 final AtomBridge<String> atomBridge = new
AtomBridge<String>(nameBridge) ;

028 final SmMetaBridge<Object, String> cache = new

SmMetaBridgeFactory<Object,
String>(new SmAtomBridgeOnGxAtomBridgeAdapter<Object,

TIBCO ActiveMatrix® BPM Mediation Component Development

String>(atomBridge)) .newMetaBridge();

029 final GxMetaBridge<Object, String, SmSequenceType<Object, String>>
metaBridge = new GxMetaBridgeOnSmMetaBridgeAdapter<Object, String>(cache,
atomBridge) ;

030

031 final DomProcessingContext<Object, SmSequenceType<Object, String>>

pcx = new DomProcessingContext<Object, SmSequenceType<Object, String>>
(this, metaBridge, cache);

032

033 // Set the "owning" processing context on the atom bridge.
034 atomBridge.setProcessingContext(pcx);

035

036 // Return the newly constructed processing context.

037 return pcx;

038 }

039 }

gXML Recipes

Parsing a Character Stream and a Byte Stream

001 package org.gxml.book.parsing;

002

003 import java.io.InputStream;

004 import java.io.Reader;

005 import java.io.StringReader;

006 import java.net.URI;

007

008 import org.gxml.book.common.SampleApp;

009 import org.gxml.sa.GxModel;

010 import org.gxml.sa.GxNameBridge;

011 import org.gxml.sa.GxProcessingContext;

012 import org.gxml.xdm.NodeKind;

013 import org.gxml.xdm.Resolved;

014 import org.gxml.xdm.Resolver;

015

016 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
017 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;

018 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;

019

020 public abstract class BookIntroParsingSample<I, U, N extends I, A extends I,
i

X> extends SampleApp<I, U, N, A, S, T, X>

021 {

022 public void testCharacterStreamParse() throws Exception
023 {

024 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

025

026 final GxDocumentBuilderFactory<N, S> factory = new

DocumentBuilderFactory<I, U, N,
A, S, T, X>(pcx);

027

028 final GxDocumentBuilder<N> builder = factory.newDocumentBuilder();
029

030 final String xmlString = "<e>123</e>";

031 final URI systemId = new URI("e.xml");

032 final Reader characterStream = new StringReader(xmlString);
033 final N doc = builder.parse(characterStream, systemId);

034

035 final GxModel<N, A, S, T> model = pcx.getModel();

036

037 assertEquals(NodeKind.DOCUMENT, model.getNodeKind(doc));
038

039 final N e = model.getFirstChildElement(doc);

040 assertEquals(NodeKind.ELEMENT, model.getNodeKind(e));

TIBCO ActiveMatrix® BPM Mediation Component Development

041
042
043
044
045
046
047
048
049

050
051
052

053
054

055
056
057
058

059
060
061
062
063
064
065
066
067
068
069
070

localName) ;

071
072
073
074
075
076
077
078

}

149

assertEquals("e", model.getLocalNameAsString(e));
assertEquals("123", model.getStringValue(e));

public void testByteStreamParse() throws Exception

{

}

final Resolver resolver = getResolver();

final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

final URI systemId = new URI("email.xml");
final Resolved<InputStream> source =
resolver.resolveInputStream(systemId);

final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N,
A, S, T, X>(pcx);

final GxDocumentBuilder<N> builder = factory.newDocumentBuilder();

final N document = builder.parse(source.getResource(),
source.getSystemId());

final GxModel<N, A, S, T> model = pcx.getModel();

assertEquals(NodeKind.DOCUMENT, model.getNodeKind(document)) ;

final N email = model.getFirstChildElement(document) ;
assertEquals(NodeKind.ELEMENT, model.getNodeKind(email));
assertEquals("email", model.getLocalNameAsString(email));

final GxNameBridge<S> nameBridge = pcx.getNameBridge();

final S namespaceURI = nameBridge.symbolize("http://www.example.com");
final S localName = nameBridge.symbolize("from");

final N from = model.getFirstChildElementByName(email, namespaceURI,

assertEquals("Julie", model.getStringValue(from));

for (final N node : model.getDescendantOrSelfAxis(document))

{
}

assertNodeSymbolSemantics(node, pcx);

Constructing a Data Model Tree Programmatically
This example demonstrates constructing a tree directly using the fragment builder.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023

package org.

import
import
import
import
import
import

import
import

import
import
import
import
import
import
import
import
import
import
import

java.
java.
java.
java.

java
java

.net.
.net.

gxml .book. snoopy;

io.IOException;
io.InputStream;
io.StringReader;
io.StringWriter;

URI;
URISyntaxException;

javax.xml .namespace.QName;
javax.xml.parsers.ParserConfigurationException;

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

gxml .
gxml .
gxml .
gxml .
gxml .
gxml .
gxml .
gxml .
gxml .
gxml .
gxml .

book.common.SampleApp;
sa.GxException;
sa.GxFragmentBuilder;
sa.GxMetaBridge;
sa.GxModel;
sa.GxNameBridge;
sa.GxProcessingContext;
sa.GxSequenceHandler;
sa.GxVariantBridge;
xdm.NodeKind;
xdm.Resolved;

TIBCO ActiveMatrix® BPM Mediation Component Development

150

024 import org.gxml.xdm.Resolver;

025 import org.gxml.xs.SmName;

026

027 import com.tibco.gxml.sa.api.common.lang.ExprException;

028 import com.tibco.gxml.sa.api.common.lang.ExprResult;

029 import com.tibco.gxml.sa.api.common.lang.GxXExpr;

030 import com.tibco.gxml.sa.api.common.lang.GxExprContextDynamicArgs;

031 import com.tibco.gxml.sa.api.common.lang.GxExprContextStaticArgs;

032 import com.tibco.gxml.sa.api.common.lang.GxLanguageToolKit;

033 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;

034 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;

035 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;

036 import com.tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;
037 import com.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;
038 import com.tibco.gxml.sa.processor.xquery.LanguageToolKit;

039 import com.tibco.gxml.sa.processor.xslt.GxTransform;

040 import com.tibco.gxml.sa.processor.xslt.GxTransformBuilder;

041 import com.tibco.gxml.sa.processor.xslt.GxTransformer;

042 import com.tibco.gxml.sa.processor.xslt.XSLTransformBuilder;

043 import com.tibco.gxmlsa.processor.org.exslt.strings.ExsltStringsFunctionGroup;
044

045 public abstract class SnoopySample<I, U, N extends I, A extends I, S, T, X>
extends

SampleApp<I, U, N, A, S, T, X>

046 {

047 public void testDocumentFromString()

048 {

049 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

050

051 final N document = documentFromString(pcx);

052

053 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

054

055 sf.setIndent(true);

056

057 final StringWriter sw = new StringWriter();

058

059 final GxSequenceHandler<A, S, T> serializer = sf.newSerializer(sw);
060

061 final GxModel<N, A, S, T> model = pcx.getModel();

062

063 model.stream(document, true, true, serializer);

064

065 // System.out.println(sw.toString());

066 ¥

067

068 public void testFragmentBuilder()

069 {

070 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

071

072 final N document = documentFromEvents(pcx);

073

074 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

075

076 sf.setIndent(true);

077

078 final StringWriter sw = new StringWriter();

079

080 final GxSequenceHandler<A, S, T> serializer = sf.newSerializer(sw);
081

082 final GxModel<N, A, S, T> model = pcx.getModel();

083

084 model.stream(document, true, true, serializer);

085

086 // System.out.println(sw.toString());

087 3

088

089 private N documentFromString(final GxProcessingContext<I, U, N, A, S, T, X>

TIBCO ActiveMatrix® BPM Mediation Component Development

pcx)
090 {
091

151

final String strval = "" + "<?xml version='1l.0' encoding='UTF-8'?>" +

"<book isbn='0836217462"'>" + "
<title>Being a Dog Is a Full-Time Job</title>" + " <author>Charles M. Schultz</

author>" +

<name>Snoopy</name>" +

092
093

<character>" + "
" <since>1950-10-04</since>" +

</character>" + "</book>";

final GxDocumentBuilderFactory<N, S> factory = new

DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

094

095 final GxDocumentBuilder<N> builder = factory.newDocumentBuilder();
096

097 try

098 {

099 return builder.parse(new StringReader(strval), null);

100 }

101 catch (final IOException e)

102 {

103 throw new AssertionError();

104 }

105 }

106

107 private N documentFromEvents(final GxProcessingContext<I, U, N, A, S, T, X>
pcx)

108 {

109 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

110

111 final S NULL_NS_URI = nameBridge.empty();

112 final S BOOK = nameBridge.symbolize("book");

113 final S ISBN = nameBridge.symbolize("isbn");

114 final S TITLE = nameBridge.symbolize("title");

115 final S AUTHOR = nameBridge.symbolize("author");

116 final S CHARACTER = nameBridge.symbolize("character");

117 final S NAME = nameBridge.symbolize("name") ;

118 final S SINCE = nameBridge.symbolize("since");

119

120 final GxFragmentBuilder<N, A, S, T> builder = pcx.newFragmentBuilder();
121

122 // Note: Using try...finally not only ensures that elements get closed
when errors

123 // occur, it also helps to remind you to end elements and makes the

levels in
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

// the XML more obvious.
builder.startDocument (null) ;
try

builder.startElement (NULL_NS_URI, BOOK, "", null);
try
{
builder.attribute(NULL_NS_URI, ISBN, "", "0836217462");
builder.startElement (NULL_NS_URI, TITLE, "", null);
try
{

}
finally

{

}

builder.startElement (NULL_NS_URI, AUTHOR, "", null);
try

{

}
finally

builder.text("Being a Dog Is a Full-Time Job");

builder.endElement();

builder.text("Charles M. Schultz");

builder.endElement();
¥
builder.startElement (NULL_NS_URI, CHARACTER, "", null);
try
{

TIBCO ActiveMatrix® BPM Mediation Component Development

152

153 builder.startElement (NULL_NS_URI, NAME, "", null);
154 try

155 {

156 builder.text("Snoopy");

157 3

158 finally

159 {

160 builder.endElement() ;

161 }

162 builder.startElement (NULL_NS_URI, SINCE, "", null);
163 try

164 {

165 builder.text("1950-10-04");

166 +

167 finally

168

169 builder.endElement() ;

170 }

171 }

172 finally

173

174 builder.endElement();

175 }

176 }

177 finally

178

179 builder.endElement();

180 }

181 3

182 finally

183

184 builder.endDocument();

185 }

186

187 return builder.getNodes().get(0);

188 }

189

190 public void testExample() throws ParserConfigurationException, IOException,
GxException, ExprException,

URISyntaxException

191 {

192 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

193

194 final Resolver resolver = getResolver();

195

196 final URI xmlSystemId = new URI("hotel.xml");

197 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId) ;

198

199 final GxDocumentBuilderFactory<N, S> f = new DocumentBuilderFactory<I,
U, N, A, S, T, X>(pcx);

200

201 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
202

203 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

204

205 final URI xslSystemId = new URI("hotel.xsl");

206 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId) ;

207

208 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>

(pex);

209

210 // poem.xsl uses version="2.0", but we want to use XPath 1.0
compatibility mode

211 // so that arguments to functions are converted etc.

212 compiler.setCompatibleMode(true);

213

214 final GxTransform<I, U, N, A, S, T, X> compiled =

TIBCO ActiveMatrix® BPM Mediation Component Development

153

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

215

216 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

217

218 // TODO: Extract the configuration?

219 // compiled.configure(sf);

220

221 sf.setIndent(true);

222

223 final StringWriter w = new StringWriter();

224

225 final GxSequenceHandler<A, S, T> handler = sf.newSerializer(w);
226

227 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer() ;

228

229 transformer.transform(document, pcx, handler);

230 }

231

232 public void testVariableBinding() throws ParserConfigurationException,

TOException, GxException,
ExprException, URISyntaxException

233 {
234

235
236
237
238
239

240
241

X>(pcx);
242
243

final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

final Resolver resolver = getResolver();

final URI xslSystemId = new URI("email.xsl");
final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId) ;

final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T,

final GxTransform<I,

U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

final GxTransformer<I, U, N, A, S, T, X> transformer =

final GxNameBridge<S> nameBridge = pcx.getNameBridge();
final SmName<S> varName = nameBridge.name(new QName("to"));
final GxVariantBridge<I, N, A, X> valueBridge = pcx.getVariantBridge();

transformer.bindVariableValue(nameBridge.name(new QName("http://

= transformer.transform(null, pcx);

assertEquals(NodeKind.DOCUMENT, model.getNodeKind(documentNode)) ;
final N email = model.getFirstChildElement(documentNode) ;

model.getStringValue(to));
getFirstChildElementByName(email, null,

model.getStringValue(from));

final N again = model.getFirstChildElementByName(email,

244

245

compiled.newTransformer();

246

247

248

249

250 final X value = valueBridge.stringValue("David");
251

252 transformer.bindVariableValue(varName, value);
253

www.example.com", "from")),
valueBridge.stringValue("Julie"));

254

255 final N documentNode

256

257 final GxModel<N, A, S, T> model = pcx.getModel();
258

259

260

261 final N to = model.getFirstChildElementByName (email,
nameBridge.symbolize("http://www.example.com"),
nameBridge.symbolize("to"));

262 assertEquals("David",

263 final N from = model.
nameBridge.symbolize("from"));

264 assertEquals("Julie",

265

nameBridge.symbolize("http://www.example.com"),

null);

266 assertEquals("David",

model.getStringValue(again));

TIBCO ActiveMatrix® BPM Mediation Component Development

154

267 }
268
269 public void testExternalFunctions() throws ParserConfigurationException,

TIOException, GxException,
ExprException, URISyntaxException

270 {

271 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

272

273 final Resolver resolver = getResolver();

274

275 final URI xmlSystemId = new URI("exslt.xml");

276 final Resolved<InputStream> xmlInput =
resolver.resolveInputStream(xmlSystemId) ;

277

278 final GxDocumentBuilderFactory<N, S> f = new DocumentBuilderFactory<I,
U, N, A, S, T, X>(pcx);

279

280 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
281

282 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

283

284 final URI xslSystemId = new URI("exslt.xsl");

285 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId) ;

286

287 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>

(pcx);

288

289 final String namespaceURI = "http://exslt.org/strings";

290 final ExsltStringsFunctionGroup<I, U, N, A, S, T, X> functions =
new ExsltStringsFunctionGroup<I, U, N, A, S, T, X>(namespaceURI, pcx);
291 compiler.setFunctionSigns(namespaceURI, functions);

292 compiler.setFunctionImpls(namespaceURI, functions);

293

294 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

295

296 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

297

298 // TODO: Extract the configuration.

299 // compiled.configure(sf);

300

301 sf.setIndent(true);

302

303 final StringWriter w = new StringWriter();

304

305 final GxSequenceHandler<A, S, T> handler = sf.newSerializer(w);
306

307 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer() ;

308

309 transformer.transform(document, pcx, handler);

310

311 // System.out.println(w.toString());

312 }

313

314 public void testHotel() throws ParserConfigurationException, IOException,
GxException, ExprException,

URISyntaxException

315 {

316 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

317

318 final Resolver resolver = getResolver();

319

320 final URI xmlSystemId = new URI("hotel.xml");

321 final Resolved<InputStream> xmlInput =

TIBCO ActiveMatrix® BPM Mediation Component Development

155

resolver.resolveInputStream(xmlSystemId) ;

322

323 final GxDocumentBuilderFactory<N, S> f = new DocumentBuilderFactory<I,
U, N, A, S, T, X>(pcx);

324

325 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
326

327 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

328

329 final URI xslSystemId = new URI("hotel.xsl");

330 final Resolved<InputStream> xslInput =
resolver.resolveInputStream(xslSystemId) ;

331

332 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>

(pex);

333

334 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(),
xslInput.getSystemId());

335

336 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

337

338 // TODO: Extract the configuration.

339 // compiled.configure(sf);

340

341 sf.setIndent(true);

342

343 final StringWriter w = new StringWriter();

344

345 final GxSequenceHandler<A, S, T> handler = sf.newSerializer(w);
346

347 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer() ;

348 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
349 final SmName<S> varName = nameBridge.name(new QName("MessageData"));
350 final GxVariantBridge<I, N, A, X> valueBridge = pcx.getVariantBridge();
351 final X value = valueBridge.node(document);

352

353 transformer.bindVariableValue (varName, value);

354

355 transformer.transform(null, pcx, handler);

356

357 // System.out.println(w.toString());

358 ¥

359

360 public void testHelloWorld() throws Exception

361 {

362 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

363 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
364

365 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk = new

LanguageToolKit<I, U,
N, A, S, T, X>(pcx);

366

367 final GxExprContextStaticArgs<I, U, N, A, S, T, X> senv =
xtk.newStaticContextArgs();

368 final String NAMESPACE = "http://www.peanuts.com";

369

370 senv.getInScopeNamespaces() .declarePrefix("nuts",
nameBridge.symbolize (NAMESPACE)) ;

371

372 final SnoopyFunctionGroup<I, U, N, A, S, T, X> peanutsFunctionGroup =
new

SnoopyFunctionGroup<I, U, N, A, S, T, X>(NAMESPACE, pcx);

373 senv.setFunctionSigns (NAMESPACE, peanutsFunctionGroup) ;

374 senv.setFunctionImpls (NAMESPACE, peanutsFunctionGroup) ;

375

376 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge();

TIBCO ActiveMatrix® BPM Mediation Component Development

156

377
378 final ExprResult<I, U, N, A, S, T, X> prepared = xtk.prepare
("nuts:GetVariableProperty('foo', 'bar')", metaBridge.emptyType(), senv);
379
380 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();
381
382 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> darg =
xtk.newDynamicContextArgs();
383
384 final String strval = expr.stringFunction(xtk.emptyFocus(), darg, pcx);
385
386 assertEquals("Bingo!", strval);
387 3
388 }

Validating

001 package org.gxml.book.parsing;

002

003 import java.io.InputStream;

004 import java.net.URI;

005

006 import javax.xml.namespace.QName;

007

008 import org.gxml.book.common.SampleApp;

009 import org.gxml.sa.GxApplication;

010 import org.gxml.sa.GxAtomBridge;

011 import org.gxml.sa.GxModel;

012 import org.gxml.sa.GxNameBridge;

013 import org.gxml.sa.GxProcessingContext;

014 import org.gxml.xdm.Resolved;

015 import org.gxml.xdm.Resolver;

016 import org.gxml.xs.SmComponentBag;

017 import org.gxml.xs.SmExceptionCatcher;

018 import org.gxml.xs.SmMetaloadArgs;

019 import org.gxml.xs.SmName;

020

021 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;
022 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;

023 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;
024 import com.tibco.gxml.sa.common.helpers.SmAtomBridgeOnGxAtomBridgeAdapter;
025 import com.tibco.gxml.xs.W3cXmlSchemaParser;

026

027 public abstract class BookValidatingParsingSample<I, U, N extends I, A extends
I, s, T, X>

extends SampleApp<I, U, N, A, S, T, X>

028 {

029 public void testValidatingParse() throws Exception

030 {

031 final GxApplication<I, U, N, A, S, T, X> app = this;
032

033 final Resolver resolver = app.getResolver();

034

035 final SmMetaloadArgs args = new SmMetaLoadArgs();
036

037 final SmExceptionCatcher errors = new SmExceptionCatcher();
038

039 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
app.newProcessingContext();

040

041 final Resolved<InputStream> resource =

getResolver().resolveInputStream(new URI
("email.xsd"));

042

043 final W3cXmlSchemaParser<A, S> parser = new W3cXmlSchemaParser<A, S>
(new SmAtomBridgeOnGxAtomBridgeAdapter<A, S>(pcx.getAtomBridge()));

044

045 final SmComponentBag<A, S> components =

parser.parse(resource.getLocation(),
resource.getResource(), resource.getSystemId(), errors, args, pPcCX);

TIBCO ActiveMatrix® BPM Mediation Component Development

046
047
048
049
050
051
052
053
054
055
056

057
058

059
060
061

www.example.
"email")));

062
063
064
065
066
067
068

069
070
071
072
073
074
075
076
077
078
079

pcx.register(components) ;

pcx.lock();

final GxNameBridge<S> nameBridge = pcx.getNameBridge();

assertEquals(0, errors.size());

final URI xmlURI = new URI("email.xml");
final Resolved<InputStream> xmlInput =
resolver.resolvelInputStream(xmlURI) ;

final GxDocumentBuilderFactory<N, S> factory =
new DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

// Enable validation of the XML input.
factory.setValidating(true, nameBridge.name(new QName("http://

com",

final GxDocumentBuilder<N> builder = factory.newDocumentBuilder();

// TODO: Need to catch errors...
// builder.setExceptionHandler(errors);

final N doc = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

assertEquals(0, errors.size());

// System.out.println(serialize(doc, pcx));

final
final

final

final S

final

GxModel<N, A, S, T> model = pcx.getModel();
GxAtomBridge<A, S> atomBridge = pcx.getAtomBridge();

N email = model.getFirstChildElement(doc);

namespaceURI = nameBridge.symbolize("http://www.example.com");

N sent = model.getFirstChildElementByName(email, namespaceURI,

nameBridge.symbolize("sent"));
assertNotNull("model.getFirstChildElementByName", sent);
final SmName<S> typeName = model.getTypeName(sent) ;
assertNotNull ("model.getTypeName", typeName);
assertEquals("dateTime", typeName.toQName().getLocalPart());
final A dateTime = model.getTypedValue(sent).get(0);

080
081
082
083
084
085
086

//

assertTrue(metaBridge.sameAs(metaBridge.handle(pcx.getTypeDefinition(type)),
// metaBridge.getType(SmNativeType.DATETIME)));

087
088
089

090
091

Navigation

001
002
003
004
005
006
007
008
009
010
011
012
013

}
}

assertEquals("2008-03-23T14:49:30-05:00",
atomBridge.getCl4NForm(dateTime)) ;

package org.gxml.book.parsing;

import
import

import
import
import
import
import
import

import

java.io.InputStream;

java.net.

org.
org.
org.
org.
org.
org.

com.

gxml

gxml .
gxml .
gxml .
.xdm.Resolved;
.xdm.Resolver;

gxml
gxml

URI;

.book.common.SampleApp;

sa.GxModel;
sa.GxNameBridge;
sa.GxProcessingContext;

tibco.gxml.sa.common.helpers.DocumentBuilderFactory;

157

TIBCO ActiveMatrix® BPM Mediation Component Development

158

014 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;

015 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;

016

017 public abstract class BookNavigationParsingSample<I, U, N extends I, A extends
I, S, T, X> extends SampleApp<I, U, N, A, S, T, X>

018 {

019 public void testBooksByNealStephenson() throws Exception

020 {

021 final Resolver resolver = getResolver();

022

023 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

024

025 final URI systemId = new URI("books.xml");

026 final Resolved<InputStream> source =
resolver.resolveInputStream(systemId);

027

028 final GxDocumentBuilderFactory<N, S> factory = new
DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

029

030 final GxDocumentBuilder<N> builder = factory.newDocumentBuilder();
031

032 final N doc = builder.parse(source.getResource(),
source.getSystemId());

033

034 final GxModel<N, A, S, T> model = pcx.getModel();

035

036 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

037

038 final S namespaceURI = nameBridge.symbolize("http://www.example.com/
books");

039

040 final N inventory = model.getFirstChildElementByName(doc, namespaceURI,
nameBridge.symbolize("inventory"));

041

042 for (final N book : model.getChildElementsByName(inventory,
namespaceURI, nameBridge.symbolize("book")))

043 {

044 boolean found = false;

045

046 for (final N author : model.getChildElementsByName (book,
namespaceURI, nameBridge.symbolize("author")))

047 {

048 if (model.getStringValue(author).equals("Neal Stephenson"))
049 {

050 found = true;

051 break;

052 }

053 ¥

054

055 if (found)

056 {

057 final N title = model.getFirstChildElementByName (book,
namespaceURI, nameBridge.symbolize("title"));

058

059 System.out.println(model.getStringValue(title));
060 ¥

061 }

062 ¥

063

064 public void testPurchaseOrder() throws Exception

065 {

066 final Resolver resolver = getResolver();

067

068 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

069 final GxModel<N, A, S, T> model = pcx.getModel();

070 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

071

072 final URI systemId = new URI("PurchaseOrder.xml");

073 final Resolved<InputStream> source =

resolver.resolvelnputStream(systemlId) ;

TIBCO ActiveMatrix® BPM Mediation Component Development

074
075

159

final GxDocumentBuilderFactory<N, S> factory = new

DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

076
077 final GxDocumentBuilder<N> builder = factory.newDocumentBuilder();
078
079 final N po = builder.parse(source.getResource(), source.getSystemId());
080
081 final N root = model.getFirstChildElement(po);
082
083 final N items = model.getFirstChildElementByName(root, null,
nameBridge.symbolize("items"));
084
085 double total = O0;
086 for (final N item model.getChildElementsByName(items, null,
nameBridge.symbolize("item")))
087 {
088 System.out.println("partNum:" + model.getAttributeStringValue(item,
nameBridge.empty(), nameBridge.symbolize("partNum")));
089
090 final N price = model.getFirstChildElementByName(item, null,
nameBridge.symbolize("USPrice"));
091 total += Double.valueOf(model.getStringValue(price)) .doubleValue();
092 }
093 System.out.println("Grand total = " + total);
094 }
095 }
Mutation
001 package org.gxml.book.mutable;
002
003 import java.math.BigDecimal;
004
005 import javax.xml.XMLConstants;
006
007 import org.gxml.book.common.MutableApp;
008 import org.gxml.sa.GxAtomBridge;
009 import org.gxml.sa.GxNameBridge;
010 import org.gxml.sa.mutable.GxModelMutable;
011 import org.gxml.sa.mutable.GxProcessingContextMutable;
012 import org.gxml.xdm.NodeKind;
013
014 /**
015 * This sample illustrates the use of the optional mutability API.
016 *
017 * @author dholmes
018 *
019 * @param <I>
020 * @param <U>
021 * @param <N>
022 * @param <A>
023 * @param <S>
024 * @param <T>
025 * @param <X>
026 */
027 public abstract class MutableSample<I, U, N extends I, A extends I, S, T, X>
extends
MutableApp<I, U, N, A, S, T, X>
028 {
029 /*
030 * This is a test of basic mutability through the optional mutability API.
031 * Line 2
032 * Line 3
033 * Line 4 // OK
034 @/
035 public void testIntroduction() throws Exception
036 {
037 final GxProcessingContextMutable<I, U, N, A, S, T, X> pcx =

newProcessingContext();

TIBCO ActiveMatrix® BPM Mediation Component Development

038
039
040
041
042
043
044
045
046
047
048
:‘:/

049
050
051
052
053
054
055
056

localName,

057
058
059
060
061
062
063

064
065
066
067
068
069
070
071
072
073
074
075
076
077
078

}

Serialization

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021

final
final

V&

final

final

160

GxAtomBridge<A, S> atomBridge = pcx.getAtomBridge();
GxNameBridge<S> nameBridge = pcx.getNameBridge();

// Create a new document. */

N documentNode = pcx.newDocument() ;

GxModelMutable<N, A, S, T> model = pcx.getModel();

assertEquals(NodeKind.DOCUMENT, model.getNodeKind(documentNode)) ;

// Every node in the tree has an owner which is a document node. /* OK

final N owner = model.getOwner(documentNode) ;

assertTrue(model .isSameNode (documentNode, owner));

final S namespaceURI = nameBridge.symbolize("http://www.example.com");
final S localName = nameBridge.symbolize("foo");

final String prefix = "x

final N documentElement = model.createElement(owner, namespaceURI,
prefix);

// Append the document element to the documentNode.
model . appendChild(documentNode, documentElement);

model . setNamespace(documentElement, prefix, namespaceURI);

model .setAttribute(documentElement, nameBridge.empty(),
nameBridge.symbolize("version"),

XMLConstants.DEFAULT_NS_PREFIX, atomBridge.wrapAtom(atomBridge.createDecimal
(BigDecimal.valueOf(2.7))));

// Append four text nodes to the document element.

model.appendChild(documentElement, model.createText(owner, "Hello"));
model. appendChild(documentElement, model.createText(owner, " "));
model . appendChild(documentElement, model.createText(owner, "World"));
model. appendChild(documentElement, model.createText(owner, "!"));

// Compress the four contiguous text nodes into a single text node.
model .normalize (documentNode) ;

@SuppressWarnings("unused")
final String strval = serialize(documentNode, pcx);
//System.out.println(strval);

package org.gxml.book.mutable;

import
import

import
import
import
import
import
import

/*7’:

java.math.BigDecimal;

Jjavax.xml.XMLConstants;

org.
org.
org.
org.
org.
org.

gxml

gxml .
gxml .
gxml .
gxml .
.xdm.NodeKind;

gxml

.book.common.MutableApp;

sa.GxAtomBridge;

sa.GxNameBridge;
sa.mutable.GxModelMutable;
sa.mutable.GxProcessingContextMutable;

* This sample jillustrates the use of the optional mutability API.

*

* @author dholmes

*

*

@param <I>
@param <U>

* @param <N>

TIBCO ActiveMatrix® BPM Mediation Component Development

XPath

161

022 * @param <A>

023 * @param <S>

024 * @param <T>

025 * @param <X>

026 */

027 public abstract class MutableSample<I, U, N extends I, A extends I, S, T, X>
extends

MutableApp<I, U, N, A, S, T, X>

028 {

029 Vaa:

030 * This is a test of basic mutability through the optional mutability APT.
031 * Line 2

032 * Line 3

033 * Line 4 // OK

034 */

035 public void testIntroduction() throws Exception

036 {

037 final GxProcessingContextMutable<I, U, N, A, S, T, X> pcx =
newProcessingContext();

038 final GxAtomBridge<A, S> atomBridge = pcx.getAtomBridge();

039 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

040

041 /* // Create a new document. */

042 final N documentNode = pcx.newDocument() ;

043

044 final GxModelMutable<N, A, S, T> model = pcx.getModel();

045

046 assertEquals(NodeKind.DOCUMENT, model.getNodeKind(documentNode)) ;
047

048 // Every node in the tree has an owner which is a document node. /* OK
7‘:/

049 final N owner = model.getOwner(documentNode) ;

050

051 assertTrue(model.isSameNode (documentNode, owner));

052

053 final S namespaceURI = nameBridge.symbolize("http://www.example.com");
054 final S localName = nameBridge.symbolize("foo");

055 final String prefix = "x";

056 final N documentElement = model.createElement(owner, namespaceURT,
localName, prefix);

057

058 // Append the document element to the documentNode.

059 model . appendChild(documentNode, documentElement);

060

061 model . setNamespace(documentElement, prefix, namespaceURI);

062

063 model .setAttribute(documentElement, nameBridge.empty(),

nameBridge.symbolize("version"),
XMLConstants.DEFAULT_NS_PREFIX, atomBridge.wrapAtom(atomBridge.createDecimal
(BigDecimal.valueOf(2.7))));

064

065 // Append four text nodes to the document element.

066 model . appendChild(documentElement, model.createText(owner, "Hello"));
067 model . appendChild(documentElement, model.createText(owner, " "));

068 model . appendChild(documentElement, model.createText(owner, "World"));
069 model . appendChild(documentElement, model.createText(owner, "!"));

070

071 // Compress the four contiguous text nodes into a single text node.
072 model .normalize (documentNode) ;

073

074 @SuppressWarnings("unused")

075 final String strval = serialize(documentNode, pcx);

076 //System.out.println(strval);

077 }

078 }

001 package org.gxml.book.xpath;
002

TIBCO ActiveMatrix® BPM Mediation Component Development

162

003 import org.gxml.book.common.SampleApp;

004 import org.gxml.sa.GxMetaBridge;

005 import org.gxml.sa.GxNameBridge;

006 import org.gxml.sa.GxProcessingContext;

007 import org.gxml.sa.GxVariantBridge;

008 import org.gxml.xdm.Emulation;

009 import org.gxml.xs.SmName;

010 import org.gxml.xs.SmNativeType;

011

012 import com.tibco.gxml.sa.api.common.lang.ExprResult;

013 import com.tibco.gxml.sa.api.common.lang.GxXExpr;

014 import com.tibco.gxml.sa.api.common.lang.GxExprContextDynamicArgs;
015 import com.tibco.gxml.sa.api.common.lang.GxExprContextStaticArgs;
016 import com.tibco.gxml.sa.api.common.lang.GxFocus;

017 import com.tibco.gxml.sa.api.common.lang.GxLanguageToolKit;

018 import com.tibco.gxml.sa.processor.xquery.LanguageToolKit;

019 import com.tibco.gxmlsa.processor.org.exslt.math.ExsltMathFunctionGroup;
020

021 public abstract class XPathSample<I, U, N extends I, A extends I, S, T, X>
extends

SampleApp<I, U, N, A, S, T, X>

022 {

023 public void testGettingStarted() throws Exception

024 {

025 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

026

027 // For demonstration purposes, register the language toolkit with the
processing context.

028 pcx.register("xyz", new LanguageToolKit<I, U, N, A, S, T, X>(pcx));
029

030 @SuppressWarnings("unchecked")

031 // Immediately get back the registered processor.

032 GxLanguageToolKit<I, U, N, A, S, T, X> xtk = pcx.getProcessor("xyz",
GxLanguageToolKit.class);

033

034 final GxExprContextStaticArgs<I, U, N, A, S, T, X> sarg =
xtk.newStaticContextArgs();

035

036 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge();
037

038 final ExprResult<I, U, N, A, S, T, X> prepared =
xtk.prepare("concat('Hello', ', ',

'World', '!')", metaBridge.emptyType(), sarg);

039 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();
040

041 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> darg =
xtk.newDynamicContextArgs();

042

043 final String strval = expr.stringFunction(xtk.emptyFocus(), darg, pcx);
044

045 assertEquals("Hello, World!", strval);

046 }

047

048 public void testBindingVariables() throws Exception

049 {

050 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

051

052 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk =

new LanguageToolKit<I, U, N, A, S, T, X>(pcx);

053

054 final GxExprContextStaticArgs<I, U, N, A, S, T, X> statArgs =
xtk.newStaticContextArgs();

055 statArgs.setEmulation(Emulation.MODERN) ;

056

057 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

058 final SmName<S> varName = new SmName<S>(nameBridge.symbolize("x"),
nameBridge) ;

059

060 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge();
061 statArgs.bindVariableType(varName,

TIBCO ActiveMatrix® BPM Mediation Component Development

163

metaBridge.getType(SmNativeType.STRING)) ;

062

063 final String es = "concat('Hello', ', ', $x, '!')";

064 final T sfocus = metaBridge.emptyType();

065

066 final ExprResult<I, U, N, A, S, T, X> prepared = xtk.prepare(es,
sfocus, statArgs);

067

068 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> dynArgs =
xtk.newDynamicContextArgs();

069 dynArgs.setEmulation(Emulation.MODERN) ;

070

071 final GxVariantBridge<I, N, A, X> valueBridge = pcx.getVariantBridge();
072 final X value = valueBridge.stringValue("World");

073 dynArgs.bindVariableValue(varName, value);

074

075 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();

076 final GxFocus<I> dfocus = xtk.emptyFocus();

077 final String strval = expr.stringFunction(dfocus, dynArgs, pcx);
078

079 assertEquals("Hello, World!", strval);

080 }

081

082 public void testEXSLT() throws Exception

083 {

084 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

085 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

086

087 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk =

new LanguageToolKit<I, U, N, A, S, T, X>(pcx);

088

089 final GxExprContextStaticArgs<I, U, N, A, S, T, X> sarg =
xtk.newStaticContextArgs();

090 sarg.getInScopeNamespaces().declarePrefix("math", nameBridge.symbolize
("http://exslt.org/math"));

091 final ExsltMathFunctionGroup<I, U, N, A, S, T, X>

exsltMathFunctionGroup = new
ExsltMathFunctionGroup<I, U, N, A, S, T, X>("http://exslt.org/math", pcx);

092 sarg.setFunctionSigns("http://exslt.org/math", exsltMathFunctionGroup) ;
093 // The function implementations can be provided now or just prior to
execution.

094 sarg.setFunctionImpls("http://exslt.org/math", exsltMathFunctionGroup) ;
095

096 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge();

097

098 final ExprResult<I, U, N, A, S, T, X> prepared =

xtk.prepare("math:exp(1)",
metaBridge.emptyType(), sarg);

099

100 final GxExpr<I, U, N, A, S, T, X> expr = prepared.getExpr();

101

102 final GxExprContextDynamicArgs<I, U, N, A, S, T, X> darg =
xtk.newDynamicContextArgs();

103 // Here we also (redundantly) provide the function implementations just
prior to execution.

104 darg.setFunctionImpls("http://exslt.org/math", exsltMathFunctionGroup) ;
105

106 final String strval = expr.stringFunction(xtk.emptyFocus(), darg, pcx);
107

108 assertEquals("2.7182818284590455", strval);

109 }

110

111 public void testExpressionType() throws Exception

112 {

113 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

114

115 final GxLanguageToolKit<I, U, N, A, S, T, X> xtk =

new LanguageToolKit<I, U, N, A, S, T, X>(pcx);

116

117 final GxExprContextStaticArgs<I, U, N, A, S, T, X> sarg =

TIBCO ActiveMatrix® BPM Mediation Component Development

164

xtk.newStaticContextArgs();

118

119 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge();

120

121 final ExprResult<I, U, N, A, S, T, X> prepared = xtk.prepare("'Hello'",
metaBridge.emptyType(), sarg);

122 /* final GxExpr<I, U, N, A, S, T, X> expr = */prepared.getExpr();

123 /* final GxExprInfo<T> info = */prepared.getInfo();

124 ¥

125 }

XSLT

001 package org.gxml.book.xslt;

002

003 import java.io.IOException;

004 import java.io.InputStream;

005 import java.io.StringReader;

006 import java.io.StringWriter;

007 import java.net.URT;

008 import java.net.URISyntaxException;

009

010 import javax.xml.namespace.QName;

011 import javax.xml.parsers.ParserConfigurationException;

012

013 import org.gxml.book.common.SampleApp;

014 import org.gxml.sa.GxException;

015 import org.gxml.sa.GxMetaBridge;

016 import org.gxml.sa.GxModel;

017 import org.gxml.sa.GxNameBridge;

018 import org.gxml.sa.GxProcessingContext;

019 import org.gxml.sa.GxSequenceHandler;

020 import org.gxml.sa.GxVariantBridge;

021 import org.gxml.xdm.NodeKind;

022 import org.gxml.xdm.Resolved;

023 import org.gxml.xdm.Resolver;

024 import org.gxml.xs.SmName;

025 import org.gxml.xs.SmNativeType;

026

027 import com.tibco.gxml.sa.api.common.lang.ExprException;

028 import com.tibco.gxml.sa.common.helpers.DocumentBuilderFactory;

029 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilder;

030 import com.tibco.gxml.sa.common.helpers.GxDocumentBuilderFactory;

031 import com.tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;
032 import com.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;
033 import com.tibco.gxml.sa.processor.xslt.GxTransform;

034 import com.tibco.gxml.sa.processor.xslt.GxTransformBuilder;

035 import com.tibco.gxml.sa.processor.xslt.GxTransformer;

036 import com.tibco.gxml.sa.processor.xslt.XSLTransformBuilder;

037 import com.tibco.gxmlsa.processor.org.exslt.strings.ExsltStringsFunctionGroup;
038

039 public abstract class XSLTSample<I, U, N extends I, A extends I, S, T, X>
extends SampleApp<I, U, N, A, S, T, X>

040 {

041 public void testExample() throws ParserConfigurationException, IOException,
GxException, ExprException, URISyntaxException

042 {

043 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

044 final GxMetaBridge<A, S, T> metaBridge = pcx.getMetaBridge();

045 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

046

047 final Resolver resolver = getResolver();

048

049 final URI xmlSystemId = new URI("hotel.xml");

050 final Resolved<InputStream> xmlInput =
resolver.resolvelnputStream(xmlSystemId) ;

051

052 final GxDocumentBuilderFactory<N, S> f = new DocumentBuilderFactory<I,

U, N, A, S, T, X>(pcx);

TIBCO ActiveMatrix® BPM Mediation Component Development

053
054
055
056
057

165

f.setIgnoreComments(false);
final GxDocumentBuilder<N> builder = f.newDocumentBuilder();

final N document = builder.parse(xmlInput.getResource(),

xmlTInput.getSystemId());

058
059
060

final URI xslSystemId = new URI("hotel.xsl");
final Resolved<InputStream> xslInput =

resolver.resolveInputStream(xslSystemId) ;

061
062

final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new

XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

063
064
065
066
067
068
069

compiler.setCompatibleMode(true);
// compiler.setRestrictedMode(true); // XSLT 2.0 subset for mapper.

// Specify the static type for the context item:
// document-node(element(*,xs:untyped))
final T documentType =

metaBridge.documentType(metaBridge.elementType(new SmName<S>(null, null,
nameBridge), metaBridge.getType(SmNativeType.UNTYPED), false));

070
071
072

compiler.setFocus(documentType) ;

final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(), xslInput.getSystemId());

073
074

final GxSerializerFactory<I, U, N, A, S, T, X> sf = new

SerializerFactory<I, U, N, A, S, T, X>(pcx);

075
076
077
078
079
080
081
082
083
084
085

// TODO: Extract output configuration.
// compiled.configure(sf);

sf.setIndent(true);
final StringWriter w = new StringWriter();
final GxSequenceHandler<A, S, T> handler = sf.newSerializer(w);

final GxTransformer<I, U, N, A, S, T, X> transformer =

compiled.newTransformer() ;

086
087
088
089
090
091
092
093
094
095
096
097
098
099

transformer.transform(document, pcx, handler);

@SuppressWarnings("unused")
final String s = w.toString();
// System.out.println(s);

}

@SuppressWarnings("unused")
private void bar(final GxProcessingContext<I, U, N, A, S, T, X> pcx)
{
try
{
final GxTransformBuilder<I, U, N, A, S, T, X> builder = new

XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

100
101

final GxTransform<I, U, N, A, S, T, X> transform =

builder.prepareTransform(new StringReader("<x xsl:version='1.0' xmlns:xsl='http://
www.w3.0rg/1999/XSL/Transform'></x>"), new URI(""));

102
103

final GxTransformer<I, U, N, A, S, T, X> transformer =

transform.newTransformer() ;

104
105
106
107
108
109
110
111
112

final N document = transformer.transform(null, pcx);
final GxModel<N, A, S, T> model = pcx.getModel();
final N element = model.getFirstChild(document) ;

final String name = model.getlLocalNameAsString(element);

TIBCO ActiveMatrix® BPM Mediation Component Development

166

113 // System.out.println("XSLT: " + name);

114 ¥

115 catch (final Throwable e)

116 {

117 e.printStackTrace();

118 }

119 }

120

121 public void skipVariableBinding() throws ParserConfigurationException,
IOException, GxException, ExprException, URISyntaxException

122 {

123 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

124

125 final Resolver resolver = getResolver();

126

127 final URI xslSystemId = new URI("email.xsl");

128 final Resolved<InputStream> xslInput =
resolver.resolvelnputStream(xslSystemId) ;

129

130 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

131

132 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(), xslInput.getSystemId());
133

134 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer() ;

135

136 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

137 final SmName<S> varName = nameBridge.name(new QName("to"));

138 final GxVariantBridge<I, N, A, X> valueBridge = pcx.getVariantBridge();
139 final X value = valueBridge.stringValue("David");

140

141 transformer.bindVariableValue(varName, value);

142 transformer.bindVariableValue(nameBridge.name(new QName("http://
www.example.com", "from")), valueBridge.stringValue("Julie"));

143

144 final N documentNode = transformer.transform(null, pcx);

145

146 final GxModel<N, A, S, T> model = pcx.getModel();

147

148 assertEquals(NodeKind.DOCUMENT, model.getNodeKind(documentNode)) ;
149 final N email = model.getFirstChildElement(documentNode) ;

150 final N to = model.getFirstChildElementByName(email,
nameBridge.symbolize("http://www.example.com"), nameBridge.symbolize("to"));
151 assertEquals("David", model.getStringValue(to));

152 final N from = model.getFirstChildElementByName(email, null,
nameBridge.symbolize("from"));

153 assertEquals("Julie", model.getStringValue(from));

154 final N again = model.getFirstChildElementByName(email,
nameBridge.symbolize("http://www.example.com"), null);

155 assertEquals("David", model.getStringValue(again));

156 }

157

158 public void skipExternalFunctions() throws ParserConfigurationException,
IOException, GxException, ExprException, URISyntaxException

159 {

160 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

161

162 final Resolver resolver = getResolver();

163

164 final Resolved<InputStream> xmlInput = resolver.resolvelnputStream(new
URI("exslt.xml"));

165

166 final GxDocumentBuilderFactory<N, S> f = new DocumentBuilderFactory<I,
U, N, A, S, T, X>(pcx);

167

168 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();

169

170 final N document = builder.parse(xmlInput.getResource(),

TIBCO ActiveMatrix® BPM Mediation Component Development

167

xmlTInput.getSystemId());

171

172 final Resolved<InputStream> xslInput = resolver.resolvelnputStream(new
URI("exslt.xsl"));

173

174 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

175

176 final String namespaceURI = "http://exslt.org/strings";

177 final ExsltStringsFunctionGroup<I, U, N, A, S, T, X> functions = new
ExsltStringsFunctionGroup<I, U, N, A, S, T, X>(namespaceURI, pcx);

178 compiler.setFunctionSigns(namespaceURI, functions);

179 compiler.setFunctionImpls(namespaceURI, functions);

180

181 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(), xslInput.getSystemId());
182

183 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

184

185 // TODO: Extract configuration.

186 // compiled.configure(sf);

187

188 sf.setIndent(true);

189

190 final StringWriter w = new StringWriter();

191

192 final GxSequenceHandler<A, S, T> handler = sf.newSerializer(w);
193

194 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer() ;

195

196 transformer.transform(document, pcx, handler);

197

198 // System.out.println(w.toString());

199 }

200

201 public void skipHotel() throws ParserConfigurationException, IOException,
GxException, ExprException, URISyntaxException

202 {

203 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

204

205 final Resolver resolver = getResolver();

206

207 final Resolved<InputStream> xmlInput = resolver.resolvelnputStream(new
URI("hotel.xml"));

208

209 final GxDocumentBuilderFactory<N, S> f = new DocumentBuilderFactory<IT,
U, N, A, S, T, X>(pcx);

210

211 final GxDocumentBuilder<N> builder = f.newDocumentBuilder();
212

213 final N document = builder.parse(xmlInput.getResource(),
xmlInput.getSystemId());

214

215 final Resolved<InputStream> xslInput = resolver.resolvelnputStream(new
URI("hotel.xsl"));

216

217 final GxTransformBuilder<I, U, N, A, S, T, X> compiler = new
XSLTransformBuilder<I, U, N, A, S, T, X>(pcx);

218

219 final GxTransform<I, U, N, A, S, T, X> compiled =

compiler.prepareTransform(xslInput.getResource(), xslInput.getSystemId());
220

221 final GxTransformer<I, U, N, A, S, T, X> transformer =
compiled.newTransformer() ;

222 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

223 final SmName<S> varName = nameBridge.name(new QName("MessageData"));
224 final GxVariantBridge<I, N, A, X> valueBridge = pcx.getVariantBridge();
225 final X value = valueBridge.node(document);

226

TIBCO ActiveMatrix® BPM Mediation Component Development

168

227 transformer.bindVariableValue(varName, value);

228

229 final N documentNode = transformer.transform(null, pcx);

230

231 final GxModel<N, A, S, T> model = pcx.getModel();

232

233 assertEquals(NodeKind.DOCUMENT, model.getNodeKind(documentNode)) ;

234 final N searchHotelRequest = model.getFirstChildElement(documentNode) ;
235 final N parameters =

model.getFirstChildElementByName (searchHotelRequest, nameBridge.symbolize("http://
xmlns.example.com/1189038295781"), nameBridge.symbolize("parameters"));

236 final N searchHotel = model.getFirstChildElementByName(parameters,
nameBridge.symbolize("http://www.xyzcorp/procureservice/QueryGDS_Europe/"),
nameBridge.symbolize("searchHotel"));

237 final N country = model.getFirstChildElementByName(searchHotel,
nameBridge.symbolize("http://www.Xyzcorp/procureservice/QueryGDS_Europe/"),
nameBridge.symbolize("country"));

238 assertEquals("USA", model.getStringValue(country));

239 }

240 }

XQuery

001 package org.gxml.book.xquery;

002

003 import java.io.StringWriter;

004 import java.math.BigInteger;

005 import java.net.URI;

006

007 import javax.xml.namespace.QName;

008

009 import org.gxml.book.common.SampleApp;

010 import org.gxml.sa.GxAtomBridge;

011 import org.gxml.sa.GxNameBridge;

012 import org.gxml.sa.GxProcessingContext;

013 import org.gxml.sa.GxSequenceHandler;

014 import org.gxml.sa.GxVariantBridge;

015 import org.gxml.xs.SmName;

016

017 import com.tibco.gxml.sa.api.common.lang.GxXQConnection;

018 import com.tibco.gxml.sa.api.common.lang.GxXQDataSource;

019 import com.tibco.gxml.sa.api.common.lang.GxXQExpression;

020 import com.tibco.gxml.sa.api.common.lang.GxXQPreparedExpression;
021 import com.tibco.gxml.sa.processor.serialization.api.GxSerializerFactory;
022 import com.tibco.gxml.sa.processor.serialization.impl.SerializerFactory;
023 import com.tibco.gxml.sa.processor.xquery.XQEngine;

024 import com.tibco.gxml.sa.processor.xquery.XQErrorCatcher;

025

026 /**

027 * Introduction to XQuery.
028 */

029 public abstract class XQuerySample<I, U, N extends I, A extends I, S, T, X>
extends SampleApp<I, U, N, A, S, T, X>

030 {

031 public void testExample() throws Exception

032 {

033 // Obtain a new processing context from the application.

034 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

035

036 final GxXQDataSource<I, U, N, A, S, T, X> ds = new XQEngine<I, U, N, A,
S, T, X>(pcx);

037

038 final GxXQConnection<I, U, N, A, S, T, X> conn = ds.getConnection();
039

040 final String expression = "<x>{text{for $i in (1,2,3,4) return $i *
2} r</x>";

041

042 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =

conn.prepareExpression(expression);

TIBCO ActiveMatrix® BPM Mediation Component Development

043
044 final GxSerializerFactory<I, U, N, A, S, T, X>
SerializerFactory<I, U, N, A, S, T, X>(pcx);

169

sf = new

045 sf.setMethod(new QName("xml"));

046 sf.setOmitXmlDeclaration(true);

047 final StringWriter sw = new StringWriter();

048 final GxSequenceHandler<A, S, T> handler = sf.newSerializer(sw);
049

050 expr.executeQueryChandler) ;

051

052 final String actual = sw.toString();

053 assertEquals(expression, "<x>2 4 6 8</x>", actual);

054 }

055

056 public void testGettingStarted() throws Exception

057 {

058 // Obtain a new processing context from the application.

059 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

060

061 final GxXQDataSource<I, U, N, A, S, T, X> ds = new XQEngine<I, U, N, A,
S, T, X>(pcx);

062

063 final GxXQConnection<I, U, N, A, S, T, X> conn = ds.getConnection();
064

065 final GxXQExpression<I, U, N, A, S, T, X> expr =
conn.createExpression();

066

067 final String es = "for $n in fn:doc('catalog.xml')//item return
fn:data($n/name)";

068

069 final URI systemId = new URI("catalog.xml");

070

071 expr.setBaseURI(systemId);

072

073 @SuppressWarnings("unused")

074 final X value = expr.executeQuery(es);

075 }

076

077 public void testHelloWorld() throws Exception

078 {

079 final GxProcessingContext<I, U, N, A, S, T, X> pcx =

this.newProcessingContext();

080

081 final GxXQDataSource<I, U, N, A, S, T, X> ds =
S, T, X>(pcx);

082

083 final GxXQConnection<I, U, N, A, S, T, X> conn
084

085 conn.setScriptingMode (true);

086

087 final String expression = "declare variable $x
',$X, I!l)ll;

088

089 final GxXQPreparedExpression<I, U, N, A, S, T,
conn.prepareExpression(expression) ;

090

091 final GxSerializerFactory<I, U, N, A, S, T, X>

SerializerFactory<I, U, N, A, S, T, X>(pcx);

new XQEngine<I, U, N, A,

= ds.getConnection();

external; concat('Hello,
X> expr =

sf = new

sf.newSerializer(sw);

pcx.getVariantBridge();

new SmName<S>(nameBridge.symbolize("x"),

092 sf.setOmitXmlDeclaration(true);

093 sf.setIndent(false);

094 sf.setMethod(new QName("xml"));

095 final StringWriter sw = new StringWriter();

096 final GxSequenceHandler<A, S, T> handler =

097

098 final GxNameBridge<S> nameBridge = pcx.getNameBridge();
099 final GxVariantBridge<I, N, A, X> valueBridge

100

101 final SmName<S> varName =

nameBridge) ;

102 final X value = valueBridge.stringValue("World");
103

TIBCO ActiveMatrix® BPM Mediation Component Development

170

104 expr.bindVariableValue(varName, value);

105

106 expr.executeQuery(Chandler) ;

107

108 String actual = sw.toString();

109 assertEquals(expression, "Hello, World!", actual);

110 }

111

112 public void testMergeTextNodes() throws Exception

113 {

114 // Obtain a new processing context from the application.

115 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

116

117 final GxXQDataSource<I, U, N, A, S, T, X> ds = new XQEngine<I, U, N, A,
S, T, X>(pcx);

118

119 final GxXQConnection<I, U, N, A, S, T, X> conn = ds.getConnection();
120

121 // final String expression = "";

122 final String expression = "count((element elem {1, 'string', 1,2e3})/
text())";

123

124 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression);

125

126 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

127 sf.setMethod(new QName("xml"));

128 sf.setOmitXmlDeclaration(true);

129 final StringWriter sw = new StringWriter();

130 final GxSequenceHandler<A, S, T> handler = sf.newSerializer(sw);
131

132 expr.executeQuery(Chandler) ;

133

134 final String actual = sw.toString();

135 assertEquals(expression, "1", actual);

136 }

137

138 public void testProblem() throws Exception

139 {

140 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
this.newProcessingContext();

141

142 final GxXQDataSource<I, U, N, A, S, T, X> ds = new XQEngine<I, U, N, A,
S, T, X>(pcx);

143

144 final GxXQConnection<I, U, N, A, S, T, X> conn = ds.getConnection();
145

146 final XQErrorCatcher messages = new XQErrorCatcher();

147

148 conn.setErrorHandler(messages) ;

149 conn.setCompatibleMode(false);

150 conn.setScriptingMode(true);

151

152 final String expression =

"(xs:untypedAtomic('1l"'),xs:untypedAtomic('2"')) = (xs:untypedAtomic('2.0'),2.0)";
153

154 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression);

155

156 final X value = expr.executeQuery();

157

158 final GxVariantBridge<I, N, A, X> variantBridge =
pcx.getVariantBridge();

159 switch (variantBridge.getNature(value))

160 {

161 case ITEMS:

162 {

163 @SuppressWarnings("unused")

164 final Iterable<I> items = variantBridge.getItemSet(value);
165 // System.out.println(items);

TIBCO ActiveMatrix® BPM Mediation Component Development

171

166 }

167 break;

168 case ATOM:

169 {

170 @SuppressWarnings("unused")

171 final A atom = variantBridge.getAtom(value) ;

172 @SuppressWarnings("unused")

173 final GxAtomBridge<A, S> atomBridge = pcx.getAtomBridge();
174 // System.out.println(atomBridge.getCl4NForm(atom)) ;

175 }

176 break;

177 case STRING:

178 {

179 @SuppressWarnings("unused")

180 final String strval = variantBridge.getString(value);
181 // System.out.println(strval);

182 }

183 break;

184 case INTEGER:

185 {

186 @SuppressWarnings("unused")

187 final BigInteger integer = variantBridge.getInteger(value);
188 // System.out.println(integer);

189 }

190 break;

191 default:

192 {

193 throw new AssertionError(variantBridge.getNature(value));
194 }

195 }

196 }

197

198 public void testTyping() throws Exception

199 {

200 final GxProcessingContext<I, U, N, A, S, T, X> pcx =
this.newProcessingContext();

201

202 final GxXQDataSource<I, U, N, A, S, T, X> ds = new XQEngine<I, U, N, A,
S, T, X>(pcx);

203

204 final GxXQConnection<I, U, N, A, S, T, X> conn = ds.getConnection();
205

206 conn.setScriptingMode(true);

207

208 final XQErrorCatcher messages = new XQErrorCatcher();

209

210 conn.setErrorHandler(messages) ;

211

212 final String expression = "declare variable $x external;
contains(string(number($x)), 'NaN')";

213

214 final GxXQPreparedExpression<I, U, N, A, S, T, X> expr =
conn.prepareExpression(expression);

215

216 final GxSerializerFactory<I, U, N, A, S, T, X> sf = new
SerializerFactory<I, U, N, A, S, T, X>(pcx);

217 sf.setOmitXmlDeclaration(true);

218 sf.setIndent(false);

219 sf.setMethod(new QName("xml"));

220 final StringWriter sw = new StringWriter();

221 final GxSequenceHandler<A, S, T> handler = sf.newSerializer(sw);
222

223 final GxNameBridge<S> nameBridge = pcx.getNameBridge();

224 final GxVariantBridge<I, N, A, X> valueBridge = pcx.getVariantBridge();
225

226 final SmName<S> varName = new SmName<S>(nameBridge.symbolize("x"),
nameBridge) ;

227 final X value = valueBridge.doubleValue(5.0);

228

229 expr.bindVariableValue(varName, value);

230

231 expr.executeQuery(handler) ;

TIBCO ActiveMatrix® BPM Mediation Component Development

232
233
234
235
236

Validation

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

030
031
032
033
034

035

036
037
038
039
040

041
042

043
044
045
046

resource.getResource(),

047
048
049
050
051
052

053
054
055

package org.

import
import
import
import

import
import
import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import
import

String actual
assertEquals(expression, "false", actual);

java.
java.
java.
java.

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

com.
com.
com.
com.
com.
com.
com.
com.
com.

net.

gxml
gxml .
gxml .
gxml .
gxml
gxml
gxml
gxml
gxml
gxml

tibco.
tibco.
tibco.
tibco.

tibco

tibco.
tibco.
tibco.
tibco.

URI;

sw.toString();

gxml .book.validation;
io.InputStream;

util.LinkedList;
util.List;

.book.common.SampleApp;

sa.GxFragmentBuilder;
sa.GxModel;
sa.GxProcessingContext;

gxml

public abstract class
extends SampleApp<I, U, N, A, S, T, X>

{

gxml .
gxml .
gxml .
gxml .
.gxml.
gxml .
gxml .
gxml .
.XS

sa.
sa.
sa.
sa.

sa
sa

.xdm.Resolved;
.xdm.Resolver;
.Xs.SmException;
.Xs.SmExceptionCatcher;
.xXs.SmExceptionHandler;
.Xs.SmMetaloadArgs;

common.helpers.DocumentBuilderFactory;
common.helpers.GxDocumentBuilder;
common . helpers.GxDocumentBuilderFactory;

common.helpers.SmAtomBridgeOnGxAtomBridgeAdapter;
.processor.validation
.processor.validation
sa.
sa.
.W3cXmlSchemaParser;

processor.validation
processor.validation

.GxContentValidator;
.GxValidatorCache;
.GxValidatorCacheFactory;
.ValidatorCacheFactory;

ValidationSample<I, U, N extends I, A extends I,

public void testByteStreamValidation() throws Exception

{

// Load a top-level schema into the processing context.
final List<Resolved<InputStream>> resources = new

LinkedList<Resolved<InputStream>>();
resources.add(getResolver() .resolvelInputStream(new
URI("PurchaseOrder.xsd")));

final SmExceptionCatcher errors = new
final SmMetaloadArgs args = new SmMetalLoadArgs();

SmExceptionCatcher();

final GxProcessingContext<I, U, N, A, S, T, X> pcx =
newProcessingContext();

final W3cXmlSchemaParser<A, S> parser
S>(new SmAtomBridgeOnGxAtomBridgeAdapter<A, S>(pcx.getAtomBridge()));

= new W3cXmlSchemaParser<A,

for (final Resolved<InputStream> resource : resources)

{

pcx.register(parser.parse(resource.getLocation(),

pcx.lock();

resource.getSystemId(),

// Create a validator...
final GxValidatorCacheFactory<A, S, T> vcf = new
ValidatorCacheFactory<I, U, N, A, S, T, X>(pcx);
final GxValidatorCache<A, S, T> vc =
final GxContentValidator<A, S, T> validator = vc.newContentValidator();

errors, args, pcx));

vcf.newValidatorCache() ;

172

X>

TIBCO ActiveMatrix® BPM Mediation Component Development

056

173

// Set the downstream event handler which contains annotations and

typed content.

057
058
059
060
061

// validator.setGxContentHandler(/* ...*/null);
validator.setExceptionHandler(errors);

// The document node that we wish to validate.
final Resolved<InputStream> xmlInput =

getResolver().resolveInputStream(new URI("PurchaseOrder.xml"));

062
063

final GxDocumentBuilderFactory<N, S> factory = new

DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

064
065
066
067

final GxDocumentBuilder<N> builder = factory.newDocumentBuilder();

final N document = builder.parse(xmlInput.getResource(),

xmlInput.getSystemId());

068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085

// Stream the document into the validator.
final GxModel<N, A, S, T> model = pcx.getModel();

model . stream(document, true, true, validator);

if (errors.size() > 0)
{
// You've got errors.'
}
¥

public void testTreeValidation() throws Exception

{

final Resolver resolver = getResolver();

// Load a top-level schema into the processing context.
final List<Resolved<InputStream>> resources = new

LinkedList<Resolved<InputStream>>();

086

resources.add(getResolver() .resolveInputStream(new

URI("PurchaseOrder.xsd")));

087
088
089
090
091

final SmExceptionCatcher errors = new SmExceptionCatcher();
final SmMetaloadArgs args = new SmMetaloadArgs();

final GxProcessingContext<I, U, N, A, S, T, X> pcx =

newProcessingContext();

092

final W3cXmlSchemaParser<A, S> parser = new W3cXmlSchemaParser<A,

S>(new SmAtomBridgeOnGxAtomBridgeAdapter<A, S>(pcx.getAtomBridge()));

093
094
095

for (final Resolved<InputStream> resource : resources)
{

pcx.register(parser.parse(resource.getlLocation(),

resource.getResource(), resource.getSystemId(), errors, args, pcx));

096
097
098
099
100
101
102

}

pcx.lock();

// The document node that we wish to validate.
@SuppressWarnings("unused")

final URI xmlLocation = new URI("PurchaseOrder.xml");
final URI xmlSystemId = new URI("PurchaseOrder.xml");
final Resolved<InputStream> xmlInput =

resolver.resolveInputStream(xmlSystemId) ;

103
104

final GxDocumentBuilderFactory<N, S> factory = new

DocumentBuilderFactory<I, U, N, A, S, T, X>(pcx);

105
106
107
108

final GxDocumentBuilder<N> builder = factory.newDocumentBuilder();

final N documentIn = builder.parse(xmlInput.getResource(),

xmlInput.getSystemId());

109
110
111
112
113
114
115

@SuppressWarnings("unused")
final N documentOut = validate(documentIn, errors, pcx);

if (errors.size() > 0)

{

// You've got errors.'

TIBCO ActiveMatrix® BPM Mediation Component Development

174

116 for (@SuppressWarnings("unused")

117 final SmException error : errors)

118 {

119 // System.out.println(error.getLocalizedMessage());

120 }

121 }

122 }

123

124 Vaidi

125 * This static function illustrates a helper function for validating a
document tree.

126 * Note that we assume that the processing context is already loaded with
meta-data.

127 @

128 * @param node

129 @ The input document.

130 * @param errors

131 & The error handler.

132 * @param pcx

133 o The processing context.

134 &/

135 public static <I, U, N extends I, A extends I, S, T, X> N validate(final N
node, final SmExceptionHandler errors, final GxProcessingContext<I, U, N, A, S, T,
X> pcx)

136 {

137 final GxValidatorCacheFactory<A, S, T> vcf = new
ValidatorCacheFactory<I, U, N, A, S, T, X>(pcx);

138

139 // We already have a tree as input so we'll use the content validator'
140 // and stream the document in as a bunch of events (a bit like SAX, but
not lexical).

141 final GxValidatorCache<A, S, T> vc = vcf.newValidatorCache();

142

143 final GxContentValidator<A, S, T> validator = vc.newContentValidator();
144

145 validator.setExceptionHandler(errors);

146

147 final GxModel<N, A, S, T> model = pcx.getModel();

148

149 // We want to produce a node so we'll need a fragment builder at the
output.'

150 final GxFragmentBuilder<N, A, S, T> builder = pcx.newFragmentBuilder();
151

152 // Connect the pieces together so that the validation output builds a
tree.

153 validator.setGxContentHandler(builder);

154

155 // Make it so!

156 model . stream(node, true, true, validator);

157

158 // Practice safe coding: We don't know what might happen if there are
errors. '

159 final List<? extends N> nodes = builder.getNodes();

160 if (nodes.size() > 0)

161 {

162 return nodes.get(0);

163 }

164 else

165 {

166 return null;

167 }

168 }

169 }

TIBCO ActiveMatrix® BPM Mediation Component Development

	Contents
	Figures
	TIBCO Documentation and Support Services
	Introduction to Mediation
	Mediation Flows
	Message Exchange Patterns
	Mediation Flow Interfaces
	Planning Target and Mediation Interfaces
	Paths in a Mediation Flow
	Mediation Tasks
	Mediation Exchange
	Designing Mediation Flows

	Working with Mediation Flows
	Starting the Mediation Flow Wizard
	Creating a New, Empty Mediation Flow
	Creating New Mediation Flows from Existing Web Services
	Editing Mediation Flow Editor Preferences
	Working with Mediation Flow Properties
	Validation of Message
	Adding a Mediation Flow Property
	Deleting a Mediation Flow Property

	Working with Interfaces
	Adding Interfaces to Mediation Flows
	Deleting Interfaces from Mediation Flows
	Moving Mediation Interfaces
	Using the AutoMediate Feature
	Creating Local WSDL Files
	Supported Policies

	Working with Mediation Paths
	Changing Mediation Paths
	Deleting Mediation Paths

	Working with Message Context Properties
	Context Parameters
	Mediation Context Parameters
	Undeclared Fault Headers
	Context Parameters in Mediation Components
	Adding Context Parameters
	Deleting Context Parameters
	Defining the Scope of Context Parameters

	Working with Exchange Variables
	Defining Exchange Variables
	Setting Exchange Variable
	Creating Simple Schemas

	Working with Tasks
	Adding a Task to a Path
	Deleting a Task From a Path

	Mediation Components

	Invoking an Operation
	Configuring Invoke Operation Tasks

	Logging Mediation Exchange Information
	Mediation Appenders and Loggers
	Configuring a Log Task

	Routing Messages in a Mediation Flow
	Paths and Route Tasks
	Defining a Route
	Adding Routing Cases
	Specifying Case Targets in the Decision Table
	Modifying Case Names
	Modifying Destinations
	Moving Cases in the List
	Deleting Cases
	Nesting Multiple Route Tasks

	Adding and Deleting Variables
	Mapping Data to Variables
	Routing Conditions
	Editing Route Task Conditions
	Conditions for XPath Route Tasks
	Changing Route Tasks to XPath Route Tasks

	Transforming Tasks
	Example of Transformation
	Basic Mapping
	Using XPath Editor
	Data Contribution to the Mediation Exchange
	External Stylesheets for Data Transformation
	Specifying an External Stylesheet for Data Transformation
	Schema Components
	Context Panel
	Message Panel
	Data and Function Tabs
	TIBCO XPath Functions
	Creating Custom XPath Functions
	Exporting Custom XPath Functions
	Deploying Custom XPath Functions
	Testing Custom XPath Functions
	Mapper Toolbar Buttons
	Right-Click Menu in the Message Panel
	Surrounding a Component With a Choose Statement
	If Statements
	For Each Statements
	Adding a Variable to a Mapping
	Managing Mappings
	Repairing Incorrect Mappings
	Mapping an Empty Complex Type

	Using XPath
	Transforming XML with Related Tasks

	Querying a Database
	JDBC Resource Templates
	Defining a Resource Template
	Configuring a JDBC Driver
	Registering a JDBC Driver
	Configuration Tabs of the Query Database Task

	Dynamic Requests
	Service Providers for Dynamic Composite References
	Configuring Dynamic Binding
	Configuring Dynamic Target Interfaces
	Pattern Variables Usage
	Dynamic Reference Task Setting
	General Tab Configuration
	Input Specification
	Configuring Dynamic References in Composite
	Creating and Deploying Composites Used By Dynamic Binding

	Replying to Messages
	Fault Processing in a Mediation Flow
	Throwing Faults in Mediation Flows
	Fault Paths
	Catch Fault Configuration
	Catching Faults from the Mediation Flow
	Sending Faults to the Invoker

	Custom Mediation Tasks
	Migrating Custom Mediation Tasks
	Eclipse Plug-in Reference
	Support Files
	Creating the Model Plug-in
	Creating the UI Plug-in
	Creating the Runtime Plug-in
	Writing Custom Mediation Code
	Accessing Task Input/Output Schema
	Modifying the Mediation Task Data
	Defining Model Attributes
	Custom Mediation Task Categories
	Thrown Faults
	Runtime Exceptions
	Installing Custom Mediation Tasks
	Deploying Custom Mediation Tasks
	Testing Custom Mediation Tasks

	Reference
	Catch Fault
	End Mediation
	Generate Reply
	Handle Reply
	Invoke Operation
	Log
	Information for Standard Log Messages
	Information for Custom Log Messages

	Parse XML
	Query Database
	Render XML
	Route Task
	Send Fault
	Set Context
	Set Dynamic Reference
	Set Exchange Variable
	Throw Fault
	Transform
	Validate XML
	XPath Route

	TIBCO AutoMediate Command-Line Tool
	AutoMediate Command-Line Tool Flow
	Running the AutoMediate Command-Line Tool
	AutoMediate Command Syntax and Options
	AutoMediate ANT Command Syntax and Options

	Introduction to gXML Applications
	Developing gXML Applications
	Implementing GxApplication
	Implementing GxCatalog
	Implementing GxResolver
	Injecting DOM

	gXML Recipes
	Parsing a Character Stream and a Byte Stream
	Constructing a Data Model Tree Programmatically
	Validating
	Navigation
	Mutation
	Serialization
	XPath
	XSLT
	XQuery
	Validation

