
Copyright © 2009-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO ActiveSpaces® - Enterprise Edition
Administration
Version 5.0.0 | February 2025

TIBCO ActiveSpaces® - Enterprise Edition Administration

2 | Contents

Contents
Contents 2

Who Should Read This Document 8

About This Product 9

Administrative Concepts 10
Copysets 13

State Keeper 14

Realm Service 14

Development Environment 16

Building a Docker Image 18

Production Environment 19

String Encoding 21

Running Processes as a Service 22
Recommended Minimum Configuration 22

Logging 23

State Keeper 24

Administration Service 26

Proxy 28

Administration Tool 30
Administration Tool Reference 32

Environment Variables for the Administration Tool 33

tibdg Status 33

tibdg Table Stats 36

TIBCO ActiveSpaces® - Enterprise Edition Administration

3 | Contents

tibdg Grid Generate and tibdg Table Generate 37

The tibdg Commands That Support Interaction 39

Using tibdg grid mode to Put a Data Grid into Maintenance Mode 41

tibdg proxy shed 42
Using the Proxy Shed Command and the Balanced Binding Strategy 43

tibdg purge 44

tibdgadmind 44

Stop the tibdg Daemon 46

Designing a Data Grid 47

Starting a Realm Service 49

Defining a Data Grid 52
Grid Create Configuration Options 54

Memory Usage Considerations with the node_read_cache_size Option 62

Configuration Options to Use Specific Ports and Network Interfaces 63
Configure Ports 63

Configuration Options when the Proxy and Client are on Different Subnets 64

Configure Network Interfaces 66

Configure Internal Subnet Masks 66

Starting the Data Grid Processes 68
Component Command-Line Parameters 68

Starting a State Keeper 71
Keeper Reference 71

Starting a Node 73
Node Reference 74

Starting Multiple Nodes 74
three_copysets.tibdg 75

one_copyset_two_replicas.tibdg 76

TIBCO ActiveSpaces® - Enterprise Edition Administration

4 | Contents

Starting a Proxy 77
Proxy Reference 78

Starting a Proxy with an External Host and Port 78

Methods of Selecting a Proxy for a Client 80

Adding Copysets 85
Data Redistribution 86

Removing Copysets 88

Defining a Table 91
Table Create Configuration Options 92

Column Names 94
Special Characters in Column Names 95

Secondary Indexes 95

Enabling Statistics 96

Row Expiration 96
Defining a Table with Row Expiration 97

Overriding the Default TTL for a Single Row 98

Deletion of Expired Rows 98

Defining a Table by Using SQL DDL Commands 100
Creating a New Table 100

Dropping a Table 102

Creating an Index 103

Dropping an Index 104

SQL Data Type Mapping 104

Security 106
Authentication and Authorization 106

Authorization Groups 107

Password File 108

TIBCO ActiveSpaces® - Enterprise Edition Administration

5 | Contents

Starting Realm Services with Authentication 109

Starting Data Grid Processes With Authentication 110

Using User-Defined TIBCO FTL Certificates 111

Enabling Transport Encryption on a Data Grid 117

Trust File (TIBCO FTL-Generated Certificates) 118
Using Trust Files with Primary Realm Service 119

Using Trust Files with the Disaster Recovery Feature 120

Grid and Table Permissions 121
Enabling Permission Checking on Data Grids and Tables 121

ActiveSpaces Custom Roles 122

Enabling Permission Checking when Creating or Modifying a Data Grid 123

The tibdg Commands to Set Permissions on a Table 124

ActiveSpaces Monitoring Service 127
Using ActiveSpaces Monitoring Service 128

Installing or Uninstalling ActiveSpaces Processes as Windows Services 130

Installing ActiveSpaces Processes as Windows Services 131

Uninstalling ActiveSpaces Processes as Windows Services 133

Deployment Scenario for Running ActiveSpaces Processes as Windows
Services 134
Preparing for Installation 135

Installing TIBCO FTL Server as a Windows Service 137

Creating the ActiveSpaces Data Grid 138

Installing the ActiveSpaces State Keeper as a Windows Service 140

Installing the ActiveSpaces Node as a Windows Service 142

Installing the ActiveSpaces Proxy as a Windows Service 144

Installing the ActiveSpaces tibdgadmind as a Windows Service 146

Running an ActiveSpaces Sample 147

Uninstalling the Sample Windows Services 147

TIBCO ActiveSpaces® - Enterprise Edition Administration

6 | Contents

Stopping a Data Grid Gracefully 149
Selecting a Secondary Node to be Promoted as the Primary Node 149

Best Practices for Node Synchronization 150

Timeouts During Maintenance 150

Clearing a Data Grid Definition 152

Checkpoints 153
Creating a Checkpoint 153

Creating a Manual Checkpoint 153

Creating a Periodic Checkpoint 154

Listing Checkpoints 155

Listing Tables in a Checkpoint 156

Deleting Checkpoints 156
Automatically Deleting Old Checkpoints 157

Validating Checkpoints 157

Checkpoint Properties 158

Checkpoint Best Practices 159

Caching Rows in a Proxy 160

Live Backup and Restore 163
Restoring a Data Grid 167

Realm Service Database Restore 168

Realm Service Checkpoint Restore 169

Restoring State Keepers 170

Restoring a tibdg Node 171

Removing a Rollback Record 172

Disaster Recovery 174
Suggested Deployment Model for Disaster Recovery 175

A Quick Look at Setting Up Disaster Recovery 176

Gridset Configuration 178

TIBCO ActiveSpaces® - Enterprise Edition Administration

7 | Contents

Getting Help on the gridset Command 178

Creating a Gridset 179

Adding Data Grids to a Gridset 179

Modifying a Gridset 180

Permission Checking in Disaster Recovery Gridsets 180

Configuring a Proxy with Static Mirroring Host and Port 181

Activating the Mirror Grid as the Primary Grid 181

Preventing Data Loss by Using the Maintenance Mode 184

Retention Limits 185

Automatic Mirroring 185

Recovery Objectives 186
Recovery Point Objective 186

Recovery Time Objective 186

Capacity and Sizing 187
Disk Space Used by the Checkpoint Metadata 187

Query Capacity 187

Security in a Disaster Recovery Setup 187

Disaster Recovery Playbook 188
Setting Up a Planned Cutover to a Mirror Grid 188

Disaster Recovery at a Mirror Grid 189

Multiple Mirror Sites 190

Read Replicas 191

TIBCO Documentation and Support Services 192

Legal and Third-Party Notices 193

TIBCO ActiveSpaces® - Enterprise Edition Administration

8 | Who Should Read This Document

Who Should Read This Document
The document is primarily focused on administrators. However, some portions of this
document cater to the needs of a developer. In such scenarios, the roles are identified at
the beginning of a section. Unless specified otherwise, the procedures in the document are
meant for administrators.

TIBCO ActiveSpaces® - Enterprise Edition Administration

9 | About This Product

About This Product
The TIBCO ActiveSpaces® - Enterprise Edition software is a distributed in-memory data grid
product. Some features of ActiveSpaces® - Enterprise Edition include the use of familiar
database concepts, high I/O capacity, and network scalability. It is ideal for all application
development projects, and for deploying and managing applications in the production
environment of an enterprise.

TIBCO FTL® is an embedded and bundled component of ActiveSpaces® - Enterprise Edition.

TIBCO ActiveSpaces® - Enterprise Edition Administration

10 | Administrative Concepts

Administrative Concepts
These concepts and definitions pave the way to a more detailed understanding of
ActiveSpaces administration.

Data Grid

A set of cooperating processes that distribute data across a set of host computers.

Three kinds of cooperating processes implement a data grid: nodes, proxies, and state
keepers.

Copyset

A data grid partitions the complete set of data into copysets. Each copyset contains a
portion of the full data set.

Each table row resides within only one copyset.

Partitioning

The data grid horizontally partitions the rows of a table across copysets. So, a query or
a transaction can span many copysets.

Node

Nodes are processes that implement a copyset. Administrators define nodes and assign
them to copysets.

Each copyset requires a primary node. Secondary nodes can provide optional backup
protection.

Each node of a copyset maintains one copy of the data (that is, one copy of all the rows
in that copyset).

Each node is part of only one copyset.

Replica

The number of replicas in a copyset is identical to the number of nodes that implement
that copyset. Replicas provide fault tolerance and protect data against hardware
failures. More replicas yield greater protection.

TIBCO ActiveSpaces® - Enterprise Edition Administration

11 | Administrative Concepts

l In a prototyping or testing environment, you can implement a copyset using only
one node.

l In most production environments, two nodes provide adequate protection.

l For even stronger fault tolerance, you can use three nodes.

Replication

The replication feature, when used, provides fault tolerance by preventing data loss
when a node (or the computer running the node) fails and cannot be accessed.

All nodes in a given copyset are replicas of each other and they all have the same set of
data.

There is a single primary replica in a copyset and the other nodes in that copyset are
secondary replicas.

Every copyset in the data grid is organized to ensure that the slice of data owned by
that copyset is stored on as many replicas as desired.

Reconciling Nodes of a Copyset

When a node of a copyset is brought back online, the data for the node is reconciled
with the primary node. After reconciliation, the node being brought back online resumes
as a secondary node of the copyset.

For more information, see Copysets.

Using Multiple Nodes

There are several reasons for using multiple nodes:

l Nodes in different copysets are created with the goal of scaling horizontally.

As a result, multiple copysets are created, each with a slice of the data.

l Nodes in the same copyset are created to provide multiple replicas for fault
tolerance.

These contain identical copies of the data.

l In a product environment, a combination of the previously described use cases
can be used.

For example, you might choose to have two replicas per copyset and multiple
copysets (say three) to scale horizontally.

TIBCO ActiveSpaces® - Enterprise Edition Administration

12 | Administrative Concepts

In this example, your environment would have a total of six nodes.

Proxy

Proxies are processes that mediate data grid operations on behalf of application
programs.

Application programs connect to proxies, which in turn connect to nodes.

Proxy processes are independent of one another and do not require persistent state, so
you can share the load of operations among multiple proxies.

State Keeper

Fault-tolerant state keeper processes determine and record the data grid's run time
state information by which a data grid operates, and supply this information to the
proxies and copyset nodes.

A set of fault-tolerant state keeper processes protect this crucial information and ensure
nonstop access to it. One of the state keepers is designated the lead state keeper and
supplies this information to the proxies and copyset nodes. If the lead state keeper goes
down, one of the secondary state keepers takes over as the lead. In a fault-tolerant set
of three state keepers, a quorum of two state keepers must always be running to ensure
data consistency in split brain scenarios. If a state keeper is restarted when a quorum is
running, one of the running state keepers updates the state of the restarted state
keeper. If the number of running state keepers falls below the quorum and the state of a
copyset changes (for example, a node goes down), operations on the data grid continue
to fail until a quorum of state keepers are running again. Until a copyset state change
occurs, live operations may still continue working. However, it is critical that a quorum
of state keepers is running to provide the full grid functionality.

For more information, see State Keeper.

Service

You can configure a TIBCO FTL server to run one or more processes as services. When a
process is run as a service, the TIBCO FTL server is responsible for starting and stopping
the process when the TIBCO FTL server starts up and shuts down. The TIBCO FTL server
continuously monitors the liveness of the process and restarts it if the process is not
running. On starting, the YAML configuration file of the TIBCO FTL server provides the
parameters to a service. For a standalone process, you add the process parameters by
using command line. For the processes running as a service, add those parameters to
the YAML configuration file of TIBCO FTL server. For example, if you used the following

TIBCO ActiveSpaces® - Enterprise Edition Administration

13 | Administrative Concepts

command to start a standalone state keeper:

tibgdkeeper --name k1

When the state keeper is running as a service, add the following parameters to the
YAML configuration file of the TIBCO FTL server:

- tibdgkeeper:
name: k1

You can run state keeper, administration service, and proxy as services.

ActiveSpaces Core Server

When you configure a TIBCO FTL server to run one or more ActiveSpaces processes, it is
known as an ActiveSpaces Core Server.

Copysets
A data grid partitions the complete set of data into copysets. Each copyset contains a
portion of the full data set.

The data grid horizontally partitions each table, assigning each row to one specific copyset.
This partitioning is transparent to application programs.

Programs explicitly interact with tables, but do not refer to copysets.

Tables and Copysets

Tables and copysets are independent concepts.

Tables organize data in a way that makes sense to users of the data. Tables consist of
rows, structured by columns.

Copysets store table rows, distributing them across a network in a way that facilitates fast
access, fault tolerance, data replication, and flexibility.

TIBCO ActiveSpaces® - Enterprise Edition Administration

14 | Administrative Concepts

State Keeper
The state keeper determines and records the data grid's run time state information by
which a data grid operates, and supplies this information to the proxies and copyset nodes.

Runtime Information Stored in the State Keeper

Primary Nodes

Within each copyset, one node is the primary copy, which both stores data and provides
read access. Other nodes are secondary nodes that store back-up copies of the data.
The state keeper records which node is the primary.

Data Distribution Mapping

The state keeper determines the mapping that assigns each table row to a copyset.

State Keeper Fault Tolerance

A set of fault-tolerant state keeper processes protect this crucial information and ensure
nonstop access to it. One state keeper process supplies this information to the proxies and
copyset nodes.

In production environments, use three processes. In a prototyping or testing environment,
only one process suffices.

For added protection, each state keeper process also maintains a copy of the governing
decisions in a disk file.

Realm Service
A data grid is run inside a TIBCO FTL realm. A TIBCO FTL realm serves as a repository for
data grid configuration information and provides communication services that enable all
data grid processes to communicate with each other. A client application accesses the data
grid by using the realm service URL.

The realm service URL is the URL of the TIBCO FTL server. The realm service offers the
following capabilities:

l Stores data grid definitions

TIBCO ActiveSpaces® - Enterprise Edition Administration

15 | Administrative Concepts

l Communicates with the administrative tools to store and retrieve data grid
definitions

l Communicates with all the processes running in the data grid and updates the
internal configuration if anything changes

l Collects monitoring data from all processes
For more information, see "Processes in ActiveSpaces" section in TIBCO ActiveSpaces® -
Enterprise Edition Concepts.

TIBCO ActiveSpaces® - Enterprise Edition Administration

16 | Development Environment

Development Environment
In many enterprises, programmers act as administrators during the development and test
phases of a project. To develop and test application programs that use ActiveSpaces
software, deploy the following processes.

l Realm service One realm service

l State keeper One process or service

l Node One process

l Proxy One process

l Administration Daemon or Administration Service One process or one service

l Your application programs One or more processes, as appropriate

In a development environment, you can run all of these processes on the same host
computer.

Sample Scripts

Refer to the TIBCO_HOME/as/<version>/samples/readme.md before using the sample
scripts.

The following scripts are available:

l TIBCO_HOME/as/<version>/samples/scripts/as-start defines a simple data grid
and starts its component processes.

l TIBCO_HOME/as/<version>/samples/scripts/as-stop stops those component
processes.

Sample Docker Environment

A sample docker-compose environment is provided to demonstrate how to deploy an
ActiveSpaces data grid in Docker. For more information, see TIBCO_
HOME/as/<version>/samples/docker/README.md.

TIBCO ActiveSpaces® - Enterprise Edition Administration

17 | Development Environment

Sample Kubernetes Environment

A sample Kubernetes manifest file and Helm chart are provided to demonstrate how to
deploy an ActiveSpaces data grid in Kubernetes. For more information, see TIBCO_
HOME/as/<version>/samples/kubernetes/README.md and TIBCO_
HOME/as/<version>/samples/kubernetes-helm/README.md.

Note: The installation environment of ActiveSpaces is referenced as TIBCO_
HOME. For example, on Microsoft Windows, TIBCO_HOME might be C:\tibco.

TIBCO ActiveSpaces® - Enterprise Edition Administration

18 | Building a Docker Image

Building a Docker Image
You can build your own Docker images for ActiveSpaces. You can also build an image that
includes a sample client program.

A script and Dockerfile are available for building Docker images at scripts/build-images
location.

For assistance on building Docker images, see scripts/build-images/README.md.

For examples of how these docker images can be used, see samples/docker,
samples/kubernetes, and samples/kubernetes-helm directories.

Note: The included Dockerfile and script, when used in accordance with the
instructions here, downloads and installs the third-party components to create
Docker images. We recommend that you review the script to identify the
websites from which the components are downloaded to ensure that you
understand which license terms apply to these components, what is required to
comply with those terms, to track their security status, and determine if and
when to update or replace them for security purposes.

For more information about Docker containerization in FTL, see "Docker Containerization
for FTL" in TIBCO FTL® Administration.

TIBCO ActiveSpaces® - Enterprise Edition Administration

19 | Production Environment

Production Environment
To use ActiveSpaces software in a production environment, deploy the following processes.

l Realm service: A realm service is a cluster of TIBCO FTL servers that provide realm
services. If one realm service goes down, any of the other services can take over for it
provided the applications have included them in their pipe-separated connection
URL. For fault tolerance, they must not all be on the same computer. Run either one
TIBCO FTL server, or a group of three or five or seven TIBCO FTL servers.

l State keeper: The minimum production arrangement consists of three state keeper
processes. To ensure high availability during a network partition or hardware failure,
each state keeper process must run on a separate host computer. Not doing so might
result in grid-wide data loss.

At any given time, you must maintain a quorum of running state keepers. To run
more than one state keeper, configure three state keepers and ensure you have at
least two running state keepers.

As the quorum requirements for the realm service and the state keeper are the same,
TIBCO recommends that every TIBCO FTL server must run both a realm service and a
state keeper.

l Administration Daemon or Administration Service: The minimum number of
administration daemons or services is one, but to ensure high availability, you must
configure more. TIBCO recommends using the administration service rather than the
administration daemon. If you use the administration service, configure every
TIBCO FTL server to run an administration service.

l Node: The minimum production arrangement consists of two node processes per
copyset.

Optional. For greater data protection, you can run three nodes per copyset.

TIBCO ActiveSpaces® - Enterprise Edition Administration

20 | Production Environment

Note: Additional copies can become expensive in two ways:

o Increasing the node count by one adds one complete copy of all the
data.

o Every node process must run on a separate host computer. Usually,
this requirement determines the number of host computers that you
must maintain. For example, a data grid with three copysets and two
nodes per copyset requires six nodes, all on separate hosts.
Increasing to three nodes per copyset would require nine nodes, all
on separate hosts.

l Proxy: The minimum production arrangement consists of one proxy process.

Optional. You can run additional proxies to increase the capacity for client programs
and to improve response time. For best results, run proxy processes on a separate
host computer.

l Your application programs: Run processes as appropriate.

Components Sharing a Host Computer

You can reduce the number of host computers in a production environment by running
more than one component per host.

For example, you can run a realm service, a state keeper, a node, and a proxy, all on one
host. (In contrast, do not run two state keepers on the same host.)

For effective fault tolerance, run the nodes of each copyset on separate host computers.

Warning: Combining component processes on a host computer increases the
risk that a single point of failure on the host can disrupt all those processes
simultaneously. Assess the risk tolerance of your enterprise.

TIBCO ActiveSpaces® - Enterprise Edition Administration

21 | String Encoding

String Encoding
To preserve interoperability throughout your enterprise, all strings must use UTF-8
encoding.

l When the TIBCO FTL Java libraries send messages, all strings are automatically UTF-8
encoded.

l C programs must treat strings in inbound messages as UTF-8 encoded strings.

l C programs must send only UTF-8 encoded strings.

l With the Golang API, strings are automatically UTF-8 encoded.

Note: Strings cannot include embedded null characters.

TIBCO ActiveSpaces® - Enterprise Edition Administration

22 | Running Processes as a Service

Running Processes as a Service
The state keeper can run as a service hosted by a TIBCO FTL server. In this model, each
TIBCO FTL server runs one state keeper as a service. These TIBCO FTL servers that are
running ActiveSpaces components as services are called ActiveSpaces Core Servers.

To simplify deployments, you can also replace the administration daemon by an
administration service, hosted by an ActiveSpaces Core Server. Such configuration is
required in deployments that use security.

Although proxies can also be run in an ActiveSpaces Core Server, it is typically better to run
them as standalone processes (outside the ActiveSpaces Core Server). This is because you
might need to scale the number of proxies independently, driven by the number of client
processes that need to connect and the load they impose on their proxy.

To configure an ActiveSpaces Core Server, start with a TIBCO FTL server YAML file and add
the definitions of the grid components that you want the server to host. When the
ActiveSpaces Core Server is configured, it is responsible for starting and stopping the grid
components when it starts up and shuts down. The ActiveSpaces Core Server monitors the
liveness of the grid components that it hosts and attempts to restart a component if it
detects that it is not running. Combining a TIBCO FTL server, a state keeper and an
administration daemon into one ActiveSpaces Core Server reduces the administrative
overhead of running a grid.

Add each grid component to be hosted by an ActiveSpaces Core Server to the
corresponding server item in the servers section of the TIBCO FTL YAML file and the values
that would have been used as command-line parameters. In addition, indicate the location
of the grid component binary file by using the value of the exepath property.

Recommended Minimum Configuration
For a recommended minimum configuration, there are three ActiveSpaces Core Servers and
each server hosts a state keeper and an administration server.

globals:
core.servers:

TIBCO ActiveSpaces® - Enterprise Edition Administration

23 | Running Processes as a Service

SRV1: localhost:8080
SRV2: localhost:8081
SRV3: localhost:8082

servers:
SRV1:
- realm:

data: TIBCO_HOME/activespacesdata/realm_data
- tibdgkeeper:

exepath: /opt/tibco/as/current-version/bin/tibdgkeeper
name: k1
logfile: TIBCO_HOME/activespacesdata/logs/_default-k1.log

- tibdgadminsvc:
exepath: /opt/tibco/as/current-version/bin/tibdgadminsvc
logfile: TIBCO_HOME/activespacesdata/logs/tibdgadminsvc1.log

SRV2:
- realm:

data: TIBCO_HOME/activespacesdata/realm_data
- tibdgkeeper:

exepath: /opt/tibco/as/current-version/bin/tibdgkeeper
name: k2
logfile: TIBCO_HOME/activespacesdata/logs/_default-k2.log

- tibdgadminsvc:
exepath: /opt/tibco/as/current-version/bin/tibdgadminsvc
logfile: TIBCO_HOME/activespacesdata/logs/tibdgadminsvc2.log

SRV3:
- realm:

data: TIBCO_HOME/activespacesdata/realm_data
- tibdgkeeper:

exepath: /opt/tibco/as/current-version/bin/tibdgkeeper
name: k3
logfile: TIBCO_HOME/activespacesdata/logs/_default-k3.log

- tibdgadminsvc:
exepath: /opt/tibco/as/current-version/bin/tibdgadminsvc
logfile: TIBCO_HOME/activespacesdata/logs/tibdgadminsvc3.log

Logging
For all components, the logfile property is optional, and if it is omitted, logs of the
component are merged with the logs of ActiveSpaces Core Server. When the logs are
merged with the logs of ActiveSpaces Core Server, the name of the component is added as
a prefix to the log. Non-log output that a component sends to stderr or stdout always
appears in the ActiveSpaces Core Server logs.

TIBCO ActiveSpaces® - Enterprise Edition Administration

24 | Running Processes as a Service

You can define the logging parameters that are common to all the grid components in the
globals section. For example, to set a maximum log file size for all grid components
hosted by the ActiveSpaces Core Server (and all other TIBCO FTL components hosted by it),
specify the log level only one time.

globals:
core.servers:

SRV1: localhost:8080
SRV2: localhost:8081
SRV3: localhost:8082

max.log.size: 10485760

If a property is defined in both the globals section and the section for a particular
component, the definition from the component section takes precedence.

State Keeper
This topic provides an example of the configuration for a cluster containing three
ActiveSpaces Core Servers that each runs a state keeper.

globals:
core.servers:

SRV1: localhost:8080
SRV2: localhost:8081
SRV3: localhost:8082

servers:
SRV1:
- realm:

data: TIBCO_HOME/activespacesdata/realm_data
- tibdgkeeper:

exepath: /opt/tibco/as/current-version/bin/tibdgkeeper
name: k1
logfile: TIBCO_HOME/activespacesdata/logs/_default-k1.log

SRV2:
- realm:

data: TIBCO_HOME/activespacesdata/realm_data
- tibdgkeeper:

exepath: /opt/tibco/as/current-version/bin/tibdgkeeper
name: k2
logfile: TIBCO_HOME/activespacesdata/logs/_default-k2.log

SRV3:

TIBCO ActiveSpaces® - Enterprise Edition Administration

25 | Running Processes as a Service

- realm:
data: TIBCO_HOME/activespacesdata/realm_data

- tibdgkeeper:
exepath: /opt/tibco/as/current-version/bin/tibdgkeeper
name: k3
logfile: TIBCO_HOME/activespacesdata/logs/_default-k3.log

In this example, the following information is specified for each state keeper:

l The location of the state keeper binary

l The name of the state keeper

l The location where its logs are written

Live Backup and Restore

When you are performing a live backup and restore, add the recovery.file property to
the YAML file of ActiveSpaces Core Servers and start the Core Server before starting the
restore operation, that is before running the following command:

tibdg grid load --rollback

Properties

The following table lists the properties that you can configure for the state keeper when it
is run in an ActiveSpaces Core Server and the equivalent command-line arguments. Other
command-line arguments such as the URL for the realm and any security-related
arguments are not required because the connection to the realm and authentication is
handled by the hosting Core Server.

YAML Property Command-Line Argument Required/Optional

exepath None Required

name --name or -n Required

grid --grid or -g Optional

TIBCO ActiveSpaces® - Enterprise Edition Administration

26 | Running Processes as a Service

YAML Property Command-Line Argument Required/Optional

loglevel --trace or -t Optional

logfile --logfile or -k Optional

max.log.size --max-log-size or -q Optional

max.logs --max-logs or -w Optional

health.server --health-server Optional

recovery.file --recovery-file Optional

Administration Service
Configure the ActiveSpaces Core Servers to run administration services rather than running
standalone tibdgadmind administration daemons. Important points to note:

l Any environment that is using secure transports, except the one using TIBCO FTL-
generated certificates, must run the administration daemon as a service.

l The exepath property must refer to the location of the tibdgadminsvc binary and not
the tibdgadmind binary.

l If one of the Core Servers is running an administration service, all the Core Servers
must run the administration service. It is done to ensure that whenever the realm is
functioning, an administration service is available.

Here is an example of the configuration for a cluster containing three ActiveSpaces Core
Servers that each runs an administration service.

globals:
core.servers:

SRV1: localhost:8080
SRV2: localhost:8081
SRV3: localhost:8082

max.log.size: 10485760

servers:

TIBCO ActiveSpaces® - Enterprise Edition Administration

27 | Running Processes as a Service

SRV1:
- realm:

data: TIBCO_HOME/activespacesdata/realm_data
- tibdgadminsvc:

exepath: /opt/tibco/as/current-version/bin/tibdgadminsvc
logfile: TIBCO_HOME/activespacesdata/logs/tibdgadminsvc1.log

SRV2:
- realm:

data: TIBCO_HOME/activespacesdata/realm_data
- tibdgadminsvc:

exepath: /opt/tibco/as/current-version/bin/tibdgadminsvc
logfile: TIBCO_HOME/activespacesdata/logs/tibdgadminsvc2.log

SRV3:
- realm:

data: TIBCO_HOME/activespacesdata/realm_data
- tibdgadminsvc:

exepath: /opt/tibco/as/current-version/bin/tibdgadminsvc
logfile: TIBCO_HOME/activespacesdata/logs/tibdgadminsvc3.log

In this example, each ActiveSpaces Core Server hosts an administration service, the
max.log.size property is configured globally but each administration service has its own
logfile.

Properties

The following table shows the properties that can be configured for the administration
service and their corresponding tibdgadmind command-line arguments. Other command-
line arguments such as the URL for the realm and any security-related arguments are not
required because the connection to the realm and authentication is handled by the hosting
ActiveSpaces Core Server.

YAML Property Command-Line Argument Required/Optional

exepath None Required

loglevel --trace Optional

logfile --logfile Optional

max.log.size --max-log-size Optional

TIBCO ActiveSpaces® - Enterprise Edition Administration

28 | Running Processes as a Service

YAML Property Command-Line Argument Required/Optional

max.logs --max-logs Optional

http.timeout --http-timeout Optional

Proxy
Proxies are not typically run in ActiveSpaces Core Servers, however, you can run them in
the Core Servers if need be. For development environments, it might be appropriate to
configure an ActiveSpaces Core Server that hosts a state keeper, an administration service,
and a proxy. In such an environment, starting the grid involves starting the ActiveSpaces
Core Server and the node.

The following example provides a simple configuration suitable for a development
environment. In this example, there is one ActiveSpaces Core Server that hosts a state
keeper, an administration service, and a proxy. The only other component that you must
start to create a running grid is a node.

globals:
core.servers:

SRV1: localhost:8080

servers:
SRV1:
- realm:

data: TIBCO_HOME/activespacesdata/realm_data
- tibdgkeeper:

exepath: /opt/tibco/as/current-version/bin/tibdgkeeper
name: k1
logfile: TIBCO_HOME/activespacesdata/logs/_default-k1.log

- tibdgadminsvc:
exepath: /opt/tibco/as/current-version/bin/tibdgadminsvc
logfile: TIBCO_HOME/activespacesdata/logs/tibdgadminsvc.log

- tibdgproxy:
exepath: /opt/tibco/as/current-version/bin/tibdgproxy
name: p1
logfile: TIBCO_HOME/activespacesdata/logs/_default-p1.log

TIBCO ActiveSpaces® - Enterprise Edition Administration

29 | Running Processes as a Service

Properties

The following table lists the properties that you can configure for the administration
service and their corresponding proxy command-line arguments. Other command-line
arguments, such as the URL for the realm and any security-related arguments are not
required because the connection to the realm and authentication is handled by the hosting
ActiveSpaces Core Server.

YAML Property Command-Line Argument Required/Optional

exepath None Required

name --name or -n Required

grid --grid or -g Optional

loglevel --trace or -t Optional

logfile --logfile or -k Optional

max.log.size --max-log-size or -q Optional

max.logs --max-logs or -w Optional

health.server --health-server Optional

external.hostport --external-hostport or -e Optional

TIBCO ActiveSpaces® - Enterprise Edition Administration

30 | Administration Tool

Administration Tool
tibdg is an administrative command-line tool for ActiveSpaces. You can use it to define
data grid components, tables, and indexes; to see the status of data grid components; and
to save and restore the definitions of a data grid.

Usage Help

To see a summary of commands, run the administration tool with the help command:

tibdg help

To see information about a specific command or command area, run the administration
tool with the help command and the command as an argument. For example:

tibdg help copyset

tibdg help table

tibdg help status

Realm Service Interactions

Administration tool commands interact with the realm service:

l Storing definitions in the realm service

l Retrieving definitions from the realm service

l Retrieving status information from the realm service
Every interaction command requires the location of the realm service, either as an
argument or as the value of an environment variable.

TIBCO ActiveSpaces® - Enterprise Edition Administration

31 | Administration Tool

Modes of Operation

You can use the administration tool in two ways:

l Immediate command execution: When you run tibdg, the tool changes the realm
service workspace, and immediately deploys that change to the realm service's
clients (namely, data grid component processes).

This mode is convenient for changes to a running data grid (such as adding a table),
for saving the data grid definition to a file, and for requesting status information
about a running data grid.

l Command script: Alternatively, you can create a command script file containing
several commands. Then tibdg runs that batch of commands, accumulating those
changes in the realm service workspace. Finally, the tool deploys all the workspace
changes to the realm service's clients before exiting.

This mode is convenient for a series of related changes, such as defining a data grid
or creating a table and its columns.

Consider the following two examples, which accomplish the same goal: defining a data
grid. The first example runs five separate command-lines, deploying each change
immediately.

tibdg grid create
tibdg copyset create my_copyset
tibdg node create my_node
tibdg keeper create my_keeper
tibdg proxy create my_proxy

In contrast, the second example consists of five commands in a script file, my_script_
file.tibdg:

grid create
copyset create my_copyset
node create my_node
keeper create my_keeper
proxy create my_proxy

Then it runs the script with one command line, deploying all the changes at the end.

tibdg -s my_script_file.tibdg

TIBCO ActiveSpaces® - Enterprise Edition Administration

32 | Administration Tool

For more information about the realm service and its workspace, see TIBCO FTL®

Administration.

Administration Tool Reference
Administrators use tibdg to configure and monitor a data grid.

Syntax

tibdg [-r realm_service_URL] [-g grid_name] [-c path] [-s path] [-m
message] [Command Command_Args]
[ConfigurationOption=value]

Note:
l If the -r command-line option is not specified, the default realm service

URL of http://localhost:8080 is used.

l If the -g command-line option is not specified, the default grid name of _
default is used. The -g option is ignored for commands that take the grid
name as an argument. For example, grid rebuild <grid name>.

l If the -m command-line option is specified, then the message provided is
included in the TIBCO FTL deployment and is visible on the Deployments
page of the TIBCO FTL UI. This helps you store the purpose of the
deployment.

Command-Line Parameters

See also Environment Variables for the Administration Tool.

Parameter Description

-h

--help

Output help text about tibdg and its command-line parameters.

TIBCO ActiveSpaces® - Enterprise Edition Administration

33 | Administration Tool

Environment Variables for the Administration
Tool
The following environment variables can be used with the tibdg command-line
administrative tool.

Values on the command line override the values of these environment variables.

Environment
Variable

Description

TIBDG_FTL The administration tool contacts the realm service at this URL (host and
port).

TIBDG_PARAM_
FILE

The administration tool reads parameters from this file path.

Values in this file override the tool's default values.

Individual values on the command-line override values in this file.

If this variable is not set, the tool reads the parameters from the file it finds
in either of these two default locations:

l ./.tibdg

l ~/.tibdg

TIBDG_FTL_USER The username and password used to connect to the secure realm service.

TIBDG_FTL_
PASSWD

TIBDG_FTL_
TRUSTFILE

The value of this property is the location of the trust file.

tibdg Status
Run the administrative tool with the status command to view the status of the data grid
components.

The following information is displayed when you run the tibdg status command:

TIBCO ActiveSpaces® - Enterprise Edition Administration

34 | Administration Tool

The PROCESSES section lists the status of the tibdgnode, tibdgkeeper, and tibdgproxy
processes.

The value in the EST SIZE column represents how much data that node has written to the
disk.

Note: EST SIZE is updated infrequently and must be interpreted as an
approximate value.

The REINDEXING section displays information for any table that is being reindexed or is
pending a reindex. If there is no reindexing in progress or pending, this section is not
displayed.

To get a more detailed status from a specific process, include a process type and a process
name when running the status command.

For example:

tibdg node status t1

The following is an example of a tibdg node status:

user@user-mbp:[~/home]:tibdg -r http://users-mbp.na.tibco.com:7715 node
status s1
Node Name: s1
Node ID: 6B97B5D0-EA30-4A63-AD64-781378D5848B
Data Dir: /Users/home/grid1/asnodedb
Copyset Name: set1
Copyset ID: 796878AB-5BE8-4905-B4B3-2FDE19A64292
Running: true (1 instances)
Instance 1:

Host: users-mbp.na.tibco.com
IP: 10.97.128.112

TIBCO ActiveSpaces® - Enterprise Edition Administration

35 | Administration Tool

PID: 31344
Is Primary: true
Active Transactions: 0
Active Requests: 0
Epoch: 0
Live Data Size (est): 0.0B
Reindexing Operations: 0
Redistribution Operations: 0

The following is an example of tibdg proxy status:

user@users-mbp:[~/home]:tibdg -r http://users-mbp.na.tibco.com:7715
proxy status p1
Proxy Name: p1
Proxy ID: 4E50717C-C942-4AD9-876A-F79F688236E1
Running: true (1 instances)
Instance 1:

Host: users-mbp.na.tibco.com
IP: 10.97.128.112
PID: 31335
Clients: 0
Client Ops: 502
Iterators: 0
Statements: 0
Queries: 0
Listeners: 0

The following is an example of tibdg keeper status:

user@users-mbp:[~/home]:tibdg -r http://users-mbp.na.tibco.com:7715
keeper status k1
State Keeper Name: k1
State Keeper ID: E9BFE22A-4271-4279-9007-5A7603BC449E
State Dir: /Users/home/grid1/k1_data
Running: true (1 instances)
Instance 1:

Host: users-mbp.na.tibco.com
IP: 10.97.128.112
PID: 31331
Is Leader: true
Grid Status Vote: true
Primaries: 1

Copyset ID Primary Node
ID

796878AB-5BE8-4905-B4B3-2FDE19A64292 6B97B5D0-

TIBCO ActiveSpaces® - Enterprise Edition Administration

36 | Administration Tool

EA30-4A63-AD64-781378D5848B
Copysets: 1

Copyset ID Epoch
Primary Bins Nodes

796878AB-5BE8-4905-B4B3-2FDE19A64292 0
6B97B5D0-EA30-4A63-AD64-781378D5848B 0-4095 6B97B5D0-EA30-4A63-AD64-
781378D5848B (alive)

tibdg Table Stats
Run the tibdg table stats <table-name> command to view statistics such as row
counts or overall table size for a table and all of its indexes.

The following is an example that shows statistics for a table named t1:

$ tibdg table stats t1
Table 't1' statistics:

Rows: 10 (exact)
Size by Index:

primary: 103.0B (exact)

In this example, t1 contains 10 rows. The (exact) after the row count indicates that this is
an exact count. The table has one index called primary that takes up 103 bytes of space,
which is also exact. The size reported for the primary index is the size of data in all rows in
the table, which includes all the data for the primary index. The size reported for a
secondary index is the additional data size of that index. The total data size for a given
table is the sum of the sizes of all its indexes.

The sizes reported by this command are the sizes of the uncompressed data, so they might
not reflect the disk usage for the table due to other factors such as compression of the
data when it is written to the disk.

If a table or index does not have statistics enabled, the values for row count and sizes are
0, and (off) is displayed next to the values. See Enabling Statistics to set the row_counts
attribute during table or index create to exact.

TIBCO ActiveSpaces® - Enterprise Edition Administration

37 | Administration Tool

tibdg Grid Generate and tibdg Table Generate
The tibdg grid generate command can be used to generate a sequence of commands
that can later be run to create a specific grid configuration. The tibdg table generate
command is similar to the tibdg grid generate command except it only generates the
commands required to create a single table.

When you run the tibdg grid generate command, you are asked a series of questions
regarding the design of the grid. After you have provided the necessary input values, the
command generates the sequence of necessary commands to create that data grid. These
commands can either write output to the console or to a file. Then you can modify the
commands and run them either one at a time or by using the -s option to run all the
commands in a file.

tibdg Grid Generate Example

The following example shows a record using the tibdg grid generate command to
generate the necessary commands to create a grid with five copysets, three nodes per
copyset, three state keepers, five proxies, and two tables:

user:install user$./bin/tibdg grid generate my_grid.tibdg
Enter the number of copysets[1]: 5
Enter the number of nodes per copyset[1]: 3
Enter the number of statekeepers[1]: 3
Enter the number of proxies[1]: 5
Create a table (y|n) [y]: y
Table name: customers
Enter the name and type for column 1 in the primary index (columnName
columnType): cust_id long
Create more columns to be used in the primary index (y|n) [n]: n
Create more columns (y|n) [y]: y
Enter the name and type for the column (columnName columnType): name
string
Create more columns (y|n) [y]:
Enter the name and type for the column (columnName columnType): address
string
Create more columns (y|n) [y]:
Enter the name and type for the column (columnName columnType): phone
long
Create more columns (y|n) [y]: n
Create a secondary index (y|n) [n]: y
Enter index name: phone_index
Columns defined:

1. cust_id
2. name

TIBCO ActiveSpaces® - Enterprise Edition Administration

38 | Administration Tool

3. address
4. phone

Select the ids of the columns in the order that is used in the index (#
#...): 4
Create another secondary index (y|n) [n]:
Create another table (y|n) [n]: y
Table name: orders
Enter the name and type for column 1 in the primary index (columnName
columnType): order_id long
Create more columns to be used in the primary index (y|n) [n]: n
Create more columns (y|n) [y]: y
Enter the name and type for the column (columnName columnType): cust_id
long
Create more columns (y|n) [y]:
Enter the name and type for the column (columnName columnType): date
datetime
Create more columns (y|n) [y]:
Enter the name and type for the column (columnName columnType): value
long
Create more columns (y|n) [y]:
Enter the name and type for the column (columnName columnType):
description string
Create more columns (y|n) [y]: n
Create a secondary index (y|n) [n]: y
Enter index name: cust_index
Columns defined:

1. order_id
2. cust_id
3. date
4. value
5. description

Select the ids of the columns in the order that is used in the index (#
#...): 2
Create another secondary index (y|n) [n]:
Create another table (y|n) [n]:
35 commands written to my_grid.tibdg

This example session would write the following commands to the my_grid.tibdg file:

user:install user$ cat my_grid.tibdg
grid create copyset_size=3
copyset create cs_01
copyset create cs_02
copyset create cs_03
copyset create cs_04
copyset create cs_05
node create --copyset cs_01 --dir ./cs_01.n_1_data cs_01.n_1

TIBCO ActiveSpaces® - Enterprise Edition Administration

39 | Administration Tool

node create --copyset cs_01 --dir ./cs_01.n_2_data cs_01.n_2
node create --copyset cs_01 --dir ./cs_01.n_3_data cs_01.n_3
node create --copyset cs_02 --dir ./cs_02.n_1_data cs_02.n_1
node create --copyset cs_02 --dir ./cs_02.n_2_data cs_02.n_2
node create --copyset cs_02 --dir ./cs_02.n_3_data cs_02.n_3
node create --copyset cs_03 --dir ./cs_03.n_1_data cs_03.n_1
node create --copyset cs_03 --dir ./cs_03.n_2_data cs_03.n_2
node create --copyset cs_03 --dir ./cs_03.n_3_data cs_03.n_3
node create --copyset cs_04 --dir ./cs_04.n_1_data cs_04.n_1
node create --copyset cs_04 --dir ./cs_04.n_2_data cs_04.n_2
node create --copyset cs_04 --dir ./cs_04.n_3_data cs_04.n_3
node create --copyset cs_05 --dir ./cs_05.n_1_data cs_05.n_1
node create --copyset cs_05 --dir ./cs_05.n_2_data cs_05.n_2
node create --copyset cs_05 --dir ./cs_05.n_3_data cs_05.n_3
keeper create k_0
keeper create k_1
keeper create k_2
proxy create p_00
proxy create p_01
proxy create p_02
proxy create p_03
proxy create p_04
table create customers cust_id long
column create customers name string address string phone long
index create customers phone_index phone
table create orders order_id long
column create orders cust_id long date datetime value long description
string
index create orders cust_index cust_id

The tibdg Commands That Support Interaction
Certain tibdg commands, such as tibdg rollback, tibdg gridset remove can result in
the reset of a grid and an inadvertent deletion of all the data within the grid. Therefore,
such commands now require interactive confirmation from the user before they are run. To
run any of these commands in an unattended environment, use the [-f|--force] flag to
run without confirmation.

If you do not specify the [-f|--force] flag, these commands prompt to confirm their
execution. If you specify the [-f|--force] flag, these commands are run by force. The
following commands support interaction by using the [-f|--force] flag:

1. tibdg rollback create

TIBCO ActiveSpaces® - Enterprise Edition Administration

40 | Administration Tool

2. tibdg gridset remove

3. tibdg gridset setPrimary

tibdg rollback create

Creates a rollback record.

Usage:

tibdg rollback create [-f|--force] <checkpoint id>

Example of not using the -f flag:

tibdg --grid myGrid -r http://user-mbp:1234 rollback create A38F799B-
2FC3-A800-B31B-3EDB0247FE9C
Enter yes to confirm rollback create. yes (the "yes" must be typed in by
the user)
Rollback record 2CA87BE5-246D-48A1-9A19-9672A0BDF26A created for
checkpoint A38F799B-2FC3-A800-B31B-3EDB0247FE9C

Example of using the -f flag:

tibdg --grid grid1 -r http://user-mbp:1234 rollback create -f 145B29B0-
73D9-A900-9BDB-177A18B91594
Rollback record F740B3B0-B316-4736-9130-1C7CB049F06B created for
checkpoint 145B29B0-73D9-A900-9BDB-177A18B91594

tibdg gridset remove

Removes a member grid from a gridset.

Usage:

tibdg gridset remove [-f|--force] [-p|--makePrimary] <gridset> <grid>

Example of not using the -f flag:

tibdg --grid grid1 -r http://user-mbp:1234 gridset remove -makePrimary
gridset1 grid2
Enter yes to confirm gridset remove. yes (the "yes" must be typed in by
the user)
Grid grid2 removed from gridset gridset1

Example of using the -f flag:

TIBCO ActiveSpaces® - Enterprise Edition Administration

41 | Administration Tool

tibdg --grid grid1 -r http://user-mbp:1234 gridset remove -f -
makePrimary gridset1 grid2
Grid grid2 removed from gridset gridset1

The gridset remove command has an important change in behavior. In ActiveSpaces 4.0,
gridset remove removed a mirror grid from the gridset, without deleting any of its data.
From ActiveSpaces 4.1.0, the mirror grid removed from the gridset is cleaned of all the
data. Remember that a mirror grid removed from the gridset does not have any data in it
after it is removed.

tibdg gridset setPrimary

Sets the primary grid in a gridset.

Usage:

tibdg gridset setPrimary [-f|--force] <gridset> <grid>

Example of not using the -f flag:

tibdg --grid grid1 -r http://user-mbp:1234 gridset setPrimary gridset1
grid2
Enter yes to confirm gridset setPrimary. yes (the "yes" must be typed in
by the user)
Grid grid2 is now primary for gridset gridset1

Example of using the -f flag:

tibdg --grid grid1 -r http://user-mbp:1234 gridset setPrimary -f
gridset1 grid2
Grid grid2 is now primary for gridset gridset1

Using tibdg grid mode to Put a Data Grid into
Maintenance Mode
The tibdg grid mode command can be used to put a data grid into maintenance mode
that prevents data from being written into your data grid.

TIBCO ActiveSpaces® - Enterprise Edition Administration

42 | Administration Tool

Putting your data grid into maintenance mode can be useful when:

l Performing data grid backups.

l Transitioning primary grids to mirror grids for disaster recovery.

l Performing system software upgrades.

Syntax

tibdg grid mode [-r realm_service_URL] [-g grid_name] grid mode
maintenance|normal

The following operations are allowed in the maintenance mode:

l read operations

Warning: Write operations are not allowed and result in an exception.

In the 'normal' mode, both read and write operations are allowed.

tibdg proxy shed
The tibdg proxy shed command is used to unbind one or more clients from a given proxy
to force them to go through the binding process again. When the clients use the balanced
binding strategy, this command is used to rebalance the clients across the running proxies.

The command has two forms:

tibdg proxy shed <proxy_name> connection <id>

This command notifies a specific client connection to unbind and rebind by using the
configuration that was already configured on the client. The client connection is identified
by the connection id (a number). You can use the tibdg proxy clients <proxy_name>
command to list the clients by their connection id.

The second form notifies a specific number of clients at the proxy to unbind and then
rebind.

TIBCO ActiveSpaces® - Enterprise Edition Administration

43 | Administration Tool

tibdg proxy shed <proxy_name> clients <n>

This command notifies the proxy to disconnect n clients.

For an example of using the shed command with the balanced binding strategy, see Using
the Proxy Shed Command and the Balanced Binding Strategy.

Using the Proxy Shed Command and the Balanced
Binding Strategy
The following example shows how you can use the shed command and the balanced
binding strategy to balance a grid.

Assuming you had three proxies running and there were 20 clients connected to them, all
using the balanced binding strategy. The proxies (P1, P2, P3) might have the following
numbers of clients:

P1: 7 clients

P2: 7 clients

P3: 6 clients

Now you provision a new Proxy, P4, and start it. All the clients remain bound to their
current proxies until either the clients or the proxies restart. Assuming all the clients
impose an equal load on their proxies, the ideal distribution across the proxies would be to
have five clients per proxy. This distribution can be achieved by the following commands:

tibdg proxy shed P1 clients 2
tibdg proxy shed P2 clients 2
tibdg proxy shed P3 clients 1

Note that if you notify a proxy to disconnect from all its clients, it briefly has zero clients
bound to it. Therefore, when the clients attempt to rebind to the proxy, their old proxy
appears to have the lowest load so they rebind back to where they came from. The way to
avoid this binding is to unbind only from the number of clients that you want to move, as
was done in the example above.

TIBCO ActiveSpaces® - Enterprise Edition Administration

44 | Administration Tool

tibdg purge
When tables and indexes are deleted, they are not automatically removed from the grid
configuration. Over time, the data stored for those tables and indexes are deleted by the
nodes but their existence is still recorded in the grid configuration. In environments where
tables and indexes are frequently created and destroyed, the grid configuration can grow
quite large. This results in operations that change the grid configuration taking
progressively longer and longer. The tibdg purge commands are designed to address this
issue.

A table or index can only be purged once all the nodes in all the copysets have deleted the
data for that node or index.

All the nodes in all the copysets must be running for these purge commands to work.

tibdg table purge

The tibdg table purge command removes all the deleted tables and their indexes that
had their data deleted from every node in every copyset.

tibdg index purge

The tibdg index purge command removes all the deleted indexes that had their data
deleted from every node in every copyset. This command does not purge indexes from
deleted tables. To purge those indexes, use the tibdg table purge command.

tibdgadmind
tibdgadmind is an administrative daemon for ActiveSpaces. The SQL ExecuteUpdate
command requires tibdgadmind running in the data grid.

Syntax

tibdgadmind [-r realm_service_URL] [-l listen_URL][--logfile
<file>][--max-log-size <bytes>] [--max-logs <num-files>][--trace
<level>]

By default, tibdgadmind listens on http://localhost:7171.

TIBCO ActiveSpaces® - Enterprise Edition Administration

45 | Administration Tool

If more than one tibdgadmind needs to run on the same host or in a production
environment where processes on other hosts must be able to communicate with the
tibdgadmind, the listen URL must be specified and must be something other than the
default value localhost:7171. The value can be changed by specifying -l listen_URL.

More than one realm service URL can be specified by separating the URLs with the pipe (|)
character when starting the tibdgadmind process.

After connecting to the realm service, tibdgadmind can process requests for table
configuration changes such as creating a table, dropping a table, creating an index, and
deleting an index.

To make table and index configuration updates to your data grid, you must run a realm
service and an active data grid, a tibdgadmind process, and you must use the
ExecuteUpdate API of the tibdgSession object. For more information, see Defining a Table
by Using SQL DDL Commands.

Use the --logfile <file> command-line option to specify a file name or prefix to log to.

Use the --max-log-size <bytes> command-line option to specify the maximum size of a
log file (bytes). This option is ignored if a log file is not set. The default size is
9223372036854775807 bytes.

Use the --max-logs <num-files> command-line option to specify the maximum number
of log files. This option is ignored if a log file is not set. The default size is 1.

Use the --trace <level> command-line option to set the log level. The valid values are
severe, warn, info, or debug. The default value is severe.

Note: The trace command-line option differs slightly from the equivalent option
for the other processes. Also, the other processes have logging modules that
allow for finer control of logging whereas tibdgadmind does not provide finer
control. You can only specify a log level as documented in the --trace level
section.

To provide fault tolerance, multiple tibdgadmind processes can be run.

TIBCO ActiveSpaces® - Enterprise Edition Administration

46 | Administration Tool

Stop the tibdg Daemon
You can stop the tibdg daemon by using the following command:

tibdg -r <URL> -t <adminURL> admind stop

For example, tibdg -r "http://localhost:8280" -t http://localhost:7171 admind
stop.

TIBCO ActiveSpaces® - Enterprise Edition Administration

47 | Designing a Data Grid

Designing a Data Grid
This task guides you through the design decisions that characterize the structure of a data
grid.

Fundamental Decisions

The decisions you make in the following steps define the fundamental characteristics of
the data grid. After completing this task, you cannot change these parameters except by
deleting the data grid definition and starting over again.

As you make these design decisions, record them for later reference.

Procedure
1. Determine the number of copysets in the data grid.

The amount of data that the grid can contain depends on the capacity of the host
computers and the number of copysets.

A single copyset can suffice for prototyping and development.

2. Determine the number of nodes per copyset.

l For development, use one node per copyset.

l For fault tolerance, use two nodes per copyset.

l For stronger fault tolerance protection, use three nodes per copyset.

Each copyset consists of the same number of nodes.

3. Determine the number of state keeper processes.

l For development, use one state keeper process.

l For fault tolerance, use three state keeper processes.

4. Determine the number of proxy processes.

5. Determine unique process names.

Assign a unique name to each component process of the data grid. You can use these
unique names to address the individual processes as you monitor and manage them.

TIBCO ActiveSpaces® - Enterprise Edition Administration

48 | Designing a Data Grid

a. Compose a name for each copyset.

For example, DG.CS-A, DG.CS-B, DG.CS-C.

b. Compose a name for each node, incorporating the copyset name.

For example, DG.CS-A.N1, DG.CS-A.N2.

c. Compose a name for each state keeper process.

For example, DG.SK-1, DG.SK-2, DG.SK-3.

d. Compose a name for each proxy process.

For example, DG.PX-1, DG.PX-2, DG.PX-3.

What to do next
Starting a Realm Service

TIBCO ActiveSpaces® - Enterprise Edition Administration

49 | Starting a Realm Service

Starting a Realm Service
Each ActiveSpaces data grid depends on a TIBCO FTL realm service to supply configuration
data to its components. The realm service is a process that is run by the TIBCO FTL server.
The TIBCO FTL server can also be configured to run the state keeper, administration
service, and proxy. When it is configured in this way, it is called an ActiveSpaces Core
Server.

Dedicate a separate realm for each data grid. If your application programs also use TIBCO
FTL communications, arrange a separate realm for them. Run either one TIBCO FTL server
or an ActiveSpaces Core Server, or a group of three or five or seven TIBCO FTL servers or
core servers.

If you choose to run some ActiveSpaces components as services, follow the instructions in
the Starting a Core Server section. Else, follow the instructions in the Starting a TIBCO FTL
Server section.

Starting a Core Server

Before you begin
TIBCO FTL and ActiveSpaces software must already be installed on all computers hosting a
realm service. Complete the steps mentioned in Designing a Data Grid.

Procedure
1. Create a YAML configuration file as described in the Running Processes as a Service

section. Use the component names that you decided in the Designing a Data Grid
section.

2. Copy the YAML configuration file to the TIBCO_HOME/activespacesdata directory on
all the computers where the core server runs.

3. Start each core server from the TIBCO_HOME/activespacesdata directory by running
the following command:

tibftlserver -c <yaml_config_file> -n <server_name>

TIBCO ActiveSpaces® - Enterprise Edition Administration

50 | Starting a Realm Service

where

<server_name> is a unique name for the core server as defined in the YAML file, for
example, SRV1.

Starting a TIBCO FTL Server

Before you begin
TIBCO FTL software must already be installed on all computers hosting a realm service.

Procedure
1. Navigate to the realm configuration data directory.

cd my_data_dir_1

The realm service uses the current directory as the default location to store its
working data files.

l The first time you start a realm service for a data grid, navigate to an empty
directory. When the realm service detects an empty working directory, it begins
with a default realm definition. As you configure the realm definition, in
subsequent tasks, the realm service stores that definition in its data directory.

l If you have already begun to configure the realm definition, then navigate to the
same data directory. The realm service reads the realm definition from the
working directory.

2. Run the realm service executable.

tibftlserver -n <name>@<host>:<port>

where

<name> is a unique name for the TIBCO FTL server, for example, ftl1.

The port must not be bound by any other process.

ActiveSpaces component processes initiate contact with the realm service at this
address.

TIBCO ActiveSpaces® - Enterprise Edition Administration

51 | Starting a Realm Service

Note: Application programs must supply this realm service URL (host:port)
to the data grid connect call.

TIBCO ActiveSpaces® - Enterprise Edition Administration

52 | Defining a Data Grid

Defining a Data Grid
To define and configure a data grid, complete the steps in this task.

This task implements decisions about the structure of your data grid, creating a data grid
definition within a TIBCO FTL realm service. The realm service delivers the information to
the component processes of the data grid and your application processes that use the grid.

The examples in these steps illustrate adding commands to a configuration script. When
the script is complete, the administration tool executes the script to define the data grid.

Alternatively, you can execute each step immediately as a separate administration tool
command, instead of accumulating them in a script.
You have already completed the task Designing a Data Grid. This task refers to decisions
you recorded during that task.

Before you begin
A realm service must be running and reachable.

Procedure
1. In a text editor, begin editing a script file.

Follow the convention of naming your script with the .tibdg file name extension.

2. Add a script command to create the data grid by using the syntax: grid create
[option=value]... [<grid_name>]. For example:

grid create statekeeper_count=1 copyset_size=1 mydevgrid

Note: For more information on grid create option, see Grid Create
Configuration Options.

You can run the following command for a list of all the options for the grid create
script command:

TIBCO ActiveSpaces® - Enterprise Edition Administration

53 | Defining a Data Grid

tibdg help grid create

Define the Component Processes of the Data Grid
3. For each copyset, add a script command to create that copyset. For example:

copyset create copyset_name

4. For each node, add a script command to create that node. For example:

node create --copyset copyset_name node_name

By default, the node's data directory is created at the <grid_name>/<process_name>_
data . However, you can also specify the custom data directory path by using -d
option. For example:

node create [(-d|-dir) dir_name] (-cs|-copyset) copyset_name node_name

5. For each state keeper, add a script command to create that state keeper. For
example:

keeper create keeper_name

By default, the state keeper's data directory is created at the <grid_name>/<process_
name>_data directory. However, you can also specify the custom data directory path
by using -d option. For example:

keeper create [(-d|-dir) dir_name] keeper_name

6. For each proxy, add a script command to create that proxy. For example:

proxy create proxy_name

7. Optional. Run the script to create the data grid.

Alternatively, you might postpone this step until you have defined the tables of the
data base (see the task Defining a Table).

tibdg -s script_file_path -r http://<host>:<port>>

TIBCO ActiveSpaces® - Enterprise Edition Administration

54 | Defining a Data Grid

where <host> and <port> refer to the realm service URL.

What to do next
Starting the Data Grid Processes

Grid Create Configuration Options
The following configuration options can be used with the tibdg grid create command.

Warning: Properties that affect only a specific process type might only require
restarting of that process type, but in general TIBCO recommends that you
restart a grid whenever you update a property. For example, updating a proxy
property does not require restarting a grid. In this case, it would suffice to
restart only the proxy.

Option Description Default Value Valid Values

checkpoint_
interval

The interval, in seconds, between
periodic checkpoints. The default
value of 0.0 seconds disables
periodic checkpoints.

Warning: Checkpoints require
additional space on disk, so care
must be taken to avoid taking
checkpoints frequently, as this
can lead to a rapid increase in
disk usage.

0.0

checkpoint_
list_
compression

Enabling this option causes a
reduction in the size of the list of
checkpoint-related metadata
written to disk by the state keepers
and nodes. By default, this option is
enabled for new grids and requires
no change in checkpoint recovery

enabled enabled

disabled

TIBCO ActiveSpaces® - Enterprise Edition Administration

55 | Defining a Data Grid

Option Description Default Value Valid Values

procedures.

For existing grids that are
upgrading to this version, this
feature is not enabled by default.
To use this feature on existing grids,
an administrator must first make
sure that all the grid processes have
been upgraded. After all the grid
processes are upgraded, run the
following command:

tibdg grid modify
checkpoint_list_
compression=enabled

You do not need to restart the grid
processes to see this change.

Only checkpoints taken after this
property is modified apply
compression to the metadata.

checkpoint_
retention_
limit

The number of checkpoints (manual
and periodic) to keep at a time.
When the total number of
checkpoints (manual and periodic)
on disk exceeds the value of
checkpoint_retention_limit, the
oldest checkpoint is deleted.

The default value of 0 indicates that
all checkpoints must be kept. To
determine the proper setting for
this option, multiply the
checkpoint_retention_limit by
the checkpoint_interval. This
value indicates the duration (in

0 Minimum: 0

TIBCO ActiveSpaces® - Enterprise Edition Administration

56 | Defining a Data Grid

Option Description Default Value Valid Values

seconds) for a checkpoint is
retained. This option must typically
be set to a small number to avoid
excessive disk usage.

client_req_
timeout

The time (in seconds) the client API
synchronously waits for completion
of a request (such as GET or PUT
operation), before timing out.

5.0 Minimum: 0.0

compaction A value less than six indicates more
emphasis on performance and less
on the compaction of the disk
space.

Conversely, a higher value indicates
more emphasis on the compaction
of the disk space than performance.

7 Minimum: 1

Maximum: 10

consistent_
query_limit

The maximum number of iterators
and statements (queries) that a
node can handle concurrently.

64 Minimum: 1

copyset_size The number of nodes in a copyset. 2 Minimum: 1

encrypted_
connections

Specifies which connections in the
data grid get encrypted.

none all or none

expiration_
scanner_max_
rows

Determines the maximum number
of rows that are expired each time a
table is scanned for expired rows.

1000000 Minimum: 1

expiration_
scanner_wakeup

Determines how frequently the
leader of each copyset scans a table
for rows to expire. The unit of
measurement is in seconds.

5 Minimum: 1

TIBCO ActiveSpaces® - Enterprise Edition Administration

57 | Defining a Data Grid

Option Description Default Value Valid Values

full_table_
delete

Defines the behavior when a SQL
DELETE statement is created which
does not contain a WHERE clause.
Execution of a SQL DELETE
statement without a WHERE clause
deletes all rows of a table. This
option takes one of the following
values:

l warn (default): A warning is
logged by the proxy when a
SQL DELETE statement
without a WHERE clause is
created. All rows of any user
tables in the grid can be
deleted.

l enabled: A debug message is
logged by the proxy when a
SQL DELETE statement
without a WHERE clause is
created. All rows of any user
tables in the grid can be
deleted.

l disabled: Prevents creation
of any SQL DELETE statement
that does not contain a
WHERE clause.

warn warn

enabled

disabled

TIBCO ActiveSpaces® - Enterprise Edition Administration

58 | Defining a Data Grid

Option Description Default Value Valid Values

Note: The full_table_
scans=disabled setting prevents
running of a SQL DELETE
statement without a WHERE
clause, regardless of the setting
for full_table_delete. The
setting also prevents the
execution of a SQL DELETE
statement with a WHERE clause
when an index cannot be found
for the columns in the WHERE
clause.

full_table_
scans

Defines the behavior when
processing a query that requires a
full table scan. This option takes
one of the following values:

l warn (default): A warning is
logged when a query
performs a full table scan.

l enabled: Logs a debug
message when a query
performs a full table scan.
The behavior of this option is
similar to that in the previous
versions of ActiveSpaces.

l disabled: Prevents a query
from running a full table
scan. An exception is
generated if queries try to
perform a full table scan.

warn warn

enabled

disabled

TIBCO ActiveSpaces® - Enterprise Edition Administration

59 | Defining a Data Grid

Option Description Default Value Valid Values

Note: The full_table_
scans=disabled setting prevents
the execution of SQL DELETE
and UPDATE statements without
a WHERE clause. The setting also
prevents the execution of SQL
DELETE and UPDATE statements
with a WHERE clause when an
index cannot be found for the
columns in the WHERE clause.

grid_internal_
subnet_mask

See Configure Internal Subnet
Masks.

none See
Configure Internal

Subnet Masks.

iter_
inactivity_
timeout

The time, in seconds, taken by the
proxy to wait for the next client
request on a table iterator or
statement query before
automatically closing the table
iterator or statement query.

600.0 Minimum: 0.0

minimum_
replication_
factor

The minimum number of nodes
(including the primary and any
secondary nodes) in a copyset that
must be in the Alive state before
WRITE operations are allowed.

1 Minimum: 1

mirroring_max_
batch_size_
rows

The maximum rows in a batch that
is mirrored collectively to the mirror
grid. This size must be an integer
>=1. It can typically be left at the
default value unless transport loss
is seen during mirroring operations.
If transport loss is experienced
during mirroring, this value must be
reduced.

256

TIBCO ActiveSpaces® - Enterprise Edition Administration

60 | Defining a Data Grid

Option Description Default Value Valid Values

mirroring_
interval

The default mirroring interval (in
seconds). This option determines
how frequently a mirror grid checks
for new checkpoints to be mirrored.
Setting this option to 0 disables
mirroring.

30.0

node_detailed_
stats_
collection

Retrieves detailed statistics of a
node configuration. The option can
take one of the following values:
enabled or disabled.

When this option is enabled, the
nodes enable extra statistics
collection around all disk
operations. The statistics can be
retrieved by using the tibdg node
status command. Additionally,
these statistics are logged to the
node log at the status:verbose
level once every 60 seconds.
Enabling node_detailed_stats_
collection results in a 5-10%
performance penalty. node_
detailed_stats_collection is
disabled by default.

disabled enabled

disabled

node_read_
cache_size

Every node stores a read cache that
holds uncompressed blocks of data
in memory. The size of a read cache
is specified in bytes.
There are some memory usage

considerations to be made when
using this option. For details, see
Memory Usage Considerations with
the node_read_cache_size Option.

1073741824
(1 gigabyte)

Minimum: 0

Maximum:
92233720368547
75806 (LLONG_MAX
- 1)

TIBCO ActiveSpaces® - Enterprise Edition Administration

61 | Defining a Data Grid

Option Description Default Value Valid Values

node_storage_
timeout

The time (in seconds) a node waits
for a successful response from a
READ or WRITE operation to
complete before timing it out.

60 Minimum: 0

permissions You can enable or disable
permissions on tables in a data grid
to control who has access to the
data in the tables. For details, see
Grid and Table Permissions.

disabled enabled

disabled

proxy_
checkpoint_
cache_size

See Caching Proxy Rows by Using
Checkpoints.

0 Minimum: 0

proxy_client_
listen_
external_host

The host name or the IP address
that external clients connect to
when attempting to reach a proxy.
See Configuration Options when the
Proxy and Client are on Different
Subnets.

none

proxy_client_
listen_
external_port

This is the default port that external
clients connect to when attempting
to reach a proxy. See Configuration
Options when the Proxy and Client
are on Different Subnets.

none

proxy_client_
listen_subnet_
mask

See Configure Network Interfaces none See Configure
Network
Interfaces.

proxy_client_
listen_port

See Configure Ports. none See Configure
Ports.

statekeeper_
count

The number of state keeper
processes that are expected to be

3 Minimum: 1

TIBCO ActiveSpaces® - Enterprise Edition Administration

62 | Defining a Data Grid

Option Description Default Value Valid Values

run.

Due to the requirement that state
keepers must be run in a quorum,
the supported values are 1, 3, 5, 7,
and 9.

Memory Usage Considerations with the node_read_
cache_size Option
The tibdg grid create command comes with the node_read_cache_size option. This
property governs the size of the read cache allotted to a node.

Here are some memory usage considerations when you are assigning a size to the read
cache:

l If the RAM on a node's host exceeds the amount of data persisted by the node,
increasing the node_read_cache_size value to match the size of the uncompressed
data set yields an improved random read performance.

l If the data set is larger than the host's RAM, increasing the node_read_cache_size
value can negatively affect the random read performance. In such instances, the read
cache of the application comes at the expense of the page cache of the operating
system.

l If the value of node_read_cache_size is a significant percentage of the host RAM, the
operating system must be configured to prevent swapping of the node application
for optimal performance. Example:

o On Linux, you might have to reduce the value of /proc/sys/vm/swappiness or
disable swap.

o In Docker, you can modify the --memory-swappiness run parameter to prevent
swapping.

TIBCO ActiveSpaces® - Enterprise Edition Administration

63 | Defining a Data Grid

Configuration Options to Use Specific Ports and
Network Interfaces
ActiveSpaces uses TIBCO FTL internally to aid in connecting the different ActiveSpaces
processes so that they can communicate over the network. In certain cases, you can
specify additional configuration information when initially setting up the data grid
processes to help influence what ports and network interfaces must be chosen when the
processes are started.

For example, an ActiveSpaces client application might connect to an ActiveSpaces
tibdgproxy that is running on a server, which has a firewall. In that case, a network
administrator might open a specific port or ports in the firewall so that the TCP
connections can be made to the tibdgproxy running behind the firewall. After the
tibdgproxy is started, it reads from its data grid configuration what port it must bind to
when listening for incoming TCP connections to ensure that traffic can pass through the
firewall.

Configure Ports
Regarding ports, the configuration option proxy_client_listen_port can be specified
when creating a grid or proxy. This is the port that a proxy binds to when listening for
incoming TCP connections. When specified at the grid level, all proxies inherit this value
and listen for clients on this port.

For example:

grid create copyset_size=1 proxy_client_listen_port=8890
proxy create p1

This works as long as there is only one proxy running on each computer. If two proxies are
started on the same computer and both try to bind to port 8890, the second proxy fails to
start due to an error. To avoid this, override the configuration option at the proxy level
when creating a specific proxy to override the listen port specified at the grid level.

For example, in the following grid configuration, p1 inherits and listens on port 8890, p2
overrides its listen port with the specified port 8891, and both proxies can run on the same
computer:

TIBCO ActiveSpaces® - Enterprise Edition Administration

64 | Defining a Data Grid

proxy create proxy_client_listen_port=8891 p2

Configuration Options when the Proxy and Client
are on Different Subnets
When the realm service and proxy are running on a subnet that is different from the one on
which the client application is running, the proxy might need additional configuration. This
is a requirement when you are dealing with a Network Address Translation (NAT) setup as
is common with cloud environments or Docker.

For example, if the realm service and proxy are on the subnet 10.0.75.0/24 and the
ActiveSpaces client application is on the subnet 192.168.1.0/24, the client application
often cannot route to the 10.0.75.0/24 subnet (the proxy's subnet). In such a situation, in
addition to proxy_client_listen_port, configure the proxy_client_listen_external_
host option.

If the port that the proxy is listening on is mapped to a different external port, use proxy_
client_listen_external_port to specify the correct external port.

Note: If you are in a dynamic environment, use the -e <ip:port> command-line
parameter when you run the tibdgproxy process. For more information, see
Starting a Proxy with an External Host and Port.

Configuring a Proxy That Can Be Accessed from Different
Subnets
The Network Address Translation (NAT) is possible with the use of the options, proxy_
client_listen_external_host and proxy_client_listen_external_port.
The steps to configure the external host and port differ based on your environment. Treat
this procedure as a general guideline to help client applications connect to a proxy.

Procedure
1. Set proxy_client_listen_port to the internal port for the proxy.

2. Determine the external host IP address that a client can use to connect to the proxy.

TIBCO ActiveSpaces® - Enterprise Edition Administration

65 | Defining a Data Grid

a. Set proxy_client_listen_external_host to this external host IP address.

3. Determine if the internal port to which the proxy is listening is the same as the one
that is exposed externally.

Note: If a different port is exposed externally, you must set up port
forwarding outside of ActiveSpaces to map the external port to the
internal port.

a. If the external port is different from the internal port, set proxy_client_
listen_external_port to the external value.

Note: If you are in a dynamic environment, use the command-line
parameter -e <ip:port> when you run the tibdgproxy process. For more
information, see Starting a Proxy with an External Host and Port.

An Example of Creating a Proxy That Can Be Accessed from a
Different Subnet

tibdg -r http://localhost:8080 proxy create proxy_client_listen_
port=8999
proxy_client_listen_external_host=192.168.1.136 p2

An Example of Creating a Proxy with an External Port

tibdg -r http://localhost:8080 proxy create proxy_client_listen_
port=8999
proxy_client_listen_external_host=192.168.1.136 proxy_client_listen_
external_port=7999 p2

In this example, when the client application attempts to connect, it first connects to the
realm service (which needs ports 8080 and 8083 opened or forwarded). The realm service
notifies the client about the proxies that are running and includes the external host and
port (if configured) so that the client can connect to the proxy that is on a different subnet.
For the connection to succeed, the administrator must set up port forwarding correctly. In
Docker, this might be with the -p 8999:8999 syntax or -p 7999:8999 to forward a port
on the host to a port in a specific container.

TIBCO ActiveSpaces® - Enterprise Edition Administration

66 | Defining a Data Grid

Configure Network Interfaces
You can use the configuration option proxy_client_listen_subnet_mask to configure
network interfaces. This can be specified at both the grid and proxy level to control which
network interface the proxy binds to when listening for connections from clients.

If a computer has multiple network interfaces, a specific subnet mask can be provided in a
standard CIDR notation to control which interface must be selected. When specified at the
grid level, all proxies inherit this value and attempt to use the specified subnet mask.

For example, in the following grid configuration, all proxies attempt to use the subnet
mask 10.0.1.0/24:

grid create copyset_size=1 proxy_client_listen_subnet_mask=10.0.1.0/24
proxy create p3

To override this value for a specific proxy, it can also be specified at the proxy level. The
options for proxy ports and proxy listen subnet masks can be combined at both the grid
and proxy level.

For example:

proxy create proxy_client_listen_subnet_mask=10.0.2.0/24 p4
proxy create proxy_client_listen_subnet_mask=10.0.2.0/24 proxy_client_
listen_port=8892 p5

Configure Internal Subnet Masks
For internal communication between the ActiveSpaces server processes (tibdgproxy,
tibdgnode, and tibdgkeeper), you can specify the subnet mask to be used for this internal
communication between server processes by using the configuration option grid_
internal_subnet_mask. This option is different from the other configuration options
described because it does not influence the client-to-proxy communication. It can also only
be specified at the grid level.

For example:

grid create copyset_size=1 grid_internal_subnet_mask=10.0.10.0/24

TIBCO ActiveSpaces® - Enterprise Edition Administration

67 | Defining a Data Grid

Setting this configuration option causes all communication between proxy, node, and state
keeper processes to occur on the specified interface. This option can also be combined
with the two proxy configuration options proxy_client_listen_subnet_mask and proxy_
client_listen_port.

The following is an example of specifying all three options at the grid level:

grid create copyset_size=1 proxy_client_listen_subnet_mask=10.0.1.0/24
proxy_client_listen_port=8890 grid_internal_subnet_mask=10.0.10.0/24

TIBCO ActiveSpaces® - Enterprise Edition Administration

68 | Starting the Data Grid Processes

Starting the Data Grid Processes
To start the data grid, start its component processes in this order.

For details, see the "Sample Scripts" section in Development Environment.

Before you begin
l The realm service must be running and reachable.

l The data grid components must be defined.

l It is not required to define your tables before starting the data grid processes.
However, your tables must be defined before they can be used by a client
application.

Procedure
1. Start the state keeper processes.

See Starting a State Keeper.

2. Start the node processes.

See Starting a Node.

3. Start the proxy processes.

See Starting a Proxy.

Result
The data grid is ready to use. You can start application processes.

Component Command-Line Parameters
All three executable components -- state keeper, node, and proxy -- accept the same set of
command-line parameters, as documented here.

TIBCO ActiveSpaces® - Enterprise Edition Administration

69 | Starting the Data Grid Processes

Parameter Description

-n name

--name name

Required. Process name.

Supply one of the names you assigned in Defining a Data
Grid.

-r realm_service_URL

-rs realm_service_URL

--realmserver realm_service_
URL

Required. Realm service location.

Supply the realm service URL in the form
http://host:port. Use the values of host and port that
you supplied as the -n arguments in Starting a Realm
Service. If running a secure realm service, use https
instead of http.

When you are running a cluster of FTL servers, the realm_
service_URL can be a list of URLs separated by a | (pipe)
character. For example:

-r realm_service1_URL [| realm_service2_URL
[| realm_service3_URL]]

-g name

--grid name

Optional.

Required when a data grid has been configured with a
name. The name of the data grid as specified in Defining
a Data Grid.

-k file_name

--logfile filename

Optional. Setting this parameter enables rotating log files
that start with the specified filename as the prefix.

-q integer

--max-log-size integer

Optional. Specify the maximum size of a single log file
before rotating.

-w integer

--max-logs integer

Optional. Specify the maximum number of log files to
keep. The default is 1.

Controlling Data Grid Access

Access to tables in the data grid can be controlled by setting permissions on tables.

TIBCO ActiveSpaces® - Enterprise Edition Administration

70 | Starting the Data Grid Processes

For more information about starting data grid processes when table permissions are used,
see Grid and Table Permissions.

TIBCO ActiveSpaces® - Enterprise Edition Administration

71 | Starting a State Keeper

Starting a State Keeper
Start state keeper processes first, because all other ActiveSpaces component processes
depend on them. If you have configured ActiveSpaces Core Servers to host the state
keepers, you can skip this section because the Core Server manages the lifecycle of the
state keeper it is hosting.

Before you begin
l The realm service must be running and reachable.

l The data grid definition in the realm service must be complete and valid.

l When permissions are enabled on the data grid, a user with the tibdg-internal role
must be used to run the state keeper. For more information about table permissions,
see Grid and Table Permissions. For more information about roles, see ActiveSpaces
Custom Roles.

Procedure
1. Start the state keeper process.

tibdgkeeper -n name -r realm_service_URL [-g grid_name]

2. Repeat the previous step for all the state keeper names assigned in the data grid
definition.

3. Verify that the state keeper processes are ready.

Check the status by using the administration tool.

Keeper Reference
Administrators use tibdgkeeper to start a keeper process.

TIBCO ActiveSpaces® - Enterprise Edition Administration

72 | Starting a State Keeper

Syntax

tibdgkeeper -n name -r realm_service_URL [| realm_service_URL][-g grid_name]

For more information, see Component Command-Line Parameters.

TIBCO ActiveSpaces® - Enterprise Edition Administration

73 | Starting a Node

Starting a Node
Start the node processes that implement the copysets.

Before you begin
l The realm service must be running and reachable.

l The data grid definition in the realm service must be complete and valid.

l The state keeper must be running and reachable.

l When permissions are enabled on the data grid, a user with the tibdg-internal role
must be used to run the node. For more information about table permissions, see
Grid and Table Permissions. For more information about roles, see ActiveSpaces
Custom Roles.

Procedure
1. Start the node process.

tibdgnode -n name -r realm-service_URL [-g grid_name]

2. Verify that the node process is synchronized and ready.

If the number of nodes per copyset is greater than one, and the node you have
started is not the primary node, then wait for the node to synchronize with the
primary.

To verify synchronization, check the status by using the administration tool.

For the fastest and most efficient start sequence, it is important to start only one
node process at a time, and wait for it to synchronize before starting the next node
process.

3. Repeat the previous steps for all the node names assigned in the data grid definition.

4. Verify communication.

If the number of nodes per copyset is greater than one, verify that the node
processes within each copyset can communicate with one another.

One of the nodes reports in its console output that it is active.

TIBCO ActiveSpaces® - Enterprise Edition Administration

74 | Starting a Node

Node Reference
Administrators use tibdgnode to start a node.

Syntax

tibdgnode -n name -r realm_service_URL [| realm_service_URL][-g grid_name]

For more information, see Component Command-Line Parameters.

Starting Multiple Nodes
There are several use cases for using multiple nodes.

l Additional nodes are created with the goal of scaling horizontally.

For example, if you have three copysets, start the components in the following
sequence:

tibrealmserver
tibdg -r http://localhost:8080 -s /<path>/three_copysets.tibdg
tibdgkeeper -r http://localhost:8080 -n k1
tibdgproxy -r http://localhost:8080 -n p1
tibdgnode -r http://localhost:8080 -n s1
tibdgnode -r http://localhost:8080 -n s2
tibdgnode -r http://localhost:8080 -n s3

Here <path> refers to the location where three_copysets.tibdg is stored. For a
sample script, see three_copysets.tibdg.

l Nodes are created as replicas of the copysets.

For example, if you have one copyset and two replicas, start the components in the
following sequence:

tibrealmserver
tibdg -r http://localhost:8080 -s /<path>/one_copyset_two_
replicas.tibdg

TIBCO ActiveSpaces® - Enterprise Edition Administration

75 | Starting a Node

tibdgkeeper -r http://localhost:8080 -n k1
tibdgproxy -r http://localhost:8080 -n p1
tibdgnode -r http://localhost:8080 -n s1
tibdgnode -r http://localhost:8080 -n s2

Here <path> refers to the location where one_copyset_two_replicas.tibdg is stored.
For a sample script, see one_copyset_two_replicas.tibdg.

Note: The sample scripts three_copysets.tibdg and one_copyset_two_
replicas.tibdg create nodes and state keepers by using the --dir option, for
example:

node create --copyset set1 --dir ./s1_data s1
statekeeper create --dir ./k1_data k1

Note: The nodes store the data that applications put in the data grid in the s1_
data folder and the state keeper stores state information about the primary and
secondary nodes in the k1_data folder.

three_copysets.tibdg

Data grid where each copyset has 1 replica
grid create copyset_size=1

table create t1 key long
column create t1 col2 string col3 opaque

copyset create set1
copyset create set2
copyset create set3
node create --copyset set1 --dir ./s1_data s1
node create --copyset set2 --dir ./s2_data s2
node create --copyset set3 --dir ./s3_data s3

statekeeper create --dir ./k1_data k1

TIBCO ActiveSpaces® - Enterprise Edition Administration

76 | Starting a Node

proxy create p1

Show results
status
table list
copyset list

one_copyset_two_replicas.tibdg

Data grid where each copyset has 2 replicas
grid create copyset_size=2

table create t1 key long
column create t1 col2 string col3 opaque

copyset create set1
node create --copyset set1 --dir ./s1_data s1
node create --copyset set1 --dir ./s2_data s2
statekeeper create --dir ./k1_data k1
proxy create p1

Show results
status
table list
copyset list

TIBCO ActiveSpaces® - Enterprise Edition Administration

77 | Starting a Proxy

Starting a Proxy
Start the proxy processes that mediate between application processes and the data grid. If
you have configured ActiveSpaces Core Servers to host the proxies, you can skip this
section because the Core Server manages the lifecyle of the proxy is it hosting.

Before you begin
l The realm service must be running and reachable.

l The data grid definition in the realm service must be complete and valid.

l The state keeper must be running and reachable.

l At least one node of each copyset must be running and reachable.

l When permissions are enabled on the data grid, a user with the tibdg-internal role
must be used to run the proxy. For more information about table permissions, see
Grid and Table Permissions. For more information about roles, see ActiveSpaces
Custom Roles.

Procedure
1. Start the proxy process.

tibdgproxy -n name -r realm_service_URL [-g grid_name]

The proxy process name is required. Supply one of the proxy names you assigned in
Defining a Data Grid.

2. Verify whether the proxy process is ready by checking the status by using the
administration tool.

3. Repeat the previous steps for all the proxy names assigned in the data grid definition.

What to do next
The data grid is ready to support data operations. You can start application program
processes.

TIBCO ActiveSpaces® - Enterprise Edition Administration

78 | Starting a Proxy

Proxy Reference
Administrators use tibdgproxy to start a proxy.

Syntax

tibdgproxy -n name -r realm_service_URL [| realm_service_URL][-g grid_name]

For more information, see Component Command-Line Parameters.

Starting a Proxy with an External Host and Port
When the realm service and proxy are running on a subnet that is different from the one on
which the client application is running, you must configure the external host and port
settings in the configuration file.
You can use a command-line parameter with the tibdgproxy process to specify the
external host and port. The -e option followed by the IP address and the port number
helps the client reach the proxy on a different subnet. If you specify the command-line
option, it overrides the values set for proxy_client_listen_external_host and proxy_
client_listen_external_port in the configuration file. For more information about
setting proxy_client_listen_external_host and proxy_client_listen_external_port,
see Configuration Options when the Proxy and Client are on Different Subnets.

Before you begin
l The following components must be running and reachable:

o The realm service

o The state keeper

o At least one node of each copyset

l The data grid definition in the realm service must be complete and valid.

Procedure
1. Start the proxy process.

TIBCO ActiveSpaces® - Enterprise Edition Administration

79 | Starting a Proxy

tibdgproxy -n name -r realm_service_URL -e External IP Address:Port

The name of the proxy process is required. Supply one of the proxy names you
assigned in Defining a Data Grid. The URL of the realm service is required. If the client
is trying to reach a proxy on a different subnet, provide the -e option followed by the
IP address and the port number. Here is an example to start the proxy and set the
external host and port:

tibdgproxy -r http://localhost:8080 -e "192.168.1.136:7999" -n p3

Warning: The command overrides any configuration value that is already
defined for this proxy.

If the proxy is on one of several known external IP addresses, use a semicolon-
separated list of IP addresses in the command-line parameter. Also, see the docker-
compose file in the TIBCO_HOME/as/<version>/samples/docker folder for an example
on using different proxy configuration options that allow client applications on the
host to communicate with a proxy running in a docker container.

2. Verify whether the proxy process is ready by checking the status by using the
administration tool.

3. Repeat the previous steps for all the proxy names assigned in the data grid definition.

What to do next
The data grid is ready to support data operations. You can start application program
processes.

TIBCO ActiveSpaces® - Enterprise Edition Administration

80 | Methods of Selecting a Proxy for a Client

Methods of Selecting a Proxy for a Client
ActiveSpaces client communication with the data grid always goes through an
ActiveSpaces proxy (tibdgproxy). When multiple proxies exist in a data grid, you might
want to control the proxy to which your clients connect. The following methods are
available to select a proxy for a client:

l Random binding strategy

l Named binding strategy

l Balanced binding strategy

l Random pattern binding strategy

l Balanced pattern binding strategy

By default, the random binding strategy is used. If you want more control over proxy
selection, use the named binding strategy. To balance the available client connections
across the number of proxies, use the balanced binding strategy. Use the pattern binding
strategies to filter proxies by using a regular expression before binding.

Random Binding Strategy

By default, the random binding strategy is used to select a proxy for a client connection.
Here, a proxy is chosen at random from the proxies that respond when the client first
connects to the data grid. By default, the client connection waits for the CONNECT_WAIT_
TIME to expire before selecting a proxy. Use the early cutoff property to notify the client
connection to wait only until a certain number of proxy responses are received. Using this
property reduces the amount of time taken for the client to establish a connection with the
data grid.

In this method, specify the following properties:

TIBDG_CONNECTION_PROPERTY_LONG_BINDSTRATEGY = TIBDG_CONNECTION_
BINDSTRATEGY_RANDOM
TIBDG_CONNECTION_PROPERTY_LONG_CONNECT_NUMRESPONSES = n

Here, n is the number of proxy responses.

TIBCO ActiveSpaces® - Enterprise Edition Administration

81 | Methods of Selecting a Proxy for a Client

If you are using the C API, pass the Properties object as an argument to tibdgGrid_
Connect(). If you are using the Java API, pass the Properties object as an argument to
DataGrid.Connect().

After receiving the specified number of proxy responses, the client stops waiting for more
proxy responses and chooses randomly between the responses already received.

If the TIBDG_CONNECTION_PROPERTY_LONG_CONNECT_NUMRESPONSES value is set higher than
the number of active proxies, it has no noticeable effect. The value must be set high
enough to get a good distribution of clients among proxies. A general guideline would be
to set the value to be approximately 50%-80% of the number of proxies in the system.
Without using the early cutoff property, the proxy response time does not directly affect

the binding process, unless the CONNECT_WAIT_TIME property is configured so low that no
responses reach the client in time. If you need a response from all proxies, you must wait
for the slowest proxy to respond before a proxy is selected for the client connection.

The following are the possibilities of an early cutoff considering CONNECT_NUMRESPONSES=8:

l By default, the CONNECT_WAIT_TIME property value is 100 ms and a client waits for
that interval before collecting responses from proxies that are running. Then, the
client randomly chooses one of those proxies to establish a connection.

l If you have eight proxies and you set CONNECT_NUMRESPONSES=8, there is a probability
of having an early cutoff. If all eight proxies respond within 5 ms, the connection can
be established within 5 ms. If one proxy is down or is busy and does not respond
until 200 ms, the client waits for 100ms, and then selects a proxy for the connection.
This is why specifying CONNECT_NUMRESPONSES=8 is a good practice, especially if you
know the total number of proxies that are configured.

l You can specify the CONNECT_NUMRESPONSES=8 to some percentage of the total
proxies. As per the example, if you consider 50% of the total proxies, there would be
four proxies. The client stops waiting after four proxy responses have been received.
Maybe the first four responses come back in 3 3 ms and then the other ones range
from 5 ms to 200 ms. The client stops waiting at 3 ms after the first four responses,
which is better than waiting for 100 ms.

Named Binding Strategy
In the named binding strategy, the client can choose from a predefined list of proxies.

Consider a scenario where you have two applications - one that runs GET, PUT, and
DELETE operations in response to business logic and the other that performs
administrative operations such as creating or deleting tables. You want them to be bound
to separate proxies so the important business logic is not delayed by the less predictable,

TIBCO ActiveSpaces® - Enterprise Edition Administration

82 | Methods of Selecting a Proxy for a Client

more expensive administrative operations. In such a scenario, use the named binding
strategy to bind the business application on proxy1 or proxy2 and the administrative
application on proxy3 or proxy4. In most cases, a primary and fail-over proxy must be
enough.
To enable the named binding strategy, set the following properties:

TIBDG_CONNECTION_PROPERTY_LONG_BINDSTRATEGY = TIBDG_CONNECTION_
BINDSTRATEGY_NAMED
TIBDG_CONNECTION_PROPERTY_STRING_CONNECT_PROXYNAMES =
"proxy1|proxy2|proxy3"

Here, proxy1|proxy2|proxy3 is a list of proxies. The delimiter used to separate the list of
proxies is a | (pipe) symbol. The highest priority proxy is specified first in this list followed
by the others. The last proxy mentioned has the lowest priority.

If you are using the C API, pass the Properties object as an argument to tibdgGrid_
Connect(). If you are using the Java API, pass the Properties object as an argument to
DataGrid.Connect().

When the named binding strategy is configured, the client binds to the proxy with the
highest priority. Usually, the highest priority proxy responds within the duration of the
waiting time specified for a connection. If the highest priority proxy responds, the client
stops waiting so the operations can begin.

If the proxy does not respond in time, the client waits out the CONNECT_WAIT_TIME value
and binds with the next highest priority proxy. The named binding strategy can be used to
ensure that loads between proxies and clients can be balanced more carefully if the default
random matching is not preferred.

Balanced Binding Strategy

Based on the number of current connections, you can use the balanced binding strategy to
balance the client connections across the available proxies. When all proxies have the same
number of connections, the balanced binding strategy works like the random binding
strategy. For example, when the grid starts, all proxies have zero client connections. As a
result, the balanced binding strategy randomly assigns clients to proxies. By default, the
client connection waits until the wait time for a connection expires and then selects a
proxy. Optionally, you can use the early cutoff property to notify the client connection
to wait only until a certain number of proxy responses are received. Using this property
reduces the amount of time taken for the client to establish a connection with the data
grid.

TIBCO ActiveSpaces® - Enterprise Edition Administration

83 | Methods of Selecting a Proxy for a Client

To enable the balanced binding strategy, set the BINDSTRATEGY property and optionally set
the NUMRESPONSES property.

TIBDG_CONNECTION_PROPERTY_LONG_BINDSTRATEGY = TIBDG_CONNECTION_
BINDSTRATEGY_BALANCED

TIBDG_CONNECTION_PROPERTY_LONG_CONNECT_NUMRESPONSES = n

Where n is the number of proxy responses that you want the client to wait for before
selecting a proxy. The property is set on the Connnection object's properties.

The default CONNECT_WAIT_TIME is 100 ms, which means that the client waits for this time
before selecting a proxy. If you want the client to wait longer, then set the following
property:

TIBDG_CONNECTION_PROPERTY_DOUBLE_CONNECT_WAIT_TIME = m

Where m is the number of seconds that you want the client to wait.

When the balanced binding strategy is enabled, the client performs the following tasks:

l Collects the responses from the proxies that responded in time

l Chooses to bind to the proxy with the fewest clients

l Notifies the remaining proxies that they have been rejected.

Note: If several clients connect to the grid at the same time, they might all
choose the same proxy leading to an unbalanced distribution across the
proxies. For more information about how to rebalance the clients, see the
tibdg proxy shed command.

Pattern Binding Strategy

There are two pattern binding strategies - random and balanced that are used to bind
clients to proxies by using PCRE2 regular expression to match the proxy names. You can
use these strategies to bind clients to proxies based on a pattern. For example, you can
bind clients to proxies based on the location of the client or the type of operation that the
client performs. Alternatively, you can use a pattern to specify a list of named proxies as a
regular expression just like the named binding strategy. However, unlike the named

TIBCO ActiveSpaces® - Enterprise Edition Administration

84 | Methods of Selecting a Proxy for a Client

binding strategy, each matching proxy is given equal weight instead of a priority-ordered
list.

The difference between the pattern-based and non-pattern based binding strategies is how
a proxy is chosen from the list of proxies that match the pattern. The pattern random
binding strategy selects a proxy at random and selects the proxy with the fewest clients
just like the balanced binding strategy. The pattern binding strategies also honor the
CONNECT_WAIT_TIME and CONNECT_NUMRESPONSES properties. For example, consider a grid
where proxies are spread among different availability zones, and the zone name is part of
the proxy name. For example, zone1-p1, zone1-p2, zone2-p1, and zone2-p2. To enable a
client in zone1 to bind to a random proxy in zone1 only, use the pattern random binding
strategy. Set the BINDSTRATEGY property to TIBDG_CONNECTION_BINDSTRATEGY_PATTERN_
RANDOM and the PROXYPATTERN property to '^zone1-.*'. The pattern '^zone1-.*' matches
all the proxies in zone1 and the client binds to a random proxy in zone1.

To enable a pattern binding strategy, set the following properties:

TIBDG_CONNECTION_PROPERTY_LONG_BINDSTRATEGY = TIBDG_CONNECTION_
BINDSTRATEGY_PATTERN_RANDOM # or TIBDG_CONNECTION_BINDSTRATEGY_PATTERN_
BALANCED
TIBDG_CONNECTION_PROPERTY_STRING_CONNECT_PROXYPATTERN = "pattern" #
mandatory if the pattern random or pattern balanced binding strategy is
used
TIBDG_CONNECTION_PROPERTY_LONG_CONNECT_NUMRESPONSES = n # optional
TIBDG_CONNECTION_PROPERTY_DOUBLE_CONNECT_WAIT_TIME = m # optional

TIBCO ActiveSpaces® - Enterprise Edition Administration

85 | Adding Copysets

Adding Copysets
To scale an existing data grid horizontally, you can create additional copysets and create
nodes to assign to these copysets.

Important: Data grids created by using earlier versions of ActiveSpaces must be
upgraded by following the procedures detailed in "Upgrading from an Earlier
Version" in TIBCO ActiveSpaces® - Enterprise Edition Installation.

Use the copyset create command in the tibdg tool to create the copysets and nodes.
Once created, the nodes can be started but they do not yet receive any data. Use the grid
redistribute command in the tibdg tool to start the data redistribution process.

The tibdg grid redistribute command can be invoked at any time to assign data to
newly added copysets. If the nodes involved in the redistribution are not running, they
begin redistributing data once they are started.

For example, to grow a data grid from three copysets to four copysets, the following
commands must be used:

tibdg -r http://host:port copyset create cset4
tibdg -r http://host:port node create --copyset cset4 --dir ./s4_data s4

tibdgnode -r http://host:port -n s4

tibdg -r http://host:port grid redistribute

Note: Before starting any nodes in the new copyset, all members of the copyset
must be added by using the tibdg node create command. For example, if
each copyset has two nodes (as defined by the copyset_size parameter
supplied to the tibdg grid create command), you must create two nodes in
the new copyset before starting the tibdgnode processes.

View the status of the redistribution by running the status command in the tibdg tool.

tibdg -r http://host:port status

TIBCO ActiveSpaces® - Enterprise Edition Administration

86 | Adding Copysets

Caution: If you are using a secure realm server, use https://host:port not
http://host:port.

Data Redistribution
Data redistribution is done in the background and does not block ongoing operations when
data is being transferred.

When the sending copyset completes its migration of data, it briefly delays live operations
when assigning ownership to the new copyset. During this interval, transactions that were
started during the migration process might fail, and iterator creation and query execution
might fail. If a row moves during data redistribution, transacted reads might become
invalid during a transaction, meaning that the transaction might fail to commit. Given that
possibility, an application must avoid taking action on a transacted read until it learns that
the transaction commit has returned successfully. After this, there is a period of time where
other processes (nodes and proxies) in the data grid begin to learn about the change in
ownership of the data now at the new copyset. So, it is expected that operations occurring
during that window can experience a timeout error at the client while the processes learn
about the new configuration.

Statements and table listeners created before the data redistribution are out of date once
the data redistribution is completed and receives an invalid resource error at the client.
The object must be destroyed in the client application and re-created.

An existing copyset that sends data to a new copyset retains its data on disk until the data
redistribution process is complete. The rows previously owned by the copyset are deleted
as a background operation.

Note: For capacity planning purposes, it is possible that the portion of data
being contributed by a copyset at the moment the redistribution is completed
exists at both the old copyset and new copyset. In other words, in a one to two
copyset redistribution scenario where the one existing copyset contains 100GB
of data and is contributing 50GB to a new copyset, there would be a time where
the total aggregate disk usage would be 150GB (this does not account for any
additional disk usage by background activities like compaction).

TIBCO ActiveSpaces® - Enterprise Edition Administration

87 | Adding Copysets

Caution:
The following are important considerations to manage copysets and optimize
your ActiveSpaces deployments:

l The first copyset defined in the grid is responsible for global transaction
coordination, and cannot be removed.

l Carefully consider how the load on the tibdgnode processes changes when
data is redistributed. When moving from 10 copysets to five, every
tibdgnode process has approximately twice the load as before the
redistribution.

l Checkpoint data is not redistributed. If checkpoints are in use, a copyset
might service checkpoint requests even if all other data has been
redistributed. Removing a copyset might impact checkpoint availability.
(Use the tibdg checkpoint list to know the checkpoints that are no
longer available due to copyset removal.)

l Ensure that data redistribution is complete before running the tibdg
copyset remove command. If ActiveSpaces is in the process of
redistributing data, it does not allow you to remove a copyset.

l Monitor the redistribution process using the tibdg status command.

l Exercise caution when removing copysets, as this action permanently
alters the grid configuration.

TIBCO ActiveSpaces® - Enterprise Edition Administration

88 | Removing Copysets

Removing Copysets
The Remove Copyset feature enhances the ActiveSpaces data grid scalability by enabling
scaling down of resources.

Procedure
1. Initiate deactivation of a copyset by running the following command:

tibdg copyset deactivate <copyset_name>

This command marks the copyset as inactive, but does not begin redistribution of
data to other copysets. It enables more efficient data redistribution when you are
removing multiple copysets.

2. Redistribute data by running the following command:

tibdg grid redistribute

When redistribution starts, any copysets marked as deactivated transfer data to the
remaining active copysets. To determine when redistribution is complete, check the
tibdg status.

3. When the status indicates there are no redistributions in progress, remove the
copyset from the grid configuration by running the following command:

tibdg copyset remove <copyset_name>

When a copyset is removed, all tibdgnode processes associated with that copyset
exit. When the processes have stopped, their data directories can be removed. If the
data redistribution fails, this command fails. Removing a copyset that still owns data
would result in immediate data loss, so the copyset remove command returns failure
until the copyset can be safely removed.

Note: If the grid is currently using checkpoints (such as, Live Backup and
Restore or DR/Mirroring), take a new checkpoint immediately.

TIBCO ActiveSpaces® - Enterprise Edition Administration

89 | Removing Copysets

Checkpoints and Copyset Removal

When data is being redistributed, checkpoint data is not moved with the live data. This
means that removing copysets might remove access to some checkpoints. Checkpoints
that are not available due to copyset removal are displayed with an exclamation mark (!) in
the output of the tibdg checkpoint list command. If using checkpoints, it is necessary
to take a new checkpoint after redistribution completes to provide a target for the latest
checkpoint name. After removing a copyset, all recent (since the last redistribution)
checkpoints are marked as unavailable and cannot be used for checkpoint reads,
checkpoint queries, or DR mirroring.

$tibdg -r http://myhost:8080 checkpoint list
ID NAME
DIRECTORY

TIMESTAMP STATUS NOTES
607F019E-56C1-2400-9845-7647EC31E14D only_original_nodes

20250115T223824.452Z_00000000_00000001_only_original_nodes 2025-01-15
22:38:24.452383000Z Success

93B69141-F773-3100-6D0C-F1B7A43BB817 with_set3_inst_0
20250115T223842.124Z_00000000_00000002_with_set3_inst_0 2025-01-15
22:38:42.124752000Z Success !

AC1CA7B1-4C9C-EC00-C6D3-DAC3AC364F29 after_set3_inst_0
20250115T223902.937Z_00000000_00000003_after_set3_inst_0 2025-01-15
22:39:02.937931000Z Success

98C53D7E-907D-7F00-79C0-386DD8E790EE with_set3_inst_1
20250115T223950.214Z_00000000_00000004_with_set3_inst_1 2025-01-15
22:39:50.214332000Z Success !

DC4E8BF6-A499-5600-58C7-34FC7BC5CA95 after_set3_inst_1
20250115T224013.527Z_00000000_00000005_after_set3_inst_1 2025-01-15
22:40:13.527030000Z Success

93A3B9E9-F2E4-0C00-28D6-160EFE2BF2EC with_set3_inst_2
20250115T224102.214Z_00000000_00000006_with_set3_inst_2 2025-01-15
22:41:02.214492000Z Success !

B75E0AB0-E80E-3000-BE50-CD69907ADDBE after_set3_inst_2
20250115T224124.836Z_00000000_00000007_after_set3_inst_2 2025-01-15
22:41:24.836348000Z Success

! - No Longer Available because a required copyset is not present in the
grid config.

To use this information programmatically, specifying the -j flag provides the same
information in JSON format.

Similarly, attempting to verify a checkpoint that requires removed copysets fails:

TIBCO ActiveSpaces® - Enterprise Edition Administration

90 | Removing Copysets

$tibdg checkpoint validate with_set3_inst_2
Checkpoint with_set3_inst_2 (epoch: 0, sqn: 6) failed validation on the
following copysets:

<removed> (E9F1FA52-F50D-4F7E-BC67-5BFF791F3AAE)
*** ERROR OCCURRED OR CMD TIMED OUT RC = 1***

TIBCO ActiveSpaces® - Enterprise Edition Administration

91 | Defining a Table

Defining a Table
Administrators define tables as needed to structure data. To define a table within the data
grid, complete this task.

The examples in these steps illustrate adding commands to a configuration script. When
the script is complete, the administration tool executes the script to define the table.

Alternatively, you can execute each step immediately as a separate administration tool
command, instead of accumulating them in a script.

Note: Statistics for a table or an index must be enabled at creation time and
cannot be enabled or disabled afterward. For more information, see Enabling
Statistics.

Before you begin
A realm service must be running and reachable.

Either the realm must contain a valid data grid definition, or your configuration script file
must contain commands to create a valid data grid definition.

Procedure
1. In a text editor, either begin editing a script file, or continue adding commands to an

existing script.

Follow the convention of naming your script with the .tibdg file name extension.

2. Add a script command to create the table. For example:

table create table_name key_column_name key_column_type

table create table_name key_col_1 col_1_type key_col_2 col_2_type

Every table requires a primary key, which can consist of one or more columns. The
first example creates a key with one column. The second example creates a key with

TIBCO ActiveSpaces® - Enterprise Edition Administration

92 | Defining a Table

two columns.

The data type of key columns must be either long or string.

3. Define additional columns.

For each column in the table, add a script command to create the column. For
example:

column create table_name column_name column_type

Only the following FTL datatypes are valid as column types:

l Long

l Double

l String

l DateTime

l Opaque

4. Optional. Define secondary indexes.

For each index in the table, add a script command to create the index. For example:

index create table_name index_name column_name

index create table_name index_name column_1 column_2 column_3

The data type of index columns must be either long or string.

5. Run the script to create the tables in the data grid.

tibdg -s script_file_path

You can repeat this task to define additional tables. After creating the table, grant users or
roles permissions to read from or write to the table.

Table Create Configuration Options
The command to create a table using tibdg has the following format:

TIBCO ActiveSpaces® - Enterprise Edition Administration

93 | Defining a Table

tibdg table create [option=value]... table-name column-name column-type [column-
name column-type] ...

The following configuration options can be used with the tibdg table create command:

Option Description Default
Value

Valid Value

default_ttl Defines the number of seconds a row exists in
a table before it is automatically removed
from the table.

A value of 0 seconds means that the row is
never automatically removed from the table.

0 Minimum 0

expiration_
scan_period

Defines how often, in seconds, the data grid
should scan for rows that have surpassed their
default_ttl setting.

3600 Minimum 1

full_table_
delete

Defines the behavior when a SQL DELETE
statement is created which does not contain a
WHERE clause. Overrides the grid's full_table_
delete setting for all tables. Execution of a SQL
DELETE statement without a WHERE clause
deletes all rows of a table.

This option takes one of the following values:

l inherited (default): The grid's full_table_
delete setting is applied to the table.

l enabled: A debug message is logged by
the proxy when a SQL DELETE
statement without a WHERE clause is
created. All rows of the table are
allowed to be deleted.

l disabled: Prevents creation of SQL
DELETE statements that do not contain
a WHERE clause.

l warn: A warning is logged by the proxy

inherited inherited

enabled

disabled

warn

TIBCO ActiveSpaces® - Enterprise Edition Administration

94 | Defining a Table

Option Description Default
Value

Valid Value

when a SQL DELETE statement without
a WHERE clause is created. All rows of
the table are allowed to be deleted.

Note: The full_table_
scans=disabled option prevents the
execution of a SQL DELETE
statement without a WHERE clause
regardless of the setting for full_
table_delete. The option also
prevents the execution of a SQL
DELETE statement with a WHERE
clause when an index cannot be
found for the columns in the WHERE
clause.

row_counts Enables statistics for a table. It cannot be
modified after the table is created.

off off

exact

Column Names
Choose column names that follow these rules for SQL identifiers.

l Begin with a letter character.

ActiveSpaces reserves column names that begin with an underscore character for
internal use.

l Subsequent characters can be letters, digits, or underscore characters.

l Do not use SQL keywords as column names.

l Column names are not case-sensitive.

l The maximum length for column names is 256 bytes.

Invalid column names can cause errors when starting tibdgnode.

TIBCO ActiveSpaces® - Enterprise Edition Administration

95 | Defining a Table

Special Characters in Column Names
Column names with special characters require special treatment.

It is good practice for administrators to define column names that follow the SQL identifier
rules. (See "Column Names" in TIBCO ActiveSpaces Administration.)

Nonetheless, in some situations, a table might contain non-standard column names. For
example, a table copied from a legacy data base might have columns with names that
contain a space character.

If you must refer to non-standard column names in a filter expression, surround the
column name with any of the following escape characters:

Technique Example

Double quotes "column name"

Escaped double quotes \"column name\"

Square brackets [column name]

Back ticks (accent grave) `column name`

Secondary Indexes
A secondary index can increase query efficiency by reducing the number of rows to
examine.

A secondary index can span one or more columns, and can include columns that are part
of the primary key.

You can use the same column in more than one index.

Limit the number of secondary indexes, because each index increases the size of the
information stored in the grid, and increases the overhead for each write operation.

As an administrator, create indexes that improve the performance of frequent query
patterns. Delete indexes that no longer serve that purpose. For information about query
performance, see "Efficiency of Filters" in TIBCO ActiveSpaces® - Enterprise Edition Concepts.

TIBCO ActiveSpaces® - Enterprise Edition Administration

96 | Defining a Table

Enabling Statistics
Set the row_counts attribute to exact while creating a table or index.

Note: Statistics for a table or an index must be enabled at the creation time and
cannot be enabled or disabled afterward.

The following is an example to create a table named t1 with exact statistics enabled:

$ tibdg table create row_counts=exact t1 key long

Indexes on a table inherit the value of their table's row_counts setting by default, but can
be explicitly configured differently when they are created.

The following is an example to add a secondary index to the table t1 created above with
statistics disabled.

Create the index with row_counts set to off:

$ tibdg index create row_counts=off t1 index2 myfield

See tibdg Table Stats to run a command to view statistics such as row counts or overall
table size for a table and all of its indexes.

Note: As there is a minor performance impact associated with enabling statistics
on a table or index, you can enable statistics on a table itself to maintain
accurate row counts, but explicitly disable statistics on that table's secondary
indexes.

Row Expiration
Rows are considered expired when they have exceeded their configured time-to-live (TTL)
value. Ordinarily, rows in a table are not deleted until a client explicitly deletes them. In
some situations, however, the data in the rows might only remain valid or relevant for a
short span of time. Leaving these rows in the table indefinitely consumes disk space and in
some situations, can slow down your queries. The row expiration feature is designed to
remove outdated rows.

TIBCO ActiveSpaces® - Enterprise Edition Administration

97 | Defining a Table

An application developer can override the default TTL by setting the TTL on a specific row
before it is inserted in a table. Developers can use the C or Java API to override the TTL set
for a table. For more information, see Overriding the Default TTL for a Single Row.

When a row is expired, it becomes available for deletion from the table. Note that
becoming available for deletion does not mean it gets deleted immediately. Deletion takes
place only after the table is scanned for expired rows. For more information, see Deletion
of Expired Rows.

Defining a Table with Row Expiration
When defining a table, you can set the default_ttl property to a non-zero value to enable
row expiration. The time interval is specified in seconds. Unless a different TTL was set on
a particular row, rows inserted in a table inherit the default TTL value set on the table and
expires after their TTL interval has elapsed. If the default_ttl property is not set or is set
to 0 (zero), the rows of the table never expire and row expiration is not enabled for the
table.

Procedure
1. Open the command prompt, and run tibdg using the following syntax to create a

table in which rows expire:

table create [default_ttl=<time interval in seconds>] table_name key_column_
name key_column_type

For example, if rows expire after 1 hour, the table would be created with the
following tibdg command:

tibdg table create default_ttl=3600 t1 key long value string

For the same example, you can use the following SQL DDL command:

CREATE TABLE t1 (key INT PRIMARY KEY, value VARCHAR) default_
ttl=3600

TIBCO ActiveSpaces® - Enterprise Edition Administration

98 | Defining a Table

Note: To ensure that a table is scanned for expired rows periodically, use
the option expiration_scan_period. The default value is 3600 seconds
and the minimum value is 1 second.

Result
All rows in the table expire after the specified TTL.

If you are using the C or Java APIs for ActiveSpaces, you can override the TTL for a table by
setting the TTL property at a row level. For more details, see Overriding the Default TTL for
a Single Row.

Overriding the Default TTL for a Single Row
When row expiration has been enabled for a table, developers can use the client APIs to
override the default TTL set on a table.

Before performing the PUT operation on a row to insert it into a table, use the following
code snippet to specify the TTL:

tibdgRow_SetTTL(row, <time_interval in seconds>);
tibdgTable_Put(table, row);

For example, if you want the row to expire after an hour, use the following code snippet:

tibdgRow_SetTTL(row, 3600);
tibdgTable_Put(table, row);

If you do not want the row to expire, set the TTL of the row to a very large value. For
example, 10 years.

For more information on the APIs used to override the TTL at the row level, see TIBCO
ActiveSpaces® - Enterprise Edition C API Reference or TIBCO ActiveSpaces® - Enterprise Edition
Java API Reference.

Deletion of Expired Rows
When a row expires, it is available for deletion, but it is not deleted immediately. Deletion
is a background process that scans the tables for expired rows and then deletes them.

TIBCO ActiveSpaces® - Enterprise Edition Administration

99 | Defining a Table

Therefore, the application can retrieve rows that have expired but not deleted.

By default, tables are scanned for expired rows once every hour. The frequency of the scan
is governed by the expiration_scan_period property. This property is specified in
seconds. If the default TTL interval for a row is short or if you want the scanner to run
more frequently to delete the expired rows, set the expiration_scan_period property
when creating the table. After scanning the table, all expired rows are identified and
deleted. The rows that expire first are deleted first.

Here is an example that uses the tibdg command to Defining a Table with a default TTL
of 1 hour and a scan interval of 5 minutes:

tibdg table create default_ttl=3600 expiration_scan_period=300 t1 key
long value string

TIBCO ActiveSpaces® - Enterprise Edition Administration

100 | Defining a Table by Using SQL DDL Commands

Defining a Table by Using SQL DDL
Commands
Instead of using the tibdg command-line tool to define tables and index columns, you can
use SQL Data Definition Language (DDL) command strings from within an application.
When you pass these commands to the ExecuteUpdate API of the tibdgSession object,
you can dynamically create and drop tables, and secondary table indexes, in a running
data grid.

Before you begin
1. A realm service must be running and reachable.

2. The realm service must contain a valid data grid definition.

3. The tibdgadmind process must be running.

4. The data grid processes must be running (such as state keeper, nodes, and proxies).

5. If permissions are enabled on a data grid, ensure that you have the tibdg-ddl role.
For more information, see ActiveSpaces Custom Roles.

Creating a New Table
Use the SQL DDL command CREATE TABLE to create a table in the data grid.

Before you begin
If the permissions are enabled on a table, you must have the tibdg-ddl role to create or
modify the table. For more information about roles, see ActiveSpaces Custom Roles. For
more information about table permissions, see Grid and Table Permissions.

Procedure
1. Compose a string with the following format:

TIBCO ActiveSpaces® - Enterprise Edition Administration

101 | Defining a Table by Using SQL DDL Commands

CREATE TABLE [IF NOT EXISTS] <table_name> (
<column_name> <column_type> <column_constraint>
[, <column_name> <column_type> <column_constraint>]...
[, <table_constraint>])
[<property_name>=<property_value>
[, <property_name>=<property_value>]...]

Where:

<column_constraint> = [[CONSTRAINT <constraint_name>] NOT NULL |
NULL | PRIMARY KEY]
<column_type> = (see SQL Data Type Mapping)
<table_constraint> =

[CONSTRAINT <constraint_name>] PRIMARY KEY (<column_name>
[, <column_name>]...)

2. Pass the string to the ExecuteUpdate method of the tibdgSession object.

For example:

CREATE TABLE mytable (col1 INT PRIMARY KEY, col2 VARCHAR)
CREATE TABLE IF NOT EXISTS mytable (col1 INT, col2 VARCHAR
CONSTRAINT col2_pk PRIMARY KEY)
CREATE TABLE table2 (col1 INT PRIMARY KEY, col2 VARCHAR) row_
counts=exact

Note the following points when using the CREATE TABLE command:

l Only columns with data types that map to ActiveSpaces long, string, and
datetime data types can be primary key columns. For more information, see
SQL Data Type Mapping.

l Specifying a PRIMARY KEY column constraint and a PRIMARY KEY table
constraint causes an error.

l Specifying multiple columns with a PRIMARY KEY constraint causes an error.
Use the PRIMARY KEY table constraint instead.

l Specifying NOT NULL for primary key columns is optional. Primary key columns
are implied to be NOT NULL.

l Specifying NULL for primary key columns causes an error.

TIBCO ActiveSpaces® - Enterprise Edition Administration

102 | Defining a Table by Using SQL DDL Commands

l For non-primary key columns, specifying NOT NULL causes an error.
ActiveSpaces treats all non-primary key columns as nullable.

l Specifying a length for string columns is ignored (for example, VARCHAR(255)).
ActiveSpaces does not support limiting the length of string columns.

l Object names (for example, <column_name>, <index_name>, and <table_
name>) are case insensitive. ActiveSpaces converts all object names to
lowercase before running the command.

l The property names that can be specified are the same as those used when
defining a table by using the administration tool. For example, to enable
statistics for a table, use row_counts=exact.

Dropping a Table
Use the SQL command DROP TABLE to remove a table and the data from the data grid.

Procedure
1. Compose a string with the following format:

DROP TABLE [IF EXISTS] <table_name>

2. Pass the string to the ExecuteUpdate method of the tibdgSession object.

For example:

DROP TABLE myTable
DROP TABLE IF EXISTS myTable

Note: When using the DROP TABLE command, object names (for example,
<table_name>) are case insensitive. ActiveSpaces converts all object
names to lowercase before running the command.

TIBCO ActiveSpaces® - Enterprise Edition Administration

103 | Defining a Table by Using SQL DDL Commands

Creating an Index
Use the SQL command CREATE INDEX to create a secondary index for a table in the data
grid.

Procedure
1. Compose a string with the following format:

CREATE INDEX [IF NOT EXISTS] <index_name> ON <table_name> (
<column_name> [, <column_name>]...)
[<property_name>=<property_value>
[, <property_name>=<property_value>]...]

2. Pass the string to the ExecuteUpdate method of the tibdgSession object.

For example:

CREATE INDEX index1 ON table1 (col1, col5)
CREATE INDEX IF NOT EXISTS index2 ON table1 (col1, col5, col7)
CREATE INDEX index3 ON table1 (col2, col3) row_counts=exact

Note the following points when using the CREATE INDEX command:

l Only columns with data types that map to ActiveSpaces long and string data
types can be secondary index columns. For more information, see SQL Data
Type Mapping.

l Escaped names are supported.

Note: In SQL, an escaped name is a sequence of one or more
characters enclosed within SQL escape characters. Trailing spaces
are insignificant.

Special characters used within the escaped name must themselves
be escaped.

l Object names (for example <column_name>, <index_name>, and <table_
name>) are case insensitive.

l ActiveSpaces converts all object names to lowercase before running the
command.

TIBCO ActiveSpaces® - Enterprise Edition Administration

104 | Defining a Table by Using SQL DDL Commands

Dropping an Index
Use the SQL command DROP INDEX to remove a secondary index from a table in the data
grid.

Procedure
1. Compose a string with the following format:

DROP INDEX [IF EXISTS] <table_name>.<index_name>

2. Pass the string to the ExecuteUpdate method of the tibdgSession object.

For example:

DROP INDEX table1.index1
DROP INDEX IF EXISTS table1.index1

Note the following points when using the DROP INDEX command:

l Primary keys cannot be dropped. Only secondary indexes can be dropped.

l Object names (for example, <index_name>, and <table_name>) are case
insensitive. ActiveSpaces converts all object names to lowercase before running
the command.

SQL Data Type Mapping
ActiveSpaces uses a small set of data types for storing data in the data grid. Several SQL
data types have been mapped to each of the ActiveSpaces data types. The following table
lists each data type and the SQL data types that have been mapped to it:

ActiveSpaces Data Type SQL Data Types

string char

varchar

longvarchar

TIBCO ActiveSpaces® - Enterprise Edition Administration

105 | Defining a Table by Using SQL DDL Commands

ActiveSpaces Data Type SQL Data Types

text

character varying

long int

bit

bigint

tinyint

smallint

integer

boolean

opaque blob

binary

varbinary

longvarbinary

double float

real

double

datetime datetime

date

time

timestamp

TIBCO ActiveSpaces® - Enterprise Edition Administration

106 | Security

Security
ActiveSpaces security is based on the security features of TIBCO FTL.

The following security features are provided and must be used together:

l Transport encryption

l Authentication and authorization

Transport encryption is used to encrypt any network communication between the
processes of your data grid to protect that communication from packet sniffing. For more
information, see Enabling Transport Encryption on a Data Grid.

TIBCO recommends that you configure a secure data grid with transport encryption and
authentication and authorization.

Authentication and authorization use usernames and passwords to authenticate the users
of the data grid and prevent unwanted users from accessing the data grid. When
authentication and authorization are enabled, each ActiveSpaces process authenticates
itself to a secure realm service by using the password files credentials.

For more information, see Authentication and Authorization.

Authentication and Authorization
ActiveSpaces authentication is based on the authentication support of TIBCO FTL.

FTL supports the following forms of authentication:

l LDAP using JAAS

l Flat-file authentication which runs inside of the realm service and reads usernames
and passwords from a flat file.

l Flat-file authentication that runs in a container external to the realm service.

TIBCO ActiveSpaces® - Enterprise Edition Administration

107 | Security

Authorization Groups
A username may belong to several authorization groups (also known as roles).
Authorization groups can be configured in either the JAAS file or the flat-file.

The following are examples of users and authorization groups defined in a flat-file with the
required authorization groups for running a data grid with authentication and
authorization:

l Admin User - A user for authenticating the tibftladmin, tibdg, and tibdgproxy
processes that has the ftl-admin role and the tibdg-internal role. The following
statement is an example:

admin: adminpw, tibdg-internal,ftl-admin,ftl

l Realm Service User - A single user with roles for authenticating the primary TIBCO
FTL realm and all satellite realms. This single user facilitates switching between a
backup realm service and its primary realm service, or a satellite realm service and
its primary realm service. The following statement is an example:

rs: rspw, ftl-internal,ftl-admin

l tibdgadmind User - A user for authenticating the tibdgadmind process that requires
the ftl-internal and ftl-admin roles. The following statement is an example:

tibdgadmind: tibdgadmindpw, ftl-internal,ftl-admin

l tibdg User - An internal tibdg user for starting and authenticating internal grid
processes like the tibdgkeeper and tibdgnode, which require the basic ftl role
and the tibdg-internal role. The following statement is an example:

tibdguser: tibdguserpw, tibdg-internal,ftl

l Client SQL DDL Users - Additional users as required for ActiveSpaces clients who also
have permission to run SQL DDL statements such as CREATE TABLE. See the section
on Grid and Table Permissions. The following is an example:

user3: user3pw, tibdg-ddl,ftl

l Client Users - Additional users as required for ActiveSpaces clients. These clients only

TIBCO ActiveSpaces® - Enterprise Edition Administration

108 | Security

need the basic role of ftl. The following statement is an example:

user1: user1pw, ftl
user2: user2pw, ftl

When running a disaster recovery data grid with a satellite realm service, an authorization
file must include the following users as described above:

l Realm Service User - use the same name and password in all authentication files
used by affiliated realm services

l Admin User

l tibdg user
The client users listed in an authentication file can vary between primary and satellite
realm services. A tibdgadmind user is only required for the primary realm service.
However, it is a good practice to include a tibdgadmind user in all authentication files so
that it does not have to be added later when a mirror data grid needs to become the
primary data grid. For more information about disaster recovery, see Disaster Recovery.

Note: No spaces are allowed between the comma-separated list of authorization
groups. For example:

ftl-satellite,ftl-admin (correct)
ftl-satellite, ftl-admin (incorrect)

Password File
If the realm service enables authentication and authorization, then you must configure
credentials for ActiveSpaces processes such as tibdgnode, tibdgkeeper, tibdgproxy, and
tibdgadmind.

Each service process authenticates itself to the realm service by using credentials that it
reads from an ASCII password file. Specify the name and location of that file by using the
client’s --user-password-file command-line parameter.

The password file consists of two lines. The first line contains the username. The second
line contains the password string. On all platforms (including Windows) the lines must be
separated by the new line character \n.

You can use the masking of a password feature from TIBCO® FTL.

TIBCO ActiveSpaces® - Enterprise Edition Administration

109 | Security

For more information about how to generate a masked password, see the --mask option
available in the "FTL Administration Utility" section in TIBCO® FTL Administration.

Starting Realm Services with Authentication
To use a data grid with authentication, secure realm services by using transport encryption
plus authentication must be used.
The remainder of this section contains examples of using a flat-file for authentication. You
must alter the steps as required for the type of authentication you intend to use with your
data grid.

Before you begin
Use secure realm services that have enabled transport encryption and authentication.

Procedure
1. Determine the type of authentication that you need by reading the section on

"Authentication Service" in the document TIBCO FTL® Administration.

2. Perform the authentication setup tasks required before starting up the realm service.
For flat-file authentication, create a flat-file with usernames, passwords, and
authentication groups. For details, see Authorization Groups.

3. Start a secure primary realm service as described in step 1 under Transport
Encryption with the additional authentication options required for the type of
authentication that you are going to use.

tibrealmserver -http <host>:<port> --data <rs_db_path> --secure
pass:<keystore_pwd> --tls.trust.file
<trust_file_path> --auth.url file://<flat_file_path> --server.user
<rs_user_name> --server.password <rs_user_pwd>

Note: When using TIBCO FTL 6.0 or later, use tibftlserver instead of
tibrealmserver. Refer to TIBCO FTL Administration for information on
converting TIBCO FTL 5.x tibrealmserver command-line options into the
appropriate TIBCO FTL 6.x configuration file options, most of which use the
same name. For example, --server.user is the server.user configuration
file option.

TIBCO ActiveSpaces® - Enterprise Edition Administration

110 | Security

4. Ensure that the trust file from the primary realm service has been copied to locations
where any affiliated realm service (for example, backup, satellite), each of the data
grid’s processes, and any client processes can access a copy of it.

5. Start the affiliated realm services (for example backup, satellite) and enable
transport encryption.

6. Set the following authentication options:

--secure pass:<keystore_pwd>
--tls.trust.file <path>
--server.user <rs_user_name>
--server.password <rs_user_pwd>
--auth.url file://<flat-file path>

For more information about running secure realm services, realm service
authentication, realm service command-line options, and realm service configuration
properties, see TIBCO FTL® Administration.

Starting Data Grid Processes With Authentication
Before starting your data grid processes with authentication, define your data grid and its
component processes as described in starting affiliated realm services and secure realm
services in Enabling Transport Encryption on a Data Grid.

Procedure
1. For the tibdg and tibdgadmind tools to authenticate a secure realm service specify

the following properties:

l --trust-file <path>

l For providing the user credentials, use one of the following methods:

o --user-password-file <path>: cannot be used with -user and -
password options. For details, see Password File.

or

o -user <user_name> -password <pwd_option>: cannot be used with --
user-password-file option. <pwd_option> can take one of the following
values:

TIBCO ActiveSpaces® - Enterprise Edition Administration

111 | Security

Options Usage Example

pass:<password> -password pass:mypassword

env: env:<environment variable>

stdin You are prompted for the password when the
command runs.

Note: tibdg requires the user to have the ftl-admin role. tibdgadmind
requires the user to have ftl-satellite and ftl-admin roles.

For example:

tibdg -r %REALM_URL% -s my_script_file.tibdg --user-password-file
/path/to/my/user-password.txt --trust-file %TRUST_FILE%

tibdg -r %REALM_URL% -s my_script_file.tibdg -user admin -
password pass:password --trust-file %TRUST_FILE%

2. For the tibdgnode, tibdgkeeper, and tibdgproxy processes to authenticate with a
secure realm service specify the following properties:

l --trust-file <path>. For details, see Trust File (TIBCO FTL-Generated
Certificates).

l --user-password-file <path>. For details, see Password File.

Note: tibdgnode and tibdgkeeper processes require a set of username
and password with the ftl role. tibdgproxy processes require a set of
username and password with the ftl-admin role.

Using User-Defined TIBCO FTL Certificates
ActiveSpaces grid processes and client applications can use the security capabilities of
TIBCO FTL, which include user-defined certificates and OAuth2 or mTLS authentication
providers.

TIBCO ActiveSpaces® - Enterprise Edition Administration

112 | Security

User-Defined Certificates

Configure a grid using your own user-defined certificates instead of TIBCO FTL-generated
certificates. For more information, see Enabling TLS for FTL Server. If you are using these
certificates, TIBCO FTL server, all ActiveSpaces grid processes, and all ActiveSpaces client
applications must be updated and properly configured with the correct command-line
parameters and connection properties to communicate successfully.

If you want, you can load the required trust file for each process to the system trust store
rather than configuring the trust file by using command line or connection properties. For
specific information about loading certificates into the system trust store, consult your
operating system documentation.

You must configure an authentication provider when you enable TLS connections in
TIBCO FTL.

ActiveSpaces includes a TLS sample directory with configuration and a README file to
highlight additional parameters needed for this setup. Additionally, in the samples/scripts
directory, the as-certs script is provided to demonstrate how to generate the certificates
correctly.

Note the following key differences in ActiveSpaces grid processes when you configure them
with user-defined certificates:

l After generating the certificates, the TIBCO FTL server must set the following
additional properties in the ftl.yaml file:

o tls.server.cert

o tls.server.private.key

o tls.server.private.key.password

o tls.client.trust.file

l You must configure tibdgadminsvc as service in the TIBCO FTL server and not as a
standalone process. Although you can configure state keepers as a standalone
process, TIBCO recommends you to configure the state keeper in the same way (as a
service). When you run processes as services, you do not need security-related
command-line parameters because the TIBCO FTL server provides the local, secure
connections. Every TIBCO FTL server must host a tibdgadminsvc service.

l To connect to the TIBCO FTL server, the tibdg admin tool needs the following files:

o a trust file (--trust-file)

https://docs.tibco.com/pub/ftl/latest/doc/html/index.html#security/enabling_TLS_for_FTL_server.htm

TIBCO ActiveSpaces® - Enterprise Edition Administration

113 | Security

o a user password file (--user-password-file)

l The tibdgnode and tibdgproxy grid processes connecting to the TIBCO FTL server
must use the following command-line parameters:

o --trust-file

o --user-password-file

l As tibdgnode and tibdgproxy grid processes act as servers for other processes, they
must use the following command-line parameters:

o --server-cert-file

o --server-private-key

o --server-private-key-pwd

o --server-host

l The tibdgnode and tibdgproxy grid processes must specify a --server-host
parameter that matches their certificate and the host on which they are running.

l ActiveSpaces client applications must set the connection property TIBDG_
CONNECTION_PROPERTY_STRING_TRUST_TYPE to TIBDG_CONNECTION_HTTPS_
CONNECTION_USE_SPECIFIED_TRUST_FILE and set the TIBDG_CONNECTION_PROPERTY_
STRING_TRUST_FILE property value to the location of the user-generated trust file.
For more information, see the samples directory.

Authentication Providers
You can configure the following authentication providers with user-defined certificates:

l File-based authentication provider

l OAuth2 authentication provider

l mTLS authentication provider

File-based Authentication Provider
The file-based authentication provider in the FTL server is supported for both FTL-
generated and user-defined certificates. Client applications use the TIBDG_CONNECTION_
PROPERTY_STRING_USERNAME and TIBDG_CONNECTION_PROPERTY_STRING_USERPASSWORD
properties to set the authentication values that must match the values provided in the
authentication file provided to the TIBCO FTL server.

TIBCO ActiveSpaces® - Enterprise Edition Administration

114 | Security

OAuth2 Authentication Provider
Configure the TIBCO FTL server with an OAuth2 authentication provider, which is then used
by ActiveSpaces grid processes and client applications. Grid connections are authenticated
by obtaining and using a signed JWT token issued by a separate OAuth2 server. For more
information, see Using the Built-In OAuth 2.0 Based Authentication Service in
TIBCO FTL® Security.

ActiveSpaces includes an oauth2 sample directory that includes configuration and a
README to provide you with the parameters that are needed with this setup. Additionally,
the as-certs script is provided that helps you generate the certificates correctly.

Note the following key differences in ActiveSpaces grid processes when you configure them
with an OAuth2 authentication provider:

l After the certificates are generated, the TIBCO FTL server sets several additional
properties in the ftl.yaml file including:

o tls.server.cert

o tls.server.private.key

o tls.server.private.key.password

o tls.client.trust.file

o oauth2.validation.key

o oauth2.svr.client.id

o oauth2.svr.client.secret

o oauth2.svr.endpoint.token

o oauth2.provider.trust.file (required only if the OAuth2 server uses https)

l You must configure tibdgadminsvc as service in the TIBCO FTL server and not as a
standalone process. Although you can configure state keepers as a standalone
process, TIBCO recommends you to configure the state keeper in the same way (as a
service). When you run them as service, you do not need the security-related
command-line parameters because the TIBCO FTL server provides the local, secure
connections. Every TIBCO FTL server must host a tibdgadminsvc service.

l To connect to the TIBCO FTL server, the tibdg admin tool needs the following files:

o a trust file (--trust-file)

o oauth2 token (--oauth2-token)

https://docs.tibco.com/pub/ftl/latest/doc/html/index.html#administration/using_the_built_in_OAuth_2.0_based_authentication.htm

TIBCO ActiveSpaces® - Enterprise Edition Administration

115 | Security

l To connect to the TIBCO FTL server, the tibdgnode and tibdgproxy grid processes
must use the following command-line parameters:

o --trust-file

o --oauth2-server-url

o --oauth2-client-id

o --oauth2-client-secret

o --oauth2-server-trust-file (when connecting via https to the OAuth2
server)

l As tibdgnode and tibdgproxy grid processes act as servers for other processes, they
must use the following command-line parameters:

o --server-cert-file

o --server-private-key

o --server-private-key-pwd

o --server-host

l ActiveSpaces client applications must set the following connection properties:

o TIBDG_CONNECTION_PROPERTY_STRING_OAUTH2_SERVER_URL

o TIBDG_CONNECTION_PROPERTY_STRING_OAUTH2_CLIENT_ID

o TIBDG_CONNECTION_PROPERTY_STRING_OAUTH2_CLIENT_SECRET

o TIBDG_CONNECTION_PROPERTY_STRING_OAUTH2_SERVER_TRUST_FILE (needed to
connect to an https-based OAuth2 server URL)

mTLS Authentication Provider
Configure the TIBCO FTL server with an mTLS authentication provider, which is then used
by ActiveSpaces grid processes and client applications. Clients can authenticate with the
TIBCO FTL server with specifically formatted certificates. For more information, see the
Using the Built-In mTLS Based Authentication Service section in TIBCO FTL® Security.

ActiveSpaces includes the mtls sample directory that includes configuration and a README
to highlight the parameters that are needed with this setup. Additionally, the as-certs
script is provided that helps you generate the certificates correctly.

https://docs.tibco.com/pub/ftl/latest/doc/html/index.html#administration/using_the_built_in_mTLS_based_authentication.htm

TIBCO ActiveSpaces® - Enterprise Edition Administration

116 | Security

Note the following key differences in ActiveSpaces grid processes when you configure them
with user-defined certificates and an mTLS authentication provider:

l After the certificates are generated, the TIBCO FTL server sets several additional
properties in the ftl.yaml file including:

o tls.server.cert

o tls.server.private.key

o tls.server.private.key.password

o tls.client.trust.file

l You must configure tibdgadminsvc as service in the TIBCO FTL server and not as a
standalone process. Although you can configure state keepers as a standalone
process, TIBCO recommends you to configure the state keeper in the same way (as a
service). When you run them as service, you do not need the security-related
command-line parameters because the TIBCO FTL server provides the local, secure
connections. Every TIBCO FTL server must host a tibdgadminsvc service.

l To connect to the TIBCO FTL server, the tibdg admin tool must use a trust file and
client certificates:

o --trust-file

o --client-cert-file

o --client-private-key

o --client-private-key-pwd

l To connect to the TIBCO FTL server, the tibdgnode and tibdgproxy grid processes
must use the following command-line parameters:

o --trust-file

o --client-cert-file

o --client-private-key

o --client-private-key-pwd

l As tibdgnode and tibdgproxy grid processes act as servers for other processes, they
must use the following command-line parameters:

o --server-cert-file

o --server-private-key

TIBCO ActiveSpaces® - Enterprise Edition Administration

117 | Security

o --server-private-key-pwd

o --server-host

o --server-trust-file

l The tibdgnode and tibdgproxy grid processes must specify a --server-host
parameter that matches their certificate and the host on which they are running.

l ActiveSpaces client applications must set the following connection properties:

o TIBDG_CONNECTION_PROPERTY_STRING_CLIENT_CERT

o TIBDG_CONNECTION_PROPERTY_STRING_CLIENT_PRIVATE_KEY

o TIBDG_CONNECTION_PROPERTY_STRING_CLIENT_PRIVATE_KEY_PASSWORD

Samples
In the installation directory of ActiveSpaces, in the samples/security directory, security
configurations and README files are provided to explain how to configure and use the
TIBCO FTL 7.0.0 security capabilities. Refer to these samples to understand how to
configure grid processes and client applications.

In the sample/scripts directory, the as-certs script is provided that you can use as an
example to understand how to generate properly formatted user-defined certificates.

Enabling Transport Encryption on a Data Grid

Before you begin
ActiveSpaces transport encryption is based on the transport encryption of TIBCO FTL. If the
computer on which you run the TIBCO FTL server has multiple network interface cards,
ensure that the host name is mapped to the IP address that you use to start your
TIBCO FTL server. Otherwise, the certificate generated by the TIBCO FTL server might use
one of the other available IP addresses. As a result of the IP address mismatch,
ActiveSpaces processes would not be able to connect to the realm service.

Procedure
1. Generate a trust file by using a TIBCO FTL server. For instructions, see "Securing FTL

TIBCO ActiveSpaces® - Enterprise Edition Administration

118 | Security

Servers" in TIBCO FTL® Administration.

2. Supply copies of the keystore file and trust file to every TIBCO FTL server.

3. Supply a copy of the trust file to locations that can be accessed by any of the data
grid's processes and client processes.

4. Configure the TIBCO FTL servers to use TLS security in their configuration files.

globals:
tls.secure: <keystore_password>

5. Start the TIBCO FTL servers.

tibftlserver -c <config_file> -n <server_name>

6. After the secure realm services have been started, create the data grid configuration
by using the encrypted_connections option and set its value to all.

grid create copyset_size=1 statekeeper_count=3 encrypted_
connections=all mygrid

7. Define the component processes of your data grid. For more information, see
Defining a Data Grid.

Trust File (TIBCO FTL-Generated Certificates)
A trust file is generated by using the --init-security command-line option of
tibftlserver. The content of the trust file instructs clients to trust the realm service's
certificate. Administrators and developers coordinate to supply the trust file to application
programs.

A secure realm service generates the trust file in its data directory. The trust file is named
ftl-trust.pem. The file contains one or more PEM-encoded public certificates, each of
which is typically 1 - 2 KB of data.

Realm administrators give the trust file to the clients: that is, developers and application
administrators coordinate so that client programs can access the trust file at run time.

Administrators also supply the trust file directly to ActiveSpaces processes such as
tibdgnode, tibdgkeeper, tibdgproxy, and tibdgadmind.

TIBCO ActiveSpaces® - Enterprise Edition Administration

119 | Security

Users can load the trust file into a web browser’s trust store.

Affiliated Realm Services and the Trust File

An affiliated realm service uses the same trust file as its primary realm service. That is,
even if you create a different private key for a backup or satellite realm service, a primary
server signs that key, so the primary's trust file is still valid for the satellites and their
clients. As a consequence, you do not distribute separate trust files to clients of a family of
affiliated servers: one trust file suffices for the whole family.

Regeneration and Redistribution of the Trust File

If a realm service cannot access its TLS data files, or it cannot decrypt the keystore file,
then it generates new TLS data files. The newly generated data files replace any existing
data files.

If a primary realm service generates new TLS data files, you must redistribute the new trust
file to all clients, including affiliated realm services, other TIBCO FTL components,
application programs, and browsers that access the realm service GUI.

Two scenarios can trigger this requirement:

l No Access: A primary realm service restarts and cannot access its TLS data files: for
example, they have been deleted or moved, or their file access permissions have
changed.

l New Password: An administrator restarts the primary realm service, supplying a
different password. The server cannot decrypt the existing keystore file by using the
new password.

If a secondary realm service generates new TLS data files, do not redistribute its trust file.

Using Trust Files with Primary Realm Service

Procedure
1. When using the tibdg administration tool to communicate with the primary realm

service, always specify the path to the trust file from the primary realm service. For
example, to use tibdg to define your data grid run the following command:

TIBCO ActiveSpaces® - Enterprise Edition Administration

120 | Security

tibdg -r <realm_service_url> --trust-file <path> grid create
copyset_size=1 statekeeper_count=3 encrypted_connections=all mygrid

2. Start your data grid processes as described in Starting the Data Grid Processes with
the following additional command-line option to indicate the location of the trust-file
on the primary realm service:

--trust-file <path>

The following statement is an example of starting the data grid processes by
specifying the location of the trust file located on the primary realm service:

tibdgnode -r <realm_service_URL> -g mygrid -n <node_name> --trust-
file <path>

Using Trust Files with the Disaster Recovery Feature
If using the disaster recovery feature, note the following points:

l Start your realm services and data grid processes as described in Enabling Transport
Encryption on a Data Grid.

l The data grid to run on the Disaster Recovery site must be configured and deployed
by using the primary realm service and not the satellite realm service. Configuration
changes can only occur on the primary realm service.

l The tibdgadmind tool is not run on the Disaster Recovery site as configuration
changes can only occur on the primary realm service.

Note: Realm services can be started by using configuration files or different
formats of the command-line options specified in this section. For alternatives to
using the realm service command-line options, see the document TIBCO FTL®
Administration.

TIBCO ActiveSpaces® - Enterprise Edition Administration

121 | Grid and Table Permissions

Grid and Table Permissions
Data grid access control can be extended to apply permissions on tables to control who
has access to the data in the tables.

If you are not familiar with using authentication and authorization with ActiveSpaces, it is
recommended that you read Authentication and Authorization. Enabling table permissions
helps you grant read or write access to users or authorization groups (also known as roles).
With the read permission on a table, a user or role can read the data in the table. With the
write permission on a table, a user or role can modify the data in the table.

Examples of read operations are GET operations, running SQL SELECT statements, and
creating a Listener on the table.

Examples of write operations are PUT and DELETE operations and SQL INSERT statements.

To set permissions on a table, see Enabling Permission Checking on Data Grids and Tables.

How Do You Know If You Have Permissions on a Table?

When permission checking is enabled, only tables that the user has some permission on
are shown in the grid metadata returned by tibdgConnection_GetGridMetadata() .

Enabling Permission Checking on Data Grids
and Tables
This topic helps you set up a grid with permissions enabled so that you can subsequently
enable permission checking on the tables in the data grid.

Before you begin
1. Shut down the ActiveSpaces data grid and TIBCO FTL servers.

2. Ensure that Transport Layer Security (TLS) has been configured for the TIBCO FTL

TIBCO ActiveSpaces® - Enterprise Edition Administration

122 | Grid and Table Permissions

servers. For more information, see Enabling Transport Encryption on a Data Grid.

3. Configure the appropriate users and roles that are accessed by the TIBCO FTL server.
For more information, see Authentication and Authorization. Remember that the
users and roles can be one of the following types:

l Users and roles for client applications that are granted table permissions.

l Users who can use SQL to create or modify table definitions with the tibdg-ddl
role. For more information, see ActiveSpaces Custom Roles.

l The user with the tibdg-internal role that is needed to start the ActiveSpaces
grid processes. For more information, see ActiveSpaces Custom Roles.

4. After creating the necessary users and roles for authentication and authorization
purposes, start the secure TIBCO FTL servers.

5. Ensure that transport encryption has been enabled for the ActiveSpaces data grid
(encrypted_connections=all). For more information, see Enabling Transport
Encryption on a Data Grid.

Procedure
1. Enable permission checking on the ActiveSpaces data grid. For more information,

see Enabling Permission Checking when Creating or Modifying a Data Grid.

Permission checking is now enforced when the grid processes are started. They are
also enforced when you access tables to perform read and write operations.

2. Start the ActiveSpaces data grid processes with a user account that has the tibdg-
internal role. For more information, see Starting Data Grid Processes With
Authentication.

3. Create or modify the table definitions in the ActiveSpaces data grid to grant users or
roles permission to access the table. For more information, see The tibdg Commands
to Set Permissions on a Table.

ActiveSpaces Custom Roles
Permission checking introduces two new roles that are specific to ActiveSpaces. These
roles must be configured in the FTL Server.

TIBCO ActiveSpaces® - Enterprise Edition Administration

123 | Grid and Table Permissions

The tibdg-internal Role

When permission checking is enabled to run a node, proxy, or state keeper, you must
have the tibdg-internal role in addition to any other roles required to start up the
process with authentication and authorization. If you do not have this role, the process
exits during startup. For more information, see Authorization Groups.

The tibdg-ddl Role

When permission checking is enabled, to create or modify a table by using SQL, you
must have the tibdg-ddl role in addition to any other roles required to run as a client
user with authentication and authorization. For more information, see Authorization
Groups.

Impact of Permissions on SQL DDL Statements

To create a table by using SQL, you must have the tibdg-ddl role. The table is created
with the user having read and write permissions on it. To modify or delete a table by using
SQL, you must have the tibdg-ddl role and write permission on the table. Ensure that you
grant permissions to the users or roles that are expected to use the table. If not, they
cannot use the table. For more information about creating a table by using SQL DDL
commands, see Defining a Table by Using SQL DDL Commands.

Enabling Permission Checking when Creating or
Modifying a Data Grid
To enable permission checking when creating or modifying a data grid, you must set the
following properties:

l Set encrypted_connections=all. For more information about encrypting
connections, see Enabling Transport Encryption on a Data Grid.

l Set permissions=enabled.

TIBCO ActiveSpaces® - Enterprise Edition Administration

124 | Grid and Table Permissions

Note: When all connections are encrypted, ensure that all ActiveSpaces
processes, both clients and servers, must be started by using usernames and
passwords. For more details, see Security.

Procedure
1. To enable permission checking when creating or modifying a data grid, use the

following commands:

Option Command To Set Permission

Creating a data
grid

tibdg grid create encrypted_connections=all
permissions=enabled ...

Modifying a data
grid

tibdg grid modify encrypted_connections=all
permissions=enabled ...

Note: If you modify these options on a running grid, ensure that you
restart the grid for the changes to take effect.

The tibdg Commands to Set Permissions on a Table
When data grid permission checking has been enabled, by default, tables created by using
the tibdg create table command do not have permissions set on them, meaning no
users can have access to the data in the table. Only after users or roles are granted
permissions on the table, are users able to read or write data in the table.

The tibdg tool offers two options, grant and revoke to control the permissions given to a
user or a role. For convenience, the grant and revoke commands support granting all
permissions to a user or role, which is the equivalent to granting or revoking both read and
write permissions.

Permissions can be granted to or revoked from a specific user or a role. If a permission has
been granted to a role, then any user with that role has that permission.

TIBCO ActiveSpaces® - Enterprise Edition Administration

125 | Grid and Table Permissions

Granting Permission to a User or a Role

Before you begin
l Ensure that you have transport encryption in the grid by setting encrypted_
connections=all in the grid configuration. See Enabling Transport Encryption on a
Data Grid.

l The user or role must exist in the TIBCO FTL realm server. For more details, see
"Configuring Authentication and Authorization" in TIBCO FTL® Security.

Procedure
1. On a specific table, to grant permissions for a user, use the tibdg user grant

command. Use the following syntax:

tibdg user grant table-name user-name [READ|WRITE|ALL]

2. On a specific table, to grant permissions for a role, use the tibdg role grant
command. Use the following syntax

tibdg role grant table-name role-name [READ|WRITE|ALL]

Revoking Permission from a User or a Role
After a permission has been granted on a table, it can be subsequently revoked by using
the tibdg user revoke or tibdg role revoke command.

Before you begin
l Ensure that you have transport encryption in the grid by setting encrypted_
connections=all in the grid configuration. See Enabling Transport Encryption on a
Data Grid.

Procedure

TIBCO ActiveSpaces® - Enterprise Edition Administration

126 | Grid and Table Permissions

1. On a specific table, to revoke permissions from a user, use the tibdg user revoke
command. Use the following syntax:

tibdg user revoke table-name user-name [READ|WRITE|ALL]

2. On a specific table, to revoke permissions from a role, use the tibdg role revoke
command. Use the following syntax:

tibdg role revoke table-name role-name [READ|WRITE|ALL]

TIBCO ActiveSpaces® - Enterprise Edition Administration

127 | ActiveSpaces Monitoring Service

ActiveSpaces Monitoring Service
ActiveSpaces Monitoring Service is a web-based tool to monitor your data grid and its
component processes.

The monitoring information includes the user operations on the ActiveSpaces grid and the
basic health of the data grid. The user operations include PUT, GET, and DELETE
operations. Statistics such as the number of concurrent queries run and the number of
active listeners help you gauge the overall health of the data grid.

ActiveSpaces Monitoring Service includes the following dashboards:

l ActiveSpaces Grid Activity

l ActiveSpaces Nodes Activity

l ActiveSpaces Proxies Activity

The following is an example of the ActiveSpaces Grid Activity dashboard when the data grid
is actively handling PUT, GET, UPDATE, and DELETE activities.

If you run the samples provided, you get a simple data grid with one node, one state
keeper, and one proxy.

TIBCO ActiveSpaces® - Enterprise Edition Administration

128 | ActiveSpaces Monitoring Service

Note: The metrics tib_as_node_iterget_op_count and tib_as_node_queryget_
op_count represent the number of batches getting operations (dependent on the
prefetch) and not the number of individual rows getting operations.

Using ActiveSpaces Monitoring Service
The Grafana dashboards used until ActiveSpaces 4.0 are now deprecated. ActiveSpaces 4.1
and later depends on the TIBCO FTL dashboards, which use InfluxDB dashboards.

Before you begin
Ensure that the realm service is up and running.

Procedure
1. Open a command window. Navigate to one of the following paths:

Option Description

ActiveSpaces 4.0 or earlier dashboards
(Deprecated Grafana dashboards)

TIBCO_HOME/as/<version>/legacy_
monitor/scripts

ActiveSpaces 4.1 dashboards TIBCO_
HOME
/as/<version>/monitor/readme.md

2. To use the ActiveSpaces Monitoring service, follow the steps listed in the readme.md
file.

3. Open a browser and in the address field enter the URL for the ActiveSpaces
Monitoring Service.

The default value is http://<hostname>:3000.

4. On the dashboard's landing page, provide the login credentials.

The default login credentials are username admin and password admin.

TIBCO ActiveSpaces® - Enterprise Edition Administration

129 | ActiveSpaces Monitoring Service

Result
Monitoring data is displayed in the dashboards.

Important: If the dashboard does not display any data, ensure that the realm
service is running.

TIBCO ActiveSpaces® - Enterprise Edition Administration

130 | Installing or Uninstalling ActiveSpaces Processes as Windows Services

Installing or Uninstalling ActiveSpaces
Processes as Windows Services
Using an ActiveSpaces process as a Windows service is beneficial to start the process
automatically when the computer starts up and when you want the process to continue
running even if the associated user is not logged into the system. In addition, you can
define a policy on the action to take on the failure of the Windows service. You can also
define dependencies on other Windows services.

To arrange ActiveSpaces processes as Windows services, use the prunsrv tool, which is
part of the Apache Procrun package. The ActiveSpaces installer includes this tool on
Windows platforms. For documentation, see Apache Commons. To start the TIBCO FTL
servers as a Windows service, see "TIBCO FTL Processes as Windows Services" in TIBCO
FTL® Administration.

http://commons.apache.org/proper/commons-daemon/procrun.html

TIBCO ActiveSpaces® - Enterprise Edition Administration

131 | Installing ActiveSpaces Processes as Windows Services

Installing ActiveSpaces Processes as
Windows Services
A single command is used to install each process as a Windows service. The command is a
call to prunsrv.exe with the install service parameter (//IS). The following generic
references are made to the installation environment:

l TIBCO_HOME is the top-level installation directory for TIBCO products.

l version is the current version of the product. For example, the current version is
ActiveSpaces.

Before you begin
Ensure that both Java and the TIBCO FTL Windows package and the TIBCO ActiveSpaces
Windows package are installed on a local disk of the host computer (not on a mapped
network drive).

Procedure
1. Model your command based on the following template:

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgservicename --
DisplayName="TIBCO Service Name" --Install=TIBCO_HOME\as\<as_
version>\bin\prunsrv.exe
--StartMode=exe
--StartImage=TIBCO_HOME\as\<as_version>\bin\tibdg***.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-n;process_name;otherparams
--StopMode=exe
--StopImage=TIBCO_HOME\as\<as_version>\bin\tibdg.exe
--StopParams=processtype;stop

Tip: If you plan to copy the code snippet, remember to remove line breaks
for all the sample commands that are associated with prunsrv.exe.

Notice these aspects of the command-line template:

TIBCO ActiveSpaces® - Enterprise Edition Administration

132 | Installing ActiveSpaces Processes as Windows Services

l --Install is the file path of the prunsrv executable.

l --LibraryPath is the directory containing TIBCO FTL and ActiveSpaces DLL
files.

l --StartParams contains the command-line parameters needed to start the
process. Semicolon (;) is the separator character, as prunsrv does not allow
spaces.

l --StopParams contains the command-line parameters needed for the tibdg
administration utility. These include the URL to one or more TIBCO FTL servers
and the name of the ActiveSpaces process to stop. Semicolon (;) is the
separator character, as prunsrv does not allow spaces.

TIBCO ActiveSpaces® - Enterprise Edition Administration

133 | Uninstalling ActiveSpaces Processes as Windows Services

Uninstalling ActiveSpaces Processes as
Windows Services
One command uninstalls any Windows service that you installed by using prunsrv.

Procedure
1. Model your command based on the following template:

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/service_name

TIBCO ActiveSpaces® - Enterprise Edition Administration

134 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

Deployment Scenario for Running
ActiveSpaces Processes as Windows Services
For a system running ActiveSpaces as Windows Services, the same recommendations apply
as they would with any other deployment as to how the processes must be spread out
across multiple computers for fault tolerance and scaling. For more information, see the
"Best Practices for a Production Environment" section in TIBCO ActiveSpaces® - Enterprise
Edition Concepts.

The deployment scenario shows how to run more than one ActiveSpaces processes as a
Windows service on the same computer effectively. The name of the data grid is default.
The following processes are running in the data grid:

Processes Numbers

Realm Service Three

State Keeper Three

Node Two nodes per copyset

Proxy Two

Copyset Two

TIBCO ActiveSpaces® - Enterprise Edition Administration

135 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

The processes in the data grid run as Windows Services.

ActiveSpaces Processes as Windows Services

Preparing for Installation
Before installing ActiveSpaces processes as Windows services, create folders to save the
realm data and the logs. Create a TIBCO FTL configuration file and tibdg configuration
scripts that can be later used to create the data grid.

Procedure
1. Create the following directories:

mkdir C:\activespacesdata
mkdir C:\activespacesdata_default
mkdir C:\activespacesdata\logs
mkdir C:\activespacesdata\realm_data

The logs from the TIBCO FTL servers and ActiveSpaces processes are stored in the
logs directory. The realm data from the TIBCO FTL servers are stored in the realm_
data directory. The ActiveSpaces grid data for a data grid named _default is stored
in the _default directory.

2. Create a TIBCO FTL configuration file with the following content and save it to
C:\activespacesdata\ftl.yaml.

TIBCO ActiveSpaces® - Enterprise Edition Administration

136 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

Note: TIBCO recommends that you run a separate TIBCO FTL server on
each computer.

globals:
core.servers:

ftl1: localhost:8085
ftl2: localhost:8185
ftl3: localhost:8285

servers:
ftl1:
- realm:

data: C:\activespacesdata\realm_data
logfile: C:\activespacesdata\logs\ftl1-rs-log.txt

ftl2:
- realm:

data: C:\activespacesdata\realm_data
logfile: C:\activespacesdata\logs\ftl2-rs-log.txt

ftl3:
- realm:

data: C:\activespacesdata\realm_data
logfile: C:\activespacesdata\logs\ftl3-rs-log.txt

services:
realm: {}

3. Create a tibdg configuration script with the following content and save it to
C:\activespacesdata_default.tibdg.

grid create copyset_size=2
copyset create cs_01
copyset create cs_02
node create --copyset cs_01 --dir C:/activespacesdata/_default/cs_
01.n_1_data cs_01.n_1
node create --copyset cs_01 --dir C:/activespacesdata/_default/cs_
01.n_2_data cs_01.n_2
node create --copyset cs_02 --dir C:/activespacesdata/_default/cs_
02.n_1_data cs_02.n_1
node create --copyset cs_02 --dir C:/activespacesdata/_default/cs_
02.n_2_data cs_02.n_2
keeper create --dir C:/activespacesdata/_default/k_1_data k_1
keeper create --dir C:/activespacesdata/_default/k_2_data k_2
keeper create --dir C:/activespacesdata/_default/k_3_data k_3
proxy create p_01

TIBCO ActiveSpaces® - Enterprise Edition Administration

137 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

proxy create p_02
table create t1 key long
column create t1 value string

This configuration file is used later to create the data grid.

Installing TIBCO FTL Server as a Windows Service

Before you begin
Complete the steps mentioned in Preparing for Installation.

Procedure
1. Based on the YAML file created in Preparing for Installation, install three FTL servers,

each pointing to ftl.yaml configuration file and each having a unique name.

TIBCO_HOME\ftl\<ftl_version>\bin\prunsrv.exe //IS/tibftlserver1 --
DisplayName="TIBCO FTL Server 1"
--Install=TIBCO_HOME\ftl\<ftl_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\ftl\<ftl_
version>\bin\tibftlserver.exe
--LibraryPath=TIBCO_HOME\ftl\<ftl_version>\bin --StartParams=-n;ftl1;-c;
C:\activespacesdata\ftl.yaml --StopMode=exe --StopTimeout=30
--StopImage=TIBCO_HOME\ftl\<ftl_version>\bin\tibftladmin.exe --
StopParams=--ftlserver;
http://localhost:8085;-x

TIBCO_HOME\ftl\<ftl_version>\bin\prunsrv.exe //IS/tibftlserver2 --
DisplayName="TIBCO FTL Server 2"
--Install=TIBCO_HOME\ftl\<ftl_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\ftl\<ftl_
version>\bin\tibftlserver.exe
--LibraryPath=TIBCO_HOME\ftl\<ftl_version>\bin --StartParams=-n;ftl2;-c;
C:\activespacesdata\ftl.yaml --StopMode=exe --StopTimeout=30
--StopImage=TIBCO_HOME\ftl\<ftl_version>\bin\tibftladmin.exe --
StopParams=--ftlserver;
http://localhost:8185;-x

TIBCO ActiveSpaces® - Enterprise Edition Administration

138 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

TIBCO_HOME\ftl\<ftl_version>\bin\prunsrv.exe //IS/tibftlserver3 --
DisplayName="TIBCO FTL Server 3"
--Install=TIBCO_HOME\ftl\<ftl_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\ftl\<ftl_
version>\bin\tibftlserver.exe
--LibraryPath=TIBCO_HOME\ftl\<ftl_version>\bin --StartParams=-n;ftl3;-c;
C:\activespacesdata\ftl.yaml --StopMode=exe --StopTimeout=30
--StopImage=TIBCO_HOME\ftl\<ftl_version>\bin\tibftladmin.exe --
StopParams=--ftlserver;
http://localhost:8285;-x

Tip: If you plan to copy the code snippet, remember to remove line breaks
for all the sample commands that are associated with prunsrv.exe.

In this example, a separate port was specified for each of the servers (8085, 8185,
8285) to allow all three TIBCO FTL servers to run on the same computer. In most
cases, the same port can be used if the TIBCO FTL servers were being run on three
different computers. The ActiveSpaces start parameters for each process must use a
pipe (“|”) separated list of URLs so that it can communicate with any of the TIBCO
FTL servers. In this case, the pipe-separated list would be
http://localhost:8085|http://localhost:8185|http://localhost:8285. If
different ports are chosen in the ftl.yaml config file, those start parameters must
also be updated for the ActiveSpaces processes.

Creating the ActiveSpaces Data Grid

Before you begin
1. Complete the steps listed in Preparing for Installation.

2. Complete the steps listed in Installing TIBCO FTL Server as a Windows Service.

3. On Microsoft Windows, open the Services window and manually start each of the
TIBCO FTL servers. Ensure that the TIBCO FTL servers are running. Verify by looking
at the logs that are written to C:\activespacesdata\logs and the realm data that
is written to C:\activespacesdata\realm_data.

Procedure
1. Create the example data grid by using the tibdg.exe administration tool, which

TIBCO ActiveSpaces® - Enterprise Edition Administration

139 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

creates the data grid definition in the realm. The data grid definition saved from
Preparing for Installation is found in C:\activespacesdata_default.tibdg.

TIBCO_HOME\as\<as_version>\bin\tibdg -r
"http://localhost:8085|http://localhost:8185|http://localhost:8285"
-s C:\activespacesdata_default.tibdg

2. After creating the data grid, check the status by using the tibdg.exe administration
tool.

TIBCO_HOME\as\<as_version>\bin\tibdg -r
"http://localhost:8085|http://localhost:8185|http://localhost:8285"
status

The output shows the data grid and the processes that are not yet running.

Data Grid Status

TIBCO ActiveSpaces® - Enterprise Edition Administration

140 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

Installing the ActiveSpaces State Keeper as a
Windows Service

Before you begin
Perform the following tasks:

1. Before using ActiveSpaces processes as Windows services, ensure that both Java and
the TIBCO FTL Windows package and the ActiveSpaces Windows package are
installed on a local disk of the host computer (not on a mapped network drive).

2. Complete the steps listed in Preparing for Installation.

3. Complete the steps listed in Installing TIBCO FTL Server as a Windows Service.

4. Complete the steps listed in Creating the ActiveSpaces Data Grid.

Procedure
1. Use the following command to install three state keeper processes as Windows

Services:

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgkeeper_default_k_1
--DisplayName="TIBCO ActiveSpaces Statekeeper k_1 (_default)" --
Install=TIBCO_HOME\as\<as_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\as\<as_
version>\bin\tibdgkeeper.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";-n;k_1;--logfile;C:\activespacesdata\logs_default-k_1-log.txt
--StopMode=exe --StopTimeout=30 --StopImage=TIBCO_HOME\as\<as_
version>\bin\tibdg.exe
--StopParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";keeper;stop;
k_1

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgkeeper_default_k_2
--DisplayName="TIBCO ActiveSpaces Statekeeper k_2 (_default)" --
Install=TIBCO_HOME\as\<as_version>\bin\prunsrv.exe

TIBCO ActiveSpaces® - Enterprise Edition Administration

141 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

--StartMode=exe --StartImage=TIBCO_HOME\as\<as_
version>\bin\tibdgkeeper.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";-n;k_2;--logfile;C:\activespacesdata\logs_default-k_2-log.txt
--StopMode=exe --StopTimeout=30 --StopImage=TIBCO_HOME\as\<as_
version>\bin\tibdg.exe
--StopParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";keeper;
stop;k_2

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgkeeper_default_k_3
--DisplayName="TIBCO ActiveSpaces Statekeeper k_3 (_default)" --
Install=TIBCO_HOME\as\<as_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\as\<as_
version>\bin\tibdgkeeper.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";-n;k_3;--logfile;C:\activespacesdata\logs_default-k_3-log.txt
--StopMode=exe --StopTimeout=30 --StopImage=TIBCO_HOME\as\<as_
version>\bin\tibdg.exe
--StopParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";keeper;
stop;k_3

Tip: If you plan to copy the code snippet, remember to remove line breaks
for all the sample commands that are associated with prunsrv.exe.

2. On Microsoft Windows, open the Windows Services panel and manually start each of
the state keepers.

The logs are written to C:\activespacesdata\logs and the process data is written
to C:\activespacesdata_default\process_name.

TIBCO ActiveSpaces® - Enterprise Edition Administration

142 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

Installing the ActiveSpaces Node as a Windows
Service

Before you begin
Perform the following tasks:

1. Before using ActiveSpaces processes as Windows services, ensure that both Java and
the TIBCO FTL Windows package and the ActiveSpaces Windows package are
installed on a local disk of the host computer (not on a mapped network drive).

2. Complete the steps listed in Preparing for Installation.

3. Complete the steps listed in Installing TIBCO FTL Server as a Windows Service.

4. Complete the steps listed in Creating the ActiveSpaces Data Grid.

Procedure
1. Use the following commands to install the four nodes (two per copyset):

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgnode_default_cs01_1
--DisplayName="TIBCO ActiveSpaces Node cs_01.n_1 (_default)" --
Install=TIBCO_HOME\as\<as_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\as\<as_version>\bin\tibdgnode.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";
-n;cs_01.n_1;
--logfile;C:\activespacesdata\logs_default-cs_01.n_1-log.txt --
StopMode=exe --StopTimeout=30
--StopImage=TIBCO_HOME\as\<as_version>\bin\tibdg.exe
--StopParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";node;
stop;cs_01.n_1

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgnode_default_cs01_2
--DisplayName="TIBCO ActiveSpaces Node cs_01.n_2 (_default)" --
Install=TIBCO_HOME\as\<as_version>\bin\prunsrv.exe

TIBCO ActiveSpaces® - Enterprise Edition Administration

143 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

--StartMode=exe --StartImage=TIBCO_HOME\as\<as_version>\bin\tibdgnode.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";
-n;cs_01.n_2;
--logfile;C:\activespacesdata\logs_default-cs_01.n_2-log.txt --
StopMode=exe --StopTimeout=30
--StopImage=TIBCO_HOME\as\<as_version>\bin\tibdg.exe
--StopParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";node;stop;
cs_01.n_2

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgnode_default_cs02_1
--DisplayName="TIBCO ActiveSpaces Node cs_02.n_1 (_default)" --
Install=TIBCO_HOME\as\<as_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\as\<as_version>\bin\tibdgnode.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";
-n;cs_02.n_1;
--logfile;C:\activespacesdata\logs_default-cs_02.n_1-log.txt --
StopMode=exe --StopTimeout=30
--StopImage=TIBCO_HOME\as\<as_version>\bin\tibdg.exe
--StopParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";node;stop;
cs_02.n_1

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgnode_default_cs02_2
--DisplayName="TIBCO ActiveSpaces Node cs_02.n_2 (_default)" --
Install=TIBCO_HOME\as\<as_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\as\<as_version>\bin\tibdgnode.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";
-n;cs_02.n_2;
--logfile;C:\activespacesdata\logs_default-cs_02.n_2-log.txt --

TIBCO ActiveSpaces® - Enterprise Edition Administration

144 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

StopMode=exe --StopTimeout=30
--StopImage=TIBCO_HOME\as\<as_version>\bin\tibdg.exe
--StopParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";node;stop;
cs_02.n_2

Tip: If you plan to copy the code snippet, remember to remove line breaks
for all the sample commands that are associated with prunsrv.exe.

2. On Windows, open the Windows Services panel and manually start each of the nodes.

The logs are written to C:\activespacesdata\logs and the process data is written to
C:\activespacesdata_default\process_name.

Installing the ActiveSpaces Proxy as a Windows
Service

Before you begin
Perform the following tasks:

1. Before using ActiveSpaces processes as Windows services, ensure that both Java and
the TIBCO FTL Windows package and the ActiveSpaces Windows package are
installed on a local disk of the host computer (not on a mapped network drive).

2. Complete the steps listed in Preparing for Installation.

3. Complete the steps listed in Installing TIBCO FTL Server as a Windows Service.

4. Complete the steps listed in Creating the ActiveSpaces Data Grid.

Procedure
1. To install both the proxies, use the following commands:

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgproxy_default_p_01

TIBCO ActiveSpaces® - Enterprise Edition Administration

145 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

--DisplayName="TIBCO ActiveSpaces Proxy p_01 (_default)" --
Install=TIBCO_HOME\as\<as_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\as\<as_
version>\bin\tibdgproxy.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";-n;p_01;--logfile;C:\activespacesdata\logs_default-p_01-log.txt
--StopMode=exe --StopTimeout=30 --StopImage=TIBCO_HOME\as\<as_
version>\bin\tibdg.exe
--StopParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";proxy;stop;
p_01

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgproxy_default_p_02
--DisplayName="TIBCO ActiveSpaces Proxy p_02 (_default)" --
Install=TIBCO_HOME\as\<as_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\as\<as_
version>\bin\tibdgproxy.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";-n;p_02;--logfile;C:\activespacesdata\logs_default-p_02-log.txt
--StopMode=exe --StopTimeout=30 --StopImage=TIBCO_HOME\as\<as_
version>\bin\tibdg.exe
--StopParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";proxy;stop;
p_02

Tip: If you plan to copy the code snippet, remember to remove line breaks
for all the sample commands that are associated with prunsrv.exe.

2. On Windows, open the Windows Services panel in Windows and manually start each
of the proxies.

The logs are written to C:\activespacesdata\logs.

TIBCO ActiveSpaces® - Enterprise Edition Administration

146 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

Installing the ActiveSpaces tibdgadmind as a
Windows Service

Before you begin
Perform the following tasks:

1. Before using ActiveSpaces processes as Windows services, ensure that both Java and
the TIBCO FTL Windows package and the ActiveSpaces Windows package are
installed on a local disk of the host computer (not on a mapped network drive).

2. Complete the steps listed in Preparing for Installation.

3. Complete the steps listed in Installing TIBCO FTL Server as a Windows Service.

4. Complete the steps listed in Creating the ActiveSpaces Data Grid.

Procedure
1. Use the following command to install two tibdgadmind processes:

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgadmind1
--DisplayName="TIBCO ActiveSpaces tibdgadmind 1" --Install=TIBCO_
HOME\as\<as_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\as\<as_
version>\bin\tibdgadmind.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-
r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";-l;localhost:7171 --StopMode=exe --StopTimeout=30
--StopImage=TIBCO_HOME\as\<as_version>\bin\tibdg.exe --StopParams=-
t;http://localhost:7171;admind;stop

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //IS/tibdgadmind2
--DisplayName="TIBCO ActiveSpaces tibdgadmind 2" --Install=TIBCO_
HOME\as\<as_version>\bin\prunsrv.exe
--StartMode=exe --StartImage=TIBCO_HOME\as\<as_
version>\bin\tibdgadmind.exe
--LibraryPath=TIBCO_HOME\as\<as_version>\bin;TIBCO_HOME\ftl\<ftl_version>\bin
--StartParams=-

TIBCO ActiveSpaces® - Enterprise Edition Administration

147 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

r;"http://localhost:8085|http://localhost:8185|http://localhost:828
5";-l;localhost:7271 --StopMode=exe --StopTimeout=30
--StopImage=TIBCO_HOME\as\<as_version>\bin\tibdg.exe --StopParams=-
t;http://localhost:7271;admind;stop

Tip: If you plan to copy the code snippet, remember to remove line breaks
for all the sample commands that are associated with prunsrv.exe.

2. On Windows, open the Windows Services panel to start each of the tibdgadmind
processes manually.

Running an ActiveSpaces Sample

Procedure
1. To verify that the data grid is functioning and all the processes are running, run the

following command:

tibdg status

2. Run the ActiveSpaces sample installed in TIBCO_HOME\as\<as_version>\samples\bin
by passing the values from the URLs of the TIBCO FTL servers (-r
http://localhost:8085|http://localhost:8185|http://localhost:8285) and the
data grid name (-g _default).

Uninstalling the Sample Windows Services

Procedure
1. To uninstall the sample ActiveSpaces processes as Windows services, use the

following command:

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibftlserver1
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibftlserver2

TIBCO ActiveSpaces® - Enterprise Edition Administration

148 | Deployment Scenario for Running ActiveSpaces Processes as Windows Services

TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibftlserver3
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgkeeper_default_k_1
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgkeeper_default_k_2
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgkeeper_default_k_3
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgproxy_default_p_01
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgproxy_default_p_02
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgnode_default_cs01_1
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgnode_default_cs01_2
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgnode_default_cs02_1
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgnode_default_cs02_2
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgadmind1
TIBCO_HOME\as\<as_version>\bin\prunsrv.exe //DS/tibdgadmind2

Tip: If you plan to copy the code snippet, remember to remove line breaks
for all the sample commands that are associated with prunsrv.exe.

TIBCO ActiveSpaces® - Enterprise Edition Administration

149 | Stopping a Data Grid Gracefully

Stopping a Data Grid Gracefully
To stop a data grid, stop all its component processes in this order.

See also, Sample Scripts.

Procedure
1. Optional. Back up the data grid definition to a file.

2. Stop all proxies.

Stopping all proxies prevents clients from accessing the data grid. Open objects in
client programs become invalid, and their methods generate exceptions.

3. Stop all nodes.

4. Stop all state keepers.

5. Optional. Stop the realm service.

Selecting a Secondary Node to be Promoted as
the Primary Node
When administratively stopping a node, you can promote a specific secondary node as the
primary node for the copyset. As a result, instead of waiting for a secondary node to time
out the existing primary node and take over as the new primary node, you can select the
new primary node from the existing set of secondary nodes. The tibdg tool provides an
additional -promote <node_to_promote> option to let you select the secondary node.

Procedure
1. To promote a specific secondary node as a primary, use the following command:

tibdg -r <realm_url> node stop -promote <node_to_promote> <node_to_
stop>

TIBCO ActiveSpaces® - Enterprise Edition Administration

150 | Stopping a Data Grid Gracefully

Best Practices for Node Synchronization
In an ActiveSpaces grid with more than one node per copyset, each node has a full copy of
the data for that copyset. When a primary node detects that a secondary node is not
running, it updates the copyset information in the state keeper to indicate the secondary
node is dead or out of sync and no longer expects to receive responses from that node
while replicating write operations for that copyset.

When the secondary node is restarted, it goes through a background synchronization
process. After synchronization, the secondary node is updated in the state keeper as an
alive secondary, meaning it is eligible to take over if it detects that the primary node in
that copyset is no longer running.

To avoid data loss, a secondary node that is not synchronized, never attempts to become
the primary node in the copyset, even if the primary node is no longer running.

Based on that expected behavior, best practices when stopping and starting node
processes such as during an upgrade or other maintenance are:

• After stopping a secondary node and then restarting it, an administrator must wait
until the secondary node has completed its background synchronization process
before stopping the primary node. In ActiveSpaces 4.6.0 and later, the tibdg status
and tibdg node status commands include information to know if a secondary
node is synchronized or not. Log files also include this information.

• An administrator must use the tibdg node stop command with the optional -
promote argument to stop the existing primary node and promote a secondary node
in its place. This option minimizes downtime for the secondary to detect that the
primary is gone and performs extra validation to ensure the secondary node being
promoted is in the synced state. The tibdg node stop command when used with
the optional -promote argument fails when the secondary node to promote is dead
or not synchronized.

For more information about the -promote option, see Selecting a Secondary Node to be
Promoted as the Primary Node.

Timeouts During Maintenance
During grid maintenance, especially when stopping tibdgproxy or tibdgnode processes, an
ActiveSpaces client application can experience timeouts for requests it has made to the

TIBCO ActiveSpaces® - Enterprise Edition Administration

151 | Stopping a Data Grid Gracefully

grid. The client application should be prepared to handle these timeout errors being
generated in the application such as by logging or retrying the request.

For example, stopping a primary node causes requests to time out until the secondary
node detects that the primary node is gone and takes over as the new primary node for
that copyset. In addition, stopping a synchronized secondary node can cause timeouts
until the primary node can successfully update the state keeper to indicate that the
secondary node is out of sync.

When you restart the secondary node that is out of sync, a background synchronization
process takes place. During the synchronization process, the ongoing live operations that
are coming to the grid do not time out. Once the background synchronization of the
secondary node is complete, the secondary node performs a small internal final step with a
primary node.

If at all there are any operations that are timed out during this final step, the client
application must handle such operations.

The -promote argument to the tibdg node stop command minimizes the amount of time
that it takes to stop a primary node and promote a synchronized secondary node in its
place.

For more information about the -promote option, see Selecting a Secondary Node to be
Promoted as the Primary Node.

TIBCO ActiveSpaces® - Enterprise Edition Administration

152 | Clearing a Data Grid Definition

Clearing a Data Grid Definition
To delete a data grid definition, complete this task.

Procedure
1. Stop all proxies, nodes, and state keepers.

2. Run the tibdg grid delete command for the specific data grid that you want to
delete.

3. Delete the data directories of the nodes and state keepers.

4. Optional. Create the data grid definition anew.

TIBCO ActiveSpaces® - Enterprise Edition Administration

153 | Checkpoints

Checkpoints
ActiveSpaces provides the ability to create checkpoints to save the state and data in a

data grid at a specific point in time. Checkpoint files can then be used to restore the data
grid.

For details about the types of checkpoints, see "Checkpoints Types" in TIBCO ActiveSpaces®
- Enterprise Edition Concepts.

Creating a checkpoint fails in the following scenarios:

l A realm service is not reachable.

l A quorum of state keepers is not running.
For more details, see "Checkpoints" in TIBCO ActiveSpaces® - Enterprise Edition Concepts.

Checkpoints on disk use the hard link feature of the file system to save space when
multiple checkpoints refer to the same file on disk. Copying a checkpoint to a different file
system causes the files in that checkpoint to occupy their full amount of space on the new
file system.

Creating a Checkpoint
A checkpoint can be created manually by using the ActiveSpaces administration tool
tibdg. You can also create periodic checkpoints by using ActiveSpaces.

Creating a Manual Checkpoint

Before you begin
Before creating a manual checkpoint, ensure that the following prerequisites are met:

l Ensure that the backup and satellite realm services are connected and are in sync
with their regular servers. For example, satellite is in sync with primary, backup is in
sync with satellite, and backup is in sync with primary. For more information about

TIBCO ActiveSpaces® - Enterprise Edition Administration

154 | Checkpoints

the types of realm services, see the "Server Roles and Relationships" section in the
TIBCO FTL® Administration.

l Ensure that a quorum of state keepers is running.

l Optionally, switch the data grid to maintenance mode. This ensures that no writes to
the data grid occur when the checkpoint is taken. After the checkpoint is created,
remember to take the data grid out of maintenance mode.

Procedure
1. Use the following command to create a manual checkpoint:

tibdg [-g <grid_name>] -r <realm_service_URL> checkpoint create
<checkpoint_name>

Creating a Periodic Checkpoint
The creation of periodic checkpoints and the number of checkpoints to retain is specified
when you configure your data grid.

Before you begin
Before creating a checkpoint, ensure that the following prerequisites are met:

l Ensure that a quorum of state keepers is running.

The following data grid configuration options apply to periodic checkpoints:

checkpoint_interval

Use to specify the time interval (in seconds) for creating checkpoints. The default is 0,
which means periodic checkpoints are not created.

checkpoint_retention_limit

Use to specify the number of checkpoints to retain. Older checkpoints are automatically
removed as long as no active queries use the checkpoint.

Procedure
1. To enable the creation of a periodic checkpoint, use the grid create command as

TIBCO ActiveSpaces® - Enterprise Edition Administration

155 | Checkpoints

is shown in the following example:

grid create copyset_size=2 statekeeper_count=3 checkpoint_
interval=600 checkpoint_retention_limit=5 mygrid

Listing Checkpoints
The tibdg administration tool can be used to see a list of the checkpoints that are taken
for a data grid.

Procedure
1. Use the following command to view the list of checkpoints taken:

tibdg [-g <grid_name>] -r <realm_service_URL> checkpoint list

Result
The following information is displayed when you view a list of checkpoints:

Field Description

ID A unique identifier assigned to each checkpoint.

NAME Checkpoint name.

l _periodic is used as the name for all periodic checkpoints.

l Manual checkpoints can be assigned a user-friendly name.

DIRECTORY The name of the checkpoint subdirectory in each node's checkpoints
directory.

TIMESTAMP Timestamp of when the checkpoint was taken.

STATUS The STATUS field has one of the following values:

l in progress - When you are currently in the process of taking a
checkpoint

TIBCO ActiveSpaces® - Enterprise Edition Administration

156 | Checkpoints

l success - When the checkpoint was completed successfully.

l failure - When the errors occurred while taking the checkpoint

l mirroring - When a checkpoint is being received by the mirror grid.
The primary grid displays the status as success.

Listing Tables in a Checkpoint
The tibdg administration tool can be used to see a list of the user tables that a checkpoint
contains.

Procedure
1. Use the following command to see the list of tables in a checkpoint:

tibdg [-g <grid_name>] –r <realm_service_URL> checkpoint tables
[<checkpoint_name>]

Note: If a checkpoint name or ID is not specified, the tables in the last
checkpoint taken are displayed.

The list of tables includes information about how the table is configured, including its
primary key and secondary indexes.

Deleting Checkpoints
The ActiveSpaces administration tool tibdg provides the checkpoint delete command
to delete a checkpoint by its name or to delete any checkpoint by its ID.

Procedure
1. Use the following command to delete a checkpoint:

TIBCO ActiveSpaces® - Enterprise Edition Administration

157 | Checkpoints

tibdg [-g <grid_name>] -r <realm_service_URL> checkpoint delete
[<checkpoint_name> or <checkpoint_ID>]

Result
This removes the checkpoint from the list of checkpoints, and then periodically, checkpoint
directories that are no longer on the list are removed from disk.

Automatically Deleting Old Checkpoints
The checkpoint_retention_limit configuration option can be used to ensure that the
number of checkpoints does not keep growing and consuming disk space.

For more information about retention limits, see Retention Limits. As mentioned
previously, the number of checkpoints to keep for your data grid can be controlled by
using the grid configuration option:

l checkpoint_retention_limit (Default: 0)

The default checkpoint_retention_limit is 0, which means that older checkpoints are
not removed.

Validating Checkpoints
There are some scenarios with Disaster Recovery where specifying the data grid to use as
the primary grid in a gridset might fail due to checkpoints already taken for the data grid.

Procedure
1. The tibdg command can be used to validate the checkpoint a data grid uses before

calling the command to specify the primary grid of a gridset:

tibdg [-g <grid_name>] –r <realm_service_URL> checkpoint validate
[<checkpoint_name_or_id>]

TIBCO ActiveSpaces® - Enterprise Edition Administration

158 | Checkpoints

Note: If a checkpoint name or ID is not specified, the latest checkpoint
taken is validated.

Checkpoint Properties
You cannot write data into a checkpoint after it has been created, but ActiveSpaces
provides the ability to query or retrieve data contained in a checkpoint.

ActiveSpaces supports the following properties for checkpoints:

TIBDG_SESSION_PROPERTY_STRING_CHECKPOINT_NAME

The property is set so that a named checkpoint is used as the data source for the
session's read operations (GET, Iterator, Queries, or Statements). Write operations (PUT,
DELETE) do not support this property.

TIBDG_TABLE_PROPERTY_STRING_CHECKPOINT_NAME

Set this property so that a named checkpoint is used as the data source for the read
operations (GET or Iterator) of a table. Write operations (PUT and DELETE) do not
support this property. If this property is not set, the table uses the checkpoint name
specified on the session, if any. If this property is set, it overrides any checkpoint name
set on the session.

TIBDG_GRIDMETADATA_PROPERTY_STRING_CHECKPOINT_NAME

The property is set so that a named checkpoint is used when retrieving metadata for the
data grid or tables.

TIBDG_STATEMENT_PROPERTY_STRING_CONSISTENCY

Set this property to TIBDG_STATEMENT_CONSISTENCY_SNAPSHOT when using checkpoints
for reading data. Since a checkpoint is already globally consistent, you must not use
global consistency when reading or querying with checkpoints.

See the API documentation on the following methods:

l tibdgConnection_CreateSession

l tibdgConnection_GetGridMetadata

l tibdgSession_CreateStatement

TIBCO ActiveSpaces® - Enterprise Edition Administration

159 | Checkpoints

l tibdgTable_CreateIterator

l tibdgTable_Get

TIBDG_SESSION_CHECKPOINT_NAME_LATEST

Use this special checkpoint name with the TIBDG_SESSION_PROPERTY_STRING_
CHECKPOINT_NAME property to refer to the latest successful checkpoint known by the
proxy. This name is useful for clients that want to read from the latest checkpoint
without knowing the checkpoint name, or for grids that are configured to create
periodic checkpoints automatically.

TIBDG_TABLE_CHECKPOINT_NAME_LATEST

Use this special checkpoint name with the TIBDG_TABLE_PROPERTY_STRING_CHECKPOINT_
NAME property to refer to the latest successful checkpoint known by the proxy. This
property is useful for clients that want to read from the latest checkpoint without
knowing the checkpoint name, or for grids that are configured to create periodic
checkpoints automatically.

Checkpoint Best Practices
Creating a checkpoint is recommended after the following events:

l When a data grid is first brought up

l After any initial data is loaded into the data grid

l Before and after data grid configuration changes

l Before and after table configuration changes. For example, adding or deleting a
table, index, or a column

l Before and after grid data redistribution

l When an abnormal event occurs in the data grid, such as a node goes down.
Additionally, you must determine the time interval to take periodic checkpoints such that
the amount of data that can be lost between checkpoints satisfies your data recovery
requirements.

TIBCO ActiveSpaces® - Enterprise Edition Administration

160 | Caching Rows in a Proxy

Caching Rows in a Proxy
The proxy can cache rows from a checkpoint in memory to improve read performance. It is
an optional process. If a proxy is enabled for checkpoint row caching, the output of the
checkpoint get operation is obtained from the cache of the proxy. If the row is not present
in the cache, the proxy obtains the row from the nodes and caches the result. When the
proxy restarts, the cached information is lost. Query and iterator result rows are not
cached.

For more information about how to specify a checkpoint name in the get operation, see
Checkpoint Properties.

Note: For clients connecting to mirror grids, all the get operations operate on a
checkpoint even if no checkpoint is specified in the properties of a client.

Configuration

By default, the cache size is 0 and the caching of checkpoint rows is disabled. To enable
caching of checkpoint rows for all proxies in a grid or individual proxies, set the maximum
size of the cache, in bytes, in the grid property proxy_checkpoint_cache_size. For
example, tibdg proxy modify p1 proxy_checkpoint_cache_size=100000000. If the proxy
property is set, it overrides the grid property, including disabling of caching by setting the
property to 0 (tibdg proxy modify p1 proxy_checkpoint_cache_size=0). If the proxy_
checkpoint_cache_size property is modified (either for the grid or proxy) while the proxy
is running, the proxy must be restarted for the new value to take effect.

The proxy_checkpoint_cache_size property is a soft limit. The cache may exceed the limit
if the cache is full and a new row is fetched from a checkpoint. When the cache is full, the
cache uses the least recently used (LRU) algorithm to evict rows.

Client Usage

To refer to the latest successful checkpoint known by a proxy, clients can use the special
checkpoint names:

l On a session object: TIBDG_SESSION_CHECKPOINT_NAME_LATEST

TIBCO ActiveSpaces® - Enterprise Edition Administration

161 | Caching Rows in a Proxy

l On a table object: TIBDG_TABLE_CHECKPOINT_NAME_LATEST

This checkpoint name is useful for clients that want to read from the latest checkpoint
without knowing the checkpoint name, or for grids that are configured to create periodic
checkpoints automatically.

If a checkpoint is deleted, the cache of a proxy is not cleared immediately. However, rows
from a deleted checkpoint are not obtained from the cache. The memory is reclaimed as
the rows are removed from the cache.

At all times, the cache is populated with the rows that are explicitly requested by a client.

Client API Example

When the scope of the checkpoint name property is a table, a client can read from a
checkpoint or live data by using the same session object. It is useful for reference tables
that are updated infrequently and can be cached in the proxy for faster read performance,
whereas other read operations are performed by using live data.

Here is an example API using C language:

Caution: Code snippets in the PDF can have undesired line breaks because of
space constraints. Before directly copying and running them in your program,
they must be verified.

tibdgSession session = tibdgConnection_CreateSession(ex, connection,
NULL);
// Session is created with empty properties - no checkpoint.

tibdgTable t1 = tibdgSession_OpenTable(ex, session, “t1”, NULL);
// tibdgTable t1 opened on live data

tibProperties props = tibProperties_Create(ex);

tibProperties_SetString(ex, props, TIBDG_TABLE_PROPERTY_STRING_
CHECKPOINT_NAME, “c1”);
tibdgTable c1_t1 = tibdgSession_OpenTable(ex, session, “t1”, props);
// tibdgTable c1_t1 opened on checkpoint c1

tibProperties_SetString(ex, props, TIBDG_TABLE_PROPERTY_STRING_
CHECKPOINT_NAME, TIBDG_TABLE_CHECKPOINT_NAME_LATEST);
tibdgTable cLatest_t1 = tibdgSession_OpenTable(ex, session, “t1”,
props);
// tibdgTable cLatest_t1 opened on the latest successful checkpoint

TIBCO ActiveSpaces® - Enterprise Edition Administration

162 | Caching Rows in a Proxy

tibdgRow t1_key = tibdgRow_Create(ex, t1);
tibdgRow_SetLong(ex, t1_key, "key", 0);
tibdgRow t1_live_row = tibdgTable_Get(ex, t1, t1_key);
// row t1_live_row contains row from live data
// live data is not cached in the proxy

tibdgRow c1_t1_key = tibdgRow_Create(ex, c1_t1);
tibdgRow_SetLong(ex, c1_t1_key, "key", 0);
tibdgRow c1_t1_row = tibdgTable_Get(ex, c1_t1, c1_t1_key);
// row c1_t1_row contains row from checkpoint c1

tibdgRow cLatest_t1_key = tibdgRow_Create(ex, cLatest_t1);
tibdgRow_SetLong(ex, cLatest_t1_key, "key", 0);
tibdgRow cLatest_t1_row = tibdgTable_Get(ex, cLatest_t1, cLatest_t1_
key);
// row cLatest_t1_row contains row from the latest checkpoint known by
the proxy

TIBCO ActiveSpaces® - Enterprise Edition Administration

163 | Live Backup and Restore

Live Backup and Restore
ActiveSpaces live backup and restore is a feature that uses the concept of checkpoints to

provide the ability to create a grid-wide consistent backup of a running data grid. A
checkpoint is a set of persistent files containing the state and data from a single data grid
at a specific point in time. A checkpoint can then be used to restore a complete data grid
on the same computer, or to move the entire data grid to different computers.

The backup and restore procedure described in this document can only be used when a
single data grid is running in a realm. No other processes can be configured in the realm or
the restoring can be corrupted. The backup of the data grid is taken while the processes of
the data grid are running. To restore the data grid processes from a backup, all processes
of the data grid are first stopped and a full restore of the entire data grid is done from the
backup.

To take a backup of an ActiveSpaces data grid, you must take a backup of the following
processes:

l Realm Service

l ActiveSpaces State Keepers

l ActiveSpaces Nodes of each copyset

When a data grid has to be restored, you must ensure that the following components are
restored:

l The realm service database

l The data grid configuration in the realm service

l The state keepers

l The nodes of each copyset

The data used to restore the data grid configuration, state keepers and nodes must be
from the same backup. Before creating a backup of the data grid, you can optionally switch
the data grid to maintenance mode to prevent writes from occurring when backing up the
data grid. For more information, see Preventing Data Loss by Using the Maintenance Mode.

TIBCO ActiveSpaces® - Enterprise Edition Administration

164 | Live Backup and Restore

Backup Data Locations

Realm service

An ActiveSpaces data grid is run inside of a TIBCO FTL realm. A realm embraces all the
administrative definitions and configurations that enable communication among the
processes of the data grid and its clients. A realm service contains the complete realm
definition. For more details, see "Processes in ActiveSpaces" section in the TIBCO
ActiveSpaces® Concepts guide.

Each realm service has a set of working data files, which contain the configuration
information about the FTL realm and ActiveSpaces data grid. These data files are stored
in separate locations for each realm service. By default, when a realm service is started,
it uses the current directory to store the data files. You can also specify the directory a
realm service must use for its data files by passing the --data command-line option
when starting the tibrealmserver executable. If you stop a realm service and then
restart it, the realm service reads its configuration from previously existing data files.

Remember that in a realm, only the primary realm service can accept realm
configuration updates. The primary realm service deploys its current realm definition to
its satellite realm services. Satellite realm services cannot directly accept realm
configuration updates from administrators or ActiveSpaces. For more information about
the types of realm services, see the "Server Roles and Relationships" section in TIBCO
FTL® Administration.

Note: Any primary server in the cluster can accept realm configuration
updates.

Checkpoints and Realm Services

When an ActiveSpaces checkpoint is created, the primary realm service's database is
backed up and the configuration of the realm service is also saved as part of the
checkpoint. The copy is named with a timestamp reflecting the time at which the
backup was created. The back-up file is created in the following directory of the primary
realm service:

<realm_service_data_dir>/backups

The backup of the database and realm configuration can then be used to restore the

TIBCO ActiveSpaces® - Enterprise Edition Administration

165 | Live Backup and Restore

primary realm service. Creating a checkpoint fails if a realm service is not reachable. For
example, a checkpoint is not created if primary and back-up realm services are down.

Note: The checkpoints taken as part of the data recovery or mirror grid
feature cannot be used to restore as the interaction between the two features
is not allowed and can lead to data loss.

State Keepers

ActiveSpaces state keepers store internal governing state information about your data
grid. Each state keeper maintains a copy of this internal state information in a file on
disk. When defining the data grid configuration, you specify the location of the state
keeper files by using the --dir configuration option. By default your current directory
is used to store the state keeper disk files. For example,

keeper create --dir ./k_0_data k_0

When a state keeper is first started, it receives the initial data grid configuration from
the realm service. While the data grid is running, the state keepers record the current
running state of the data grid. If you stop and restart a state keeper, the state keeper
process uses the data files from its data directory to recover the data grid's running
state.

In a fault-tolerant set of state keepers, one of the state keepers are designated the lead
state keeper. If the leading state keeper goes down, one of the remaining state keepers
takes over as the lead. A quorum of two state keepers, in a fault tolerant set of state
keepers, must be running to ensure data consistency in split brain scenarios. If a state
keeper is restarted while a quorum is running, one of the running state keepers updates
the restarted state keeper's state.

Checkpoints and State Keepers
When an ActiveSpaces checkpoint is created, the state keeper's internal governing state
information is also saved as part of the checkpoint. This checkpoint data file can then
be used to restore a state keeper's state when the state keeper is restarted. Creating a
checkpoint fails if a quorum of state keepers is not running.

Nodes

Each ActiveSpaces node stores rows of data for the tables that are defined for the data
grid. The rows of data are stored in memory and on disk. When defining the data grid

TIBCO ActiveSpaces® - Enterprise Edition Administration

166 | Live Backup and Restore

configuration, you specify the location of the node files by using the --dir
configuration option. By default your current directory is used to store the node's disk
files. For example, the following statement indicates that the node stores its disk files by
using a top-level directory, ./cs1_n1_data.

node create --copyset cs1 --dir ./cs1_n1_data cs1_n1

The location where the node's disk files are stored is referred to as the node's data
directory. Under the node's data directory, there are the following subdirectories:

l live - holds the disk files that contain the data stored on the node

l checkpoints - holds the checkpoint-related subdirectories and files

Checkpoints and Nodes

When an ActiveSpaces checkpoint is created, the relevant files needed to restore each
node of a data grid are created and stored in the checkpoints subdirectory of each
node's data directory. When a checkpoint is created, each running node saves its
current state to the following directory:

<node_data_dir>/checkpoints/<timestamp>_<epoch>_<counter>_<checkpoint_
name>/d
ata

Additionally, the data grid's configuration from the primary realm service and the data
grid's internal state from the state keepers are saved by each node of the first copyset
defined in your data grid's configuration to the following directory:

<node_data_dir>/checkpoints/<timestamp>_<epoch>_<counter>_<checkpoint_
name>/
metadata

The checkpoint epoch is always zero unless there has been a disaster recovery failover
to another data grid. The checkpoint counter is incremented with each checkpoint that
is created. If your data grid is configured with a copyset_size greater than 1, the nodes
of the first copyset defined for your data grid and identical copies of the metadata files
that include statekeeper-recovery files.

TIBCO ActiveSpaces® - Enterprise Edition Administration

167 | Live Backup and Restore

Copysets

A copyset defines a relationship between multiple nodes for the purposes of data
replication. If more than one node is defined for a copyset, one node acts as the primary
node and data updates from client applications first occur on that node. The primary
node then ensures that the data update is replicated on the other nodes in the copyset.
If the primary node goes down for some reason, one of the other nodes in the copyset
takes over as the primary node. Updates from client applications continue as usual
without any loss of data because all of the data has been replicated from the original
primary node to all of the other nodes in the copyset. The nodes of a copyset must
reside on different computers to ensure that one computer failure does not cause data
loss.

Checkpoints and Copysets

When an ActiveSpaces checkpoint is created, restoring a copyset is done by restoring
the realm service configuration, state keeper configuration, and the data for each node
of the copyset. There is nothing specific to restore for a copyset itself.

Restoring a Data Grid
To restore a data grid, the following entities must be restored:

l The primary realm service’s database

l The data grid configuration in the realm service

l The state keepers

l The nodes of each copyset

Procedure
1. Determine the ActiveSpaces checkpoint to use for restoring the data grid.

2. Determine the realm service database backup associated with the checkpoint.

3. Stop all data grid processes. For example, clients, proxies, nodes, state keepers,
tibdgadmind.

4. Stop all realm services. For example, primary, backups, and satellite servers.

5. Copy each node's checkpoints directory to a safe place.

TIBCO ActiveSpaces® - Enterprise Edition Administration

168 | Live Backup and Restore

6. Restore the primary realm service's database from the backup associated with the
checkpoint.

7. Restart any other realm services.

8. Restore the following processes:

a. Restore the data grid configuration in the primary realm service from the
ActiveSpaces checkpoint. This is to ensure that the data grid configuration is
consistent as realm service database is backed up outside of our checkpoint
process. Remember that the operations such as adding or deleting a table are
not synchronized.

b. Restore the state keepers from the checkpoint. Ensure that all state keepers are
running.

c. Restore each node from its respective checkpoint data directory. Ensure that all
nodes are running.

9. Restart the following items:

a. Restart any remaining data grid processes such as tibdgadmind, or proxies.

b. Restart ActiveSpaces clients.

If a restore to a checkpoint, which is not the latest is performed, the files are
removed from each node's checkpoints subdirectory for the checkpoints taken after
the checkpoint is being restored. Therefore, it is important to save each node's
checkpoints subdirectory before the restore in case you decide you needed to
restore from a later checkpoint.

10. After all grid processes have been restarted and verified to be operational, it is
recommended but not required to delete the rollback record from the grid
configuration to prevent complications during future maintenance operations.

Realm Service Database Restore
After a backup of the primary realm service is created, you can restore the realm service
from the backup by using this procedure.

Procedure
1. Stop all the realm services that are running by stopping all TIBCO FTL servers.

TIBCO ActiveSpaces® - Enterprise Edition Administration

169 | Live Backup and Restore

2. For the TIBCO FTL Server being restored, ensure its data directory (as defined in the
YAML configuration file) is created and empty.

3. From the backup that was previously created, find the appropriate config back-up file
or files.

The naming convention for a back-up file is <filename>_
<timestamp>.<extension>.backup, where <extension> can be an appropriate
extension such as 'dat' or 'persist'. Note that there may be more than one .backup
file so be sure to find all such files with a matching <timestamp>.

4. Copy the <filename>_<timestamp>.<extension>.backup files into the empty data
directory to restore from the backup. Rename the files to <filename>.<extension>.
As an example, config_SRV1_<timestamp>.persist.backup would be renamed to
config_SRV1.persist.

5. Restart the TIBCO FTL server, which loads the restored <filename>.<extension> file
and uses the information in that file as the realm definition.

Realm Service Checkpoint Restore
When an ActiveSpaces checkpoint is created for a data grid, the data grid's configuration
from the realm service is saved as part of that checkpoint.
The data grid's configuration from the realm service can be found in the following file on
any node of the copyset that was first configured for your data grid:

<node_data_dir>/checkpoints/<timestamp>_<epoch>_<counter>_<checkpoint_
name>/metadata
/realmserver-grid.json

The ActiveSpaces administrative command-line tool tibdg is used to restore a data grid's
configuration into a realm.

Before you begin
To restore your data grid configuration into a realm, you must ensure that you first
complete the following steps:

1. Ensure that your realm services have been restored by using a back-up database
associated with the checkpoint.

2. Copy the realmserver-grid.json file to a location that is easily accessible when

TIBCO ActiveSpaces® - Enterprise Edition Administration

170 | Live Backup and Restore

you run tibdg.

3. Load the realmserver-grid.json data grid configuration into the realm service.

Procedure
1. Use the following tibdg command is used to restore the data grid configuration

from a checkpoint into the primary realm service:

tibdg [-g <grid_name>] -r <realm_service_URL> grid load -rollback
\<grid_config_json_file>

For example, tibdg -r http://10.0.1.25:8080 grid load -rollback
./realmserver-grid.json. Remember that in a realm only the primary realm service
can accept realm configuration updates. The <realm_service_URL> must be the URL
of the primary realm service.

Note: This method must not be used if more than one data grid is
configured in the realm service or other FTL applications are also
configured in the realm.

Restoring State Keepers
For more information about where to locate the nodes that contain a checkpoint’s
metadata subdirectory and the state keeper recovery file, see the section, Checkpoints. The
state keeper recovery file is named statekeeper-recovery.

Before you begin
When restoring your state keepers, ensure that the same checkpoint recovery file is used
when restarting each state keeper. To restore your state keepers from a checkpoint
recovery file, ensure that you complete the following steps.

1. Ensure that the realm services have been restored as described in the section Realm
Service Checkpoint Restore.

2. Ensure that all state keepers are stopped.

Procedure

TIBCO ActiveSpaces® - Enterprise Edition Administration

171 | Live Backup and Restore

1. Locate the statekeeper-recovery file associated with the checkpoint that you want
to restore the state keeper from. Note its path.

2. Restart all state keepers by using the same version of the recovery file. Use the --
recovery-file or -R command-line options.

tibdgkeeper -r <realm service URL> -n <state keeper name> --
recovery-file <path to statekeeper-recovery file>

The same command can be used to restore a single state keeper or each state keeper
of a fault tolerant set of state keepers.

Restoring a tibdg Node
When restoring the nodes of a data grid, all nodes must be restored by using the same
checkpoint to ensure a consistent state between the primary and secondary nodes of each
copyset and between copysets.
When a checkpoint is created, each running node saves the files needed to restore the
node to the following directory:

<node_data_dir>/checkpoints/<timestamp>_<epoch>_<counter>_<checkp
oint_name>/data

Procedure
1. Stop the node.

2. Move the node’s current data directory to a back-up location.

3. Re-create the node's data directory by copying the appropriate checkpoint
directories back to their original location under the checkpoints directory.

<node_data_dir>/checkpoints/<timestamp>_<epoch>_<counter>_
<checkpoint_name>

The nodes read the rollback record in the realm and restore their live directory from
the checkpoint directory specified in the rollback record. This ensures that all nodes
are restoring the same checkpoint because they fail to start up if they cannot find the
checkpoint directory specified by the rollback record.

4. Restart the node.

TIBCO ActiveSpaces® - Enterprise Edition Administration

172 | Live Backup and Restore

For example, suppose node cs1_n1 is started with the data directory ./cs1_n1_data.
Then on UNIX you would do the following:

tibdg -r http://10.0.1.25:8080 node stop cs1_n1
mv ./cs1_n1_data cs1_n1_backup
mkdir -p cs1_n1_data/checkpoints
cp -R cs1_n1_backup/checkpoints/<timestamp>_00000000_00000001_chkpt
cs1_n1_data/checkpoints/.
tibdgnode -r http://10.0.1.25:8080 -n cs1_n1

Removing a Rollback Record
After all grid processes have been restarted and verified to be operational, it is
recommended but not required to delete the rollback record from the grid configuration to
prevent complications during future maintenance operations.

Leaving the rollback record in the grid indicates that a node completes recovery to that
checkpoint on starting. This happens once. However, if a secondary node with a blank data
directory is started without access to any checkpoints, an error such as the following may
be observed:

[timestamp] seve node: Error during start up: File I/O error
[timestamp] seve node: Exception details:
TIBCO Exception:
Error Code = File I/O error
Description = rollback checkpoint ID <checkpoint_ID> not found
on this node
Thread Name = tibdgnode
Stack Trace:

_performNodeRecoveryCheckpointRestore, 1834
_performNodeRecovery, 1901
_tibdgNode_Open, 3798
main, 694

Before you begin
Ensure that the restore process is complete. That is, all grid keepers, nodes, and proxies
are restarted following the restore operation.

Procedure

TIBCO ActiveSpaces® - Enterprise Edition Administration

173 | Live Backup and Restore

1. Run the 'tibdg rollback delete' command.

tibdg -r <realm service URL> rollback delete

2. Ensure that future invocations of state keepers do not supply the -R / --recovery-
file command-line argument. Any scripts that are used to start keepers
automatically must be updated to remove the -R / --recovery-file argument if
present.

Result
The rollback delete command must indicate that the rollback record is deleted.

What to do next
Whenever you start the state keeper again, ensure that you start it without the -R
argument.

TIBCO ActiveSpaces® - Enterprise Edition Administration

174 | Disaster Recovery

Disaster Recovery
Disaster Recovery is a situation where a set of running systems must be replaced by
another set of running systems due to failure, damage, loss of connectivity, or other
traumatic event. To set up disaster recovery, ActiveSpaces uses the concept of gridsets. A
gridset is a group of data grids that share the same set of consistent data. In a disaster
recovery setup, a gridset comprises a primary grid and at least one mirror grid.

Primary Grid

A data grid that is listed as the primary grid of a gridset is a primary grid. All operations
included in the ActiveSpaces API are permitted on primary grids.

Mirror Grid

A data grid that is included in a gridset but is not currently the primary grid of that
gridset is a mirror grid. The mirror grid is also referred to as a disaster recovery (DR)
grid. Data received at a DR grid is a logically consistent checkpoint of the data from the
primary grid (no partially committed transactions). For more information about
checkpoints, see Checkpoints. Only read operations are allowed on mirror grids (for
example, GET, queries, iterators). Read operations are run against the most recent
checkpoint that has been mirrored from the primary grid.

For more information about gridsets and types of grids, see "Disaster Recovery Concepts"
in TIBCO ActiveSpaces® - Enterprise Edition Concepts

Note: When a grid is added to a gridset, it cannot execute the Live Backup and
Restore steps. With DR/mirroring, the grids in the gridset stay in sync with each
other so the checkpoints taken by primary and mirror grids in a gridset do not
include the required restore information needed for the Live Backup and Restore
process.

TIBCO ActiveSpaces® - Enterprise Edition Administration

175 | Disaster Recovery

Suggested Deployment Model for Disaster
Recovery
To set up disaster recovery, a suggested model is to have a primary grid in one location
and a mirror or disaster recovery (DR) grid in another location. This provides redundancy
when the entire location hosting the primary grid experiences a disaster and requires
failover to another location.

Grids in a gridset do not need to have the same number of copysets. They should be sized
so that their capacity is sufficient to take over in the event of a disaster.

Both control and data traffic flow between each of the copyset nodes and the proxies
configured in remote grids. All nodes in all copysets must be able to contact the proxies
configured for DR in all other grids in the gridset.

The diagram shown later in this topic illustrates the deployment model. In this case, the
primary data grid comprises a primary realm service and three copysets (each containing
three replicas) behind a firewall. Data is then being mirrored across a WAN link (the cloud
shape) to another location where there is another firewall and then a proxy. The mirror
grid on the other location comprises a satellite realm service and a group of two copysets
(each containing three replicas).

This demonstrates the ability of a mirror grid that has a different number of copysets from
the primary grid. The dashed lines in the diagram also show the data flow where the
control traffic and data traffic are sent to the proxy at the mirror grid, which is what you
must configure with specific IP addresses and ports so that the proxy at the mirror grid is
accessible to the primary grid. In addition, the proxy at the primary grid must be accessible
to the mirror grid for traffic to flow in that direction as well. In the event of a disaster when
the primary grid location becomes inaccessible, you can manually set the mirror grid to be
the new primary grid as of the last consistent checkpoint that was mirrored to that
location.

TIBCO ActiveSpaces® - Enterprise Edition Administration

176 | Disaster Recovery

Figure 1: Deployment Model

A Quick Look at Setting Up Disaster Recovery
Consider the most common use case, where you create two data grids, create a gridset,
and add them to a gridset in the right order.

For more information about gridsets, see "Gridsets" in TIBCO ActiveSpaces® - Enterprise
Edition Concepts. The following sequence helps you set up a disaster recovery model.

Steps References

1 Create a data grid with a name that is planned to be the
primary grid (grid1).

Defining a Data Grid.

2 Create a data grid with a name that is planned to be a
mirror/DR grid (grid2).

Defining a Data Grid.

3 Create at least one proxy in each data grid with the
appropriate proxy_mirroring_ static_listen_host and

Create a proxy by
following the steps in

TIBCO ActiveSpaces® - Enterprise Edition Administration

177 | Disaster Recovery

Steps References

proxy_mirroring_static_listen_port values to set the IP
address and port for how other data grids communicate
with this data grid.

Defining a Data Grid.

To configure static
mirroring host and port,
see Configuring a Proxy
with Static Mirroring
Host and Port.

4 Create a gridset by using the tibdg tool with the following
command:

tibdg gridset create gridset1

Creating a Gridset.

5 Add the first data grid to the gridset (the first data grid
added becomes the primary grid) by using the tibdg
command:

tibdg gridset add gridset1 grid1 proxy_static_
ip:proxy_static_port

Adding Data Grids to a
Gridset.

6 Add the second data grid to the gridset (which becomes a
mirror grid) by using the tibdg command: .

tibdg gridset add gridset1 grid2 proxy_static_
ip:proxy_static_port

Adding Data Grids to a
Gridset.

7 Start the data grids and create a checkpoint in the primary
grid so that it is mirrored to the mirror grid. Perform the
following steps:

l The primary grid must run a primary realm service

l A mirror grid must run a satellite realm service, which
is achieved by specifying the following configuration
file option:

satelliteof <primary realm URL list>

For details about realm services, see "Realm Service"
in TIBCO FTL® Administration. For details about
satellite realm services, see "Server Roles and
Relationships in TIBCO FTL® Administration.

To start the data grid
processes, see Starting
the Data Grid Processes.

To create a checkpoint,
see Creating a
Checkpoint.

To understand
mirroring, see the
following:

l Automatic
Mirroring.

l Setting Up a

TIBCO ActiveSpaces® - Enterprise Edition Administration

178 | Disaster Recovery

Steps References

Planned Cutover
to a Mirror Grid.

l Disaster Recovery
at a Mirror Grid.

8 In the event of a disaster, make the mirror grid the new
primary grid by using the tibdg command: tibdg gridset
setPrimary gridset1 grid2.

See Activating the
Mirror Grid as the
Primary Grid.

Gridset Configuration
Configuring a gridset involves defining, creating a gridset that is followed by adding data
grids to the gridset.

Getting Help on the gridset Command
Gridsets are managed by using the tibdg tool.

Procedure
1. For specific options and commands, run tibdg gridset help.

tibdg gridset help

Some of the available options are as follows:

add Add a member grid to a gridset
create Create a gridset
delete Delete a gridset
list List all gridsets.
modify Modify an existing member grid in a gridset
remove Remove a member grid from a gridset
setPrimary Set the primary grid in a gridset

TIBCO ActiveSpaces® - Enterprise Edition Administration

179 | Disaster Recovery

Creating a Gridset

Procedure
1. When creating a gridset, specify the name of the gridset as the parameter.

tibdg gridset create gridset1

Result
The gridset is created but it does not have any member grids at this point.

Adding Data Grids to a Gridset
The first data grid to be added to a gridset is made the primary grid. Data grids added after
the first grid are mirror grids.

For more information about gridsets, see the "Gridsets" section of TIBCO ActiveSpaces® -
Enterprise Edition Concepts. For more information about defining a data grid, see Defining a
Data Grid.

Procedure
1. To add a data grid to a gridset, specify the gridset name, the data grid name, and a

list of proxies that other data grids can use to contact the data grid. This is required
for the primary as well as mirror grids.

tibdg gridset add gridset1 grid1 10.0.0.1:9001 10.0.0.2:9001
10.0.0.3:9001

Warning: Do not create tables on data grids that are intended to be mirror
grids. With the tibdg tool, you cannot add mirror grids with configured
tables in a gridset.

TIBCO ActiveSpaces® - Enterprise Edition Administration

180 | Disaster Recovery

What to do next
After adding a data grid to the gridset, configure at least one proxy that listens on a static
mirroring host and port. Some examples of a static mirroring host and port are
10.0.0.1:9001, 10.0.0.2:9001, or 10.0.0.3:9001. The code snippet shown earlier in this
topic on adding a data grid to the gridset also has examples of the list of IP addresses and
ports. Ensure that other data grids in the gridset can communicate with the newly added
data grid at these IP addresses and ports.

For more information about configuring a proxy with a static host and port, see Configuring
a Proxy with Static Mirroring Host and Port.

Modifying a Gridset
You can change the list of static IP addresses to use for a specific data grid that is already
in the gridset by using the tibdg gridset modify command.

Procedure
1. Use the following modify command to change the list of static IP addresses in a

gridset.

gridset modify gridset1 grid1 ip1:port,ip2:port,new_ip3:port

Permission Checking in Disaster Recovery Gridsets
To enable permissions in a mirror grid, ensure that the following criteria are met:

1. Enable transport encryption and permission checking for the grids in the gridset.

2. Define the same users and roles in all the grids in the gridset.

When the data is mirrored from the primary grid to the mirror grids, the permissions are
also mirrored. Thus, all the grids in the set must have the same users and roles defined. In
a production environment, such user and role issues are unlikely to be an issue because all
the users and roles typically come from the same LDAP server. However, in a testing or
development environment where you rely on file-based authentication, you must ensure
that all the FTL servers have a consistent view of the users and roles that exist in the realm.

TIBCO ActiveSpaces® - Enterprise Edition Administration

181 | Disaster Recovery

In addition, since the permissions for the table can only be set in the primary grid, users or
roles that access the data only through a mirror grid must be granted access in the primary
so that when the data is mirrored, the users can access it.

For more information about enabling permissions on a data grid, see Grid and Table
Permissions.

Configuring a Proxy with Static Mirroring Host and
Port
To set up disaster recovery, configure one proxy on the primary grid and one proxy on each
mirror grid to use a static mirroring host and port. A static mirroring host and port uses an
FTL static TCP transport to listen for mirroring operations.
To set static mirroring, configure the following properties:

l proxy_mirroring_static_listen_port

l proxy_mirroring_static_listen_host

Procedure
1. The following commands help you set up a static mirroring host and port on a

primary and mirror grid.

tibdg -g grid1 proxy create dr_p1 proxy_mirroring_static_listen_
port=9001 proxy_mirroring_static_listen_host=10.0.0.1

tibdg -g grid2 proxy create dr_p2 proxy_mirroring_static_listen_
port=9001 proxy_mirroring_static_listen_host=10.0.0.2

Activating the Mirror Grid as the Primary Grid
Consider that there are two data grids:

grid1

Primary realm service running at 192.0.2.1:8080.

Backup for primary realm service running at 192.0.2.3:8080.

TIBCO ActiveSpaces® - Enterprise Edition Administration

182 | Disaster Recovery

grid2

Satellite realm service running at 192.0.2.2:8080.

Backup for satellite realm service running at 192.0.2.4:8080.
Currently, the primary grid is grid1. The objective is to make grid2 the primary grid.

Note: grid1 and grid2 consist of a cluster of at least three realm services.

Settings to be Included in the YAML File

In grids configured for disaster recovery, the setting disable.default.routing: true
must be included in the TIBCO FTL YAML file that is used for tibftlserver processes. In
the YAML file, place the disable.default.routing field at the same level as core.servers
as shown below:

globals:
core.servers:

SRV1: host:port
SRV2: host:port
SRV3: host:port

disable.default.routing: true

Warning: Exercise caution when making the mirror grid as the primary grid
because this might result in a data loss if the mirror grid is not in sync with the
current primary.

Procedure
1. If you are taking periodic checkpoints on the primary grid, use the following

commands to disable periodic checkpoint creation:

tibdg –r http://192.0.2.1:8080 –g grid1 status
tibdg –r http://192.0.2.1:8080 –g grid1 grid modify checkpoint_
interval=0.0

2. To switch the primary grid to maintenance mode and prevent new writes to the
primary grid, use the following command:

tibdg -r http://192.0.2.1:8080 -g grid1 grid mode maintenance

TIBCO ActiveSpaces® - Enterprise Edition Administration

183 | Disaster Recovery

3. To create a manual checkpoint on the primary grid, use the following command:

tibdg -r http://192.0.2.1:8080 -g grid1 checkpoint create
changePrimaryCheckpoint

4. On the mirror grid, to verify that the checkpoint has been successfully mirrored, use
the following command:

tibdg -r http://192.0.2.2:8080 -g grid2 checkpoint list

Repeat the command until you see the checkpoint listed in the command's output.

5. On the primary grid site, stop all grid processes and the tibftlserver processes (these
are the primary realm services). On the mirror grid site, stop and restart the satellite
realm service as the new primary realm service, which requires removing the
satellite-of configuration option before restarting:

tibftladmin --ftlserver http://192.0.2.2:8080 --shutdown
tibftlserver -c <config file> -n <name>

As a result of these commands, the ActiveSpaces mirror grid processes become the
new primary grid and clients reconnect to the new primary realm service.

6. On the mirror grid site, use the following command to change the primary grid of
the gridset:

tibdg -r http://192.0.2.2:8080 gridset setPrimary gridset1 grid2

When prompted, confirm the change.
As a result of these commands, the ActiveSpaces mirror grid processes become the
new primary grid and clients that connect to this realm service are now connected to
the new primary realm service.

7. On the previous primary grid site (where all processes must already have been
stopped), back up and then remove all files in the ftlserver's data directory.

8. Restart the primary realm service as a satellite realm service, which requires adding
the satellite-of configuration option to the configuration before restarting:

tibftladmin --ftlserver http://192.0.2.1:8080 --shutdown

TIBCO ActiveSpaces® - Enterprise Edition Administration

184 | Disaster Recovery

tibftlserver -c <config file> -n <name>

If running multiple tibftlservers, all must have their data directory wiped and
configured with the satellite-of configuration option prior to restarting.

9. After the satellite TIBCO FTL servers are running, start the grid processes, which
must come up as the new mirror grid. To set the new mirror grid back to normal
mode, use the following command:

tibdg –r http://192.0.2.2:8080 -g grid1 grid mode normal

Notice that tibdg configuration commands are being sent to the primary realm
service for the new primary grid site at http://192.0.2.2:8080.

a. If you must mirror periodic checkpoints from the new primary grid to the
mirror grids, use the following commands:

tibdg -r http://192.0.2.2:8080 -g grid2 grid modify
checkpoint_interval=120

b. On the new primary grid site, start a tibdgadmind process.

tibdgadmind -r http://192.0.2.2:8080 -l 192.0.2.2:7171

10. Stop any existing clients that write to the data grid. Restart the clients so that they
use one or more URLs of the new primary realm service.

Preventing Data Loss by Using the Maintenance
Mode
The tibdg grid mode command can be used to put a data grid into maintenance mode,
which prevents data from being written into your data grid.

See Using tibdg grid mode to Put a Data Grid into Maintenance Mode.

TIBCO ActiveSpaces® - Enterprise Edition Administration

185 | Disaster Recovery

Retention Limits
The metadata required to identify the rows that have changed between checkpoints is
stored in journals. These journals are cleaned up as checkpoints are copied to mirror grids.

Limiting the Size of Journals

A limit on the size of the journals can be specified when creating the data grid by using the
checkpoint_journal_max_bytes setting. When the journal exceeds this size, ActiveSpaces
begins deleting journal rows, starting with the oldest available. The journals may be
disabled entirely by setting the checkpoint_journals option to disabled. If journals are
disabled or if the maximum size is set too low, ActiveSpaces is forced to rely on bulk
mirroring, which results in more network traffic between data grids. For more information
about bulk mirroring, see "Bulk Mirroring" in TIBCO ActiveSpaces® - Enterprise Edition
Concepts.

Limiting the Size of Checkpoints

You can also delete both manual and periodic checkpoints by setting the checkpoint_
retention_limit property. By default, it is 0, which means that the older checkpoints are
not removed. This setting ensures that the number of checkpoints do not keep growing
and consuming disk space.

Automatic Mirroring
Disaster recovery sites check for newly available checkpoints based on the mirroring_
interval configuration option, set when the data grid is created.

The mirroring interval has no effect on a primary data grid. Setting a mirroring interval is
only necessary at the mirror grid.

By default, the system checks for new checkpoints after every 30 seconds. This option can
be changed after creating a data grid by using the tibdg grid modify command.

Note: Note: Mirroring can be disabled entirely by setting mirroring_interval
to 0. This can later be set to a value greater than zero to restart the mirroring.

TIBCO ActiveSpaces® - Enterprise Edition Administration

186 | Disaster Recovery

Recovery Objectives
To plan for failure scenarios, you must define how much data loss you can tolerate, and
how long you can afford for the data grid to be down. Based on these data points,
ActiveSpaces can be configured to provide various levels of service to satisfy your
objectives.

Recovery Point Objective
To define a recovery point objective, determine how much data loss your system can
sustain in the event of a disaster. This value can be used to determine how frequently
checkpoints must be taken, and how frequently a mirror grid must request updates.

The frequency of checkpoints determines how often updates are available, and the
frequency of mirror requests determines how quickly a mirror grid begins fetching new
checkpoints once they are available. The available bandwidth between sites and the
expected update rate must also be considered to determine how long it takes to mirror a
checkpoint completely.

Consider the following example: User A can tolerate 1 hour of data loss, expects to write
400 MB/hour, and can transfer the data in about 6 minutes over a 10 Mbps WAN link. If the
user takes a periodic checkpoint every hour, the mirror data is at least 66 minutes older
than the primary, their recovery point objective is never satisfied. Therefore, they must
take checkpoints more frequently to guarantee that they can meet their objective.

Recovery Time Objective
After an event occurs that requires changing to the disaster recovery site, the recovery time
objective defines how much downtime a user can tolerate.

This objective guides the disaster recovery cutover process definition. ActiveSpaces disaster
recovery cutover involves re-establishing communications with a primary TIBCO FTL realm
service to establish communications for ActiveSpaces processes, and then changing one of
the available and running DR grids to the new primary grid in the gridset. You must
evaluate how this process, which includes the time to switch a satellite TIBCO FTL server
manually to a primary TIBCO FTL server, which fits into their existing DR policy to
determine how to meet their recovery time objective.

TIBCO ActiveSpaces® - Enterprise Edition Administration

187 | Disaster Recovery

Capacity and Sizing
You must gauge the disk space used by the checkpoint metadata and have an estimate of
the query capacity.

Disk Space Used by the Checkpoint Metadata
The amount of disk space used by the checkpoint metadata depends on the rows that are
changed, and how often checkpoints are recorded.

For each checkpoint not yet transferred to the mirror grid, the checkpoint metadata has
one row for each row changed. For example, if your application repeatedly overwrites the
same 100 rows, the checkpoint metadata contains 100 rows for each checkpoint. The size
of these rows is around 100 bytes plus the length of the row key. For information about
calculating the size of the row key, see the "Sizing Guide" in TIBCO ActiveSpaces® -
Enterprise Edition Concepts.

Query Capacity
Mirror grids must be provisioned appropriately for the load expected of them. A data grid
that serves as both a read replica and a DR grid, must handle the total of both the normal
load when being used as a read replica and the normal load of the primary grid, in case it
is changed to the primary grid.

Security in a Disaster Recovery Setup
The existing security-related features in ActiveSpaces and TIBCO FTL are applied to the DR
feature as well.

This is primarily transport level encryption by using the encrypted_connections=all
property of a data grid, which must be set to the same value for all data grids in a gridset
and which requires the use of a secure primary realm service and a secure satellite realm
service.

For more information about enabling transport level encryption, see Enabling Transport
Encryption on a Data Grid.

TIBCO ActiveSpaces® - Enterprise Edition Administration

188 | Disaster Recovery

For more information about securing TIBCO FTL servers, see "Securing FTL Servers" in
TIBCO FTL® Administration.

Disaster Recovery Playbook
All examples in the playbook use the following conventions:

l Realm Services are located at http:://rs0:8080 for the primary realm service, and
http://rsn:8080 for any satellite realm services.

l The GridSet is named "Gridset".

l The Primary Grid is named "Primary".

l Mirror grids are named "DRn" where n is the number of the mirror grid and can take
the value of 1, 2, 3, and so on.

Setting Up a Planned Cutover to a Mirror Grid
A cutover is a point in time when you transition from the primary grid to a mirror grid. A
planned cutover is when the transition is planned and when the original primary grid does
not fail completely.

For detailed steps on accomplishing a planned cutover, see Activating the Mirror Grid as
the Primary Grid.

Procedure
1. Stop writes to the primary grid (maintenance mode can be used to achieve this).

2. Ensure that a final checkpoint is taken (this can be manual or periodic) after the
writes have been completed at the primary grid.

3. Ensure that the final checkpoint has been successfully mirrored to the mirror grid
with the following command:

tibdg -r http://rs1:8080 -g DR1 checkpoint list

This command lists the checkpoint ID, the name of the checkpoint, the location of
the checkpoint, and the timestamp on the console window.

TIBCO ActiveSpaces® - Enterprise Edition Administration

189 | Disaster Recovery

Tip: You must periodically check the output of the command to determine
whether the checkpoint you took has been mirrored.

4. Stop the primary grid including the primary grid's realm service.

5. Select a new data grid that is going to be the primary grid.

6. Restart the realm service of the new primary grid as the "primary" realm service by
omitting the satelliteof configuration option.

7. Restart the processes of the new data grid that becomes the primary grid.

8. Use the following command to activate that selected mirror grid as the new primary
grid:

tibdg -r http://rs1:8080 gridset setPrimary Gridset DR1

9. Restart all mirror grids (including the old primary grid) by restarting their realm
services as "satellite" realm services (specifying the satelliteof configuration option
and referencing the new "primary" realm service).

Note: The old primary grid must have all processes stopped and the
tibftlserver data directory must be backed up and then cleared prior to
being restarted as a new satellite tibftlserver.

10. Restart the remaining mirror grid processes.

Disaster Recovery at a Mirror Grid
This procedure is used when the primary grid is unavailable and you want to run the
cutover.

Procedure
1. If the realm service of the primary grid is down, stop the remaining satellite realm

services.

2. Select a new data grid that is going to be the primary grid. Restart the realm service
of the new primary grid as the "primary" realm service by omitting the satelliteof
configuration option. If there are additional mirror grids, restart their realm services

TIBCO ActiveSpaces® - Enterprise Edition Administration

190 | Disaster Recovery

as "satellite" realm services, by specifying the satelliteof configuration option and
referencing the new "primary" realm service.

3. Use the following command to activate the mirror grid to be the new primary grid.

tibdg -r http://rs1:8080 gridset setPrimary Gridset DR1

Multiple Mirror Sites
When using multiple mirror sites, each mirror progresses independent of the others. When
deciding which site to use as a new primary, determine which checkpoints are available at
each site.

Procedure
1. List the checkpoints at each site.

The checkpoint ID, checkpoint Name, location, and timestamp are displayed as
follows:

tibdg -r http://rs1:8080 -g DR1 checkpoint list
ID NAME DIRECTORY TIMESTAMP
….
<checkpoint ID> (periodic) <checkpoint location> 12:35:00
<checkpoint ID> (periodic) <checkpoint location> 12:40:00
tibdg -r http://rs2:8080 -g DR2 checkpoint list

ID NAME DIRECTORY TIMESTAMP
….
<checkpoint ID> (periodic) <checkpoint location> 12:35:00

2. To minimize data loss, use the mirror with the most up-to-date checkpoint. When
changing primary grids, checkpoints subsequent to the latest checkpoint at the new
primary are not valid. Use the following command to set the primary grid:

tibdg -r http://rs1:8080 gridset setPrimary DR1

TIBCO ActiveSpaces® - Enterprise Edition Administration

191 | Disaster Recovery

Read Replicas
A read replica is configured in the same way as a standard mirror. The distinction is
primarily in how a read replica is used. Since a read replica is never used as a primary, it
does not store any checkpoint metadata.

Procedure
1. Create your primary grid, and add it to the gridset.

2. Create your read replica, disabling checkpoint journals.

tibdg -r http://rs0:8080 grid create checkpoint_journals=disabled
readReplicaGrid

3. Add copysets, nodes, and state keepers to the new data grid.

4. Wait for checkpoints to be mirrored.

5. Run read-only operations against the new data grid.

TIBCO ActiveSpaces® - Enterprise Edition Administration

192 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO ActiveSpaces® - Enterprise
Edition Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activespaces-enterprise-edition
https://docs.tibco.com/products/tibco-activespaces-enterprise-edition
https://support.tibco.com/
https://support.tibco.com/
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO ActiveSpaces® - Enterprise Edition Administration

193 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, FTL, eFTL, and Rendezvous are either registered
trademarks or trademarks of Cloud Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO ActiveSpaces® - Enterprise Edition Administration

194 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2009-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	Who Should Read This Document
	About This Product
	Administrative Concepts
	Copysets
	State Keeper
	Realm Service

	Development Environment
	Building a Docker Image
	Production Environment
	String Encoding
	Running Processes as a Service
	Recommended Minimum Configuration
	Logging
	State Keeper
	Administration Service
	Proxy

	Administration Tool
	Administration Tool Reference
	Environment Variables for the Administration Tool
	tibdg Status
	tibdg Table Stats
	tibdg Grid Generate and tibdg Table Generate
	The tibdg Commands That Support Interaction
	Using tibdg grid mode to Put a Data Grid into Maintenance Mode
	tibdg proxy shed
	Using the Proxy Shed Command and the Balanced Binding Strategy

	tibdg purge
	tibdgadmind
	Stop the tibdg Daemon

	Designing a Data Grid
	Starting a Realm Service
	Defining a Data Grid
	Grid Create Configuration Options
	Memory Usage Considerations with the node_read_cache_size Option

	Configuration Options to Use Specific Ports and Network Interfaces
	Configure Ports
	Configuration Options when the Proxy and Client are on Different Subnets
	Configuring a Proxy That Can Be Accessed from Different Subnets
	An Example of Creating a Proxy That Can Be Accessed from a Different Subnet
	An Example of Creating a Proxy with an External Port

	Configure Network Interfaces
	Configure Internal Subnet Masks

	Starting the Data Grid Processes
	Component Command-Line Parameters

	Starting a State Keeper
	Keeper Reference

	Starting a Node
	Node Reference
	Starting Multiple Nodes
	three_copysets.tibdg
	one_copyset_two_replicas.tibdg

	Starting a Proxy
	Proxy Reference
	Starting a Proxy with an External Host and Port

	Methods of Selecting a Proxy for a Client
	Adding Copysets
	Data Redistribution

	Removing Copysets
	Defining a Table
	Table Create Configuration Options
	Column Names
	Special Characters in Column Names

	Secondary Indexes
	Enabling Statistics
	Row Expiration
	Defining a Table with Row Expiration
	Overriding the Default TTL for a Single Row
	Deletion of Expired Rows

	Defining a Table by Using SQL DDL Commands
	Creating a New Table
	Dropping a Table
	Creating an Index
	Dropping an Index
	SQL Data Type Mapping

	Security
	Authentication and Authorization
	Authorization Groups
	Password File
	Starting Realm Services with Authentication
	Starting Data Grid Processes With Authentication
	Using User-Defined TIBCO FTL Certificates
	Authentication Providers
	File-based Authentication Provider
	OAuth2 Authentication Provider
	mTLS Authentication Provider
	Samples

	Enabling Transport Encryption on a Data Grid
	Trust File (TIBCO FTL-Generated Certificates)
	Using Trust Files with Primary Realm Service
	Using Trust Files with the Disaster Recovery Feature

	Grid and Table Permissions
	Enabling Permission Checking on Data Grids and Tables
	ActiveSpaces Custom Roles
	The tibdg-ddl Role

	Enabling Permission Checking when Creating or Modifying a Data Grid
	The tibdg Commands to Set Permissions on a Table
	Granting Permission to a User or a Role
	Revoking Permission from a User or a Role

	ActiveSpaces Monitoring Service
	Using ActiveSpaces Monitoring Service

	Installing or Uninstalling ActiveSpaces Processes as Windows Services
	Installing ActiveSpaces Processes as Windows Services
	Uninstalling ActiveSpaces Processes as Windows Services
	Deployment Scenario for Running ActiveSpaces Processes as Windows Services
	Preparing for Installation
	Installing TIBCO FTL Server as a Windows Service
	Creating the ActiveSpaces Data Grid

	Installing the ActiveSpaces State Keeper as a Windows Service
	Installing the ActiveSpaces Node as a Windows Service
	Installing the ActiveSpaces Proxy as a Windows Service
	Installing the ActiveSpaces tibdgadmind as a Windows Service
	Running an ActiveSpaces Sample
	Uninstalling the Sample Windows Services

	Stopping a Data Grid Gracefully
	Selecting a Secondary Node to be Promoted as the Primary Node
	Best Practices for Node Synchronization
	Timeouts During Maintenance

	Clearing a Data Grid Definition
	Checkpoints
	Creating a Checkpoint
	Creating a Manual Checkpoint
	Creating a Periodic Checkpoint

	Listing Checkpoints
	Listing Tables in a Checkpoint
	Deleting Checkpoints
	Automatically Deleting Old Checkpoints

	Validating Checkpoints
	Checkpoint Properties
	Checkpoint Best Practices

	Caching Rows in a Proxy
	Live Backup and Restore
	Restoring a Data Grid
	Realm Service Database Restore
	Realm Service Checkpoint Restore
	Restoring State Keepers
	Restoring a tibdg Node
	Removing a Rollback Record

	Disaster Recovery
	Suggested Deployment Model for Disaster Recovery
	A Quick Look at Setting Up Disaster Recovery
	Gridset Configuration
	Getting Help on the gridset Command
	Creating a Gridset
	Adding Data Grids to a Gridset
	Modifying a Gridset
	Permission Checking in Disaster Recovery Gridsets
	Configuring a Proxy with Static Mirroring Host and Port

	Activating the Mirror Grid as the Primary Grid
	Preventing Data Loss by Using the Maintenance Mode
	Retention Limits
	Automatic Mirroring
	Recovery Objectives
	Recovery Point Objective
	Recovery Time Objective

	Capacity and Sizing
	Disk Space Used by the Checkpoint Metadata
	Query Capacity

	Security in a Disaster Recovery Setup
	Disaster Recovery Playbook
	Setting Up a Planned Cutover to a Mirror Grid
	Disaster Recovery at a Mirror Grid
	Multiple Mirror Sites
	Read Replicas

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

