TIBCO ActiveSpaces® Transactions

Quick Start Guide

Software Release 2.5.8
Published November 10, 2017

TIBC2

Two-Second Advantage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR BUNDLED TIBCO
SOFTWARE ISSOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED
TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED ORACCESSED BY ANY OTHER
TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE AGREEMENT
FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE
AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALL-
ATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN LICENSE.PDF) OR IF THERE IS NO SUCH SOFTWARE LICENSE
AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF
THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL
CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIB, TIBCO, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now, Two-Second Advantage, TIBCO ActiveMatrix
BusinessWorks, are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

EJB, Java EE, J2EE, and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their respective owners and are mentioned
for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL OPERATING SYSTEM
PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME TIME. SEE THE README FILE FOR THE
AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ORNON-
INFRINGEMENT.

THISDOCUMENT COULD INCLUDE TECHNICAL INACCURACIES ORTYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THISDOCUMENT.
TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM (S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR INDIRECTLY, BY OTHER
DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND
"READ ME" FILES.

Copyright © 2008, 2016 TIBCO Software Inc. ALL RIGHTS RESERVED, TIBCO Software Inc. Confidential Information

Contents

ADOUL ThisS DOOK ...euueiiiiie et et e e et e e e st e e e et e e e s et eeeaaanns vii
TEIMINOIOZY .evvnieiiiiie ettt et et e e e et e e e e et e e e e et e e e e et e e e eataaaaans vii
1 INtrOAUCHION L.unieiii ettt e e et e e e et e e e e et e e e s et e e e e bt e e s eaaeaeeaaan 1
What is TIBCO ActiveSpaces® TransSactions ?cc.uvevveeiiuiiiinieiieeeiieeeieeeieeeeeeennnens 1
The TIBCO ActiveSpaces® Transactions development modelocovvvvviiiiiiiiniinnnnnn. 2
Hardware and software reqUIr€mentscovvueeiiiniiiuieeiie e e e e eees 2
2. Building a simple application in ECHPSEuoivuuiiiiiiieiee e 3
Install and Start TIBCO ActiveSpaces® TranSactionscoceeeeveveuviieeeiiieiineiiineennnnns 3
Create a NEeW JAVA PIOJECE ..uivuniiieeiii et e e et et e et e et e et e e et e e st e sateeatn e e st esanaenen 3
Create a SIMPle aPPLCALION ...u.ivveiiiiiiie e e e eanes 5
Create a run CONfIGUIALIONiuuiiiniiiiii e e e e et e et e e e e e e eaneas 9
RUN It oo e et e e et e et e e a e e st e e et e st e e aieeaaaans 11
0L 1o Ve a s TSIl 01 o) 1150 R 12
3. Debugging applications in ECLPSEuvivuniiiiiiie e 15
Create a debug-enabled run configurationccoooeuviiiiiiiiiiiiiieeiee e 15
Create a remote debugger Configurationovevueviiiiiiiiiiiiiecie e 16
Run and debug the appliCationoviiuniiiiiiiie e 17
4. Running the JMS example in Eclipse (With Maven)ccccoevivuiiiiiieiiiieieeeeeceeeeeeeeann 19
Install and Start TIBCO ActiveSpaces® Transactionsccceeeeveveeviieniiieneeeineeennennn. 19
Check out the examples source from the public CVS SErvercooovvvviveeiiieieiiieeinnnnns 19
Configure Eclipse to run the JMS eXamplecooovuniiiiiiiiiiiecieeeeeeeeee e 27
Running other examples in ECHPSEuovvuniiieiiieiie e 29
B ettt e et e e e et e e e e tteeeeett e aerttaaarataaaartns 31

iii

v

List of Figures

2.1. Creating the TIBCO ActiveSpaces® Transactions Quick Start projectcccceeevvinnnenni. 4
2.2. Adding deploy.jar to the project Hhrariesc.cooouuieiiiiiiiiiiiiee e 5
2.3. Create qUICKSIAIT PACKAZEcvvvniiieiei e e e eeen 6
2.4. Create QUICKStartODJECt CIASScuuiiiiiiiei e ettt eeaa e 7
2.5. Create the Main ClaSSscooiiuiiiiiiii et e e eee e e et e e e et e e e e et e e e saaaa s 8
2.6. Creating a run configuration for QUICKSEArtviiuiiiiiiiiie e, 10
2.7. Configuring the VM arguments and working dir€ctorycoeeevueviieiviieieiiiieiiieeiieeennn. 11
2.8. The output of the TIBCO ActiveSpaces® Transactions Quick Start test application 12
2.9. Displaying the QuickStartObject in the TIBCO ActiveSpaces® Transactions monitor 13
3.1. Creating a debug run configurationcccoeueiiiuiiiiiiiie e 16
3.2. Creating a debug CONfIGUIAtIONccovuniiiiniiiiiiie e 17
3.3. An excerpt of the Debug perspective - execution stopped at breakpointccccovunernnnee. 18
/0 B OV T 1711010) o AT 20
4.2. Checkout from CVS ... oot e e aaaans 21
4.3, SeleCt MOAUIEovuniiiiiii et e e e aaaans 22
4.4, CHECK OUL AS ..ottt e e e e e e e e et e e e e et e e e e at e e eeataeessatanaaaes 23
T o) (<o i I T TR 24
4.0, NEW PrOJECE «.ovniiiiiieiiii ettt e e e e e 25
4.7. NeW JaVa ProOJECE ...noiieiiii i e e e e e et e e e e e e e e et e e st e saaneeaens 26
TR 2 Tel €2 VoLl)4 0) (o) (. 27
4.9. Run Configurations = JINSuueiiuneiiieiiiiee it e et e e tte e et e et e e et e eete e st esaeesatnaesrneessnassens 28
4.10. Console output for JMS eXaAMPIEcvvnniieiiiiiiiieeee e 29

vi

About this book

This guide describes how to quickly get started using the TIBCO ActiveSpaces® Transactions ™
software product.

This guide is part of a set of TIBCO ActiveSpaces® Transactions documentation, which also includes:

TIBCO ActiveSpaces® Transactions Architect's Guide — This guide provides a technical
overview of TIBCO ActiveSpaces® Transactions .

TIBCO ActiveSpaces® Transactions Administration — This guide describes how to install,
configure, and monitor a TIBCO ActiveSpaces® Transactions deployment.

TIBCO ActiveSpaces® Transactions Java Developer's Guide — This guide describes how to
program a TIBCO ActiveSpaces® Transactions application.

TIBCO ActiveSpaces® Transactions Performance Tuning Guide — This guide describes the
tools and techniques to tune TIBCO ActiveSpaces® Transactions applications.

TIBCO ActiveSpaces® Transactions System Sizing Guide — This guide describes how to size
system resources for TIBCO ActiveSpaces® Transactions applications.

TIBCO ActiveSpaces® Transactions Javadoc — The reference documentation for all TIBCO
ActiveSpaces® Transactions APIs.

Terminology

cluster — A TIBCO ActiveSpaces® Transactions cluster consists of one or more TIBCO Act-
iveSpaces® Transactions nodes, which may be configured for high availability.

node — A single instance of a TIBCO ActiveSpaces® Transactions software execution environment.

TIBCO ActiveSpaces® Transactions Administrator — A web browser user interface providing
access to TIBCO ActiveSpaces® Transactions administration functions.

Domain manager — A specialized node providing management functions for TIBCO ActiveSpaces®
Transactions nodes.

vii

viii

Introduction

This chapter provides an overview of TIBCO ActiveSpaces® Transactions development.

What is TIBCO ActiveSpaces® Transactions
?

TIBCO ActiveSpaces® Transactions is an in-memory transactional application server that provides
scalable high-performance transaction processing with durable object management and replication.
TIBCO ActiveSpaces® Transactions allows organizations to develop highly available, distributed,
transactional applications using the standard Java POJO programming model.

TIBCO ActiveSpaces® Transactions provides these capabilities:
¢ Transactions - high performance, distributed "All-or-None" ACID work.
¢ In-Memory Durable Object Store - ultra low-latency transactional persistence.

¢ Transactional High Availability - transparent memory-to-memory replication with instant fail-over
and fail-back.

¢ Distributed Computing - location transparent objects and method invocation allowing transparent
horizontal scaling.

¢ Integrated Hotspot JVM - tightly integrated Java execution environment allowing transparent low
latency feature execution.

Chapter 1. Introduction

The TIBCO ActiveSpaces® Transactions de-
velopment model

Think of the TIBCO ActiveSpaces® Transactions server as a sophisticated Java™ Virtual Machine

(JVM). Your application is compiled in the normal way on your workstation, and sent to the TIBCO
ActiveSpaces® Transactions server for execution.

Your IDE will be configured to run your TIBCO ActiveSpaces® Transactions applications using
deploy. jar, which transparently sends the compiled Java classes to the server for execution.
deploy. jar also contains the TIBCO ActiveSpaces® Transactions software public interfaces.

Hardware and software requirements

TIBCO ActiveSpaces® Transactions software applications must be compiled for JDK 6 or greater.

See the TIBCO ActiveSpaces® Transactions release notes for hardware and software requirements
to run the TIBCO ActiveSpaces® Transactions server.

The examples in this guide use the Eclipse IDE (http://www.eclipse.org).

http://www.eclipse.org

2

Building a simple application in Eclipse

This chapter describes the basic process of configuring Eclipse for TIBCO ActiveSpaces® Transac-
tions development. We'll build a simple TIBCO ActiveSpaces® Transactions application in Eclipse,
configure Eclipse to run the application on an TIBCO ActiveSpaces® Transactions node, and run

the application.

Install and Start TIBCO ActiveSpaces®
Transactions

Before you can run the TIBCO ActiveSpaces® Transactions examples, you need to have installed
and started a node as described in the TIBCO ActiveSpaces® Transactions Installation Guide.
The following instructions assume that a Domain Manager node is running at port 2000 and it is
managing a node named A.

Create a new Java project

First, we will create a new Java project, and include the TIBCO ActiveSpaces® Transactions Java
SDK as a support library.

Start Eclipse and create a new Java project:
1. In the File menu, select New ->Java Project.

2. In the New Java Project dialog that pops up, set the Project name to "TIBCO ActiveSpaces®
Transactions Quick Start"

Chapter 2. Building a simple application in Eclipse

Create a Java Project

Create a Java project in the workspace or in an external location.

Project name: [ActiveSpaces@ Transactions Quick Start

|Usegefault location

-JRE
) Use an execution environmenkt JRE:
() Use a project specific JRE:

@ Use default JRE (currently 'java-6-sun-1.6.0.24")

{4

{4

Configure JREs...

Project layout

O Use project folder as root fFor sources and class files

@ Create separate folders for sources and class Files Configure default...
‘Working sets

[Add project to working sets

Working sets S ik
@ Back l Next > l l Cancel l l Finish

Figure 2.1. Creating the TIBCO ActiveSpaces® Transactions Quick Start

project

3. Click "Next" to move to the Java Settings page.

4. Select the Libraries tab, and click on "Add External JARs..."

5. Browse to the folder where you installed the TIBCO ActiveSpaces® Transactions Java SDK, and

find the file deploy. jar. Select it and click "OK".

Create a simple application

New Java Project | =

Java Settings
Define the Java build settings. / '

*=Source ‘E}Ernjects ||5?¢,|_.ibraries|‘ “;0rder and Export |

JARs and class folders on the build path:

P s astdeploy.jar - fopt/ast
P =\ JRE System Library [java-6-sun-1.6.0.24]

Add JARs...

Add External JARs...

Add Variable...

Add Class Folder...

|
|
|
|
|
|

l
l
l
Add Library... |
l
J

Add External Class Folder..

@ Nexk > l Cancel l l Finish

Figure 2.2. Adding deploy.jar to the project libraries

6. Select "Finish" to close the New Java Project window; Eclipse will generate the project structures
in your default workspace.

Create a simple application

Now that we have an Eclipse project with the right dependencies, we'll create a simple transactional
application.

Chapter 2. Building a simple application in Eclipse

1. In the File menu, select New -> Package. Name the new package quickstart, and then click

the Finish button.

; New Java Package (=)
Java Package

Create a new Java package. g
Creates folders corresponding to packages.

source folder: [ActiveSpaces@ Transactions Quick Start/src] [Browse...]
Mame: [quickstart]

@ [Cancel] [Finish

Figure 2.3. Create quickstart package

2. In the Package Explorer, right-click on the new quickstart package and select New -> Class.
Set the class name to QuickStartObject. This will be our TIBCO ActiveSpaces® Transactions

managed type. Click the Finish button.

Create a simple application

New Java Class
Java Class
Create a new Java class. @
source folder: [ActiveSpaces@ Transactions Quick Stark/src l l Browse... l

Package: [quickstart l

[Enclosing type:

Name: lQuickStartObject l
Modifiers: @ |@| O default
[] abstract [Final
Superclass: [java.lang.object l l Browse... l
Interfaces: Add...

Which method stubs would you like to create?
[J public static void main(String[] args)
[] Constructors from superclass
[Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
[] Generate comments

@ l Cancel l l Finish

Figure 2.4. Create QuickStartObject class

. Now edit QuickStartObject. java in the edit pane. We will add an @anaged annotation
to the class, and define a package-private String field named message. The class should look
like the following:

package quickstart;

import com.kabira.platform.annotation.Managed;
@Managed

public class QuickStartObject

{

}

String message;

As a Managed type, any instance of this object we create will be stored in TIBCO ActiveSpaces®
Transactions shared memory.

Chapter 2. Building a simple application in Eclipse

4. Now we'll create another public class with a main () method. As before, right-click on the
quickstart package and select New -> Class. Set the class name to Main, and let Eclipse gen-
erate the method stub for us:

New Java Class
Java Class
Create a new Java class. @
Source folder: lActiveSpaces@ Transactions Quick Start/src l l Browse... l

Package: lquickstart l

[Enclosing type:

Name: [Main l
Modifiers: @ public) default
[1 abskract [] final O
Superclass: ljava.lang.object l l Browse... l
Interfaces: Add...

Which method stubs would you like to create?

\public static void main(String[] args)|

[J Constructors from superclass
[Inherited absktract methods

Do you want to add comments? (Configure templates and default value here)
[J Generate comments

@ Cancel l l Einish

Figure 2.5. Create the Main class

5. Replace the empty main() method body with some transactional code. We'll create and update
an instance of the Managed QuickStartObject class we defined:

package quickstart;

import com.kabira.platform.Transaction;
public class Main

{

public static void main(String[] args)

{

Create a run configuration

new Transaction()

{
@Override
public void run() throws Rollback
{
String message = "Welcome to TIBCO ActiveSpaces® Transactions

System.out.printin(message) ;

QuickStartObject quickStartObject = new QuickStartObject();
quickStartObject.message = message;

}.execute();

6. Take a moment to check for any source errors identified by Eclipse. Under the File menu, select
Save all.

Create a run configuration

Next we'll configure Eclipse to run our application on the installed nodes.
1. Under the Run menu, select Run Configurations...

2. In the left-hand pane of the Run Configurations window, right-click "Java Application". This will
define a new run configuration.

3. In the Main tab, make sure that the "Main class:" is set to quickstart.Ma1in. Eclipse should
have identified this for you; if not, click Search... and select the class.

3

Chapter 2. Building a simple application in Eclipse
Run

Create, manage, and run configurations

Run a Java application

X = -

¢ @

Ed Java Applet

L]

Ju Junit
Juj Task Context Test

Filter matched 5 of 5 items

MName: [Main]
4‘%"] @ Main = Arguments | =i JRE| “; Classpath| %~ Source| P& Environment| = Common
Project:
~ [Java Application [ActiveSpaces@ Transactions Quick Start] | Browse... |
Main class:
[quickstart.Main] | Search... |
[Include system libraries when searching for a main class
[J Include inherited mains when searching for a main class
[J Stop in main
| Close | | Run

each invocation of the project.

@
Figure 2.6. Creating a run configuration for quickstart

4. Next, select the "Arguments" tab. Here we will configure Eclipse to run the deploy client tool for

In the "VM arguments" text box, enter the deploy tool command required for the installed nodes.

For example, if the product was installed in /opt/ast , we would use the following argument

line:

-jar /opt/ast/kis/distrib/kabira/ast/java/deploy.jar host-
name=192.168.28.129 adminport=2000 domainnode=A username=guest pass-

This command line tells eclipse to wrap your project invocation with the development client in

word=guest
deploy. jar. The client takes parameters that tell it about the network location of the nodes
(the hostname and adminport values) as well as credentials to attach to the server (the

username and password parameters).
The domainnode parameter selects the A node in the domain to execute this application.

10

Run it!

Run Configurations
Create, manage, and run configurations

Run a Java application

(@
|

W

REEERR . v Name: [Main l
[;;.,.;_;e Filcer text @?] © Main [#9- Arguments =4 JRE] &g Classpath] By Sourl:ew] Environment] =] gommon]
B3 Java Applet -Program arguments:

+ [Java Application

Ju JUnit

Juj Task Context Test

VM arguments:

domainnode=A
username=guest password=guest

Har fopt/fast/astdeploy.jar hostname=192.168.28.129 adminport=2000

‘Working directory:

® Default: | [${workspace_loc:ActiveSpaces® Transactions Quick Start}

O Other: |

Norkspace | | e System | | Variables |
Filter matched 5 of 5 items acen l [Reyert l
@ Close l [Run]

Figure 2.7. Configuring the VM arguments and working directory

5. select Apply, then Close.
it!

We're ready to run our test application.

Make sure the the TIBCO ActiveSpaces® Transactions Quick Start project is selected in the Package

Explorer pane.

Under the "Run" menu, select "Run" (or click the green arrow "Run" icon in the toolbar). This will
compile the source, deploy the compiled class files and dependent classes to the TIBCO Act-
iveSpaces® Transactions node and execute the application there. The output of the example is

displayed in the IDE console window as shown below:

11

Chapter 2. Building a simple application in Eclipse

E T
E console = % % & 6IEE = v

<terminated> Main [Java Application] /usr/lib/jvm/java-6-sun-1.6.0.24/bin/java (May 4, 2011 2:51:31 PM)

[INFO: astdeploy.jar version: [ActiveSpaces Transactions 2.8 (build 110501)] starting at [Wed May 84 14:51:31 PDT 2011]
INFO: node [A] version: [ActiveSpaces Transactions 2.0 (build 110501}]

INFO: Starting application [quickstart.Main] ...

[A] INFO: JMX Management Service started at:

[A] kabira-server:2099
[A] 192.168.28.129:2099
[A] service:jmx:rmi:///jndi/rmi://kabira-server:2099/jmxrmi

[A] Welcome to ActiveSpaces® Transactions!

INFO: Application [quickstart.Main] running on node [A] exited with status [@]
INFO: Run of distributed application [quickstart.Main] complete.

INFO: Application [quickstart.Main] exited with status [0].

Figure 2.8. The output of the TIBCO ActiveSpaces® Transactions Quick
Start test application

The build identifier and date may differ in your installation.

Using the monitor

Now that our application has created a Managed object, we can use the TIBCO ActiveSpaces®
Transactions monitor to see that object in persistent shared memory.

1. Start the monitor by using the monitor command line tool and specifying the path to the shared
memorYy file for the application node, for example:

monitor /opt/ast/nodes/A/ossm

2. On the left-hand side of the screen (under the File menu) there are 3 icons. Select the middle
one (the tool tip says "Model View").

3. The left-hand pane will now show a listing of all Java types in shared memory. Expand quick-
start.QuickStartObject, and click the single object reference for that type. In the right-
hand pane, you will see the details of the QuickStartObject instance that the application
created.

12

Using the monitor

File Options

ActiveSpaces Transactions(R) Monitor (A)

B WY

* * 315211:4011904:21981567124:4 = % 0x0

corm kabira. platformn. Metadii
B quickstart. QuickStartOkbject
+-215211:4011904:2 19815

- com. kabira. platformm. [ogging. Eventserd

G714

4[]

guickstart. QuickStantObject (315211:40114904:2 1981567124 4)
L message = "Welcome to ActiveSpaces00 Transactions!"

[»

Figure 2.9. Displaying the QuickStartObject in the TIBCO ActiveSpaces®

Transactions monitor

4. Each time you run the application, another instance of quickstart.QuickStartObject will
be created in the monitor. Experiment with adjusting the message or defining additional Managed

types.

13

14

Debugging applications in Eclipse

This chapter describes how to debug TIBCO ActiveSpaces® Transactions applications in Eclipse.
The configuration for other Java IDEs is similar.

The process consists of the following general steps:
1. Configure Eclipse to run the application on a node in a debug-enabled mode.
2. Configure the Eclipse debugger to attach remotely to the application node.

3. Run the application in debug mode, then attach the remote debugger.

Create a debug-enabled run configuration

This chapter uses the example application that was described in Chapter 2. We will use a copy of
the Run Configuration, with remote debugging services enabled.

1. Make sure the TIBCO ActiveSpaces® Transactions Quick Start project is selected in the Package
Explorer.

2. Under the "Run" menu, select "Run Configurations..." to display the run configuration dialog.
3. Inthe left pane of the dialog, under the Java Application type, click to select the Main configuration.
4. Click the "Duplicate" button to make a copy.

5. Name the new configuration "Debug".

6. Click the Arguments tab. Add the following to the "VM arguments" field:

remotedebug=true remotedebugport=6666 suspend=true

15

Chapter 3. Debugging applications in Eclipse

invoking the main method of the application.

These arguments instruct the runtime environment to listen for remote debuggers on port 6666.
The suspend argument instructs the runtime to pause and wait for a debugger to attach before

Run'Configurations
]

Create, manage, and run configurations

Run a Java application

L
=g
-

1 (@) »

= JRE| “ Classpath| B~ Source| P8 Environment| =l Common

Name: [Debug

ﬁ] ® Main ®= Arguments
Program arguments:
Variables...

[

[Java Applet

Ju JUnit

= [T Java Application
1 Main
-jar fopt/ast/astdeploy.jar hostname=192.168.28.129 adminport=2000

Juy Task Context Test
VM arguments:
domainnode=A username=guest password=guest
remotedebug=true remotedebugport=6666 suspend=true
| variables...
Working directory:
@ Default:
O Other:
| close || Run

Filter matched 6 of 6 items

@
Figure 3.1. Creating a debug run configuration

7. Click Apply and then Close.
Create a remote debugger configuration

The "Debug" run configuration will execute the Quick Start application in a remote-debug mode.

Now we must configure the Eclipse debugger to attach to a remote Java Virtual Machine.
1. Make sure the TIBCO ActiveSpaces® Transactions Quick Start project is selected in the Package

Explorer.

2. Under the "Run" menu, select "Debug Configurations..." to display the debug configuration dialog.
4. Inthe "Connect" tab, provide remote address information for the "Connection Properties" section

3. In the left pane, select the "Remote Java Application" config type, then click the New button.

16

Run and debug the application

e Set "Host" to the address of the running application node (This is the same as the address used
in the Run Configuration).

e Set "Port" to match the remotedebugport that was defined in the run configuration - 6666.

5. Click "Apply" to save the configuration, and then close the dialog.

= Debug configurations

Create, manage, and run configurations

Attach to a Java virtual machine accepting debug connections

TE R B uame:[QuickStartObject]

;f] & Connect %~ Source| = Common

5 Java Applet EZI01ECE
~ [Java Application [ActiveSpa(es@Transa(tions Quick Start l | Browse... |
51 Debug Connection Type:
-+ Main [Standard (Socket Attach) 2 l
Ju Junit
<~ &, Remote Java application Conngction Properties:
TS| vost: [192.168.28.129]

Juj Task Context Test Port: [6666 l

[Allow termination of remote VM

Appl R t
Filter matched 8 of 8items | PPl | ever |

('__?:‘ ‘ Close | | Debug |

Figure 3.2. Creating a debug configuration

Run and debug the application

Debugging the application is a two-part process. First you run the application using the Debug run
configuration, which will start the debug listener on the application node. Then you launch the Eclipse
remote debugger and connect to the Virtual Machine.

1. Set a breakpoint in your application: select a source line in the main method. Under the "Ruxn"
menu, select "Toggle line breakpoint".

2. Under the "Run" menu, select "Run Configurations...". Select the Debug configuration.

3. Click the Run button to start the application. You'll see output in the console window ending with:

[A] Listening for transport dt_socket at address: 6666

4. Now, choose the Debug perspective (the selector is in the top right tab, or look under the
"Window" menu and select "Open Perspective").

5. Under the "Run" menu, select "Debug Configurations".

17

Chapter 3. Debugging applications in Eclipse

6. In the left pane, select the debug configuration created earlier - the default name is QuickStartO-
bject.

7. Click the Debug button.

Eclipse returns to the debug perspective, and the Eclipse remote debugger connects to the applic-
ation node. The application will start and run until the breakpoint you set is reached.

[J) Mainjava & . [J] QuickStartObject.java = O | &= Outline A W oW e W ¥ TO
’ ' ' # quickstart
public class Main { b “= importdeclarations
e < @, Main
args < o °main(string[]) : void

public static veid main(String[] args) { ~ G newTransaction(){..}

new Transaction() I /-1 =S —
{
@0verride
- public void run() throws Rollback
{
String message = "Welcome to ActiveSpaces® Transactions!®;
. System.out.println(message);

QuickStartObject quickStartObject = new QuickStartObject();
quickStartObject.message = message;

}

}.execute() ;
Figure 3.3. An excerpt of the Debug perspective - execution stopped at
breakpoint
Now you can:
¢ Set more breakpoints;
¢ Examine variables in the "Variables" (top-right) pane;
¢ Step through program execution a line at a time;

¢ Display thread stacks by drilling down into the Remote Java Application entry in the Debug pane
(top-left).

As you debug the application, its console output continues to be displayed in the debug perspective
Console tab.

18

4

Running the JMS example in Eclipse
(with Maven)

This chapter shows how to run an TIBCO ActiveSpaces® Transactions example using Eclipse. To
run the examples in Eclipse, you will need a version of Eclipse that supports Maven. Version 3.7.1.x
is known to work.

Install and Start TIBCO ActiveSpaces®
Transactions

Before you can run the TIBCO ActiveSpaces® Transactions examples, you need to have installed
and started a node as described in the TIBCO ActiveSpaces® Transactions Installation Guide.
The following instructions assume that a Domain Manager node is running at port 2000 and it is
managing a node named A.

Check out the examples source from the
public CVS server

1. From the FiTe menu, select Import ->CVS > Projects from CVS and click Next.

19

Chapter 4. Running the JMS example in Eclipse
(with Maven)

Select

)
Checkout one or more projects from a CVS Repository. u

Select animport source:

[

P = General
- = CVS

b = Maven
b = Tasks

P = Team
P XML

¥ Projects from CVS

P = Run/Debug

®@

I < Back ” Next >] [Cancel] { Finish

Figure 4.1. CVS Import

2. In the Checkout from CVS dialog, enter the following:

Host downloads.fluency.kabira.com
Repository path |/opt/cvsroot

User anonymous

Password (leave blank)

Connection type: |pserver

Click Finish.

20

Check out the examples source from the public CVS
server

= Checkout from CVS =]

Enter Repository Location Information

CcvVs
Define the location and protocol required to connect with an d
existing CVS repository.

Location

8
Host: [downloads.ﬂuency.kabira.com ‘ v l

Repository path: [,-"opt,-"cvsroot ‘ vl

-Authentication

User: [anonymous ‘ A l

Password: [l

-Connection

Connection type: lpsen.rer < l

@ Use default port

O Useport: | |

[] save password (could trigger secure storage login)

To manage your password, please see 'Secure Storage’
Configure conneckion preferences...

@ l <Back ” Next >] [Cancel] [Finish

Figure 4.2. Checkout from CVS

3. In the next screen, select Use an existing module [...], then select examples and
click on Next.

21

Chapter 4. Running the JMS example in Eclipse
(with Maven)

Checkouk from CVS

Select Module
Select the module to be checked out from CVS

O Use specified module name: [examples

@ Use an existing module (this will allow you to browse the modules in the re
P = channel
P = CVSROOT

P = fluencyplugin

P = Framework

@ l < Back ” Next >] [Cancel] [Finish

Figure 4.3. Select Module

4. Inthe Check Out As screen, select Check out as a project configured using
the New Project Wizard. Click Next.

22

Check out the examples source from the public CVS
server

Check Out As
Check Qut As

Select the method of check out ﬁl

Choose how to check out folder ‘examples’

-i-[heck out as a project configured using the New Project Wizard

| | Check out as a project in the workspace
Project Mame: examples

| | Check out into an existing project

W Checkout subfolders

Working sets
|| Add project to working sets

Working sets: 5 Select...

ﬁh'l | < Back | | Mextx [| Cancel [| Finish

Figure 4.4. Check Out As

5. From the Select Tag dialog select Versions and click on the expand triangle to see the
available versions. Select the examples version that should be checked out. Click on Finish.

23

Chapter 4. Running the JMS example in Eclipse
(with Maven)

Check Out As

Select Tag
CVs
Choose the tag to check out from %];‘

Select a tag (7 = any character, * = any 5tring):

Matching tags:

%, HEAD
b 4R Branches
T%‘v‘e rsions
lngvl 5.2
Tngvl 5.1
Tigv1l_5_0
Tngvl_4_3
Tigvl_4_2
Tigvl_4_1
Tngvl_4
Tngvl 3.1
Tngvl_3
Tngvl_2
Tngvl_1_1
Tigvl_1
ﬂp Dares

| RefreshTags | | Configure Tags... | | Add Date...

@ | = Back | Next > | Cancel | | Finish |

Figure 4.5. Select Tag

6. From the Select a Wizard dialog, select Java Project. Click Next.

24

Check out the examples source from the public CVS
server

New Project

g

Select a wizard

Create a Java project

r 1

Wizards:

| type filter text

b (= GCeneral
= CVS
¥ [=Java
'@jaua Project
ﬁﬁjava Project from Existing Ant Buildfile
P (= Mawven
b (= Examples

@ < Back | MNext»> | | Cancel | Finish

Figure 4.6. New Project

7. Provide a Project name and click on Finish.

25

Chapter 4. Running the JMS example in Eclipse
(with Maven)

Mew Java Project

Create a Java Project —

Create a Java project in the workspace or in an external location.

Project name: |examples 1.5.2

W Use default location

Location: | [Users/djs/Documents /Eclipse/examples 1.5.2 Browse...
JRE
'\:; Use an execution environment JRE: JavaSE-1.6 =
.\;. Use a project specific JRE: Java SE 6 (MacOS X Default) =
I\E,l Use default JRE (currently "lava 5E 6 (MacO5 X Default)'y Configure JREs...

Project layout

[) Use project folder as root for sources and class files

s

I\E,l Create separate folders for sources and class files Configure default...

‘Working sets

[| Add project to working sets

Working sets: : Select...
@:I < Back | | MNext= | | Cancel | | Finish

Figure 4.7. New Java Project

8. From the package explorer right click on the package name and select Configure->Convert
to Maven.

26

Configure Eclipse to run the JMS example

Java - Eclipse - /Users/djs/Documents/Eclipse

Cir @~ FrO-Qur [H G

[2 Package Explorer &2 — ﬁfp‘

"FTL'—j-:-exampIes 1.5.2 v1_5_2 [downloads.fluency.kabira.com

> (FHsrc

P =i JRE System Library [Java S5E 6 (MacO5S X Default)]

P [y cardprocessing

P [y chat

b [y chatserver

P [yhsmechannel

F [jdbe

P [(pims

¥ [yjmschannel

¥ [ndi

¥ [fipa

¥ [yjposchannel
I ldapserver.ksh 1.2
I mysqlserver.ksh 1.3
v pom.xml 1.43.2.3
I tibcoems.ksh 1.4

Figure 4.8. Package Explorer

E®S] .o 5 [
= =08 =38
[] i b . - 0
[El problems 22 (@ Javadoc @ Declaration =
0 items
Description Resource Pa
=] B | O) '

Configure Eclipse to run the JMS example

Now we'll configure Eclipse to run the examples on the installed domain.

27

Chapter 4. Running the JMS example in Eclipse
(with Maven)

. Under the "Run" menu, select "Run Configurations".

. Right-click on on Maven Build, and select "New".

. Rename "New_Configuration" to jms.

. In the Main tab,

e Set the Base directory: choose Browse Workspace, select jms, and click OK.

e Set Goals to compile fluency:exec.

¢ Set the following parameters:

com.kabira.fluency.hostName

(The IP address of the Domain Manager node)

com.kabira.fluency.administrationPort| 2000

com.kabira.fluency.domainNode A
com.kabira.fluency.username guest
com.kabira.fluency.password guest

Run Configurations

Create, manage, and run configurations

=

com.kabira.fluency.hostName

192.168.28.129

com.kabira.fluency.administrationPort
com.kabira.fluency.domainNode
com.kabira.fluency.username
com.kabira.fluency.password

2000
A
guest
guest

Maven Runtime: | Embedded (3.0-SNAPSHOT/0.12.1.20110112-1712)

0B X | B MName: [jms]
type Filter text g] =1Main =i JRE| * Refresh| B8 Environment| = Common|
I Java Applet Base directory:
< [Java Application [S{workspace_loc:fexamplesfjms}]
[Debug [Browseﬂorkspace...l [BrowseFile System...l [gariables...l
] Main
Ju JUnit Goals: [compile fluency:exec l [Select... l
~ mz Maven Build §
. Profiles: []
Juy Task Context Test [offline [J Update Snapshots
[Debug Output [] Skip Tests [Mon-recursive
[J Resolve Workspace artifacts
Parameter Name Value Add..

Filter matched 8 of 8 items

@

Close

Figure 4.9. Run Configurations - jms

Running other examples in Eclipse

5. Click the "Apply" button.

6. Click "Run" to build and run the JMS example. The console pane will open and you should see
a bunch of output, ending with:

El console &2 X % G &H |E”E| o]

<terminated= jms [Maven Build] fusr/lib/jvm/java-6-sun-1.6.0.24/bin/java (May 5, 2011 2:44:50 PM)

[A] Customer: transfer of 9 units confirmed

[A] Customer: transfer of 5 units confirmed

[A] Customer: transfer of 8 units confirmed

[A] Bank: error - insufficient funds in debit account

[A] Customer: transfer rejected, reason: insufficient funds in debit account
[A] Customer: exiting - insufficient funds for debit of 18

[A] Customer: final source account balance = 4

[A] Customer: final destination account balance = 996

[A] Customer: number of transfer transactions = 140

[A] Customer: number of transfer transactions retried = 7

[A] Bank: exiting - no more work

INFO: Application [com.kabira.examples.jms.Main] running on node [A] exited with status [0]
INFO: Rum of distributed application [com.kabira.examples.jms.Main] complete.
[INFO] Completed in (23 sec).

[INFO] =--m-cmmmmmmmmmm e i e oo e i oo e oo
[INFO] BUILD SUCCESS

L I e
[INFO] Total time: 25.254s

[INFO] Finished at: Thu May @5 14:45:16 PDT 2011

[INFO] Fimal Memory: 13M/129M

[INFD] = - - s e e e e e e e e e e e e e e eemeeemeeemee—eeeooaae-
INFO: Application [com.kabira.examples.jms.Main] exited with status [@].

Figure 4.10. Console output for JMS example

Running other examples in Eclipse

The other examples in the examples project may also be run in Eclipse. See the site documentation
on the Components and Examples [https://devzone.tibco.com/display/comp/Home] page of the
DevZone [https://devzone.tibco.com].

29

https://devzone.tibco.com/display/comp/Home
https://devzone.tibco.com/display/comp/Home
https://devzone.tibco.com
https://devzone.tibco.com

30

Index
B

breakpoints, 18

C

clusters, vii

debug run configuration, 15
debugging, 15-18
attaching the debugger, 17
configuring, 15-16
starting, 17
deploy.jar
in run configuration, 9
introduced, 2
development
overview, 1
domain manager, vii

J

JDK version, 2

JVM
TIBCO ActiveSpaces® Transactions server, 2

nodes, vii

requirements
system, 2

run configuration, 9
debug, 15

S

system requirements, 2

T
TIBCO ActiveSpaces® Transactions
JVM, 1
TIBCO ActiveSpaces® Transactions Administrator,
vii

31

32

	TIBCO ActiveSpaces® Transactions
	Contents
	About this book
	Terminology

	Chapter 1. Introduction
	What is TIBCO ActiveSpaces® Transactions ?
	The TIBCO ActiveSpaces® Transactions development model
	Hardware and software requirements

	Chapter 2. Building a simple application in Eclipse
	Install and Start TIBCO ActiveSpaces® Transactions
	Create a new Java project
	Create a simple application
	Create a run configuration
	Run it!
	Using the monitor

	Chapter 3. Debugging applications in Eclipse
	Create a debug-enabled run configuration
	Create a remote debugger configuration
	Run and debug the application

	Chapter 4. Running the JMS example in Eclipse (with Maven)
	Install and Start TIBCO ActiveSpaces® Transactions
	Check out the examples source from the public CVS server
	Configure Eclipse to run the JMS example
	Running other examples in Eclipse

	Index

