TIBCO ActiveSpaces® Transactions

Architect's Guide

Software Release 2.5.8
Published November 10, 2017

TIBC2

Two-Second Advantage®



Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR BUNDLED TIBCO
SOFTWARE ISSOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED
TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED ORACCESSED BY ANY OTHER
TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE AGREEMENT
FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE
AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALL-
ATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN LICENSE.PDF) OR IF THERE IS NO SUCH SOFTWARE LICENSE
AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF
THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL
CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIB, TIBCO, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now, Two-Second Advantage, TIBCO ActiveMatrix
BusinessWorks, are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

EJB, Java EE, J2EE, and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their respective owners and are mentioned
for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL OPERATING SYSTEM
PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME TIME. SEE THE README FILE FOR THE
AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ORNON-
INFRINGEMENT.

THISDOCUMENT COULD INCLUDE TECHNICAL INACCURACIES ORTYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THISDOCUMENT.
TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM (S)
DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR INDIRECTLY, BY OTHER
DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND
"READ ME" FILES.

Copyright © 2010, 2016 TIBCO Software Inc. ALL RIGHTS RESERVED, TIBCO Software Inc. Confidential Information




Contents

ADOUL thiS DOOK ...cieiiiiiieii et e e e e e e et e e e et e e e e at e eaertaaaaes ix
Related documentation ...........c.ooouuiiiiiiiiiiiiiiiee e ix
070311t 1180} o PPN ix
(0701111010141 ( 2RO X

1 INtrOAUCHION L.unieiii ettt e e et e e e et e e e e et e e e s et e e e e bt e e s eaaeaeeaaan 1
What is TIBCO ActiveSpaces® TransSactions ? .......cc.uvevveeiiuniiienieiieeeieeeeieeeieeeeaeeennnens 1
A e ea N o) o) <Y £ YN 1
D T ot o) o L 2
Durable ODJECE STOIE ....uu.iiiiiiieiiii e e et ear e 2
KEYS AN QUETIES ..uuniiiiieieiiiee et et e et e e e et e e e et be e e e et e e e eateeeeeaaannns 2
ASynchronous MEtNOAS ........iivuniiiiiii e e e e e e e e 2
High availability ........covuiiiiiiiieiee et 2
Distributed COmMPULING ....ouvviniiiiiiie e e e e e eaneeeas 3
Online CIUSEET UPZTAUES ...uuiveniiiie i e e e e e e e e e eaneeeens 4
(070301010 1 1<) 111 S PR 4

2. APPLCAtiON AFCIITECTUIE ....uiveeiiii e et e e et e e 5
INErOAUCHON «.oeeiieiieiii et e et e e e ettt e e e e et e e e e et e e e e st e e esstaaaaaees 5
Applications, N0des, AN JVMS ....couniiiiiiiii e 8
Elements within a N0de ..........cooouuiiiiiiiiii e 11
(070) Vi Teq 215 (o) o HNU PRSP 11
(0703 113 TTo1 51741 7/ 12
DISEIDULION .eiiiiiei e e e et e e e et e e e et e e e et e e e aaaaaaes 13
High availability .......oovvniiiiiii e 13

3. Management ArChItECTUIE ........ivuuniiieiiie e e e e eanes 15
Conceptual MOAEL .......oovuniiiiii e 15
L0 27S  (S1 PPN 16
Domain Management ........c.uuiiuiireiiiiieie e aaaas 18
A oS 00 1Sy 4 LA 10 Yo) SRR 23

LY o ea N o) o) <o £ YRR 25
LIfE CYCLE ..ottt et et e e e e et e e et e e e e e aaaans 25
) (1S 1L 25
I OIS wuitniii ettt ettt ettt et et et e e et e e e e e e et e st e et et e et eaa et et aaeran 25
Keys and QUETIES ......couuiiiiiiiiiieiiie et e e e e e e et eeeaaanns 25
ASynchronous MEthOAS .....ouuuiiieiiii e e e 26
NAMEA CACHES .ounniiiiiii et e et e e et e e et e e e eaaaanas 27

ST b 11 T Tt (o) o 1< S 31
Local and distributed tranSactions .............coouuiiiiiiiiiiiiiiiee e 31
| 0] F: 1 (o) s R S U USSP PRSP UPRPURPPRt 37
oYl o< 37
Deadlock deteCtion ........coovvueiiiiiii e 39
TranSaction IOZGING ......oevuniiiiiii et e e e e e et e e e et e e e e e e 42

6. Distributed COMPULIIG ....ovvniiiiiiee e e e e e eaans 43
LoCation tranSPArEIICY ......uciiuniiieeiiie e it e et e et e e eieeete e et eesteestaaestaaessenassenaessnaesrnnases 44
o Yor: 11 o) 1 1= NN 45
| aYer:1a o) 1 N N IS10) 74 o AN 45
LIfE-CYCLE .ttt et et e e et e e e e e e e et e e e e ata e e s eat e e e et aaaaas 46
Remote N0 SLALES ....oovvuniiiiii e aaaas 46
Deferred Write ProtoCol ........ooviiuniiiiii e e et 47
Detecting falled NOAES ....o.uviieeniiiiiie e 49
Network error DandIINg ......ooeeeiveeiiiiiiee e 50
Distributed transaction failure handling ...........cooooueeiiiiiiiiiiie e 53

iii



TIBCO ActiveSpaces® Transactions

7. High availability .....oovvniiiiiiiiii e 59
Cluster MemDBDErSIID ...ccouueiiieiieeiiie e et e e e e e et e e e eee 59
PartitioNed ODJECES ..vvveiiiiiieiiiie et 59
o g1 0) o ST 60
| S ) (2 ) s USSP 67
Updating object partition MapPing .........ueeevuiieieeiiieeiiie e e eee e e eeeeeeereeeranens 71
Migrating @ PArtItION .. .cvuuiiriiiiieiiie e et e e e e e e te et ee e e e e e e s e e e eeraeeeaans 71
ACtiVe NOAE trANSPATEIICY ..uu.eiivieneiiiiieeeeeieeee e et e e et e e e e e e eeeaeeeereaeesearneeeaes 72
Object locking during mMIGIation ..........ccevueiiieiiieiiiiee e e e e e e e e e eaans 72
Ao Sl e VLo ' 4 PO 73
GeographiC redUNdANCY .........uiiiuiiiiiiiie et e e e te e e e e eanas 81

8. CIUSTET UPGIAUES ...oeivvineiiiiieee e et e e et e e e e e s e e e s eateeseraeesenaes 83
ADDICAION VEISIOIS «..evvvniiiiiieeeiiie e et ee et e e et e e et e e et eeeeae e e s eaeeeseraeeesrranees 83
Detecting version CRaNGES .......c..uoiiiiiiiiieiiie e 84
ODJECE UPGTAUES ..oevviiieeeiieeeee ettt e e e e e e e e e e e e s eaeanens 85

9. CONMGUIALION ...iiveiiiieii e et e e e e e e e e e e e e s e s et eesaeeenneeees 87
Configuration Life CYCIE ......vivvieiiiiiiiee e e eeeeaan 88
Configuration NOLHIETS ........oiiiiiiii e e e e e eaaes 90

10, COMPOINEIES ..euniiiiniiiieeiiee ettt e e e e e e e e e e e e et e e sate e e st e s et eesaneesaaeessteesaneennnes 93
Fa e H Az 110 o E PR SRT 96
| DT T2 11T} | L PPN 97

11. System ManageImMeEnt ...........eivuniiiineiiieeiiie e ee e eeeee e e e e e e e e e sreeeaeereteesreeeaneaes 99
INOAE J0GGING «.ovvvveneeiiiiee et e e e e e e e e e e e et eeeeeaanees 99
S e 1y L TR 100

5316 (o PSP 101

v



List of Figures

2.1. TIBCO ActiveSpaces® Transactions application in CONtext .........ccocouvviiveviiveiiieneiiieeeennnnns 6
2.2. Layers of an apPlCAtIOI ... ..uuiivveiiie et e e eean 7
2.3. ANEtWOrK Of NOAES ....coeiiiieiiii et e et e e e e e et eeeaaaans 7
2.4. Solutions are made of applications, which run on nodes on hosts ..........ccoeevvvviiiiiiiiiinnnnen. 8
2.5. NOAE LIfe CYCLE «..oevveeieiiie et e et e e et e e e et e e e e et e e e saaa s 9
B 0TS 21 1138 e 15 1 oY (IS 9
2.7. StArtING @ TI0UE .evnieiniiie e e e aanaas 10
2.8. Loading a new CONIGUIAtION .......civuniiiiiiii i e e 11
2.9. Changing the active CONfIGUIatiON ..........cccouuiiuiiiiiiiie e 12
2.10. Connectivity of a business SOIULION ..........ccooiiiiiiiiiiiiii i e 13
2.11. High availability with node X actiVe .........c.oouuiiiiiiiiiiiiiie e 14
2.12. High availability With Y aCtiVe .......ccooiiiiiiiiii et 14
3.1, Conceptual MOAEL .......iveniiiiie e 16
3.2. Basic management architeCtUre ............oviiuuiiiiiiiii e 17
3.3, DISCOVEIY SEIVICE ..uuevniiniiieiieeie ettt e e e et e et e et et e et e et e e e e s e s s e st esaneraesnnees 18
3.4. Management architecture with Domain Manager .............cocooueiiiiiiiiiiiiiieiiieeeeeeeeeeen, 19
3.5. Domain manager nodes and the nodes in their domains ............cooeovueviiiiiiiiiieiiniiieeeeennes 20
3.6. Domains can include arbitrary groups of NOAES ..........ovevvuniiiiiiiiiiiieeie e 20
3.7. Managed element hierarchy with Domain Manager ............ccocoovviiieiiiiieiiieeieeeeeeinnes 21
3.8. Domain manager configuration CAChE .............ooivuuiiiiuiiiiiiiieeieeeee e 22
3.9. Configuration changes can be qUEUEM ..............uvivuniiiiiiiiiiiieiee e 22
3.10. Node agents forward log messages to the log message cache ...........c.coeevvvviiiiiiinnnnnnn. 23
O B O] o <o d =) =t o N 29
5.1. Distributed tranSaCtion ............coiiiiiiiiiiiiii e aaaaaas 32
5.2. Distributed transaction node partiCIpants ............co.uvevuuiiiiiiiiieeeie e 33
5.3. Distributed transaction With PrePare ...........ovivueiiiiiiiii e 35
5.4. Distributed transaction NOtfIErs ............ouuiiiiiiiiiiiii e 36
5.5, State CONTICE ..ovunniiiiiiie et e et e e e et e e e e et e e e e et e eeeaaan 39
5.6. DeadloCk deteCHiON .......cuuuiiiiiiieeeiiiiie e e et e et e e et e e e et e e e e e e e aaaanns 40
5.7. Distributed deadlock detection ...........cccoouuuieiiiiiiiiiiiiiie e 41
6.1. Distributed method eXeCUtion ............cooviiiiiiiiiii e 44
6.2. Deferred Write ProtOCO] .....covuniiee i 48
6.3. KEeP-aliVe PIrOtOCO] .. cevniiieiiie et e e e et e e eean 50
6.4. Connection failure handling ..........oouviiimiiiiiiii e 52
6.5. Undetected communication failure .................ooeeiiiiiiiiiiiiiiie e 54
6.6. Transaction initiator fails prior to initiating commit SEQUENCE .........ccovvvvivnviieeriiieiiinnnnnn. 55
6.7. Transaction initiator fails during commit SEQUENCE .........c.uuvivvniiiiiiiiiiieeeeeeeeeeee e, 56
7.1. Partition definitions ...........eiiiiiiiiiiiiiie e e et e e e e e aaan 61
7.2, SPArSE PATTILION .vuivniiiiiieiie et e et e e e e et e et e s e s e b e b e e b e e eraaas 62
7.3. Updated partition NOde LISt .........uuiiuniiiiiii e 64
7.4. Partition state Machine .............cooiiiiiiiiiiiiii e e 66
7.5. ASynchronous repliCation .............ouuuieiiiiiiieii i e e et e e e e e et e e e e e e e eaaanns 68
AT S0 o 1 1o 0 0 o o Yoo ) AP 70
7.7. Partition failover handling ...........ovivuniiiiiiii e 72
7.8. MUlti-mMaSter SCENATTO .. cevvvuniiiiiiie e et e e et e e et e e et tee e e e eateeesetaeeeseateeesesaanaeseaes 73
7.9. Quorum state machine - minimum number of active remote NOdes ......coeeuveueeneeneeneenaenaanns 75
7.10. Quorum state MAaChine - VO ......uuvivuniiieiiie e 76
711 ACHVE CIUSTET ovuneiiiiii et e ettt e e e et e e e e et e e e e et e e e eabaeaaees 78
712, Falled CIUSET .ovuniiiii et e e et ee e e e et e e e e et e e e e bt e e esaraeaees 78
7.13. Merge operation - using broadcast partition diSCOVErY ...........coeeeiiiiiieiiiiiiieeiiiiieeeeeenene. 79
8 o) el LTS 80




TIBCO ActiveSpaces® Transactions

7.15. GeographiC redUNUANCY ........oovuneiiiiiiieiiie et e e e e e e e et eeeenes 82
8.1. TYDPE EXCHAIEZE ...vvviiiiiieeiiee et e e e e e e e e e e et e e e e et e e s earaaeees 84
9.1. Configuration MOAEL .........coouiiiiiiiiiiii e e e 87
9.2. Configuration Life CYCIE .....coovuiiiiiiiiei e 89
10.1. Activating COMPONENLS ......uuiirueiiieiiieeiiee e e ee e e eteeereeeae e s et eeeaeeereesetersaeeennes 94
10.2. Deactivating COMPONEIS .......civuniiiieiiieeiiie e eeeeee et e et e e e e eteeeeaeeereeeeaeessaneeens 95
10.3. Component Activation Fallure ..........ccoouueiiiiiiiiiiie e 96
10.4. Component ACHVALION .......coovuiiiiiiiiee et e e e e e e e e e eae e e et eeeaneaes 97

10.5. Component Deactivation

vi



List of Tables

6.1. REMOLE NOAE STALES ...uniieeiiiiie i e e et e e e e e eanas 47
7.0, Partition STAtES ..ovuuiin it aaas 65
7.2, Partition SEATUS ...ouivniiiiii et e e et e e e e raaas 67
7.3. NOAE QUOTUITL SEATES ..evviieniiii it e e e e e e et e e e e e e e et e e et e eaneennneeens 74
9.1. State tranSition AUAILS .. ....covuniiieneiiie e e e e e e e e 90
9.2. State tranSition MEthOAS ........iiviiii e 91

vii



viii



About this book

This guide describes the architecture of TIBCO ActiveSpaces® Transactions . It provides a technical
overview of all TIBCO ActiveSpaces® Transactions functionality.

It is intended for the following types of readers:
¢ Anyone looking for a technical overview of TIBCO ActiveSpaces® Transactions features.

¢ Java developers who want to get started developing Java applications using TIBCO ActiveSpaces®
Transactions .

¢ System administrators and operators who want to understand the TIBCO ActiveSpaces® Trans-
actions application and management architecture.

Related documentation

This book is part of a set of TIBCO ActiveSpaces® Transactions documentation, which also includes:

TIBCO ActiveSpaces® Transactions Installation — This guide describes how to install the
TIBCO ActiveSpaces® Transactions software.

TIBCO ActiveSpaces® Transactions Quick Start — This guide describes how to quickly get
started using Java IDEs to develop TIBCO ActiveSpaces® Transactions applications.

TIBCO ActiveSpaces® Transactions Java Developer's Guide — This guide describes how to
program TIBCO ActiveSpaces® Transactions .

TIBCO ActiveSpaces® Transactions Administration — This guide describes how to install,
configure, and monitor an TIBCO ActiveSpaces® Transactions deployment.

TIBCO ActiveSpaces® Transactions Performance Tuning Guide — This guide describes the
tools and techniques to tune TIBCO ActiveSpaces® Transactions applications.

TIBCO ActiveSpaces® Transactions System Sizing Guide — This guide describes how to size
system resources for TIBCO ActiveSpaces® Transactions applications.

TIBCO ActiveSpaces® Transactions Javadoc — The reference documentation for all TIBCO
ActiveSpaces® Transactions APIs.

Conventions

The following conventions are used in this book:
Bold — Used to refer to particular items on a user interface such as the Event Monitor button.

Constant Width — Used for anything that you would type literally such as keywords, data types,
parameter names, etc.

Constant Width Italic — Used as a place holder for values that you should replace with an
actual value.

ix



About this book

Community

The TIBCO ActiveSpaces® Transactions online community is located at ht-
tps://devzone. tibco.com. The online community provides direct access to other TIBCO
ActiveSpaces® Transactions users and the TIBCO ActiveSpaces® Transactions development team.

Please join us online for current discussions on TIBCO ActiveSpaces® Transactions and the latest
information on bug fixes and new releases.




Introduction

What is TIBCO ActiveSpaces® Transactions

?

TIBCO ActiveSpaces® Transactions is an in-memory transactional application platform that provides
scalable high-performance transaction processing with durable object management and replication.
TIBCO ActiveSpaces® Transactions allows organizations to develop highly available, distributed,
transactional applications using the standard Java POJO programming model.

TIBCO ActiveSpaces® Transactions provides these capabilities:
¢ Transactions - high performance, distributed "All-or-None" ACID work.
¢ In-Memory Durable Object Store - ultra low-latency transactional persistence.

¢ Transactional High Availability - transparent memory-to-memory replication with instant fail-over
and fail-back.

¢ Distributed Computing - location transparent objects and method invocation allowing transparent
horizontal scaling.

¢ Integrated Hotspot JVM - tightly integrated Java execution environment allowing transparent low
latency feature execution.

Managed objects

TIBCO ActiveSpaces® Transactions features are available using Managed Objects which provide:

e Transactions

¢ Distribution




Chapter 1. Introduction

¢ Durable Object Store
¢ Keys and Queries
¢ Asynchronous methods

¢ High Availability

Transactions

AlNI'TIBCO ActiveSpaces® Transactions Managed Objects are transactional. TIBCO ActiveSpaces®
Transactions transactions support transactional locking, deadlock detection, and isolation. TIBCO
ActiveSpaces® Transactions supports single writer, multi-reader locking, with transparent lock
promotion. Deadlock detection and retry is transparently handled by the TIBCO ActiveSpaces®
Transactions JVM. Transactional isolation ensures that object state modifications are not visible
outside of a transaction until the transaction commits.

TIBCO ActiveSpaces® Transactions transactions can optionally span multiple JVMs on the same
or different machines. Distributed locking and deadlock detection is provided.

All transactional features are native in the TIBCO ActiveSpaces® Transactions JVM and do not re-
quire any external transaction manager or database.

Durable object store

Managed Objects are always persistent in shared memory. This allows the object to live beyond
the lifetime of the JVM. Shared memory Managed Objects also support extents and triggers. There
is optional support for transparently integrating managed objects to a secondary store, such as an
RBDMS, data grid, archival store, etc.

Keys and queries

Managed Objects can optionally have one or more keys defined. An index is maintained in shared
memory for each key defined on a Managed Object. This allows high-performance queries to be
performed against Managed Objects using a shared memory index. Queries can be scoped to the
local node, a sub-set of the nodes in the cluster, or all nodes in the cluster.

Asynchronous methods

Asynchronous methods allow applications to queue a method for execution in a separate transaction.
Transactional guarantees ensure that the method is executed once and only once in a separate
transaction.

High availability
TIBCO ActiveSpaces® Transactions provides these high availability services:

¢ Transactional replication across one or more nodes

e Complete application transparency




Distributed Computing

¢ Dynamic partition definition

¢ Dynamic cluster membership

¢ Dynamic object to partition mapping

¢ Geographic redundancy

e Multi-master detection with avoidance and reconciliation

A partitioned Managed Object has a single active node and zero or more replica nodes. All object
state modifications are transactionally completed on the current active node and all replica nodes.
Replica nodes take over processing for an object in priority order when the currently active node
becomes unavailable. Support is provided for restoring an object's state from a replica node during
application execution without any service interruption.

Applications can read and modify a partitioned object on any node. TIBCO ActiveSpaces® Transac-
tions transparently ensures that the updates occur on the current active node for the object. This
is transparent to the application.

Partitioned Managed Objects are contained in a Partition. Multiple Partitions can exist on a single
node. Partitions are associated with a priority list of nodes - the highest priority available node is
the current active node for a partition. Partitions can be migrated to different nodes during application
execution without any service interruption. Partitions can be dynamically created by applications
or the operator.

Nodes can dynamically join and leave clusters. Active nodes, partition states, and object data is up-
dated as required to reflect the current nodes in the cluster.

A Managed Object is partitioned by associating the object type with a Partition Mapper. The Partition
Mapper dynamically assigns Managed Objects to a Partition at runtime. The Managed Object to
Partition mapping can be dynamically changed to re-distribute application load across different
nodes without any service interruption.

Nodes associated with a Partition can span geographies, providing support for transactionally con-
sistent geographic redundancy across data centers. Transactional integrity is maintained across the
geographies and failover and restore can occur across data centers.

Configurable multi-master, aka split-brain, detection is supported which allows a cluster to be either
taken offline when a required node quorum is not available, or to continue processing in a non-
quorum condition. Operator control is provided to merge object data on nodes that were running
in a multi-master condition. Conflicts detected during the merge are reported to the application for
conflict resolution.

A highly available timer service is provided to support transparent application timer notifications
across failover and restore.

All high availability services are available without any external software or hardware.

Distributed Computing

A Managed Object can be distributed. A distributed Managed Object supports transparent remote
method invocation and field access. A distributed Managed Object has a single master node on
which all behavior is executed at any given time. A highly available Managed Object's master node




Chapter 1. Introduction

is the current active node for the partition in which it is contained. Distribution is transparent to
applications.

Online cluster upgrades

Class definitions can be changed on individual nodes without requiring a cluster service outage.
These class changes can include both behavior changes and object shape changes (adding, removing,
changing fields). Existing objects are dynamically upgraded as nodes communicate to other nodes
in the cluster. There is no impact on nodes that are running the previous version of the classes.
Class changes can also be backed out without requiring a cluster service outage.

Components

A component provides a mechanism to package up implementation and configuration into a single
deployable archive. A component is packaged as a JAR file. It may contain initialization and termin-
ation methods that are executed when the component is initialized and terminated. It may also
contain configuration files that are loaded and activated when the component is initialized, and de-
activated and removed when the component is terminated.




Application Architecture

This chapter describes the TIBCO ActiveSpaces® Transactions application architecture. Although
some details will vary from one application to another, the conceptual framework presented in this
chapter (and this book) is common to all.

This conceptual framework forms the basis for understanding the management concepts presented
in later chapters. Concepts explained in this chapter include:

¢ the context and major parts of an TIBCO ActiveSpaces® Transactions application

the TIBCO ActiveSpaces® Transactions platform and application architecture

elements that you can monitor, control, or change

¢ security, configuration, and connectivity

high-availability and distribution

Introduction

This section introduces the general features of a TIBCO ActiveSpaces® Transactions application.

Business solution

An TIBCO ActiveSpaces® Transactions application forms part of an enterprise system as shown in
Figure 2.1. The entire enterprise system is a business solution. It may consist of one more more
TIBCO ActiveSpaces® Transactions applications.




Chapter 2. Application Architecture

Business solution
Nodes distributed

across multiple hosts

External services and clients
External services and clients

| ™~

Figure 2.1. TIBCO ActiveSpaces® Transactions application in context
Some important properties of applications:
e distribution: transaction processing can be distributed transparently across various machines

¢ high availability: if one machine fails, processing of in-flight transactions can continue uninterrupted
on another machine.

¢ flexibility: applications can be upgraded with changed or entirely new behavior without stopping
transaction processing

¢ extensibility: additional features or solutions can be deployed onto a running TIBCO ActiveSpaces®
Transactions system

e configurable behavior: applications are highly configurable; much of their behavior can be changed
by configuration alone; there is support for configuring multiple machines atomically

An TIBCO ActiveSpaces® Transactions application can be distributed across a local or world-wide
network; nodes within the application publish their existence using a discovery service; they inter-
operate according to the configuration that you load onto them.

An application is deployed as a number of #zodes; nodes may be on the same machine or on different
machines. A node is a container for JVMs in which an application executes. A node provides part
or all of an application's functionality.

The concepts of node and application are described in more detail later in this chapter.

Application layered over platform

TIBCO ActiveSpaces® Transactions applications are built on top of the TIBCO ActiveSpaces®
Transactions platform. This provides many services such as:

¢ transaction management
¢ transparent distribution of data and processing
¢ arobust security model

¢ high-availability and distribution




Introduction

¢ configuration service
¢ channel framework to provide connectivity to external systems

A management framework is also part of the platform, and provides monitoring and control of the
platform as it executes applications.

The application is constructed as one or more nodes running on top of TIBCO ActiveSpaces®
Transactions . While TIBCO ActiveSpaces® Transactions provides a set of powerful capabilities, it
is the combination of the application-specific logic and configuration that define the actual behavior
of the business solution, as shown in Figure 2.2.

ActiveSpaces Transactions business solution

Application-specific logic
and configuration

channel framework security
(connectivity) service
chnage logs high-availability
( B s
configuration ( transaction distribution
service management service

..and many other features...

Management layer

Figure 2.2. Layers of an application

Notice that Figure 2.2 shows the management layer across TIBCO ActiveSpaces® Transactions ,
but also across the application-specific part of the solution as well. This is because the management
framework extends to the entire application, so you can control the entire application in one consistent
way.

‘When an application is deployed and running, it consists of a network of TIBCO ActiveSpaces®
Transactions nodes, one or more to a host computer. They are interconnected by the distribution
services, and are connected to external systems via the channel framework. This network is shown
in Figure 2.3.

Distributed ActiveSpaces Transactions solution

host machine

X -..."*..host machine
host machine -

external systems

host machine

host machine

Figure 2.3. A network of nodes




Chapter 2. Application Architecture

The goal of this section has been to provide a brief glimpse of the overall context of TIBCO Act-
iveSpaces® Transactions applications. The remainder of the chapter goes into more detail about
the elements involved and what can be managed in those elements.

Applications, nodes, and JVMs

Anodeis a container that host one or more JVMs to execute an TIBCO ActiveSpaces® Transactions
application; it is the primary element that you manage when you manage a TIBCO ActiveSpaces®
Transactions application.

When a node is created it is an empty container. It is bound to a specific application as
o part of deploying JVMs on the node.

Each node runs a single application, though an application may run on any number of nodes. An
TIBCO ActiveSpaces® Transactions business solution can be made up of one or many applications,
as shown in Figure 2.4.

ActiveSpaces Transactions business solution

...a solution comprises one or more applications...

application X

.one or more nodes run on each host computer...

host: frodo host:gandalf host: pippin host: efrond host: thorin

Figure 2.4. Solutions are made of applications, which run on nodes on
hosts

Each node (and there may be more than one on any host machine) contains the whole stack of
TIBCO ActiveSpaces® Transactions - Application-Management-Channels; each node is a fully func-
tional TIBCO ActiveSpaces® Transactions element. The next section discusses the basic controls
you have over a node and the Java Virtual Machines that execute in a node.

Node life cycle

The most fundamental control that you have over a node is to manage its life cycle. A node can be
installed (i.e. Created), started, stopped, and removed, as shown in Figure 2.5.




Applications, nodes, and JVMs

Node does not exist. There Node is running and accepting
are only some archive files work for processing. Its
on the install area. configuration can be changed

while it remains in this state.

none ' l inactive l active

Node exists; it is running and configured,
but is not operationally active. It is ready
to receive administration commands.

Figure 2.5. Node life cycle

The following paragraphs describe what happens when you install and start a node. (Removing and
stopping a node basically just "undo" the result of installing and starting.)

Install node To install a node, you use an administration client to perform an install node com-
mand. This starts up a node and prepares it for work, as depicted in Figure 2.6. (Installing a node

has nothing to do with installing the TIBCO ActiveSpaces® Transactions product files onto a com-
puter; it is an administration action that brings a node into existence.)

Host

Application node
admin discover

install
node

Admin
client

Figure 2.6. Installing a node

When a node is installed, it gets ready to support deployment of applications onto the node; it also
starts a system coordinator. The system coordinator is responsible for monitoring all of the processes
running on the node. These services prepare the node to receive and execute administrative com-
mands, even though it is not yet in the "active" state. Notably, the node is ready to execute the
""start" command.

Start node An installed node is running an administration server that listens for commands on
a port. You can issue commands to the node via this port, using either the command-line interface
(CLI), a graphical user interface (GUI) management console, or a standard Java Management Ex-
tensions (JMX) console. These tools are discussed in TIBCO ActiveSpaces® Transactions Admin-
istration Guide.




Chapter 2. Application Architecture

When you start a node, it loads its default node configuration files, starts node application services,
and waits for an application to be deployed, as depicted in Figure 2.7.

Host

Admin

client start node
Application node
[ 1

O

node services start

node
configuration
loads

Figure 2.7. Starting a node

Java Virtual Machines

One or more Java Virtual Machines (JVMs) can be hosted on a node, each with a unique name.
Each JVM on a node can have:

¢ a different main executing.

¢ different class paths.

e different classes loaded.

¢ different components loaded.

The life cycle of the JVMs are independent of the node and of each other. A JVM can be installed,
started, stopped, and removed.

The following paragraphs describe what happens when you install, start, stop, and remove a JVM.

Install JVM A deployment tool is used to install, or deploy, a JVM along with the JAR files that
will be executed in the JVM. Once a JVM has been deployed it can be started.

Start JVM To start a JVM, you use an administration client to perform a start jom command.
This starts up a JVM and starts executing Java code. The JVM can either start execution atamain
entry point, or load and execute one or more deployed TIBCO ActiveSpaces® Transactions com-
ponents (see the TIBCO ActiveSpaces® Transactions Java Developer's Guide for details).

Stop JVM To stop a JVM you use an administrative client to perform a stop jom command. This
terminates the running JVM, but leaves information in the node to allow the JVM to be restarted
without have to redeploy the Java code executing in the JVM.

Remove JVM To remove all deployed information associated with a JVM in a node you use an
administrative client to perform a remove jym command. Once a JVM has been removed from a
node, it must be installed again.

10



Elements within a node

Elements within a node

The preceding sections described how you can control a node and JVMs contained in the node:
changing its operational state and changing its configuration. There are many elements contained
within a node over which you have these same types of control. Many facets of an application - such
as channels, high availability features, and so on - can be started, stopped, and reconfigured using
the same management tools.

The remainder of this chapter is devoted to these features that are contained in a node, and which
you manage as part of managing a node.

Configuration

The behavior of an TIBCO ActiveSpaces® Transactions business solution can be changed by activ-
ating different configurations. Many aspects of a solution are configurable, from minor scheduled
changes to wholesale redefinition of business logic. Distribution, security policy, channel (connectiv-
ity) definitions, and many other features of the solution are defined using the configuration service.

There are many different configuration elements in a solution; each one can have several different
versions loaded but only one active version. Figure Figure 2.8 shows how you might load a new
version 2.1 of some configuration xyz, while leaving the current version 1.2 as the active version.

Host

Admin load config xyz

client

Application node

admin

configuration xyz

ver 1.0
ver 1.
ver 1.
[ver20_}

‘ ver
configuration
files

i 8

Figure 2.8. Loading a new configuration

The TIBCO ActiveSpaces® Transactions configuration service loads new configurations from files.
This file identifies both the name of the configuration element and the version. There can be any
number of different versions loaded for a particular element; any of these can be activated by a
management command. Figure Figure 2.9 depicts the activation of version 2.0 of configuration xyz.

11



Chapter 2. Application Architecture

Host

Admin activate config xyz 2.0

client

Application node

configuration xyz

ver 1.0
verili |
veriz |

ver20

ver 2.1

HA partition(s)

Figure 2.9. Changing the active configuration

Connectivity

TIBCO ActiveSpaces® Transactions business solutions optionally communicate with external systems
using these key connectivity features:

¢ the channel framework, which provides connectivity between a node and external systems

¢ adistributed communication model so that applications do not need to be concerned with nodes
and their states

Each of these is configurable and controllable using the TIBCO ActiveSpaces® Transactions man-
agement tools.

Endpoints, sessions, and services

An TIBCO ActiveSpaces® Transactions node communicates with external systems using the
channel framework. This framework manages communications using the following constructs:

® endpoint: this is an internal representation of a remote system; an endpoint also manages the
creation and allocation of a number of sessions

® session : a session is a connection with an external system

e service: a set of endpoints can be grouped into a service for administrative or operational purposes,
for example so that they can be enabled and disabled as a unit

Figure Figure 2.10 depicts the relationship of service, endpoint, and session.

12



Distribution

Host

pystem one Application node convice
S vi
[ T 1 | —

Remote system

sessions

Figure 2.10. Connectivity of a business solution

Within a node, an endpoint represents a logical destination that elements can communicate with,
ignoring the intricate details of sessions and external system details. Importantly, the channel
framework handles all data format and protocol conversion between the application and the external
system.

An endpoint can manage either incoming (server) or outgoing (client) sessions.

Endpoints can also be set to generate trace events. This diagnostic facility records messages as
they enter and exit the system,; various filtering on these events can be configured.

Here are the main administrative control points of the channel framework:
¢ you can display, start, and stop services, endpoints, and sessions

® you can turn endpoint tracing on or off

Distribution

The TIBCO ActiveSpaces® Transactions distribution feature provides transactional access to remote
nodes. This allows application objects to be accessed remotely within a transaction. Application
objects can also be cached on a local node to improve performance.

Nodes can be automatically discovered or explicitly configured.

The distribution protocol uses either TCP/IP, SSL, or Infiniband connectivity between nodes with
a platform independent encoding. The platform independent encoding allows heterogeneous hardware
platforms to communicate with each in a distributed transactional system. The optional automatic
node discovery protocol uses UDP.

Operational support for validating connectivity and managing distributed transactions is provided
by the TIBCO ActiveSpaces® Transactions management tools.

High availability

The TIBCO ActiveSpaces® Transactions High Availability feature provides an easy way to ensure
system availability using replicated objects. Two or more nodes (generally on different hosts to reduce

13



Chapter 2. Application Architecture

risk) are linked together with the high availability feature. The application objects are contained in
a high availability partition, which has a prioritized list of nodes that host the partition.

o Multiple partitions can be specified; the node lists can differ for each partition.

Normally the highest priority node in a partition's node list is the active node, and it processes work.
Figure 2.11 shows a client directing traffic for processing to node X, which is the active node for
the partition. As the requests are processed, objects are transactionally replicated onto node Y.

Distributed solution

Node X

essing is done
tive nod

client one

Node Y
I

High availability
autorpatically
propagates updates
to bagkup node

Remote client systems

backup {1

Figure 2.11. High availability with node X active

If anode goes out of service for some reason, the next highest priority node in the node list for the
partition becomes active and all processing can continue uninterrupted on that node. Figure 2.12
shows this taking place. When node X is later brought back up and restored, it will again be the
active node and the data and processing will move back to it from node Y.

Distributed solution

r

Primary’node is
taken out of service

client one

—_|

Remote client systems
<)
s
s
15}
S,
5
&
3
3
5
2
8
3§
3,
s}
- "
g
2
o
Z

™ Processing is done
on backup node, which
is now the active

Figure 2.12. High availability with Y active

It is possible to have all partitions active on one node and all the replica nodes for the partitions on
the other; an alternative approach provides load balancing by allocating the active nodes for partitions
across several nodes. It is also possible, using TIBCO ActiveSpaces® Transactions management
tools, to migrate a partition from one node to another. This can be used to scale up a system by
adding nodes, or to manage processing load by moving Aot partitions to dedicated nodes.

14



Management Architecture

This chapter provides a high-level description of the management architecture and capabilities
available to manage TIBCO ActiveSpaces® Transactions applications.

Chapter 2 described the general structure of TIBCO ActiveSpaces® Transactions applications. In
that chapter it was explained that a node is the fundamental unit that implements an TIBCO Act-
iveSpaces® Transactions application. This chapter describes the management model for TIBCO
ActiveSpaces® Transactions .

Conceptual model

The following concepts are used to describe the TIBCO ActiveSpaces® Transactions management
architecture:

¢ Machine - a physical computer
¢ Application - business specific functionality.
* Node - an TIBCO ActiveSpaces® Transactions administration or application server

¢ Cluster - a logical grouping of TIBCO ActiveSpaces® Transactions nodes that communicate to
support a distributed application.

¢ Domain - an administrative grouping of TIBCO ActiveSpaces® Transactions nodes for manage-
ment and development.

¢ Domain Group - a sub-set of TIBCO ActiveSpaces® Transactions nodes in a Domain for man-
agement and development.

An application is deployed on one more nodes.
One or more nodes can run on a single machine.

A node can belong to one cluster.

15



Chapter 3. Management Architecture

A node can belong to one or more domains.

A node can belong to one more more domain groups.
A node can host a single application.

A domain group can belong to one domain.

A cluster can be managed by one or more domains. However, it is rarely useful to have a cluster
managed by more than one domain. A cluster can also span one or more domain groups.

A node can host one or more JVMs. JVMs can be started and stopped independently of a node.

Machine
1
* ¥ 1| Cluster
Domain |*X— *  Node
¥
1 y Ty
Application
* *
Domain IVM
Group

Figure 3.1. Conceptual model

Overview

This section provides a brief overview of the TIBCO ActiveSpaces® Transactions management ar-
chitectural concepts.

Domains

TIBCO ActiveSpaces® Transactions nodes are grouped into domains. A domain provides a single
point of administration for multiple nodes. Domains will be discussed in more detail later in this
chapter.

16



Overview

Multiple nodes

Each TIBCO ActiveSpaces® Transactions node has an administration port; this is a unique network
port where the node listens for incoming administration requests. Requests on this administration
port are used to control all configuration and state on that node.

For the sake of versatility, the following different administration clients are available:

¢ A graphical (GUI) administration client provided by TIBCO ActiveSpaces® Transactions Admin-
istrator

e A command-line interface (CLI) provided by the administrator command

Any off-the-shelf JMX management console may also be used to manage TIBCO ActiveSpaces®
Transactions nodes.

Figure 3.2 shows how both of the command line and GUI may be used to control nodes via their
administration ports. The use of these clients is described in TIBCO ActiveSpaces® Transactions
Administration Guide.

Domain Manager node
 S— —

Web browser
(GUI) user

=

—

111
[Admin client ] [ Admin client }—4@
7 ay T
/ > i Co(mm;-md-lme
CLI) user
L] Y Y
admin discovery admin discovery admin discovery

Managed nodes on other hosts

Figure 3.2. Basic management architecture

In general, the GUI client is easier to use interactively and the CLI client provides other advantages
such as scriptability. For most of the remainder of this guide, diagrams will show only the GUI client,
but it is always possible to use the CLI client instead.

The GUI and CLI clients provide equivalent capability. In fact, TIBCO ActiveSpaces®
Transactions Administrator uses the CLI capabilities to control nodes as shown in Fig-
ure 3.2.

Each node within an TIBCO ActiveSpaces® Transactions business solution starts and runs as an
instance of a particular application.

Discovery

When a node is created, it publishes itself to a discovery service. The published service name has
a service type of node and is uses the node name as the service name. Along with the service name,
anode also publishes a set of properties that are useful to the domain manager to perform automatic
discovery of nodes. The properties are:

17



Chapter 3. Management Architecture

¢ Host name - the network address of the host where the node is running.
¢ Administration port - the node administration port.

* Node agent listener network address - the listener address of the node agent. The domain
manager event cache uses this information to access log messages from the node (see the section
called “Centralized log messages” on page 23).

¢ Node description - a node description.

¢ Default requested domain name - the name of the domain that will manage this node automat-
ically if the domain is running.

¢ Default requested group name - the name of the group to which this node will be added if the
group is defined on the requested domain.

Both the GUI and CLI management clients use the discovery service to find these nodes within the
network; access to a node can be done using its service name alone, without using the host name
and administration port.

Domain manager node
| S | S— F
Web browser Domain manager receives
(GUI) user 5 . i
2 discovery updates when new ;
@ o nodes are announced  {
-— —_— 2
a
[———] g Y i
Refreshing the browser displays S i
@
all known nodes, including t o
any new ones di Nodes E E
on the discovery service | >
when they start up i §
i T
L
discovery discovery discovery

Managed nodes on other hosts

Figure 3.3. Discovery service

Service discovery is also used by distribution to locate remote nodes. When a node starts it also
publishes a service name with a service type of distzibution. The published distribution service name
contains these properties:

¢ Network address - distribution listener address.
¢ Location code - location code of node.

See the section called “Location discovery” on page 45 for details on how distribution uses service
discovery.

Domain management

TIBCO ActiveSpaces® Transactions Domain Manager provides an additional management layer
to help control and configure nodes in an orchestrated way. The Domain Manager lets you:

¢ coordinate operational commands across multiple nodes

18



Domain management

¢ aggregate log events from multiple nodes into a single view that you can browse
e manage a centralized configuration for many nodes

Figure 3.4 shows how a single command from a management client can be directed to a set of nodes
using the Domain Manager.

Domain Manager node
| I  —

Web browser
(GUI) user

-

=

Web server

User issues domain command
Domn Andgersawards the
cpriand to al fodes inthe domain
admin discovery admin discovery admin discovery

Application nodes on other hosts, members of a domain

Figure 3.4. Management architecture with Domain Manager

The nodes being managed by a domain manager can be in the same data center or in a different
data center communicating over a WAN. Communication between data centers allows the domain
manager to manage geographically distributed nodes that are deployed in a disaster recovery
scenario.

A Domain Manager hosts a Web Server to provide web based administration via TIBCO Act-
iveSpaces® Transactions Administrator.

You can use the Domain Manager from either the CLI or GUI management client.

Domains

A Domain Manager controls a single domain; the name of this domain is part of the Domain Manager
node's configuration. You can interactively add nodes to this domain or remove them, using either
the GUI or CLI administration client. You can then use the Domain Manager node to manage all
the members of the domain. To manage more than one domain requires multiple Domain Manager
nodes, as shown in Figure 3.5.

19



Chapter 3. Management Architecture

Domain Manager nodes

domain "biscuits"

domain "eagle"
same nodes may not
belong to any domain

Figure 3.5. Domain manager nodes and the nodes in their domains
Once nodes belong to a domain, you can apply administration commands (such as configuration
changes) to all the nodes in the domain, or all the nodes in a group within the domain, as described

in the following section.

When you make a configuration change, you can apply it simultaneously to all nodes or allow each
node to make the change as soon as it can - this is called a quened update.

Groups

Within a domain, you may wish to manage arbitrary sets of nodes; you can create groups within a
domain to provide this capability. For example:

¢ nodes in different geographical locations might be configured with different policies

¢ nodes that host one type of functionality may require configuration that is different from that of
other nodes

¢ nodes servicing different clients might require different operational rules

Note that the groups described above overlap: a node may belong to any number of groups, as
shown in Figure 3.6.

Domain Manager nodes

> ~..domain "biscuits"

- =| A node in a domain
rnay belong to
no group

Figure 3.6. Domains can include arbitrary groups of nodes

20



Domain management

The Domain Manager lets you add nodes to a group or remove nodes, using either the GUI or CLI
administration client. Node membership can be pre-configured, or you can manually add nodes in
these different ways:

e explicitly: by selecting the node directly and adding it to the group

¢ dynamically: by specifying a set of service properties - any nodes that publish these properties to
the discovery service become members of the group

Highly available clusters

An TIBCO ActiveSpaces® Transactions highly available cluster is a configured set of TIBCO Act-

iveSpaces® Transactions nodes that provide redundancy for each other. A highly available cluster
can be associated with one or more management domains or groups. However, in general, you will
probably want to manage all nodes in a cluster in the same management domain for ease of admin-
istration. See the TIBCO ActiveSpaces® Transactions Administration Guide for details on clusters.

Managed element hierarchy

The hierarchy of managed elements is extended by the addition of Domain Manager, as shown in
Figure 3.7.

Domain

foptcatn E
Partition |— Data Grid Node

Configuration

‘ o ‘

Endpoint

Session

Figure 3.7. Managed element hierarchy with Domain Manager

The dotted lines reflect the fact that there are multiple ways to view this hierarchy: nodes belong
to domains and groups, but you navigate to then in the GUI via their grouping under an application.

Centralized configuration cache

You can define a centralized configuration cache for any configuration element on the nodes within
a domain. This allows you to manage just the centralized configuration set, and Domain Manager
automatically synchronizes this configuration on the member nodes, as shown in Figure 3.8.

21



Chapter 3. Management Architecture

Web browser
(GUI) user

-

—

Change to centralized
configuration element

Web server

11
Domain Manager forwards
configuration updates

Application nodes on other hosts, members of a domain

Figure 3.8. Domain manager configuration cache

You can upload new configuration versions to the central cache on the Domain Manager; these
versions are forwarded to the member nodes and loaded as required. Changing the active version
on a configuration element in the central cache results in the activation of that version on all the
member nodes.

You can also define centralized configurations for groups; these are forwarded from the Domain
Manager cache to all the member nodes in the group.

Even when a configuration element is centrally managed, it is possible to explicitly update

o it on an individual node. This practice is strongly discouraged, because the configuration
cache will not correctly reflect the configuration of this node and might overwrite that
configuration when the centralized one is updated.

When you make an update to the centralized configuration cache, it normally is applied atomically
to all the member nodes: unless every node is successfully updated, all the updates are rolled back.
However, you can choose to use the queued update style (see Figure 3.9); this updates nodes inde-
pendently as each one becomes ready for the update.

Load Configuration for Development K

2 k=1

File Mame: [ Choose File ) node. kcs
Queued: False @ True

Submit Reset Cancel '

Figure 3.9. Configuration changes can be queued

22



Management tools

Centralized log messages

The TIBCO ActiveSpaces® Transactions log message system supports a centralized view of log
messages from all managed nodes. Each node has a node agent that can be configured to forward
the log messages to the Domain Manager. The Domain Manager communicates with the node
agents, aggregating log messages from all its managed nodes into a centralized log message cache
as shown in Figure 3.10.

Domain Manager
Web browser —IT—71

(GUI) user
L] |

[—

request log message

Web server

The cached log messages are
displayed on the browser

Messages o be cached

Application Nodes

Figure 3.10. Node agents forward log messages to the log message cache

You can display and filter log messages using either the GUI or CLI management client.

Management tools

This section provides an introduction to the TIBCO ActiveSpaces® Transactions management tools.
These tools are discussed in more detail in the TIBCO ActiveSpaces® Transactions Administration
Guide.

TIBCO ActiveSpaces® Transactions Administrator is a web-based GUI that communicates with a
Domain Manager to manage and monitor nodes. TIBCO ActiveSpaces® Transactions Administrator
allows any Web Browser to be used to manage TIBCO ActiveSpaces® Transactions solutions.

Al TIBCO ActiveSpaces® Transactions administrative commands are supported using JMX. TIBCO
ActiveSpaces® Transactions also exposes all log messages as JMX notifications. This allows any
off-the-shelf JMX console to be used to manage TIBCO ActiveSpaces® Transactions nodes.

administrator provides a command line tool to support all administrative commands. admin-
istrator provides a simple mechanism to support scripting of operational functions.

23



24



Managed objects

As described above Managed Objects are backed by shared memory. They can also be distributed
and replicated.

Life cycle

Managed Objects are not garbage collected. They must be explicitly deleted by the application.
Managed Objects exist following a normal JVM or machine shutdown. They also survive node and
machine failures if they are replicated to another machine.

Extents

An extent is a collection of all Managed Objects that have been accessed on the local node. All
Managed Objects have extents automatically maintained. Extents contain references to objects
created on the local node and remote references for objects that were pushed (replicated) or pulled
to the local node.

Triggers

Managed Objects optionally support triggers. A trigger provides a mechanism to be notified when
a Managed Object is updated, deleted, or a conflict is detected while restoring a node following a
multi-master scenario.

Keys and Queries

Managed Objects can optionally have one or more keys defined using annotations. When a key is

defined on a Managed Object, an index is maintained in shared memory as Managed Objects are

created and deleted. An index associated with a replicated or distributed Managed Object is main-
tained on all nodes to which the object is exists.

25



Chapter 4. Managed objects

By default key values are immutable - they cannot be changed after an object is created. Mutable
keys are also allowed if explicitly specified in the key annotation.

Explicit transaction locking can be specified when doing a query. These lock types can be specified:
¢ None - no transaction lock is taken on the objects returned by the query.

¢ Read - a transaction read lock is taken on all objects returned by the query.

e Write - a transaction write lock is taken on all objects returned by the query.

The lock type specified when performing a query only has impact on the query result. It does not
affect the standard transaction locking as described in the section called “Locking” on page 37 when
operating on the objects returned from the query.

A query can be scoped to the local node only, a user defined sub-set of the nodes in a cluster, or all
nodes in a cluster. This allows object instances to be located by key from any node in a cluster.
When a query is executed on multiple remote nodes, the query executes in parallel and the result
set is combined into a single result set returned to the caller . The returned result is guaranteed to
contain only a single instance of an object if an object exists on multiple nodes (replicated or distrib-
uted).

If an object is returned from a remote node that doesn't already exist on the local node it is implicitly
created on the local node. This causes a write lock to be taken for this object. The lock type specified
when performing the query is ignored in this case. The caching of objects returned from remote
nodes is controlled using Named Caches as described in the section called “Named

Caches” on page 27.

When a user-defined query scope is used, the nodes in the query scope can be audited when the
query is executed. The possible audit modes are:

¢ Verify that the query scope contains at least one node. No other auditing is performed.

¢ Verify that the query scope contains at least one node and that distribution is enabled. Any inactive
nodes are skipped when a query is performed.

¢ Verify that the query scope contains at least one node and that distribution is enabled. Any inactive
nodes cause a query to fail with an exception.

Query support is provided for:

¢ Unique and non-unique queries
¢ Ordered and unordered queries
¢ Range queries

¢ Cardinality

¢ Atomic selection of an object that is created if it does not exist

Asynchronous methods

Methods on managed objects can be defined as asynchronous. Asynchronous methods are not
queued for execution until the current transaction commits. When the current transaction commits,
a new transaction is started and the method is executed in the new transaction. If a deadlock is de-

26



Named Caches

tected while executing an asynchronous method, the transaction is aborted, a new transaction is
started, and the method is re-executed.

The default transaction isolation of the transaction started to execute an asynchronous method is
Serializable. The default isolation level can be changed to Read Committed - Snapshot using an an-
notation.

Asynchronous methods are queued to the target object and are executed one at a time, in the same
order in which they were queued. Only one asynchronous method can be executed by a particular
object at a time. The following ordering guarantees are made:

¢ An object executes asynchronous methods from a single sender object in the same order that
they are sent.

¢ An object executes asynchronous methods from multiple senders in an indeterminate order. This
order may or may not be the same order in which they were sent.

¢ An asynchronous method sent from an object to itself is processed before any other queued
asynchronous methods to that object.

Asynchronous methods can be called on a distributed object. The method will be executed on the
master node for the object. However, the method is always queued on the local node - it is not sent
to the remote target node until after the current transaction commits.

If the target object of an asynchronous method is deleted before the method executes, the method
execution is discarded.

When a JVM is shutdown, any queued asynchronous methods that have not executed are executed
when the JVM is restarted.

Named Caches

Named caches provide a mechanism to control the amount of memory used to cache managed objects.
Named caches can be dynamically defined, and managed objects added, at runtime without impacting
arunning application. Named caches support configurable cache policies and support for automatic,
and explicit managed object flushing.

The default caching policies for managed objects when they are not associated with a named cache
are:

¢ Local managed objects are always cached.
¢ Distributed objects (see Chapter 6) are never cached.
¢ Replica objects (see Chapter 7) are always cached, and cannot be flushed.

Named caches are defined using an API or administrative commands.

Cache policies

Named caches support these cache policies:

e Always - object data is always accessed from shared memory on the local node. These objects are
never flushed from shared memory.

27



Chapter 4. Managed objects

e Never - object data is never accessed from shared memory on the local node. These objects are
always flushed from shared memory. This cache policy is defined by setting the cache size to
Zero.

e Sized - object data is always accessed from shared memory on the local node. These objects are
automatically flushed from shared memory when they exceed a configurable maximum memory
consumption size.

Cache policies are specified per named cache and they can be dynamically changed at runtime.

The implications of caching a distributed object are described in the section called “Reading and
writing object fields” on page 44.

Cache association

Managed objects are associated with a named cache by class name at runtime. When a class is as-
sociated with a named cache all objects of that type are moved into the cache, along with any objects
that extend the parent class, that are not already associated with a cache.

Named caches support inheritance. If a class is associated with a named cache all objects with that
class as their parent are moved into the named cache. If another named cache is defined and a child
class of the parent is associated with it, only the child objects (and any of it's children) are moved
into the named cache. All other objects are left in the parent's named cache.

Object flushing

All managed objects, except for replica objects, can be flushed from shared memory.

Cached objects are flushed from shared memory:

e explicitly using an APIL.

¢ automatically at the end of the current transaction (only distributed objects not in a named cache).
¢ using a background flusher when associated with a named cache.

Regardless of how an object is flushed, it has this behavior:

¢ flushing a local managed object, including partitioned objects on the active node, is equivalent to
deleting the object, any installed delete triggers will be executed.

¢ flushing a distributed object removes the object data, including any key data, from local shared
memory.

¢ flushing a replica object is a no-op. Replica objects cannot be flushed since that would break the
redundancy guarantee made in the partition definition.

Figure 4.1 shows how a distributed object is refreshed after it was flushed from memory. 01" is a
distributed reference to 01 that was stored in an object field on Node One. Accessing the field
containing the 01" distributed reference on Node One will cause the object data to be refreshed
from Node Two.

28



Named Caches

Node One
'y
Distributed reference to 01

refresh
Managed object

@ Node Two

Figure 4.1. Object refresh

Distributed objects not in a named cache are automatically flushed from shared memory at the end
of the transaction in which they were accessed. These objects are never in shared memory longer
than a single transaction.

A background flusher evicts objects from shared memory in named caches. Objects are flushed
from shared memory when the total bytes in shared memory exceeds the configured maximum
size. Objects are flushed from shared memory using a Least Recently Used algorithm. The background
flusher operates asynchronously, so the maximum memory utilization may be temporarily exceeded.

Objects are also automatically flushed from shared memory when memory throttling is in affect,
for example when a distributed query fetches a large number of remote objects that cause local
cache limits to be exceeded.

When calculating the size of shared memory required for a node, cached objects must be included
in the sizing. See the TIBCO ActiveSpaces® Transactions Sizing Guide.

Flush notifier Optionally a flush notifier can be installed by applications to control whether an
object is flushed or not. When a flush notifier is installed it is called in the same transaction in which
the flush occurs. The notifier is passed the object that is being flushed, and the notifier can either
accept the flush, or reject it. If the notifier rejects the flush the object is not flushed from shared
memory. The flush notifier is called no matter how an object flush was initiated.

29



30



Transactions

This section describes TIBCO ActiveSpaces® Transactions transactional functionality in more detail.

Local and distributed transactions

Transactions may be either local or distributed.
Local transactions are used on a single node even if they span multiple JVMs on the node.

Distributed transactions are used between TIBCO ActiveSpaces® Transactions nodes. When a
transaction spans TIBCO ActiveSpaces® Transactions nodes a global transaction is started on the
node that initiates the distributed work. The initiating node acts as the transaction coordinator.
There is no independent transaction coordinator in TIBCO ActiveSpaces® Transactions . All TIBCO
ActiveSpaces® Transactions nodes act as a transaction coordinator for distributed work that they
initiate.

31



Chapter 5. Transactions

Node 1 Node 2 Node 3
) )
[} [} [}
[} [} [}
—_— | |
i Begin i i
r— I I
[} [} [}
! Read Lock ! !
I P |
[} [} [}
[} [} [}
: Read Lock Granted : :
S | |
[} [} [}
[} [} [}
[} [} [}
: Re:ad Lock :
[} [} >I
[} [} [}
[} [} [}
! Read Lo¢k Granted |
< T T
[} [} [}
[} [}
Commit | |
Pt I
[} [}
[} [}
£ Commit i

ommi

E : >
o [} [}
[} [}
[} [}
[} [}
[} [}
Commit ! !
: :
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}

Figure 5.1. Distributed transaction

Nodes may be added to a distributed transaction not only by the node that initiated the distributed
transaction, but by any node that participates in the distributed transaction.

32



Local and distributed transactions

GT - Global Transaction

LTn - Local Transaction

Node 1 Node 2 Node 3 Node 4
! : : :
| BeginlLTl ! I I
| 1 : :
| | | |
| | | |
: ‘ | . | !
| GT | Begin LT2 ! :
! > | '
: | : :
! —— : :
| | |
i : GT_ | BeginlT3 !
\ t 1 !
| | ’ ’
: | :<_ :
! E | GT ! Begin
: | | >
| | |
i i i GT(LT4)
| | |
| | | |
E o GT(LT3, LT4) : !
| ! I I
:4 GT(LT2, LT3, LT4); ! !
! Commit (GT) ! : :
: > : :
| l H ! l
. Commit(GT) ! !
= | i > :
o ! - |
z | i Commlt(GT)i »i
g I | | I
O | | | |
| — : - '
: Commit(LT1) : l
o : :
. ! :
| | |

Figure 5.2. Distributed transaction node participants

Figure 5.2 shows how nodes are added to a distributed transaction. In this diagram Node 1 starts
alocal transaction, LT1, and then initiates a global transaction, GT, to Node 2.Node 2 startsa
local transaction, LT?2, on behalf of the global transaction GT and then initiates work on Node 3in

33



Chapter 5. Transactions

the same global transaction GT. Node 3 initiates another local transaction LT3, and then initiates
work on Node 4, which starts another local transaction, LT4.

The response back from each of the nodes contains information on the local transaction that was
started on the node, and any other nodes that started local transactions. This allows the initiating
node, to determine which nodes need to be committed when the global transaction is committed.
This is shown in the diagram in the commit processing on Node 1 -a commit is sent to all four
nodes, even though Node 1 only initiated a global transaction to Node 2.

There is no programmatic difference between local and distributed transactions. TIBCO Act-
iveSpaces® Transactions initiates the appropriate transaction type transparently depending on
whether local or remote objects are in the transaction. There is a difference in how deadlocks are
detected. See the section called “Deadlock detection” on page 39.

Prepare

Distributed transactions optionally have a prepare phase. A prepare phase provides a mechanism
to integrate with external transactional resources. A failure in any of the prepare notifiers causes
the transaction to rollback.

A prepare phase is used if there are any updates in a transaction, or transaction notifiers (see the
section called “Transaction notifiers” on page 35) are installed for a transaction. The transaction
notifiers can be installed on any node that is participating in a distributed transaction. If no updates
are done in a transaction, or no transaction notifiers are installed, the prepare phase is skipped to
optimize the performance of distributed transactions by eliminating the additional network I/0 re-
quired with prepares.

34



Local and distributed transactions

Node 1 Node 2 Node 3

Begin

Read Lock

\d

Install notifier

Read Lock Granted

I
|
|
|
|
|
|
|
| |
| |
| |
I |
| | |
| | |
| | |
< D
: - need prepare | :
| | |
| Rejad Lock |
T T P
| | |
| | |
I Read Lock Granted I
@ : :
| | |
! Prepare ! !
i > |
| | |
: Prepare !
: : >
| | |
| | |
| | |
= | Prepare I I
W - | | |
3 |, Commit ! !
O | >, I
: Commit :
: . >
| | |
| . | |
I Commit I |
| |— : :
1 | |
| | |

Figure 5.3. Distributed transaction with prepare

See also the section called “Deferred Write Protocol” on page 47.

Transaction notifiers

Applications can optionally install transaction notifiers that are called during the prepare phase and
when the transaction commits or rolls back. Transaction notifiers can be used to integrate with ex-
ternal systems - both transactional and non-transactional. Transaction notifiers are executed on the
node on which they were installed. A distributed transaction may have transaction notifiers installed
on multiple nodes by the application. In this case, the notifiers are executed on each node on which
they were installed.

35



Chapter 5. Transactions

Node 3

Node 2

Node 1

Prepare
Notifier
Called

>
Notifier installed

:

|

|

|

Prepare Commit
Notifier Notifier

Commit
Notifier
Called S
=
........... S =S

B

qu.ﬂwqm = Commit

Oo_ﬁ__ _mq m Notifier

alle 3 Called

NWWoD

Figure 5.4. Distributed transaction notifiers

36



Isolation

Isolation

TIBCO ActiveSpaces® Transactions transactions support the following transaction isolation levels
for objects:

¢ Serializable - modifications are only visible outside of the current transaction when it commits.
Transaction read locks are taken for the duration of the transaction to ensure read consistency.
All writes are blocked while a transaction read lock is held. This is the default transaction isolation
level.

¢ Read Committed - Snapshot - modifications are only visible outside of the current transaction
when it commits. Snapshots are taken from the last committed transaction (i.e. It is not a dirty
read) to ensure read consistency during a transaction. No transaction read locks are taken during
the transaction allowing object modifications to occur while reading an object. Read consistency
is provided by the snapshot data across all fields in an object.

Both object isolation levels, serializable and read committed - snapshot, provide consistent, or re-
peatable reads during a transaction on the same node. This means that the same object field read
multiple times in a transaction returns the same value. Read consistency is not guaranteed across
nodes. See the section called “State conflicts” on page 38 for details on how data inconsistencies
are handled.

Extents always use this transaction isolation level:

¢ Read Committed - extent iterations and cardinality will return inconsistent results in the same
transaction if other transactions create or delete objects in an extent.

Locking

Transaction locks are used to maintain data consistency for the duration of a transaction. Transaction
locks are only taken on objects. The transaction isolation level impacts the locking that occurs
during a transaction. A serializable transaction isolation takes both transaction read and transaction
write locks. A read committed - snapshot transaction isolation level only takes transaction write
locks, no transaction read locks are taken.

A transaction lock is taken on an object when a field is accessed (serializable transaction isolation
only) or modified. The transaction lock is released when the transaction commits or rolls back.
Executing a method on an object does not take a transaction lock unless an object field is accessed
(serializable transaction isolation only) or modified in the method. This implies that multiple threads
can be executing the same method on the same object at the same time.

No transaction locks are taken on extents when objects are created or deleted. This allows better
parallelism for object creation and deletion, but it does have implications for transactional isolation.
See the TIBCO ActiveSpaces® Transactions Java Developer's Guide for details.

TIBCO ActiveSpaces® Transactions supports multiple reader, single writer transaction locks. For
example, multiple concurrent transactions can read the same object fields, but only a single trans-
action can modify an object field.

When a transaction is using a serializable transaction isolation, transaction read locks can be promoted
to a transaction write lock if an object field is read, and then the field is modified in the same trans-
action. A transaction read lock would be taken on the initial field read and then promoted to a

transaction write lock when the field is written. If multiple transactions attempt to promote a trans-

37



Chapter 5. Transactions

action read lock on the same object, all transactions, but one, will generate a promotion deadlock. A
promotion deadlock causes the transaction to rollback, dropping its transaction locks. The transaction
is then replayed causing the transaction to reacquire the transaction locks.

Distributed objects support the same transaction locking as objects on the local node.

State conflicts

A state conflict is reported by TIBCO ActiveSpaces® Transactions when an object modification
(create, write, delete) operation from a remote node detects that the data on the local node has
changed underneath it. This is possible in a distributed system because the object may be modified
from multiple nodes in the system. State conflicts can occur with both the standard distributed
transaction protocol and the deferred write protocol (see the section called “Deferred Write Pro-
tocol” on page 47).

If a state conflict is detected an error is returned to the remote node where the object state is dis-
carded, the transaction rolled back, and then replayed. The affect of this is that the object state will
be resynchronized on the remote node. The application is never aware that a state conflict occurred.
The only impact is on application performance.

Figure 5.5 shows an example of a state conflict. The sequence diagram shows these steps:
1. Transaction T1 on node 1 reads an object from node 2 and commits.

2. Transaction T2 on node 3 reads the same object from node 2 and commits.

3. Transaction T3 on node 3 modifies the object on node 2 and commits.

4. Transaction T4 on node 1 attempts to modify the same object on node 2, but the object has
changed since the last time it was read onto node 1. A state conflict is detected and node 1 is in-
structed to rollback transaction T4 and to discard all object state.

5. Transaction T4 is replayed on node 1 as T5. The object state is first refreshed from node 2, and
then the object is successfully modified.

38



Deadlock detection

Node 1 Node 2 Node 3
) ) )
| | |
| | |
| | |
| | |
| | |

| |
| |
Read Object I I
T1 > !
|
! Read Object
] - T2
: :
| |
| |
| | |
| |
[} [}
| |
! ! Write Object
| |
[} [}
| |
| |
Write Object I I
> |
T4 ' '
Rollback X State Conflict :
:
| |
Read Object |
|
|
T5 Write Object |
:
|
|
|
|
|
|

Figure 5.5. State conflict

Deadlock detection

Since transactions are running simultaneously, it is possible to have deadlocks in applications.

U AU S,

TIBCO ActiveSpaces® Transactions automatically detects deadlocks and handles them in the fol-

lowing manner:

¢ the transaction that detected the deadlock is chosen as the victim, this transaction is rolled back

and replayed.

¢ another transaction waiting on a transaction lock that was released is chosen as the winner and

allowed to complete.

39



Chapter 5. Transactions

Transaction 1

Object 1

Object 2

Transaction 2

Request Read Lo

ck

Grant Read Lock

>
|
|

Request Wriite Lock

Lock Waﬁt

Grant Write

<

Grant Read Lock

[}
[}
[}
[}
: Request Read Lock
:
[}
[}

1§

|
Request \N:rite Lock

-

X<

[}
De:adlock

ck

AT A

-_____-_E__--__

Figure 5.6. Deadlock detection

Figure 5.6 shows a deadlock caused by these actions:

1. Transaction 1 requests, and is granted, a read lock on Object 1.

2. Transaction 2 requests, and is granted, a read lock on Object 2.

> |

[}
Rdllback
Transaction 2

3. Transaction 1 requests, but is not granted, a write lock on Object 2. The write lock is not granted
because of the read lock held on Object 2 by Transaction 2. Objects cannot be modified while
other transactions are reading the object.

4. Transaction 2 requests, but is not granted, a write lock on Object 1. This is a deadlock because
both transactions would block indefinitely waiting for the other to complete. Transaction 2 is
chosen as the victim and rolled back.

5. Transaction 1 is granted the requested write lock on Object 2 because Transaction 2's read lock

on Object 2 was released when Transaction 2 was rolled back.

Notice that both transactions are attempting to promote a read lock to a write lock. This deadlock
can be avoided by taking the write lock initially, instead of promoting from a read lock. See the
TIBCO ActiveSpaces® Transactions Java Developer's Guide for details on how to use explicit
locking to avoid lock promotion deadlocks.

Deadlock detection and resolution is transparent to the application programmer, but deadlocks are

expensive in both responsiveness and machine resources so they should be avoided.

40




Deadlock detection

Local transactions detect deadlocks immediately in the execution path. There is no timeout value
associated with local transactions.

Distributed transactions use a configurable time-out value to detect deadlocks. If a lock cannot be
obtained on a remote node within the configured time-out period, the distributed transaction is
rolled back, releasing all locks. The transaction is then restarted.

Node 1

-

Begin

Read Lock

Node 2 Node 3

Read Lock Granted

\/

[y SO P

y ]

|
|
|
|
|
|
|
|
|
|
|
| Wriite Lock
: : .
| | |
54 Dee\‘ldlock i -
L : :
: Abort | |
| Pt |
| | |
| | |
| | |
~ [ Abort |
o |! t P
e} | | 1
< [! ] |
| | |
| | |
| | |
: Abort ! !
| — | |
o | |
| | |
| | |
| | |
| | |
| | |
| | |

Figure 5.7. Distributed deadlock detection

Timed Out
Waiting for L

Because distributed deadlock detection is based on a time-out, applications with distributed deadlocks
will perform poorly because the configured time-out has to be large enough to ensure that there
are never any false deadlocks reported during normal application processing.

41



Chapter 5. Transactions

Transaction logging

To support rollback of a transaction, all object modifications must be logged. The TIBCO Act-
iveSpaces® Transactions logging mechanism is done in memory by keeping a copy of the before
image of any changes. Any object references that are no longer referenced in a transaction are
protected from garbage collection so they are still available if the current transaction rolls back.

If the current transaction commits, all logged data is discarded and any reference locks to deleted
objects are released.

If the current transaction rolls back, the original state of all objects is restored. Any objects created
in the transaction are released to allow them to be garbage collected.

42



Distributed computing

Any TIBCO ActiveSpaces® Transactions Managed Object can be a distributed object. A distributed
object transparently provides remote method invocation and access to object fields across nodes.
The full transactional guarantees made by TIBCO ActiveSpaces® Transactions for non-distributed
objects are also true for distributed objects.

Access to a distributed object is through a normal Java object reference. All Managed Object refer-
ences contain data to identify the node where the object was created.

The same instance of an object cannot exist on multiple nodes. Copies of an object's state may be
located on multiple nodes to improve performance or robustness, but the master copy is located on
a single node - by default the node where the object was created.

All object methods transparently execute on the master node for an object. Any methods invoked
on an object reference are sent to the master node and executed there.

Objects of the same type can be created on multiple nodes. This is done by installing the application
class files, or implementation, on multiple nodes. This is a common application architecture to
support object partitioning and caching or service availability mechanisms.

43



Chapter 6. Distributed computing

| NodeOne | | Node Two

order(Node Two).cancel();

Order

num

ber

cancel()

|
|
|
|
|
|
: >
|
|
|
|
|
|
|
|

Order
number
cancel()

order(Node One).cancel();

Figure 6.1. Distributed method execution

Figure 6.1 shows an Order class that has its implementation installed on two nodes - Node One
and Node Two. Two instances of the Order class have been created, one on Node One and one
on Node Two. When the Order.cancel () method is executed on Node One, using the or-
der(Node Two) instance, the method is executed on Node Two. The opposite is true for the
order(Node One) instance.

Location transparency

TIBCO ActiveSpaces® Transactions provides location transparency for objects. This means that
when an application accesses an object, its location is transparent — it may be on the local or on a
remote node.

Location transparency is accomplished through the use of distributed references. All Managed
Objects created in TIBCO ActiveSpaces® Transactions have a distributed reference that contains
the master node for the object. An object's identity, as defined by its distributed reference, does not
change through-out the lifetime of the object.

Methods invoked on an object are always executed on the master node for an object.

Reading and writing object fields

Object field data is transparently read from and written to the master node when fields are accessed
on a local node.

Read operations are dispatched to the master node to read field data depending on whether the
local node has the data cached locally or not. If the field data is not available on the local node a
distributed read will be done when a field is accessed. The read will complete before the get of the
field returns to the caller. All reads are done on the master node in the same transaction in which
the field access occurs.

44




Locations

When an field associated with a remote object is modified on a local node, by default, the update is
deferred until the local transaction enters the prepare state. This is called deferred writes. See the
section called “Deferred Write Protocol” on page 47 for details.

Extents

When an extent is accessed using a local query, only object references on the local node are returned
- no read is dispatched to any remote nodes. References are in a local extent either because the
object was created on the local node, it was returned in a method call, or it was pushed to the local
node as part of object replication. Distributed queries can be used to access the global extent of all
objects.

Locations

Every node is uniquely identified by:

¢ a cluster unique name

¢ a cluster unique location code

¢ a cluster unique shared memory timestamp

The default node name is set to the local host name. The default node name can be changed during
node installation. This allows multiple TIBCO ActiveSpaces® Transactions nodes to run on the
same machine.

The location code is automatically derived from the node name using a hashing algorithm.

The location code is a numeric identifier that is used to determine the actual network location of
the master node for an object. The location code is stored with each Managed Object. The initial
value of the location code for an object is the location code of the node on which the object was
created.

Highly available objects can migrate to other nodes as part of failover, or to support load balancing.
‘When object migration occurs the location code associated with all of the migrated objects is updated
to use the location code of the node to which they were migrated. This update occurs on all nodes
on which the objects exist. After the completion of an object migration, the new master node for

the object is the new node, which may be different than the node on which the object was created.

The shared memory timestamp is assigned when the shared memory is first created for a node.
This occurs the first time a node is started following an installation. The shared memory timestamp
is a component of the opaque distributed reference. It ensures that the distributed reference is
globally unique.

Location discovery

Location discovery provides runtime mapping between location codes, or node names, and network
addresses. This is called location discovery.

Location discovery in done two ways:

e static discovery using configuration information.

45



Chapter 6. Distributed computing

¢ dynamic discovery using service discovery.

Configuration can be used to define the mapping between a node name and a network address.
Configuring this mapping is allowed at any time, but it is only required if service discovery cannot
be used for location discovery. An example of when this would be necessary is if a remote node is
across a wide area network where service discovery is not allowed. This is called static discovery.

If configuration information is not provided for a location name, service discovery is used to perform
location discovery. This has the advantage that no configuration for remote nodes has to be done
on the local node - it is all discovered at runtime. This is called dynamic discovery.

When a network address is discovered with both static and dynamic discovery, the con-
figured static discovery information is used.

Location discovery is performed in the following cases:
e A create of an object in a partition with a remote active node.
¢ A method or field is set on a remote object.

‘When an object is associated with a partition whose active node is remote, a location discovery request
is done by node name, to locate the network information associated with the node name.

‘When an operation is dispatched on a remote object, a location discovery request is done by location
code, to locate the network information associated with a location code.

Location code information is cached on the local node once it has been discovered.

Life-cycle

Initialization and termination of the distribution services are tied to activation and deactivation of
distribution configuration data. A node without active distribution configuration cannot provide
distributed services to a cluster. When distribution configuration is activated the following steps
are taken to initialize distribution:

1. Mark the local node state as starting

2. Start dynamic discovery service if enabled
3. Start network listeners

4. Start keep-alive server

5. Mark the local node state as active

After initialization completes, the node is automatically part of the cluster. It can now provide access
to distributed objects or provide high-availability services to other nodes in the cluster.

Remote node states

Remote nodes can have one of the states in Table 6.1 on page 47.

46



Deferred Write Protocol

Table 6.1. Remote node states

State Description

Undiscovered Node cannot be discovered. Network address information is not available
from this remote node. Remote node is unavailable.

Discovered The network address information for this node is discovered, either using
dynamic or static discovery, but no connection could be established to
the node. Remote node is unavailable.

In Up Notifier Node is transitioning to an Up state. This is a transitory state. Any in-
stalled node available notifiers are being executed.

Up Active connections are available to this node. Remote node is active.

In Down Notifier |Node is transitioning to the Down state. This is a transitory state. Any
installed node unavailable notifiers are being executed.

Down Node is inactive. No connections are active to this node, and new connec-
tion attempts fail with an error. Remote node is unavailable.

DupTlicate Location|A duplicate location code was detected during connection establishment.
No communication can occur with this node until this error is corrected.
Remote node is unavailable.

Duplicate A duplicate installation time-stamp was detected during connection es-
Timestamp tablishment. No communication can occur with this node until this error
is corrected. Remote node is unavailable.

Unsupported Pro- |Anunsupported protocol version was detected during connection estab-
tocol lishment. No communication can occur with this node until this error is
corrected. Remote node is unavailable.

Remote node state change notifiers

Application installed node state change notifiers are called when a remote node transitions from
active to unavailable and from unavailable to active. The In Up Notifierand In Down Noti-
fier states defined in Table 6.1 on page 47 are seen when a node notifier is being called.

When a node state change notifier is installed, it is guaranteed to be called for all active remote
nodes already discovered by the local node. Node notifier execution is serialized for a specific remote
node. A call to a notifier must complete before another notifier is called. For example, if a remote
node becomes unavailable while an active notifier is being executed, the unavailable notifier is not
called until the active notifier completes.

Node state change notifiers are called in a transaction.

Deferred Write Protocol

By default, all distributed object updates use a deferred write protocol. The deferred write protocol
defers all network I/O until the commit phase of a transaction. This allows the batching of all of the
object updates, and the prepare request, into a single network I/0 for each node, improving network
performance. The size of the network buffer used for the network I/0 is controlled in the distribution
configuration. See the TIBCO ActiveSpaces® Transactions Administration for details on distri-
bution configuration.

The deferred write protocol is shown in Figure 6.2 for two nodes.

47



Chapter 6. Distributed computing

A B
I I
| |
| |
— :
| |
! Begin !
r— I
: :
— :

|
Update(s) !
:
|
|
|
|

Updates + Prepare

Prepare Complete

Update(s)

Commit

\4

Commit

Commit Complete

Commit

Figure 6.2. Deferred write protocol

Notice that no transaction locks are taken on node B as distributed objects are modified on node A
until the prepare step.

Distributed object creates and deletes perform network I/0 immediately, they are not
deferred until commit time. There is no prepare phase enabled for these transactions. See
Figure 5.1.

The deferred write protocol is disabled if a method call is done on a distributed object. Any modific-
ations to the distributed object on the local node are flushed to the remote node before the method
is executed on the remote node. This ensures that any updates made on the local node are available
on the remote node when the method executes.

After the method executes on the remote node any modifications on the remote node are copied
back to the initiating node. This ensures that the data is again consistent on the local node on which
the method was originally executed.

48



Detecting failed nodes

The deferred write protocol can be disabled in the high availability configuration. In general, it
should be enabled. However, if an application only accesses object fields using accessors, instead
of directly accessing fields, it will be more performant to disable the deferred write protocol since
no modifications are ever done on the local node. See the TIBCO ActiveSpaces® Transactions
Administration for details on high availability configuration

Detecting failed nodes

TIBCO ActiveSpaces® Transactions supports keep-alive messages between all nodes in a cluster.
Keep-alive requests are used to actively determine whether a remote node is still reachable. Keep
alive messages are sent to remote nodes using the configurable keepAliveSendInter-
valSeconds time interval.

Figure 6.3 shows how a node is detected as being down. Every time a keep-alive request is sent to
a remote node, a timer is started with a duration of nonResponseTimeoutSeconds. This timer
is reset when a keep-alive response is received from the remote node. If a keep-alive response is

not received within the nonResponseTimeoutSeconds interval, a keep-alive request is sent on
the next network interface configured for the node (if any). If there are no other network interfaces
configured for the node, or the nonResponseTimeoutSeconds has expired on all configured

interfaces, all connections to the remote node are dropped, and the remote node is marked Down.

Connection failures to remote nodes are also detected by the keep-alive protocol. When a connection
failure is detected, as opposed to a keep-alive response not being received, the connection is reat-
tempted to the remote node before trying the next configured network interface for the remote
node (if any). This connection reattempt is done to transparently handle transient network connectiv-
ity failures without reporting a false node down event.

Itis important to understand that the total time before a remote node is marked Down is the number
of configured interfaces times the nonResponseTimeoutSeconds configuration value in the
case of keep-alive responses not being received. In the case of connection failures, the total time
could be twice the nonResponseTimeoutSeconds times the number of configured interfaces,
if both connection attempts to the remote node (the initial one and the retry) hang attempting to
connect with the remote node.

For example, in the case of keep-live responses not being received, if there are two network interfaces
configured, and the nonResponseTimeoutSeconds value is four seconds, it will be eight seconds
before the node is marked Down. In the case of connection establishment failures, where each

connection attempt hangs, the total time would be sixteen seconds before the node is marked Down.

49



Chapter 6. Distributed computing

Node One Node Two
)
: keep-alive
|
|
keep-alive response
< P p
keep-alive

nonResponseTimeoutSeconds
exceeded

Mark Node
Two Down

nonResponseTimeoutSeconds

keepAliveSendintervalSeconds

Figure 6.3. Keep-alive protocol

Network error handling

Distribution uses TCP as the underlying network protocol. In general, TCP provides reliable con-
nectivity between machines on a network. However, it is possible that network errors can occur
that cause a TCP connection to drop. When a TCP connection is dropped, requests and responses
between nodes participating in a distributed transaction are not received. Network errors are detected
by the keep-alive protocol described in the section called “Detecting failed nodes” on page 49 and
handled by the distributed transaction protocol.

Network connectivity failures are caused by:

50



Network error handling

¢ A non-response keep alive timeout occurring.
¢ TCP retry timers expiring.
¢ Lost routes to remote machines.

These errors are usually caused by network cables being disconnected, router crashes, or machine
interfaces being disabled.

As discussed in the section called “Local and distributed transactions” on page 31, all distributed
transactions have a transaction initiator that acts as the transaction coordinator. The transaction
initiator can detect network failures when sending a request, or reading a response from a remote
node. When the transaction initiator detects a network failure, the transaction is rolled back. Other
nodes in a distributed transaction can also detect network failures. When this happens, rollback is
returned to the transaction initiator, and again the transaction initiator rolls back the transaction.

This is shown in Figure 6.4.

51



Chapter 6. Distributed computing

GT - Global Transaction

LTn - Local Transaction

Node 1 Node 2 Node 3 No‘f'e 4

I I I :

| | | |

| | | |

| | | |

| | | |

| Begin LT1 | ! \

-~ | | |

I GT I I :

I ] | |

| | Begin LT2 : |

: | : l

| | | |

: : ' I
GT !

: : > :

! ! ! Begin LT3

1 1 | —— :

| | - |

: : :—>><Node 4 down

| | |
! :< GT(Rollback) !
| | |
| | |
:4 GT(Rollback) ! !
l l l
| | |
: Rollback (GT) 1 |
: :
| |
—~ Rollback(GT) !
o : >
\X/ | |
(] | |
@© —_— | |
Q |
= Rollback(LT1) .
o - ' :

Figure 6.4. Connection failure handling

When the transaction initiator performs a rollback because of a connection failure - either detected
by the initiator or another node in the distributed transaction, the rollback is sent to all known nodes.
Known nodes are those that were located using location discovery (see the section called “Location
discovery” on page 45). This must be done because the initiator does not know which nodes are
participating in the distributed transaction. Notice that a rollback is sent to all known nodes in Fig-
ure 6.4. The rollback is retried until network connectivity is restored to all nodes.

52



Distributed transaction failure handling

Transaction rollback is synchronized to ensure that the transaction is safely aborted on all particip-
ating nodes, no matter the current node state.

Distributed transaction failure handling

Any communication failures to remote nodes detected during a global transaction before a commit
sequence is started cause an exception that an application can handle (see the TIBCO Act-
iveSpaces® Transactions Java Developer's Guide). This allows the application to explicitly
decide whether to commit or rollback the current transaction. If the exception is not caught, the
transaction will be automatically rolled back.

Undetected communication failures to remote nodes do not impact the commit of the transaction.
This failure scenario is shown in Figure 6.5. In this case, Node 2 failed and was restarted after all
locks were taken on Node 2, but before the commit sequence was started by the transaction initi-
ator-Node 1. Once the commit sequence starts it continues to completion. The request to commit
isignored on Node 2 because the transaction state was lost when Node 2 restarted.

93



Chapter 6. Distributed computing

Node 1 Node 2 Node 3
) ) )
| | |
— | |
: Begin ! !
< : :
| | |
: Read Lock : :
| >I |
| | |
| | |
: Read Lock Granted : :
|< ] |
| | |
| | |
: RQad Lock :
i 1 >|
[} [} [}
| | |
: Read Lo{:k Granted :
I< ] ]
| | |
: — :
: : Node 2 Cold Restar}
: i E— :

Commit : :

P I

| |

— :

: Ignored !

:4— :

£ ! !
g L |
O Commit > !
|

:

|

|

Commit :

:

|

|

|

|

|

|

|

]

Figure 6.5. Undetected communication failure

Transaction initiator node failures are handled transparently using a transaction outcome voting al-
gorithm. There are two cases that must be handled:

o4



Distributed transaction failure handling

¢ Transaction initiator fails before commit sequence starts.
¢ Transaction initiator fails during the commit sequence.

When a node that is participating in a distributed transaction detects the failure of a transaction
initiator, it queries all other nodes for the outcome of the transaction. If the transaction was committed
on any other participating nodes, the transaction is committed on the node that detected the node
failure. If the transaction was aborted on any other participating nodes, the transaction is aborted
on the node that detected the failure. If the transaction is still in progress on the other participating
nodes, the transaction is aborted on the node that detected the failure.

Transaction outcome voting before the commit sequence is shown in Figure 6.6. In Figure 6.6 the
initiating node, Node 1, fails before initiating the commit sequence. When Node 2 detects the
failure it performs the transaction outcome voting algorithm by querying other nodes in the cluster
to see if they are participating in this transaction. Since there are no other nodes in this cluster, the
Transaction Status request is a noop and the transaction is immediately aborted on Node 2, releasing
all locks held by the distributed transaction.

Node 1 Node 2
|
|
|
-
|
! Begin
|——
|
: Read Lock
i >
[}
|
|

Read Lock Granted

_ Keep-Alive
Node 1 Faﬂs)(Jd

Transaction Status?

¥

Abort

Figure 6.6. Transaction initiator fails prior to initiating commit sequence

Transaction outcome voting during a commit sequence is shown in Figure 6.7. In Figure 6.7 the
initiating node, Node 1, fails during the commit sequence after committing the transaction on Node

55



Chapter 6. Distributed computing

2, but before it is committed on Node 3. When Node 3 detects the failure it performs the transaction
outcome voting algorithm by querying Node 2 for the resolution of the global transaction. Since
the transaction was committed on Node 2 it is committed on Node 3.

Node 1

Node 2

T

Begin

Write Lock

>

Write Lock Granted

f

Write Lock

Node 3

Yy ]

|
Write Loqk Granted

Commit |

Commit
I "A""“ _____‘________

|
Node 1 Fails X4

Keep-Alive

Transaction Status?

T

Transaction Committed

Node 1 Cold Regtart
|

>

|

Figure 6.7. Transaction initiator fails during commit sequence

96

Commit



Distributed transaction failure handling

To support transaction outcome voting each node maintains a history of all committed and aborted
transactions for each remote node participating in a global transaction. The number of historical
transactions to maintain is configurable and should be based on the time for the longest running
distributed transaction. For example, if 1000 transactions per second are being processed from a
remote node, and the longest transaction on average is ten times longer than the mean, the transac-
tion history buffer should be configured for 10,000 transactions.

For each transaction from each remote node, the following is captured:
¢ global transaction identifier

¢ node login time-stamp

e transaction resolution

The size of each transaction history record is 24 bytes.

o7



58



High availability

TIBCO ActiveSpaces® Transactions provides these high availability services:
e Synchronous and asynchronous object replication

¢ Dynamic object partitioning

e Application transparent partition failover, restoration and migration

¢ Node quorum support with multi-master detection and avoidance

¢ Recovery from multi-master scenarios with conflict resolution

¢ Geographic redundancy

Each of these features is described in more detail in the sections that follow.

Cluster Membership

All nodes that have discovered each other (see the section called “Location discovery” on page 45)

are automatically part of a high availability cluster. No specific operator command is required to
add a node to the cluster.

To host partitions on a node they must be defined and enabled on the node by the administrator,
or using an API. Defining a partition is discussed in the section called “Defining parti-

tions” on page 62. Enabling partitions is discussed in the section called “Enabling and disabling
partitions” on page 63.

Partitioned objects

A partitioned object is a managed object with a partition mapper installed. Partition mappers are
installed by an application for all managed objects that should be partitioned. A partition mapper is
responsible for assigning a managed object to a partition. Partition assignment occurs:

59



Chapter 7. High availability

¢ when an object is created

¢ during object partition mapping updates (see the section called “Updating object partition map-
ping” on page 71).

Partition mappers are inherited by all subtypes of a parent type. A child type can install a new partition
mapper to override a parent's partition mapper.

A partitioned object is always associated with a single partition, but the partition it is associated with
can change during the lifetime of the object.

The algorithm used by a Partition Mapper to assign an object to a partition is application specific.
It can use any of the following criteria to make a partition assignment:

¢ object instance information
¢ system resources (e.g. CPU, shared memory utilization, etc.) utilization
¢ Joad balancing, e.g. consistent hashing, round-robin, priorities, etc.

¢ any other application specific criteria

Partitions

To support high-availability configurations and to balance application workload across multiple
machines, application objects are organized into partitions.

A partition is identified by a name. Partition names must be globally unique for all nodes in a cluster.
Each partition is associated with a node list consisting of one or more nodes. The node list is specified
in priority order. The highest priority available node in the node list is the active node for the partition.
All other nodes in the node list are replica nodes for the partition. Replica nodes can use either syn-
chronous or asynchronous replication (see the section called “Replication” on page 67).

If the active node becomes unavailable, the next highest available replica node in the node list
automatically becomes the active node for the partition.

All objects in a partition with replica nodes have a copy of the object state transparently maintained
on replica nodes. These objects are called replica objects.

60



Partitions

Name: One
Node List: A, B (Sync), C (Async)

Name: Two
Node List: A, B (Sync)

Name: Three
Node List: B

Figure 7.1. Partition definitions

Figure 7.1 defines three partitions named One, Two, and Three. Partitions One and Two support
replication of all contained objects, with node B replication done synchronously and node C replic-
ation done asynchronously. Partition Three has only a single node B defined so there is no replic-
ation in this partition. All objects assigned to partition Three during creation are transparently
created on node B. A node A failure will cause the active node for partition One and Two to change
to node B. A node B failure has no impact on the active node for partition One and Two, but it causes
all objects in partition Three to be lost since there is no other node hosting this partition.

Sparse Partitions

Figure 7.2 shows three nodes, A, B, and C, and a partition P. Partition P is defined with an active
node of A and a replica node of B. Partition P is also defined on node C but node C is not in the node
list for the partition. On node C, partition P is considered a sparse partition.

The partition state and node list of sparse partitions is maintained as the partition definition changes
in the cluster. However, no objects are replicated to these nodes, and these nodes cannot become
the active node for the partition. When an object in a sparse partition is created or updated, the
create and update is pushed to the active and any replica nodes in the partition.

61



Chapter 7. High availability

Partition P Fartition P
Active: A Active: A
Replica: B

Heplica: B

Partition P
Active: A
Replica: B

Figure 7.2. Sparse partition

Sparse partition definitions are useful for application specific mechanisms that require a node to
have a distributed view of partition state, without being the active node or participating in replication.

Defining partitions

Partitions are defined directly by the application or an administrator on a running system. Partitions
should be defined and enabled (see the section called “Enabling and disabling partitions” on page 63)
on all nodes on which the partition should be known. This allows an application to:

¢ immediately use a partition. Partitions can be safely used after they are enabled. There is no re-
quirement that the active node has already enabled a partition to use it safely on a replica node.

¢ restore a node following a failure. See the section called “Restore” on page 64 for details.

As an example, here are the steps to define a partition P in a cluster with an active node of A and a
replica node of B.

1. Nodes A and B are started and have discovered each other.

2. Node A defines partition P with a node list of A, B.

62



Partitions

3. Node A enables partition P.
4. Node B defines partition P with a node list of A, B.
5. Node B enables partition P.

Partition definitions can be redefined to allow partitions to be migrated to different nodes. See the
section called “Migrating a partition” on page 71 for details.

The only time that node list inconsistencies are detected is when object re-partitioning is done (see
the section called “Updating object partition mapping” on page 71), or a sparse partition is being
defined.

Enabling and disabling partitions

Once, a partition has been defined, it must be enabled. Enabling a partition causes the local node
to transition the partition from the Initial state to the Active state. Partition activation may in-
clude migration of object data from other nodes to the local node. It may also include updating the
active node for the partition in the cluster. Enabling an already Act1ive partition has no affect.

Disabling a partition causes the local node to stop hosting the partition. The local node is removed
from the node list in the partition definition on all nodes in the cluster. If the local node is the active
node for a partition, the partition will migrate to the next node in the node list and become active
on that node. As part of migrating the partition all objects in the partition on the local node are re-
moved from shared memory.

‘When a partition is disabled with only the local node in the node list there is no impact to the objects
contained in the partition on the local node since a partition migration does not occur. These objects
can continue to be read by the application. However, unless the partition mapper is removed, no

new objects can be created in the disabled partition because there is no active node for the partition.

Remotely defined and enabled partitions When a partition is defined, the partition
definition is broadcast to all discovered nodes in the cluster. The RemoteDef1ined status (see the
section called “Partition status” on page 67) is used to indicate a partition that was remotely defined.
When the partition is enabled, the partition status change is again broadcast to all discovered nodes
in the cluster. The RemoteEnab1ed status (see the section called “Partition status” on page 67)
is used to indicate a partition that was remotely enabled.

While the broadcast of partition definitions and status changes can eliminate the requirement to
define and enable partitions on all nodes in a cluster that must be aware of a partition, it is recom-
mended that this behavior not be relied on in production system deployments.

The example below demonstrates why relying on partition broadcast can cause problems.
1. Nodes A, B, and C are all started and discover each other.

2. Node A defines partition P with a node list of A, B, C. Replica nodes B and C rely on the partition
broadcast to remotely enable the partition.

3. Node B is taken out of service. Failover (see the section called “Failover” on page 64)changes
the partition node list to A, C.

4. Node B isrestarted and all nodes discover each other, but since node B does not define and enable
partition P during application initialization the node list remains A, C.

63



Chapter 7. High availability

At this point, manual intervention is required to redefine partition P to add B back as a replica. This
manual intervention is eliminated if all nodes always define and enable all partitions during application
initialization.

Failover

A partition with one or more replica nodes defined in its node list will failover if its current active
node fails. The next highest priority available node in the node list will take over processing for this
partition.

When a node fails, it is removed from the node list for the partition definition in the cluster. All un-
discovered nodes in the node list for the partition are also removed from the partition definition.
For example, if node A fails with the partition definitions in Figure 7.1 active, the node list is updated
to remove node A leaving these partition definitions active in the cluster.

Name: One
Node List: B, C

Name: Two
Node List: B

Name: Three
Node List: B

Figure 7.3. Updated partition node list

Once a node has been removed from the node list for a partition, no communication occurs to that
node for the partition.

Restore

Anode is restored to service by defining and enabling all partitions that will be hosted on the node.
This includes partitions for which the node being restored is the active or replica node. When a
partition is enabled on the node being restored partition migration occurs, which copies all objects
in the hosted partitions to the node.

To restore node A to service after the failure in the section called “Failover” on page 64, requires
the following steps:

¢ define and enable partition One with active node A and replicas B and C.

64



Partitions

¢ define and enable partition Two with active node A and replica B.

After these steps are executed, and partition migration completes, node A is back online and the
partition definitions are back to the original definitions in Figure 7.1.

Partition states

Partitions can have one of the following states:

Table 7.1. Partition states

State Description

Initial Partition was defined, but not enabled. Objects cannot be mapped to this partition
in this state.

Active Partition is running on the active node for the partition.

Migrating |The active node for a partition is being updated. This state occurs during failover,
restore, and during operator migration of a partition.

Rep1icating|Partition replicas are being updated, but the active node is not changing. Objects
are being pushed to the replica nodes that were added, then removed from replica
nodes that were deleted from the partition's node list. This state occurs when an
existing partition's node list is redefined.

Updating Partition object membership is being updated. This state is entered when a re-
partition is occurring.

Unavai labTe|Partition is not active on any node. Objects cannot be mapped to this partition in
this state.

Figure 7.4 shows the state machine that controls the transitions between all of these states.

65



Chapter 7. High availability

Define

Mo Quorum

Define Mo Quarum
ail
— ™ Disable Complet
—P( ﬂ;fprﬁggﬁnﬂgr F-' Unavailable
Enable
: Enabile or Migrate -
Disable . . Enable}- Fail
niat able {no replicas
or I-I.iLr ate Comple ( plicas)
Update -
Lndare
Compilate
MNo Quorum
Define
Updating Transient state

Update Complete  Internal event

Update External event

Figure 7.4. Partition state machine

The external events in the state machine map to an API call or an administrator command. The in-
ternal events are generated as part of node processing.

Partition state change notifiers Partition state change notifiers are called at partition state
transitions if an application installs them. Partition state change notifiers are called in these cases:

¢ the transition into and out of the transient states defined in Figure 7.4. These notifiers are called
on every node in the cluster that has the notifiers installed and the partition defined and enabled.

¢ the transition directly from the Active state to the UnavailabTe state in Figure 7.4. These
notifiers are only called on the local node on which this state transition occurred.

66




Replication

Partition status

Partitions also have a status, which defines how the local definition of the partition was done, and
whether it has been enabled. The valid states are defined in Table 7.2 on page 67.

Table 7.2. Partition status

State Description
LocalDefined |The partition was defined on the local node.

RemoteDefined|The partition was never defined on the local node. It was only remotely defined.

RemoteEnabTed|The partition was never enabled on the local node. It was only remotely enabled.

LocaTlEnabled |The partition was enabled on the local node.

LocalDisabled|The partition was disabled on the local node.

All of the partition status values are controlled by an administrative operation, or API, on the local
node except for the RemoteEnab1ed and RemoteDef1ined statuses. The RemoteEnab1ed and
RemoteDef1ined statuses occurs when local partition state was not defined and enabled on the
local node, it was only updated on a remote node.

If the local node leaves the cluster and is restarted, it must redefine and enable a partition locally
before rejoining the cluster to rejoin as a member of the partition. For this reason it is recommended
that all nodes perform define and enable for all partitions in which they participate, even if they are
areplica node in the partition.

Replication

Partitioned objects are replicated to multiple nodes based on the node list in their partition definition.
Objects that have been replicated to one or more nodes are highly available and are available to the
application following a node failure.

Replication can be synchronous or asynchronous on a per-node basis in a partition. A mix of syn-
chronous and asynchronous replication within the same partition is supported. For example in
Figure 7.1, partition One is defined to use synchronous replication to node B and asynchronous
replication to node C.

Synchronous replication guarantees that all replica nodes are updated in the same transaction in
which the replicated object was modified. There can be no loss of data. However, the latency to
update all of the replica nodes is part of the initiating transaction. By default, synchronous replication
uses the deferred write protocol described in the section called “Deferred Write Protocol” on page 47.

Asynchronous replication guarantees that any modified objects are queued in a separate transaction.
The object queue is per node and is maintained on the same node on which the modification occurred.
Modified objects are updated on the replica nodes in the same order in which the modification oc-
curred in the original transaction. The advantage of asynchronous replication is that it removes the
update latency from the initiating transaction. However, there is potential for data loss if a failure
occurs on the initiating node before the queued modifications have been replicated.

Figure 7.5 shows asynchronous replication behavior when a modification is made on the active node
for a partition. The following steps are taken in this diagram:

1. A transaction is started.

67



Chapter 7. High availability

2. Replicated objects are modified on the active node.
3. The modified objects are transactionally queued on the active node.

4. The transaction commits.

5. A separate transaction is started on the active node to replicate the objects to the target replica

node.

6. The transaction is committed after all queued object modifications are replicated to the target

node.
Active Node [ .
| I | Queue on Active Replica Node

| Node
| T T
| | |
Begin ! ! !
—, Queue modifications . |
: > | :
Commit | . : :
— P Begin | |
! 4" . . |
! | Replicate objects !
| : > |
: Commit_ | !
l l
, !

Figure 7.5. Asynchronous replication

Because asynchronous replication is done in a separate transaction consistency errors can occur.
When consistency errors are detected they are ignored, the replicated object is discarded, and a

warning message is generated. These errors include:
¢ Duplicate keys.
¢ Duplicate object references caused by creates on an asynchronous replica.

¢ Invalid object references caused by deletes on an asynchronous replica.

All other object modifications in the transaction are performed when consistency errors are detected.

Figure 7.6 provides more details on the differences between synchronous and asynchronous replic-

ation. The key things to notice are:

¢ Synchronous modifications (creates, deletes, and updates) are always used when updating the

active node and any synchronous replica nodes.

¢ Modifications to asynchronous replica nodes are always done from the active node, this is true

even for modifications done on asynchronous replica nodes.

a Itis strongly recommend that no modifications be done on asynchronous replica nodes
since there are no transactional integrity guarantees between when the modification
occurs on the asynchronous replica and when it is reapplied from the active node.

68




Replication

¢ Synchronous updates are always done from the node on which the modification occurred - this
can be the active or a replica node.

These cases are shown in Figure 7.6. These steps are shown in the diagram for a partition P with
the specified node list:

1. A transaction is started on node C - a replica node.
2. Areplicated object in partition P is modified on node C.

3. When the transaction is committed on node C, the update is synchronously done on node A (the
active node) and node B (a synchronous replica).

4. Node A (the active node) queues the update for node D - an asynchronous replica node.

5. A new transaction is started on node A and the update is applied to node D.

69



Chapter 7. High availability

Partition P

Active: A
Replica: B (Sync)
Replica: C (Sync)
Replica: D (Async)

Node D

Node C MNode A Node B
Begin 1 : |
— : :
Ll'p-date i : :
o Prepare |
L i ..- i
: : :
— Sync Update — :
I I I
: aync Update Ihi
: : Okue |
: : e(D |
i Commit i :
i i F:
i E in i i
| 0, |
i i i
| . Prepare | >
I I I
i i : Sync Update —»
I I I
: : Commit : -

Figure 7.6. Replication protocol

Error handling

Ifan I/O error is detected attempting to send creates, updates, or deletes to a replica node, an error
is logged on the node initiating the replication and the object modifications for the replica node are
discarded and the replica node is removed from the node list for the partition. These errors include:

¢ the replica node has not been discovered yet

¢ the replica node is down

¢ an error occurred while sending the modifications

The replica node will be re-synchronized with the active node when the replica node is restored
(see the section called “Restore” on page 64).

70



Updating object partition mapping

Updating object partition mapping

Partitioned objects can be re-partitioned on an active system. This provides a mechanism for mapping
objects to new partitions.

The partition mapping for objects is updated using an administrative command or an API. Partition
mapping updates can only be initiated on the active node for a partition. When the partition update
is requested an audit is performed to ensure that the node list is consistent for all discovered nodes
in the cluster. This audit is done to ensure that no object data is migrated to other nodes as part of
remapping the partitions.

When a partition update is requested, all installed partition mappers on the active node are called
for all partitioned objects. The objects will be moved to the partition returned by the partition mapper.

a Object partition mapping updates only occur if the partition mapper installed by the applic-
ation supports a dynamic mapping of objects to partitions. If the partition mapper only
supports a static mapping of objects to partitions no remapping will occur.

New partition mappers can be installed on a node to perform partition updates as shown in these
steps:

1. Define and enable a new partition on the local node.

2. Install a new partition mapper that maps objects to the new partition.
3. Perform the partition update.

4. Optionally migrate the partition as needed.

This technique has the advantage that objects created while the partition update is executing will
be mapped to the new partition.

Migrating a partition

Partitions support migration to different nodes without requiring system downtime. Partition migra-
tion is initiated using an administrator or an API on the current active node for the partition. The
following changes can be made to a partition definition:

¢ Change the priority of the node list, including the active node.
¢ Add new nodes to the node list

¢ Remove nodes from the node list

¢ Update partition properties.

‘When the partition migration is initiated all object data is copied as required to support the updated
partition definition, this may include changing the active node for the partition.

For example, these steps will the migrate the active node from A to C for partition P:
1. Node C defines partition P with a node list of C, B.

2. Node C enables the partition and partition P migrates to node C.

71



Chapter 7. High availability

When the partition migration is complete, partition P is now active on node C with node B still the
replica. Node A is no longer hosting this partition.

It is also possible to force replication to all replica nodes during a partition migration by setting the
force replication property when initiating partition migration. Setting the force replication property
will cause all replica nodes to be resynchronized with the active node during partition migration. In
general forcing replication is not required since replica nodes resynchronize with the active node
when partitions are defined and enabled on the replica node.

Active node transparency

As discussed in the section called “Location transparency” on page 44, partitioned objects are also
distributed objects. This provides application transparent access to the current active node for a
partition. Applications simply create objects, read and modify object fields, and invoke methods.
The TIBCO ActiveSpaces® Transactions runtime ensures that the action occurs on the current
active node for the partition associated with the object.

When an active node fails, and the partition is migrated to a new active node, the failover to the new
active node is transparent to the application. No creates, updates, or method invocations are lost
during partition failover as long as the node that initiated the transaction was not the failing node.
Failover processing is done in a single transaction to ensure that it is atomic. See Figure 7.7.

Initiating Node Active Node New Active Node

Begin
%

T
|
|
|
|
|
|
|
|

myObject.name = "my name

>

Update Data

T
|
|
|
|
|
|
|
|
|
l

N
>></-\cml/e Node Down

Commit Update Data

I A

| |
| |
| |
| |
| t
| |
| |
'

Figure 7.7. Partition failover handling

Object locking during migration

When a partition is migrated to a new active node all objects in the partition must be write locked
on both the new and old active nodes, and all replica nodes. This ensures that the objects are not
modified as they are migrated to the new node.

When an object is copied to a new node, either because the active node is changing, or a replica
node changed, a write lock is taken on the current active node and a write lock is taken on the replica
node. This ensures that the object is not modified during the copy operation.

To minimize the amount of locking during an object migration, separate transactions are used to
perform the remote copy operations. The number of objects copied in a single transaction is controlled

72



Node quorum

by the objects locked per transaction partition property. Minimizing the number of objects locked in
a single transaction during object migration minimizes application lock contention with the object
locking required by object migration.

Node quorum

TIBCO ActiveSpaces® Transactions uses a quorum mechanism to detect, and optionally, prevent
partitions from becoming active on multiple nodes. When a partition is active on multiple nodes a
multiple master, or split-brain, scenario has occurred. A partition can become active on multiple
nodes when connectivity between one or more nodes in a cluster is lost, but the nodes themselves
remain active. Connectivity between nodes can be lost for a variety of reasons, including network
router, network interface card, or cable failures.

Connectivity Lost

Node \/ Node
One < /\ > Two

Connectivity Lost

Node
Three

Figure 7.8. Multi-master scenario

Figure 7.8 shows a situation where a partition may be active on multiple nodes if partitions exist
that have all of these nodes in their node list. In this case, Node Two assumes that Node One and
Node Three are down, and makes itself the active node for these partitions. A similar thing happens
on Node One and Node Three - they assume Node Two is down and take over any partitions
that were active on Node Two. At this point these partitions have multiple active nodes that are
unaware of each other.

The node quorum mechanism provides these mutually exclusive methods to determine whether a
node quorum exists:

¢ minimum number of active remote nodes in a cluster.
e percentage of votes from currently active nodes in a cluster.

When using the minimum number of active remote nodes to determine a node quorum, the node
quorum is not met when the number of active remote nodes drops below the configured minimum
number of active nodes.

When using voting percentages, the node quorum is not met when the percentage of votes in a
cluster drops below the configured node quorum percentage. By default each node is assigned one

73



Chapter 7. High availability

vote. However, this can be changed using configuration. This allows certain nodes to be given more
weight in the node quorum calculation by assigning them a larger number of votes.

When node quorum monitoring is enabled, high-availability services are Disabled if a node
quorum is not met. This ensures that partitions can never be active on multiple nodes. When a node
quorum is restored, by remote nodes being rediscovered, the node state is set to Partial or
Active depending on the number of active remote nodes and the node quorum mechanism being
used. See the section called “Node quorum states” on page 74 for complete details on node quorum
states.

See the TIBCO ActiveSpaces® Transactions Administration Guide for details on designing
and configuring node quorum support.

Node quorum states

The valid node quorum states are defined in Table 7.3 on page 74.

Table 7.3. Node quorum states

State Description
Active |All discovered nodes are Up. A node quorum exists.

Partial |[One or more discovered nodes are Down. A node quorum still exists.

Disabled|A node quorum does not exist. High availability services are disabled on this node.
The state of all hosted partitions has been set to Unavai T1ab1e. Keep-alive processing
from remote nodes is disabled. This ensures that remote nodes detect this node as
unavailable.

Figure 7.9 shows the state machine that controls the transitions between all of these states when
node quorum is using the minimum number of active nodes method to determine whether a quorum
exists.

74



Node quorum

Start Distribution

Remate node up

Mo

- Disabled

Enable Partition |

Remote node up

MNo

- Partial
Hemuorte
nodgle Aemote
dahr noge

down
Active n ote node up

Decision state

FRemote node up Internal event

Enable External event

Figure 7.9. Quorum state machine - minimum number of active remote
nodes

Figure 7.10 shows the state machine that controls the transitions between all of these states when
node quorum is using the voting method to determine whether a quorum exists.

75



Chapter 7. High availability

Start Distribution

) Rempte node down
Disabled <

Remote Enable Rartition

node No
up

Y
\ Have
Quorum?
Remote
S Remote node up node down

All Nodes _
Reinote Active? Partial
node
down
Active
Have o
Quorum? Decision state
Remote node up Internal event
Enable User event

Figure 7.10. Quorum state machine - voting

The external events in the state machines map to an API call or an administrator command. The
internal events are generated as part of node processing.

Disabling node quorum

There are cases where disabling node quorum is desired. Examples are:

76



Node quorum

¢ Network connectivity and external routing ensures that requests are always targeted at the same
node if it is available.

¢ Geographic redundancy, where the loss of a WAN should not bring down the local nodes.

To support these cases, the node quorum mechanism can be disabled using configuration (see the
TIBCO ActiveSpaces® Transactions Administration Guide). When node quorum is disabled,
high availability services will never be disabled on a node because of a lack of quorum. With the
node quorum mechanism disabled, a node can only be in the Active or Partial node quorum
states defined in Table 7.3 on page 74 - it never transitions to the Di sabT1ed state. Because of this,
it is possible that partitions may have multiple active nodes simultaneously.

Restoring a cluster

This section describes how to restore a cluster following a multi-master scenario. These terms are
used to describe the roles played by nodes in restoring after a multi-master scenario:

e source - the source of the object data. The object data from the initiating node is merged on this
node. Installed compensation triggers are executed on this node.

 initiating - the node that initiated the restore operation. The object data on this node will be re-
placed with the data from the source node.

To recover partitions that were active on multiple nodes, support is provided for merging objects
using an application implemented compensation trigger. If a conflict is detected, the compensation
trigger is executed on the source node to allow the conflict to be resolved.

The types of conflicts that are detected are:
¢ Instance Added - an instance exists on the initiating node, but not on the source node.

¢ Key Conflict - the same key value exists on both the initiating and source nodes, but they are
different instances.

e State Conflict - the same instance exists on both the initiating and source nodes, but the data is
different.

The application implemented compensation trigger is always executed on the source node. The
compensation trigger has access to data from the initiating and source nodes.

Figure 7.11 shows an example cluster with a single partition, P, that has node A as the active node
and node B as the replica node.

77



Chapter 7. High availability

Partition Name: P
Active Node: A
Replica Nodes: B

Figure 7.11. Active cluster

Figure 7.12 shows the same cluster after connectivity is lost between node A and node B with node
quorum disabled. The partition P definition on node A has been updated to remove node B as a
replica because it is no longer possible to communicate with node B. Node B has removed node A
from the partition definition because it believes that node A has failed so it has taken over respons-
ibility for partition P.

\/
X >

Connectivity Lost

Partition Name: P Partition Name: P
Active Node: A Active Node: B
Replica Nodes: Replica Nodes:

Figure 7.12. Failed cluster

Once connectivity has been restored between all nodes in the cluster, and the nodes have discovered
each other, the operator can initiate the restore of the cluster. The restore (see the section called
“Restore” on page 64) is initiated on the initiating node which is node A in this example. All partitions
on the initiating node are merged with the same partitions on the source nodes on which the partitions
are also active. In the case where a partition was active on multiple remote nodes, the node to merge
from can be specified per partition, when the restore is initiated. If no remote node is specified for
a partition, the last remote node to respond to the Is partition(n) active? request (see
Figure 7.13) will be the source node.

78



Node quorum

Initiating Source Conflict Trigger
: (Source)
| T T
I
Restore : I :
%| | |
[ Is Partition(P) active? ! '
I I I
| >I |
| | |
1|< Partition(P) active on source node ! :
| | |
| . . | |
I Push partition(P) objects I I
|
! > .
| | . |
Detected conflict
: | >
I : : Resolvp Conflict
| .
| Conflict resolved |
: < r——
| | |
| . .. | |
Migrate partition(P) to source node 1 I
I d.
I
: | |
| | |
I Push partition(P) objects ! !
| |
‘:‘ | |
| | |
| | |
Complete : : :
, | |
| | |
| | |
| | |

Figure 7.13. Merge operation - using broadcast partition discovery

Figure 7.13 shows the steps taken to restore the nodes in Figure 7.12. The restore command is ex-
ecuted on node A which is acting as the initiating node. Node B is acting as the source node in this
example.

The steps in Figure 7.13 are:

1.
2.

Operator requests restore on A.

A sends a broadcast to the cluster to determine which other nodes have partition P active.

. B responds that partition P is active on it.

. A sends all objects in partition P to B .

. B compares all of the objects received from A with its local objects in partition P. If there is a

conflict, any application reconciliation triggers are executed. See the section called “Default
conflict resolution” on page 80 for default conflict resolution behavior if no application reconcili-

ation triggers are installed.

after the restore is complete.

. A notifies B that it is taking over partition P. This is done since node A should be the active node

. B pushes all objects in partition P to A and sets the new active node for partition P to A.

. The restore command completes with A as the new active node for partition P (Figure 7.11).

79



Chapter 7. High availability

The steps to restore a node, when the restore from node was specified in the restore operation are
very similar to the ones above, except that instead of a broadcast to find the source node, a request
is sent directly to the specified source node.

The example in this section has the A node as the final active node for the partition. However, there
is no requirement that this is the case. The active node for a partition could be any other node in
the cluster after the restore completes, including the source node.

Figure 7.14 shows another possible multi-master scenario where the network outage causes a cluster
to be split into multiple sub-clusters. In this diagram there are two sub-clusters:

e Sub-cluster one contains nodes A and B

¢ Sub-cluster two contains nodes C and C

U

Figure 7.14. Split cluster

To restore this cluster, the operator must decide which sub-cluster nodes should be treated as the
initiating nodes and restore from the source nodes in the other sub-cluster. The steps to restore the
individual nodes are identical to the ones described above.

There is no requirement that the initiating and source nodes have to span sub-cluster
boundaries. The source and initiating nodes can be in the same sub-clusters.

Default conflict resolution The default conflict resolution behavior if no compensation triggers
are installed is:

¢ Instance Added - the instance from the initiating node is added to the partition.

¢ Key Conflict - the instance on the initiating node is discarded. The instance on the source node
is kept.

¢ State Conflict- the instance on the initiating node is discarded. The instance on the source node
is kept.

80



Geographic redundancy

Geographic redundancy

All of the TIBCO ActiveSpaces® Transactions high availability features can be used across a WAN
to support application deployment topologies that require geographic redundancy without any ad-
ditional hardware or software. The same transactional guarantees are provided to nodes communic-
ating over a WAN, as are provided over a LAN.

Figure 7.15 shows an example system configuration that replicates partitions across the WAN so
that separate data centers can take over should one completely fail. This example system configur-
ation defines:

¢ Partition A with node list One, Two, Four
¢ Partition B with node list Three, Four, Two

Under normal operation partition A's active node is One, and highly available objects are replicated
to node Two, and across the WAN to node Four, and partition B's active node is Three, and highly
available objects are replicated to node Four, and across the WAN to node Two. In the case of a
Data Center North outage, partition A will transition to being active on node Four in Data
Center South.Inthe case ofaData Center South outage, partition B will transition to being
active on node Two in Data Center North.

81



Chapter 7. High availability

Data Center North

Node ‘ ) Node
One Two
i
\.H______,,/
Wide Area Network One
Twao
Four

) S

Partition A
Node '::::
Three

Data Center South

Figure 7.15. Geographic redundancy

e
—

Three
Four
Two

S’

Partition B

The following should be considered when deploying geographically redundant application nodes:

¢ network latency between locations. This network latency will impact the transaction latency for

every partitioned object modification in partitions that span the WAN.

¢ total network bandwidth between locations. The network bandwidth must be able to sustain the
total throughput of all of the simultaneous transactions at each location that require replication

across the WAN.

Geographically distributed nodes should be configured to use the static discovery protocol described

in the section called “Location discovery” on page 45.

82



Cluster upgrades

Nodes in a cluster can be upgraded independently of other nodes in the cluster. These upgrades
include:

¢ Product versions
¢ Application versions
¢ QOperating system versions

The upgrade functionality ensures that a cluster never has to be completely brought down for any
upgrades.

All nodes in a cluster can be at different product versions. Different product versions are detected
when a node joins a cluster and any required protocol negotiation is done automatically at that time.
This allows product versions to be upgraded on each node independently.

Different application versions can also be running on each node in a cluster. Application differences
between two nodes are detected, and the objects are made compatible at runtime, either transparently,
or by application specific code to resolve the inconsistencies. This allows application versions to be
upgraded on each node independently.

All nodes in a cluster can use different operating system versions. This allows operating system
version upgrades to be done on each node independently.

Application versions

Classes in an application are versioned using a serialVersionUID. The rules used to determine
which class is the latest version are:

¢ The class with a larger serialVersionUID value is considered as a newer version than the
one with a smaller value.

83



Chapter 8. Cluster upgrades

¢ A class that does not have a serialVersionUID defined is considered older than a class with
aserialVersionUID defined.

e [f classes have the same serialVersionUID value the node with the newest shared memory
time stamp (see the section called “Locations” on page 45) is considered newest.

Detecting version changes

Version changes are detected automatically during initialization and as classes are loaded into JVMs
running on a node. As nodes connect to each other, and as new types are loaded into a JVM, a fype
exchange occurs between the two nodes. A type exchange is performed for both application classes
and product runtime structures. The type exchange protocol is shown in Figure 8.1.

Node One Node Two

Send CRCs for all types

P ]
|

Clbmpare rem@te type CRCs

wjth local typep

B A

Send mismatched types !
Save misrhatched !
types from} Node Two ] |
Send mismatched types |
>

I Save mismatched

Done : types from|Node One

|

S S
I

Figure 8.1. Type exchange

The steps in Figure 8.1 are:

1. Node one sends CRC values for all types defined on node one.

2. Node two compares the CRC values for all types sent from node one found on node two.

3. If the CRC values are different for a type, node two sends node one its definition of the type.

4. Node one saves the definition of the types received from node two in a type mismatch table for
node two.

5. Node one sends node two its definition of the mismatched types received from node two.

84



Object upgrades

6. Node two saves the type definitions received from node one in a type mismatch table for node
one.

The CRC defined above, is a computed numeric value that is used to determine whether a type
definition has changed. The CRC value is identical on nodes that have the same type definition. The
type information sent if the CRC values differ is a complete type definition that includes:

¢ field definitions
¢ inheritance hierarchy
¢ version information

The use of a CRC to determine type changes mimizes network bandwidth in the case where type
information is identical.

Type mismatch tables exist for each node for which mismatched type information was detected.
Type mismatch tables contain this information;

¢ Complete type definition, including the type name.
e Version number

Whenever objects are marshaled for a type (reading and writing), the type mismatch table is checked
to see if the type matches for the two nodes communicating. If a type is found in the type mismatch
table - the object is upgraded as described in the section called “Object upgrades” on page 85.

Object upgrades

Objects are always upgraded on the node that contains the newest version of the class (see the
section called “Application versions” on page 83). This technique is called most current version
makes right. This is true for both sending and receiving objects between nodes. This ensures that
no application changes are required on nodes running an earlier version of a class.

Object upgrades can be transparent, or non-transparent. Transparent changes are handled automat-
ically without any required application support. Non-transparent changes require an application to
implement an object mismatch trigger. See the TIBCO ActiveSpaces® Transactions Java De-

veloper's Guide for details on supported upgrades and transparent vs. non-transparent changes.

Error handling

The overriding error handling policy for upgraded classes is to do no harm on nodes running older
versions.

If an error is detected when reading an object from a remote node with an earlier version of a class
definition, the error is logged, but not propagated back to the transaction initiator on the remote
node. The error is not propagated to the initiator because the previous version of the class file has
no knowledge of the new class version and it would not have any mechanism to handle the error.
This is consistent with the do no harm policy.

Possible causes of errors are:
e application defect in upgrade code

¢ non-unique key errors because of inconsistent key values

85



Chapter 8. Cluster upgrades

The node administrator can make a decision on whether these errors are acceptable. If they are not
acceptable, the node is taken offline and the upgraded classes restored to a previous working version.
Another upgrade can be attempted after resolving the errors.

When an object is sent to a remote node with an earlier version of a class definition, any errors de-
tected on the node with the earlier class version are propagated back to the transaction initiator. In
this case, the new class version can either handle the errors, or it indicates a bug in the version
mapping code provided by the application. Again, this is consistent with the do no harm policy.

86



Configuration

TIBCO ActiveSpaces® Transactions supports online versioning of configuration data. This allows
a configuration to change without having to restart a running application. Configuration data is
stored as managed objects in shared memory. Applications can define their own configuration data
by defining a Java class. Application defined configuration data is operationally managed the same
way as predefined TIBCO ActiveSpaces® Transactions configuration data.

Figure 9.1 shows the configuration concepts.

Class L* 1 Type 1 10 Name

1 1
0.* 1. *
Notifier Version
1
0.*
Objects

Figure 9.1. Configuration model

87



Chapter 9. Configuration

These concepts are defined as:

¢ Type - a specific category of configuration data that is loaded in a single configuration file. A
configuration type consists of one or more configuration classes.

¢ Class - a Java configuration class. This Java class defines a new configuration object. All config-
uration classes are associated with a configuration type.

¢ Name - a unique name per configuration type. Multiple unique names can be associated with a
configuration type. The configuration name is the unit of versioning.

¢ Version - a unique configuration version per configuration name. Multiple versions can be asso-
ciated with a configuration name, but only one can be active.

¢ Objects - zero or more configuration objects associated with a configuration version. All of the
configuration objects are associated with one of the configuration classes associated with the related
configuration type.

¢ Notifier - a configuration notifier that handles configuration state changes (see the section called
“Configuration notifiers” on page 90).

Configuration data is loaded into TIBCO ActiveSpaces® Transactions using configuration files. The
detailed syntax of these configuration files is described in the TIBCO ActiveSpaces® Transactions
Administration. In addition to the configuration data for the configuration objects, the configuration
files also contain:

¢ Type - type of configuration data
¢ Name - configuration name
¢ Version - version number of configuration file

The type, name, and version information in the configuration files maps directly to the configuration
concepts described above.

The type information in a configuration file is used to locate any configuration notifiers associated
with the configuration data. The name and version are used to create or replace a configuration
when the configuration is activated. See the section called “Configuration life cycle” on page 88 for
more details.

For example, this configuration file is associated with a configuration type of distribution, it
has a name of myconfiguration, and it is version 1.0.

/7

// This file defines version 1.0 of a distribution configuration named myconfiguration

/7

configuration "myconfiguration" version "1.0" type "distribution"

{
12

Configuration life cycle

All configuration can go through the life cycle shown in Figure 9.2.

88



Configuration life cycle

Loaded Removed

.

Figure 9.2. Configuration life cycle
The possible configuration states are:

¢ Loaded - configuration data has been loaded into a TIBCO ActiveSpaces® Transactions node.
This is a transient state. The configuration data automatically transitions to the Inactive state once
it has been successfully loaded.

¢ Inactive - configuration data is loaded into a node, but it is not the active version.
¢ Active - the configuration version is active.
¢ Removed - configuration data has been removed from the node. This is a transient state.

Only one active version is allowed for each configuration name within a type. For example if there
are two versions, version 1.0 and version 2.0, of a configuration file with a name value of myconfig-
uration and a fype of distribution, only one can be active at a time in a node.

An audit step occurs before any configuration state changes to ensure that the configuration change
does not cause runtime application failures. If an audit fails, the configuration state change does not
occur and the application is left in the previous known good state.




Chapter 9. Configuration

Replacing a version

‘When one version of a configuration type and name is active, and a new version is activated, the old
version is replaced. That is, the old version is deactivated and the new version is activated as a single
TIBCO ActiveSpaces® Transactions transaction. For example, loading and activating version 2.0
to replace version 1.0 takes place as follows:

1. Configuration type distribution and name myconfiguration version 1.0 is active.

2. Configuration type distribution and name myconfigurationversion 2.0is loaded, passes
audit, and is activated.

3. Configuration #ype distribution and name myconfiguration version 1.0 is now inactive,
and configuration #ype distribution and name myconfiguration version 2.0 is active.

Because the configuration replacement is done in a single TIBCO ActiveSpaces® Transactions
transaction, there is no disruption to a running application.

Deactivating a version

Deactivating a configuration version does not restore any previously active version. Another version
must be activated, or loaded and activated, as a separate step. (Until this is done, there is no active
version.) Nor does deactivating a version unload it; it must be explicitly removed to achieve this.
Until removed, a deactivated version remains available to be reactivated again without having to
reload the configuration data.

Configuration notifiers

Applications may install configuration notifiers to respond to configuration events that are raised
as the configuration transitions through its life cycle. See the TIBCO ActiveSpaces® Transactions
Java Developer's Guide for details on how configuration notifiers are installed. Configuration
notifiers are associated with a configuration #ype. Multiple notifiers can be installed for a configuration
type. If multiple configuration notifiers are installed, the order in which they are called is undefined.

Configuration notifiers support:
¢ auditing of configuration data and application state before a state change occurs
¢ modifying application behavior based on a configuration state change

Audit notifier methods should ensure that the configuration state transition being audited can occur
successfully. If the state transition cannot occur successfully, either because of invalid configuration
data values or the current state of the application, the audit method reports a failure. If an audit fails,
the configuration state change does not occur.

Table 9.1. State transition audits

State Transition |Description

load Configuration load audit. This audit occurs after the configuration data is loaded
into memory.

activate Configuration activate audit. This audit method is called when there is no previous
version of the configuration data with the specified type and name active.

90



Configuration notifiers

replace Configuration replace audit. This audit method is called when there is a previous
version of the specified #ype and name active.

inactive Configuration deactivation audit.

remove Configuration remove audit.

Following a successful audit (except for load), a notifier method is called to perform application
specific behavior associated with the configuration state transition. The application state change
methods cannot fail - all validation should have been done by the associated audit method.

Table 9.2. State transition methods

State |Description

load Configuration data successfully loaded.

active |Configuration activation succeeded. This method is called when there is no previous version
of the configuration data with the specified #ype and name active.

replace |Replace existing configuration data. This method is called when there is a previous version
of the specified type and name active.

inactive | Configuration data successfully deactivated.

Notice that there is no method associated with removing configuration data. Configuration data
removal is handled without any application involvement, other than auditing that the configuration

data can be removed.

91



92



10

Components

A component is a JAR file that contains a property file named ast . properties. Components may
optionally contain configuration files and notifiers. The configuration files and notifiers are specified
in the ast.properties file. The order in which the configuration files are loaded and activated,
and the notifiers executed, is also specified in the ast.properties file.

When an TIBCO ActiveSpaces® Transactions JVM starts, all components are automatically activated
in the order they are found in the class path. All component activation completes before main is
called. The activation of all components occurs in a single transaction.

93



Chapter 10. Components

start

Start Transaction

v

Activate Component A

v

Activate Component B

v

Commit Transaction

v

Call main

end

Figure 10.1. Activating Components

When a JVM exits, all components are deactivated in the reverse order in which they were activated.

All component deactivation occurs in a single transaction.

9




start

Shutdown JVM

Start Transaction

Deactivate Component
B
Deactivate Component
A
Commit Transaction

end

Figure 10.2. Deactivating Components

The failure of any component activation during JVM startup causes the transaction to be rolled back
and the JVM startup to fail. The rollback of the transaction causes the deactivation and unloading
of any configuration files loaded and activated by previously successful component activations.

95



Chapter 10. Components

start
Start Transaction
Activate Component A
* Pass
Activate Component B
v Fail
Rollback Transaction
JVM Startup Fails

®

Figure 10.3. Component Activation Failure

During JVM shutdown, if a component attempts to contact a remote JVM on the same, or a different
node, and the JVM is not available, the component deactivation transaction is rolled back and
component deactivation is terminated. The JVM then shuts down. The result of this failure is that
any components loaded by the JVM are not deactivated. The most common reason that a remote
JVM is not available is that it is also being shutdown. To avoid this condition, it is recommended
that component notifiers minimize the use of objects requiring access to an external JVM.

Activation

These steps are taken to activate a component:
1. Read the ast.properties file for the component.

2. Create an instance of each specified notifier and store the reference to prevent it from being
garbage collected.

3. Call the pre-configuration initialization method for each notifier.
4. Load and activate each specified configuration file.

5. Call the post-configuration initialization method for each notifier.

96



Deactivation

start
Read ast.properties
Create notifier
instances

(— Call pre-configuration )
initialization notifier
L methods )

Load and activate
configuration files

J/

(—Call post-configuration
initialization notifier
L methods )

© end

Figure 10.4. Component Activation

Deactivation

These steps are taken to deactivate a component:
1. Call the pre-configuration termination method for each notifier.

2. Deactivate and unload each configuration file in the reverse order in which they were loaded and
activated.

3. Call the post-configuration termination method for each notifier.
4. Release each notifier instance in the reverse order in which they were created.

o The execution order of notifier deactivation methods and JVM shutdown hooks is un-
defined.

97



Chapter 10. Components

start

termination notifier
methods

( Call pre-configuration )

v

Deactivate and remove
configuration files

\

v

Call post-configuration
termination notifier
methods

v

Release notifier
instances

end

Figure 10.5. Component Deactivation

98



11

System Management

TIBCO ActiveSpaces® Transactions system management is done using any of the following:
¢ TIBCO ActiveSpaces® Transactions Administrator via a web browser

¢ a command line tool named administrator

¢ a Java Management Extensions (JMX) console

TIBCO ActiveSpaces® Transactions applications can extend the standard TIBCO ActiveSpaces®
Transactions management features. Application management features are automatically visible using
the standard TIBCO ActiveSpaces® Transactions system management tools.

An application adds system management features by implementing a farget. A target is a grouping
of common management functions. A farget has one or more commands. Each command provides
a specific management function.

A command can optionally return one or more rows of data. Each row of data must have the same
number of columns. The first row returned contains the column names.

Commands can execute synchronously or asynchronously. A synchronous command completes its
function before it returns. An asynchronous command continues to execute after returning.

When a command is executed by TIBCO ActiveSpaces® Transactions , it is in a transaction. The
transaction is committed after the command returns. This is true for both synchronous and asyn-
chronous commands. An exception thrown by a command causes the transaction to be rolled back.
A new transaction must be started when an asynchronous command calls a method on a target after
returning from the initial invocation by TIBCO ActiveSpaces® Transactions .

Node logging

Log messages generated by nodes are available in:

99



Chapter 11. System Management

¢ node log files
¢ domain log message cache
e TIBCO ActiveSpaces® Transactions Administrator

¢ JMX notifications

Security

All system management commands require authentication before they can be executed. The authen-
tication information is used to both identify the user executing the command and to also check role
based security polices to ensure that the user has access to the requested command. Access control
is enforced before a command is executed. If the user executing the command does not have access
to the requested command, an error is returned without executing the command.

Access control rules are configured for each system management target independently.

See the TIBCO ActiveSpaces® Transactions Administration for complete details.

100



IndeXx
A

accessing data
transaction locks and, 37
Active, 65
active node, 60
migrating, 71
administrator, 23
application, 6, 8, 15
configurable, 6
distribution, 6
extensibility, 6
flexibility, 6
high availability, 6
versions, 83
application architecture, 5-14
ast.properties, 93
asynchronous methods, 26
distributed reference, 27
execution ordering, 27
overview, 2
shutdown behavior, 27
target object deleted, 27
transaction isolation, 27

business solution
applications, 7
context, 5

C

cache policy, 27
always, 27
never, 28
sized, 28
caching
default caching distributed object, 27
default caching local managed object, 27
default caching replica object, 27
channel
endpoint, 12
service, 12
session, 12
channels, 12
class upgrades
overview, 4
classes
versions, 83
cluster, 21
joining, 59

leaving, 59
cluster upgrades, 83
application versions, 83
operatng system versions, 83
product versions, 83
clusters, 15
commit, 37
component, 4
components, 93-98
activation, 96
component failure during activation, 95
component failure during deactivation, 96
deactivation, 97
jvm shutdown, 94
jvm startup, 93
configuration, 11, 87-91
active, 89
active version, 11
audit, 89
class, 88
inactive, 89
life cycle, 88
loaded, 89
notifier, 88
notifiers, 90
objects, 88
removed, 89
replacing, 90
states, 89
type, 88
version, 88-89
configuration cache, 21, 23
queued commands, 22
conflict resolution
instance added, 77, 80
key conflict, 77, 80
state conflict, 77, 80
trigger, 77
connectivity
channels, 12
creating and deleting objects
extent not locked, 37
high availability, 46
creating, updating, and deleting objects
state conflict during, 38

deadlocks

detection, 39
deferred write protocol

disabled on remote method invocation, 48
discovery (see location discovery)
distributed

101



Index

deferred write protocol, 47
distributed objects, 27

(see also cache policy)
distributed reference

shared memory timestamp, 45
distributed references, 44
distributed transactions

detected communication failures, 53

network errors, 50

transaction initiator failure, 54

undetected communication failures, 53

distribution, 13, 43-57
and transactions, 31
(see also accessing data)
extents, 45
heterogeneous platform support, 13
life-cycle, 46
managed objects, 43
master node, 43
overview, 3
read field, 44
remote node states, 46
SSL, 13
TCP/IP, 13
transaction deadlock timeout, 41
UDP, 13
write field, 45
domain groups, 16
domain manager, 18
configuration cache, 21
domains, 19
geographic redundancy, 19
groups, 20
log message cache, 23
domains, 16, 19
durable object store (see persistence)
overview, 2
dynamic discovery, 46

endpoint, 12
extents, 25
and locking, 37

F

failover, 72
active node migration, 72
flush notifier, 29

G

garbage collection, 25
geographic redundancy, 81
domain manager, 19

network bandwidth, 82
network latency, 82
groups, 20

HA (see high availability)
high availability, 13, 59-82
cluster, 21
cluster membership, 59
geographic redundancy, 81
multi-master, 73
node quorum, 73
overview, 2

partition active on multiple nodes, 73

high availability objects
remote create, 46

highly available objects
partition mapper, 59

|

Initial, 65
install, 10
installation, 9

isolation level (see transactions, isolation)

J
JMX, 23
jvm
installation, 10
life cycle, 10
remove, 10
start, 10
stop, 10
JVM
multiple JVMs in a transaction, 31
relationship to node, 16

K

keep-alive, 49
keepAliveSendIntervalSeconds, 49
keys

immutable and mutable, 26
keys and queries

overview, 2

L

load balancing

and partitions, 60
LocalDefined, 67
LocalDisabled, 67
LocalEnabled, 67
location code, 45

102



location codes
mapping to network addresses, 45
migration, 45

location discovery, 45

locking, 37

log message cache
node agent, 23

logging, 99

managed element
hierarchy, 21
managed object
cache policy, 27
managed objects, 1, 25-29
(see also replicated objects)
asynchronous methods, 26
caching, 27
explicit deletion required, 25
keys, 25
life cycle of, 25
overview, 1
queries, 26
management, 7
client, 17
JMX, 17
nodes, 17
service discovery, 17
management architecture, 15-23
management tools, 23
Migrating, 65
migrating
force replication, 72
migration
master node, 45

named cache, 27

adding a class, 28

inheritance, 28
network addresses

mapping to location codes, 45
node, 6, 8, 17

installation, 9

life cycle, 8

logging, 99

managed elements, 11

start, 9

state change notifiers, 47
node agent, 23
node names

with highly available create, 46
node quorum

disabled, 77
node visibility, 73

recovering partitions with multiple active nodes, 76

states, 74
votes, 73

node quorum state

Active, 74
Disabled, 74
Partial, 74

node state

no

Discovered, 47

Down, 47

Duplicate Location, 47
Duplicate Timestamp, 47

In Down Notifier, 47

In Up Notifier, 47
Undiscovered, 47
Unsupported Protocol, 47
Up, 47

des, 15

detecting failure of, 49
failure detection interval, 49
identification of, 45

location code, 45

migrating partition, 71
naming, 45

timestamp, 45

transaction spanning of, 31
transparent access to active node, 72

nonResponseTimeoutSeconds, 49
notifiers

0]

transaction, 35

object flushing

distributed object, 28
local object, 28
notifier, 29

replica object, 28
throttling, 29

object identity, 44
object locking (see migration)
object references, 43

distributed, 44

objects

P

location transparency of, 44
network location of, 45
representation on multiple nodes, 43

partition

active node, 60
disable, 63

103



Index

enable, 63
objects in disabled partition, 63
remote define, 63
remote enable, 63
replica node, 60
sparse, 61
partition failover
node list updates, 64
partition mapper, 59
inheritance, 60
partition assignment algorithms, 60
partition state, 65
active, 65
initial, 65
migrating, 65
notifiers, 66
replicating, 65
unavailable, 65
updating, 65
partition status, 67
LocalDefined, 67
LocalDisabled, 67
LocalEnabled, 67
RemoteDefined, 67
RemoteEnabled, 67
partitioned objects, 59
updating partitions, 71
partitions, 60
active node transparency, 72
definition of, 62
failover, 64
inconsistent node lists, 63
migrating, 71
redefining, 63
restore, 64
performance
and distributed deadlock detection, 41
prepare
transaction, 34

Q

queries
explicit transaction locking, 26
locking when remote object returned, 26
scope audit, 26
scoping, 26

RemoteDefined, 67

RemoteEnabled, 67

remove, 10

replica node
migrating, 71

replica nodes, 60
replica objects, 60
Replicating, 65
replication, 67
asynchronous, 67
asynchronous consistency errors, 68
asynchronous modifications always done on active
node, 68
synchronous, 67
synchronous modifications, 68
replication node
error handling, 70
rollback, 37
due to deadlock, 39
for automatic state conflict resolution, 38
logging, 42

S

secondary store, 2

security, 100

serialVersionUID, 83

service, 12

service discovery, 17
distribution, 18
properties, 17

session, 12

sparse partitions, 61

split-brain (see multi-master)

start, 9-10

state conflicts, 38

static discovery, 46

stop, 10

system coordinator, 9

system management, 99-100
security, 100
target, 99

T

TIBCO ActiveSpaces® Transactions

JVM, 1
TIBCO ActiveSpaces® Transactions Administrator,
23
TIBCO ActiveSpaces® Transactions application (see
application)
TIBCO ActiveSpaces® Transactions nodes (see nodes)
transaction isolation

extents, 37

objects, 37

read committed snapshot, 37

read consistency, 37

serializable, 37
transactions, 31-42

distributed, 31

104



failover processing, 72

global transaction spanning nodes, 31
history record size, 57

isolation, 37

local vs distributed, 31

locking behavior, 37

logging, 42

outcome voting, 57

overview, 2

transaction outcome voting history buffer configur-
ation, 57

triggers, 25
type

detecting changes, 84

Unavailable, 65
Updating, 65
upgrade

do no harm policy, 85

error handling, 85

most current version makes right, 85
non-transparent changes, 85

read error handling, 85

transparent changes, 85

write error handling, 86

XA integration

transaction, 34

105



106



	TIBCO ActiveSpaces® Transactions
	Contents
	About this book
	Related documentation
	Conventions
	Community

	Chapter 1. Introduction
	What is TIBCO ActiveSpaces® Transactions ?
	Managed objects
	Transactions
	Durable object store
	Keys and queries
	Asynchronous methods
	High availability
	Distributed Computing
	Online cluster upgrades
	Components

	Chapter 2. Application Architecture
	Introduction
	Business solution
	Application layered over platform

	Applications, nodes, and JVMs
	Node life cycle
	Install node
	Start node

	Java Virtual Machines
	Install JVM
	Start JVM
	Stop JVM
	Remove JVM


	Elements within a node
	Configuration
	Connectivity
	Endpoints, sessions, and services

	Distribution
	High availability

	Chapter 3. Management Architecture
	Conceptual model
	Overview
	Domains
	Multiple nodes
	Discovery

	Domain management
	Domains
	Groups
	Highly available clusters
	Managed element hierarchy
	Centralized configuration cache
	Centralized log messages

	Management tools

	Chapter 4. Managed objects
	Life cycle
	Extents
	Triggers
	Keys and Queries
	Asynchronous methods
	Named Caches
	Cache policies
	Cache association
	Object flushing
	Flush notifier



	Chapter 5. Transactions
	Local and distributed transactions
	Prepare
	Transaction notifiers

	Isolation
	Locking
	State conflicts

	Deadlock detection
	Transaction logging

	Chapter 6. Distributed computing
	Location transparency
	Reading and writing object fields
	Extents

	Locations
	Location discovery
	Life-cycle
	Remote node states
	Remote node state change notifiers

	Deferred Write Protocol
	Detecting failed nodes
	Network error handling
	Distributed transaction failure handling

	Chapter 7. High availability
	Cluster Membership
	Partitioned objects
	Partitions
	Sparse Partitions
	Defining partitions
	Enabling and disabling partitions
	Remotely defined and enabled partitions

	Failover
	Restore
	Partition states
	Partition state change notifiers

	Partition status

	Replication
	Error handling

	Updating object partition mapping
	Migrating a partition
	Active node transparency
	Object locking during migration
	Node quorum
	Node quorum states
	Disabling node quorum
	Restoring a cluster
	Default conflict resolution


	Geographic redundancy

	Chapter 8. Cluster upgrades
	Application versions
	Detecting version changes
	Object upgrades
	Error handling


	Chapter 9. Configuration
	Configuration life cycle
	Replacing a version
	Deactivating a version

	Configuration notifiers

	Chapter 10. Components
	Activation
	Deactivation

	Chapter 11. System Management
	Node logging
	Security

	Index

