
Copyright © 2015-2024. Cloud Software Group, Inc. All Rights Reserved.

TIBCO® BPM Enterprise
Developer's Guide
Version 5.6.0 | November 2024

TIBCO® BPM Enterprise Developer's Guide

2 | Contents

Contents
Contents 2

Client Application Development 4

Access API Explorer 5

Working With Forms 6
Overview 6

Using TIBCO Forms 6

Displaying a Work Item Form 7

Open a Work Item Associated with a Pageflow 11

Integrating TIBCO Forms with Custom Client Applications 19
Injecting the Forms Runtime Adapter in the Browser 19

Typical Flow of Events 20

iFrame Capability 24

iframe Integration 24

Forms Runtime Adapter 25

Working With Business Services 40
Starting a Business Service 40
List Business Services 44

Start Business Service 45

Update Business Service 46

Cancel Business Service 48

Working With Case Data 49
Query and Fetch Case Data Types 49
List Case types 53

List Cases for Case Type 56

TIBCO® BPM Enterprise Developer's Guide

3 | Contents

List Case Actions 57

Read Cases 59

Conventional Database View of a Case Type 59

Working with Process Manager 61
Creating an Instance from a Specified Process Template 61

Sending an Event to a Process 64

Working with Work Item 66
Work Item States 66
Work Item State Transitions 67

Applications 73
How to Access Application Development 73

Application Lifecycle 74

REST API 76
Authentication 77
SAML Web Profile Authentication 78

OpenID Connect Authentication 79

TIBCO Documentation and Support Services 82

Legal and Third-Party Notices 84

TIBCO® BPM Enterprise Developer's Guide

4 | Client Application Development

Client Application Development
TIBCO BPM Enterprise provides Application Development to create, develop, and test
custom client applications hosted in TIBCO BPM Enterprise.

Upload application files to Application Development, and then edit, test, and verify
changes. For example, keep the service logic of the worklist, but completely change the
appearance of the layout.

You can customize applications by adding a company logo, and incorporating the
company's color scheme. See the "Customizing your Application" topic in the TIBCO BPM
Enterprise Administration Guide. The custom application is available to users immediately
after it is published.

You can delete the applications and download the application content in a .zip file.

TIBCO® BPM Enterprise Developer's Guide

5 | Access API Explorer

Access API Explorer
Perform the following steps to access the API Explorer in TIBCO BPM Enterprise:

Procedure
1. Enter the following URL in your browser:

protocol://host:port/apps/login

l Here, protocol is the communications protocol that is used (http or https).

l host is the DNS name or IP address of the server hosting the TIBCO BPM
Enterprise runtime.

l port is the port that is used. (Default: 80)

2. Log in with a valid TIBCO BPM Enterprise username and password.

3. To access API Explorer, click App Switcher .

4. In the App Switcher menu, click API Explorer.

TIBCO® BPM Enterprise Developer's Guide

6 | Working With Forms

Working With Forms
TIBCO forms will be displayed in Client Applications for

l work items,

l work items with pageflow (using page activities),

l and business services (using page activities).

Overview
A client application may need to display a form to a user when that user opens a work item
that starts a pageflow, or starts a business service.

The client application can render the form using either:

l a TIBCO form, which provides a web-based user interface to the work item data. See
Using TIBCO Forms.

l a custom form developed as part of the client application.

Using TIBCO Forms
TIBCO forms provide web-based user interfaces for business processes. At design-time,
process analysts and solution designers can use TIBCO Business Studio - BPM Edition to
design forms and associate them with user tasks in business processes or pageflow
processes.

See the TIBCO Business Studio - BPM Edition documentation for more information.

TIBCO Business Studio - BPM Edition generates run-time implementations of these forms
based on the use of channel types and presentation channels:

l A channel type defines a method employed to deliver and display a form to a user.
The specification of a channel type defines:

TIBCO® BPM Enterprise Developer's Guide

7 | Working With Forms

o a delivery mechanism (for example, web client or email).

o a rendering technology (Google Web Toolkit (GWT).

l A presentation channel is a container for a selection of available channel types; it
defines how a form can be delivered and presented to users.

TIBCO Business Studio - BPM Edition automatically generates an implementation of each
form defined in a project for each channel type defined in the project’s presentation
channel(s).

Note: If no form has been defined for a user activity, default form
implementations are automatically generated for the default presentation
channel.

When a project is deployed to the BPM runtime, the generated form artifacts are deployed
as well. (bpmresources is the name of the BPM runtime component that provides access
to the form resources of deployed BPM applications.)

A client application can use the WorkPresentationService to access the form artifacts that
have been deployed to the BPM runtime, and so display an appropriate TIBCO form for a
work item or pageflow/business service page.

Displaying a Work Item Form
This topic provides an example that shows the sequence of calls a client application should
make to display a work item form.

Note: The following step-by-step description corresponds to the process shown
in the diagram. The descriptions are from the perspective of the REST API. The
process of performing operations using the REST API is explained with the help
of an example.

TIBCO® BPM Enterprise Developer's Guide

8 | Working With Forms

When a user opens a work item from the user interface:

Procedure
1. A work item is opened by invoking a PUT call on work presentation REST service.

l Pass the work id, version along with the payload, and the state WMstateOpen to
open the work item.

l /Workpresentationitem updates and opens the specified work item.

l Payload for the PUT calls is similar to the one shown below:

{
"id": "string",
"version": "string",
"header": {

"name": "string",
"description": "string",
"itemContext": {

TIBCO® BPM Enterprise Developer's Guide

9 | Working With Forms

"activityId": "string",
"activityName": "string",
"appInstance": "string",
"appName": "string",
"appVersion": 0,
"appId": "string",
"appInstanceDescription": "string",
"processName": "string",
"caseRef": "string"

},
"workType": {

"uid": "string",
"version": "string"

}
},
"state": {

"stringKey": "WMstateOpen",
"description": "string"

},
"body": {

"inputs": [
{
"name": "string",
"simple": [
{

}
],
"structured": [
{

}
]

}
],
"outputs": [

{
"name": "string",
"simple": [
{

}
],

TIBCO® BPM Enterprise Developer's Guide

10 | Working With Forms

"structured": [
{

}
]

}
],
"inouts": [

{
"name": "string",
"simple": [
{

}
],
"structured": [
{

}
]

}
]

},
"presentation": {

"channelId": "string",
"channelType": "string",
"formIdentifier": "string",
"pageflow": {

"moduleName": "string",
"processName": "string",
"version": "string"

},
"worktypeId": "string",
"worktypeVersion": "string"

}
}

Response of the above calls returns the updated payload and also the form details
associated with the work item task

2. The client uses the form details and renders the form using the forms runtime loaded
in the client. The user interacts with the form by entering details and when the form
is submitted or closed, the work form returns the updated data to the client.

3. The client invokes work presentation PUT call again passing the payload received

TIBCO® BPM Enterprise Developer's Guide

11 | Working With Forms

from the form and passing appropriate work item state depending on if the form is
closed or submitted. When closing the work item WMstateClose is passed and when
submitting the form WMstateCompleted is passed.
l WMstateClosed

l WMstateCompleted

Open a Work Item Associated with a Pageflow
This topic includes an example that shows the sequence of calls that a client application
should make to open a work item associated with a pageflow.

Note: The following description corresponds to the process shown in the
diagram. The descriptions are from the perspective of the REST API. The process
of performing operations using the REST API is explained with the help of an
example.

TIBCO® BPM Enterprise Developer's Guide

12 | Working With Forms

Perform the following steps to open a work item by using REST API:

Procedure
1. Open a work item by invoking a REST API call on the work presentation service.

l Invoke a PUT method on REST API /Workpresentationitem by passing the work
id, version, payload, and the WMstateOpen state

{
"id": "string",
"version": "string",
"header": {

"name": "string",
"description": "string",
"itemContext": {

"activityId": "string",
"activityName": "string",
"appInstance": "string",
"appName": "string",
"appVersion": 0,
"appId": "string",
"appInstanceDescription": "string",
"processName": "string",
"caseRef": "string"

},
"workType": {

"uid": "string",
"version": "string"

}
},
"state": {

"stringKey": "WMstateOpen",
"description": "string"

},
"body": {

"inputs": [
{
"name": "string",
"simple": [
{

}
],
"structured": [
{

TIBCO® BPM Enterprise Developer's Guide

13 | Working With Forms

}
]

}
],
"outputs": [

{
"name": "string",
"simple": [
{

}
],
"structured": [
{

}
]

}
],
"inouts": [

{
"name": "string",
"simple": [
{

}
],
"structured": [
{

}
]

}
]

},
"presentation": {

"channelId": "string",
"channelType": "string",
"formIdentifier": "string",
"pageflow": {

"moduleName": "string",
"processName": "string",

TIBCO® BPM Enterprise Developer's Guide

14 | Working With Forms

"version": "string"
},
"worktypeId": "string",
"worktypeVersion": "string"

}
}

The response of the above calls returns the updated payload and the form details
associated with the work item task. If the work item is associated with a pageflow,
pageflow details are returned as part of the open work item response.

2. Based on the pageflow details returned as part of the work item response, the client
application invokes Pageflow POST REST API instance call to start the pageflow. For
details, click API Explorer > Process Management Service.
l /Instances creates an instance in the specified pageflow process.

l Work item data returned from the work presentation call is passed in as data to
pageflow call. The module below is passed as part of the payload to the REST
call that returned in the open work item call.

{
"moduleName": "string",
"processName": "string",
"moduleVersion": "string",
"data": "string"

}

l Response of the Pageflow call returns the pageflow details and the activity
information paused at the Activity pageflow. The response returns the state of
the pageflow.

{
"instanceId": "string",
"processId": "string",
"moduleName": "string",
"moduleVersion": "string",
"processName": "string",
"processLabel": "string",
"state": {

"state": "STARTING",
"failedMessage": {

TIBCO® BPM Enterprise Developer's Guide

15 | Working With Forms

"msgName": "START",
"exceptionMsg": "string",
"exceptionStack": "string",
"msgData": "string",
"activityData": "string"

}
},
"activityInfo": {

"activityId": "string",
"activityName": "string",
"activityProcessPackageId": "string",
"activityProcessModuleName": "string",
"activityProcessModuleVersion": "string",
"activityPageflowName": "string",
"activityData": "string"

}
}

3. To retrieve the form details of the activity, the client application invokes the work
presentation GET work item pageflow call. For details, click API Explorer >
Presentation Management Service.
l /WorkItemPageFlow is the Pageflow associated with the work item.

l The response of this REST call returns the form details as a form identifier.

{
"moduleName": "string",
"processName": "string",
"moduleVersion": "string",
"pageflowActivities": [

{
"activityName": "string",
"activityId": "string",
"formIdentifier": "string"

}
]

}

l The client application uses the form identifier and renders the form using forms
runtime.

4. The user interacts with the forms and enters the data in the form and when the form
is closed or completed, Pageflow PUT call is called to progress the pageflow. The

TIBCO® BPM Enterprise Developer's Guide

16 | Working With Forms

data returned from the form is passed in as a payload to Pageflow call.

l /Instances updates a specified Process Instance.

{
"instanceId": "string",

"processId": "string",
"moduleName": "string",
"moduleVersion": "string",
"processName": "string",
"processLabel": "string",
"state": {

"state": "STARTING",
"failedMessage": {

"msgName": "START",
"exceptionMsg": "string",
"exceptionStack": "string",
"msgData": "string",
"activityData": "string"

}
},
"activityInfo": {

"activityId": "string",
"activityName": "string",
"activityProcessPackageId": "string",
"activityProcessModuleName": "string",
"activityProcessModuleVersion": "string",
"activityPageflowName": "string",
"activityData": "string"

}
}

5. After the pageflow execution is complete, this information of pageflow state can be
found in the state attribute of the pageflow response. Work presentation PUT call is
invoked to complete the work item which passes the payload that is received from
the form. It also passes the appropriate work item state depending on if the form is
closed or submitted. When closing the work item, WMstateClose is passed and when
submitting the form, WMstateCompleted is passed.

l /Workpresentationitem updates the specified work item

{
"id": "string",
"version": "string",

TIBCO® BPM Enterprise Developer's Guide

17 | Working With Forms

"header": {
"name": "string",
"description": "string",
"itemContext": {

"activityId": "string",
"activityName": "string",
"appInstance": "string",
"appName": "string",
"appVersion": 0,
"appId": "string",
"appInstanceDescription": "string",
"processName": "string",
"caseRef": "string"

},
"workType": {

"uid": "string",
"version": "string"

}
},
"state": {

"stringKey": "WMstateCompleted",
"description": "string"

},
"body": {

"inputs": [
{
"name": "string",
"simple": [
{

}
],
"structured": [
{

}
]

}
],
"outputs": [

{
"name": "string",
"simple": [

TIBCO® BPM Enterprise Developer's Guide

18 | Working With Forms

{

}
],
"structured": [
{

}
]

}
],
"inouts": [

{
"name": "string",
"simple": [
{

}
],
"structured": [
{

}
]

}
]

},
"presentation": {

"channelId": "string",
"channelType": "string",
"formIdentifier": "string",
"pageflow": {

"moduleName": "string",
"processName": "string",
"version": "string"

},
"worktypeId": "string",
"worktypeVersion": "string"

}
}

TIBCO® BPM Enterprise Developer's Guide

19 | Working With Forms

Integrating TIBCO Forms with Custom Client
Applications
TIBCO forms are a part of projects that are deployed to the runtime.

The key top-level components that are involved in making TIBCO Forms accessible from
custom client applications are as follows:

l BPM REST Services API - BPM exposes its functionality through comprehensive work
management and process management APIs. The main services that are used in the
form applications refer to the API Explorer link. A client application can access the
BPM Rest API.

l Client Application - The client application is typically a web application that bundles
together the non-Form UI resources that are used by the application, and a controller
servlet that acts as the conduit between the browser and the BPM Rest API.

Injecting the Forms Runtime Adapter in the Browser
The Forms Runtime Adapter is hosted by the BPM runtime. To use this, you first need to
load the Forms Runtime Adapter file on the page. This is typically done via a <script> tag
in the <head> section of the HTML document.

<script src="http://<host-name>:<port>/apps/bpm-
forms/formsclient/formsclient.nocache.js"/>

Once the JavaScript API loading is complete, it notifies the client application by invoking a
function called onTIBCOFormRunnerLoad. The client application can define this function
on the page and receive notification of the availability of
com.tibco.forms.client.FormRunner.

For example:

function onTIBCOFormRunnerLoad() {
 // Forms Runtime Adapter is now available for use on the page.
 // com.tibco.forms.client.FormRunner.loadForm() or the custom

// element named 'tibco-form' can be accessed from now on

TIBCO® BPM Enterprise Developer's Guide

20 | Working With Forms

 // to load the form.
}

Typical Flow of Events
This topic describes the typical flow of events when a user opens a work item from the
worklist displayed in the browser of the client application.

The details of the events are as follows:

1. To open a work item, the client application invokes Work Presentation REST API.
For details, please refer to the API Explorer link.

2. In response to Work Presentation's Work Item API, the formUrl and formData are
returned to the client application. The client application decides the locale for
rendering the form and provides the identifier of the DOM node under which the form
will be rendered. For more information, refer to the API Explorer link.

The client application invokes the FormRunner.loadForm() method, which accepts
the above values along with two arguments: onSuccess and onError. See
com.tibco.forms.client.FormRunner for details of the FormRunner.loadForm()
method.

You can access TIBCO Forms custom element using the tag 'tibco-form'.

<tibco-form

formurl=<url_to_the_form_psm_model>

initdata=<form_initial_data>

bomjspath=<bom_js_path>

locale=<locale_to_be_used>

onload="alert(‘Form loaded’)"

onsubmit="event.detail.form.getSerializedParameters(formData
=> alert(formData))"

onclose="event.detail.form.getSerializedParameters(formData
=> alert(formData))"

oncancel="event.detail.form.getSerializedParameters(formData
=> alert(formData))">

TIBCO® BPM Enterprise Developer's Guide

21 | Working With Forms

</tibco-form>

Standard DOM APIs can be used to create this element. For example,
document.createElement ("tibco-form"). Currently, direct usage of this tag in the
markup is not allowed. The 'tibco-form' tag supports the following properties and
events:

Property Description

formurl Pass the Form URL obtained from the work item.

initdata Pass the initial form data obtained from the work item.

initdataurl If the initial data is available on the server in a file, use its URL.

bomjspath Pass the BOM JavaScript root path obtained from the work item.

locale The locale to be used in the form. Pass the application locale, if any.

Event Description

load Event triggered when the form loading completes. The data returned to
the event handler has the reference to the form via data.detail.form.

loadError Event triggered when the form loading fails. The data returned to the
event handler contains an error in the attribute data.detail.message.

autofocus The autofocus value can be true or false.

If the autofocus value is true when the form is loaded, the focus will be
on the form elements.

By default, the autofocus value is false.

useiframe The useiframe value can be true or false.

TIBCO® BPM Enterprise Developer's Guide

22 | Working With Forms

Event Description

If the useiframe value is true when the form is loaded, it will lead to the
usage of an inline frame to load the form.

By default, the default value is false.

For more details, see iFrame Capability.

cancel Event triggered when the form is canceled. The data returned to the
event handler has the reference to the form via data.detail.form.

close Event triggered when the form is closed. The data returned to the event
handler has the reference to the form via data.detail.form.

submit Event triggered when the form is submitted. The data returned to the
event handler has the reference to the form via data.detail.form.

Alternatively, the following code snippet shows how the form is loaded using the
FormRunner.loadForm()method.

var formURL; // Form URL obtained from the work item.
var formData; // The initial form data obtained from the work item.
var bomJSPath; // BOM JavaScript root path obtained from the work
item.
var locale = "en_US"; // locale to use
var parentId; // Identifier of a node to which the form is added.
var submitHandler = function(actionName, form) {
 var formData = form.getSerializedParameters();
 // submit the work item

 form.destroy();
};
var closeHandler = function(actionName, form) {
 // close the work item

 form.destroy();
};
var cancelHandler = function(actionName, form) {

TIBCO® BPM Enterprise Developer's Guide

23 | Working With Forms

 // cancel the work item
 form.destroy();

};
var onSuccess = function(form) {
 form.setActionHandler(com.tibco.forms.client.Form
 .ACTION_SUBMIT, submitHandler);
 form.setActionHandler(com.tibco.forms.client.Form
 .ACTION_CLOSE, closeHandler);
 form.setActionHandler(com.tibco.forms.client.Form
 .ACTION_CANCEL, cancelHandler);
};
var onError = function(e) {
 alert("An error occurred while loading the form: "+ e);
};
com.tibco.forms.client.FormRunner.loadForm(formURL, formData,
bomJSPath, locale, parentId, onSuccess, onError, JSONP);

Note: Avoid using the com.tibco.forms.client.FormRunner.loadForm()
method on the page onLoad event, as the
com.tibco.forms.client.FormRunner class might not be fully loaded and
the API methods being used might not be available. To avoid these errors,
the client application can define the onTIBCOFormRunnerLoad function on
the page and can be notified about the availability of
com.tibco.forms.client.FormRunner. For more details, see Injecting the
Forms Runtime Adapter in the Browser.

3. The form is displayed in the browser. The FormRunner.loadForm() method is
asynchronous, so any post-processing that is done on the loaded form object
happens within the onSuccess callback handler. In the above code snippet, three
action handlers are set that handle the submit, close, and cancel operations that are
provided on most forms.

4. When the form is submitted, the submitHandler handles the submit action. In
response to form submission, form.getSerializedParameters() method retrieves
the formData. See com.tibco.forms.client.Form for details of the
form.getSerializedParameters() method. This method returns a JSON (JavaScript
Object Notation) serialization of the data within the form.

5. After successful submission of the form, the client application invokes

TIBCO® BPM Enterprise Developer's Guide

24 | Working With Forms

completeWorkItem to pass the form data back to the WorkPresentationService. This
function is used to update the work item.

iFrame Capability
A useful feature of the tibco-form element is its ability to load the form in an inline frame,
or, iFrame. This is especially useful in cases where the application has many different CSS
files that can conflict with the styles defined in the Form related CSS files.

To enable this feature, set the attribute as useiframe=”true”. To load a form in an iframe,
refer to the following sample:

<tibco-form

json2form="true"

json2formdata='{"name":"user_name", "company": "company_name",
"country": "country_name"}'

useiframe="true">

</tibco-form>

For best results, use this approach for iFrame support.

iframe Integration
A form can be loaded in an inline frame (iframe) in a custom application. The loadForm
APIs in the com.tibco.forms.client.FormRunner class support the parent node ID of an
<iframe> element.

To make this integration easy, the file IFrameSource.html is provided in the forms client
(which is bundled inside the Forms Runtime Adapter). An iframe in the custom application
can use the following source URL:

<iframe class="tf-form-not-loaded" id="formContainer"
src="/bpmresources/formsclient/IFrameSource.html">
</iframe>

Using IFrameSource.html is optional. Alternatively, you can provide a custom iframe
source page, if desired.

TIBCO® BPM Enterprise Developer's Guide

25 | Working With Forms

The forms runtime loaded in a parent window talks to the forms runtime loaded in the
iframe. For this communication to happen, the formsclient.nocache.js file must be
loaded. The IFrameSource.html page loads formsclient.nocach.js by default. However,
if you provide a custom iframe source page, ensure that it loads formsclient.nocache.js
(using a <script> tag in the HTML. See Injecting the Forms Runtime Adapter in the
Browser).

When the form is loaded in the iframe, the Forms Runtime Adapter removes the class
selector tf-form-not-loaded from the <iframe> element and adds another class, tf-
form-loaded. Similarly, when the form is destroyed by the Cancel, Close, or Submit
actions, the Forms Runtime Adapter adds the class tf-form-not-loaded back to the
<iframe> element. This can be used to control the visibility of the iframe within a custom
application.

Note that changing the CSS class name based on whether a form is currently loaded or not
is taken care of by the formsclient loaded on the parent window (therefore, your iframe
element can initially have the class tf-form-not-loaded, which is automatically removed
when the form is loaded).

The area of the iframe where the form is loaded is based on the following conditions:

l if the same parentNodeId is available within the iframe, the form is loaded within
the iframe.

l if the iframe has an element with the ID tfFormContainer, the form is loaded in that
element.

l if both of the above conditions are missing, the form is loaded directly under the
body element within the iframe.

Forms Runtime Adapter
The Forms Runtime Adapter provides access to methods for instantiating, accessing, and
measuring the performance of forms.

The Forms Runtime Adapter defines the following three classes:

l com.tibco.forms.client.FormRunner

l com.tibco.forms.client.Form

l com.tibco.forms.client.LoadStat

TIBCO® BPM Enterprise Developer's Guide

26 | Working With Forms

com.tibco.forms.client.FormRunner
The com.tibco.forms.client.FormRunner class provides static utility methods for
instantiating the Form class in the custom client application. It also provides access to the
Forms logger, which can be used even when no forms are loaded.

For more details on the logger() method, see the table at the bottom of this page.

The following methods are supported:

l loadForm()

l loadFormWithRemoteData()

The loadForm() and loadFormWithRemoteData() methods have the same set of input
parameters but they differ in the way the initial data are passed. Both the methods are
void.

l In loadForm(), the initial data are passed directly as a JSON (JavaScript Object
Notation) string.

l In loadFormWithRemoteData(), a URL of the initial JSON data is passed using the
initDataURL parameter. The FormRunner retrieves the data from the specified URL.

The details of these methods are as follows:

Method Description

loadForm(
String url,
String
initialData,
String
bomJSPath,
String locale,
String
parentNodeId,
Function
onSuccess,
Function
onError,
Boolean JSONP)

Loads the form at the specified URL. The parameter details are as
follows:

l url - Specifies the URL to the form JSON representation, e.g.
"
http://<hostname:port>
/bpmresources/com.example.myproject_
1.0.0.20201105175821853/wp/openspaceGWTPull_
DefaultChannel/openspaceGWTPull_
DefaultChannel/FindAddress/GetAddress/Getuserdetails/
Getuserdetails.gwt.json"

l initialData - Specifies the JSON representation of the initial
data that are provided to the form.

l bomJSPath - Specifies the root folder path used for loading

com.tibco.forms.client.FormRunner Class

TIBCO® BPM Enterprise Developer's Guide

27 | Working With Forms

Method Description

the BOM JavaScript files used by the form, e.g.
"http://<hostname:port>/bpmresources"

l locale - Specifies the locale to be used in the form runtime
with format <lc>[_<CC>] where [] denotes optionality, e.g.
"en_US". The locale needs to be represented such that <lc> is
a valid two-character lowercase ISO-639 language code and if
present the optional <CC> is a valid two-character uppercase
ISO-3166 country code. Both '_' and '-' are supported as
delimiters.

l parentNodeId - Specifies the DOM identifier of the node to
which the form is added. The value cannot be null.

If you are using an iframe, you can pass the ID of the iframe
element on the page. For more information, see iframe
Integration.

l onSuccess - A function that is called once the form is
successfully initialized. The Form object is passed into this
function. This function can be used to add custom callback
handlers that implement lifecycle events such as submit,
close, and cancel.

l onError - A function that is called if any errors are
encountered in initializing the form. The function will receive
any exception that was encountered during the initialization.

l JSONP - Informs the Forms Runtime Adapter to use JSON with
Padding (JSONP) when loading JSON resources. The default
value is false. When the custom client and Forms Runtime
Adapter are hosted on different servers, set the JSONP
parameter as true. In this scenario, there are SOP (Single
Origin Policy) issues while loading JSON resources. By using
the JSONP technique, the JSON response is wrapped to a call
to a function by the server and sent to the client. A JSON
resource can then be loaded using a script tag to avoid any
SOP violations.

TIBCO® BPM Enterprise Developer's Guide

28 | Working With Forms

Method Description

loadFormWithRem
oteData(String
url,
String
initDataURL,
String
bomJSPath,
String locale,
String
parentNodeId,
Function
onSuccess,
Function
onError,
Boolean JSONP)

Loads the form at the specified URL. The parameter details are as
follows:

l url - Specifies the URL to the form JSON representation, e.g.
"
http://<hostname:port>
/bpmresources/com.example.myproject_
1.0.0.20201105175821853/wp/openspaceGWTPull_
DefaultChannel/openspaceGWTPull_
DefaultChannel/FindAddress/GetAddress/Getuserdetails/
Getuserdetails.gwt.json".

l initDataURL - Specifies the URL to the form initial data.

l bomJSPath - Specifies the root folder path used for loading
the BOM JavaScript files used by the form, e.g.
"http://<hostname:port>/bpmresources"

l locale - Specifies the locale to be used in the form runtime
with format <lc>[_<CC>] where [] denotes optionality, e.g.
"en_US". The locale need to be represented such that <lc> is
a valid two-character lowercase ISO-639 language code and if
present the optional <CC> is a valid two-character uppercase
ISO-3166 country code. Both '_' and '-' are supported as
delimiters.

l parentNodeId - Specifies the DOM identifier of the node to
which the form should be added. The value cannot be null.

If you are using an iframe, you can pass the ID of the iframe
element on the page. For more information, see iframe
Integration.

l onSuccess - A function that is called once the form is
successfully initialized. The Form object is passed into this
function. This can be used to add custom callback handlers
that implement lifecycle events such as submit, close, and
cancel.

l onError - A function that is called if any errors are
encountered in initializing the form. The function will receive
any exception that was encountered during the initialization.

TIBCO® BPM Enterprise Developer's Guide

29 | Working With Forms

Method Description

l JSONP - Informs the Forms Runtime Adapter to use JSON with
Padding (JSONP) when loading JSON resources. The default
value is false. When the custom client and Forms Runtime
Adapter are hosted on different servers, set the JSONP
parameter as true. In this scenario, there are SOP (Single
Origin Policy) issues while loading JSON resources. By using
the JSONP technique, the JSON response is wrapped to a call
to a function by the server and sent to the client. A JSON
resource can then be loaded using a script tag to avoid any
SOP violations.

renderStaticVie
w()

Renders a tree representation of the data provided in the
InitialData parameter.

The API has the following parameters:

l initialData: specifies the JSON representation of the initial
data that are provided to the form.

l bomJSPath: specifies the root folder path used for loading the
BOM JavaScript files used by the form.

For example: http://<hostname:port>/bpmresources

l locale: specifies the locale to be used in the runtime form
with the <lc>[_<CC>] format, where [] denotes optionality.

For example: "en_US". The locale needs to be represented
such that <lc> is a valid two-character lowercase ISO-639
language code, and, if present, the optional <CC> is a valid
two-character uppercase ISO-3166 country code. Both '_' and
'-' are supported as delimiters.

l parentNodeId: specifies the DOM identifier of the node to
which the form must be added. The value cannot be null.

If you are using an iframe, you can pass the ID of the iframe
element on the page. For more information, see iframe
Integration.

l onSuccess: is a function that is called after the form is
successfully initialized. The Form object is passed into this

TIBCO® BPM Enterprise Developer's Guide

30 | Working With Forms

Method Description

function. It can be used to add custom callback handlers that
implement lifecycle events such as submit, close, and cancel.

l onError: is a function that is called on encountering any error
in initializing the form. The function receives the exception
encountered during the initialization.

l provideCloseAction: if it is set to true, the form is rendered
with a button that closes the form and cleans up any
resources used. If it is set to false, then it is the
responsibility of the containing application to clean up the
form when it is no longer needed.

l JSONP: informs the Forms Runtime Adapter to use JSON with
Padding (JSONP) when loading JSON resources. The default
value is false. When the custom client and Forms Runtime
Adapter are hosted on different servers, set the JSONP
parameter to true. In this scenario, there are SOP (Single
Origin Policy) issues while loading JSON resources. By using
the JSONP technique, the JSON response is wrapped as a
function by the server and is sent to the client. A JSON
resource can then be loaded using a script tag to avoid any
SOP violations.

Note: For the list of language codes and country codes required for specifying
the locale parameter, visit the following websites:

l List of language codes - http://www.loc.gov/standards/iso639-
2/langhome.html

l List of country codes - http://www.iso.org/iso/country_codes/iso_3166_
code_lists.html

The details of the logger() method are as follows:

http://www.loc.gov/standards/iso639-2/langhome.html
http://www.loc.gov/standards/iso639-2/langhome.html
http://www.iso.org/iso/country_codes/iso_3166_code_lists.html
http://www.iso.org/iso/country_codes/iso_3166_code_lists.html

TIBCO® BPM Enterprise Developer's Guide

31 | Working With Forms

Method Return
Value

Description

fatal(String
message)

Void Logs the given messages at the fatal logging level.

error(String
message)

Void Logs the given messages at the error logging level.

warn(String
message)

Void Logs the given messages at the warn logging level.

info(String
message)

Void Logs the given messages at the info logging level.

debug(String
message)

Void Logs the given messages at the debug logging level.

trace(String
message)

Void Logs the given messages at the trace logging level.

isFatalEnabled()
Boolean Checks whether the Fatal logging level is enabled. It

returns true if the logging level is enabled, and
false otherwise.

isErrorEnabled()
Boolean Checks whether the Error logging level is enabled. It

returns true if the logging level is enabled, and
false otherwise.

isWarnEnabled()
Boolean Checks whether the Warn logging level is enabled. It

returns true if the logging level is enabled, and
false otherwise.

com.tibco.forms.client.FormRunner.logger Class

TIBCO® BPM Enterprise Developer's Guide

32 | Working With Forms

Method Return
Value

Description

isInfoEnabled()
Boolean Checks whether the Info logging level is enabled. It

returns true if the logging level is enabled, and
false otherwise.

isDebugEnabled()
Boolean Checks whether the Debug logging level is enabled. It

returns true if the logging level is enabled, and
false otherwise.

isTraceEnabled()
Boolean Checks whether the Trace logging level is enabled. It

returns true if the logging level is enabled, and
false otherwise.

com.tibco.forms.client.Form
The com.tibco.forms.client.Form class provides access to the runtime form object. This
object enables you to access panes and controls within the form, register handlers for form
actions, and access data to be submitted back to the server.

The com.tibco.forms.client.Form class has six fields that are used for setting action
handlers. It also implements the methods listed in the table below.

Field Data Type Description

ACTION_APPLY
String Identifies the "apply" action.

ACTION_CANCEL
String Identifies the "cancel" action.

ACTION_CLOSE
String Identifies the "close" action.

com.tibco.forms.client.Form Class - Field Details

TIBCO® BPM Enterprise Developer's Guide

33 | Working With Forms

Field Data Type Description

ACTION_RESET
String Identifies the "reset" action.

ACTION_SUBMIT
String Identifies the "submit" action.

ACTION_VALIDATE
String Identifies the "validate" action.

Method Return
Value

Description

destroy()
Void Removes the form from its container and

also releases its resources. This can be
called by the client application to close
the form.

getFactory()
Object Returns the factory object for the given

form. This provides access to the BOM
JavaScript factories associated with the
BOM types used by this form, as
documented under the factory variable
available within form action and
validation scripts.

Note: This method is not supported
when an iframe is used to load the
form using the built-in iframe
integration support.

getLoadStats()
LoadStat Returns an array of LoadStat objects.

Each statistic represents the
measurement of a particular phase of the
form load. This can be used by

com.tibco.forms.client.Form Class - Method Details

TIBCO® BPM Enterprise Developer's Guide

34 | Working With Forms

Method Return
Value

Description

applications to report this information in
the user interface or otherwise log the
information.

To enable collecting load statistics at
runtime, the URL used by the client
application to load the form should
contain the parameter tibco_instr with
a value true. Otherwise getLoadStats()
method would return an empty array.

This method takes an optional callback
function as an argument to support
iframe integration, where the method
returns asynchronously:

getLoadStats(Function callback)

The callback function is optional for non-
iframe mode, but required for iframe
mode.

The method still returns the value in non-
iframe mode for backward compatibility.
However, the use of the callback function
is recommended for both iframe and
non-iframe modes. Example:

form.getLoadStats(function
(loadStats){

for (idx in loadStats)
alert(loadStats

[idx].label + ": " + (loadStats
[idx].endTime - loadStats
[idx].startTime) + " ms";
});

To use the getLoadStats() method, the

TIBCO® BPM Enterprise Developer's Guide

35 | Working With Forms

Method Return
Value

Description

client application needs to subscribe to
the TIBCO PageBus event
'com.tibco.forms.form.loaded'. See
com.tibco.forms.client.LoadStat for more
details.

getPackage()
Object Returns the object that provides access to

the BOM JavaScript package definitions
associated with the BOM types used by
this form, as documented under the pkg
variable available within form action and
validation scripts.

Note: This method is not supported
when an iframe is used to load the
form using the built-in iframe
integration support.

getResource()
Object Returns the object that provides access to

the resource bundles associated with this
form, as documented under the resource
variable available within form action and
validation scripts.

Note: This method is not supported
when an iframe is used to load the
form using the built-in iframe
integration support.

getSerializedParameters
()

String Returns a JSON representation of the
data being managed by the form. This is
typically called from a submit handler to
send the final results back to the server.

This method takes an optional callback
function as an argument to support

TIBCO® BPM Enterprise Developer's Guide

36 | Working With Forms

Method Return
Value

Description

iframe integration, where the method
returns asynchronously:

getSerializedParameters
(Function callback)

The callback function is optional for non-
iframe mode but required for iframe
mode.

The method still returns the value in non-
iframe mode for backward compatibility.
However, use of the callback function is
recommended for both iframe and non-
iframe modes. Example:

form.getSerializedParameters
(function(data) {

alert('form data: ' + data);
});

setActionHandler(
String actionName,
Function handler)

Void Adds a handler to the form that is
invoked when the specified action is
invoked in the form. Note that any
handler already registered for this action
will be replaced by this handler. The
parameter details are as follows:

l actionName - Used to specify the
name of the

l action (For example, ACTION_
CLOSE). If the action is ACTION_
SUBMIT, then all the validations in
the form will be invoked before
invoking the callback handlers. If
any of the validations fail, then the

TIBCO® BPM Enterprise Developer's Guide

37 | Working With Forms

Method Return
Value

Description

callback handler will not be
invoked.

l handler - This is the function that
is invoked for the specified
actionName. The form may have
only one handler for each action. If
this method is called more than
once for the same actionName, the
handler set previously will be
replaced. Passing in null for this
parameter will remove the handler
for this particular action. The
method signature of the handler
function has two arguments: a
string for the actionName and the
form object.

Properties Return
Value

Description

locale String Returns the string representation of the locale being used to
render the form.

This method takes an optional callback function as an argument
to support iframe integration, where the method returns
asynchronously:

locale(Function callback)

The callback function is optional for non-iframe mode, but
required for iframe mode.

The method still returns the value in non-iframe mode for
backward compatibility. However, the use of the callback
function is recommended for both iframe and non-iframe

TIBCO® BPM Enterprise Developer's Guide

38 | Working With Forms

Properties Return
Value

Description

modes. Example:

form.locale(function(locale) {
alert("Form Locale is: " + locale);

});

com.tibco.forms.client.LoadStat
The com.tibco.forms.client.LoadStat class helps you to measure the load-time
performance of the form. Each statistic has three fields: a description, a start time, and an
end time. The times are measured in milliseconds from when the form load began.

To use com.tibco.forms.client.LoadStat, the form loading has to be complete, including
data loading and invocation of form open rules. The TIBCO PageBus event
'com.tibco.forms.form.loaded' is published when the form loading is complete. The
client application needs to subscribe to this event in order to be notified that the form
loading is complete and then use the getLoadStats() method.

Example:

var callback = function(subject, form) {
 var stat = form.getLoadStats();
 for (var i=0; i<stat.length; i++) {
 alert(stat[i].label+" | End Time : "
 + stat[i].endTime+" | Begin Time : "
 + stat[i].startTime);
 }
}
PageBus.subscribe('com.tibco.forms.form.loaded', null,callback);

The details of the fields are as follows:

TIBCO® BPM Enterprise Developer's Guide

39 | Working With Forms

Field Data
Type

Description

label
String Describes what is being measured by this particular

loadstat.

startTime
Number The time, in milliseconds, when this particular

measurement phase began. This time is relative to the
instant when the form load began.

endTime
Number The time, in milliseconds, when this particular

measurement phase ended. This time is relative to the
instant when the form load began.

com.tibco.forms.client.LoadStat Class - Field Details

TIBCO® BPM Enterprise Developer's Guide

40 | Working With Business Services

Working With Business Services
Starting a business service involves listing all the available business services and then
selecting a business service to start.

The following sub-topic describes the web service operation that allows you to work with
business services.

Starting a Business Service
This topic provides an example that shows how calls to the Work Manager Services API can
be used to start and update a business service.

TIBCO® BPM Enterprise Developer's Guide

41 | Working With Business Services

Note: The following step-by-step description corresponds to the process shown
in the diagram. The descriptions are from the perspective of the REST API. The
process of performing operations using the REST API is explained with the help
of an example.

Procedure
1. When you login to the client application and click Business Services, GET business

services rest API is called passing in the following filter string. For more details, refer
to API Explorer.

2. When you click Start on Business Service, the POST call of call instance is called.
POST call of call instance passes the following parameters:
l module name

TIBCO® BPM Enterprise Developer's Guide

42 | Working With Business Services

l process name

l version number

l /Instances is the moduleName name of module/package to query on.

l moduleVersion version of module/package to query on

{
"moduleName": "string",
"processName": "string",
"moduleVersion": "string",
"data": "string"

}

l The response returns the execution state, instance ID, activity information, and
the payload.

{
"instanceId": "123",
"moduleName": "/SampleProcesses/Sample

Tests/SampleTests.xpdl",
"moduleVersion": "1.0.0.20201106103914259",
"processName": "SampleBusinessService",
"state": {

"state": "ACTIVE",
"failedMessage": null

},
"activityInfo": {

"activityId": "abc",
"activityName": "UserTask",
"activityPageflowName": "StartEvent",
"activityData": "{\"body\":{}}",
"activityProcessModuleName": "/SampleProcesses/Sample

Tests/SampleTests.xpdl",
"activityProcessModuleVersion": "1.0.0.20201106103914259"

}
}

3. If Business Service has a form associated with it, Work presentation
WorkitemPageFlow GET rest API is called by passing the module name, version, and
process name that is returned in the earlier call.

l /WorkItemPageFlow is the Pageflow associated with the work item.

TIBCO® BPM Enterprise Developer's Guide

43 | Working With Business Services

l processName: the name of the Process Template to query on.

l moduleVersion: the version of the Package to query on.

l The response returns form details for the activities of the process associated
with the process name that is passed as part of the request. Form identifier
points to the form that represents the user task activity in the business service.
The form is rendered by the client for the user to enter the following details:

[
{

"moduleName": "/SampleProcesses/Sample
Tests/SampleTests.xpdl",

"processName": "SampleBusinessService",
"moduleVersion": "1.0.0.20201106103914259",
"pageflowActivities": [

{
"activityName": "UserTask",
"activityId": "_r_2wp49sEeq3q_CEUhibZA",
"formIdentifier": "com.example.sampleprocesses_

1.0.0.20201106103914259/wp/openspaceGWTPull_
DefaultChannel/.default/SanityTests/GetandViewDataStartEvent/Us
erTask/UserTask.gwt.json"

}
]

}
]

4. After you enter the details and click the submit button of the form, PUT call of
instance is called. The data received from the Form is updated and the data is
submitted back to the server.

l /Instances Updates a specified Process Instance.

{
"instanceId": "123",
"moduleName": "/SampleProcesses/Sample

Tests/SampleTests.xpdl",
"moduleVersion": "1.0.0.20201106103914259",
"processName": "SampleBusinessService",
"state": {

"state": "ACTIVE",
"failedMessage": null

},

TIBCO® BPM Enterprise Developer's Guide

44 | Working With Business Services

"activityInfo": {
"activityId": "abc",
"activityName": "UserTask",
"activityPageflowName": "StartEvent",
"activityData": "{\"body\":{}}",
"activityProcessModuleName": "/SampleProcesses/Sample

Tests/SampleTests.xpdl",
"activityProcessModuleVersion": "1.0.0.20201106103914259"

}

List Business Services
Lists all available business services.

Endpoint
http://<hostname>/bpm/pageflow/v1/businessServices?$filter=targ
etDevice eq 'Desktop'
Request Method:
GET

Request
Payload

N/A

Response
[

{
"processId": "131",
"processName": "Make_Loan_Application",
"processLabel": "Make_Loan_Application",
"processExtName":

"processOut/pageflow/myDemo.xpdl/Make_Loan_Application.bpel",
"processType": "BUSINESSSERVICE",
"channelIds": [

"openspaceGWTPull_DefaultChannel"
],
"category": "myDemo/myDemo",
"privileges": [],
"moduleId": "84",
"moduleName": "/myDemo/Process Packages/myDemo.xpdl",
"moduleInternalName": "/myDemo/Process

Packages/myDemo.xpdl",

TIBCO® BPM Enterprise Developer's Guide

45 | Working With Business Services

"moduleVersion": "1.0.0.20240212174759102",
"hasInputParameters": false,
"targetDevice": "Desktop"

}
]

Start Business Service
Creates an instance of a business service.

Endpoint
http://<hostname>/bpm/pageflow/v1/instances
Request Method:
POST

Request Payload
{
"moduleName": "/myDemo/Process

Packages/myDemo.xpdl",
"processName": "Make_Loan_Application",
"moduleVersion": "1.0.0.20240212174759102"

}

Response
{

"instanceId": "p:0a20co",
"moduleName": "/myDemo/Process

Packages/myDemo.xpdl",
"moduleVersion":

"1.0.0.20240212174759102",
"processName": "Make_Loan_Application",
"state": {

"state": "ACTIVE",
"failedMessage": null

},
"activityInfo": {

"activityId": "t:002gco.3",
"activityName": "UserTask",
"activityProcessPackageId": null,

TIBCO® BPM Enterprise Developer's Guide

46 | Working With Business Services

"activityPageflowName": "Make_Loan_
Application",

"activityData": "{\"body\":{}}",
"activityProcessModuleName":

"/myDemo/Process Packages/myDemo.xpdl",
"activityProcessModuleVersion":

"1.0.0.20240212174759102"
}

}

Update Business Service
Updates a specified business service instance.

Endpoint
http://<hostname>/bpm/pageflow/v1/instances
Request Method:
PUT

Request
Payload

{
"instanceId": "p:0a20cp",
"moduleName": "/myDemo/Process Packages/myDemo.xpdl",
"moduleVersion": "1.0.0.20240212174759102",
"processName": "Make_Loan_Application",
"state": {
"state": "ACTIVE",
"failedMessage": null

},
"activityInfo": {
"activityId": "t:002gcp.3",
"activityName": "UserTask",
"activityProcessPackageId": null,
"activityPageflowName": "Make_Loan_Application",
"activityData": "{\"body\":{\"inouts\":

[{\"name\":\"ApplicantDetails\", \"structured\":
[{\"name\":\"Fred\", \"income\":123,
\"emailAddress\":\"fred@fred.com\", \"address\":
{\"line1\":\"green street\", \"town\":\"blue town\"}}]},
{\"name\":\"LoanAmount\", \"simple\":[333]}], \"outputs\":

TIBCO® BPM Enterprise Developer's Guide

47 | Working With Business Services

[]}}",
"activityProcessModuleName": "/myDemo/Process

Packages/myDemo.xpdl",
"activityProcessModuleVersion": "1.0.0.20240212174759102"

}
}

Response
{

"instanceId": "p:0a20cp",
"moduleName": "/myDemo/Process Packages/myDemo.xpdl",
"moduleVersion": "1.0.0.20240212174759102",
"processName": "Make_Loan_Application",
"state": {

"state": "COMPLETED",
"failedMessage": null

},
"activityInfo": {

"activityId": "t:002gcp.3",
"activityName": "UserTask",
"activityProcessPackageId": null,
"activityPageflowName": "Make_Loan_Application",
"activityData": "{\"body\":{\"inouts\":

[{\"name\":\"LoanAmount\",\"simple\":[\"333\"]},
{\"name\":\"ApplicantDetails\",\"structured\":
[{\"income\":123,\"emailAddress\":\"fred@fred.com\",\"addres
s\":{\"town\":\"blue town\",\"line1\":\"green
street\"},\"name\":\"Fred\"}]},
{\"name\":\"LoggedInUser\",\"simple\":[\"tibco-admin\"]}]}}",

"activityProcessModuleName": "/myDemo/Process
Packages/myDemo.xpdl",

"activityProcessModuleVersion":
"1.0.0.20240212174759102"

},
"data": "{\"body\":{\"inouts\":

[{\"name\":\"LoanAmount\",\"simple\":[\"333\"]},
{\"name\":\"ApplicantDetails\",\"structured\":
[{\"income\":123,\"emailAddress\":\"fred@fred.com\",\"addres
s\":{\"town\":\"blue town\",\"line1\":\"green
street\"},\"name\":\"Fred\"}]},
{\"name\":\"LoggedInUser\",\"simple\":[\"tibco-admin\"]}]}}"
}

TIBCO® BPM Enterprise Developer's Guide

48 | Working With Business Services

Cancel Business Service
Deletes a specified business service instance.

Endpoint
http://<hostname>/bpm/pageflow/v1/instances/p:0a20ct
Request Method:
DELETE

Request Payload N/A

Response
{

"instanceId": "p:0a20ct",
"moduleName": "/myDemo/Process

Packages/myDemo.xpdl",
"moduleVersion": "1.0.0.20240212174759102",
"processName": "Make_Loan_Application",
"state": {

"state": "CANCELLED",
"failedMessage": null

}
}

TIBCO® BPM Enterprise Developer's Guide

49 | Working With Case Data

Working With Case Data
The following sub-topics describe additional details regarding case data.

Query and Fetch Case Data Types
TIBCO BPM Enterprise allows you to determine the JSON schema of a case type in the
following ways:

l For more details, go to API Explorer > Case Data Management Service, and GET
operations for the case types.

API Explorer - http://<host:port>/apps/api-explorer/index.html#!/home

l Alternatively, you can use the following GET query.

Get Case Types -
http://<host:port>/bpm/case/v1/types?$top=100&$filter=isCase%20eq%20TRUE

This returns a list of all the case data types present in the system.

Each data type lists the following details:

l ApplicationMajorVersion, applicationId, name, namespace, label

l Data attributes with metadata like identifier, mandatory, searchable, summary,
length constraints, default values

l Summary attributes

l Case states with label, value and isTerminal (only for terminal states)

Sample Response:

[
{
"name": "AdditionalOrder",
"label": "AdditionalOrder",
"isCase": true,
"namespace": "com.example.samplebdsproject1",
"applicationId": "com.example.samplebdsproject1",

TIBCO® BPM Enterprise Developer's Guide

50 | Working With Case Data

"applicationMajorVersion": 1,
"attributes": [

{
"name": "additionalOrderID",
"label": "AdditionalOrderID",
"type": "Text",
"isIdentifier": true,
"isAutoIdentifier": true,
"isMandatory": true,
"isSearchable": true,
"isSummary": true

},
{

"name": "caseState1",
"label": "caseState1",
"type": "Text",
"isState": true,
"isMandatory": true,
"isSearchable": true,
"isSummary": true

}
],
"summaryAttributes": [

{
"name": "additionalOrderID",
"label": "AdditionalOrderID",
"type": "Text",
"isIdentifier": true,
"isAutoIdentifier": true,
"isMandatory": true,
"isSearchable": true,
"isSummary": true

},
{

"name": "caseState1",
"label": "caseState1",
"type": "Text",
"isState": true,
"isMandatory": true,
"isSearchable": true,
"isSummary": true

}
],
"states": [

{
"label": "Picked",
"value": "PICKED"

TIBCO® BPM Enterprise Developer's Guide

51 | Working With Case Data

},
{

"label": "Packed",
"value": "PACKED"

},
{

"label": "Delivered",
"value": "DELIVERED",
"isTerminal": true

}
],
"links": [

{
"name": "order",
"label": "Order",
"type": "Order"

}
]

},
{
"name": "Order",
"label": "Order",
"isCase": true,
"namespace": "com.example.samplebdsproject1",
"applicationId": "com.example.samplebdsproject1",
"applicationMajorVersion": 1,
"attributes": [

{
"name": "orderID",
"label": "OrderID",
"type": "Text",
"isIdentifier": true,
"isMandatory": true,
"isSearchable": true,
"isSummary": true,
"constraints": {
"length": 50

}
},
{

"name": "orderState",
"label": "OrderState",
"type": "Text",
"isState": true,
"isMandatory": true,
"isSearchable": true,
"isSummary": true

TIBCO® BPM Enterprise Developer's Guide

52 | Working With Case Data

},
{

"name": "name",
"label": "Name",
"type": "Text",
"isSearchable": true,
"constraints": {
"length": 50

}
},
{

"name": "quantity",
"label": "Quantity",
"type": "Number"

},
{

"name": "product",
"label": "Product",
"type": "Text",
"isSearchable": true,
"constraints": {
"length": 50

}
}

],
"summaryAttributes": [

{
"name": "orderID",
"label": "OrderID",
"type": "Text",
"isIdentifier": true,
"isMandatory": true,
"isSearchable": true,
"isSummary": true,
"constraints": {
"length": 50

}
},
{

"name": "orderState",
"label": "OrderState",
"type": "Text",
"isState": true,
"isMandatory": true,
"isSearchable": true,
"isSummary": true

}

TIBCO® BPM Enterprise Developer's Guide

53 | Working With Case Data

],
"states": [

{
"label": "Picked",
"value": "PICKED"

},
{

"label": "Packed",
"value": "PACKED"

},
{

"label": "Delivered",
"value": "DELIVERED",
"isTerminal": true

}
],
"links": [

{
"name": "additionalOrder",
"label": "AdditionalOrder",
"type": "AdditionalOrder"

}
]

}
]

List Case types
Lists all the case data types that match the specified query parameters.

Endpoint
http://<hostname>/bpm/case/v1/types?$top=100&$filter=isCase%20e
q%20TRUE
Request Method:
GET

Request
Payload

N/A

TIBCO® BPM Enterprise Developer's Guide

54 | Working With Case Data

Response
[

{
"name": "LoanApplication",
"label": "Loan Application",
"isCase": true,
"namespace": "com.example.p2p",
"applicationId": "com.example.p2p",
"applicationMajorVersion": 1,
"attributes": [

{
"name": "loanapplicationId",
"label": "Loan application Id",
"type": "Text",
"isIdentifier": true,
"isAutoIdentifier": true,
"isMandatory": true,
"isSearchable": true,
"isSummary": true

},
{

"name": "applicantdetails",
"label": "Applicant details",
"type": "Applicantdetails",
"isStructuredType": true,
"isMandatory": true

},
{

"name": "loanAmount",
"label": "Loan Amount",
"type": "FixedPointNumber",
"constraints": {

"length": 10,
"decimalPlaces": 0

}
},
{

"name": "creditScore",
"label": "Credit Score",
"type": "FixedPointNumber",

TIBCO® BPM Enterprise Developer's Guide

55 | Working With Case Data

"constraints": {
"length": 10,
"decimalPlaces": 0

}
},
{

"name": "loanoffers",
"label": "Loan Offers",
"type": "LoanOffer",
"isStructuredType": true,
"isArray": true

},
{

"name": "acceptedoffer",
"label": "Accepted Offer",
"type": "LoanOffer",
"isStructuredType": true

},
{

"name": "applicationDate",
"label": "Application Date",
"type": "Date"

},
{

"name": "applicationAccepted",
"label": "Application Accepted",
"type": "Boolean"

},
{

"name": "rejectedReason",
"label": "Rejected Reason",
"type": "Text",
"constraints": {

"length": 50
}

},
{

"name": "applicationState",
"label": "Application State",
"type": "Text",
"isState": true,

TIBCO® BPM Enterprise Developer's Guide

56 | Working With Case Data

el": "Offers Available",
"value": "OFFERSAVAILABLE"

},
{

"label": "Loan Accepted",
"value": "LOANACCEPTED",
"isTerminal": true

},
{

"label": "Loan Rejected",
"value": "LOANREJECTED",
"isTerminal": true

}
]

}
]

List Cases for Case Type
Returns all the Types that match the specified query parameters.

Endpoint
http://<hostname>/bpm/case/v1/cases?$top=100&$filter=caseType eq
'com.example.p2p.LoanApplication' and applicationMajorVersion eq
1 and isInTerminalState eq FALSE Request Method:
GET

Request
Payload

N/A

Response
[

{
"caseReference": "27-com.example.p2p.LoanApplication-1-

6",
"casedata": "{\"loanAmount\": 444, \"loanoffers\": [{},

{}, {}, {\"amount\": 444}, {\"amount\": 11, \"lender\": \"sdf\",
\"duration\": 1, \"interestRate\": 123}], \"creditScore\": 450,
\"applicationDate\": \"2024-02-12\", \"applicantdetails\":

TIBCO® BPM Enterprise Developer's Guide

57 | Working With Case Data

{\"name\": \"Jack\", \"income\": 111, \"address\": {\"line1\":
\"marg\"}}, \"applicationState\": \"OFFERSAVAILABLE\",
\"loanapplicationId\": \"2\", \"applicationAccepted\": true}",

"summary": "
{\"loanapplicationId\":\"2\",\"applicationState\":\"OFFERSAVAIL
ABLE\"}",

"metadata": {
"createdBy": "tibco-admin",
"creationTimestamp": "2024-02-12T18:34:56.063Z",
"modifiedBy": "tibco-admin",
"modificationTimestamp": "2024-02-12T18:39:16.746Z"

}
}

]

List Case Actions
Lists all available Case Actions.

Endpoint
http://<hostname>/bpm/pageflow/v1/caseActions?$filter=caseRef
eq '27-com.example.p2p.LoanApplication-1-6' and caseState eq
'OFFERSAVAILABLE'
Request Method:
GET

Request
Payload

N/A

Response
[

{
"processId": "133",
"processName": "AcceptOffer",
"processLabel": "Accept Offer",
"processExtName":

"processOut/pageflow/myDemo.xpdl/AcceptOffer.bpel",

TIBCO® BPM Enterprise Developer's Guide

58 | Working With Case Data

"processType": "CASEACTION",
"channelIds": [

"openspaceGWTPull_DefaultChannel"
],
"privileges": [],
"caseStates": [

"OFFERSAVAILABLE"
],
"caseInfo": {

"caseClassName":
"com.example.p2p.LoanApplication",

"caseVersion": "1",
"caseRefParamName": "LoanApplicationRef",
"caseStatePropertymName": "applicationState"

},
"moduleId": "84",
"moduleName": "/myDemo/Process Packages/myDemo.xpdl",
"moduleInternalName": "/myDemo/Process

Packages/myDemo.xpdl",
"moduleVersion": "1.0.0.20240212174759102"

},
{

"processId": "132",
"processName": "RejectOffer",
"processLabel": "Reject Offer",
"processExtName":

"processOut/pageflow/myDemo.xpdl/RejectOffer.bpel",
"processType": "CASEACTION",
"channelIds": [

"openspaceGWTPull_DefaultChannel"
],
"privileges": [],
"caseStates": [

"OFFERSAVAILABLE"
],
"caseInfo": {

"caseClassName":
"com.example.p2p.LoanApplication",

"caseVersion": "1",
"caseRefParamName": "LoanApplicationRef",
"caseStatePropertymName": "applicationState"

},
"moduleId": "84",
"moduleName": "/myDemo/Process Packages/myDemo.xpdl",

TIBCO® BPM Enterprise Developer's Guide

59 | Working With Case Data

Read Cases
Returns all Cases that match the specified query parameters.

Endpoint
http://<hostname>/bpm/case/v1/cases/27-
com.example.p2p.LoanApplication-1-
6?$select=cr,c
Request Method:
GET

Request Payload N/A

Response
{

"caseReference": "27-
com.example.p2p.LoanApplication-1-6",

"casedata": "{\"loanAmount\": 444,
\"loanoffers\": [{}, {}, {}, {\"amount\":
444}, {\"amount\": 11, \"lender\":
\"sdf\", \"duration\": 1,
\"interestRate\": 123}], \"creditScore\":
450, \"applicationDate\": \"2024-02-12\",
\"applicantdetails\": {\"name\":
\"Jack\", \"income\": 111, \"address\":
{\"line1\": \"marg\"}},
\"applicationState\":
\"OFFERSAVAILABLE\",
\"loanapplicationId\": \"2\",
\"applicationAccepted\": true}"
}

Conventional Database View of a Case Type
In TIBCO BPM Enterprise, it is not always necessary to create a database view of a case
type. A database view named "cdm_cases" already exists for the case manager. This lists

TIBCO® BPM Enterprise Developer's Guide

60 | Working With Case Data

the cases for different case types created in the TIBCO BPM Enterprise.

The cdm_cases view has the following columns:

Columns Description

case_identifier an identifier for a given case

casereference reference for the case with version

unversioned_casereference reference for the case without version

type case type for a given case

version version for a given case

state current state for a given case

casedata data associated with the case

is_active whether the case type is active

creation_timestamp time of creation of the case

modification_timestamp time of modification of the case

completed_case_duration total time elapsed from the start of the case to its completion

application_name name or label for the deployed application

application_id unique id for the deployed application

application_version the version of the deployed application

TIBCO® BPM Enterprise Developer's Guide

61 | Working with Process Manager

Working with Process Manager
The TIBCO® BPM Enterprise Process Management Service is used to manage process
templates and process instances.

Creating an Instance from a Specified Process
Template
When you deploy a project and you start a process for it, you can start it from the Process
Manager > Process Templates tab by clicking the Start button. However, if the project
has some parameters to be passed, you can only start it directly from the API or else it
must be started through a business service.

Let us consider an example of a BPM project which needs some parameters to be passed
for the process instance to be created.

The sample for data parameter is as follows:

"data": "{ \"BOMParam\":
{ \"datetimezType\":\"2020-05-31T07:59:38.000Z\",\"dateType\":\"2020-05-
30\",\"enumType\":\"ENUMLIT1\",\"booleanType\":true,\"textType\"
:\"TestsimpletextinBOM\",\"numberType\":35.0}

Procedure
1. Import the BPM project which needs some parameters to be passed for the process

instance to be created.

2. In the Process Management Service, enter sample API where the sample REST call
URL is: http://<hostname>/bpm/processes/v1/instances

TIBCO® BPM Enterprise Developer's Guide

62 | Working with Process Manager

The sample data parameter is as follows:

"data": "{ \"BOMParam\":
{ \"datetimezType\":\"2020-05-
31T07:59:38.000Z\",\"dateType\":\"2020-05-
30\",\"enumType\":\"ENUMLIT1\",\"booleanType\":true,\"textType\"
:\"TestsimpletextinBOM\",\"numberType\":35.0}

The sample for how to pass a simple type of parameter is as follows:

,\"numberparam\":14782.0,\"textparam\":\"Testsimpletext\"}"

The structure of BOMParam is as follows:

TIBCO® BPM Enterprise Developer's Guide

63 | Working with Process Manager

3. Click Execute.

Result
The Process Instance starts.

Example:

Endpoint
http://ace-nightly-
test/bpm/process/v1/instancesRequest

TIBCO® BPM Enterprise Developer's Guide

64 | Working with Process Manager

Method:
POST

Request Payload
{

"packageId": "1",
"processId": "1"

}

Response
p:0a203n

Sending an Event to a Process
The /SendEvent API from the API explorer is used to send an event to either a specific
process instance, which must exist at the time when the API is called by using the
instanceId attribute, or through correlation data, using the correlationData attribute.
You should supply either one of these attributes, not both.

A data payload can be sent to the process to update its data fields using the data attribute,
for which the format is similar to creating any instance.

If you are using correlation data, the instance you are targeting does not need to exist at
the time you call the API, but if multiple correlation data fields are used, the order in which
they are specified in the API must match the order in which they are specified on the task
in TIBCO Business Studio - BPM Edition.

Example:

End
poi
nt

http://ace-nightly-test.emea.tibco.com/bpm/process/v1/sendEvent
Request Method:
Post

TIBCO® BPM Enterprise Developer's Guide

65 | Working with Process Manager

Req
uest
Payl
oad

{
"instanceId": "p:0a205n",
"taskName": "ReceiveTask2",
"data": "

{\"BooleanCorrelationField\":\"true\",\"TextCorrelationField\":\"abc\
",\"DateCorrelationField\":\"2022-12-
15\",\"DecimalCorrelationField\":\"11.5\",\"IntegerCorrelationField\"
:\"16783\",\"TimeCorrelationField\":\"13:30:00\",\"TimeoneCorrelation
Field\":\"2022-12-
18T05:20:00.000Z\",\"URICorrelationField\":\"http://ace=nightly-
test\"}"
}
or
{
"correlationData": {

"BooleanCorrelationField": true,
"TextCorrelationField": "abc" },

"taskName": "ReceiveTask2",
"data": "
{\"BooleanCorrelationField\":\"true\",\"TextCorrelationField\":\"abc\
",\"DateCorrelationField\":\"2022-12-
15\",\"DecimalCorrelationField\":\"11.5\",\"IntegerCorrelationField\"
:\"16783\",\"TimeCorrelationField\":\"13:30:00\",\"TimeoneCorrelation
Field\":\"2022-12-
18T05:20:00.000Z\",\"URICorrelationField\":\"http://ace=nightly-
test\"}"
}

Res
pon
se

Not applicable

TIBCO® BPM Enterprise Developer's Guide

66 | Working with Work Item

Working with Work Item
Work items are the individual pieces of work within the system. A work item results from
the process flow reaching a user task in the process; a work item is created (by private API
calls that are restricted for internal use) and is sent to the resources specified as the
participants of the user task.

Work Item States
A BPM work item is always in one of a small number of defined states.

Some of the operations used to manipulate work items cause an item to change its state,
as defined in Work Item State Transitions. The following table shows the states that exist in
the BPM runtime.

Work Item State Meaning

(WMstateCreated) This is a private state, accessed only by services that are restricted
for internal use.

WMstateOffered This is the initial state of every work item that is made available on
the BPM runtime. The work item is offered to those resources who
correspond to the organizational entities specified at design time,
and is placed in their work list.

WMstateAllocated The work item is assigned to a particular resource to be worked on.
A work item may be in the Allocated state more than once in its life
cycle, since it can be reallocated to different resources.

WMstateOpened A work item is Opened when a resource (a user) begins work on it,
either by selecting it from a work list or by having it automatically
allocated and opened.

WMstateSuspended A work item is suspended if its parent process instance is

TIBCO® BPM Enterprise Developer's Guide

67 | Working with Work Item

Work Item State Meaning

suspended.

WMstateCancelled An open work item is cancelled when its parent process instance is
cancelled. Work items that are not open are deleted when their
parent process instance is cancelled.

A cancelled work item can be closed by calling with no associated
data. No other operations may affect it.

WMstatePended The work item is assigned to a particular resource, who has done
some work on it, but not yet completed that work.

The work item’s form has been opened and closed (not cancelled),
and data fields may have been modified and saved.)

Note: Pended and Allocated are similar states. The difference is that
Pended means the work item has already been worked on.
Allocated means that it has not already been worked on. You cannot
skip a Pended work item.

WMstatePendHidden If a work item is Pended with a hiddenPeriod specified, it cannot be
accessed for the time defined in that hiddenPeriod.

When the hiddenPeriod expires, the work item is returned to the
state it was in before it was hidden. (An Allocated work item that
was hidden returns to its Allocated state. A Pended work item that
was hidden returns to its Pended state.)

WMstateCompleted The final state of a work item in the BPM runtime, when work on an
Opened work item has been completed. It is no longer on the
system and cannot be affected by any API operations.

Work Item State Transitions
Work items go through transitions from state to state.

The following diagram and table show what transitions a work item goes through between
states for PUT operation that is used to bring about each of the possible changes.
State Transitions

TIBCO® BPM Enterprise Developer's Guide

68 | Working with Work Item

Start State End State Transition State Description

WMstateOffered WMstateAllocated WMstateAllocate The offered work
item is allocated
to the specified
organization
model entity.

TIBCO® BPM Enterprise Developer's Guide

69 | Working with Work Item

Start State End State Transition State Description

WMstateOpened WMstateAllocate and
WMstateOpen

The offered work
item is allocated
to the specified
organization
model entity and
immediately
opened.

WMstateAllocated WMstateOffered WMstateUnallocate The allocated
object is
returned to its
original offered
state.

WMstateOpened WMstateOpen The allocated
work item is
opened.

WMstatePendHidden WMstatePend The allocated
work item is put
into the
pendHidden
state for the
duration of the
specified
hiddenPeriod.

When the
hiddenPeriod
timer expires, the
work item is
returned to its
original
allocated state.

WMstateOpened WMstateOffered WMstateClose The open work
item (which must

TIBCO® BPM Enterprise Developer's Guide

70 | Working with Work Item

Start State End State Transition State Description

contain no data
changes) is
closed and
returned to its
offered state.

WMstateAllocated WMstateReallocate The open work
item is
reallocated to
the specified
organization
model entity. It
will be in the
allocated state.

WMstateCompleted WMstateComplete The opened work
item is
complete.

WMstatePended WMstateClose The open work
item is closed
and any new
data copied. It is
then put into the
pended state.

WMstatePendHidden WMstatePend The open work
item is closed
and any new
data copied. It is
then put into the
pendHidden
state.

When the
hiddenPeriod
timer expires, the
work item is

TIBCO® BPM Enterprise Developer's Guide

71 | Working with Work Item

Start State End State Transition State Description

transitioned to
the pended
state.

WMstatePended WMstateAllocated WMstateReallocate The pended work
item is
reallocated to
another
organization
model entity and
put into the
allocated state.

WMstateOpened WMstateOpen The pended work
item is opened.

WMstatePendHidden WMstatePend The pended work
item is put into
the pendHidden
state for the
duration of the
specified
hiddenPeriod.

When the
hiddenPeriod
timer expires, the
work item is
returned to its
original pended
state.

WMstatePendHidden WMstatePended or
WMstateAllocated

WMstatePend A work item that
was hidden using
pendWorkItem is
returned to the
state it was in
before it was

TIBCO® BPM Enterprise Developer's Guide

72 | Working with Work Item

Start State End State Transition State Description

hidden - pended
or allocated.

A work item that
was hidden is
transitioned to
the pended
state.

WMstatePendHidden WMstatePend The duration for
which the work
item will remain
in the
pendHidden
state is reset to
the specified
hiddenPeriod.

Note: A work item cannot be accessed while it is in the PendHidden state.

TIBCO® BPM Enterprise Developer's Guide

73 | Applications

Applications
Custom user interface applications are browser-based applications that consist entirely of
static resources (such as HTML, CSS, JavaScript, XML, and JSON), which are served to the
browser that hosts the application. Applications do not include servlets or client-side
executables, such as applets or .NET libraries.

How to Access Application Development
You can access Application Development in a couple of different ways.

You can use the following URL:

protocol://host:port/apps/appdev/index.html

where:

l protocol is the communications protocol being used by Application Development,
which is either http or https. This was determined at installation.

l host is the DNS name or IP address of the server hosting the BPM runtime.

l port is the port being used by the TIBCO BPM Enterprise server. The default value is
80.

Or you can use the steps below:

Procedure
1. Enter the following URL in your browser:

protocol://host:port/apps/login

where:

l protocol is the communications protocol being used, either http or https. This

TIBCO® BPM Enterprise Developer's Guide

74 | Applications

was specified at installation.

l host is the DNS name or IP address of the server hosting the TIBCO BPM
Enterprise runtime.

l port is the port being used. The default value is 80.

2. Log in with a valid TIBCO BPM Enterprise username and password.

3. Click .

4. Click App Dev.

Application Lifecycle
An application can be created, edited, tested, and published. It can be re-edited and
published again. Different users can do this, so you can have multiple versions of an
application tailored to different users' requirements. The latest published application
version is provided to the user.

You can do the following as part of the lifecycle of an application:

l Upload an application into Application Development (New Upload).

Note: The application to be uploaded must have a .zip extension only.

l Create a blank application using Create blank app.

l Launch applications either before or after publishing them. This allows you to test
your application. If you still need to make changes after testing, edit the application
again, re-launch, and then publish (Launch either Published or Latest).

l Publish the application (so your changes can be seen by others) (Publish). Typically,
you only do this once you are satisfied with the changes you have made and have
tested them. Any user can now use the published application - or edit the published
application and use their version locally.

l Show Details of your application. You can also see the version of the application you
are using, view other versions available, revert to a version, or delete a version.

l Download an application. When you have downloaded the application, it will have
the suffix .zip. You can extract the contents of the zip file and edit it locally.

TIBCO® BPM Enterprise Developer's Guide

75 | Applications

l Delete the application you no longer require with the Delete button.

l Browse an application. You can manage it here, add and delete folders and files, and
upload new files. You can also edit files here.

l Clone an application. You can clone all data from an application.

TIBCO® BPM Enterprise Developer's Guide

76 | REST API

REST API
The TIBCO BPM Enterprise REST API provides RESTful interfaces.

Using the REST API, a client application can invoke BPM services using simple HTTP
methods and intuitive URIs that identify BPM resources and the operations to be
performed on them. Documentation for the REST API is provided in the API Explorer. Access
the API Explorer as follows:

Procedure
1. Enter the following URL in your browser:

protocol://host:port/apps/login

where:

l protocol is the communications protocol being used, either http or https. This
was specified at installation.

l host is the DNS name or IP address of the server hosting the TIBCO BPM
Enterprise runtime.

l port is the port being used. The default value is 80.

2. Log in with a valid TIBCO BPM Enterprise username and password.

3. Click .

4. Click API Explorer.

Note: To access the REST API, you need to be logged in.

Note: For additional details of each API, refer to the specifications of that
API.

For more details, refer to the authentication section below.

TIBCO® BPM Enterprise Developer's Guide

77 | REST API

Authentication
An authenticated user is required to access TIBCO BPM Enterprise. Users must be
registered with the TIBCO BPM Enterprise Directory Engine via the Organization Browser.

TIBCO BPM Enterprise supports the following types of authentication:

l Basic Authentication- The credentials used for authentication are obtained from the
HTTP request in the form of a user name and password. The user name and
password are authenticated against an LDAP.

l SAML Web Profile - If your TIBCO BPM Enterprise application is configured to use
SAML Web Profile for authentication, users of your application can log in using a user
name and password issued by an Identity Provider (IdP) that supports SAML Web
Profile.

l OpenID Connect - If your TIBCO BPM Enterprise application is configured to use
OpenID Connect, the users can log in with a user name and password issued by an
Identity Provider (IdP) that supports OpenID Connect.

Authentication Process

TIBCO BPM Enterprise contains a login module for each of the available types of
authentication; basic, SAML Web Profile, and OpenID Connect. When a TIBCO BPM
Enterprise HTTP endpoint is accessed, the appropriate login module handles the user
authentication by performing the following steps:

1. The system checks for a current user session, and whether or not it has expired. If a
current user is in session, the HTTP request is processed.

2. If there is no current user session, a check is made to determine if TIBCO BPM
Enterprise is configured for basic authentication. Basic authentication is HTTP basic
authentication. In HTTP basic authentication, the principal's credentials are passed in
the HTTP Authorization request header.

The basic authentication login module extracts the principal from the HTTP authorize
header (if it is available) and searches for the user in TIBCO BPM Enterprise system. If
the user exists in TIBCO BPM Enterprise, the system returns details of the user,
including the primary LDAP to be used for authentication purposes.

Basic authentication is configured using an HTTP Client Shared Resource defined in
TIBCO BPM Enterprise Administrator.

TIBCO® BPM Enterprise Developer's Guide

78 | REST API

3. If basic authentication is not used or fails, the system checks if TIBCO BPM Enterprise
is configured for Single Sign-On (SSO) authentication (SAML Web Profile or OpenID
Connect). SSO authentication must be configured if a basic authentication is not
configured. Also, only one of the SSO authentication type configurations is supported
across all in-bound TIBCO BPM Enterprise REST APIs at a given time (although, both
types can be configured, only one can be enabled at a time).

Depending on which SSO authentication type is configured, control is handed over to
the appropriate login module (SAML Web Profile or OpenID Connect), which uses the
appropriate shared resource configuration defined in TIBCO BPM Enterprise
Administrator.

After SSO authentication is completed, an authorization check is performed to ensure
that the user exists in TIBCO BPM Enterprise. This is done by looking up the user in
Directory Engine. If this is successful, the user is considered as authentic and an
HTTP session is created.

SAML Web Profile Authentication
If your TIBCO BPM Enterprise application is configured to use SAML Web Profile for
authentication, users can log in with a username and password issued by an IdP that
supports SAML Web Profile. TIBCO BPM Enterprise supports Google and simpleSAMLphp
SAML IdP.

Note: Ensure that the resource registered with your IdP is added to the LDAP.

Perform the following procedure to ensure that SAML authentication works with your
registered users:

1. Set up your preferred SAML Idp to download to your local machine. For more
information, visit the website of your IdP provider.

2. Configure your SAML Idp. For more information about configuring a SAML shared
resource, see SAML Authentication Shared Resources.

3. Ensure that the user whose login credentials are registered with the Idp is also added
to the LDAP Container. For more information, see the Configure the LDAP Directory
Server topic in the TIBCO BPM Enterprise Installation Guide.

saml-authentication-.htm

TIBCO® BPM Enterprise Developer's Guide

79 | REST API

The following steps describe the basic flow when a user attempts to log in to a TIBCO BPM
Enterprise application, which is configured to use SAML Web Profile, using their IdP
credentials. In this scenario, the user is not already logged in to TIBCO BPM Enterprise.

1. The user starts a TIBCO BPM Enterprise application that is using SAML Web Profile
authentication.

2. The application tries to access the TIBCO BPM Enterprise server, but the login
module determines that the user is not authenticated and that authentication is
provided by SAML Web Profile.

3. The application redirects the login request to the IdP.

4. The IdP displays a login screen (for example, Google's login screen), requesting the
user's IdP-issued credentials.

5. The user enters their IdP-issued credentials.

6. Upon receiving the user validation from the IdP, the application redirects the request
to the TIBCO BPM Enterprise server to authenticate the user before logging the user
in to the application.

A cookie is also created when the user is validated by the TIBCO BPM Enterprise server. The
cookie is used to establish the session that is used by all subsequent calls to the TIBCO
BPM Enterprise server.

The following steps describe the events that occur when an IdP-authenticated user logs out
of a TIBCO BPM Enterprise application:

l The user is redirected to the login page for the application. When the request is
redirected to <domain>/apps/login/index.html, the login page checks for an
existing authenticated session. If there is no authenticated session, it forwards the
request to the SAML IdP provider login page (if the user is not authenticated with the
IdP).

l The cookie that was created upon login is removed.

OpenID Connect Authentication
If your TIBCO BPM Enterprise application is configured to use OpenID Connect, users of
your application can log in using a username and password issued by an Identity Provider
(IdP) that supports OpenID Connect.

TIBCO® BPM Enterprise Developer's Guide

80 | REST API

The following describes the basic flow when someone attempts to log in to an TIBCO BPM
Enterprise application, which is configured to use OpenID Connect, using their IdP
credentials (this assumes the user is not already logged in to TIBCO BPM Enterprise):

1. A user starts a TIBCO BPM Enterprise application that is using OpenID Connect
authentication.

2. The application tries to access the TIBCO BPM Enterprise server, but the login
module determines that the user is not authenticated, and that authentication is
being provided by OpenID Connect.

3. The application redirects the login request to the IdP.

4. The IdP displays their login screen, requesting the user's IdP-issued credentials.

5. The user enters IdP-issued credentials.

6. After validating the user, the IdP returns an ID Token — in the form of a JSON Web
Token (JWT) — to indicate a successful authentication.

Note: Using the OpenID Access Token is not currently supported in but
the login module determines that the user is not authenticated and that
authentication is being provided. The OpenID ID Token is used to identify
the user.

The response from the IdP also includes the claims specified in the Auth Scope field
of the OpenID Authentication shared resource.

The IdP sends the ID Token and claims information to the "Redirect URI" that is
specified in the OpenID Connect shared resource.

7. Upon receiving the ID Token from the IdP, the application redirects the request back
to the TIBCO BPM Enterprise server to confirm that the user is a valid TIBCO BPM
Enterprise user before logging the user into the application.

A cookie is also created when the user is validated by the TIBCO BPM Enterprise server. The
cookie includes the ID Token, which is used to establish the session that is used by all
other subsequent calls to the TIBCO BPM Enterprise server.

When an IdP-authenticated user logs out of the TIBCO BPM Enterprise application:

l The browser sends the value in the Logout path property to the TIBCO BPM
Enterprise server. (When a user logs out, the user does not log out of the IDP but only
invalidates the client session.)

TIBCO® BPM Enterprise Developer's Guide

81 | REST API

l The cookie that was created upon login is removed.

Note: At any point, only a single SSO related shared resource can be enabled,
that is, either SAML or OpenID.

TIBCO® BPM Enterprise Developer's Guide

82 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO® BPM Enterprise Product
Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-bpm-enterprise
https://docs.tibco.com/products/tibco-bpm-enterprise
https://support.tibco.com/
https://support.tibco.com/

TIBCO® BPM Enterprise Developer's Guide

83 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/

TIBCO® BPM Enterprise Developer's Guide

84 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, Business Studio, TIBCO Business Studio, and Spotfire are
either registered trademarks or trademarks of Cloud Software Group, Inc. in the United States and/or
other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO® BPM Enterprise Developer's Guide

85 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2015-2024. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	Client Application Development
	Access API Explorer
	Working With Forms
	Overview
	Using TIBCO Forms
	Displaying a Work Item Form
	Open a Work Item Associated with a Pageflow
	Integrating TIBCO Forms with Custom Client Applications
	Injecting the Forms Runtime Adapter in the Browser
	Typical Flow of Events
	iFrame Capability
	iframe Integration
	Forms Runtime Adapter
	com.tibco.forms.client.FormRunner
	com.tibco.forms.client.Form
	com.tibco.forms.client.LoadStat

	Working With Business Services
	Starting a Business Service
	List Business Services
	Start Business Service
	Update Business Service
	Cancel Business Service

	Working With Case Data
	Query and Fetch Case Data Types
	List Case types
	List Cases for Case Type
	List Case Actions
	Read Cases

	Conventional Database View of a Case Type

	Working with Process Manager
	Creating an Instance from a Specified Process Template
	Sending an Event to a Process

	Working with Work Item
	Work Item States
	Work Item State Transitions

	Applications
	How to Access Application Development
	Application Lifecycle

	REST API
	Authentication
	SAML Web Profile Authentication
	OpenID Connect Authentication

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

