
Two-Second Adva
TIBCO Business Studio™

Forms User’s Guide
Software Release 2.5.0
September 2013
ntage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIBCO, Two-Second Advantage, TIBCO iProcess, TIBCO Business Studio, TIBCO General Interface, TIBCO
ActiveMatrix, and TIBCO Silver are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.
Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise Edition
(J2EE), and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle Corporation
in the U.S. and other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
Copyright © 1999-2013 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

List of Tables . xi

List of Figures .xv

Preface . xxi

Changes from the Previous Release of this Guide . xxii

Typographical Conventions . xxiii

Connecting with TIBCO Resources . xxv
How to Join TIBCOmmunity . xxv
How to Access TIBCO Documentation. xxv
How to Contact TIBCO Support . xxv

Chapter 1 Getting Started .1

Introduction . 2
Using TIBCO Business Studio . 2
Who Should Use TIBCO Business Studio Forms?. 2

Tutorials . 3

Installing the Forms Tutorial Solutions Project . 4

Tutorial 1: Forms, Panes, and Controls . 5
Task A: Import the Sample Project . 5
Task B: Examine the Claims Process Business Process . 5
Task C: Open the Forms. 7
Task D: View Forms . 12
Task E: Add New Panes to the Capture Claim Form . 17
Task F: Modify Names and Labels of Panes . 20
Task G: Drag Controls into Appropriate Panes. 21
Summary of Tutorial 1. 32

Tutorial 2: Customizing the Appearance of a Form . 33
Task A: Change the Background Colors of Panes . 33
Task B: Change the Label Width Property of the Panes. 36
Task C: Preview of Finished Forms . 38
Summary of Tutorial 2. 40

Tutorial 3: Validations . 41
Task A: Switch to Solution Design Mode . 41
Task B: Add Validation for Phone Field. 42
 TIBCO Business Studio Forms

iv | Contents
Task C: Add Syntax Validation for Email Field . 45
Task D: Add a Second Validation for Email Field . 46
Task E: Add Validation for Date of Birth Field . 46
Task F: Examine Auto-Generated Validation for Age Field . 47
Task G: Edit Validation for Claim Amount Field . 48
Task H: Add Validation for Time of Accident Field . 49
Task I: Add Validation for Phone Field . 49
Summary of Tutorial 3 . 50

Tutorial 4: Rules, Events, and Actions. 51
Task A: Create a Rule to Compute Age (Capture Claim Form) . 51
Task B: Create Rule to Update Required Option for Guardian When Age < 21 . 53
Task C: Create Rule to Round Amount to Nearest Dollar . 56
Task D: Create Rules that Display Hint on Specifying Claim Amount Controls . 58
Task E: Create Rules that Hide Hints on Exiting Amount Controls . 60
Task F: Create Rules to Display Context-Specific Hints on Specifying Customer Description Control 61
Task G: Create Rules to Hide Hints on Exiting Customer Description Control . 63
Task H: Defining Custom Actions for Buttons . 64
Summary of Tutorial 4 . 67

Chapter 2 Concepts . 69

The Modeling Environment for Forms. 70
Working with Forms . 70

The Form. 71
Basic Terms for Working with Forms . 71

Form Builder and Form Validation. 75

Bindings . 78
Setting Bindings. 78
Direction of Bindings . 79

Actions . 82
Actions Summary Table . 83

Rules. 84
Rules Summary Table . 85

The Design Tab and Preview Tabs . 86
Presentation Channel Settings . 86
Port Settings for Preview . 87
Copying the Form Preview URL. 88
Logging . 88
Locale . 88
Logging Level. 88
Reload . 89
Performance Metrics . 89
View Datastore Data . 91
TIBCO Business Studio Forms

Contents | v
Visibility in the Preview Tab. 91

Outline View. 94
Thumbnail Mode. 94
Tree Mode. 95
Using the Outline View with Forms. 95
Parameters . 97
Shared Actions . 98
Rules . 98
Managing Form Elements From the Outline View . 99
Use Business Labels in Outline View . 100

Using the Business Object Model . 101
The Objects in a Business Object Model . 101

Cross-Resource References . 107
Breakage Mechanisms . 107
Quick Fixes . 111

Mobile Forms . 114
Working with Mobile Forms . 115
Mobile Specific Configuration of Controls and Panes. 116
Rendering of Mobile Forms . 119

Problem Markers . 123
Quick Fixes . 123

Chapter 3 Tasks .125

Creating a New Form. 126

Using Drag and Drop Gesture to Customize a Form . 128

Edit or Remove the Validation Script . 132

Working with Bindings, Actions, and Rules . 133
Setting Bindings . 133
Setting Actions . 137
Setting Rules . 139

Styling Forms Using Cascading Style Sheets . 145
Setting CSS Classes . 145
Using an external CSS resource . 145
Best Practices. 145
Examples . 146

Validating Data in a Form. 147
Helping Users with Validation Messages . 148
Implementing Validations . 148
Enabling or Disabling a Validation . 160

Calling External JavaScript Functions . 161

Configuring Panes . 162
 TIBCO Business Studio Forms

vi | Contents
Nesting Panes . 162
Resequencing Tabbed Panes . 164
Resizing a Tabbed Pane . 164
Viewing Pane and Control Borders . 165

Using Embedded Forms . 166
Working with Embedded Forms. 167
Working with Embedded Form Parameters . 170
Rendering of Embedded Forms. 171
Editing Embedded Forms . 172

Working with the Mappings Tab . 174

Customizing Property Resource Bundles . 179
The Merging Process. 179
Customizing Property Resource Bundles . 180
Validations Related to Custom Common Resources . 186

Customizing the Form’s Preview Data . 188
Editing the File [form-name].data.json . 188
Configure the Setting in the Properties View . 189

Using Form Data Fields . 190
What Is a Form Data Field? . 190
Configuring a Form Data Field. 190

Using Numeric Controls . 192
What is a Numeric Control?. 192
Inserting a Numeric Control . 194
Editing a Numeric Control . 196

Localizing a Form . 197
Defining Localization Properties Outside the Form . 202

Toggling between Business Analysis and Solution Design Modes . 205

Migrating from Previous Versions of TIBCO Business Studio Forms . 206
Migrating from TIBCO Business Studio Version 2.2 and 3.0 to Version 3.1 . 206

Chapter 4 Advanced Tasks . 209

Import the Forms Advanced Samples. 210

Using CSS to Customize the Rendering of a Form Control . 211

Creating Custom Add and Delete Buttons for a Grid Pane. 214

Using Editable List Controls . 216

Changing a Control’s Background Color Based on its Value . 218

Controlling the Visibility of a Pane Based on the Value of a Control . 220

Using a Check Box to Set Properties for Another Control . 222

Using a Business Object Model with Multiple Sub-types . 224

Using Enumerations as Choices in an Optionlist or Radiogroup . 227
TIBCO Business Studio Forms

Contents | vii
Validating Commonly Used Primitive Types. 229

Chapter 5 Performance Improvements .231

Static Rendering . 232
How does Static Rendering Improve Performance?. 232
When to Use Static Rendering . 232
Configuration of Static Rendering. 232
Static Rendering Constraints . 233

Deferred Rendering and Deferred Initialization . 238
How do Deferred Rendering and Deferred Initialization Improve Performance? . 238
Configuration of Deferred Rendering and Deferred Initialization . 239
Deferred Rendering and Deferred Initialization Constraints . 239

Chapter 6 Custom Controls .241

Overview . 242

Defining Custom Controls . 243
Working with the Component Library File. 245
Working with the ControlWrapper. 251
Using the Custom Control. 253

Runtime Life Cycle of Custom Controls . 254
Runtime Life Cycle of Custom Control Used within Grid Pane. 255

Component Library Model . 257
Library. 257
Palette Drawer . 258
Event Type . 259
External Resource . 260
Control Type . 261

Control Wrapper Implementation . 281
initialize(). 281
refresh() . 282
destroy() . 282
getValue() . 282
getFormattedValue() . 283
isReady() . 283
setFocus(). 284
compare() . 284
renderStatic() . 284

Component Interface . 286
generateId() . 286
getControl(). 286
getFactory() . 287
getForm() . 287
 TIBCO Business Studio Forms

viii | Contents
getHintId() . 287
getLabelId() . 287
getLocale() . 287
getParentNode() . 288
getPresentationURL() . 288
getResources() . 288
getValidationMessageIds(). 289
raiseEvent() . 289

BOM JavaScript API for Custom Controls. 290
Factory Methods . 290
BOM Class Methods . 291
BOM Class Instance Methods . 293

Utility Methods. 295

Chapter 7 Reference. 297

The Workbench. 298

The Palette for the Form Designer . 300

Panes . 303
Types of Panes . 304
Setting Pane Properties with Bindings and Rules . 309

Controls. 310
Using "Edit as List" with a Control . 313
Using Control or Component Labels . 314

Properties View Tabs . 315
Properties View for Forms . 317
Properties View for Panes . 321
Properties View for Controls . 330

Configuring Parameters . 345

Context Menus . 346
Outline View Context Menu . 346
Form Designer Canvas Context Menu. 346

Keyboard Shortcuts. 347
Grid Panes . 347
List Controls . 351
Record Panes . 352
Tabbed Panes . 354

CSS Classes. 355
Built-in Static CSS Classes . 355
Built-in Dynamic CSS Classes. 358

Common Resource Keys . 359
Keys for Number Patterns . 359
TIBCO Business Studio Forms

Contents | ix
Keys for Basic Number and Currency Symbols . 360
Keys for Duration Control Labels . 361
Keys for Date-Time Patterns. 363
Keys for Optionlist Controls . 366
Keys for Built-in Buttons . 366
Keys for Grid and Record Panes . 367
Keys for Built-in Validation Messages. 369
Keys for List Controls . 370
Keys for Implicit Validation Messages. 371
Miscellaneous Keys . 373

Design-time Constraints. 374

Client-side Validations . 375

Scripting. 376
Forms Scripting: Scope of Variables. 376
Forms Scripting: Order of Script Execution . 379

API for Scripting . 381
Methods . 381
Complex Data . 398
Factories . 398
Packages . 399
DateTimeUtil Factory . 399
Duration Class . 400
Utility Methods . 402

Chapter 8 Tips and Tricks .407

Recommendations for Forms Modeling . 408

Tips for Using TIBCO Business Studio Forms. 412

Index .415
 TIBCO Business Studio Forms

x | Contents
TIBCO Business Studio Forms

List of Tables | xi
List of Tables

Table 1 General Typographical Conventions . xxiii

Table 2 Name Labels . 21

Table 3 Data Field Types . 24

Table 4 Custom Buttons . 64

Table 5 Manage Form Elements from the Outline View 99

Table 6 Validation Messages for BOM Level Multiplicity Constraints . . . 104

Table 7 Mobile Specific Configuration of Pane and Control Properties . 116

Table 8 Edit Binding from the General Properties Tab for a Control. . . . 134

Table 9 Specify Details to Define a New Script Action 137

Table 10 Specify Details to Define a New Computation Action 138

Table 11 Specify the Details for Rules . 139

Table 12 Specify the Action Details for the Script Action 143

Table 13 Specify the Action Details for the Computation Action. 143

Table 14 Toolbar Buttons for the Mappings Tab. 175

Table 15 Example Resource Keys with Overridden Values 183

Table 16 Numeric Control Formatting Characters 192

Table 17 Numeric Control Sample Formats . 193

Table 18 Renaming Locale-specific Properties Files 200

Table 19 Rendering of Specific Controls . 236

Table 20 Library Element Properties . 257

Table 21 Palette Drawer Properties . 259

Table 22 Event Type Properties . 260

Table 23 External Resource Properties . 261

Table 24 Control Type Properties . 262

Table 25 Factory Methods . 290

Table 26 BOM Class Methods . 291

Table 27 BOM Class Instance Methods . 293

Table 28 Form Designer Palette . 300
 TIBCO Business Studio Forms

xii | List of Tables
Table 29 Properties View Tabs . 315

Table 30 Fields on the Forms General Tab . 317

Table 31 Fields on the Forms Font Tab . 318

Table 32 Fields on the Forms Child Layout Tab . 318

Table 33 Fields in the Forms Child Labels Tab . 319

Table 34 Fields in the Forms Rules Tab . 320

Table 35 Fields on the Forms Resources Tab . 320

Table 36 Fields on the Preview Data Tab . 321

Table 37 General Tab for Panes . 321

Table 38 Properties for Horizontal Pane, Vertical Pane, and Tabbed Pane 323

Table 39 Properties for Message Pane . 323

Table 40 Record Pane Properties Tab. 323

Table 41 Grid Pane Properties Tab . 324

Table 42 Fields in the Child Layout Tab. 326

Table 43 Fields in the Child Labels Tab . 327

Table 44 Fields in the Validation Tab . 328

Table 45 Fields in the Rules Tab . 329

Table 46 Fields in the Mobile Tab . 330

Table 47 General Tab Fields . 330

Table 48 Property for Child Controls of Grid Pane. 333

Table 49 Button Properties Tab . 333

Table 50 Date Control Properties Tab . 334

Table 51 Time Control Properties Tab . 334

Table 52 Date Control Properties Tab . 335

Table 53 Hyperlink Properties Tab. 336

Table 54 Image Properties Tab . 336

Table 55 Optionlist Properties Tab. 336

Table 56 Pass-through Control Properties Tab . 338

Table 57 Radiogroup Control Properties Tab. 338

Table 58 Text Properties Tab. 339

Table 59 Text Area Properties Tab . 340

Table 60 Property for Child Controls of Grid Pane. 340
TIBCO Business Studio Forms

List of Tables | xiii
Table 61 Layout Tab . 341

Table 62 Font Tab for Controls . 342

Table 63 Validations Tab for Controls . 343

Table 64 Fields in the Controls Rules tab . 344

Table 65 Manage Form Elements from the Outline View 346

Table 66 Generic Keyboard Shortcuts . 347

Table 67 Keyboard Shortcuts for Grid Panes in Display Mode. 347

Table 68 Keyboard Shortcuts for Grid Panes in Edit Mode 349

Table 69 Keyboard Shortcuts for Grid Pane Column Headers 350

Table 70 Keyboard Shortcuts for Grid Pane Navigation Bar. 350

Table 71 Keyboard Shortcuts for List Controls in Display Mode. 351

Table 72 Keyboard Shortcuts for List Controls in Edit Mode 351

Table 73 Keyboard Shortcuts for List Control Command Bar 352

Table 74 Keyboard Shortcuts for Record Pane Body 353

Table 75 Keyboard Shortcuts for Record Pane Navigation Bar 353

Table 76 Keyboard Shortcuts for Tabbed Panes 354

Table 77 Built-in Static CSS Classes . 355

Table 78 Built-in Dynamic CSS Classes . 358

Table 79 Number Patterns . 359

Table 80 Basic Number and Currency Symbols 360

Table 81 Duration Control Labels . 361

Table 82 Date Time Keys . 363

Table 83 Optionlist Key . 366

Table 84 Built-in Button Keys . 366

Table 85 Grid and Record Pane Keys . 367

Table 86 Built-in Validation Message Keys. 369

Table 87 List Control Keys . 370

Table 88 Implicit Validation Messages . 371

Table 89 Miscellaneous Resource Keys . 373

Table 90 Action . 377

Table 91 Validation . 378

Table 92 FormRunner Class . 381
 TIBCO Business Studio Forms

xiv | List of Tables
Table 93 Form Class . 382

Table 94 Control Class. 384

Table 95 Pane Class . 391

Table 96 List Class. 395

Table 97 Iterator Class . 396

Table 98 Logger Class . 397

Table 99 Util Class . 402
TIBCO Business Studio Forms

List of Figures | xv
List of Figures

Figure 1 Open Sample Project . 4

Figure 2 Claim Process No Forms: Process Editor 6

Figure 3 Form Open. . 7

Figure 4 Capture Claim Form, Design Page . 8

Figure 5 Capture Claim Form, GWT Preview Page 10

Figure 6 Interview Witness Form, Design Page . 11

Figure 7 Interview Witness Form, GWT Preview Page 12

Figure 8 Capture Claim Form, Interface Properties 13

Figure 9 Interview Witness Form, Interface Tab . 14

Figure 10 Interview Witness Task, Form Detail . 15

Figure 11 Show/Hide the Palette . 17

Figure 12 Add New Pane: No Location Selected . 18

Figure 13 Placing a New Pane Above the Existing One 19

Figure 14 Untitled Panes Added . 20

Figure 15 Customer Name Parameter Defined as Mandatory 23

Figure 16 Making the Field CustAge Uneditable . 25

Figure 17 Add Values and Labels for Personal Injury 26

Figure 18 Add Binding to Configure Pane Visibility 28

Figure 19 Select Binding Endpoint Page . 29

Figure 20 Binding Created for the Visible Property 29

Figure 21 Adding Binding from the Mappings Tab . 31

Figure 22 Add a Button . 32

Figure 23 Edit Pane’s Layout . 33

Figure 24 Expanded Color Picker . 34

Figure 25 Child Labels Settings . 36

Figure 26 Edit the Child Labels Settings . 37

Figure 27 Tutorial 2: Interview Witness Form Design Page 38

Figure 28 Tutorial 2: Capture Claim Form, Design Page 39
 TIBCO Business Studio Forms

xvi | List of Figures
Figure 29 Change to Solution Design Mode.. 41

Figure 30 Define Validation Page . 42

Figure 31 Completed Validation Definition for the Phone Field. 44

Figure 32 Find Date Field CustAge . 48

Figure 33 Add Binding for the Customer Age Parameter 52

Figure 34 Select Event Dialog . 53

Figure 35 Select the Event Type . 53

Figure 36 Rule Details Page . 54

Figure 37 New Rule Dialog, Define Actions Page . 54

Figure 38 Enter the Action Details . 55

Figure 39 Claim Amount Control, Rules Tab. 56

Figure 40 Edit an Event . 57

Figure 41 Round_amount Event Defined . 58

Figure 42 Choose Hint Property of the AccDescription Control 62

Figure 43 Form Elements . 71

Figure 44 Preferences Dialog for Errors/Warnings 75

Figure 45 Properties for Forms Tutorial Solution. 76

Figure 46 Add a Binding for a Control Using the General Properties Tab. . 78

Figure 47 Add a Binding for a Parameter Using Parameter Dialog. 79

Figure 48 Add an Action in the Outline View . 82

Figure 49 Actions Summary Table . 83

Figure 50 Rules Summary Table. 85

Figure 51 Performance Table . 90

Figure 52 The Performance Metrics Settings . 91

Figure 53 Invisible and Visible Form Parts . 92

Figure 54 Visibility of a Pane Depending on a Check Box 93

Figure 55 Outline View , Thumbnail Mode . 94

Figure 56 Outline View, Tree Mode. 95

Figure 57 Using the Outline View with Forms, 1 . 95

Figure 58 Using the Outline View with Forms, 2 . 96

Figure 59 Parameters in the Outline View. 97

Figure 60 Parameters Summary Table . 97
TIBCO Business Studio Forms

List of Figures | xvii
Figure 61 The Palette of the Business Object Model Editor. 101

Figure 62 Properties of a ZIP Code Primitive Type in the BOM. 102

Figure 63 Business Object Model Editor Showing Child Classes 105

Figure 64 Master-Detail Pane on a Form . 106

Figure 65 Record Pane with Navigation Enabled. 106

Figure 66 Clear Forms References Dialog. 108

Figure 67 Delete Resources Dialog . 109

Figure 68 Changes to be Performed Options. 109

Figure 69 Quick Fix Dialog . 111

Figure 70 Repair Reference Dialog . 112

Figure 71 Date Spinner . 119

Figure 72 Time Spinner . 119

Figure 73 Duration Control . 120

Figure 74 Choice Spinner. 121

Figure 75 Record Panes Display . 122

Figure 76 New Form Dialog . 126

Figure 77 DND Items from the Project Explore . 128

Figure 78 DND Items from the Form Designer Outline View 129

Figure 79 Form Created Using DND Gestures . 130

Figure 80 Open the Edit Validation Script Page. 132

Figure 81 General Properties Tab for a Control with No Bindings 134

Figure 82 Multiple Bindings Added. 135

Figure 83 General Properties Tab for the Parameter 136

Figure 84 Adding a New Script Action . 137

Figure 85 Rule: Pick Event Page . 140

Figure 86 Select Event Page . 140

Figure 87 Define Actions for the Rule . 141

Figure 88 Define Actions Dialog for the Rule . 142

Figure 89 The Validations Tab . 149

Figure 90 The Define Validation Dialog . 150

Figure 91 The Resource Picker Dialog . 152

Figure 92 The Edit Validation Script Dialog . 153
 TIBCO Business Studio Forms

xviii | List of Figures
Figure 93 The General Tab . 155

Figure 94 Defining Custom Validation . 156

Figure 95 Validation Script Example 1 . 156

Figure 96 Defining Custom Validation Using Substitution Variables 157

Figure 97 Validation Script Example 2 . 158

Figure 98 Sample Validation Messages . 158

Figure 99 The Define Validation Dialog Using External Resources 159

Figure 100 Validation Script Example 3 . 159

Figure 101 Place Vertical Panes on the Form. 163

Figure 102 Position the New Pane . 163

Figure 103 New Horizontal Pane is Automatically Created 164

Figure 104 TIBCO Business Studio Forms toolbar 165

Figure 105 Show Pane and Control Borders. 165

Figure 106 Using the Embedded Form Icon . 167

Figure 107 Embedded Form Inserted in a Parent Form 169

Figure 108 Set Binding Using the Mappings Tab . 171

Figure 109 Preview Rendering of the Parent Form 172

Figure 110 Properties Tab for the Embedded Form 173

Figure 111 Mappings Tab of the Properties View . 174

Figure 112 The Script Editor in the Mappings Tab 177

Figure 113 Merging Process . 180

Figure 114 Creating a New Properties File . 181

Figure 115 The New File Dialog . 182

Figure 116 Sample Resource Entries . 182

Figure 117 The Project Properties Dialog . 184

Figure 118 The Pick Resource Dialog. 185

Figure 119 The Common Properties Preference Page 186

Figure 120 Numeric Control Property of Text Input Control 194

Figure 121 Add Custom Format File to Resource List 195

Figure 122 Use Custom Format for Numeric Control 196

Figure 123 Base Properties File . 197

Figure 124 Business Analysis and Solution Design Modes 205
TIBCO Business Studio Forms

List of Figures | xix
Figure 125 Open the Quick Fix Dialog . 206

Figure 126 Quick Fix Dialog for Migration . 207

Figure 127 Properties View for a Pane . 233

Figure 128 Custom Control Architecture . 243

Figure 129 Component Library Project . 244

Figure 130 Asset Type Selection Page . 246

Figure 131 Component Library Model . 248

Figure 132 Library Editor Properties View . 250

Figure 133 Pick Resource Dialog. . 252

Figure 134 ControlWrapper Life Cycle . 254

Figure 135 Eclipse Workbench with Project Claims Process - No Forms . . 298

Figure 136 Form Designer Palette . 300

Figure 137 Palette not Displayed . 302

Figure 138 Palette Displayed . 302

Figure 139 Vertical, Horizontal, Tabbed, and Message Panes 303

Figure 140 Design View . 304

Figure 141 Script and Message Example for a Message Pane 306

Figure 142 General Properties Tab of Record Pane 307

Figure 143 Properties Tab of Record Pane . 307

Figure 144 Record Pane with Navigation Controls 308

Figure 145 Properties Tab of Grid Pane . 309

Figure 146 Button Type . 313
 TIBCO Business Studio Forms

xx | List of Figures
TIBCO Business Studio Forms

| xxi
Preface

TIBCO Business Studio™ Forms provides a powerful means of creating
web-based and mobile user interfaces for different TIBCO applications. This
guide is intended for business analysts and solution designers responsible for
delivering a User Interface within TIBCO products that support the use of TIBCO
Business Studio Forms.

Topics

• Changes from the Previous Release of this Guide, page xxii

• Typographical Conventions, page xxiii

• Connecting with TIBCO Resources, page xxv

This software may be available on multiple operating systems. However, not
all operating system platforms for a specific software version are released at the
same time. Please see the readme file for the availability of this software
version on a specific operating system platform.
 TIBCO Business Studio Forms

xxii | Changes from the Previous Release of this Guide
Changes from the Previous Release of this Guide

This section itemizes the major changes from the previous release of this guide.

• The location of tutorial samples is updated to
http://tap.tibco.com/storefront/sample-evaluations/tibco-business-studio-p
roduct-samples/prod16117.html.

• The mention of GI preview is removed as its use is now deprecated.

• The mention of relative bindings is removed as now they are replaced by
absolute pane value bindings.

• A new section Validating Data in a Form on page 147 is added in the Tasks
chapter.

• The section Using Drag and Drop Gesture to Customize a Form on page 128 is
updated to reflect changes in the drop handler.

• A new section Customizing Property Resource Bundles on page 179 is added
in the Tasks chapter.

• The Reference on page 297 chapter has been updated to add details for new
properties, APIs, common resource keys, and keyboard shortcuts. The
reference section on validations is now divided into Design-time Constraints
on page 374 and Client-side Validations on page 375.

• A new method, getPresentationURL() on page 288, is added in the Custom
Controls chapter.
TIBCO Business Studio Forms

http://tap.tibco.com/storefront/sample-evaluations/tibco-business-studio-product-samples/prod16117.html
http://tap.tibco.com/storefront/sample-evaluations/tibco-business-studio-product-samples/prod16117.html

Preface | xxiii
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME

STUDIO_HOME

TIBCO products are installed into an installation environment. A product
installed into an installation environment does not access components in other
installation environments. Incompatible products and multiple instances of the
same product must be installed into different installation environments.

An installation environment consists of the following properties:

• Name Identifies the installation environment. This name is referenced in
documentation as ENV_NAME. On Microsoft Windows, the name is
appended to the name of Windows services created by the installer and is a
component of the path to the product shortcut in the Windows Start > All
Programs menu.

• Path The folder into which the product is installed. This folder is referenced
in documentation as TIBCO_HOME.

The default value of TIBCO_HOME depends on the operating system. For
example, on Windows 7 systems, the default value is C:\Program Files
(x86)\tibco

TIBCO Business Studio Forms installs into a directory within TIBCO_HOME. This
directory is referenced in documentation as STUDIO_HOME. The default value of
STUDIO_HOME depends on the operating system. For example on Windows 7
systems, the default value is C:\Program Files
(x86)\TIBCO\studio-bpm-35.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]
 TIBCO Business Studio Forms

xxiv | Typographical Conventions
italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use
TIBCO Business Studio Forms

Preface | xxv
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts. It is a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access TIBCO Documentation
You can access TIBCO documentation here:

http://docs.tibco.com

How to Contact TIBCO Support
For comments or problems with this manual or the software it addresses, contact
TIBCO Support as follows:

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
 TIBCO Business Studio Forms

http://www.tibcommunity.com
http://docs.tibco.com
http://www.tibco.com/services/support
https://support.tibco.com

xxvi | Connecting with TIBCO Resources
TIBCO Business Studio Forms

| 1
Chapter 1 Getting Started

The tutorials in this chapter introduce you to the main features of TIBCO Business
Studio Forms. For more in-depth information, see the Tasks and Reference
chapters in this guide.

The guide assumes you are familiar with the basics of TIBCO Business Studio. If
you are new to using TIBCO Business Studio, see TIBCO Business Studio Process
Modeling User's Guide for information about important concepts and procedures.

Topics

• Introduction, page 2

• Tutorials, page 3

• Installing the Forms Tutorial Solutions Project, page 4

• Tutorial 1: Forms, Panes, and Controls, page 5

• Tutorial 2: Customizing the Appearance of a Form, page 33

• Tutorial 3: Validations, page 41

• Tutorial 4: Rules, Events, and Actions, page 51
 TIBCO Business Studio Forms

2 | Introduction
Introduction

The form-modeling features of TIBCO Business Studio enable you to design,
view, and test the forms you need to collect user input. You can create
sophisticated forms without programming, and associate them with user tasks in
order to provide richer user experiences.

Business analysts can visually change layouts and controls; developers can add
validation rules and event scripts to further craft the user experience, and can
draw upon the power of Google Web Toolkit™. The inline preview allows
developers to test and interact with the running form right within TIBCO
Business Studio.

This guide explains how to configure and modify the controls that appear on the
form. In this chapter, a series of tutorials is presented to familiarize you with the
procedures needed to accomplish these tasks.

Using TIBCO Business Studio
There are several resources available to you from the Welcome page displayed
when you first start TIBCO Business Studio. (The Welcome page is also available
from the Eclipse Help menu.) These resources include tutorials that explain
creating a business process, and samples that illustrate the features of the product
as they are typically used in real-world contexts.

Who Should Use TIBCO Business Studio Forms?
TIBCO Business Studio Forms is for users of TIBCO Business Studio who are
responsible for user interfaces for presenting and capturing information from
users. The forms you design are deployed in one of the supported TIBCO runtime
environments.
TIBCO Business Studio Forms

| 3
Tutorials

The following tutorials are based on the sample application, Forms Tutorial
Solutions, provided with TIBCO Business Studio. The project contains two
business processes:

• Claims Process No Forms has no forms associated with it.

• Claims Process With Forms consists of the same business process, but with
completed forms associated with the user tasks in the process.

The starting point for the tutorials is the first of these sample business processes.
Here, the design of the process has been completed for you, but no forms have
been created. By performing all the tutorials in this chapter, you create a revised
version of this business process that is substantially the same as the second of the
provided versions of the process, that is, the version that includes the forms.

Before you start working with tutorials, you may want to read the section The
Workbench on page 298 to familiarize yourself with the Eclipse workbench for
modeling forms.

If you are new to using TIBCO Business Studio, consider familiarizing yourself
with the process modeling environment of TIBCO Business Studio before
beginning the tutorials on forms modeling. TIBCO Business Studio process
modeling tutorials can be accessed from the Welcome page, at Help > Welcome.
 TIBCO Business Studio Forms

4 | Installing the Forms Tutorial Solutions Project
Installing the Forms Tutorial Solutions Project

The sample projects are available on the TIBCO Access Point site. To download
and install the forms tutorial solutions, do the following:

1. Go to
http://tap.tibco.com/storefront/sample-evaluations/tibco-business-studio-p
roduct-samples/prod16117.html.

2. Click Form Samples to go to the Forms Samples page.

3. Under Forms Tutorial Solution, click Download and Install to get the sample
project in your workspace.

To familiarize yourself with the Business Studio Workbench, see The
Workbench on page 298.

In the Project Explorer view, drill down by clicking the plus sign icons to
examine the contents of the business project.

Figure 1 Open Sample Project

4. Double-click the business process named Claims Process No Forms in the
process package ProcessWithNoForms.xpdl to open the process in the
Process Editor.

For the remainder of this chapter it is assumed that you are working with this
business process, generating and configuring the forms for the two user tasks in
the process. However, you can see the final results of the tutorial at any time by
opening the business process that already includes the completed forms.

Open the Claims Process With Form process, found in the package of the same
name. With the process open in the Process Editor, right-click the user task and
click Form > Open.
TIBCO Business Studio Forms

http://tap.tibco.com/storefront/sample-evaluations/tibco-business-studio-product-samples/prod16117.html
http://tap.tibco.com/storefront/sample-evaluations/tibco-business-studio-product-samples/prod16117.html

| 5
Tutorial 1: Forms, Panes, and Controls

This tutorial shows how to add panes and controls on a form, and how to move
and configure them. This tutorial contains the following tasks:

• Task A: Import the Sample Project on page 5

• Task B: Examine the Claims Process Business Process on page 5

• Task C: Open the Forms on page 7

• Task D: View Forms on page 12

• Task E: Add New Panes to the Capture Claim Form on page 17

• Task F: Modify Names and Labels of Panes on page 20

• Task G: Drag Controls into Appropriate Panes on page 21

Task A: Import the Sample Project
If you have not already done so, install the sample project as previously described
in Installing the Forms Tutorial Solutions Project on page 4.

Task B: Examine the Claims Process Business Process
The Claims Process business process is used to process an insurance claim for an
accident. Examine the process in the Process editor.
 TIBCO Business Studio Forms

6 | Tutorial 1: Forms, Panes, and Controls
Figure 2 Claim Process No Forms: Process Editor

Sample Application: General Description

When you open the sample application Claims Process No Forms, a graphical
representation of the business process is displayed in the process editor.

Icons used in the sample application include the following:

• A circle icon represents a Start or End Event.

• A rectangular icon that contains the image of a monitor and a person inside it
represents a user task.

• A diamond icon represents a gateway, that is, a point where the process flow
is determined by whether or not a certain condition is met.

The icons used in the TIBCO Business Studio Process Modeler are Business
Process Modeling Notation (BPMN). For more information about this standard
see the TIBCO Business Studio Process Modeling User's Guide and the
http://www.wfmc.org and http://www.bpmn.org web sites.
TIBCO Business Studio Forms

http://www.wfmc.org
http://www.bpmn.org

| 7
Task C: Open the Forms
To open the form for a user task, right click the user task and click Form > Open.

Open the Capture Claim Form

There are two main tasks displayed in the Capture Claim business process:
Capture Claim and Interview Witness.

To compare them in the form editor, open the Interview Witness form the same
way you opened the Capture Claim form:

1. In the Process editor, right-click the Capture Claim task and select Form >
Open.

Figure 3 Form Open.

The first time a form is opened, a warning pops up to inform you that “The
customized form is no longer being automatically kept in sync with the activity
interface.” This is because opening a form, rather than simply previewing it, causes
the default form to become a customized form. For the tutorials in this chapter, we
customize forms rather than using default forms, so ignore the warnings and click
OK when you open a given form for the first time.

Since the tutorials in this Guide concentrate on procedures specific to forms, the
data fields required for the Claims Process business process have already been
created for you and added as parameters to the two user tasks. These steps are
part of the business process modeling procedures that precede form modeling.
 TIBCO Business Studio Forms

8 | Tutorial 1: Forms, Panes, and Controls
2. The Capture Claim form in the design view opens, as in Figure 4.

Figure 4 Capture Claim Form, Design Page
TIBCO Business Studio Forms

| 9
There are two tabs on the bottom of the pane, labeled Design and GWT
Preview.

3. Click the GWT Preview tab to see the preview, as in Figure 5.

The GWT Preview tab is used to see how the form looks like at runtime. For an
explanation of the Design tab, which is used for form modeling, and the preview
tabs, which are used to preview and test the form, see The Design Tab and
Preview Tabs on page 86.
 TIBCO Business Studio Forms

10 | Tutorial 1: Forms, Panes, and Controls
Figure 5 Capture Claim Form, GWT Preview Page

Open the Interview Witness Form

To generate a form for this user task, do the following:

1. In the Process editor, right-click the Interview Witness task and select Form >
Open.
TIBCO Business Studio Forms

| 11
2. The Interview Witness form opens in the Form editor, as in Figure 6

Figure 6 Interview Witness Form, Design Page

3. Click the GWT Preview tab to see the preview, as in Figure 5.
 TIBCO Business Studio Forms

12 | Tutorial 1: Forms, Panes, and Controls
Figure 7 Interview Witness Form, GWT Preview Page

4. If you select the Process editor again and the General tab, you can see the URL
for the newly created form in the Form field:
form://ProcessPackage/ClaimsProcessNoForms/InterviewWitness/
InterviewWitness.form

Save the process model with this new URL by typing Ctrl+S or clicking Save.

Task D: View Forms
Business processes modeled with TIBCO Business Studio generally include
elements called user tasks and gateways. In this task, examine the user tasks and
gateways in the sample business process.

User Tasks

The two main user tasks in the sample business process are the Capture Claim
task and the Interview Witness task, which differ in the kinds of user task
parameters that are associated with some of the fields on these forms.
TIBCO Business Studio Forms

| 13
Capture Claim

The Capture Claim user task captures information about the customer, such as
name and phone number, along with information about the accident, such as a
description, the time it occurred, and whether any third party was involved. It
appears at the beginning of the process, before any data have been collected.

To see the task parameter mode:

1. Open the Claims Process No Forms in the Process editor.

2. Select the Capture Claim task.

3. In the Properties view below, select the Interface tab.

Figure 8 Capture Claim Form, Interface Properties

If you want to remove any explicitly associated data, select the No interface
data association required check box. By default, this option is cleared. If you
select this check box, the text in the table below is set to [No Process Data].

You can keep the No interface data association required check box cleared as
the user task needs to be associated with the parameters.

The mode for all of the parameters for this user task is Out.

The Capture Claim is the first user task in the business process and has only
Outbound Parameters. This is because when the user task begins at runtime,
no data is yet gathered for the business process.
 TIBCO Business Studio Forms

14 | Tutorial 1: Forms, Panes, and Controls
Interview Witness

The Interview Witness user task is associated with a form that captures
information provided by the witness, including a description of the accident. It is
provided with data that were gathered in the Capture Claim form, in addition to
having data fields for new information. To see the task parameter mode:

1. Open the Claims Process No Forms process in the Process editor.

2. Select the Interview Witness task.

3. In the Properties view below, select the Interface tab.

Figure 9 Interview Witness Form, Interface Tab

You can keep the No interface data association required check box cleared.

The interface of the Interview Witness user task includes a mixture of In, Out,
and In/Out parameters:

— The Inbound Parameters are associated with data that is already specified
in the Capture Claim form.

— The Outbound Parameters are associated with fields that collect new data
on the Interview Witness form.

— The Inbound/Outbound Parameters are associated with fields that can be
revised on the Interview Witness form from the values that were
previously specified on the Capture Claim form.

These parameters provide information gathered on the Capture Claim form
that is helpful to the interviewer performing the Interview Witness user task:

— Time of the accident, based on the value of the AccTime data field

— Customer Description of the accident, based on the value of the
AccDescription data field

— Witness Name, based on the value of the WitName data field
TIBCO Business Studio Forms

| 15
— Witness Phone number, based on the value of the WitPhone data field.

The data for these fields appears on the form (in the appropriate form fields)
when the Interview Witness form shown in Figure 10 is opened.

4. Look now at the Interview Witness form detail.

Figure 10 Interview Witness Task, Form Detail

In mode These parameters are bound on the Interview Witness form to form
fields that are disabled for editing. In this tutorial, these fields are:

— AccTime (value appears in the Accident Time form field)

— AccDescription (value appears in the Accident Description form field)

In/Out mode These fields are editable and in this tutorial they are:

— Witness Name

— Witness Phone

While their initial values are provided by the Capture Claim user task , the
name and phone number of the witness may have changed from what they
were when the Capture Claim user task was performed. Because they are
 TIBCO Business Studio Forms

16 | Tutorial 1: Forms, Panes, and Controls
In/Out parameters, their current values appear when the Interview Witness
form opens, but the interviewer can edit those values if necessary.

Out mode Two additional user task parameters in the Interview Witness user
task are defined as Out mode parameters only are:

— WitDescription (Witness Description), which is the witness’s description
of the accident to be specified on the form during the interview

— WitStatus (Witness Status), which is the status of the witness and is set
programmatically based on buttons clicked by the interviewer.

Note how Out mode user task parameters correspond to In/Out mode form
parameters. This is necessary to allow the form to be opened and saved
multiple times. If the form parameter was Out mode, you would lose the
previously typed text if you subsequently reopened the form before marking
the work item as complete.

Gateways

In addition to the two user tasks, there are three gateways, indicated by
diamond-shaped icons in the process diagram. When a gateway is reached, the
flow of the process is determined by the value of a data item. This data item is
based on information gathered from user input on the form associated with the
user task that precedes the gateway:

• The first gateway, after the Capture Claim user task, is determined by the
amount of the claim. If the claim is for a sum less than $500, then the process
flow continues directly to the End Event. However, if the claim is for $500 or
more, then the process flow continues to the next gateway.

• The second gateway is based on whether a witness is available to be
interviewed; that is, if the Witness Available check box is selected on the
Capture Claim form. If so, the process flow continues to the Interview
Witness user task. If not, the process flow continues to the End Event.

• The third gateway is determined by whether the witness is to be interviewed
again. If the interviewer clicks Completed, the process proceeds to the End
Event. If the interviewer clicks Failed - Try again, the process returns to the
Interview Witness user task. But if attempts to contact the witness have failed
repeatedly, the interviewer needs to click Failed - Do not try again, and the
business process proceeds to the End Event without the witness’s description
having been captured on the form.

For more about how to use gateways in a business process, see TIBCO Business
Studio Process Modeling User's Guide.
TIBCO Business Studio Forms

| 17
The tutorials that follow explain how to create two forms. By performing these
tutorials, you learn about panes, controls, how to configure their properties, and
how to enhance your forms with validation scripts and action scripts.

Task E: Add New Panes to the Capture Claim Form
When forms are first generated, all of the automatically generated controls
(corresponding to the user task parameters) appear in a single vertical pane.
Creating more panes and moving related controls into each of them helps you
organize the information on the form and control its visual layout, enhancing the
usability of the form.

In addition to one vertical pane containing all the controls for the user task
parameters, the generated form contains a message pane for displaying validation
error messages and a horizontal pane for the Cancel, Close, and Submit buttons.

Now we add three new vertical panes in addition to the original vertical pane,
and distribute the controls among the four resulting panes as follows:

• Customer Information Controls that gather information about the customer
making the claim.

• Accident Information Controls that gather information about the accident.

• Third Party Information Controls that gather information about another person
involved in the accident, if any.

• Witness Information Controls for capturing contact information for a witness
to the accident, if any.

Create a New Pane

To create new panes and redistribute the controls among them, follow these steps:

1. Click the Design tab for the Capture Claim form on the Form Designer so that
the form is visible in the Form Designer.

2. Show the palette, which contains buttons for adding panes and controls to a
form. There are two ways to expand the palette:

a. Click the expand arrow that points leftward in the upper right corner. The
arrow now points rightward. When expanded by this method, the palette
remains visible (as the Palette view which is shared by all graphical
editors and external to them) until the arrow is clicked again.

Figure 11 Show/Hide the Palette

b. Select Window > Show View... > Palette to open a Palette View that is
shared between all open graphical editors.
 TIBCO Business Studio Forms

18 | Tutorial 1: Forms, Panes, and Controls
3. Click the Vertical Pane item in the palette .

4. The Untitled Pane icon is attached to the mouse while you decide where to
put the new pane.

Figure 12 Add New Pane: No Location Selected

5. Move the mouse above the existing Pane.
TIBCO Business Studio Forms

| 19
Figure 13 Placing a New Pane Above the Existing One

— If you click with the mouse over the highlighted drop zone above the
current pane, the new pane will be placed above the current pane.

— If you click with the mouse over the highlighted area inside the current
pane, the new pane will be nested within the current pane.

— If you click with the mouse above the current pane without a highlighted
drop zone showing up, the new pane will be placed under the current pane.

For this tutorial, click with the mouse in the highlighted drop zone above the
current pane.

6. Repeat step 5 three times.

When panes are added, your form will look as in Figure 14.

Hover the mouse over various areas on the form to see these visual signs.
Experimenting with this functionality now will help you save time later and
avoid accidentally placing form objects in unwanted positions. You can cancel
the object placement operation and return the mouse to its normal function by
hitting the Esc key at any time. Immediately after adding a pane, you can
remove it by typing Ctrl+Z or clicking Undo Add Form Pane on the Edit
menu.
 TIBCO Business Studio Forms

20 | Tutorial 1: Forms, Panes, and Controls
Figure 14 Untitled Panes Added

7. Click the Save icon to save the project.

Task F: Modify Names and Labels of Panes
The values in the Name fields for panes and controls are particularly important
and must be typed exactly because they are used in scripts to refer to these
objects. Labeling panes to indicate the function of the controls they contain helps
users to understand your forms quickly.

1. Click each untitled pane in the form.

2. In the Properties View General tab of each of the untitled panes:

— Click Rename to type the new names in the Name field, and click Finish.

You can also rename from the Outline view, or canvas context menu, or you
can also use the standard F2 accelerator key.

— Replace pane labels in the Label field.

Careful labeling at the pane level also allows you to use shorter labels for the
controls. For instance, by using the label Customer Information for the pane, you
can include controls within it labeled Name and Phone, instead of Customer
Name and Customer Phone.
TIBCO Business Studio Forms

| 21
Starting with the top-most pane, use the new names as shown in Table 2.

3. Save the form by typing Ctrl+S or clicking the Save button.

Task G: Drag Controls into Appropriate Panes
Once you have named and labeled the new vertical panes, drag each control to its
appropriate pane and position the controls in the order in which they are listed.
You can select multiple controls with Shift-Click or Ctrl-Click and drag at once.

Controls are listed below by their default labels; that is, by the text that appears
within the control.

Modify these labels in subsequent steps:

1. Drag the following controls into the Customer Information pane:

a. Customer Name

b. Customer Phone

c. Customer Email

d. Birth Date

e. Customer Age

f. Guardian Name

Table 2 Name Labels

Label Name Label

pane3 cust_info_pane Customer Information

pane2 accident_info_pane Accident Information

pane1 third_pt_info_pane Third Party Information

root witness_info_pane Witness Information

Items selected by Shift-Clicking appear in vertical panes in reverse order from the
order in which they were clicked. Although controls can easily be rearranged by
dragging, you can ensure that they are added in the desired order by first clicking
the control that you want positioned lowest, and proceeding in reverse order.

You can add user interface items to an existing form using the drag and drop
gestures. See Using Drag and Drop Gesture to Customize a Form, page 128 for
details.
 TIBCO Business Studio Forms

22 | Tutorial 1: Forms, Panes, and Controls
g. Claim Amount

2. Drag the following controls into the Accident Information pane:

a. Accident Time

b. Personal Injury

c. Accident Description

d. Third Party Involved

e. Witness Available

3. Drag the following controls into the Third Party Information pane:

a. Third Party Name

b. Insurance Name

c. Insurance Number

d. Third Party Amount

4. Leave the following controls into the Witness Information pane:

a. Witness Name

b. Witness Phone

Modify Control Properties: Labels, Required, and Hint Values

The next step is to modify the labels and, in some cases, the Required and Hint
properties of the controls by editing values on the controls’ property sheets.

1. Click the Customer Name control.

On the General tab of the control’s Properties View, change the value in the
Label field to Name.

Labels are derived from the relevant datum label of the XPDL process.

If the user sets the datum label and Required and Hints properties manually, they
will get overwritten next time parameters are synchronized.

The Required check box is already selected as the parameter CustName is defined
as Mandatory at user task interface level.
TIBCO Business Studio Forms

| 23
Figure 15 Customer Name Parameter Defined as Mandatory

2. Similarly, change the label Customer Phone to Phone.

3. Add the following text to the Hint field for this control to illustrate the format
that our application requires for phone numbers: Example (888) 888-8888.

In a real world situation, the required format for a phone number would be an
application-specific requirement.

4. Change the label for Customer Email to Email.

5. Change the label for Birth Date to Date of Birth.

6. Make sure that the Required check box is selected, so that a value is required
at runtime for this field.

7. Change the label for Customer Age to Age.

8. The Label and Required properties for the Guardian Name field do not need
to be changed. However, you want to add the following text to the Hint field

The hint is intended to assist the user in typing a valid value for a control. It
appears underneath the field when the form is rendered at runtime.

You want to require that a value be typed for either the Phone or the Email field,
but both values will not be required. This functionality is best configured with a
script, which will be presented in a later tutorial. You can leave the Required
check box cleared for both Phone and Email.

Since you placed the above controls in a pane labeled Customer Information, it is
not necessary to repeat the word Customer in the label for each control. This is
generally a good practice because it results in a cleaner, easier-to-use form.
 TIBCO Business Studio Forms

24 | Tutorial 1: Forms, Panes, and Controls
for this control to explain that a guardian’s name must be supplied if the
customer is under 21 years old: If age is less than 21.

9. Change the label for Accident Time to Time of Accident.

Make sure that the Required check box is selected, so that a value is required
at runtime.

10. Change the label for Accident Description to Customer Description.

11. Change the label for Insurance Name to Insurance Company.

12. Add the following text to the Hint field for the Witness Phone control to
illustrate the format that our application requires for phone numbers:
Example (888) 888-8888.

Modify Control Properties: Type and Enabled

In this step, you will modify other properties of selected controls in order to
enhance the functionality of the Capture Claim form. The type of control that is
generated from user task parameters, for instance, depends upon the type of the
data fields from which those parameters are derived. The eight basic types for
data fields in TIBCO Business Studio result in the following control types:

Often the generated control types are best, but there are many other control types
to consider. In this part of the tutorial, you will change the type of several controls
and configure the properties of the new types.

Table 3 Data Field Types

Data Field Type Control Type

String Text

Decimal Number Text

Integer Number Text

Boolean Checkbox

Datetime Datetime

Date Date

Time Time

Performer Text
TIBCO Business Studio Forms

| 25
The first control you will modify is Date of Birth, which was generated as a
Date-Time control. The customer’s date of birth has a bearing on the insurance
claim but the time does not. Therefore, you will change the type for this control
from Date-Time to Date.

Changing Control Type

1. The type of the Age field is Text, which doesn’t need to be changed. But you
want the value for this field to be calculated dynamically at runtime based on
the value specified for the Date of Birth field. This means that you do not
want a value to be typed by the user.

Disabling a
Control

To make the field uneditable, clear the check box for the Enabled property for
this control.

Figure 16 Making the Field CustAge Uneditable

2. The type of the Personal Injury field is Text and you will change it to
Radiogroup, which ensures that a valid value will be specified, since the
value will be chosen from among those you provide.

Click the optionlist for Control Type and select Radiogroup.

3. For a Radiogroup control the values of the radio buttons must be configured.

On the Properties tab, select auto for Choice Layout.
 TIBCO Business Studio Forms

26 | Tutorial 1: Forms, Panes, and Controls
Figure 17 Add Values and Labels for Personal Injury

4. Specify the following values and labels, clicking the + (plus) next to each
value/label pair once it is specified:

— YES/Yes

— NO/No

— UNKNOWN/Unknown

5. The control type of the Customer Description field is Text. Change it to Text
Area in the General tab to allow space for a longer description.

Click the Properties tab of the Properties View and type the values of 4 for
Rows and 60 for Columns.

6. The type of the Insurance Company field is Text and you will change it to
Optionlist, to ensure that a user will choose among the names that you
provide.

Click the optionlist for Control Type and select Optionlist. For an Optionlist
control the values in the list must be configured.

The values can be anything you choose, but they must match the names used in
your business process so that they will be properly handled at runtime when the
form is submitted. The labels are used for display only. Their purpose is to aid
users in making their selection.
TIBCO Business Studio Forms

| 27
7. Click the Properties tab for the Insurance Company control and type the
following values and labels, clicking the Add button as needed next to the last
value/label pair to add space for an additional empty optionlist value:

— UNKNOWN/Unknown

— GECKO/Gecko

— STATE FIRM/State Firm

— FORMERS/Formers

— FROGRESSIVE/Frogressive

8. If there are any extra labels, remove them by clicking on the Delete (X) button.

Modify Pane Properties: Visibility

Sometimes, the usability of your forms can be enhanced if you hide portions that
do not apply to certain instances of the business process. If the relevance of a
particular set of controls depends on a condition that is determined at runtime,
you can place the dependent controls together in a pane and control the Visible
property for that pane.

The tutorial will show you how binding can help configure the visibility of third
party information pane based on third party involved parameter value. If there is
no third party involved in the accident, the form should not show controls for
reporting details about it. You will also configure the Witness Information pane to
be visible based on whether the Witness Available parameter value is true or false.
If no witness is available, the form should not show controls that gather
information about the witness.

In this section you will begin configuring this functionality by binding the
Visible property of the panes to corresponding parameter values. Binding can
be added either from the General tab using the Add Binding icon or from
the Mappings tab of the Properties view.

For information about bindings, see Bindings on page 78.

Bindings are created automatically between the controls and the parameter values
when form is generated; for example, a two-way binding between Customer
Name(CustName) parameter value and Name(CustName) control value. When a
parameter value changes, the control value is updated automatically, and vice
versa.
 TIBCO Business Studio Forms

28 | Tutorial 1: Forms, Panes, and Controls
Setting Visibility of Panes from the General Properties Tab

Set Third Party
Information Pane 1. Click the Third Party Information pane so that its Properties View is

displayed.

2. Click the Add Binding button next to the Visible check box.

Figure 18 Add Binding to Configure Pane Visibility

This will open Create Binding dialog.

3. Select Create a binding for this property and click Next.

The Select Binding Endpoint page opens.
TIBCO Business Studio Forms

| 29
Figure 19 Select Binding Endpoint Page

4. Select Third Party Involved (ThirdPInvolved) parameter that will be bound
to Visible property of Third Party Information pane.

5. Click Finish.

Note that the binding icon has changed in the Properties View next to the
Visible check box to denote that a binding is present.

Figure 20 Binding Created for the Visible Property

Set Witness
Information Pane

6. Click the Witness Information pane so that its Properties View is displayed.

7. Click the Add Binding button next to Visible check box.
 TIBCO Business Studio Forms

30 | Tutorial 1: Forms, Panes, and Controls
8. Select Create a binding for this property and click Next.

9. Select the Witness Available (WitAvailable) parameter that will be bound to
Visible property of Witness Information pane.

10. Click Finish.

Note that the binding icon has changed to denote that a binding is present.

Setting Visibility of Panes from the Mappings Tab

Perform the following steps to bind the Visible property of the Third Party
Information pane to the Third Party Involved (ThirdPInvolved) parameter
value using the Mappings tab:

1. Click the Third Party Information pane so that its Properties view is
displayed.

2. Click the Mappings tab in the selected pane’s Properties view.

3. In the Mappings tab view, the right pane displays the bindable properties of
the selected Third Party Information pane. The left pane displays the
bindable source properties to which the target elements are bound. It displays
the Third Party Information pane and its ancestors all the way up to the
containing form and also includes the form parameters and data fields.

4. Drag the Third Party Involved (ThirdPInvolved) parameter from the source
tree and drop it over the Third Party Information pane’s Visible property in
the target tree.

5. This creates a bidirectional binding and is represented by a connecting line.

6. You need to edit this binding to change it to an unidirectional binding. Double
click the connecting line to open the Edit Binding dialog box.

7. Select is updated by Third Party Involved (ThirdPInvolved) option.

8. Click Finish.

9. The connecting line now has an arrow end-point representing a unidirectional
binding.
TIBCO Business Studio Forms

| 31
Figure 21 Adding Binding from the Mappings Tab

Configure the Interview Witness Form

Make the following changes to the Interview Witness form:

1. Add one vertical pane above the Interview Witness pane.

2. Change the new pane’s Name property to witness_info_pane and the Label
property to Witness Contact Information.

3. Click the original Interview Witness pane.

4. Change its Name property (root) to accident_info_pane and the Label
property to Accident Information.

5. Drag the following controls from the Accident Information pane to the
Witness Contact Information pane: Witness Name and Witness Phone.

6. Change the Witness Contact Information pane’s control as follows:

— Witness Name into Name

— Witness Phone into Phone

7. In the Accident Information pane, verify that control labels are:

— Time of Accident (previously Accident Time)

— Customer Description (previously Accident Description)

— Witness Description

— Witness Status
 TIBCO Business Studio Forms

32 | Tutorial 1: Forms, Panes, and Controls
8. Change the type of the Customer Description and Witness Description
controls from Text to Text Area. On the Properties tab, specify values of 4 for
Rows and 60 for Columns for each.

Add a Button

Add a button to the row of buttons at the bottom of the form.

1. Select the button type Close in the Palette and drag it and drop between the
Close and Submit buttons in the Navigation pane.

Figure 22 Add a Button

Rename Buttons 2. In the General tab for each of the buttons, type new labels: for buttons, from
left to right:

— Cancel leave as is

— Close Change label into Failed - Try Again

— Close (the new button) Specify label as Failed - Do Not Try Again

— Submit into Completed

With their new labels, the configured buttons should now look like this:

Summary of Tutorial 1
In this tutorial, you learned how to generate forms from user tasks in a business
process, organize and rearrange the objects on a form, and configure the panes
and controls on the form by modifying their properties on the property views.
TIBCO Business Studio Forms

| 33
Tutorial 2: Customizing the Appearance of a Form

This tutorial illustrates techniques for refining the appearance of a form. In this
tutorial, you will do the following:

• Task A: Change the Background Colors of Panes on page 33

• Task B: Change the Label Width Property of the Panes on page 36

• Task C: Preview of Finished Forms on page 38

Task A: Change the Background Colors of Panes
Use background colors to make forms and panes more colorful, and to help users
find their way through a complex form by visually grouping related controls. In
this section, you will configure the background colors of the panes on the Capture
Claim form.

1. Click the Customer Information pane of the Capture Claim form.

2. On the Layout tab of the pane’s Properties sheet, clear Inherit from Parent, as
in Figure 23.

Figure 23 Edit Pane’s Layout

3. Click the BG Color field to open the color picker for this pane’s background
color.

The Color Picker pop-up window opens.

4. Click the Define Custom Colors button.

The expanded color picker opens, as in Figure 24.
 TIBCO Business Studio Forms

34 | Tutorial 2: Customizing the Appearance of a Form
Figure 24 Expanded Color Picker

5. In the expanded color picker, click one of the undefined (black) squares in the
Custom colors group and type the following values in the RGB definition
fields:

6. Save the custom color by clicking the Add to Custom Colors button in the
color picker. This will make it easier to reuse the color in the Interview
Witness form.

7. Click OK to set the Customer Information background to the new color.

Color Property Value

Red 238

Green 238

Blue 238

Be sure to save any custom background colors that you might want to reuse. A
saved color will appear in the Custom Colors palette of the color picker, and will
be available to panes in other forms in this business process, as well as other
panes on the same form.

Note that the Windows color picker saves each custom color to one of the 14 color
boxes that are arranged in two rows beneath the Basic colors section. Each of
these boxes is black until it is used to hold a custom color. Click one of the unused
boxes to hold the custom color before you click Add to Custom Colors, or the
color you add may overwrite a color you previously saved.
TIBCO Business Studio Forms

| 35
8. Repeat steps 1 through 5 for the Accident Information pane to set its
background color to light blue with these values:

9. Again, save the custom color by clicking the Add to Custom Colors button in
the color picker. This color will be reused in the next two panes of this form, as
well as in the Interview Witness form.

10. Click OK to set the Accident Information pane’s background to the new
color.

11. Click the Third Party Information pane. Use the procedure above to set its
color to the saved custom blue.

12. Click the Witness Information pane. Use the procedure above to set its color
to the saved custom blue.

13. Click the message pane to set the background color for this pane to pale red
with these values:

14. Set the Margin property for the message pane to 20 to allow space between
the pane and the buttons.

15. Now that your custom colors are defined, you can quickly set the background
colors for the panes of the Interview Witness form.

Color Property Value

Red 194

Green 223

Blue 254

Setting the background of the Third Party Information and Witness Information
panes to the same pale blue as that of the Accident Information pane, suggests
visually to the user that, although they are shown only when relevant to a
particular claim, the two additional panes belong with the Accident Information
pane in terms of content and function. Using background colors in this way helps
users more quickly comprehend the layout and organization of a form.

Color Property Value

Red 255

Green 128

Blue 128
 TIBCO Business Studio Forms

36 | Tutorial 2: Customizing the Appearance of a Form
Set the color to pale gray for the Witness Contact Information pane, blue for
the Accident Information pane, and red for the message pane.

16. Set the Margin property for the message pane of the Interview Witness form
to 20, as you did with the Capture Claim form’s message pane.

Task B: Change the Label Width Property of the Panes
With the default settings, each pane is set to Use Form Defaults to determine the
Child Labels settings for the controls it contains, as shown in Figure 25.

Figure 25 Child Labels Settings

In the above example, then, the Label Width property for controls placed in this
pane is not 120 (that is, the value in the Label Width field is ignored), but is based
on form settings.

If no width is set at the form level, each vertical pane will align its controls so that
all the fields it contains are vertically aligned, though their labels are of differing
widths. This is done on a pane-by-pane basis, so that the fields on different panes
won’t necessary be vertically aligned.

In this section, you will modify the Child Label properties at the pane level so that
all controls on the form have their fields vertically aligned. To do this, you will set
the label width (in pixels) for all fields to a length sufficient to contain the longest
label. In addition, you will set the label position property to left instead of top so
that control labels appear to the left of the control.

Modify the Form Level Child Labels Properties

To edit a form so that the labels are the same width as the control labels:

1. Click the Capture Claim form outside of any pane to select the form itself.

2. Click the Child Labels tab.
TIBCO Business Studio Forms

| 37
Figure 26 Edit the Child Labels Settings

3. Make sure that Inherit from System Defaults check box is cleared.

4. Type 200 in the Label Width field.

5. Click inside the Customer Information pane (but not inside any control) to
select the pane.

6. Click the Child Labels tab on the Properties View.

7. Clear the Inherit From Parent check box.

8. Set the Label Width to 200 and the Label Position to left.

9. Repeat steps 5 through 8 for the other panes: Accident Information, Third
Party Information, and Witness Information.

After completing this procedure, all controls on the form will be vertically
aligned and the pane labels (as indicated by the underline rule beneath the
label text) will be the same width as the control labels (as indicated by the
left-hand edge of the editable fields).

10. Using the same procedure, but using a width of 230 pixels, configure the
labels for the panes of the Interview Witness form:

a. Select the form.

b. Click the Child Labels tab.

c. Clear Inherit from System Defaults.

d. Change the Label Width to 230.
 TIBCO Business Studio Forms

38 | Tutorial 2: Customizing the Appearance of a Form
11. Using the same procedure, configure the control labels Witness Contact
Information and Accident Information on the Interview Witness form:

a. Select each pane in turn and click the Child Labels tab.

b. Clear Inherit From Parent.

c. Set the Label Width to 230.

d. Set the Label Position to left.

All controls on the Interview Witness form will now be vertically aligned and
the pane labels will be the same width as the control labels.

Task C: Preview of Finished Forms
After you have finished all steps described in the first tutorial and tasks A and B,
the Interview Witness form appears as displayed in Figure 27.

Figure 27 Tutorial 2: Interview Witness Form Design Page

The Capture Claim form appears as displayed in Figure 28.
TIBCO Business Studio Forms

| 39
Figure 28 Tutorial 2: Capture Claim Form, Design Page
 TIBCO Business Studio Forms

40 | Tutorial 2: Customizing the Appearance of a Form
Summary of Tutorial 2
This tutorial showed how to change some of the visual characteristics of a form to
make the form more pleasing in appearance and easier to use. The background
color can be used to set off groups of controls that belong together, and the label
widths can be adjusted so that all fields on the form are vertically aligned.
TIBCO Business Studio Forms

| 41
Tutorial 3: Validations

This tutorial shows how use scripts to create validation rules for controls. These
scripts will validate the data specified by the user at runtime. In this tutorial, you
will create validation scripts for individual controls on the Capture Claim form.

To complete this tutorial, follow these steps:

• Task A: Switch to Solution Design Mode on page 41

• Task B: Add Validation for Phone Field on page 42

• Task C: Add Syntax Validation for Email Field on page 45

• Task D: Add a Second Validation for Email Field on page 46

• Task E: Add Validation for Date of Birth Field on page 46

• Task F: Examine Auto-Generated Validation for Age Field on page 47

• Task G: Edit Validation for Claim Amount Field on page 48

• Task H: Add Validation for Time of Accident Field on page 49

• Task I: Add Validation for Phone Field on page 49

Task A: Switch to Solution Design Mode

To change mode from Business Analysis to Solution Design, click the “triangle
and rule” toolbar button to open the dropdown list that lets you select the desired
mode.

Figure 29 Change to Solution Design Mode.

You must be in the Solution Design mode to create scripts, or to see the
Validations tabs in the property sheets.
 TIBCO Business Studio Forms

42 | Tutorial 3: Validations
Task B: Add Validation for Phone Field
This validation script checks the phone number specified by the user to make sure
it is in a format that can be properly handled by our business process application.

1. On the Capture Claim form, click the Phone field.

2. Click the Validations tab on the control’s Properties View.

3. Click the Add New Validation button.

The Define Validation page of the Define Validation dialog opens.

Figure 30 Define Validation Page

4. In the Name field type the following:
phone_number_syntax

5. Select On Value Change radio button.

6. Type the following JavaScript code in the Script text area:
TIBCO Business Studio Forms

| 43
//Retrieve the phone value
var phone = this.getValue();
if(phone != null && phone != ""){
 //verify it is in the format 888-888-8888
 var strippedPhone = '';
 var strippedPhone = '';
 for(var i=0; i<phone.length; i++){
 var c = phone.charAt(i);
 var isNonDigitChar = isNaN(parseInt(c));
 if(!isNonDigitChar){ // check if c is a digit
 strippedPhone += c;
 }
 }
 strippedPhone.length == 10;
} else{
 true;
}

7. Select the Message type as Custom and type the following text in the
Message area:
Phone number must be of the form: (888) 888-8888.
 TIBCO Business Studio Forms

44 | Tutorial 3: Validations
Figure 31 Completed Validation Definition for the Phone Field
TIBCO Business Studio Forms

| 45
An error message will be displayed if text is specified in an invalid format.

8. Click Finish.

Task C: Add Syntax Validation for Email Field
1. Click the Email field.

2. Click the Validations tab on the control’s Properties View.

3. Click the Add New Validation button.

The Define Validation dialog opens.

4. In the Name field type the following:
email_syntax

5. Click the radio button On Form Submit.

6. Type the following JavaScript code in the Script text area:

var email = this.getValue();
if(email != null && email != ""){
 //Match format xxx@xxx.xxx
 var match = RegExp("(.)+@(.)+\\.(.)+").test(email);
 match;
} else{
true;
}

7. Type the following text in the Message area:
Email must be of the form xxx@xxx.xxx.

8. Click Finish.

When you select On Value Change, the error message is displayed when the user
specifies an invalid value and then clicks in another field, that is, at the moment
the Phone field loses focus. The other option is to set the validation script to run
when the form is submitted, or when the user has completed the form and clicked
the Submit button. Consider which of the two options is more convenient for
your user, depending on the nature of the validation. Generally, validations of the
syntax of specified values are best performed when the field value is updated.

When more than one control is involved, such as when you want to ensure that at
least one of two or more fields are filled in, you can choose On Form Submit. You
will see this below, in the validation for the Email field, when you create a
validation script to ensure that the user provides either the customer’s phone
number or email address, but not necessarily both.
 TIBCO Business Studio Forms

46 | Tutorial 3: Validations
Task D: Add a Second Validation for Email Field
This validation will ensure that a value is specified for either the Email or Phone
field. The user is not required to provide values for both in this application.

1. Click the Email field.

2. Click the Validations tab on the control’s Properties View.

3. Click the Add New Validation button.

The Define Validation dialog opens.

4. In the Name field specify the following:
email_or_phone_required

5. Click the radio button On Value Change.

6. Type the following JavaScript code in the Script text area:

//Check one of email and phone fields are entered
if((f.CustPhone == null || f.CustPhone == "") &&
 (f.CustEmail == null || f.CustEmail == "")){
 false;
 } else{
 true;
 }

7. Type the following text in the Message area:
Either customer phone number or email address must be entered.

8. Click Finish.

Task E: Add Validation for Date of Birth Field
1. Click the Date of Birth field.

2. Click the Validations tab on the control’s Properties View.

3. Click the Add New Validation button.

The Define Validation dialog opens.

4. In the Name field type the following:
birth_date_validation

5. Click the radio button On Value Change.

Using names for validation scripts that describe their function makes it easier for
another designer to understand the form later if modifications must be made.
TIBCO Business Studio Forms

| 47
6. Type the following JavaScript code in the Script text area:

var date = this.getValue();
var now = new Date();
//Validate birth date some time before today's date and
//within 120 years
if(date == null ||
 (date < now && now.getFullYear() - date.getFullYear() < 120)){
 true;
} else{
 false;
 }

7. Type the following text in the Message area:
Enter a valid birth date which is a past date and in the range
of last 120 years.

8. Click Finish.

Task F: Examine Auto-Generated Validation for Age Field
In this task you will examine an auto-generated validation script and edit its error
message. Form fields, like the Age field, that are auto-generated from user task
parameters that are themselves based on Integer Number data fields include a
validation script that checks that the runtime input is a number. The
auto-generated script also checks that the value is not longer than 3 digits. The
allowed length is based on the length property of the data field from which the
control is generated.

To see the Properties View for the CustAge data field:

1. Select the data field in the Project Explorer under the process package for
ProcessWithNoForms.
 TIBCO Business Studio Forms

48 | Tutorial 3: Validations
Figure 32 Find Date Field CustAge

2. In the Properties view, click the arrow next to References to see which user
tasks reference the data fields.

Notice the properties of the data field, including the Length property (3
digits). The Properties View also shows that the data field is used by the
Capture Claim user task.

The customer age property was set when data fields were added as
parameters to the user task, a step that was performed for you when the
business process was created. The script is set by default to be executed when
the form is submitted.

Task G: Edit Validation for Claim Amount Field
In this task you will examine another auto-generated validation script, change the
setting for when input data are validated, and edit the error message.

1. Click the Claim Amount field in the Customer Information pane.

2. Click the Validations tab on the control’s Properties View.

3. In the Execute When dropdown list, select On Form Submit.

Validation is now performed as soon as the user specifies a value for this field.

4. Verify that the following JavaScript code is in the Script text area:
this.getForm().numberFormat(this.getValue(),17,2);

5. Verify that the text in the Message area is as follows:
Claim Amount not valid. Expecting numeric format 15.2.
TIBCO Business Studio Forms

| 49
Task H: Add Validation for Time of Accident Field
1. Click the Time of Accident field.

2. Click the Validations tab on the control’s Properties View.

3. Click the Add New Validation button.

The Define Validation dialog opens.

4. In the Name field type the following:
accident_time_validation

5. Click the radio button On Value Change.

6. Type the following JavaScript code in the Script text area:

//Accident time must not be in the future
var accTime = this.getValue();
var now = new Date();
if(now < accTime){
 false;
} else{
 true;
 }

7. Edit the text in the Message area to the following:
Accident time must not be in the future.

8. Click Finish.

Task I: Add Validation for Phone Field
1. In the Witness Information pane, click the Witness Phone field.

2. Click the Validations tab on the control’s Properties View.

3. Click the Add New Validation button.

The Define Validation dialog opens.

4. In the Name field type the following: phone_number_syntax

5. Select the On Value Change. radio button.

6. Type the following JavaScript code in the Script text area:

//Retrieve the phone value
var phone = this.getValue();
if(phone != null && phone != ""){
 //verify it is in the format 888-888-8888
 var strippedPhone = '';
 TIBCO Business Studio Forms

50 | Tutorial 3: Validations
 var strippedPhone = '';
 for(var i=0; i<phone.length; i++){
 var c = phone.charAt(i);
 var isNonDigitChar = isNaN(parseInt(c));
 if(!isNonDigitChar){ // check if c is a digit
 strippedPhone += c;
 }
 }
 strippedPhone.length == 10;
} else{
 true;
}

7. Type the following text in the Message area:
Phone number must be of the form (888) 888-8888.

8. Click Finish.

Summary of Tutorial 3
This tutorial showed how to create validations for fields on a form to ensure that
valid data are specified by the user at runtime.
TIBCO Business Studio Forms

| 51
Tutorial 4: Rules, Events, and Actions

This tutorial shows how to create rules that fire when a pre-defined event(s) occur
and invoke actions associated with them.

The following tasks are explained:

• Task A: Create a Rule to Compute Age (Capture Claim Form), page 51

• Task B: Create Rule to Update Required Option for Guardian When Age < 21,
page 53

• Task C: Create Rule to Round Amount to Nearest Dollar, page 56

• Task D: Create Rules that Display Hint on Specifying Claim Amount Controls,
page 58

• Task E: Create Rules that Hide Hints on Exiting Amount Controls, page 60

• Task F: Create Rules to Display Context-Specific Hints on Specifying
Customer Description Control, page 61

• Task G: Create Rules to Hide Hints on Exiting Customer Description Control,
page 63

• Click Finish twice., page 63

Task A: Create a Rule to Compute Age (Capture Claim Form)
The rule you will create in this section will:

• Listen for changes in the value of Birth Date (BirthDate) parameter.

• Create a computation action that will compute age based on updates to the
value of BirthDate parameter and Customer Age(CustAge) parameters.
Since there is already a binding between Customer Age(CustAge) parameter
and Age(CustAge) control, the Age control will be automatically updated
with the computed value.

1. Select the parameter Customer Age (CustAge) from the Data node of the
Outline View on the Capture Claim form.

It is best practice to listen on parameter update events and modify the parameter
values as part of rules that will propagate changes through bindings rather than
directly updating the control values. This will avoid the need to write the form
open scripts when parameter change events occur as part of form initialization.
 TIBCO Business Studio Forms

52 | Tutorial 4: Rules, Events, and Actions
Figure 33 Add Binding for the Customer Age Parameter

2. Click the Add Binding button .

The Create Binding dialog opens.

3. Select the radio button Update this property using Computation Action and
click Next.

4. In the window Rule: Edit Computation Action, type following JavaScript
code as part of an expression that computes the age based on the birth date
specified:

var birthDate = context.newValue;
context.form.logger.info('compute_age: Birth date received='

+ birthDate);
if (birthDate != null) {

var now = new Date();
var age = now.getFullYear() - birthDate.getFullYear();
//compute age
if (now.getMonth() <= birthDate.getMonth() && now.getDate()

<= birthDate.getDate()) {
age = age--;

}
if (age <= 0) {

age = 0;
}
context.form.logger.info('compute_age: Returning the age

value=' + age);
//populate age field with age computed.
age;

} else {
0;

}

5. Click Next.

The Rule: Pick Events page opens.
TIBCO Business Studio Forms

| 53
6. Click (plus) button to select an event.

The Select Event dialog opens.

Figure 34 Select Event Dialog

7. Select Update property of the parameter Birth Date (BirthDate).

8. Click OK.

9. Click Finish.

Task B: Create Rule to Update Required Option for Guardian When Age < 21
As part of this task, you will create a rule that updates the required option on the
control Guardian Name based on Customer Age parameter value.

1. Select parameter Customer Age (CustAge) from the Data node of Outline
View on the Capture Claim form.

2. Click the Rules tab on the Properties View.

Figure 35 Select the Event Type

Test your script by clicking the GWT Preview tab, specifying a value for the birth
date, and pressing the Enter key. The calculated age will appear in the Age field.
 TIBCO Business Studio Forms

54 | Tutorial 4: Rules, Events, and Actions
3. Click Add button next to the event type Update (update).

The Rule Details page opens.

Figure 36 Rule Details Page

4. Type the following values for the input fields on Rule Details screen and click
Next:

— Name: set_guardian_required

— Label: Guardian required when Age < 21.

5. Leave the Update (update) event type in the Rule: Pick Events page
unchanged and click Next.

The page Define Actions opens.

Figure 37 New Rule Dialog, Define Actions Page
TIBCO Business Studio Forms

| 55
6. Click (plus) button .

The page Add Action to Rule opens.

7. Select the radio button Create a new action and then Script Action.

8. Click Next.

The Enter the action details page opens.

Figure 38 Enter the Action Details

9. Type the following values in the input fields and click Finish.

— Name: set_guardian_required

— Label: If customer age is less than 21, it will set the guardian
field as required.

10. Type the following script:

context.form.logger.info('set_guardian_required: Customer age
received:' + context.newValue);

var age = context.newValue;
control.GuardianName.setRequired(age < 21);

11. Click Finish and again Finish twice.

You can test this rule by selecting a birth date that is less than 21 years ago from
today.
 TIBCO Business Studio Forms

56 | Tutorial 4: Rules, Events, and Actions
Task C: Create Rule to Round Amount to Nearest Dollar
This task is very similar to Task B: a rule is defined on event Exit (exit) of the
controls Claim Amount (ClaimAmount) and Third Party Amount
(ThirdPAmount) that will invoke a shared action round_value, which rounds to
the nearest integer the amount specified as part of the control.

1. Select the Claim Amount control in the Customer Information pane on the
Capture Claim form.

2. Click the Rules tab.

Figure 39 Claim Amount Control, Rules Tab

3. Click the Add Rule button against the event type Exit (exit).

4. In the New Rule wizard, Rule Details page, add the following inputs and click
Next:

— Name: round_amount

— Label: Round amount to nearest dollar.

5. Leave the Exit (exit) event type unchanged in the Rule: Pick Events page and
click Next.

6. In the Add Action to Rule page, click (plus) button to add an action.

The Add Action wizard, Add Action to Rule page opens.

7. Select the radio buttons Create a new action and then the radio button Script
Action and click Next.

8. In the Enter the action details page, type following values in the input fields.

— Name: round_value

— Label: Round the current value.
TIBCO Business Studio Forms

| 57
9. Type the following script and click Finish.

var control = context.control;
var value = control.getValue();
var floatVal = parseFloat(value);
var roundValue = Math.round(floatVal);
if (floatVal != roundValue) {

context.form.logger.info('float value' + floatVal + ' and round
value' + roundValue + ' are different');

control.setValue(roundValue);
}
else {

context.form.logger.info('float value' + floatVal + ' and round
value' + roundValue + ' are equal');

}

10. In the Define Actions page, select the Shared check box, which will make the
action shared, and click Finish.

You should see this action appear under 'Shared Actions' in the Outline view.

11. Edit the newly created rule and add an additional event by selecting the rule
Round amount to nearest dollar in the Outline View, and then selecting the
Events tab.

Figure 40 Edit an Event

12. Click (plus) button and in the Select Event page select the event type
Third Party Amount (ThirdPAmount), Update and click OK.

This will start the rule on both controls: Claim Amount and Third Party
Amount.
 TIBCO Business Studio Forms

58 | Tutorial 4: Rules, Events, and Actions
Figure 41 Round_amount Event Defined

Task D: Create Rules that Display Hint on Specifying Claim Amount Controls
This task creates a rule that displays a hint to a user when specifying the Claim
Amount or Third Party Amount controls.

1. Select Claim Amount control on the Capture Claim form.

2. Click the Rules property tab.

3. Click the Add button against the event type Enter (enter).

4. In the New Rule wizard, Rule Details page, add following inputs on the Rule
Details screen and click Next:

— Name: show_rounding_hint

— Label: Display hint on entering claim amount controls.

5. In the Rule: Pick Events page, leave the Enter (enter) event type unchanged
and click Next.

6. Click (plus) button in the Define Actions page.

The Add Action to Rule page opens.

7. Select options Create a new action and Script Action and click Next.

You can test this rule by adding a value with decimals in the amount field, and
when you move to next field the amount will be rounded automatically.

The hint displayed here will not be localizable. Localizing dynamically displayed
hints is outside the scope of this tutorial.

TIBCO Business Studio Forms

| 59
8. Type the following values in the input fields:

— Name: show_rounding_hint

— Label: Display hint on entering.

9. Type this script and click Finish:

var hint = "The value will be rounded to nearest dollar";

context.control.setHint(hint);

10. In the Define Actions page, select Shared check box against the action.

This will make the action shared.

11. Click Finish.

12. Edit the newly created rule and add an additional event by selecting the rule
Display hint on entering claim amount controls in the Outline View, and
then selecting the Events tab.

13. Click (plus) button and in the Select Event page select the event type
Third Party Amount (ThirdPAmount), Update and click OK.

This will make the rule to be invoked on specifying both the controls Claim
Amount and Third Party Amount.

As a result, whenever you specify data for the controls Claim Amount and Third
Party Amount, the hint will be displayed.

Note that the control Third Part Amount will be visible only if the third party was
involved in the accident, which is not the case in this tutorial. In the step Set Third
Party Information Pane on page 28 we decided to make the Third Part
Information pane invisible in case there is no third party involved in this accident.
 TIBCO Business Studio Forms

60 | Tutorial 4: Rules, Events, and Actions
Task E: Create Rules that Hide Hints on Exiting Amount Controls
This task creates a rule that hides the hint created in the previous rule as part of
Task D when exiting the Claim Amount or Third Party Amount controls.

1. Select Claim Amount control on the Capture Claim form.

2. Click the Rules tab.

3. Click the Add button against the event type Exit (exit).

4. Add the following inputs on the Rule Details screen and click Next:

— Name: hide_rounding_hint

— Label: Hide hint on exiting claim amount controls.

5. In the Rule: Pick Events page, leave the Exit (exit) event type unchanged in
the Choose Events page and click Next.

6. Click (plus) button in the Define Actions page.

The Add Action to Rule page opens.

7. Select options Create a new action and Script Action and click Next.

8. Type the following values in the input fields.

— Name: hide_rounding_hint

— Label: Hide hint on exiting.

9. Type this script and click Finish:
var hint = "";

context.control.setHint(hint);

10. In the Define Actions page, select Shared check box against the action.

This will make the action shared.

11. Click Finish.

12. Edit the newly created rule and add an additional event by selecting the rule
Hide hint on exiting claim amount controls in the Outline View, and then
selecting the Events tab.

13. Click (plus) button and in the Select Event page select the event type
Third Party Amount (ThirdPAmount), Update and click OK.

This will start the rule when specifying the controls Claim Amount and
Third Party Amount.

As a result, whenever you exit the controls Claim Amount and Third Party
Amount, the hint will be hidden.
TIBCO Business Studio Forms

| 61
Task F: Create Rules to Display Context-Specific Hints on Specifying Customer
Description Control

This task creates a rule that displays the hint to user when specifying the
description for the field Description in the Accident Information pane.

1. Select the Customer Description control in the Accident Information pane of
the Capture Claim form.

2. Click the Rules tab.

3. Click the Add button against the event type Enter (enter).

4. Add following inputs on the Rule Details page and click Next:

— Name: show_personal_injury_hint

— Label: Display conditional hint based on injury flag.

5. In the Rule: Pick Events page, leave the Enter (enter) event type unchanged
and click Next.

6. Click (plus) button in the Define Actions page.

The Add Action to Rule page opens.

7. Select options Create a new action and Computation Action and click Next.

8. Type the following values in the input fields.

— Name: show_conditional_hint

— Label: Sets the hint based on PesonalInjury flag.

— Destination: Select the Hint property of the control Accident
Description(AccDescription) in the Choose Destination page and click
OK.

Make sure that you have selected Show Controls and Panes as a filter in the
upper right corner of the screen and click Finish.
 TIBCO Business Studio Forms

62 | Tutorial 4: Rules, Events, and Actions
Figure 42 Choose Hint Property of the AccDescription Control

9. Type the following expression:

var personalInjury = control.PersInjury.getValue();
var hint = '';
if (personalInjury == 'YES') {

hint = 'Please describe personal injury.';
}
hint;

10. Click Finish twice.

As a result of this rule, when option yes is selected for Personal Injury a hint will
be displayed when specifying the Description value.
TIBCO Business Studio Forms

| 63
Task G: Create Rules to Hide Hints on Exiting Customer Description Control
This task creates a rule that hides the hint that is created in the previous rule as
part of Task F when exiting the Description control.

1. Select Customer Description control on the form Capture Claim and click the
Rules tab.

2. Click the button against the event type Exit (exit).

3. In the Create New Rule wizard, add following inputs in the Rule Details
page and click Next:

— Name: hide_conditional_hint

— Label: Hide hint on exiting claim amount controls.

4. Leave the Exit (exit) event type unchanged and click Next.

5. Click (plus) button in the Define Actions page.

The Add Action to Rule page opens.

6. Select options Create a new action and Computation Action and click Next.

7. Type the following values in the input fields.

— Name: hide_conditional_hint

— Label: Hide the hint.

— Destination: Select the Hint property of control Accident Description
(AccDescription) and click OK.

— Destination: Select the Hint property of the control Accident Description
(AccDescription) in the Choose Destination page and click OK.

Make sure that you have selected Show Controls and Panes as a filter in the
upper right corner of the screen and click Finish.

8. Type the following expression: '';

9. Click Finish twice.

Whenever you exit the Customer Description control, its hint will be hidden.
 TIBCO Business Studio Forms

64 | Tutorial 4: Rules, Events, and Actions
Task H: Defining Custom Actions for Buttons
In most cases, buttons on a form are configured with one of the pre-defined
actions provided in TIBCO Forms. The left-most button on the Interview Witness
form, for example, was created automatically when the form was generated. This
button is configured with the standard rule Cancel that invokes the system action
Cancel when the Cancel button is selected.

However, the Interview Witness form also contains three custom buttons to
control the flow of the business process:

• If the button labeled Failed - Try Again is clicked, the flow returns once again
to the Interview Witness user task so that another attempt will be made to
contact the witness.

• The button labeled Failed - Do Not Try Again and

• The button labeled Completed send the process to its end event.

In this step, you will write the action scripts that control the functionality of these
custom buttons. Table 4 shows three custom buttons and the action associated
with the event Select - when the control is clicked or otherwise selected.

The action defined for each of the three custom buttons invokes the standard
Submit action that is defined by the system. Before doing so, each action defines
the witness status by setting the value of the WitStatus control, which is used in
the logic of the Contact Witness Again gateway to determine the flow of the
business process. A value of TRY_AGAIN restarts the Interview Witness user task.
A value of FAIL or SUCCESS moves the Claims Process business process to its
end event.

Perform the following procedures to configure the custom buttons.

Table 4 Custom Buttons

Button Label Custom Action Name Description of Functionality

Failed - Try
Again

failed_try_again This action sets the witness_stat variable to a value of
TRY_AGAIN, and then invokes the standard submit
action that is defined by the system.

Failed - Do
Not Try
Again

failed_dont_try_again This action sets the witness_stat variable to a value of
FAIL, and then invokes the standard submit action
that is defined by the system.

Completed success This action sets the witness_stat variable to a value of
SUCCESS, and then invokes the standard submit
action that is defined by the system.
TIBCO Business Studio Forms

| 65
Configure the Failed - Try Again Button

1. Open the Interview Witness form in the Form Designer.

2. Click the Failed - Try Again button and view its Properties View.

3. Click the Rules tab on the Properties View.

4. Click the Add button against the event type Select (select).

5. Add following inputs in the Rule Details page and click Next:

— Name: failed_try_again

— Label: Witness status = "TRY_AGAIN"

6. Leave the Select (select) event type unchanged in the Rule: Pick Events page
and click Next.

7. Click (plus) button in the Define Actions page.

The Add Action to Rule page opens.

8. Select options Create a new action and Script Action and click Next.

9. Type the following values in the input fields.

— Name: failed_try_again

— Label: Witness status = "TRY_AGAIN"

10. Type this script:
this.getForm().getControl("witstatus").setValue("TRY_AGAIN");

this.getForm().invokeAction("submit",this);

11. Click Finish twice.

Configure the Failed - Do Not Try Again Button

1. Open the Interview Witness form in the Form Designer if it is not already
open.

2. Click the Failed - Do Not Try Again button and view its Properties View.

3. Click the Rules tab on the Properties View.

4. Click the Add button against the event type Select (select).

5. Add following inputs in the Rule Details page and click Next:

— Name: failed_dont_try_again

— Label: Submit with witness status = "FAILED"

6. Leave the Select(select) event type unchanged in the Choose Events page
and click Next.
 TIBCO Business Studio Forms

66 | Tutorial 4: Rules, Events, and Actions
7. Click (plus) button in the Define Actions page.

The Add Action to Rule page opens.

8. Select options Create a new action and Script Action and click Next.

9. Type the following values in the input fields.

— Name: failed_dont_try_again

— Label: Submit with witness status = "FAILED"

10. Type this Script:
this.getForm().getControl("witstatus").setValue("FAILED");

this.getForm().invokeAction("submit",this);

11. Click Finish twice.

Configure the Completed Button

1. Open the Interview Witness form in the Form Designer.

2. Click the Completed button and view its Properties View.

3. Click the Rules tab on the Properties View.

4. Click the Add button against the event type Select (select).

5. Add following inputs on Rule Details page and click Next:

— Name: success

— Label: Submit with witness status = "SUCCESS"

6. Leave the Select (select) event type unchanged in the Choose Events page
and click Next.

7. Click (plus) button in the Define Actions page.

The Add Action to Rule page opens.

8. Select options Create a new action and Script Action and click Next.

9. Type the following values in the input fields.

— Name: success

— Label: Submit with witness status = "SUCCESS"

10. Type this script
this.getForm().getControl("witstatus").setValue("SUCCESS");

this.getForm().invokeAction("submit",this);

11. Click Finish twice.
TIBCO Business Studio Forms

| 67
Summary of Tutorial 4
In this tutorial, you wrote a number of action scripts that enhance the
functionality of the Capture Claim and Interview Witness forms. You learned
how to create rules to compute age, update options, round amounts, display
hints, hide hints, and so on.

Finally, you learned how to create custom submit buttons that work in
conjunction with gateways to control the flow of the business process.
 TIBCO Business Studio Forms

68 | Tutorial 4: Rules, Events, and Actions
TIBCO Business Studio Forms

| 69
Chapter 2 Concepts

This section defines concepts and terminology related to creating forms in TIBCO
Business Studio.

Topics

• The Modeling Environment for Forms, page 70

• The Form, page 71

• Form Builder and Form Validation, page 75

• Bindings, page 78

• Actions, page 82

• Rules, page 84

• The Design Tab and Preview Tabs, page 86

• Outline View, page 94

• Using the Business Object Model, page 101

• Cross-Resource References, page 107

• Mobile Forms

• Problem Markers, page 123
 TIBCO Business Studio Forms

70 | The Modeling Environment for Forms
The Modeling Environment for Forms

This guide concentrates on features and procedures that are specific to creating
and deploying forms. The context for performing these tasks is the Modeling
perspective of TIBCO Business Studio. An understanding of the terms and
concepts explained in the TIBCO Business Studio guides and tutorials on Process
Modeling and the Business Object Modeler are useful for performing the
procedures used to create and deploy forms.

In addition, familiarity with the basics of the Eclipse environment will make it
easier to work with TIBCO Business Studio and Forms. You can refer to The
Workbench on page 298 to get a general idea about the Eclipse workbench. You
can also see the Concepts chapter in the Workbench User Guide for information
about projects, folders, perspectives, views, menus, and toolbars as they are
applied in Eclipse. That guide, as well as all guides related to TIBCO Business
Studio and your Eclipse environment, can be accessed by clicking Help Contents
on the Help menu.

Working with Forms
Forms can be viewed through the Design and Preview mode, as explained in The
Design Tab and Preview Tabs on page 86.

You can use the Outline View for a quick and convenient way to manipulate a form
or to navigate within a form, as explained in Outline View on page 94.

The Eclipse Workbench User Guide referred to above describes the ways you can
customize your Eclipse environment to suit your personal preferences.
TIBCO Business Studio Forms

| 71
The Form

Forms can be created as a stand-alone resources. A form is a model of a user
interface designed for a particular task or type of task. When deployed to an
execution environment, the form drives the user interface or interaction with the
human who has been assigned the associated task. The user interface helps the
user to complete the task quickly and correctly by presenting information that is
relevant to the task, asking for information that is required, and validating any
information that the user provides. All of these capabilities are modeled within
the form in TIBCO Business Studio.

Forms contain user interface controls and panes as well as input and output
parameters. They may also contain control validations, bindings, actions, and
rules.

Basic Terms for Working with Forms

Form Elements

A form contains two main types of objects in its visual layout: panes and controls.
Each pane and control on a form has a Properties View associated with it, where
you can view and edit the properties that determine the layout and functionality
of that object. See Figure 43 for the form element presentation.

Figure 43 Form Elements
 TIBCO Business Studio Forms

72 | The Form
Panes

Panes are used as a mechanism to control the layout of the form.

Several types of panes are found in the palette. Vertical and horizontal panes
support the visual alignment of controls as well as other nested panes. When
nested inside a special tabbed pane, these panes behave like tab pages. Error
messages from control validations are displayed in a Message pane. Panes can
also specify the default rendering of controls they contain (called child controls),
such as the font and label position.

See Panes on page 303 for more details.

Controls

Controls are user input elements. They include text controls, date and time
controls, radio buttons, check boxes, and images. They enable the display and
capture of data in different ways. Controls have text labels, and usually have
fields that display and accept input from a user. A number of settings can be
configured for a control, such as labels, hints, visibility, fonts, and others. Control
labels, hints, and choice labels can be localized in properties files.

See Controls on page 310 for more details.

Parameters

Parameters represent the data passed between the form and the containing
application. The values of parameters can be bound to the values of controls, or to
the other settings on controls and panes. Output parameters can also be mapped
to controls. The parameter can be an IN parameter, which means the value is
read-only and provided to the form when it is opened. An OUT parameter is
provided by the user and sent back to the containing application. A parameter can
also be IN/OUT.

Panes and controls may be generated automatically from an underlying Business
Object Model (BOM) or an application-specific model in a product making use of
TIBCO Business Studio Forms.

Panes and controls can be added manually by clicking the icon for the desired
object in the palette and then clicking again in the location where you wish to
place the object on the canvas. The object can also be inserted by clicking the item
in the palette and dragging it to the desired location in the canvas.

Ergonomic best practice is to use the “click-move-click” gesture instead of
“click-drag-drop” in order to avoid strain on the Carpel Tunnel that can cause
Repetitive Strain Injury (RSI).
TIBCO Business Studio Forms

| 73
Parameters have unique names within a specific form. Each parameter has a type,
which can either be one of the pre-defined primitive types such as Integer or
DateTime, or a complex type defined by the user in a BOM.

For more details, see Configuring Parameters on page 345.

Validations

Validations are used to check the validity of data specified by the user and specify
an appropriate message to display to the user in the event the validation fails.
Validations are executed either when the form is submitted or when the value of
the control is updated.

Errors and warnings that result from validation are displayed in the Problems
view. Validation messages can be localized.

See Form Builder and Form Validation on page 75 for more details.

Bindings

Bindings are used to synchronize values within a form, such as binding the value
of a parameter to the value of a control, or using the value of one control to update
the visible flag on another control or pane.

See Bindings on page 78 for more details

Actions

An action is a unit of executable functionality. Actions have names and can be
executed from rules or scripts. Predefined system actions include submit, reset,
and validate.

Developers may create two types of custom actions: Script Actions and
Computation Actions.

A script action invokes an arbitrary JavaScript that could be used exercise some
business logic or update other parts of the form. A computation action evaluates
a JavaScript expression and updates a specified property in the form with the
result of that expression.

Custom actions can be flagged as “shared” allowing them to be used in multiple
rules

See Actions on page 82 for more details.
 TIBCO Business Studio Forms

74 | The Form
Rules

Rules are used to encapsulate business logic that is to be executed at certain points
within the form. A rule specifies one or more actions that are to be executed in
response to one or more event triggers within the form.

See Rules on page 84 for more details.
TIBCO Business Studio Forms

| 75
Form Builder and Form Validation

The Form Builder and Validation Builder are Eclipse builders that perform
various post-processing operations on a form model when the project is built.
Generally speaking, the Eclipse auto-build feature will be enabled, which causes
an incremental build to run automatically whenever a file is saved. When you
create a new Business Studio Analysis project that includes forms functionality,
the New Project Wizard configures the project with the Form Builder and
Validation Builder.

The Validation Builder also performs live validation, which occurs automatically
whenever any aspect of the form is modified through the Form Designer canvas,
Outline View, or Property View. Form validations can be configured via the
Preferences dialog at Window > Preferences > Form Designer >
Errors/Warnings.

For each of the validation rules enforced by the Validation Builder, you can use
the dropdown list to configure instances of the condition to be marked as Error,
Warning, Info, or Ignore.

Figure 44 Preferences Dialog for Errors/Warnings

Consult the Eclipse documentation for further information on the Eclipse build
system.
 TIBCO Business Studio Forms

76 | Form Builder and Form Validation
To see a project’s build configuration:

1. In the Project Explorer view, right-click a TIBCO Forms project to display the
Context Menu and click Properties.

2. Click Builders in the left-hand panel.

Note the Validation Builder and Form Builder entries. The functionality of
these builders is described in the sections that follow.

Figure 45 Properties for Forms Tutorial Solution

Form Builder

The Form Builder externalizes display strings from the form model into property
resource files with the path name
/<project>/<form-folder>/<form-name>.properties, where

<project> is the project name,

<form-folder> is the folder containing the form file, and

<form-name> is the unqualified name of the form file, minus the .form file
extension.

To create a localized version of a form, you will make a copy of this .properties
file, rename it by appending the appropriate standard two-character ISO
language code (and, optionally, country and variant codes), and translate the
strings into the desired language.

For more information about how to localize a form, see Localizing a Form on
page 197.
TIBCO Business Studio Forms

| 77
Validation Builder

The Validation Builder performs these functions:

• Analyses the form model for general syntactical and semantic errors and
inconsistencies.

• Applies constraints specific to the target platform/version.

• Reports any such problems as problem markers, which show up in the Problems
View. To make it easier to locate problems, the problem markers for errors also
appear as decorator icons adjacent to the offending form element in the
Project Explorer, the Outline View, and in the Form Designer. For more
information about problem markers, see Problem Markers on page 123.
 TIBCO Business Studio Forms

78 | Bindings
Bindings

TIBCO Business Studio Forms uses bindings to update properties in the runtime
forms data model by connecting attribute values of parameters, controls, and
panes. A binding will always have two endpoints.

Absolute Bindings

An absolute binding can connect the value of a control to the value of a parameter’s
data field, or to one of the child attributes or objects of that parameter.

Setting Bindings
Depending on the properties to be connected, bindings can be added from the
General Properties tab of a control, pane, or a parameter. An optionlist and
radiogroup, a URL and URL Text of Hyperlink, and the URL of an Image control
can also have bindings which you can establish from the Properties tab of these
controls. You can also use the Mappings tab to view, edit, and create bindings.

Set a Binding Between Controls

The General Properties tab for controls, shown in Figure 46, provides a
mechanism for setting bindings between the value or property of one control and
the value or property of another control or parameter.

Click the icon to launch a wizard that allows you set a binding for the given
property or update that property using a rule that specifies a computation action.

Figure 46 Add a Binding for a Control Using the General Properties Tab
TIBCO Business Studio Forms

| 79
When you define a binding for a control, its value is used to update the secondary
properties of another control such as Label, Hint, and so on. Note that the update
is one way only, that is, the secondary properties cannot use bindings to update
the value of the initially selected control.

Set a Binding Between a Control and a Parameter

To connect a control with a parameter, you can use either the General tab of a
control, as in Figure 46, or the parameter dialog for that parameter, as in
Figure 47.

Figure 47 Add a Binding for a Parameter Using Parameter Dialog

For information on working with bindings, see Setting Bindings on page 133.

Set a Binding from the Mappings Tab

You can use the Mappings tab of the Properties view for selected element in the
Form Designer canvas to set bindings. See Working with the Mappings Tab for
further details.

Direction of Bindings
A binding has one of three directions:

• Updated By : This signifies that the targeted value will be updated when
the other value is updated.

However, if the target value changes for any reason, the other value in the
binding will not be affected.

• Update : Updates to this value will cause the other value in the binding to
be updated.
 TIBCO Business Studio Forms

80 | Bindings
Note that control and parameter values can update other properties, but
properties such as control visibility, enabled, required, label, and hint cannot
update other values in a binding.

• Synchronizes With : With this type of binding, updates to either value
will cause the other value to be updated to the same value. Each end of the
binding must be either a control or parameter value.
TIBCO Business Studio Forms

| 81
Assign Binding Both Ways

Two ways binding can be added for controls (only for values) as follows:

1. Add a text control textinput1.

2. Add another text control textinput2.

3. Go to Properties tab of the control textinput1 and click the binding icon for
the Value field.

4. Search for textinput2 control in the list and expand the items under it.

5. Click the Value field of the textinput2 control. You will be able to assign a
binding both ways.
 TIBCO Business Studio Forms

82 | Actions
Actions

Actions are invoked from Rules in response to form events or programmatically
from within a script. An action can be private to a single rule, or shared amongst
multiple rules.

TIBCO Business Studio Forms uses three types of actions:

• System actions These actions, also called built-in actions, are pre-defined and
are used for common tasks such as Submit, Close, Cancel, Reset, Validate, and
Apply.

• Script actions Use JavaScript to create additional custom actions. Script
actions run a specified script, with no other action attached to it.

• Computation actions These actions will update a specified value or property
with the result of an expression written in Javascript. The destination of a
computation action can be the value of a parameter or control, or a secondary
property such as label or hint of a control, or a visible flag for a pane, and so
on. After the script in the computation action is run, it produces a value that
can be used by another action.

Actions can be flagged as “shared” allowing them to be used in multiple rules.

To add an action, right click the Shared Actions system group in the Outline View.

Figure 48 Add an Action in the Outline View

To add and configure actions, see Setting Actions on page 137.

To associate actions with rules, see Setting Rules on page 139.

System actions can be used also by the users working in Business Analysis mode,
while the scripted actions and computation action can be developed only by the
users working in Solution Design mode. Once actions have been defined within a
form by a developer, business analysts can re-use them for similar purposes in
their projects.
TIBCO Business Studio Forms

| 83
Actions Summary Table
The Actions summary table provides a useful overview of the shared actions. To
see each shared action in the current project, select the Shared Actions node in the
Outline View.

Figure 49 Actions Summary Table

This table displays the following columns:

• Name Name of the action. To edit the name, click on the ellipsis (...) button,
which appears when the name is selected. Edit the name using the Enter the
Name page.

• Label Label of the action.

• Edit Displays the text Edit as a hyperlink. When clicked, it will navigate to
the configuration property screen for that Action.

• Type non-editable field that shows either ScriptAction or
ComputationAction.

• Detail non-editable detail of the Action specific to the action type.

— ScriptAction display as much script as fits in the column, with “...” at the
end if truncated.

— ComputationActions display [property] updated by expression:
[script].
 TIBCO Business Studio Forms

84 | Rules
Rules

Rules provide a way to model the behavior or presentation logic of the form with
minimal coding. This makes the logic easier to identify and maintain by both
developers and business analysts.

Rules consist of events and actions. For example, the rule “Guardian required
when Age < 21” is modeled as:

Event: CustAge updated

Action: GuardianName.Required = (CustAge < 21)

Whenever Customer Age changes, the Guardian Name field is marked as
required only if Customer Age is less than 21

Rules are associated with events and actions as follows:

• Events are used to trigger the rules, to define when the actions are performed.
For any rules that are triggered by the same event, they will be executed in the
order in which they are defined in the form model.

• Actions define what will be performed. They can be individually enabled or
disabled in the rule. The actions within a rule will also execute in the order
defined in the form model.

You can add and edit rules in TIBCO Business Studio Forms as described in the
following sections:

• Add a Rule Using the Outline View on page 139 To associate rules with
events and actions, select the appropriate Events or Actions tab.

• Add a Rule Using the Rule Wizard on page 144 When using the Rule Wizard,
you can also remove the rule.

• To select actions and events to associate with a specific rule, see Setting Rules
on page 139.

Business analysts can add rules, edit their general properties and descriptions,
and add events. They cannot create new actions, but they can re-use the already
defined shared actions.
TIBCO Business Studio Forms

| 85
Rules Summary Table
The summary table for Rules provides a useful overview of the rules.

To see each rule in the current project, select the Rules node in the Outline View.

Figure 50 Rules Summary Table

This table displays the following columns:

• Name Name of the rule. To edit the name, click on the ellipsis (...) button,
which appears when the name is selected. Edit the name using the Enter the
Name page.

• Label Editable Label of the rule.

• Edit Displays the text Edit as a hyperlink. When clicked, will navigate to the
configuration property screen for that rule.

• Enabled Displays a check box. If selected, then the rule is enabled.

• Events Non-editable, drop-down list of events that trigger this rule; for
example, Form Open, Update of Control FirstName (firstName).

• Actions Non-editable, drop-down list of actions that are invoked by this rule.
Each item will be in the form of [Action Label] (Action Name).

The standard cancel, close, and submit actions destroys the form. You need to
ensure that any user-defined actions for the Cancel, Close, and Submit button
click event should precede their respective standard actions.
 TIBCO Business Studio Forms

86 | The Design Tab and Preview Tabs
The Design Tab and Preview Tabs

The Form Designer in TIBCO Business Studio can have three tabs, the Design tab,
the GWT Preview tab, and the Mobile Preview tab:

• The Design tab is where you model your form and configure its properties.

• The GWT Preview tab shows how the form will look at runtime in a Google
Web Toolkit (GWT) environment.

• The Mobile Preview tab shows the URL used to navigate and preview the
mobile forms on a mobile device at design time.

TIBCO Forms uses Google Web Toolkit (GWT) as the rendering technology for
forms. The GWT Preview and Mobile Preview tabs are displayed or hidden
based on the active runtime environment specified in the Presentation Channel
preferences. See Presentation Channel Settings for details.

The appearance of the form in the preview tabs is determined by settings that are
configured on the property sheets of the form itself, and for the panes and
controls within the form.

The GWT Preview tab act as working GWT application. You can specify data in
the form, press the Submit key, and see the data that would be submitted to the
server at runtime.

For example, if the user specifies a new customer name and clicks Submit, the
System Log panel will display information about the specified text in GWT
preview, if the INFO logging is enabled. To enable INFO logging, go to Window ->
Preferences - > Form Designer -> Preview. GWT log samples are as follows:

GWT:
(-:-) 2011-08-18 11:15:49,242 [INFO] **** Form Inout and Out Data

(-:-) 2011-08-18 11:15:49,242 [INFO] {
items:[{"$param":"text_field", "mode":"INOUT", "type":"STRING",
"$value":"John Smith"}]}

Thus the preview tab allows you not only to evaluate the appearance of your form
with the current Properties View settings, but also to test its functionality.

Presentation Channel Settings
The Presentation Channel preferences govern the runtime environment in which
forms are built, previewed and deployed. These can be configured at project level
or globally for all projects.
TIBCO Business Studio Forms

| 87
To configure Presentation Channel at project level perform the following steps:

1. Select the project in the Project Explorer, and click File > Properties.

2. In the navigation pane on the left side of the Properties dialog, click
Presentation Channels, and select the Enable project specific settings check
box.

3. Double-click Default Channel (or other presentation channel you are using, if
applicable) to edit the list of included channel types. You can have the
following setting:

— By default, Google Web Toolkit (GWT) environment is enabled. Workspace
Google Web Toolkit, Openspace Google Web Toolkit, and Openspace
Email check boxes are selected (GWT Preview tab is displayed)

— To enable the Openspace Mobile environment, select the Openspace
Mobile check box (Mobile Preview tab is displayed)

4. Click Finish and OK when you are done to close the dialogs. In Google Web
Toolkit (GWT) environment, the changes take effect immediately just by
refreshing or reactivating the preview tab.

To configure Presentation Channel globally, go to Window > Preferences >
Presentation Channels. The Default Channel (Default) is displayed in the right
side pane. Double-click Default Channel to edit the list of included channel
types. The changes made at this level will apply to all projects that do not have the
Enabled project specific settings check box enabled.

For more information on Presentation Channels, see the TIBCO Business Studio
Process Modeling Guide.

Port Settings for Preview
You can set the port used to serve up the preview of forms for both the internal
preview tabs and the preview of mobile forms from external applications or
devices. By default, this is set to 8888. You can change the port if there is a conflict
with another application using port 8888 on your machine.

If multiple form designers are working on the same project or projects, they
should all have the same Presentation Channels configured in their respective
workspaces.
 TIBCO Business Studio Forms

88 | The Design Tab and Preview Tabs
To change the port, go to Window > Preferences > Forms Designer > Preview. If
you change it to a value of 0, then an arbitrary, available port number will be
used.

Copying the Form Preview URL
By clicking the button in the main toolbar, you can copy the form preview
URL to the system clipboard. You can then paste the URL in any browser to
preview the form. This way you can see how the form is rendered in other
browsers on a specific platform apart from the built-in browser used in Eclipse.

Logging
A system log pane for the preview tabs is provided to display trace and debug
messages from the system as well as any logging messages from your JavaScript
code.

The logging window displays the log output generated by the application,
filtered according to the verbosity level set by the Logging Level drop-down list.

Locale
Choose the locale from the drop-down list: English, Chinese, French, German,
Spanish, and so on. Changing this setting will only have an effect if locale-specific
resource bundles are defined for the form. For more info about localizing a form,
please refer to Localizing a Form on page 197.

Logging Level
Choose the log level by clicking the appropriate button (GWT):

• FATAL

• ERROR

• WARN

• INFO The default logging level

If you are using external devices such as mobile forms to test forms via the mobile
index, it is recommended to keep this as a fixed port number so that you will be
able to keep bookmarks to the mobile test index.

The locale selected applies only to the form, not to the other components in the
preview tab for instance the log window, locale drop-down, and so on.
TIBCO Business Studio Forms

| 89
• DEBUG

• TRACE

The verbosity (detail) of logging increases with the logging level in cumulative
fashion. For example, the WARN level will also show all ERROR and FATAL
messages; INFO will also show WARN messages; and so on.

You can choose the logging level in the preview pane using context.form.log
or context.form.logger. The logger API is available in all the script contexts
and it allows the user to log at all logging levels. See API for Scripting for details
of log and logger APIs. The logging level specified will apply only to that
specific preview session. Messages logged by user scripts will be shown in the
DEBUG log level.

You can change the default logging level used in the preview tabs in the user
preferences, under Window > Preferences > Form Designer > Preview.

For the GWT preview, the setting made in Preferences will be the lowest level of
logging available in preview. For example, if the logging level is set to INFO in the
Preferences, you will not be able to change to DEBUG in the preview pane.

At runtime, when GWT Forms are used, you can enable logging by using a URL
parameter log_level. You need to set the value of the log_level parameter to
any one of the logging levels mentioned above. The specified log level and all
above it will be enabled in that case. For example, if you access Openspace as:
http://<server>:<port>/openspace?log_level=INFO

You will be able to see all INFO, WARN, ERROR and FATAL messages in the log
viewer.

Reload
Click the Reload button in the GWT preview and in Mobile preview mode to
close the current form and reload it.

Performance Metrics
Click the Performance Metrics button in GWT preview to view the form load
timings. The performance table is displayed with the timings for the following
operations:

• Overall Form Load Time - The time taken to load the form completely. It starts
from the time a form is requested from the server and finishes at the time the
form is loaded completely. This includes the Form Open scripts if any.

• Form Rendering Time - The total time taken to render the form after form
model and various external resources are loaded. This does not include the
 TIBCO Business Studio Forms

90 | The Design Tab and Preview Tabs
time taken for creating the various form elements, but includes the time taken
for attaching the widgets, initializing the bindings and loading the initial data
to the form.

• Resource Loading Time - The total time taken for various form resources to
load. The resources include the various external resources configured on the
form and the generated BOM JavaScript files. The external resources include
JavaScript, CSS, image and property bundles referenced from the Resources
tab in the Properties view of the form.

• Datastore Initialization Time - The time taken for initializing the form
elements from the initial data provided to the form.

• Model Initialization Time - The time taken to create and initialize the various
form elements like the parameters, panes, and controls. It does not include the
time taken to load them with the initial data.

Figure 51 Performance Table

You can use this information to analyze the load timings of various forms.

By default, the performance metrics option is enabled in GWT preview. To change
the default settings, go to Windows -> Preferences -> Form Designer -> GWT
Forms and clear the Collect performance metrics check box.
TIBCO Business Studio Forms

| 91
Figure 52 The Performance Metrics Settings

At runtime (Openspace, Workspace or a Custom Client Application), if you
would like to collect performance metrics, pass in a url parameter tibco_instr
with a value true. For example:
http://<server>:<host>/workspace/workspace.html?tibco_instr=true

This enables you to view the performance metrics anytime during the form's life
cycle. You can view the performance metrics by pressing ALT+F12 and close the
dialog using the Close button or by pressing the ESC key.

View Datastore Data
Click the View Datastore Data button in GWT preview mode to preview the
current state of the form data that would be submitted to the server. You can click
this button at any point during form usage.

Visibility in the Preview Tab
All panes and controls are visible in the Design tab so that you can edit them,
even if they are configured to be initially invisible at runtime. Below, for instance,
is a form as it appears in the Design tab. (The example used here is a part of the
Capture Claim form from the tutorials in Chapter 1, Getting Started.)
 TIBCO Business Studio Forms

92 | The Design Tab and Preview Tabs
This form has panes whose Visible property (on the General tab of the Properties
View for each pane) is cleared.

Figure 53 Invisible and Visible Form Parts

The shaded diagonal lines across two of the panes in this form indicate that the
Visible property of those panes is initially cleared, or set to false.

In another section of the Capture Claim form, the visibility flag of the Witness
Information pane is bound to the value of the Witness Available check box. When
the check box is selected, the visibility of this pane is set to true, and the pane is
shown. When the check box is cleared, the visibility of this pane is set to false,
and the pane disappears. This behavior is fully functional in the GWT Preview.
TIBCO Business Studio Forms

| 93
Figure 54 Visibility of a Pane Depending on a Check Box

To see this example, open the FormsTutorialSolutions project in the Project
Explorer, as described in Chapter 1, Getting Started. Open the Capture Claim
form and click one of the preview tabs. Notice the bottom portion of this form as it
initially appears in the preview tab. Try selecting and clearing the Witness
Available check box to observe the change in the visibility of the Witness
Information pane.
 TIBCO Business Studio Forms

94 | Outline View
Outline View

While the Project Explorer provides an easy way to find, select, and open project
resources, the Outline View provides a quick and convenient way to navigate
within a particular model, such as a form.

If the Outline View is not visible, open it by selecting Window > Show View >
Outline. (If Outline is not among the view choices, click Window > Show View >
Other > General > Outline.) The default area for the Outline View is the lower
left corner of the Eclipse workbench but, as with other views, it can be moved to
another area by dragging its title bar.

There are two modes for using the Outline View: as a hierarchical tree with
expandable nodes, or as a thumbnail graphical image of the form. Switch between
the two modes by clicking the button for the desired mode in the upper right
corner of the Outline View.

Thumbnail Mode
The thumbnail mode shows the entire form scaled down to fit within the space
designated to the Outline View. When a form cannot be entirely rendered within
the canvas, a blue-shaded rectangle appears in the Outline View representing the
visible portion. You can drag this rectangle with the mouse to make a different
portion of the form visible in the canvas. This is a good way to move quickly from
one section to another of a large form.

The Outline View is shown in Figure 55 in thumbnail mode

Figure 55 Outline View , Thumbnail Mode
TIBCO Business Studio Forms

| 95
Tree Mode
The hierarchical tree mode contains nodes for the form’s elements. At the top
level is a node for the form itself. The top-level nodes under the form are for the
data interface to the form, shared actions, rules, and the root panes.

In the tree mode, clicking on an item in the Outline View causes the Properties
View for that item to appear in the Properties tab , and causes that item to be
selected in the canvas as well, if it is a visible object. This is a good way to move
quickly to a particular Properties View. Items can be copied and pasted within the
Outline View, as well as rearranged by using drag-and-drop.

The Outline View is shown in Figure 56 in tree mode.

Figure 56 Outline View, Tree Mode

Using the Outline View with Forms
When a form is open in the Form Designer, the Outline View’s tree mode shows
the elements that have been placed on the form, and provides a convenient way to
select a pane or control and display its Properties View in the Properties view.

Figure 57 Using the Outline View with Forms, 1

When the check box called checkbox1 is clicked for instance, as in Figure 57, the
checkbox1 control is selected on the canvas, and the Properties view displays the
Properties View for that control, as in Figure 58.
 TIBCO Business Studio Forms

96 | Outline View
Figure 58 Using the Outline View with Forms, 2

There are situations where you may also find it easier to re-arrange the order of
controls and panes in the form using the Outline View instead of the canvas, such
as moving a control or pane to different locations in a large form where it is
difficult to view the whole form in the canvas at once.

Although the order of Parameters, Shared Actions, and Rules in the form model
does not have a bearing on the execution of the form, you have the option to
arrange the order of these objects in the Outline View to aide in readability, or to
group by functionality. By default, items are added to these nodes in the order
they were originally added to the model.

Clicking on the Data node will show a summary table of all the parameters
defined in the form. From this table, you can edit some of the properties, add new
parameters, and navigate to the detailed Properties View of any of the
parameters. Similar tables are displayed when clicking on either the Shared
Actions or Rules nodes.
TIBCO Business Studio Forms

| 97
Parameters
Clicking a parameter causes the Properties View for that parameter to appear in
the Properties tab. Right-clicking a parameter brings up a Context Menu that
allows you to delete, copy, or rename the parameter in the data
model.Right-clicking on the Data node provides an option to add a new
parameter.

Parameters are shown under the Data node, the first node beneath the node for
the form itself in the Outline View, as in Figure 59.

Figure 59 Parameters in the Outline View

For more details, see Configuring Parameters on page 345.

Parameters Summary Table

The Parameters summary table provides an overview of the parameters. To see
each parameter in the current project, select the Data node in the Outline View.

Figure 60 Parameters Summary Table

The Parameters summary table has the following fields:

Clicking a parameter in the tree mode of the Outline View is the only way to
access the Properties View for the parameter.
 TIBCO Business Studio Forms

98 | Outline View
• Name Name of the Parameter. To edit the name, click on the ellipsis (...)
button, which appears when the name is selected. Edit the name using the
Enter the Name page.

• Label Editable Label of the parameter.

• Edit Displays the text Edit as a hyperlink. When clicked, will navigate to the
configuration property screen for that Parameter.

• Mode Displays either IN, OUT, or INOUT. Specifies the direction of data flow
for this parameter with respect to the Form.

• Type Displays the primitive type of the parameter. When selected, a
dropdown list becomes available to choose among the following types: Text,
Boolean, Date Time, Date, and Time.

• Length Editable field for setting the length. It is active only if the selected
type supports the length setting. Otherwise displays NA.

• Decimal Places Editable field for setting the decimal places attribute. It is
active only if the selected type supports the decimal places setting. Otherwise
displays NA.

• Array Check box that sets the array attribute of the parameter.

Shared Actions
Actions available to all Rules are listed under the Shared Actions node.
Right-clicking the Actions node icon brings up a Context Menu that allows you to
add a new action to this group.

To read an overview, see Actions on page 82.

To learn how to add actions to a form, see Setting Actions on page 137.

Rules
Rules are listed under the Rules node. Right-clicking the Rules node icon brings
up a Context Menu that allows you to add a new rule to the form. You can add a
rule that is either enabled or disabled using this interface.

To read an overview, see Rules on page 84.

To learn how to add rules to a form, see Setting Rules on page 139.
TIBCO Business Studio Forms

| 99
Managing Form Elements From the Outline View
You can manage form elements in the Outline View, such as copy an element and
and paste it on the canvas , or re-arrange the order of elements within the form.

Use the Context Menu in the Outline View

To manage form elements, do the following:

1. Right-click the Form icon or any form element in the Outline View.

The pop-up Context Menu appears.

2. Depending on the element selected different options are available, as
explained in Table 5.

Rearrange Outline by Drag-n-Drop

You can rearrange form elements in the Outline View by dragging them and
dropping them on the desired new place. The new arrangement will immediately
be reflected on the canvas.

Table 5 Manage Form Elements from the Outline View

Select Definition

Cut
(Ctrl+X)

Available for all elements except for fixed nodes (Form, Data, Shared Actions,
Rules)

Copy
(Ctrl+C)

Available for all elements except the fixed categories mentioned for 'Cut'
above. After you copy an element to the clipboard, you can paste it within this
form or another form.

Paste
(Ctrl+V)

Available when forms content is present on the Clipboard

Delete
(Delete)

Availble for all elements except for fixed nodes (Form, Data, Shared Actions,
Rules)

Rename
(F2)

Available for all named elements.

Select All
(Ctrl+A)

Selects all root panes. Select All will not select parameters, shared actions, or
rules.

Show Properties
View

Shows the Properties view, if not currently visible.
 TIBCO Business Studio Forms

100 | Outline View
Use Business Labels in Outline View
The User Preference controls the display of labels throughout the Forms Designer.
This is specified using the option Include type name in labels, which improves
accessibility by helping to distinguish the type of control or pane in various
dialogs, instead of just relying on the icon. For more details on using this option,
see Using the Option Include Type Name in Labels on page 314.

For more details about Labels, see Label on page 312.
TIBCO Business Studio Forms

| 101
Using the Business Object Model

The business object model provides a way to define in business terms the Classes,
Attributes, Primitive Types, Operations, Associations, and so on that describe a
business or organization. In terms of forms design, the business object model is a
powerful and convenient way of defining primitive and complex types.

A business object model is defined using the Business Object Model Editor. For
complete information on using this editor to create business object models, see the
TIBCO Business Studio Business Object Modeler User’s Guide. Information on
business object models in the present guide is limited to instructions for creating
classes and other objects in the business object model to define complex data
types, and using these data types in forms modeling.

The Objects in a Business Object Model
Objects are added to a business object model in the Business Object Model Editor
much as panes and controls are added to forms, either by clicking the desired
object in the palette and then clicking in the desired location on the canvas of the
editor, or by dragging and dropping the object onto the canvas. Objects that can
be placed into a business object model include the Elements (Package, Class,
Primitive Type, and Enumeration), Children (Attribute and Enum Literal), and
Relationships (Generalization and Composition).

Figure 61 The Palette of the Business Object Model Editor
 TIBCO Business Studio Forms

102 | Using the Business Object Model
The objects in the palette are of several kinds, each distinguished by an icon and
color, which will appear (as an aid to the identifying the object) in various places
throughout the Business Studio interface, including in the title bars of the objects
on the canvas. The objects most important for creating complex types to be used
in forms modeling are described in this section.

Elements

Class A container for a complex data object. Classes contain children, such as
attributes and enum literals. A class from the BOM can later be specified as the
type for a data field in the Forms Editor.

Primitive Type An object of one of the BOM Primitive Types (Integer, Boolean,
Date, Time, Integer, and so on), or of the type of a previously-defined primitive
type object.

In the latter case, the previously-defined primitive type might be, for instance, a
zip code object that was defined as an integer with a pattern (specified in the
Advanced tab of the object’s Properties view) as a regular expression) that limits
its value to 5 single-digit integers. Figure 62 shows the Advanced tab of the
Properties view for a primitive type called ZIP Code. The Pattern value restricts
valid entries to five integers. This restriction will be enforced at runtime.

Figure 62 Properties of a ZIP Code Primitive Type in the BOM

Enumeration A data type that can contain a list of values. Selecting this type
enables you to specify a set of enumerated values. For example, an enumeration
called Color might have the values Red, Blue, and Green.

A pattern that has been specified as a restriction for a data type in the BOM does
not appear in the Forms modeling environment. For instance, if a ZIP Code
primitive type is defined in the BOM as requiring a value of five single-digit
integers, and that primitive type is included in an Address class in the BOM
which, in turn, is used as a data type for a form parameter, the default generated
form will not display the restriction in the Validations tab of the zip code text
control’s Properties view. Nonetheless, the restriction will be enforced at runtime,
and cannot be modified or overwritten by different restrictions defined in the
Forms Editor on the text control’s Properties view.
TIBCO Business Studio Forms

| 103
An enumeration from the BOM can be included as an attribute for a class in the
BOM or be specified later as the type for a data field in the Forms Editor. On the
default generated form, this type will be rendered by default as an optionlist. (The
control type could later be changed in the form control’s Properties view to a
radiogroup, or other control type.)

Children

Attribute Attributes are data members that make up a class. By default, new
attributes are created with the primitive BOM type text. A different data type can
be chosen in the attribute’s Properties view, either another primitive type, or an
existing class or enumeration. Each attribute type ends up corresponding to a
different control type in a generated form.

The attributes in a class can be re-ordered in the Attributes tab of the class’s
Properties view using the up and down arrows. Their order in the BOM
determines the order in which they appear in the default form.

Enum Literal These are the values within an enumeration. For example, an
enumeration called Color might have the enum literals with the names Red, Blue,
and Green.

The enum literals in an enumeration can be re-ordered in the Enum Literals tab of
the enumeration’s Properties view using the up and down arrows. Their order in
the BOM determines the order in which they appear in the default form.

Relationships

Generalization This is a relationship of inheritance: a class that is related to an
existing class by generalization will inherit the qualities of the existing class, and
hence will contain members of the same type as the existing class.

Composition This relationship indicates that the child class is wholly contained
within the parent class.

Multiplicity of Relationships

Relationships between BOM classes have a multiplicity, for instance, one-to-one
(1..1), zero-to-many (0..*), or one-to-many (1..*). You can also have a finite lower or
upper multiplicity bound like one-to-finite upper bound (1..m), finite lower
bound-to-finite upper bound (n..m), or exactly finite bound (n). On a generated
form, a particular pane type is rendered for a child class based on the multiplicity
value.
 TIBCO Business Studio Forms

104 | Using the Business Object Model
If a Student class, for instance, has a child class called Courses, with a 0..*
relationship (meaning that one student can have many courses), the Course class
will be rendered as a grid pane. The attributes of the Course class (for instance,
course number, course name, time, room number, and so on.) will appear as
columns in the grid pane. Each course for a given student will be represented by a
row in the grid pane.

Implicit Validations

The multiplicity constraints defined in the BOM are reflected in the implicit
validations. The validation messages conform to the following:

Table 6 Validation Messages for BOM Level Multiplicity Constraints

These apply for both primitive attributes and complex children.

Master-Detail Panes

If a child class has a relationship to the parent class that allows multiple instances
of the child class, and the child class itself contains a child class with multiple
attributes, the two child classes will be rendered on the default form in a
master-detail pane.

Multiplicity Constraint Validation Message

One-to-many (1..*) Must contain at least one value.

One-to-finite upper
bound(1..m)

Must contain between one and {m} values.

Finite lower bound-to-finite
upper bound (n..m)

Must contain between {n} and {m} values.

Zero-to-finite upper bound
(0..m)

Must contain between zero and {m} values.

Exactly one (1) Must contain exactly one value.

Exactly equal to the finite
bound (n)

Must contain exactly {n} values.

The implicit validations for multiplicity constraints are configured to execute on
form submit.
TIBCO Business Studio Forms

| 105
The first child, the master pane, will be rendered in the form as a grid pane, and
the second child, the detail pane, will appear as a vertical pane which can be used
for editing all attributes of both child classes.

In this case, the grid pane will be read-only, but a row can be selected for editing
in the vertical pane (detail) by clicking that row in the grid pane (master).

As an example, a Student class might be the parent of a child class called Course.
Each student could have zero-to-many courses. The course class, in turn, might
have a child class called Course Details. The BOM diagram is shown in
Figure 63.

Figure 63 Business Object Model Editor Showing Child Classes

The business object model shown in Figure 63 would be rendered in a form with a
master-detail pane for the Course and Course Details classes, as shown in
Figure 64.

If you want the detail pane to be generated as a record pane, go to Preferences >
Form Designer > Generator, and select the check box Generate master-detail
configuration with record pane for details.

By default, the check box is cleared, and the detail pane is generated as a vertical
pane. This information applies to the default forms and newly generated forms.
The forms that are already generated, remain unaffected.
 TIBCO Business Studio Forms

106 | Using the Business Object Model
Figure 64 Master-Detail Pane on a Form

Selecting a row in the grid pane (that is, the master pane) allows that row to be
edited in the vertical or record pane (that is, the detail pane). An alternate way of
selecting rows for editing is to enable navigation for the record pane. Navigation
is turned off by default, but is enabled by selecting the Show Navigator check box
in the Properties tab of the record pane’s Properties view. The navigator then
appears for the record pane, as seen in Figure 65.

Figure 65 Record Pane with Navigation Enabled

With navigation enabled, you can delete the grid pane from the form if you
consider it unnecessary to provide users with two methods for selecting records
to edit. However, you cannot do this for the vertical detail pane, as it is
single-valued, and thus does not provide a navigator. You can manually refactor
the detail pane from vertical to record, and then bind it to the correct data.
TIBCO Business Studio Forms

| 107
Cross-Resource References

The Business Studio workspace acts as a container for resources such as projects,
folders, and files, each of which corresponds to a directory or file in the operating
system’s underlying file system. Workspace files can contain models (such as
forms or business object models), which are comprised of model elements (such
as panes and controls or classes and properties).

A form can refer to model elements in other resources in the Business Studio
workspace, for example:

• A user task or its parameters

• A business object model class or its properties

• An embedded form or its parameters

These references are often many-to-many, with one form referencing many
external model elements and resources, each of which could potentially be
referenced from multiple forms, business object models, processes and so on.
These external references are known as cross-resource references.

Since the referenced model elements reside in independently modifiable files such
references are susceptible to breakage if proper working procedures are not
observed. When Business Studio detects breakages, it creates unresolved
reference problem markers on the referencing forms.

This section talks about the different breakage mechanisms and the quick fixes
available to resolve the problem markers.

Breakage Mechanisms
There are several ways in which a cross-resource references can be broken. Some
examples are listed below:

• The referenced model element could be deleted

• The referenced model element could be renamed

• The element’s containing resource, folder or project could be deleted, renamed
or moved elsewhere.

When such changes are made using Business Studio, it attempts to prevent
reference breakage by cascading such updates through all references. For
example:

• In the case of rename and move of an element or a containing resource, the
references are all automatically updated to point to the new element name or
workspace location.
 TIBCO Business Studio Forms

108 | Cross-Resource References
• In the case of deletion of a cross-referenced workspace resource, Business
Studio presents a confirmation dialog offering the choice of clearing or
retaining the references or cancelling the delete command. Clearing the
references means that the connections between referenced and referencing
elements are permanently severed and can only be restored manually.

We now discuss some breakage scenarios in detail.

Deleting an Embedded Form

When an embedded form is deleted, you are offered a choice of either clearing the
reference or retaining it.

• Clearing the references to a deleted embedded form leaves the embedded
form panes in an invalid state because they no longer point to a form to
embed.

• Conversely, retaining the references means that the referencing forms are left
pointing at a resource or model element that no longer exists in the
workspace, which will cause unresolved reference problem markers to
appear.

The confirmation dialog presented by Business Studio when any form-referenced
resource is deleted can be suppressed by selecting the Do not ask this question
again check box on the Clear Forms References dialog.

Figure 66 Clear Forms References Dialog

In this case, in future by default the references will all be cleared.

In most cases such changes might prevent the referencing forms from working as
intended and can cause other problem markers to appear if it places the forms
into an invalid state.
TIBCO Business Studio Forms

| 109
If necessary, you can still use the Preview button (as shown in Figure 67) and
deselect any Clear forms references to deleted elements changes (as shown in
Figure 68).

Figure 67 Delete Resources Dialog

Figure 68 Changes to be Performed Options

Please note, whether it is appropriate to clear or retain the references depends on
your intentions.

• If you are deleting the resource because it is no longer required you should
probably clear the references. In this case you would have to edit the forms to
restore functionality.

• If you are deleting the resource with the intention of reinstating it later, it is
probably appropriate to retain the references. However, if you do this the form
will be left in an unusable state and all manner of errors and problems would
ensue if you tried to work with it.

Making Changes to Business Studio Resources

Cross-resource references can also get broken by editing, renaming, moving or
deleting resources without Business Studio’s knowledge, for example by
changing the files directly in the underlying file system.
 TIBCO Business Studio Forms

110 | Cross-Resource References
References can also get broken by making changes in one workspace and copying
only a subset of the affected resources into another workspace.

The basic principle is that related projects and the resources they contain are
densely interconnected and should therefore be treated as an indivisible whole,
managed exclusively from within Business Studio.

Problems with Business Studio Project Export/Import Wizard

Some development teams try to use the Eclipse File System or Business Studio
Project Export/Import wizards to share projects or individual files and folders.

For example - if you move or rename a BOM file that is referenced from another
project, this will update all forms references including those in referencing
projects. If you then export just the project containing the changed BOM and
import it to another workspace, the referencing forms in the target workspace will
acquire unresolved reference problem markers because they will still be pointing
to the old BOM file name or location.

If you have to use project export/import, you are recommended always to
transfer a consistent set of projects, where all dependencies can be resolved from
within the export/import location. Similarly, when importing projects, be sure to
import all their dependencies as well.

Remember that you will be unable to import a project that already exists in the
workspace and that the existing project may be inconsistent with the remaining
visible incoming projects.

Advantages of Using Eclipse Team Providers

There is really only one satisfactory way for a development team to share
resources, which is to place all projects under version control managed by an
Eclipse team provider.

These practices are strongly discouraged but unfortunately it may not always be
obvious that a given action runs the risk of breaking a reference.

This practice is not recommended, as project-level exchange is at once too
coarse-grained for convenient team development (where different developers
make incremental changes to individual resources) and/or too fine-grained to
maintain the integrity of cross-resource references and dependencies.
TIBCO Business Studio Forms

| 111
Business Studio bundles the Subclipse team provider for Subversion for this
purpose. Many other version control systems have Eclipse team providers, which
may or may not work well with Business Studio projects. Business Studio
assumes optimistic version control concurrency semantics, so it does not support
team providers which create read-only working copies or require an explicit
working copy lock prior to editing (such as Perforce).

Even so, team members must take care not to do things which affect resources
being modified by other team members – if this happens a merge conflict will
result. The most reliable way to resolve a merge conflict is the ‘optimistic locking’
approach of rejecting one change set in its entirety then reapplying the rejected
changes to the accepted change set. Otherwise, you will be faced with a tricky,
error-prone textual merge of complex XML model files.

Quick Fixes
If a reference does get broken, Business Studio provides several quick fixes.

• Reload the working copy quick fix removes stale unresolved reference
problem markers.

• Clear the reference quick fix simply clears the offending reference.

• Repair the reference quick fix helps you to locate a suitable replacement
model element.

Figure 69 Quick Fix Dialog

Reload the working copy - Quick Fix

This quick fix is used to remove the unresolved reference markers that can
sometimes linger after the missing resource has been reinstated; this can
sometimes happen during project import.
 TIBCO Business Studio Forms

112 | Cross-Resource References
Clear the reference - Quick Fix

This quick fix can be applied to multiple unresolved reference problem markers
simultaneously. It simply clears the offending references, which often places the
referencing form model into an invalid state that is then reported by other
problem markers. Such problems must then be fixed individually from within
Form Designer.

Repair the reference - Quick Fix

This quick fix can only be applied to one unresolved reference problem marker at
a time. It presents a dialog that lists all the possible model elements that could be
used as a replacement for the missing referenced model element.

Figure 70 Repair Reference Dialog

The dialog has a set of filters that allow you to broaden or narrow the scope used
to identify potential matches. When the dialog first comes up, all filters are active
and no candidate items are visible. You can selectively disable filters to broaden
the match scope until the list of candidates includes the desired replacement. The
dialog remembers the filter settings. You can also type part of the target element
name in the search box at the top the list will be filtered to show just the elements
which match the search string. The filters are:
TIBCO Business Studio Forms

| 113
Project name

When this filter is active the list shows only matching items from the same project
as that containing the originally referenced element. If no project of that name
exists in the workspace you will have to deselect this filter to see anything at all.

File name

When this filter is active the list shows only items which reside in a file of the
same unqualified name as that containing the originally referenced element. If no
file of that name exists in the workspace you will have to deselect this filter to see
anything at all.

Element type

When this filter is active the list shows only items which have the same type as the
originally referenced element. For example, if the originally referenced element
was a BOM class, the list will only show BOM classes. It is recommended to leave
this filter enabled.

Element qualifier

When this filter is active the list shows only items which have the same qualifier
name as the originally referenced element. For example, if the originally
referenced element was a BOM type or property, the qualifier is the containing
BOM package, so the list will only show BOM types or properties from a BOM
package of the same qualified name as the original.

Element name

When this filter is active the list shows only items which have the same
unqualified element name as the originally referenced element. For example, if
the originally referenced element was a BOM type or property, the element name
is the unqualified BOM type or property name (not the label).

Selecting the desired replacement and pressing the OK button closes the dialog
and updates the form to point to the selected element, and the unresolved
reference marker goes away. If the chosen item is in an unreferenced project the
wizard requests permission to add a project reference.

Alternatively, pressing the Clear button closes the dialog and clears the
unresolved reference – see the description for the Clear the reference quick fix.
 TIBCO Business Studio Forms

114 | Mobile Forms
Mobile Forms

TIBCO Forms is designed to provide rendering suitable to the device used to
access it. Mobile forms functionality of TIBCO Forms ensures optimized
rendering on mobile devices. In TIBCO Forms version 2.2.0, the support is limited
to the Apple iPhone and iPod touch.

You can design mobile forms by configuring the controls specifically for mobile
usage. The Mobile Preview tab is provided to view mobile forms at design time:
you can type the URL specified in the Mobile Preview tab in the mobile device’s
web browser to access the form.

Most of the functionality available on the desktop version of forms is supported
on the mobile version. However, there are some features which are not supported
currently and few controls behave differently on mobile devices. The limitations
are as follows:

Unsupported Functionality

• The settings on the Layout tab and the Font tab in the Properties view of
controls are not supported.

• The settings on the Child Labels tab and the Child Layout tab in the
Properties view of the pane is not supported.

• The Label Visibility flag on the General tab in the Properties view of controls
and panes is not supported.

• The Hint field on the General tab in the Properties view of controls is not
supported.

• The Maximum Length and Display Length fields on the Properties tab in the
Properties view for text controls are not supported.

• The Pass-through control is not supported.

• The Multi-select Grid panes are not supported.

Modified Functionality

Some of the panes and controls function differently when they are rendered on a
mobile device. See Rendering of Mobile Forms for more details.

Due to space limitations on a mobile screen, mobile forms are displayed one pane
at a time. If the form has nested panes, they are shown as links. You can use the
Back button on the form to navigate back to the containing panes in the form.
TIBCO Business Studio Forms

| 115
• Horizontal panes are displayed as vertical panes

• Message panes are ignored. Messages are displayed under each control
instead of the message panes. If the control is inside a nested pane, the pane
links in the form indicates errors if there are errors inside its controls.

• Grid Panes are edited only via master-detail pane pattern.

• Certain data entry controls such as Date, Time, DateTime, Duration, and
Optionlist behave differently.

Working with Mobile Forms
This section explains how to enable Mobile forms, mobile specific configurations
required, and the way mobile forms are rendered on mobile devices.

How to Enable Mobile Forms?

You can enable mobile forms globally within the workspace or for specific
projects in your workspace.

You have to enable the Openspace Mobile channel type to activate mobile forms.
To enable the Openspace Mobile channel globally within the workspace, perform
the following steps:

1. Go to Windows > Preferences > Presentation Channels.

2. The Default Channel (Default) is displayed in the right pane.

3. Select the Default Channel (Default) and click button.

The Presentation Channel dialog is displayed.

4. Select the Openspace Mobile check box from the list.

5. Click Finish.

6. Click Project > Clean to clean the project. This will activate mobile forms.

Once mobile forms are activated, you will be able to see the Mobile Preview Tab
in the editor.

You can enable the Openspace Mobile channel locally within a project by going
to Context Menu > Properties > Presentation Channels > Enable project specific
settings.

Previewing Mobile Forms

The Mobile Preview tab provides the URL used to navigate and preview the
forms on mobile at design time. The URL is in the following format:
http://<host>:<port>/forms/mobile
 TIBCO Business Studio Forms

116 | Mobile Forms
where:

• <host> is the name or IP address of the machine on which TIBCO Business
Studio is running.

• <port> is the forms preview port. By default the port is 8888. To change the
port, goto Window > Preferences > Forms Designer > Preview.

Type this URL in an iPhone, iPod touch, or the iPhone emulator available from
Apple. This URL takes you to a page that provides a list of the projects in the
workspace. You can click the required project to drill down to a list of the forms
available in the selected project.

Mobile Specific Configuration of Controls and Panes
When you are designing a form for mobile devices, the following pane and
control properties can be configured:

The iPhone emulator runs only on Mac OS. There are no viable emulators
available in Windows. You can use the desktop version of Safari to view forms on
a Windows machine. However, certain controls (Date, Time, Date Time and single
select Optionlist) do not function in the desktop version of Safari.

Table 7 Mobile Specific Configuration of Pane and Control Properties

Property Configuration and Behavior

Short Label Used to specify a short label which is displayed instead of the label for the mobile
rendering of the form. All controls and panes support a Short Label. To set the
Short Label, go to the Mobile tab in the Properties view of the component and
specify the Short Label. The Short Label can be updated via the API, bindings, or
computation actions.
TIBCO Business Studio Forms

| 117
Toolbar Pane Used to mark one pane as the toolbar pane in a form which is targeted for mobile
devices.

Mobile Forms adds a toolbar at the top of the page. You have to set a pane in your
form as a toolbar pane so that it can be rendered in the toolbar area. A toolbar
pane must be the root pane and only one toolbar in your form must be targeted
for mobile devices. A toolbar renders the controls horizontally, so it is
recommended to use only 3 button controls in toolbars. Toolbars typically
provides a set of actions to the user, so you should only have button controls in
them. A navigation pane in the form is automatically set as toolbar pane.

To set the toolbar pane, go to the Mobile tab in the Properties view of the pane
and select the Toolbar check box. This toolbar pane is rendered at the top of the
screen.

To set the maximum number of buttons controls go to Preferences > Form
Designer > GWT Forms > Maximum mobile toolbar buttons.

Start Year Used to specify the first year that should be displayed in the date picker in mobile
forms. To set the Start Year, go to the Properties tab in the Properties view of the
date and datetime controls. The default value is -20.

The value specified in the Start Year determines the earliest year to display. The
value specified is either an absolute value or relative to the current year when the
form is viewed depending on the Start Year Relative field settings.

Start Year
Relative

Used to specify whether the value of Start Year is interpreted as being relative to
the current year or as an absolute year. To set Start Year Relative, go to the
Properties tab in the Properties view of date and datetime controls. The default is
true.

If this is set to true, then the value of Start Year is interpreted as being relative to
the current year. The value specified is added to the current year to determine the
earliest year to display.

End Year Used to specify the last year to be displayed in the date picker in mobile forms. To
set the End Year, go to the Properties tab in the Properties view of the date and
datetime controls. The default value is 20.

The value specified in the End Year determines the latest year to display. The
value specified is either an absolute value or relative to the current year when the
form is viewed depending on the End Year Relative field settings.

Table 7 Mobile Specific Configuration of Pane and Control Properties

Property Configuration and Behavior
 TIBCO Business Studio Forms

118 | Mobile Forms
End Year
Relative

Used to specify whether the value of End Year is interpreted as being relative to
the current year or as an absolute year. To set End Year Relative, go to the
Properties tab in the Properties view of date and datetime controls. The default is
true.

If this is set to true, then the value of End Year is interpreted as being relative to
the current year. The value specified will be added to the current year in
determining the latest year to display.

Minute
Increment

Used to specify the increment to use when displaying the choice for minutes in a
time or datetime control. To set Minute Increment, go to the Properties tab in the
Properties view of time and datetime controls. The default value is 15 and the
maximum value is 60.

For example, a value of 10 will display choices of 0, 10, 20, 30, 40, 50. A value of
60 will only display 0 as a choice.

Table 7 Mobile Specific Configuration of Pane and Control Properties

Property Configuration and Behavior
TIBCO Business Studio Forms

| 119
Rendering of Mobile Forms
A few controls behave in a different way when they are used in mobile forms and
rendered on a mobile device. The differences are as follows:

Date Control

The pane that contains the date control displays the formatted date. On selecting
the date, a date spinner is shown that allows you to select day, month, and year.
The range of years is bounded and is configured in the Properties tab in the
Properties view of the control.

Figure 71 Date Spinner

Time Control

The pane that contains the time control displays the formatted time. Selecting the
time displays a time spinner that allows you to select hour and minute. The
selector uses a 12 hour spinner with AM/PM.

Figure 72 Time Spinner
 TIBCO Business Studio Forms

120 | Mobile Forms
Datetime Control

The pane that contains the datetime control displays the formatted date and time.
On selecting datetime, you go to the next screen where the date and time are
displayed as two separate links. You can click on the date and time links to set
them individually. Clicking the Back button will take you back to the previous
screen.

Duration Control

The pane that contains the duration control displays a read-only summary of the
information. Clicking on the control displays a detail screen where values can be
specified for each of the fields.

Figure 73 Duration Control

Image Control

The pane containing the image control has a link for the image. Clicking on the
link takes you to the next screen that displays the full image.

Optionlist Control (Single Value)

The pane that contains an Optionlist control shows the label of the selected
option, clicking on which shows a choice spinner from which you can select a
choice.
TIBCO Business Studio Forms

| 121
Figure 74 Choice Spinner

Radiogroup Control

Radiogroup controls are converted to optionlist controls in the mobile version of
the form.

Textarea Control

The pane containing the textarea control displays the label. You can select the
control to see the text area appear in a full screen. Selecting the Back button
returns to the parent pane.

Horizontal Panes

Horizontal panes are converted to vertical panes in the mobile version of a form.

Record Panes

Record panes are used at runtime to handle both grid panes and record panes.
The record pane supports all navigation functionality such as go to first, previous,
nth, next, and last record. You can navigate to a specific record using the spinner
control. The plus and minus icons on the navigation bar are used to add and
delete records.
 TIBCO Business Studio Forms

122 | Mobile Forms
Figure 75 Record Panes Display

The navigation bar in a record pane displays information on which records in the
record pane have validation errors.

Tabbed Panes

Tabbed panes are represented as vertical panes with each of the tabs being a
nested pane. It will therefore be displayed in the UI as a list of links to the
individual tabs.
TIBCO Business Studio Forms

| 123
Problem Markers

Problem markers are a standard Eclipse feature that track issues associated with
workspace resources. They appear in the Problems View, which can be filtered in
various ways, as well as on elements in the Outline View and in the Form
Designer. A marker includes a summary of the problem and identifies the affected
file and the internal location. It also has a severity level (error, warning, or
informational). The marker icons indicate the severity level:

Double-clicking a form validation marker will open or activate the Form Designer
and select the offending form element (generally a pane or control). You can then
use the Properties View or canvas to fix the problem manually.

Quick Fixes
Some of the problems detected by the Validation Builder can be corrected
automatically by applying a Quick Fix. If a Quick Fix is available, the
corresponding action on the problem marker’s Context Menu will be enabled.

The Quick Fix dialog allows you to select the fix to apply (there may be more than
one), and also to select other instances of the same problem in order to fix them all
at once.

Error

Warning

Informational

The Quick Fix dialog inherits the filter settings from the Problems view. The
dialog displays other instances of a given problem that could be fixed by the
selected Quick Fix, but only those which are visible in the Problems view. For
example, to fix all instances of a given problem within the enclosing project or the
entire workspace, you may need to select Configure Contents action from the
Problem view menu and change the Configuration or Scope and Severity filters.
 TIBCO Business Studio Forms

124 | Problem Markers
TIBCO Business Studio Forms

| 125
Chapter 3 Tasks

This section describes common tasks performed using TIBCO Business Studio
Forms.

Topics

• Creating a New Form, page 126

• Using Drag and Drop Gesture to Customize a Form, page 128

• Edit or Remove the Validation Script, page 132

• Working with Bindings, Actions, and Rules, page 133

• Styling Forms Using Cascading Style Sheets, page 145

• Validating Data in a Form, page 147

• Calling External JavaScript Functions, page 161

• Configuring Panes, page 162

• Using Embedded Forms, page 166

• Working with the Mappings Tab, page 174

• Customizing Property Resource Bundles, page 179

• Customizing the Form’s Preview Data, page 188

• Using Form Data Fields, page 190

• Using Numeric Controls, page 192

• Localizing a Form, page 197

• Toggling between Business Analysis and Solution Design Modes, page 205

• Migrating from Previous Versions of TIBCO Business Studio Forms, page 206
 TIBCO Business Studio Forms

126 | Creating a New Form
Creating a New Form

There are several ways to create a new form in TIBCO Business Studio.

• Go to the context menu of the Forms special folder, or any folder under the
Forms special folder in the Project Explorer and click New > Form.

• On the File menu, click New > Other > TIBCO Forms > Form.

• Go to the context menu of a user task in a business process and click Form >
Open.

• On the General tab of a user task’s Properties view, select the Form... radio
button.

Of these approaches, the first two are equivalent. Both of these approaches trigger
the opening of the New Form dialog as shown in Figure 76.

Figure 76 New Form Dialog
TIBCO Business Studio Forms

| 127
You need to specify the Form type on the New Form dialog. The type of form that
is selected here determines the components that are initially part of the form
model. The form types details are as follows:

• Process task: This creates a form that is the same as one created from a User
Task in a process definition. It will contain a root pane, a toolbar with Cancel,
Close, and Submit buttons, and a messages pane for displaying error
messages.

• Pageflow task: This creates a form that is the same as one created from a User
Task in a Pageflow Process. The only difference to a Process task form is that
the toolbar contains only Cancel and Submit buttons. The Close operation is
not supported in pageflows since there is no way to re-open a step in a
pageflow once it has been closed.

• Embeddable: This creates a form that is suitable for embedding within
another form. This will only contain a single root pane. This is because the
parent form would typically contain the toolbar and messages pane, so these
components are not needed in an embeddable form.

The other two approaches are equivalent. They will generate a form that has
parameters and a user interface component corresponding to each of the
parameters in the user task interface. For more information on creating a new
form for a user task, refer BPM Implementation Guide, Chapter 4, Using Forms for
User Tasks.
 TIBCO Business Studio Forms

128 | Using Drag and Drop Gesture to Customize a Form
Using Drag and Drop Gesture to Customize a Form

You can customize a default form or create a free standing form by using the drag
and drop (DND) gestures supported by the Form Designer. These gestures enable
you to quickly add new user interface items onto the form canvas.

You can use the DND gestures for the following items:

• From the Project Explorer view:

a. Business Object Model (BOM) class

b. User task parameters

c. Process datum (Parameter, Data Field)

d. Form files

Figure 77 DND Items from the Project Explore
r View
TIBCO Business Studio Forms

| 129
• From the Form Designer Outline view:

a. BOM property

b. Form datum (Parameter, Data Field)

Figure 78 DND Items from the Form Designer Outline View

The drop gesture results in the creation of any or all of the following, as
appropriate:

• A matching form parameter is created, if no matching parameter exists. This
applies only to the Project Explorer drags.

• A suitable user interface component (control or pane with child components)
is created, if none already exists.

• Bindings from the new or implied form datum and its children to the
generated user interface component and its children are created.

The BOM property can only be dropped onto a pane that is associated with a
BOM class that actually owns or inherits the dropped property.

Using the DND gesture for BOM property is very helpful in restoring any missing
user interface items in the form.
 TIBCO Business Studio Forms

130 | Using Drag and Drop Gesture to Customize a Form
Figure 79 Form Created Using DND Gestures

For Project Explorer DND, the drop handler does the following:

— It matches an existing parameter if one with the same generator source or
of the same name already exists.

— If not, it creates new parameters of type corresponding to the dropped
objects.

Matching is performed on the basis of whether a parameter exists that was
originally generated from the same model as is being dropped, or failing that
matching on type.

DND UI creation is essentially a form synchronization operation. The form
synchronizer attempts to create any missing components within a hierarchical UI
structure that matches that of the underlying data. If you heavily modify a form
and move components around to a point where the synchronizer cannot identify
the UI component (or ancestors thereof) corresponding to a dropped UML
property, it re-creates the UI structure matching the data. You can then move the
newly created components of interest to the appropriate location in the form, safe
in the knowledge that any bindings will be automatically refactored. You can also
safely delete any extraneous components.
TIBCO Business Studio Forms

| 131
The new form model elements are created by the standard form generator and
thus follow the same generation rules. If attached to an existing generated form
structure, they also become candidates for subsequent sync validation and
synchronization.

When dragging from Project Explorer view it is important to drag the most
appropriate model element. For example, if you are working on a form for a user
task, drag the user task parameter, or (if these are not explicitly modelled) drag
the process parameter or data field. If you are working on an embeddable form,
drag the BOM class. Note that dragging a BOM class onto a form intended for use
with a user task may produce a deceptively correct-looking User Interface.
However, this interface is with the BOM class rather than the user task parameter,
process parameter, or process data field. This may lead to ambiguity and
unexpected results in subsequent synchronization operations.
 TIBCO Business Studio Forms

132 | Edit or Remove the Validation Script
Edit or Remove the Validation Script

Validation scripts can be edited or removed by any form designer who is using
the Solution Design mode by doing the following:

1. With the form open in the Form Designer, select the control whose validation
you wish to edit or delete.

2. Select the Validations tab.

3. To change the execution time, click on the Execute When field, which opens a
dropdown list. Select from the list between On Form Submit and On Control
Change.

4. Click the Delete button to remove the validation, or

Click the ellipsis button (...) next to the existing script to open the Edit
Validation Script page.

Figure 80 Open the Edit Validation Script Page

5. Specify your edits in the Script field as necessary.

6. Click Finish.

If the user is in the Business Analysis mode, the Validations tab will not appear
on the control’s Properties View. For information on toggling between modes, see
Toggling between Business Analysis and Solution Design Modes on page 205.
TIBCO Business Studio Forms

| 133
Working with Bindings, Actions, and Rules

This section explains how to set bindings, actions, and rules.

Setting Bindings
For an overview of bindings and their use in TIBCO Business Studio Forms, see
Bindings on page 78. For most controls, many properties on the Properties View
can be initialized by an inbound parameter or expression.

The properties that may be initialized in this way are identified by the presence of
a Add Binding icon to the right of the field where the property’s value is set.

As explained in Setting Bindings on page 78, you can add a binding in one of the
following ways:

• From the General Properties tab for a control

• From the parameter dialog for a specific parameter

• From the Mappings tab of the Properties view for the selected element

You can also set bindings from the Properties tab of the properties sheet for some
controls, such as hyperlink.

Add a Binding from the General Properties Tab for a Control

The General tab of the Properties View for a control may contain the binding
icons indicating that a parameter or expression can be bound to any of the
following properties: Label, Hint, Value, Visible, Enabled, and Required, which
each can have only one binding or computation action.

The value property can have multiple bindings and/or computation actions. For
details about these properties, see Properties View for Controls on page 330.
 TIBCO Business Studio Forms

134 | Working with Bindings, Actions, and Rules
Figure 81 General Properties Tab for a Control with No Bindings

To add a binding:

1. Click the icon next to a property.

The Select Type dialog appears.

2. Select the radio button Create a binding for this property.

3. Click Next.

4. In the Edit Binding dialog, configure the binding as explained in Table 8.

Table 8 Edit Binding from the General Properties Tab for a Control

Select Definition

(Down arrow
above the Select an
Items text box)

Click the Down arrow on the right (above the Select an item... window) to
select from these options:

• Show controls and panes If this is not selected, then only parameters will
be shown in the Matching and selected items pane.

• Show unbound items only If this is selected, then any properties that
already have bindings will not be shown.

You can select either one, both, or none by clicking on the corresponding
check mark. In our example on Figure 81, the controls and panes are selected.

Select an item This text box allows you to type in a filter expression that will restrict the
items shown in the Matching and selected items pane. Names, labels,
and property names are matched by the filter.

You can use the * and ? wildcard characters to represent any string or any
character respectively.
TIBCO Business Studio Forms

| 135
5. Once the binding configuration is finished, all new binding icons appear next
to the property.

Figure 82 Multiple Bindings Added

Matching and
selected items

In the Matching and selected items list, select a property to which you want
to bind the initially selected property. This selection appears right under the
Matching and selected items list as a complete path to the selected property:

../pane/control/property

For example, select the parameter (CustAge), which will update the
Guardian Name if the customer age is less than 21.

Define the binding
type for the
selected property

In the section property of control, the three binding directions are displayed.
The binding types that are available for use are enabled, while the ones that
are not available appear as disabled (grayed out).

• updates property of control.

• is updated by property of control

• synchronizes with property of control

Select Binding
Endpoint window

If the selected binding type for the specified property is not allowed, an error
will appear in the Select Binding Endpoint window.

Finish If the selected property can be bound the way it was selected, the Finish
button in the bottom of the diagram is enabled.

Table 8 Edit Binding from the General Properties Tab for a Control

Select Definition
 TIBCO Business Studio Forms

136 | Working with Bindings, Actions, and Rules
Add a Binding from the Parameter Dialog

The General tab of the Properties View for a parameter contains a binding icon
indicating that a parameter can be bound to a control.

To add a binding:

1. Select the property in the Outline View, such as Name (CustName).

The General Properties tab for the value Name is displayed.

Figure 83 General Properties Tab for the Parameter

2. Click the icon next to a property, such as for the Label property of the
Name control.

The Select Type dialog appears.

3. Select the Create a binding for this property radio button and click Next.

4. In the Edit Binding dialog, configure the binding as explained in Table 8.

5. Once the binding is configured, it appears next to the property.

Add a Binding from the Mappings Tab

The Mappings tab of the Properties view for a selected element provides a
comprehensive view of all the bindings and computation actions. You can view,
edit, and create bindings from the Mappings tab. Refer to Working with the
Mappings Tab for further details.

Remove a Binding

Click the Remove button in the Edit Binding dialog.

The binding will be removed and the icon in the general tab.
TIBCO Business Studio Forms

| 137
Setting Actions
For an overview of actions and their use in TIBCO Business Studio Forms, see
Actions on page 82.

Add a Script Action Using the Outline View

In the Outline View:

1. Right-click the Shared Actions task.

Figure 84 Adding a New Script Action

2. In the pop-up menu, select New Script Action.

3. Type or select data as explained in Table 9.

4. Click Finish.

The new script action appears in the Outline View as a shared action.

Table 9 Specify Details to Define a New Script Action

Field Description

Name Type the name for the new action.

The name is only visible with the Solutions Design capability. It must be
unique among all actions in the form and comprised only of alphanumeric
characters and the underscore “_”. The name may be referenced from the
JavaScript of other actions when using the invokeAction method.

Label Type a descriptive label for the new action.

The Label is used in other parts of the Form Designer to identify the action. It
is not used at runtime.

Script In the Script window, type the script for the new action.

See Scripting on page 376 for a discussion of the variables available in this
script.
 TIBCO Business Studio Forms

138 | Working with Bindings, Actions, and Rules
Add a Computation Action Using the Outline View

In the Outline View:

1. Right-click the Shared Actions task.

2. In the pop-up menu, select New Computation Action.

3. In the Enter the Action Details dialog, type or select data as explained in
Table 10.

4. Click Finish.

The new script action appears in the Outline View as a shared action.

Table 10 Specify Details to Define a New Computation Action

Field Description

Name Type the name for the new action.

The name is only visible when the Solutions Design mode is active. The name
must be unique among all actions in form and must be comprised only of
alphanumeric characters and the underscore “_”. The name may be
referenced from the JavaScript of other actions when using the invokeAction
method.

Label Type a descriptive label for the new action.

The Label is used in other parts of the Form Designer to identify the action. It
is not used at runtime.

Destination Click the Browse icon (...) to select a property to update with the results of the
script evaluation.

Once you select the value, it will appear in the Destination window, such as
Value of Claim Amount (ClaimAmount).

Expression Type the script that will be evaluated in order to update the property selected
in the Destination field.

This is a JavaScript expression. The expression may contain multiple lines, but
the last line in the script must be an expression that will be used to update the
destination.

Note: Do not use a return, since you are not writing a function.
TIBCO Business Studio Forms

| 139
Edit an Action

You can modify script and computation actions that are shared by selecting them
in the Outline View and specifying the changes in the General Properties window
for that action.

Setting Rules
For an overview of rules and their use in TIBCO Business Studio Forms, see Rules
on page 84.

Add a Rule Using the Outline View

To add a new rule in the Outline View, do the following:

1. In the Outline View, right-click the Rules icon.

2. In the pop-up menu, select New Rule.

3. In the Rule Details page of the New Rule dialog, specify data as explained in
Table 11..

4. Click Next to define the rule.

In the Rule: Pick Events page, use the button to add events or delete the
 button to remove events associated with the rule.

Table 11 Specify the Details for Rules

Field Description

Name Type the name for the new rule.

The name is only visible when the Solutions Design mode is active. The name
must be unique among all actions in form and must be comprised only of
alphanumeric characters and the underscore “_”. The name may be referenced
from the JavaScript of other actions when using the invokeAction method.

Label Type a descriptive label for the new rule.

The Label is used in other parts of the Form Designer to identify the rule. It is not
used at runtime.

Enabled Enable (default) or disable the new rule by selecting or clearing the check box.

If disabled, the actions defined in the rule will not be executed, even if the one of
the rule events is triggered. This option is provided primarily as an aid in
debugging a form.
 TIBCO Business Studio Forms

140 | Working with Bindings, Actions, and Rules
Figure 85 Rule: Pick Event Page

5. Click the button.

The Select Event page , which is used to choose the events that trigger a rule,
opens with a dialog Select Item.

Figure 86 Select Event Page
TIBCO Business Studio Forms

| 141
6. Click the event you want to associate with the rule, such as update property.
You may select multiple events by holding down the control key as you select
the events.

7. Click OK to confirm the selection.

You can add multiple events to the rule. You can also delete any of the
previously associated events from the list.

8. To define an event, click Next in the Rule: Pick Events page.

The Define Actions page opens.

Figure 87 Define Actions for the Rule

9. Click the button.

10. In the dialog named Pick an existing action or choose the create a new one,
there are two choices:

— Pick an Existing Action on page 141

— Create a New Action on page 142

Pick an Existing Action

To pick an existing action:

1. Click the Browse icon (...) next to Pick an existing action.

This will allow you to choose one of the system actions, or to select one of the
custom shared actions defined in the form.

2. In the Select Item dialog, select an action from the list of Matching and
selected items and click OK.

A new row appears in the table with the details of the action.
 TIBCO Business Studio Forms

142 | Working with Bindings, Actions, and Rules
3. Click Finish.

The Define actions dialog appears.

Figure 88 Define Actions Dialog for the Rule

4. In the Define actions dialog, you can further configure the new action by
selecting (or clearing) the check boxes to enable (or disable) the action, or to
designate the action to be shared.

5. Use up or down arrows to move the selected actions and rearrange them in
the window.

The actions will execute in the defined order when the rule is triggered by one
of its events.

6. Click Finish.

Create a New Action

To create a new action:

1. Click the Create a New Action radio button.

Two additional radio buttons become available: Script Action and
Computation Action.

2. Select the type of action you want to create.

3. Click Next.
TIBCO Business Studio Forms

| 143
4. If you selected the Script Action, specify the data as in Table 12.

If you selected the Computation Action, specify the data as in Table 13.

Table 12 Specify the Action Details for the Script Action

Field Description

Name Type the name for the new rule.

The name is only visible when the Solutions Design mode is active. The name
must be unique among all actions in form and must be comprised only of
alphanumeric characters and the underscore “_”. The name may be referenced
from the JavaScript of other actions when using the invokeAction method.

Label Type a descriptive label for the new rule.

The Label is used in other parts of the Form Designer to identify the rule. It is not
used at runtime.

Script Type the script to run.

Table 13 Specify the Action Details for the Computation Action

Field Description

Name Type the name for the new rule.

The name is only visible when the Solutions Design mode is active. The name
must be unique among all actions in form and must be comprised only of
alphanumeric characters and the underscore “_”. The name may be referenced
from the JavaScript of other actions when using the invokeAction method.

Label Type a descriptive label for the new rule.

The Label is used in other parts of the Form Designer to identify the rule. It is not
used at runtime.

Destination Click the Browse icon (...) to select a value of the property to update based on the
script evaluation.

Once you select the value, it will appear in the Destination window, such as Value
of Claim Amount (ClaimAmount).

Expression Type the script that will be evaluated in order to update the property selected in
the Destination field.
 TIBCO Business Studio Forms

144 | Working with Bindings, Actions, and Rules
5. Select the “Shared” check box on the actions dialog to create shared actions
from your new custom actions. This makes actions visible under shared
actions in the Outline View and available for use in other rules.

Add a Rule Using the Rule Wizard

In addition to adding new rules through the Outline View, you can also create a
computation rule (a rule with a computation action) directly from property you
want to create a computation rule for. To do so, follow these steps:

1. Click the Add a binding or rule icon next to a property, such as for the
Value property of the Name control.

2. In the Select Type dialog, select the Update this property using a
Computation Action radio button.

3. Click Next.

In the Provide Expression dialog, provide the script. Note that in this case,
there is no option to select the destination, since the destination is implicit on
where you are adding the computation action.

4. Click Next.

In the Events Configuration dialog, use the button to add events or the
 button to remove events associated with the rule.

5. Click the button.

The Event Picker, which is used to choose the events that trigger a rule, opens
with a dialog Select Item.

6. Click the event you want to associate with the rule.

7. Click OK to confirm the selection.

You can add multiple events to associate with the rule. You can also delete any
of the previously selected events from the list.

8. Click Finish when you are done configuring the rule.

When you have finished a rule icon appears next to the property and allows
easy editing of the compute action.

Additionally, the rule appears in the Outline View and can be edited as a
regular rule.
TIBCO Business Studio Forms

| 145
Styling Forms Using Cascading Style Sheets

While you can control some layout and font properties via the form model
Property tabs, it is also possible to specify additional CSS classes that are applied
to form components at the form, pane, and control level. This approach provides
more flexibility and opportunities for reuse of style information above manually
setting properties at the Form model level.

Setting CSS Classes
The General property sheet for the form, panes and controls includes an input
box to specify the CSS class for the given component. The value can be either a
single value, or a space-separated list of CSS classes. When the component is
rendered in the web page, the CSS classes specified here will be added to the
HTML along with other built-in CSS classes. The value of the CSS class for a form,
pane or control can also be updated via bindings, computation actions, or set via
the API.

Using an external CSS resource
The Resources property sheet for a form allows one or more external CSS files to
be referenced from the form. When added as an external reference, the CSS will be
loaded prior to the form being loaded. To load an external CSS file in a Form:

• Place the CSS resource within the "Presentation Resources" special folder.

• Select the root of the form by either clicking in the background of the canvas
or selecting the root node in the outline view.

• Select the "External Resources" property tab.

• Click the "+" button to add a reference to the CSS.

See Scripting on page 376 for lists of the built-in static and dynamic CSS classes.

Best Practices
• Use .TibcoForms in class selectors.

The root node of each form will specify a class TibcoForms. This allows one to
write CSS selectors that are specific to Forms and will not conflict with other
elements on the page. For example, suppose you have a CSS class highlight
that you apply to a pane. The corresponding CSS rule may be written as
follows:

.TibcoForms .highlight {background-color: yellow;}
 TIBCO Business Studio Forms

146 | Styling Forms Using Cascading Style Sheets
This will ensure that the highlight class will only get applied to elements
within a form.

• Share CSS between forms.

You can share the same CSS between multiple forms to cut down on
duplication. Just add a reference to the shared CSS from one or more forms.

Examples
A vertical pane might make use of a set of classes such as the following:

pane pane-vertical
pane-label
pane-content

component control-textinput required
label
container

widget-text
hint

component control-date
label
container

widget-date
hint

You might make use of the following selectors:

.pane-vertical .hint Applies to hints within vertical panes

.control-date .label Applies to labels of Date controls

.pane-vertical .required Applies to required controls within a vertical pane

.pane-vertical .pane-horizontal .label Applies to the labels in horizontal panes
nested within vertical panes.
TIBCO Business Studio Forms

| 147
Validating Data in a Form

TIBCO Forms supports runtime validation of data as the user fills up the forms.
You can configure validations for the fields defined on the form. You can
configure the validations to occur either when the user changes a field value, or
when the user submits the form.

Validations help users to specify correct data, thereby enhancing the overall
experience. On the server side, the submitted data are validated against the
restrictions specified in the business object models used within the form.

You can write validation scripts for each control as well as each pane on a form.
Validation scripts usually run when users update data or submit the form. The
scripts need to be written to explicitly return a Boolean or an Array.

• If the returned value for all validation scripts on the form is true, the form
data are valid.

• If the returned value for one or more validation scripts is false, the validation
error messages are displayed on the form in a special pane called a Messages
pane. Users can click the error message to navigate to the first instance of the
error in the form.

• If the validation expression evaluates to an array of strings, it indicates a failed
validation. In this case, the Messages pane substitutes each indexed parameter
marker in the validation message template with the corresponding array
element.

The Messages pane displays the validation messages. You can specify a validation
message either using a key reference from the External Resources of a
*.properties file or as a Custom Message.

By default, the Messages pane opens at the bottom of the form when a validation
fails. By manually adding a Messages pane to the form, you can configure the font
and layout properties of the pane, and place it anywhere other than the default
position.

TIBCO Forms does not validate controls and panes that are invisible, disabled,
have any empty value, or that are contained within a pane that is invisible or
disabled. Only collection panes are validated even if they are empty.
 TIBCO Business Studio Forms

148 | Validating Data in a Form
Helping Users with Validation Messages
Good validation messages help users complete the forms faster and without any
error in the specified data. This section summarizes how the users get to see the
error messages for different types of controls and panes.

If you configure validation messages for each control, the user gets the validation
message for the control after specifying data and moving on to the next control. If
you configure the validation to occur on submitting the form, the validation
message appears after the user clicks Submit to submit the form.

Clicking the message associated with an individual control sets the focus on that
control. Record and Grid panes automatically navigate to the correct page in
order to show the invalid control. If you configure validation for the entire pane,
the focus of the screen shifts to the beginning of the pane in case of a failed
validation.

Implementing Validations
You can add, edit, or remove validation scripts only when using the Solution
Design capability. If the Solution Design capability is disabled, the Validations
tab does not appear on the Properties view of a control. The following section
describes the steps to perform such tasks.

For information about invoking validations programmatically, see validate in
the API reference.

Adding a Validation

1. With the form open in the Form Designer, click the control or pane where you
wish to add new validations.

The Properties view shows the properties for that control or pane. You can
view the validation script for any control or pane by clicking the control or
pane, and clicking the Validations tab in the Properties view of the control or
the pane. See Chapter 7, Reference for a detailed description of each property
available on the Validations tab.
TIBCO Business Studio Forms

| 149
Figure 89 The Validations Tab

2. Click the button to add a new validation.

The Define Validation dialog opens.
 TIBCO Business Studio Forms

150 | Validating Data in a Form
Figure 90 The Define Validation Dialog

3. Specify a unique name for the script in the Name field.

4. Select the Execute When option from:

a. On Form Submit: Sets the validation script to run when the user submits
the form. When more than one control is involved, such as when you want
to ensure that at least one of the two or more fields are filled in, you can
select On Form Submit.

b. On Value Change: Sets the validation script to run when the user specifies
a value in the field, and then exits that field. The validations of the syntax
of specified values are best performed On Value Change.
TIBCO Business Studio Forms

| 151
5. If you are defining a validation on a pane or control that supports multiple
values (for example, grid panes, list controls, and multi-select optionlists),
select Validate As List to control how the validation is run.

6. Specify the validation script in the Script text area.

7. Select the type of Message from:

— External Reference: Picks the validation message from an external
*.properties resource. You can define validation messages at the form
level in an external resource file with validation_ as a prefix in the key,
and share the file across forms or projects. Also, the default implicit
validations can reference messages in the common resource bundle.
External reference validation messages can use substitution variables to
include runtime data values in an externalized static text string.

— Custom: Allows you to specify custom text message or a message that
contains substitution variables, for example: “Sorry, you cannot have more
than {0} {1}”. You can dynamically determine the validation message at the
runtime using substitution variables.

8. If you select the Message type as External Reference, click the button to
open the Resource Picker dialog. Select a validation message from all the
available validation_* resource keys, and click OK.

If you select Validate As List, then the validation runs just once for the entire list
of items, and context.value contains an Array (for primitive values) or a list (for
multi-valued pane validations). If you do not select Validate As List, then the
validation runs once for each item in the multi-valued control or pane, with
context.value set to a new item each time the validation is invoked.

The Resource Picker dialog displays a filtered list of only validation_* resource
keys.
 TIBCO Business Studio Forms

152 | Validating Data in a Form
Figure 91 The Resource Picker Dialog

See Example 3: Validation Message Referenced from External Resource for
details.

9. If you select the Message type as Custom with substitution variables, ensure
that the validation script expression evaluates to an array of strings.

The length of the array must be equal to the number of substitution variables
in the message. See Example 2: Custom Validation Message with Substitution
Variables for details.

10. Confirm that the Enabled check box is selected, and click Finish to complete
the process of defining a validation.

Editing a Validation

1. In the Properties view of the control or the pane, click the Validations tab.

Figure 89 displays the validations defined for a control or a pane.
TIBCO Business Studio Forms

| 153
2. From the Validations tab of the Properties view, edit the Name, Execute
When, Message Type, Message, and List fields.

3. Select the script you wish to edit.

A cell editor button appears next to the script.

4. Click the button.

The Edit Validation Script dialog opens.

Figure 92 The Edit Validation Script Dialog

5. Edit the code in the Script field, and click Finish.

If the message is an external reference, a cell editor appears on clicking in the
message cell. Clicking the cell editor opens the Resource Picker, from where you
can select an appropriate message key.

The script editor provides content-assist editing. On typing the beginning of a
legal value, such as “control.”, a pop-up window appears listing the available
completion proposals. If you type CTRL+Space, a list displays containing all the
top-level variables that are available in the given context.
 TIBCO Business Studio Forms

154 | Validating Data in a Form
Edit Validation Script Dialog

In this cell editor dialog, you can edit the script that determines whether the data
submitted are valid, or you can modify the error message that appears when
users submit invalid data. The final expression in the validation script must
evaluate to true (if the data are valid), false (if the data are invalid), or an array
of strings (if the data are invalid and the validation message contains substitution
variables).

You can use the notation this in your script to refer to the control or pane during
a given validation invocation. A validation script, for instance, might contain a
statement such as the following:

this.getValue() == "New York";

You can also use the context object provided while executing the validation to
retrieve the value of the given control or pane:

context.value == "New York";

You can refer to any control by using the “control.” notation, or to a pane using
"pane." notation. To refer to the value of a control, use the latter notation in
conjunction with the Control.getValue() method:

control.city_name.getValue() == "New York";

Example 1: Custom Validation Message

In this example, the text field has the name petNumber.

Validation scripts must have no side effects. Do not set the value of controls nor
make any modifications to the form model from within a validation script.
TIBCO Business Studio Forms

| 155
Figure 93 The General Tab

This means that the value submitted for this text field by a user can be referenced
in the validation script by the expression control.petNumber.getvalue().

1. In the Define Validation dialog, specify the value in the Script field.
 TIBCO Business Studio Forms

156 | Validating Data in a Form
Figure 94 Defining Custom Validation

2. In the Custom text field, type the validation error message that you want the
user to see on specifying incorrect data.

3. Confirm that the Enabled check box is selected, and click Finish.

If the user submits a value other than the one specified in the validation script,
the validation error message appears on the form.

Figure 95 Validation Script Example 1
TIBCO Business Studio Forms

| 157
Example 2: Custom Validation Message with Substitution Variables

To specify a validation message with substitution variables, you need to perform
the following steps:

1. In the Define Validation dialog, type the code as shown in the Script field in
Figure 96.

Figure 96 Defining Custom Validation Using Substitution Variables

2. In the Custom message field, specify the validation error message using
substitution variables from an array.

3. Confirm that the Enabled check box is selected, and click Finish.
 TIBCO Business Studio Forms

158 | Validating Data in a Form
If the user submits a value other than the one specified in the validation script,
a validation error message using the substitution variables from the array
appears on the form.

Figure 97 Validation Script Example 2

Example 3: Validation Message Referenced from External Resource

To specify a validation message from an external resource, you need to perform
the following steps:

1. Create <validations>.properties file under the Presentation Resources special
folder in Project Explorer.

The name of the file does not matter as long as the extension is .properties.
The file can contain any arbitrary custom display strings, not necessarily only
validation messages.

2. Define validation messages in the <validations>.properties file.

The validation message key must have "validation_" as a prefix. If a key
does not start with "validation_", the system does not treat it as a validation
message.

Figure 98 Sample Validation Messages

3. Add the newly-created <validations>.properties file to the resources list of the
form.

After adding the .properties file as a form external resource reference, the
new validation messages are available in the Resource Picker.

4. In the Define Validation dialog, provide the details of the external resource
reference.
TIBCO Business Studio Forms

| 159
Figure 99 The Define Validation Dialog Using External Resources

5. Click Finish.

If the user submits a value other than the one specified in the validation script,
the validation error message from the external resource file appears on the
form.

Figure 100 Validation Script Example 3

You can localize the validation error messages. See Localizing a Form on
page 197.
 TIBCO Business Studio Forms

160 | Validating Data in a Form
Enabling or Disabling a Validation
You can enable or disable a validation at the time of defining it, or after defining
it. If disabled, the validation definition remains in the form model, but is not
invoked at runtime. This may be useful during troubleshooting of a form.

• When defining a validation, you can enable it or disable it by using the
Enabled check box on the Define Validation dialog.

• You can enable or disable a defined validation by using the Enabled check box
in the Validations tab of the Properties view.
TIBCO Business Studio Forms

| 161
Calling External JavaScript Functions

Often, a single JavaScript function is useful for many different forms. Typical
utility functions that are candidates for reuse are those for validating common
types of input, such as phone numbers and zip codes, or for making calls to
external services, for instance, to dynamically obtain lists of data. It is not
necessary to rewrite or copy these functions from one form to another.

To facilitate reuse, common JavaScript can be placed in one or more JavaScript
files external to the form. These JavaScript files will be deployed to the WebDAV
server with your form files, and can be used by multiple forms in the browser
client.

To use an external JavaScript file in a form, you need to add it to the form
resources. Once added, the JavaScript files will get deployed automatically when
the form is deployed, and loaded at runtime before the form is loaded.
 TIBCO Business Studio Forms

162 | Configuring Panes
Configuring Panes

This section describes special procedures for the sizing, re-sequencing, and
nesting of panes.

Nesting Panes
Panes may be nested within other panes to achieve specialized layouts. In
particular, panes with different layout directions can be nested to achieve column-
or row-wise layouts.

Creating Columns with Nested Panes

To create a multi-column layout by nesting two vertical panes, side-by-side,
within a horizontal parent pane, follow these steps:

1. Place groups of controls into two separate vertical panes, each representing a
separate column.

2. Drag the second pane to a position next to the first pane, so that you see a
dotted line appear. The dotted line means that a horizontal pane will be
automatically created for you to hold the two vertical panes.

As you drag the pane, you will see feedback on the new position of the pane
prior to releasing the mouse button.

3. If you want more than two vertical columns, drag additional panes, one at a
time, next to the right-most vertical pane within the new horizontal parent
pane.

Positioning Controls into a Multi-Column Layout

A multi-column layout is created by positioning multiple vertical panes within a
horizontal pane. The creation of a two-column layout is used here to demonstrate
this technique.

1. Vertical panes A, B, C, and D are placed on the form, one beneath the other.
TIBCO Business Studio Forms

| 163
Figure 101 Place Vertical Panes on the Form

2. Drag the Pane B up and to the right, close enough so that a colored
background appears around Pane A.

Figure 102 Position the New Pane
 TIBCO Business Studio Forms

164 | Configuring Panes
3. A new horizontal pane is automatically created, containing the two vertical
panes, side by side.

Figure 103 New Horizontal Pane is Automatically Created

Resequencing Tabbed Panes
To resequence child panes, perform the following procedure:

1. Expand the tabbed pane using the arrow to the right of the tabs.

2. Use drag-and-drop to move the child pane to its new position.

The pane's tab will automatically adjust itself to the new index position.

Resizing a Tabbed Pane
If you add or delete child panes within the tabbed pane, or add or remove
controls from a child pane, or move controls between panes, you may need to
resize the tabbed pane to account for the resulting increase or decrease in the child
pane's width, height, or both. Do the following:

1. Collapse the tabbed pane.

2. Select each tab in turn, checking that all child panes fit comfortably within the
tabbed pane's content area and resize as necessary.

3. Verify the run-time appearance by clicking the GWT Preview tab in the Form
Designer. If scrollbars appear or there is excessive unused space, you may
need to make further adjustments.

Tabbed panes can also be resequenced in the Outline View using drag-and-drop.
TIBCO Business Studio Forms

| 165
Viewing Pane and Control Borders
The controls and panes on a form, including nested panes, are sometimes clearer
and easier to distinguish from one another when viewed with borders around
them. The borders do not appear at runtime (or in the GWT Preview mode), but
only in Design mode. It is a matter of personal preference whether to display the
borders in Design mode.

To switch between showing and hiding borders around controls and panes, click
the Toggle Pane and Control Borders button at the far right of the TIBCO
Business Studio Forms toolbar.

Figure 104 TIBCO Business Studio Forms toolbar

To control whether borders are shown by default:

1. Click Window > Preferences to open the Preferences dialog.

2. Click Form Designer in the left navigation pane.

Figure 105 Show Pane and Control Borders

3. Select or clear the Show pane and control borders check box as desired, and
click OK.

Borders will appear or disappear as selected.
 TIBCO Business Studio Forms

166 | Using Embedded Forms
Using Embedded Forms

The Embedded Forms feature enables you to embed one form within another. You
can use this design technique to create smaller reusable fragments of a form
separately, which can then be embedded in a parent form.

For example: you have to design a form for delivery of goods to customers. In
such a form, different types of address information is required, such as delivery
address and personal address. If you design a normal form, you have to create the
same set of address fields at two places. By using the embedded forms feature,
you can create a reusable embeddable form with the address fields and embed
this form at multiple locations in the parent form.

Prerequisites of an Embeddable Form

An embeddable form has no navigation or message panes, as navigation and
messaging are taken care of by the parent form.

If you want to embed an existing form within another form, it is advisable to
make the following changes to make the existing form suitable for embedding:

• Remove the navigation and messages panes from the embeddable form.

• If the embeddable form has any dynamic behavior that must be exposed to
the parent form, you must tie the dynamic behavior to parameters on the
embedded form, which can then be updated by parent forms.

In the Embedded Forms topic the following terms are used frequently:

Embeddable Form A form that has been designed to be embedded is referred to
as an embeddable form.

Embedded Form Once a form is embedded within the parent form, it is referred
to as an embedded form.
TIBCO Business Studio Forms

| 167
Working with Embedded Forms
This section describes the creation of embeddable forms and different gestures for
embedding a form.

To Create an Embeddable Form

Perform the following steps to create an embeddable form from the Project
Explorer:

1. Go to the Forms folder, or any folder under the Forms folder in the Project
Explorer and click Context Menu > New > Form. The New Form dialog
opens.

2. On the New Form dialog box, specify the File name. Select the Form type as
Embeddable.

3. Click OK.

This newly created form will only have a single root pane. Messages and
navigation panes are not created.

To Embed a Form by Using the Embedded Form Icon

1. Select the embedded form icon from the Palette and drop it in the
required location on the Form Designer canvas.

Figure 106 Using the Embedded Form Icon
 TIBCO Business Studio Forms

168 | Using Embedded Forms
2. The Select the form to embed dialog is displayed. All the forms available in
all the projects in the workspace are listed in the dialog. Select the required
form.

3. The Embedded Form dialog appears asking you to map the embedded form
parameters in the ‘Mapping’ property section. Click Yes to continue or No to
skip the parameter binding. See Working with Embedded Form Parameters
for the details of parameter binding.

To Embed a Form from the Project Explorer

You can embed any form within the project or any project on which the existing
project depends.

Perform the following steps to embed a form from Project Explorer:

1. Select the form from the Project Explorer and drop it in the required location
on the Form Designer canvas or Outline view.

2. The form is embedded within the form. An embedded form is represented as
a pane containing a form icon, labelled with the name of the embedded form.

If the selected form is from another project, you are prompted to add the other
project as a reference.
TIBCO Business Studio Forms

| 169
Figure 107 Embedded Form Inserted in a Parent Form

To Add a BOM Class or Form Parameter to a Form

You can create an embeddable form UI components directly from a BOM class.
Select a BOM class in the Project Explorer and drop it in the Form Designer
canvas. All the UI components associated with the BOM class are automatically
created on the form.

Similarly, you can select a form parameter in the Outline view and drop it in the
Form Designer canvas. This will also automatically create all the UI components
associated with the parameter.

A form is embedded only at design time. You can have multiple levels of nesting.
The nested form is embedded by reference.

It is recommended to define a separate project with all the reusable embeddable
forms along with the BOM classes they represent. Add this project as a
dependency in other projects to make use of the data model.
 TIBCO Business Studio Forms

170 | Using Embedded Forms
Working with Embedded Form Parameters
Once a form is embedded within a parent form, the embedded form parameters
can be accessed only via the parent form. An embedded form exposes an interface
that consists of its parameters. The panes and controls in an embedded form are
generally bound or otherwise mapped to its parameters. These parameters in the
embedded form are in turn mapped to parameters, data fields, controls, or panes
in the parent form.

For example: we have an embeddable form which contains a single pane that is
bound to a parameter of particular type defined as a BOM class. This form is
embedded in a parent form. You bind an embedded form parameter to one of the
parent form’s IN OUT parameters of the same type. When the parent form is
loaded with an instance of that parameter, the embedded form is updated via the
binding. This is one of the mechanisms by which information is exchanged
between the parent form and the embedded form

There are many ways in which data can be exchanged between the parent and the
embedded forms:

1. Using absolute bindings from parent form panes or parameters

2. Using computation actions

3. Using the API in script actions

For details of how to set bindings and actions, see Working with Bindings,
Actions, and Rules.

Accessing Embedded Form Parameters

You can access the embedded form parameters using action scripts and
computation actions.

The parameters of the embedded form appear as Data Fields in the deployed
copy of the parent form. The names of these parameters are scoped by the name
of the embedded form.

Example:
data.get<EmbeddedFormName>_<ParamName>();

For example, data.getCustomerForm_Customer();

Set Bindings from the Mappings Tab

To set the bindings from the Mapping tab, perform the following steps:

1. In the Form Designer canvas or Outline view, select the embedded form.

2. Go to the Mappings tab in the Properties view of the parent form.
TIBCO Business Studio Forms

| 171
3. All the parent form parameters are displayed in the left pane. The right pane
displays each embedded form, along with the parameters defined in that
embedded form.

4. Drag the required parent form parameter and drop it onto the embedded form
parameter to bind it. This creates the required binding, which is represented
by a connecting line between the parameters.

Figure 108 Set Binding Using the Mappings Tab

Rendering of Embedded Forms
On the Form Designer canvas, an embedded form is represented as a pane
containing a form icon. When the builder runs, it creates a deployable copy of the
parent form. Each embedded form pane is replaced by the contents of its
respective embeddable form, recursively.

At preview and runtime, the GWT implementation renders the deployable copy
of the parent form.
 TIBCO Business Studio Forms

172 | Using Embedded Forms
Figure 109 Preview Rendering of the Parent Form

Editing Embedded Forms
You cannot directly edit an embedded form within the context of the parent form.
It is possible to move it to a different location within the form, but it cannot be
edited directly.

To edit the embedded form, perform the following steps:

1. In the Form Designer canvas or Outline view, select the embedded form pane.

2. Go to the Properties tab in the Properties view of the embedded form pane.
The Form Reference displays a link to the embedded form.
TIBCO Business Studio Forms

| 173
Figure 110 Properties Tab for the Embedded Form

3. Click the link to open the embedded form in the Form Designer.

4. Click the button to change the embedded form.

5. Update the embedded form using the Form Designer.

The updates are available in the parent forms without having to re-embed the
form.

The changes made in the embedded form can be seen in preview and at runtime
after the parent form is redeployed.
 TIBCO Business Studio Forms

174 | Working with the Mappings Tab
Working with the Mappings Tab

The Mappings tab of the Properties view provides a global view of all the
bindings and computation actions related to the selected element in the Form
Designer canvas or Outline view.

You can view, edit, and create mappings from the Mappings tab. It displays the
values of the source and target fields of the existing mappings in the left and right
trees respectively.

Figure 111 Mappings Tab of the Properties View

The details are as follows:

• The right pane displays the bindable properties of the selected target element.

• The left pane displays the bindable source properties to which the target
elements are bound. It displays the selected object and its ancestors all the
way up to the containing form and also includes the form parameters and
data fields.

• The connecting lines represent the existing mappings between the source and
target properties.

The term mappings used in this topic, is a generic word which covers both
bindings and computation actions.
TIBCO Business Studio Forms

| 175
• The arrow end-point represents unidirectional mappings.

• The red triangle at one end-point of the connecting line represents collapsed
mappings.

The default view of the Mappings tab is focussed on the mappings of the selected
element.

A set of buttons and filters are provided in the toolbar. Each of these filters has a
corresponding toolbar button and a toolbar menu item: both are associated with
same filter action. The buttons control the depth to which the source and target
trees are expanded. The filters help you to control the properties to be displayed
in the source and target panes. The details are explained in Table 14.

Table 14 Toolbar Buttons for the Mappings Tab

Button Description

 Expands the source and target trees just to the extent required to reveal all the
existing mappings.

Expands both the source and target trees to the maximum possible extent.

Collapses both the source and target trees to the maximum possible extent.

 Deletes all the bindings and computation actions related to the selected element.

This filter shows only the selected element and its related ancestors. By default
this filter is enabled. When disabled, unrelated components are also visible but
initially shown collapsed. You can expand these unrelated nodes manually.

This filter hides the descendents of the selected pane in the target tree. By default
this filter is enabled. When disabled, all the target pane’s children are visible but
initially shown collapsed. You can expand the child nodes manually.

This filter shows only the bindable value in the target tree. By default this filter is
enabled. When disabled, the other bindable properties of the selected element are
also displayed in the target tree.
 TIBCO Business Studio Forms

176 | Working with the Mappings Tab
Coloration Feedback

The connecting lines representing the existing mapping can be difficult to
understand especially if there are many mappings between the elements of the
source and target tree. The coloration feedback is very useful in such scenario as it
allows you to see at a glance which mappings are defined within a given
component tree. Some examples are listed below:

• When you select a bindable element in the source or target tree, all mappings
involving that element and its visible children are highlighted in bold. In
Figure 111, when you select Customer_order_item_SKU/Value node in the
target tree, the corresponding binding is highlighted in bold. This is especially
helpful when the ‘show only source ancestors’ and ‘hide target descendants’
filters are disabled.

• When you click a collapsed mapping (represented by a red triangle), it
automatically expands and displays both of the end-points of the mapping.

The Mappings tab’s user interface (UI) simplifies tasks such as property binding
and creating computation actions. The following sections describes the operations
that can be performed using the Mappings tab.

Settings Bindings

1. In the Form Designer canvas or Outline view, select the target element.

2. Go to the Mappings tab in the Properties view of the selected element.

3. Drag the property of a component, parameter or data field from the source
tree and drop it over the property of a component in the target tree to which
you want to bind it.

4. This creates the required binding, which is represented by a connecting line
between the properties.

5. You can also create a binding in the opposite direction i.e. from the target tree
to the source tree.

Adding Computation Actions

1. In the Form Designer canvas or Outline view, select the component or element
for which you want to add a computation action.

2. Go to the Mappings tab in the Properties view of the selected element.

3. Click the New Computation Action node in the source tree. By clicking on this
node, you can specify the name of the computation action in direct edit mode.

4. Press Enter to commit the newly created computation action name and
display the Rule Details page of the New Rule dialog. Follow the instructions
TIBCO Business Studio Forms

| 177
given in the Add a Rule Using the Outline View section to create a new
computation action.

5. After the new computation action is created, it is visible in the source tree.

6. You have to connect the newly-created computation action to its destination.
To set this mapping, drag the computation action and drop it on the target
property of a component in the target tree. This completes the creation of
computation action.

Editing Computation Action Using the Script Editor Section

1. Go to the Mappings tab in the Properties view.

2. Select the computation action to be edited, from the source tree.

3. Click to expand the computation action section in the
Mappings tab view. You can update all the fields of the computation action
from the Script Editor.

Figure 112 The Script Editor in the Mappings Tab

Common Gestures for Editing Mappings

1. In the Form Designer canvas or Outline view, select the target element.

2. Go to the Mappings tab in the Properties view of the selected element.
 TIBCO Business Studio Forms

178 | Working with the Mappings Tab
3. Select the mapping to be edited and use one of the following ways to invoke
the Edit Binding or Edit Computation Action dialog:

a. Double-click the selected mapping.

b. Select a mapping and press Enter.

c. Select a mapping and execute Context Menu > Edit.

4. The Edit Binding or Edit Computation Action dialog is displayed. See
Working with Bindings, Actions, and Rules for details.

When you create mappings from the Mappings Tab, it prevents you from creating
invalid mappings. Look for the following cursor feedback when you drag a
property between trees:

• - Not valid binding.

• - Valid binding
TIBCO Business Studio Forms

| 179
Customizing Property Resource Bundles

In TIBCO Forms, you can configure the resource keys in the Property Resource
Bundles or .properties files. You can override the values of the existing resource
keys, and also add new resource keys. Such customizations may be necessary for:

• Changing the value of a resource key, for example the default date format
used by all the controls

• Adding a new locale for adding a new language that is not already listed in
the default locales

• Adding new resource keys, for example new numeric formats

• Adding a new .properties file that is automatically added to all the forms in
a project, or to all the projects in a workspace

• Using implicit validations that use the messages specified in the common
resource bundle

It is possible to do such customizations at the project level and also at the
workspace level.

For information on the default common resources, see Common Resource Keys
on page 359.

The Merging Process
TIBCO Forms creates a merged bundle of common resources from the overridden
resource keys and the default resource keys from the base bundle. This merged
bundle resides in the Presentation Resources folder.

The entries in your <custom>.properties file are compared with the existing
entries in the default common.properties file. If a resource key already exists in
the default file, its value in the <custom>.properties file is used in the merged
bundle. If the resource key is not in the default common.properties file, it is
added to the new merged file.

If the custom bundle does not specify a file for a specific locale, the entire file from
the default bundle is passed on to the merged bundle. Similarly, you can also
specify a new locale that is not a part of the default bundle.

Figure 113 illustrates the merging process.

The .common sub-folder is hidden by default. To display it, you need to disable
the .*resources Project Explorer filter.
 TIBCO Business Studio Forms

180 | Customizing Property Resource Bundles
Figure 113 Merging Process

Customizing Property Resource Bundles
1. Right click the Presentation Resources folder and click New > File.
TIBCO Business Studio Forms

| 181
Figure 114 Creating a New Properties File

The New File dialog appears.

2. In the New File dialog, name the file with .properties as its extension, and
click Finish.

In the example, the name of the file is Customer_Specific and the extension is
.properties.
 TIBCO Business Studio Forms

182 | Customizing Property Resource Bundles
Figure 115 The New File Dialog

3. In the new .properties file, type the resource entries that you wish to add or
override.

Figure 116 Sample Resource Entries

In this example, following is the new resource key:
— validation_PetCount
TIBCO Business Studio Forms

| 183
The Table 15 lists the existing resource keys with their default values and their
new values.

The merged common resources bundle now consists of the old resource keys
with the new overridden values along with the new resource keys.

4. Do one of the following to specify the new common resources bundle in the
Common Properties of the Form Designer:

— At the project level

a. In the Project Explorer, right click the project, and select Properties.

OR

Click the Project menu, and select Properties.

The Properties for project name dialog opens.

b. In the left pane, click the Form Designer arrow to expand it, and select
Common Properties.

Table 15 Example Resource Keys with Overridden Values

Resource Key Default Value Overridden Value

dpane_new_label Add a new record Add a new report

time_24hour true false

form_submit_label Submit Enter
 TIBCO Business Studio Forms

184 | Customizing Property Resource Bundles
Figure 117 The Project Properties Dialog

c. Select the Enable project specific settings check box.

d. Click the Browse button next to the Common Properties File.

The Pick Resource dialog opens.

You can also specify the properties file at the workspace level from this dialog. To
do that, click the Configure Workspace Settings link.

When opened this way, the dialog shows filtered options, and it only shows the
Form Designer and Common Properties file.
TIBCO Business Studio Forms

| 185
Figure 118 The Pick Resource Dialog

e. Select the new properties file, and click OK.

f. Click Apply, and in the ensuing Rebuild? dialog, click Yes.

In the Properties view > Resources tab, the URI field shows that the
common properties resource is now overridden.

— At the workspace level

a. Click the Window menu, and select Preferences.

The Preferences dialog opens.
 TIBCO Business Studio Forms

186 | Customizing Property Resource Bundles
Figure 119 The Common Properties Preference Page

b. Click the Form Designer arrow to expand it, and select Common
Properties.

c. Click the Browse button next to the Common Properties File.

The Pick Resource dialog opens as shown in Figure 118.

d. Select the new properties file, and click OK.

e. Click Apply, and in the ensuing Rebuild? dialog, click Yes.

Validations Related to Custom Common Resources
There are default validations available on custom common resources. They have
following objectives:

You can also specify the properties file at the project level from this dialog. To do
that, click the Configure Project Specific Settings link.

In the Project Specific Configuration dialog, selecting the project name opens the
Preferences dialog for that project.
TIBCO Business Studio Forms

| 187
• To check if the project has a project reference to the project containing the
common properties override

• To check if an override is set at the project level or workspace level

• To check if the properties override file actually exists

• To warn about any form that uses a form-level common properties override

If you see such validation messages, you may want to do one of the following:

• Adding the missing project reference

• Creating the missing common.properties file

• Removing the common properties override from the preference node

• Removing the common properties override from the form
 TIBCO Business Studio Forms

188 | Customizing the Form’s Preview Data
Customizing the Form’s Preview Data

By default, when a form is previewed, sample data is included for each control to
give a better idea of how the form will appear to a user at runtime. This section
explains how to customize the preview data that appears, rather than using the
default data generated for each control type.

Editing the File [form-name].data.json
To customize the preview data for a form:

1. In the Project Explorer, find the file that contains the preview data. The default
location of this file is: [project-name] > Forms > ProcessPackage >
[business-process-name] > [user-task-name] > [form-name].data.json

2. Right-click the .data.json file and click Copy. Then, in the same location in
the Project Explorer, right-click and click Paste. The Name Conflict dialog will
appear asking you to type a new name for the file. Keep the extension
.data.json, and supply a different filename. Do not delete the original
preview data file.

3. Right-click your newly-named custom preview data file, and click Open With
> Text Editor.

4. Edit the file, providing your desired values for the preview data in place of the
default values in the file.

Example of Default Preview Data File

{ items: [
{ $param:'AnotherDemo', $value:{$type:'com.example.demo.Demo',
normalText:"normalText",list:[
"list"
],duration:"",attribute1:[
"2010-05-16"
]}
},
{ $param:'Demo', $value:{$type:'com.example.demo.Demo',
normalText:"normalText",list:[
"list"
],duration:"",attribute1:[

Do not edit the original .data.json file. This is a generated file, and if you edit
it, your customizations will be overwritten when the file is regenerated.

Also, be sure to maintain the file extension, .data.json. Otherwise, you’re
customized preview data file will not be accessible by the form.
TIBCO Business Studio Forms

| 189
"2010-05-16"
]}
}
]}

Example of Customized Preview Data File

{ items: [
{ $param:'AnotherDemo', $value: {$type:'com.example.demo.Demo',
normalText: "My Sample Data",
list:["list", "John", "George", "Ringo"],
duration: "P4Y",
attribute1:["2010-05-07", "2010-02-11"]}
},
{ $param:'Demo', $value: {$type:'com.example.demo.Demo',

normalText: "normalText", list:["list"],duration: "",
attribute1:["2010-05-07"]}

}
]}

Configure the Setting in the Properties View
Once you have created a custom preview data file, you can configure the form to
use this file rather than the default file (or no file at all) for preview data.

To configure the Preview Data File setting for the form:

1. In the Properties view for the form, click the Preview Data tab.

2. Select one of the following radio buttons:

a. None Select this option if you prefer that no data be displayed initially for
the controls when the form is previewed.

b. Default Select this option if you want to use the default data for each
control on the form.

c. Custom Select this option if you want to use your customized
.data.json file for the preview data values. The Custom radio button is
paired with an optionlist that shows all the .data.json files associated
with the current form. Select the custom preview data file you want to use
from the optionlist.
 TIBCO Business Studio Forms

190 | Using Form Data Fields
Using Form Data Fields

Form data fields are used to store data that is needed only for the lifetime of the
form.

What Is a Form Data Field?
User task parameters offer a way to associate a user task with process data fields
so that data that is available to the entire process can be used, viewed, or modified
through the form associated with the user task. But in some cases, you want to
track data that is useful for the functioning of the form, but is unrelated to other
tasks in the process and is not needed by the server. In such a case, instead of
using parameters, you can create one or more form data fields to store that data for
the lifetime of the form.

The same data types available for parameters are also available for form data
fields. The key difference between a form data field and a parameter is that a form
data field has no Mode property (In, Out, or In/Out). Since a parameter’s Mode
property is used to specify the way parameter data interacts with the larger
business process, it has no relevance to form data fields.

As an example of how a form data field might be used, suppose there is a set of
panes in the form that are invisible, and you want them to become visible when a
certain value is specified (or other action is taken) by the user who is interacting
with the form. In this case, you can use a form data field to track which of those
panes are visible. In effect, the form data field functions as a global variable
within the context of the form.

Another example would be to use a form data field with a form containing a
wizard pane where you want to track which page of the wizard is currently
visible to the user.

Configuring a Form Data Field
To create a form data field follow these steps.

1. Open the form in the Form Editor view, if it is not already open.
TIBCO Business Studio Forms

| 191
2. In the Outline view for the form, right click the Data folder and click New
Data Field.

3. Provide a label, name, and type for the data field. Select External Reference to
choose a type from all the types defined for the process.
 TIBCO Business Studio Forms

192 | Using Numeric Controls
Using Numeric Controls

A numeric control is not a distinct control type, but is a special property that can
be enabled for a text input control. It is used to display data in a specified format
so that it is easier to read.

What is a Numeric Control?
The numeric control property of a text control enables you to specify the display
format of numeric and currency values. It only changes the way the control value
is displayed and does not affect the way the value is edited or saved.

To define a format, you can use the following pattern:
PosPrefix PosFormat PosSuffix;NegPrefix NegFormat NegSuffix

The above pattern defines a format for positive numbers (PosPrefix PosFormat
PosSuffix) and a format for negative numbers (NegPrefix NegFormat
NegSuffix) separated by a semicolon (;).

The format can include the formatting characters shown in Table 16. Each
character is replaced with locale-specific text when the number is formatted.

The spaces between prefix, format, and suffix are used only for clarity and should
not be included in the actual format.

Table 16 Numeric Control Formatting Characters

Character Description

0 (Digit) Used to signify the minimum number of digits to be displayed. Each instance of
the character represents a position for one digit. If no value exists in a position, a
zero (0) is displayed. This character is not valid within prefix or suffix.

Left of the decimal point: leading 0's are shown.

Right of the decimal point: trailing 0's are shown.

(Optional
Digit)

Used to signify the minimum number of digits to be displayed. Each instance of
the character represents a position for one digit. If no value exists in a position, a
blank space is displayed. This character is not valid within prefix or suffix.

Left of the decimal point: leading 0's are not shown.

Right of the decimal point: trailing 0's are not shown
TIBCO Business Studio Forms

| 193
Some sample formats are listed in Table 17:

. (Decimal
separator)

Used as a numeric or monetary decimal separator. This character is not valid
within prefix or suffix and is localized based on the locale settings.

- (Minus sign) Used to indicate a negative number. This character is only valid in the prefix or
suffix.

, (Grouping
separator)

Used to group the number format. The grouping separator must not be used to
the right of the decimal point in a number format.

This character is localized and is not valid within prefix or suffix.

; Separates positive and negative sub-patterns. This character is not valid within
number format, prefix or suffix.

¤ Currency sign (Unicode code point-\u00A4). This character is valid only within
prefix or suffix and is replaced by the localized currency symbol.

Table 16 Numeric Control Formatting Characters

Character Description

Table 17 Numeric Control Sample Formats

Number Format
Pattern Displayed

0 0 0

0 #

123 0 123

1234.123 #,###.0000 1,234.1230

1234.123 #,###.00 1,234.12

1234567.123 #,###.00 1,234,567.12

1234.123 000,000.00 001,234.12

1234.12345 #,##0.00## 1,234.1234

1234.123 #,##0.00## 1,234.123
 TIBCO Business Studio Forms

194 | Using Numeric Controls
Inserting a Numeric Control
To insert a numeric control, perform the following steps:

1. Select a text input control from the Palette and drop it in the form.

2. Go to the Properties tab in the Properties view for the text input control and
select the Numeric check box. This enables the Format options.

3. You must specify the display format. The options are as follows:

a. External Reference: Select a format from an external resource. See
Inserting External Reference Format

b. Custom: Define a custom format. See Inserting a Custom Format

Figure 120 Numeric Control Property of Text Input Control

Inserting External Reference Format

By selecting the External Reference option, you can use one of the predefined
formats from the common resource bundle. To use an external reference format,
perform the following steps:

1. Select External Reference under the Format options.

2. Click the icon to display the Resource Picker.

3. Select a format from the list and click OK.

You can also create your own custom formats and add them to the Resource
Picker list.

The new custom formats must be placed under the Presentation Resources
special folder.
TIBCO Business Studio Forms

| 195
To create your own custom format, perform the following steps:

1. In the Project Explorer, go to the context menu of the Presentation Resources
folder and click New > File.

2. On the New File dialog box, type the file name and use the extension
.properties. The builder creates matching <name>.properties.json and
<name>.locales.json files in the same folder.

3. The newly-created properties file is automatically opened in the Properties
File Editor for editing. Edit the file to add custom number formats.

A sample custom format is as follows:
format_myformat1 = 000.000

format_myformat2 = \u00A4#,#0.0;[\u00A4#,##0.0]

’\u00A4’ is the Unicode value for the ¤ currency symbol.

The newly-created properties file must be added to the resources list of the form.
To add the properties file in the resource list, perform the following steps:

1. Go to the Resources tab in the Properties view at the root level of the form.

2. The common resource bundle (common) and the default resource bundle for
each form (form) are predefined for each project.

3. Click the icon to display the Pick Resource dialog box.

4. Select the newly-created .properties file from the list, and click OK.

Figure 121 Add Custom Format File to Resource List

Once you have added the newly-created .properties file as a form external
resource reference, the new formats are available in the Resource Picker.
 TIBCO Business Studio Forms

196 | Using Numeric Controls
Inserting a Custom Format

By using the Custom option, you can choose from some example formats or
define your own format inline. To use a custom format, perform the following
steps:

1. Select Custom under the Format options.

2. Type the custom format in the text box. A list of example formats is available
in the selection list.

Figure 122 Use Custom Format for Numeric Control

3. You can select one of the example formats or define your own format inline
using the formatting characters listed in Table 16.

Editing a Numeric Control
To edit a numeric control, the text input control must have focus. For editing, the
number is displayed in the raw format and in full precision. The prefix, suffix, and
the group separators are not displayed. The decimal point is displayed using the
conventions of the active locale. You can edit the values and move out of the
control.

When the text input control loses focus, the value in the text input control is
displayed using the specified display format.
TIBCO Business Studio Forms

| 197
Localizing a Form

TIBCO Forms allows you to create forms that support multiple languages. Form
logic, including layout and control types and validation rules, is stored in the
form file. Language-specific information, including labels and validation
messages, is stored in locale-specific properties files.

To simplify the localization of forms, all text that appears on a form is stored in a
properties file. The properties file includes the strings that make up the labels for
controls and panes, as well as the strings for hints, validation messages, and error
messages.

Each form has a base properties file that is generated automatically when the form
is created, and is regenerated each time the form is saved. This file appears in
Presentation Resources special folder in the Project Explorer. The base properties
file contains the strings that appear as labels and messages in the form’s property
sheets.

Figure 123 Base Properties File

The included Forms tutorial ClaimsProcesswithForms includes localized
resources for the French language.

You can view the localized version and change the locale of a form in the preview
pane.
 TIBCO Business Studio Forms

198 | Localizing a Form
To create a localized version of a form, you will make a copy of the base properties
file, rename it, and edit the strings it contains.

The renamed locale-specific versions of the properties file will not be
automatically regenerated, and thus your locale-specific strings will not be lost
when the form is saved.

To create a locale-specific Properties file:

1. Select the <form>.properties file from the Presentation Resources special
folder in the Project Explorer. Make a copy of this file for each locale.

2. Rename the copy, using the naming conventions for languages and regions.
See To create language-specific and country-specific properties files: for more
details.

3. For every new properties file created in the Presentation Resources folder, the
builder automatically creates a matching <file>.properties.json file at the
same location.

4. Open a locale-specific version of the properties file in the Properties File editor
and manually translate the strings into the desired language.

5. Click Project > Clean to clean and rebuild the project. This updates the
<form>.locales.json file with the details of the language in which the form
has been localized. For example, if you create DemoForm_fr.properties file,
then the Demoform.locales.json will contain ["fr"]. This file is updated
when the you rebuild the project after creating a new locale-specific version of
the properties file.

6. Run the JDK command-line tool native2ascii, using the locale-specific
properties file as input, to ensure that the file contains only
ISO_8859-1-encoded characters:

The native2ascii command-line tool is available in the directory
%JDK_HOME%\bin.

Do not edit the strings in the base properties file itself. Any changes you make to this
file will be lost as soon as the project is built (which is to say, as soon as you save
the form, with the default setting, where auto-build is enabled). To change the
labels and messages for the base version of the form, use the form’s property
sheets instead. The changes you make in the property sheets will appear in the
base properties file when the form is saved.
TIBCO Business Studio Forms

| 199
7. Move the completed locale-specific version or versions into the same directory
where you found the original base properties file.

8. Save the locale-specific version and deploy the form into the runtime
environment.

To create language-specific and country-specific properties files:

The language specific properties file is a copy of the base properties file. This
file is renamed using the naming conventions for languages and regions.

Each localized language is represented by a two-letter code, in the format ll,
where ll is a lowercase, two-letter ISO 639 language code. For a list of
language codes, visit the following web site:

http://www.loc.gov/standards/iso639-2/langhome.html

Each country is represented by a two-letter code, in the format CC, where CC
is an uppercase, two-letter ISO 3166 country code. For a list of country codes,
visit the following web site:

http://www.iso.org/iso/english_country_names_and_code_elements

You can find the directory that contains all the properties files by using the
context menu of one of the form’s files in the Project Explorer (for instance, the
base properties file) and clicking Properties to open the properties dialog. The
path to the selected form resource is shown as Location:
 TIBCO Business Studio Forms

200 | Localizing a Form
The form name, language code, and optional country code are separated by
underscores. Table 18 shows examples of locale-specific properties files for a
form named DemoForm.)

As shown in Table 18, if your form is called DemoForm, the automatically
generated base properties file will be called DemoForm.properties. This is the
file that will contain the strings typed on the form’s property sheets.

To create a French version of this form, copy the DemoForm.properties file and
rename the copy DemoForm_fr.properties. This is a language specific variant of
the properties file which contains the translation for the French language.

You can also create country specific versions of DemoForm_fr.properties file
for France and French-speaking Canada. The country specific variant of the
properties file contains only those keys for which the translation varies locally in
each country.

While creating country specific properties file such as
DemoForm_fr_FR.properties and DemoForm_fr_CA.properties, it is better to
create the DemoForm_fr_FR.properties and do all the translations. Then copy
the latter to DemoForm_fr_CA.properties and make the additional changes.

Table 18 Renaming Locale-specific Properties Files

Filename Locale description

DemoForm.properties Original filename. This is the base properties file.

DemoForm_fr.properties Contains localized strings for the French version of the form. Use
this format (without specifying a region) when there is only a
single version of the form for this language.

DemoForm_fr_FR.properties Contains localized strings for the French version of the form used
in France.

DemoForm_fr_CA.properties Contains localized strings for the French version of the form used
in Canada.

DemoForm_ja.properties Contains localized strings for the Japanese version of the form.
TIBCO Business Studio Forms

| 201
Finally, in both DemoForm_fr_FR.properties and DemoForm_fr_CA.properties
delete all the entries whose keys and values are identical to those in
DemoForm_fr.properties.

If you want to make changes to the labels or messages in the base properties file of
your form, and you want corresponding changes to appear in the language
specific versions of the properties file, you must make the latter changes manually
by editing the strings in the language-specific version of the properties files. An
alternative way of doing these changes is as follows:

a. You can select both the base properties and your language specific
properties file in Project Explorer and use Context Menu > Compare With
> Each Other to open them side-by-side in the Property Compare editor.

b. Use the Copy All Non-Conflicting Changes or Copy Current
Change (From ... To ...) actions to add new keys and delete old keys from
your localized version. For new keys and those with updated values you
can provide a new translation.

To choose a locale-specific version of a form at run time:

When localized versions of a form exist along with the base version in the runtime
environment, the runtime will choose the locale-specific version that corresponds
to the locale that is set on the user’s system. If no version is present on the runtime
server for that locale, the base version will be used.

You can use the Form.setLocale(String) and Form.getLocale() methods to
change the locale settings of the form.

The hierarchy in which the keys are resolved is as follows:

• The keys are first resolved in country specific versions of the properties file
such as DemoForm_fr_FR.properties and DemoForm_fr_CA.properties.

• The keys not provided in the country specific versions are resolved in the
language specific version of the properties file such as
DemoForm_fr.properties.

• The keys not provided in the language specific version are resolved in the
base properties file such as DemoForm.properties.

If the property keys are very similar, the Property Compare editor sometimes
misidentifies change types. It is up to you to inspect each change and decide
whether the default merge action proposed by the editor is appropriate. If not,
you can manually add, delete or amend the localized keys and values instead of
using the Copy Current Change (From ... To ...) action.
 TIBCO Business Studio Forms

202 | Localizing a Form
Defining Localization Properties Outside the Form
In addition to creating localized versions of a form’s base properties file, TIBCO
Forms supports the creation and localization of additional properties files whose
scope is not limited to a given form. These can be referenced by a form and, in
fact, shared by any number of different forms within the same or other projects.

To create a localization properties file outside the form, follow these steps:

1. Create a new resource file, with the extension .properties, within the folder
/<project>/Presentation Resources in the Project Explorer. (Note that this is
unlike the base properties file, which is also contained in the Presentation
Resources folder, but is within a sub-folder for resources specific to the form,
a sub-folder named with the name of the form.)

2. Edit the properties file by adding key-value pairs in the format <key> =
<value>, each on a separate line. For example:

mykey1 = My Key One
mykey2 = My Key Two

The format is that of a standard Java resources file, identical to the generated
base properties file found in the form folder.

3. Copy the new resource file and save it with the same name but with an
underscore and the locale code added before the file extension. For instance, if
you wish to create a French version of a properties file named
myResources.properties, save the first file as
myResources_fr.properties.

4. In the key-value pairs of the localized version of the properties file, translate
or edit the values as desired, while leaving the keys unchanged.

5. The localized version is now available, and can be used as shown in the
example that follows.

Example: Using a Localization Properties File Defined Outside the Form

This example shows how a localized properties file might be used within a form.
In the example, a button is created that changes the label for a text field. The value
for the label is localized using properties files external to the form’s own
properties files.

1. Add a text field and a button to a form.
TIBCO Business Studio Forms

| 203
2. In the Properties view for the form, go to the Resources tab. Click the plus
sign to add a resource, locate the new properties file you created in the
Presentation Resources folder, and add it as a resource for the form.

The properties file now appears as a resource in the Resources tab, identified
by a name and path (URI). The Localized button is automatically selected for
the properties file, indicating that the run time should search for localized
copies to match the user’s locale.

3. In the Properties view for the text control, give the control a name in the
Name field on the General tab, for instance localizedText.

4. Go to the Rules tab in the Properties view for the button. Click the button to
Define a new rule for the button that will be triggered when the button is
clicked.

5. Leave the values unchanged in the Rule Details dialog, and click Next.

6. Leave the values unchanged in the Rule: Pick Events dialog and click Next.
This simply means the rule we create will be triggered when the button is
clicked, which is the default event for buttons.

7. In the Define Actions dialog, click the plus sign to define a new action.

8. In the Add Action dialog, select the radio button Create a new action, and
leave the radio button Script Action selected. Click Next to specify a script
that defines the action.

9. Using the content assist pop-ups to ensure correct values, type the following
line of script (assuming there is an item in your properties file whose key is
mykey1 and whose value is My Key One):

control.localizedText.setLabel(resource.
MyLocalizedResourceFile.mykey1);

10. Preview the form in the GWT Preview tab. Click the button on the form, and
the text field’s label should say My Key One.

You will add the new properties file as a form resource using the base name. The
various localized versions, with the locale code appended to the file name
(preceding the .properties extension) will be inferred from the base name,
based on the user’s locale, at runtime.
 TIBCO Business Studio Forms

204 | Localizing a Form
11. While still in preview mode, scroll down to the area immediately below the
form and change the locale used for the preview from Default Locale to
French - France.

12. Click the button on the form again, and the text field’s label should now show
the localized French text for the button’s label.

At runtime, the locale of an actual user is set on the user’s system or in the user’s
browser. The locale setting currently is not available for the GWT Preview.
TIBCO Business Studio Forms

| 205
Toggling between Business Analysis and Solution Design Modes

There are two capabilities within the Forms Designer in TIBCO Business Studio,
Business Analysis and Solution Design. The Solution Design capability must be
enabled in order to write scripts for actions and validations, and to deploy forms.

If you are in the Business Analysis perspective, you will not see the following:

• The Deployment Servers tab in the Project Explorer.

• The script input pane on Actions. Business Analysts can only change the label
on Actions.

• The names or Rename Button on Controls, Panes, Actions, and Rules.

• The Validations tab on a control’s Properties View.

To enable or disable these capabilities, click the “triangle and rule” toolbar button
(circled below) to open the dropdown list that lets you select the desired
capability.

Figure 124 Business Analysis and Solution Design Modes
 TIBCO Business Studio Forms

206 | Migrating from Previous Versions of TIBCO Business Studio Forms
Migrating from Previous Versions of TIBCO Business Studio Forms

TIBCO Business Studio 2.x is compatible with forms created using TIBCO
Business Studio Forms 1.x, with one minor qualification, as described below.

Migrating from TIBCO Business Studio Version 2.2 and 3.0 to Version 3.1
The schema model of the form model has changed in TIBCO Business Studio 3.1.
Forms created in earlier versions will require migration from schema version 1.0
to version 2.0.

To Migrate a Form to Version 2.0

When you import an old form to TIBCO Business Studio Forms 2.0, you will
notice that such forms appear with a red X problem marker decoration . If you
select such a form and look in the Problems view, you will see a message:
This resource has an old format and requires migration.

In order to migrate from the previous release, do the following:

1. In the Problems view, select the marker for the form you want to migrate and
right-click it.

Figure 125 Open the Quick Fix Dialog

2. Select Quick Fix from the pop-up menu.

The Quick Fix dialog opens.
TIBCO Business Studio Forms

| 207
Figure 126 Quick Fix Dialog for Migration

3. In the Quick Fix dialog, select the form(s) you want to migrate.

4. Click Finish.

After the migration is finished, the Problem marker decorations will have
been removed from the migrated forms in the Project Explorer view.

The Problems view Configure Contents... action allows you to specify what
content to display in the view. For each active Configuration you can filter the
view contents by restricting the Scope, Description, Severity, and marker Types
displayed.

These content restrictions also apply within the Quick Fix dialog, so if your
intention is to 'quick fix' all instances of a given problem in a given project or the
entire workspace, you should ensure that the Problems view contents are
configured to include the required resources and marker types. For example, to
migrate all forms in the workspace, you would need to have Scope = On any
element.
 TIBCO Business Studio Forms

208 | Migrating from Previous Versions of TIBCO Business Studio Forms
Changes in Migrated Forms

You will notice the following are changes within the migrated forms:

• Mapping In and Mapping Out expressions will be replaced with bindings
where possible.

• If a Mapping In expression did more than just assign the value of a parameter,
that Mapping In expression will be replaced with a computation action rule
triggered by the Form open event.

• If a Mapping Out expression did more than just assign the value of a control,
that Mapping Out expression will be replaced with a computation action rule
triggered on Form submit event.

• Event handlers on controls or the form are migrated to rules triggered on the
specific control or the form.

• Actions are migrated to script actions.

• If the special file <project>/<form folder>/META-INF/form_ext.js is
detected during migration, it is added as a JavaScript resource.

• Validations such as during form submit no longer execute validations for
controls that are invisible, or are inside panes that are invisible.

• This release includes additional design-time checks. You may see problem
markers appear in migrated forms that were not seen in earlier versions of
TIBCO Business Studio.
TIBCO Business Studio Forms

| 209
Chapter 4 Advanced Tasks

This section describes advanced tasks you can perform using TIBCO Business
Studio Forms.

Topics

• Import the Forms Advanced Samples, page 210

• Using CSS to Customize the Rendering of a Form Control, page 211

• Creating Custom Add and Delete Buttons for a Grid Pane, page 214

• Using Editable List Controls, page 216

• Changing a Control’s Background Color Based on its Value, page 218

• Controlling the Visibility of a Pane Based on the Value of a Control, page 220

• Using a Check Box to Set Properties for Another Control, page 222

• Using a Business Object Model with Multiple Sub-types, page 224

• Using Enumerations as Choices in an Optionlist or Radiogroup, page 227

• Validating Commonly Used Primitive Types, page 229
 TIBCO Business Studio Forms

210 | Import the Forms Advanced Samples
Import the Forms Advanced Samples

The advanced samples are available on the TIBCO Access Point site. To download
and install the advanced samples, do the following:

1. Go to
http://tap.tibco.com/storefront/sample-evaluations/tibco-business-studio-p
roduct-samples/prod16117.html.

2. Under PRODUCT SAMPLES, click View all Product Samples.

3. Click Form Samples to go to the Forms Samples page.

4. Under Forms Advanced Samples, click Download and Install to get the
sample in your workspace.
TIBCO Business Studio Forms

| 211
Using CSS to Customize the Rendering of a Form Control

TIBCO Business Studio Forms supports the use of Cascading Style Sheets (CSS)
for customizing how form controls are rendered. This section shows how to use
CSS with Business Studio Forms to apply styling to a form control.

Task Customize the rendering of a control using CSS.

Sample Project To view the sample for this task, import the advanced sample projects as
described in Import the Forms Advanced Samples on page 210. The sample form
and CSS file for the task described in this section are contained in the
forms.samples.layout sample project.

• The form (ControlRendering.form) is at the following location:
forms.samples.layout/Forms/CSS Samples/ControlRendering/

• The CSS file (ControlRendering.css) is at the following location:
forms.samples.layout/Presentation Resources/css/

You can double-click the form and CSS filenames (as well as those of other project
resources) in the Project Explorer to open them in the editor. There, you can
examine their contents and use them as models for your own projects.

Explanation This task covers the case where you want to apply special styling to a specific
control in a form.

In order to design the rendering of a control, it is useful to know how the control
is rendered in the browser. TIBCO Forms makes use of CSS classes attached to the
HTML DOM nodes in order to control rendering. Generally, it is not necessary to
know which actual HTML elements are being used in the rendering, and as a
practice you should try to use only the CSS classes in devising CSS selectors in
your stylesheets, as this approach is the most portable across different target
platforms.

Shown here is a representation of the CSS classes that are used to render a control,
and their relationship to one another within the nested DOM:

—component, customclass
—label
—container

—control
—hint

See Chapter 7, Reference for a detailed description of the CSS classes used in
rendering forms.

The customclass is the name of a CSS class specified in the design time model.

To implement this task, perform these steps:
 TIBCO Business Studio Forms

212 | Using CSS to Customize the Rendering of a Form Control
1. Create a form that contains one or more controls.

2. Link the form to a custom CSS stylesheet. A custom CSS stylesheet called
ControlRendering.css is provided in the forms.samples.layout project in
the directory Forms/Presentation Resources/css/

The remainder of these instructions assume that your CSS file matches the sample
file in the forms.samples.layout project.

3. With the form open and visible in the editor, click one of the controls on the
form to open the Properties view for the control.

4. Enter control-rendering in the Style Class Name(s) box on the General tab
of the Properties view for the control.

5. Change the label font properties for this control. Add the following lines in the
linked CSS stylesheet:

.highlight .label,
{

color: #FF0000;
font-family: Helvetica, sans-serif;
font-size: 12px;
font-weight: bold;

}

The CSS selector used here is .highlight .label. This is used for clients that use
GWT, which is the rendering used in AMX BPM Openspace and Workspace.

To create a CSS file in your project In the Project Explorer, right-click the
Presentation Resources folder for your project and click New > File. The New
File dialog will open, where you indicate the parent folder where the CSS file for
this form will be contained, and the file name. If there is already a css folder
within your Presentation Resources folder, you can choose that one or, if not,
create a folder with that name. But whether you use a subfolder, and if so, what it
is named is unimportant. What is important is that the CSS file be placed in or
under the Presentation Resources folder and that its filename ends with the
extension .css. When you click Finish, the CSS file is created and opened in the
editor.

To link a form to a CSS stylesheet Be sure the CSS file is already present in the
Presentation Resources folder. Then, in the Properties view for the form, click the
Resources tab. Click the plus sign (+) to add a resource. The Pick Resource dialog
opens, displaying a list of the resources currently residing in the Presentation
Resources folder, including CSS files, JavaScript, and image files, if any. Select the
desired CSS file and click OK. Your CSS file has now been added as a resource to
your form. The definitions it contains will be used to render the form in HTML.
TIBCO Business Studio Forms

| 213
6. Put a border around the highlighted control and change the background color.
Add the following lines to the linked CSS stylesheet:

.highlight,
{

border-style:solid;
border-width: thin;
background-color: #DDFFDD;

}

 TIBCO Business Studio Forms

214 | Creating Custom Add and Delete Buttons for a Grid Pane
Creating Custom Add and Delete Buttons for a Grid Pane

TIBCO Business Studio Forms will automatically create Add and Delete buttons
for the records in a grid pane if you enable those options on the grid pane’s
custom properties sheet. But in some cases, you may wish to provide custom logic
to be executed when a record is added or deleted. To do this, you will customize
the Add and Delete buttons.

Task Customize the Add and Delete buttons for a grid pane.

Sample Project To view the sample for this task, import the advanced sample projects as
described in Import the Forms Advanced Samples on page 210. The sample form
and business object model for the task described in this section are contained in
the forms.samples.scripting sample project.

The form (CustomGridActions.form) is at the following location:

forms.samples.scripting/Forms/GridPane/CustomGridActions/

The directions here assume that you already have a form with a grid pane that is
bound to an array of objects of type forms.samples.scripting.GridRecord. In
the sample, the GridRecord class is in the business object model
FormsSamplesScripting.bom at the following location:

forms.samples.scripting/Business Objects/

You can double-click the form and business object model filenames (as well as
those of other project resources) in the Project Explorer to open them in the editor.
There, you can examine their contents and use them as models for your own
projects.

Explanation To customize the Add and Delete buttons for the grid pane, perform these steps:

1. In the Properties tab of the Properties view for the grid pane, make sure the
Support Add Operation and Support Delete Operation check boxes are
cleared.

2. Add a shared script action named Add Record. Specify the following script
for this action:

var newRecord =
factory.forms_samples_scripting.createGridRecord();
pane.grid.getValue().add(newRecord);
pane.grid.setSelection(newRecord);

Use the following script for multi-select grid panes:

var newRecord =
factory.forms_samples_scripting.createGridRecord();
pane.grid.getValue().add(newRecord);
pane.grid.getSelection().add(newRecord);
TIBCO Business Studio Forms

| 215
3. Add a shared script action named Delete Record. Specify the following script
for this action:

var selection = pane.grid.getSelection();
if (selection!=null) {

var rc = confirm("Delete the current record?");
if (rc==true) {

var list = pane.grid.getValue();
list.remove(selection);

}
}

Use the following script for multi-select grid panes:

var selection = pane.grid.getSelection();
if (selection!=null) {

var rc = confirm("Delete the current record?");
if (rc==true) {

var list = pane.grid.getValue();
for (var i=selection.size()-1; i>=0; i--) {

var sel = selection.get(i);
selection.remove(i);
list.remove(sel);

}
}

}

4. Now add two buttons to the form, one for adding the record, the other for
deleting a record, and hook them up to the new actions using appropriate
rules.

The shared script actions and rules described here can be examined in the
Properties view by clicking their names in the Outline view of the sample
project’s CustomGridActions form:
 TIBCO Business Studio Forms

216 | Using Editable List Controls
Using Editable List Controls

This task shows how to bind editable list controls to data parameters of the
primitive array data type.

If you have data parameters of the primitive array data type, you can bind the
editable list controls to them. You can create action scripts for adding items or for
deleting items from the list control. You can also add scripts for validating the
values provided in the list control.

Task Use editable list controls in a form.

Sample Project To view the sample for this task, import the advanced sample projects as
described in Import the Forms Advanced Samples on page 210. The sample form
and business object model for the task described in this section are contained in
the forms.samples.controls project.

The form (ListControl.form) is at the following location:

forms.samples.controls/Forms/listControl/

You can double-click the form’s filename (as well as those of other project
resources) in the Project Explorer to open it in the editor. There, you can examine
it and use it as a model for your own projects.

Explanation To create editable list controls on the form, perform these steps:

1. Add new data parameters strArray, intArray, and decArray of the respective
types Text, Integer, and Decimal. All of these should be of array type.

2. Add three Text controls with labels Text List, Integer List, and Decimal List in
to the form. Set the names of these controls to textList, integerList, and
decimalList.

For each of these controls:

Go to the Properties tab and select the Edit as List check box.

Go to the General tab and add a new binding for the Value that points to the
value of the respective data parameter array.

3. In the form preview, you will see the three editable list controls.

4. Add a new button Add Item to the form.

Add a new rule for this button and associate following action script for the
Select event of this button. This script will add the last item into the list.

var list = control.textList.getValue();
list.push("New Value");
control.textList.setValue(list);
TIBCO Business Studio Forms

| 217
5. Add a new button Delete Item to the form.

Add a new rule for this button and associate the following action script for the
Select event of this button. This script will delete the last item from the list.

var list = control.textList.getValue();
list.pop();
control.textList.setValue(list);

6. For the text control named Text List, add the following validation script for
the On Value Change event. This validation is successful when the item
added in the list control starts with Text. Otherwise, a problem marker
appears near the list control.

var result = true;
var arr = this.getValue();
if (arr instanceof Array) {

var length = arr.length;
for (var i=0; (i<length) && result; i++) {

if (arr[i].indexOf("Text")==-1) {
result = false;
break;

}
}

}
result;

Also add an error message to be displayed in case the validation fails:
Provide input that starts with Text.
 TIBCO Business Studio Forms

218 | Changing a Control’s Background Color Based on its Value
Changing a Control’s Background Color Based on its Value

This task shows how to customize the background color of a control using a
computation action and CSS classes.

Task Change the background color of a control based on its value.

Sample Project To view the sample for this task, import the advanced sample projects as
described in Import the Forms Advanced Samples on page 210. The sample form
and CSS file for the task described in this section are contained in the
forms.samples.controls project.

The form (SetBackgroundColorForControl.form) is at the following location:

forms.samples.controls/Forms/setBGColor/

The CSS file (custom.css) is at the following location:

forms.samples.controls/Presentation Resources/css/

You can double-click the form and CSS filenames (as well as those of other project
resources) in the Project Explorer to open them in the editor. There, you can
examine their contents and use them as models for your own projects.

Explanation This topic covers the case where you want to apply a background color to a given
control in a form based on the control’s value.

In order to implement this task, you will need to know:

a. How to specify a custom CSS document and refer it in the form.

b. How to add a computation action that is targeted to a property of the
control

To implement the task, perform these steps:

1. Create a form with one or more controls.

2. Add following classes to the custom CSS document and refer to the document
in the form

.normalbg,
{

background-color: #808080;
}
.warningbg,
{

background-color: #00FF00;
}
.problembg,
{

background-color: #FF0000;
}

TIBCO Business Studio Forms

| 219
3. Add a computation action for the Style Class Name(s) property in the
General Properties view for the form.

Provide following JavaScript code for this action and select the update event
of this control.

var value = parseInt(control.textinput1.getValue());
var bgclass = "normalbg";
if (value <= 100) {

"normalbg";
} else if (value > 100 && value <= 500) {

"warningbg";
} else if (value > 500 && value <= 1000) {

"problembg";
}

4. Preview the form.

Provide an integer value between 0 - 100 and the background color for the
control is set to gray.

Provide an integer value between 101 - 500 and the background color for the
control is set to green.

Provide an integer value between 501 - 1000 and the background color for the
control is set to red.
 TIBCO Business Studio Forms

220 | Controlling the Visibility of a Pane Based on the Value of a Control
Controlling the Visibility of a Pane Based on the Value of a Control

You can set the visibility of a pane to be determined by the value of a control on
the form, for example, an optionlist control.

Task Control the visibility of a pane based on the value of a control.

Sample Project To view the sample for this task, import the advanced sample projects as
described in Import the Forms Advanced Samples on page 210. The sample form
for the task described in this section is contained in the forms.samples.panes
project.

The form (VerticalPaneVisibility.form) is at the following location:

forms.samples.panes/Forms/Visibility/

You can double-click the form’s filename (as well as those of other project
resources) in the Project Explorer to open it in the editor. There, you can examine
it and use it as a model for your own projects.

Explanation To implement this task, follow these steps:

1. There are three vertical panes in the sample form with the names pane1, pane2
and pane3. Go to the General tab in the Properties view for each pane and
clear the Visible check box.

2. Add an optionlist control in another pane in your form.

3. Go to the Properties tab in the Properties view for the optionlist control and
add the following custom labels and values as choices:

— Labels: Make Pane1 visible, Make Pane2 visible, Make Pane3 visible

— Values: pane1, pane2, pane3

4. While still in the Properties view for the optionlist, go to the Rules tab and
create a rule for the Update event of the optionlist control.

Add the following action script code for this rule.

var selectedPane = context.newValue;
if (selectedPane == "pane1") {
//Make the pane1 visible and other panes invisible.
pane.pane1.setVisible(true);
pane.pane2.setVisible(false);
pane.pane3.setVisible(false);

} else if (selectedPane == "pane2") {
//Make the pane2 visible and other panes invisible.
pane.pane1.setVisible(false);
pane.pane2.setVisible(true);
pane.pane3.setVisible(false);

} else if (selectedPane == "pane3") {
TIBCO Business Studio Forms

| 221
//Make the pane2 visible and other panes invisible.
pane.pane1.setVisible(false);
pane.pane2.setVisible(false);
pane.pane3.setVisible(true);

}

5. When you load the form, all three of the panes are invisible. After selecting a
value in the optionlist control, the related pane is made visible in the form.
The other two panes remain invisible.
 TIBCO Business Studio Forms

222 | Using a Check Box to Set Properties for Another Control
Using a Check Box to Set Properties for Another Control

This section explains how to use a check box to set certain properties, such as
visibility, enabled, and required for another control.

Task Set the value of a visibility, enabled, or required flag for a given control at run-time
based on the value of a checkbox control.

Sample Project forms.samples.controls/Forms/Visibility/VisibilityBinding

To view the sample for this task, import the advanced sample projects as
described in Import the Forms Advanced Samples on page 210. The sample form
for the task described in this section is contained in the
forms.samples.controls project.

The form (VerticalBinding.form) is at the following location:

forms.samples.controls/Forms/visibility/

You can double-click the form’s filename (as well as those of other project
resources) in the Project Explorer to open it in the editor. There, you can examine
it and use it as a model for your own projects.

Explanation To set up the visibility flag of a text control based on the checkbox control value,
perform the following steps:

1. Add a checkbox (Checkbox1) and a text control (Text Control1) into a vertical
pane within the form.

2. Go to the General properties for the checkbox control.

Create a binding for the Value attribute of the checkbox and set it to the
Visible property of the text control. The direction of this binding is from the
check box Value to the Visible property of the text control.

3. When you load the form, the check box is in cleared condition and Text
Control1 is invisible. If you select the checkbox control, Text Control1
becomes visible in the form.

To set up the enabled flag of a text control based on the checkbox control value,
perform the following steps.

1. Add a checkbox (Checkbox2) and a text control (Text Control2) into a vertical
pane within the form.

2. Go to the General properties for the checkbox control.

Create a binding for the Value attribute of the checkbox and set it to the
Enable property of the text control. The direction of this binding is from the
check box Value to the Enable property of the text control.
TIBCO Business Studio Forms

| 223
3. When you load the form, the check box is in cleared condition and Text
Control2 is in a disabled state. If you select the checkbox control, Text
Control2 is enabled on the form.

To set up the required flag of a text control based on the checkbox control value,
perform the following steps.

1. Add a checkbox (Checkbox3) and a text control (Text Control3) into a vertical
pane with the form.

2. Go to the General properties for the checkbox control.

Create a binding for the Value attribute of the checkbox and set it to the
Required property of the text control. The direction of this binding is from the
check box Value to the Required property of the text control.

3. When you load the form, Text Control3 is marked as Not Required. If you
select the checkbox control, Text Control3 is marked as Required on the form.
 TIBCO Business Studio Forms

224 | Using a Business Object Model with Multiple Sub-types
Using a Business Object Model with Multiple Sub-types

This task illustrates the use of forms with extended classes in a business object
model.

Task Create a complex business object model that has extended classes, containing
multiple sub-types, to be used with associated forms.

Sample Project To view the sample for this task, import the advanced sample projects as
described in Import the Forms Advanced Samples on page 210. The sample forms
and business object model for the task described in this section are contained in
the forms.samples.bom sample project.

There are two forms for this task:
— CapturePerson.form

— DisplayAddressBook.form

The forms are in subfolders, each corresponding to the form name, at the
following location:

forms.samples.bom/Forms/BOMHowTo/BOMHowToProcess

The business object model (FormsSamplesBOM.bom) is at the following location:

forms.samples.bom/Business Objects/

You can double-click the forms and business object model filenames (as well as
those of other project resources) in the Project Explorer to open them in the editor.
There, you can examine their contents and use them as models for your own
projects.

Explanation The business object model FormsSamplesBOM.bom models a Person class, an
Address class, and three extensions thereof: CanadianAddress, UKAddress, and
USAddress.

There is a composition aggregation Person::address : Address[1]. There is also
AddressBook class with a composition aggregation AddressBook::address :
Address[*]. (There are also some other types in the business object model that are
not used in the present task, but pertain to other advanced task examples that also
use this business object model.)

There are two forms to illustrate the use of subclasses, CapturePerson.form and
DisplayAddressBook.form.

The CapturePerson form

This form shows an instance of a Person together with his or her address. The
form contains a separate pane per Address class. The form configures itself
TIBCO Business Studio Forms

| 225
dynamically to accommodate inbound address that are instances of Address
or instances of a subclass thereof.

1. In the Form Designer, use Form > Properties view > Preview Data > Custom
to select test data containing persons with a CanadianAddress, UKAddress,
and USAddress, respectively, and observe the different results under the
GWT Preview tab. Note how the form displays a Xx
Address(person_xxAddress) pane containing the fields appropriate to the
Address subclass in question, including fields inherited from the base class
Address and additional fields defined in the subclass.

2. The Address Type optionlist provides a means to change the address type on
the fly. In the Properties tab of the Properties view for this control, Custom
Values are the fully qualified class names of all available address classes
together with appropriate labels.

Changing the selection of the Address Type optionlist fires the Change
Address Type rule, which contains two actions.

3. The Change Address Type action determines whether the person's current
address type matches the optionlist value. If it does not, it creates a new
address and replaces the old address with the new one, preserving the values
of inherited fields.

4. The Configure Address Panes action refreshes the user interface to match the
address type in the model. It shows the pane appropriate to the address type
and hides the others. It sets the value of the visible address pane to the
address and the values of the invisible panes to null.

5. The Form Load rule fires when the form is loaded and initializes the value of
the Address Type optionlist. This in turn fires the Change Address Type rule
to configure the user interface to suit the initial address type.

6. Bindings on controls within the four address panes propagate values between
the fields and the model.

The DisplayAddressBook form

This form shows an instance of an AddressBook together with the addresses
within it, using a master-detail configuration. The form contains a grid pane
to display the fields inherited from the base Address class and the details
pane contains a separate pane per Address class. As before, the form
configures itself dynamically to accommodate inbound addresses that are
instances of Address or instances of a subclass thereof.

1. In the Form Designer, use Form > Properties view > Preview Data > Custom
to select the MixedAddressTypes test data, which include an Address, a
CanadianAddress, a UKAddress, and a USAddress.
 TIBCO Business Studio Forms

226 | Using a Business Object Model with Multiple Sub-types
Observe the results under the GWT Preview tabs. Note how the form
displays the address detail pane appropriate to the subclass of the currently
selected row in the grid pane.

Note also that this example uses an address pane pattern whereby the
Address (addressBook_address) pane always provides the fields inherited
from the base class Address and the subclass-specific Xx Address
(addressBook_xxAddress) panes provide only the additional fields defined
by the subclass. One could regard this as a UI inheritance pattern.

2. The Address Master (addressBook_address__master) grid pane provides a
means to create a new address of a user-selected class.

3. The Change Address Selection rule is triggered by a change in the grid pane
selection. It contains a Configure Address Panes action much like the
previous example.

The address pane labels are not visible in the canvas, so use the Outline view to
locate them.
TIBCO Business Studio Forms

| 227
Using Enumerations as Choices in an Optionlist or Radiogroup

This section illustrates the use of enumerations in a business object model and
associated forms.

Task Specify choices for optionlists or radiogroups in the form with enumerations
defined in the business object model.

Sample Project To view the sample for this task, import the advanced sample projects as
described in Import the Forms Advanced Samples on page 210. The sample forms
and business object model for the task described in this section are contained in
the forms.samples.bom sample project.

The form for this task (CapturePreferences.form) is at the following location:

forms.samples.bom/Forms/BOMHowTo/BOMHowToProcess/
CapturePreferences/

The business object model (FormsSamplesBOM.bom) is at the following location:

forms.samples.bom/Business Objects/

You can double-click the form and business object model filenames (as well as
those of other project resources) in the Project Explorer to open them in the editor.
There, you can examine their contents and use them as models for your own
projects.

Explanation The business object model in the forms.sample.bom project models a Person
class, a Preferences class, and three enumerations, Gender, Colour, and
Beverage. There is a unidirectional composition association Person::preferences :
Preferences[0..1]. (There are also some other types in the business object model
that are not used in the present task, but pertain to other advanced task examples
that also use this business object model.)

The CapturePreferences form shows a Person, his or her personal details, and
preferences.

The Gender radiogroup choices are defined by the Person::gender : Gender[1]
BOM feature, and the control is flagged as required to reflect the non-optional
multiplicity of the feature. In the Properties tab of the Properties view, you can
see the external reference to the Gender enumeration and the choice labels and
values implied by that enumeration's literals. Note how the enumeration literals'
labels and values in the business object model are automatically reused in the
form.
 TIBCO Business Studio Forms

228 | Using Enumerations as Choices in an Optionlist or Radiogroup
The Favourite Colour optionlist is bound to the corresponding
Preferences::favouriteColour : Colour[1] feature. As above, the feature is
mandatory and the control is flagged as required. The choices are defined by the
literals of the Colour enumeration.

The Favourite Drink optionlist is bound to the corresponding
Preferences::favouriteDrink : Beverage[0..1] feature. Again, choice labels and
values come from the BOM. This time, however, the feature is optional and the
control is not flagged as required. Note that the Properties tab shows an
additional choice (unset); this is only generated for a control that is not required.
TIBCO Business Studio Forms

| 229
Validating Commonly Used Primitive Types

Primitive types can be validated by using pattern restrictions in a business object
model and associated forms.

Task Validate commonly-used primitive types by using pattern restrictions in the
business object model.

Sample Project To view the sample for this task, import the advanced sample projects as
described in Import the Forms Advanced Samples on page 210. The sample forms
and business object model for the task described in this section are contained in
the forms.samples.bom sample project.

The form for this task (CapturePersonalDetails.form) is at the following
location:

forms.samples.bom/Forms/BOMHowTo/BOMHowToProcess/
CapturePersonalDetails/

The business object model (FormsSamplesBOM.bom) is at the following location:

forms.samples.bom/Business Objects/

You can double-click the form and business object model filenames (as well as
those of other project resources) in the Project Explorer to open them in the editor.
There, you can examine their contents and use them as models for your own
projects.

Explanation The business object model in the forms.sample.bom project models a
PatternConstraints class, which makes use of the primitive types E-Mail
Address, Post Code, ZIP Code, Social Security Number, Social Insurance
Number, National Insurance Number, NA Telephone Number, and UK
 TIBCO Business Studio Forms

230 | Validating Commonly Used Primitive Types
Telephone Number. Each of these primitive Text extension types has a pattern
restriction that is automatically used to perform client-side validation of form
entries. See the additional descriptions under Properties > <bom-primitive-type>
> Description:

The Capture Personal Details form shows a Person, his or her personal details
and preferences. Observe how the patterns modelled in the business object model
are applied to user-specified form data.
TIBCO Business Studio Forms

| 231
Chapter 5 Performance Improvements

This section describes different ways of improving the performance of forms in
TIBCO Business Studio.

Topics

• Static Rendering

• Deferred Rendering and Deferred Initialization
 TIBCO Business Studio Forms

232 | Static Rendering
Static Rendering

There are certain cases where the information displayed within a pane is
read-only, and the end user does not need to edit the values in the pane. In such
scenarios, you may gain a performance boost in the load time of the form by
marking the pane to use static rendering.

How does Static Rendering Improve Performance?
When a pane is marked to use static rendering, the following optimizations are
applied:

• Faster Rendering: Form uses an optimized rendering of the controls and
markup within the pane which helps the form to render faster.

• Reduced Load Time: For a pane having multiple child controls and child
panes, individual objects are not instantiated for each child. This reduces the
load time considerably. The drawback is that it is not possible to reference
those objects using JavaScript in form actions.

When to Use Static Rendering
The use of static rendering may not make a big difference in simple and small
panes. The difference in load time is more pronounced as the panes get larger in
terms of child controls and child panes.

Using static rendering can be useful in the following scenarios:

• Panes that need to display a large amount of non-editable information.

• Non-editable grid panes, such as those used in a master-detail
implementation. It is possible to select individual rows, and the data within
the pane are refreshed if the underlying records are modified. However, the
static grid pane renders faster than the corresponding editable grid pane.

Configuration of Static Rendering
Panes support the static rendering functionality. You can configure this feature
using the options available on the Properties tab in the Properties view of a pane.

Although the static rendering feature helps to enhance the performance of forms
it imposes constraints on model validations. The runtime functionality of static
panes is also restricted. Refer to Static Rendering Constraints on page 233 for
details.
TIBCO Business Studio Forms

| 233
Figure 127 Properties View for a Pane

• Static Rendering: Check box used to mark a pane to use static rendering. If
selected, the pane is rendered as static pane. This property can be set only at
design-time. It is not possible to convert a pane to static at runtime.

• Text Only: Check box used to mark a static pane to use text-only rendering. If
selected, the pane is rendered as plain text, with no control widgets. This
check box is enabled only if the Static Rendering check box is selected.

Static Rendering Constraints

Model Validations

Panes with the Static Rendering property set to true have the following
constraints on model validation:

• Static panes are only supported for the GWT desktop runtime.

• Static panes are only supported for grid, vertical, and horizontal panes. Any
pane marked as static can contain only these types of panes.

• Controls and panes within static panes cannot be referenced using JavaScript.
These controls and panes do not show up in content assist, and any references
to these components in JavaScript or computation actions display an
error-level problem marker.

• Panes and controls, except button controls, contained within a static pane do
not raise events, and thus cannot be used to trigger rules. Events for
components within a static pane do not show up as choices for rules.

• Controls and panes within static panes do not support computation actions.
 TIBCO Business Studio Forms

234 | Static Rendering
• Controls and panes within static panes do not support validations.

• Controls and panes within static panes do not support bindings to properties.
However, binding to the following features are supported:

— Values

— Choice values

— Labels of optionlist

— Radiogroup

— Hyperlink

— Linktext

— Image URL

• Panes contained within static panes are also considered static panes.

• Tab order is ignored on controls within static panes.

• Values on controls and panes in static panes support absolute bindings and
absolute ancestor pane value bindings to data fields and parameters. Bindings
to other controls in the form are flagged with an error-level problem marker.

• Static panes cannot contain tabbed, grid, record, or message panes.

• Static panes cannot contain embedded forms.

• The Static Rendering property setting is ignored by the Mobile runtime. A
warning-level problem marker is shown if a pane has the Static Rendering
property set to true and any of the presentation channels uses Mobile
rendering.

Runtime Functionality

For static panes, contents of the pane are rendered in simple HTML using
streamlined JavaScript generated at design-time.

Top-level static panes can be referenced in form action scripts, computation action
destinations, and bindings. But, nested panes and nested controls cannot be
referenced.
TIBCO Business Studio Forms

| 235
• Validation markers are not displayed on controls in static panes.

— Initial data are assumed to be valid.

— For master-detail configurations, the grid pane can be updated using a
non-static detail pane, but validation markers are only shown in the detail
pane.

— Data can be changed using the data API.

• ’Required value’ indicators are not displayed on controls in static panes.

• Controls in static panes are completely static. It is possible to set a Style Class
Name on a static pane and the child components, but the value is fixed at
design-time.

Pane Value Update

When the value of a static pane is updated using either script, binding or
computation action, the content of the pane is regenerated using the same
JavaScript initially used to render the pane.

Static Grid Panes

Static grid panes support the following functionality:

• Row selection

• Pagination

• Adding records

• Deleting records

The values updated using the data API are not validated if they are shown only
within a static pane.

Static panes should only be used in cases where you are assured that all required
values have already been filled out, or when the user has an alternate method of
specifying data, such as master-detail configurations. An example would be a
step in a process where a user confirms previously specified data before
proceeding.

A control within a static pane will not be refreshed when the underlying data
value is updated if the control is directly bound to either of the following:

• A primitive parameter or data field.

• A primitive attribute of a data field.
 TIBCO Business Studio Forms

236 | Static Rendering
• Sorting

The following functionality is not supported in static grid panes:

• Editing

• Validations on controls

• Computation actions on controls

A static grid pane is rendered as a compact non-editable grid pane, with the
values represented as plain text.

It is possible to use a static grid pane as a part of a master-detail configuration.
The non-static detail pane can be bound to the selection of the grid pane as is
currently done. When a value is changed in the detail pane, the corresponding
row in the static grid pane is re-rendered using the original generated JavaScript.

Tabbed Panes

Although tabbed panes cannot be marked as static, child panes that are vertical,
horizontal, or grid panes can be marked as static.

Localization

Static panes support localization and will be regenerated if the form locale is
updated.

Renderings for Specific Controls

Most controls in a static pane are rendered in the same fashion as in a normal
pane, but are rendered in a read-only fashion.

If the Text Only property is set to true, then the value of each control is rendered
as plain text. The values are formatted appropriately according to the type (as
listed in Table 19). The control widgets are not rendered. Although, the rendering
of images, hyperlinks, buttons, and pass-through controls is the same as in a static
pane.

The following table lists how specific controls in a static pane are rendered:

Table 19 Rendering of Specific Controls

Control Rendering in Static Panes

Text Rendered as a read-only text input.

Text-Secret Rendered as a read-only secret text input (values are obscured).
TIBCO Business Studio Forms

| 237
Text-Numeric Rendered as a read-only text input. Numbers are formatted according to the
format set on the control.

Textarea Rendered as a read-only text area. The content of the text area is scrollable.

Checkbox Rendered as a read-only check box.

Date Rendered as a read-only input. Value is formatted using the date format.

Time Rendered as a read-only input. Value is formatted using the time format.

DateTime Rendered as a read-only input. Value is formatted using the datetime format.

Duration Rendered as a read-only input; formatted as is done for the read-only view in grid
panes. For example: 3 hours, 15 minutes.

Hyperlink Rendered as a normal, active hyperlink.

Image Rendered within an img element.

Label Rendered as plain text.

Optionlist The label for the selected value is displayed in a read-only input element.

Multi-select
Optionlist

A read-only version of the multi-select optionlist is displayed, with the selected
values highlighted.

Pass-through Static pass-through content is inserted as normal.

Radiogroup Rendered as a read-only radiogroup, showing the selected value.

Button Rendered normally. The button is active and can trigger rules defined in the form
model.

List controls Values rendered in a string, in a read-only input, using the localized list
item-separator.

Control Rendering in Static Panes
 TIBCO Business Studio Forms

238 | Deferred Rendering and Deferred Initialization
Deferred Rendering and Deferred Initialization

The key limiting factor in the user experience with forms is the initial load time
for complex forms. There can be a noticeable delay especially in cases where the
user interface is initially hidden within the tabs of a tabbed pane. In such
scenarios using either deferred rendering or deferred initialization of panes can
help to achieve a quicker initial load-time. By using these features, the rendering
of panes on a page is deferred until after the basic framework of the form is
loaded and is operational.

How do Deferred Rendering and Deferred Initialization Improve Performance?
When a pane is marked to use deferred rendering or deferred initialization, the
following optimizations are applied:

• Deferred Rendering: The rendering of the pane is deferred till the pane is
made visible by the user. The panes that are visible at initial load-time are
rendered when:

— The form is completely initialized.

— Form open event has fired.

— All the form open rules have been executed.

In tabbed panes, the rendering of each tab is deferred until the user clicks on
the tab to view the contents.

• Deferred Initialization: The deferred initialization feature can only be used
for panes that are marked to use deferred rendering. The children of the pane
marked to use deferred initialization are not initialized until the pane needs to
be rendered. This means that the pane object itself is always instantiated and
available, but any nested children are not initialized.

Deferred initialization imposes restrictions on the types of references that can be
made to the child controls of the pane. Refer to Deferred Rendering and Deferred
Initialization Constraints on page 239 for details.
TIBCO Business Studio Forms

| 239
Configuration of Deferred Rendering and Deferred Initialization
Panes support the deferred rendering and deferred initialization functionality.
You can configure these features on the Properties view of a pane. Both the
options are available on the Properties tab.

• Defer Rendering: Check box used to mark a pane to use deferred rendering.
If selected, the user interface for the pane is not rendered until the pane is
made visible. This property can be set only at design-time and it cannot be
updated using bindings or using the API.

• Defer Initialization: Check box used to mark a pane to use deferred
initialization. This check box is enabled only if the Defer Rendering check box
is selected. If selected, the children of the pane are not initialized until the
pane needs to be rendered.

Deferred Rendering and Deferred Initialization Constraints

Model Validations

• Deferred rendering of a pane is supported for the GWT runtime.

• When a pane is marked for deferred initialization, all references to child or
nested controls of that pane are flagged with an error-level problem marker.
This includes references in script or computation actions. The following quick
fixes are available:

— Remove deferred initialization.

— Use Defer Rendering only.
 TIBCO Business Studio Forms

240 | Deferred Rendering and Deferred Initialization
• Panes marked for deferred initialization cannot contain embedded forms,
either directly or in any of the nested panes. This is indicated by an error-level
problem marker. The following quick fixes are available:

— Remove deferred initialization.

— Use Defer Rendering only.

Runtime Functionality

Handling Bindings to Deferred Panes and Child Controls

• If the Defer Initialization check box is cleared, then bindings, script
references, and computation action references to the pane and its children are
not affected.

• If the Defer Initialization check box is selected, then any references to child or
nested controls using scripts or computation actions are flagged with an
error-level problem marker. You can make use of events tied to the pane and
its children in rule definitions. Binding to panes are always active and
working but the bindings to child and nested controls are inactive until the
pane and child controls have been fully initialized.

• If the Defer Rendering check box is selected, and the Defer Initialization
check box is cleared, bindings to panes and controls are active even if the pane
is not currently rendered. The internal model of the pane or child controls can
be updated using scripts, bindings, or computation actions. The effects of such
updates are visible after the pane is rendered.

Handling Validations in Deferred Panes

An un-rendered pane is treated the same as an invisible pane with respect to the
suppression of validation checking.

Loading Deferred Panes

Panes marked to use deferred rendering display a spinning wheel to indicate that
the content is being initialized. This loading indicator is visible only if there is a
noticeable delay in rendering the pane.
TIBCO Business Studio Forms

| 241
Chapter 6 Custom Controls

This chapter describes the process of integrating custom controls in TIBCO
Business Studio.

Topics

• Overview, page 242

• Defining Custom Controls, page 243

• Runtime Life Cycle of Custom Controls, page 254

• Component Library Model, page 257

• Control Wrapper Implementation, page 281

• Component Interface, page 286

• BOM JavaScript API for Custom Controls, page 290

• Utility Methods, page 295
 TIBCO Business Studio Forms

242 | Overview
Overview

TIBCO Business Studio supports integration of third-party custom controls. This
enables customers to provide configuration information about any third party
widgets and the Form Designer can expose those controls in the palette. Users
designing forms can work with these extended controls in the same fashion that
they work with the set of built-in controls.
TIBCO Business Studio Forms

| 243
Defining Custom Controls

There are two key items that a developer needs to provide for the definition of a
custom control.

• A ControlWrapper is a JavaScript class that either implements the runtime
functionality of the control, or wraps a third-party library.

Figure 128 provides a look at how the ControlWrapper exposes the
implementation of a third-party library as a Custom Control within Forms.

Figure 128 Custom Control Architecture

It is also possible to provide the entire implementation of a custom control
within a ControlWrapper with no reliance on a third-party library. However,
that is not the typical case.
 TIBCO Business Studio Forms

244 | Defining Custom Controls
• The custom control definition must be specified in a component library file.
The component library file provides information on how to display and
configure instances of the custom control in the Form Designer. The
information will also be used at runtime in order to determine the capabilities
of the control.

Figure 129 provides a description of the various design-time and runtime
artifacts that go into a Components Library project.

Figure 129 Component Library Project
TIBCO Business Studio Forms

| 245
Working with the Component Library File
A special folder of type Components is used to store component library files. A
library file defines a set of custom controls which are available in the Forms
Designer palette.

The option to create the Components special folder is presented at the time of
new project creation.

The detailed steps for defining custom controls are as follows:

1. Click File > New > BPM Developer Project. The New BPM Developer
Project dialog opens.

2. Specify the Project name and select the BPM check box as the Destination
Environments. Click Next.

3. The Form Component Library option is provided on the Asset Type
Selection page. Specify the asset types as displayed in the following figure.

A Business Object Model asset is only required if you wish to add or use
model types that will be used in the component library.
 TIBCO Business Studio Forms

246 | Defining Custom Controls
Figure 130 Asset Type Selection Page

4. The Asset Type Selection page provides the following two options for
creating a component library project:

• Click Finish: creates a new project with a Components special folder. The
<library>.library file is created in the Components special folder.

• Click Next: displays a wizard page that guides you to create a new component
library project.

a. Specify Folder and Filename on the Business Object Model page and
click Next.

b. Specify Folder and Library filename on the Component Library page and
click Next.

c. Specify Folder details on the Set Special Folders page and click Finish.
This is an optional step. You can also click Finish in the preceding step.
TIBCO Business Studio Forms

| 247
Creates a new project with a Components special folder. The .library file
is created based on the details provided in the wizard.

The contents of the Components special folder are:

— .library file: the .library file contains the configuration information for
a set of custom controls. For example: MyComponents.library.

— icons folder: the icons folder contains sample design-time icons for the
custom controls.

5. Right-click the <library>.library file, and select Open. The library file is
opened in the Component Library Editor for editing.

An overview of the various parts of the Component Library Model is
provided in Figure 131.

You can designate a normal folder as a Components special folder as well, using a
similar 'Special Folders > Use as Components Folder' technique as with other
special folder types.
 TIBCO Business Studio Forms

248 | Defining Custom Controls
Figure 131 Component Library Model
TIBCO Business Studio Forms

| 249
The editor supports editing of the .library file, and provides an easy way to
specify the configuration details for each custom control definition.

6. Select the <Library> node to view and edit the configuration details for the
library element in the Properties view. Refer to Library, page 257 section for a
detailed description.

The library element can have the following child elements:

— Palette Drawer: a Library has a single Palette Drawer element. Refer to
Palette Drawer, page 258 section for the details.

— Event Type: a Library can have multiple Event Type elements. Refer to
Event Type, page 259 section for the details.

— External Resource: a Library can have multiple External Resource
elements. Refer to External Resource, page 260 section for the details.

— Control Type: a Library can have multiple Control Type elements. Refer to
Control Type, page 261 section for the details.

7. To add Event Type and External Resource elements at the Library level:

— Event Type: select the Library element, right-click, and select New Child >
Event Type. A new Event Type element is added.

— External Resource: select the Library element, right-click, and select New
Child > External Resource.

A new External Resource element is added. An External Resource defined
at the Library level applies to all Control Types defined in the Library. It
gets loaded into the page if the form uses at least one control type from the
library.

The .library file displays a problem marker for defining the Constructor Class
property.

By default, the following elements are added to the Library root element:

• Palette Drawer

• Control Type

The other supported elements can be added according to your requirements.
 TIBCO Business Studio Forms

250 | Defining Custom Controls
8. Select each library element’s child elements to view and edit the configuration
details in the Properties view. In the case of properties which refer to elements
in the workspace, the cell editor consists of a hyperlink and a '...' button to
activate the associated property value editor dialog. Figure 132 provides more
details.

Figure 132 Library Editor Properties View

9. The Control Type element can have the following child elements:

— Capabilities: a Control Type has a single Capabilities element. Refer to
Capabilities, page 268 section for details.

— External Resource: a Control Type can have multiple External Resource
elements. The properties are same as for an External Resource element at
the Library level.

— Property: a Control Type can have multiple Property elements. Refer to
Property, page 276 section for details.

By default, only the Capabilities element is added to the Control Type node. The
other supported elements can be added as per your requirements.
TIBCO Business Studio Forms

| 251
10. To add External Resource and Property elements at the Control Type level:

— External Resource: select the Control Type element, right-click and select
New Child > External Resource. A new External Resource element is
added. An External Resource defined at the Control Type level is
guaranteed to be loaded into the page only when a form uses this control
type from the library.

— Property: select the Control Type element, right-click and select New Child
> Property. A new Property element is added.

11. Select each Control Type’s child elements to view and edit the configuration
details in the Properties view.

Working with the ControlWrapper
To add a reference to a ControlWrapper class:

1. Create a folder in the Presentation Resources folder and place the .js file with
the JavaScript wrapper implementation in this folder.

2. Select the External Resource element (either at the Control Type level or
Library level) to view the configuration options in the Properties view.

3. Click the picker provided for the Relative URI property. The Pick Resource
dialog lists the JavaScript files available in the Presentation Resources folder.
 TIBCO Business Studio Forms

252 | Defining Custom Controls
Figure 133 Pick Resource Dialog.

4. Select the ControlWrapper class implementation file and click OK. Refer to
Control Wrapper Implementation, page 281 section for details.

You have to select the Relative URI property sheet entry in order to activate
the cell editor. Once activated, the '...' button will open the resource picker
dialog.
TIBCO Business Studio Forms

| 253
Using the Custom Control
Once the custom component definition is complete, the project with the
component library file has to be added as a project reference in a Forms project.
The icons for the custom components are displayed in the Form Designer palette.

The Form Designer supports the following functionality when working with
custom controls:

1. Click the custom control type in the palette, move the mouse to the desired
position on the form canvas, then click to create the new control instance.

2. Controls of other types can be refactored to custom control types by changing
the control type field on the General Properties tab for the control.

3. The Form Designer Properties tab presents a table for editing the extended
properties defined for the custom control.

4. The preview makes use of the custom controls.

5. Custom control libraries are made available by adding a reference to the
library project.

6. All built-in control functionality is available, unless specifically prevented by
the custom control type definition. For example: validation, labels, hints,
visibility, and data binding.

7. Deployment of custom controls is handled the same as for other BPM projects.

When adding a project reference to a library project, forms that are open in the
referring project will not immediately reflect the new palette drawers available
from that project. You will need to close and re-open those forms in order to see
the new palette drawers.
 TIBCO Business Studio Forms

254 | Runtime Life Cycle of Custom Controls
Runtime Life Cycle of Custom Controls

The ControlWrapper implementation is subject to a very specific life cycle, which
is described in Figure 134.

Figure 134 ControlWrapper Life Cycle
TIBCO Business Studio Forms

| 255
Preparation

The forms runtime repeatedly calls the ControlWrapper's isReady() method
until it returns true.

Initialization

The forms runtime calls the constructor function to create an instance of the
ControlWrapper and then calls the initialize() method on this instance.

Refresh

Whenever you update the configuration or value of the control, the form invokes
the ControlWrapper.refresh() method to give the ControlWrapper a chance to
update the rendering of the control.

Destruction

When the form is being taken out of service, it invokes the destroy() method on
the ControlWrapper.

Runtime Life Cycle of Custom Control Used within Grid Pane
Using a custom control within a grid pane uses a specialized life cycle. It depends
on the supported Render Modes of the Control Type and the Always Render
setting on the Control.

Preparation

The forms runtime repeatedly calls the ControlWrapper's isReady() method
until it returns true.

Initialization

When you configure the control in the Always Render mode, the form creates an
instance of the ControlWrapper for each cell in the grid table. Users can view the
rendering that happens at this point.

If a control is within a static pane, the form does not create an instance of the
ControlWrapper. Instead, it invokes the renderStatic() for the ControlWrapper
to get the markup used in the static mode.
 TIBCO Business Studio Forms

256 | Runtime Life Cycle of Custom Controls
When you do not configure the control in the Always Render mode (default), the
form creates a single ControlWrapper instance that is shared between the cells in a
grid table column. Users cannot view the rendering that happens at this point.
The form does not attach the parent node to the DOM at this point but invokes the
ControlWrapper.getFormattedValue() method for each visible cell in the
column of the grid table.

Refresh

When you configure the control in the Always Render mode, the form calls the
refresh() method as soon as the value or other configuration settings are
changed.

When you do not configure the control in the Always Render mode and focus on
a cell to edit the value, the form calls the ControlWrapper.refresh() method to
allow the ControlWrapper to update the rendering and reflect the current value
being edited. If you change any of the configuration settings after the last
refresh(), the wrapper is notified through the updates argument.

Sorting

If a control manages a complex value, the static compare() method on the
ControlWrapper class is called each time user sorts the grid on that column.

Destruction

When you configure the control in Always Render mode, the form invokes the
destroy() method on all instances of the ControlWrapper when the form is being
taken out of service or on the specific instance when that row is deleted from the
table.

If you do not configure the control in the Always Render mode, the form invokes
the destroy() method on the shared instance of the ControlWrapper only when
the form is being taken out of service.
TIBCO Business Studio Forms

| 257
Component Library Model

Library
The Library is the root element in the component library definition. A detailed
description of the properties is provided in the following table:

Table 20 Library Element Properties

Property Type Initial Value Description

Name String Library file
base name

Library name.

Qualifier String Generated
based on
containing
project
identifier and
the nsPrefix

The qualifier should be unique within the
workspace.

XML
Namespace
Prefix

String <libraryName>.
toLowerCase()

Used in form models when referencing
Control Types in this model. This is
pre-populated based on the original name of
the library file and usually does not need to
be changed (it can be manually abbreviated
to something short and intuitive).

XML
Namespace
URI

URI Generated
based on the
library name

Defines a unique namespace URI reference
that is used in referring to form definitions.
This is pre-populated based on the original
name of the library file and usually does not
need to be changed (it can be manually
changed to conform to your organization's
end-point naming policy).

Drawer Palette Drawer Provides basic information about the drawer
in which custom controls in this library will
be displayed in the Form Designer palette.
 TIBCO Business Studio Forms

258 | Component Library Model
Palette Drawer
There is a single Palette Drawer for each library file. All controls defined in a
library file are displayed in this drawer in the Form Designer palette beneath the
built-in drawers of Panes, Controls, and Action Buttons.

The detailed description of the properties is provided in the following table:

Event Event Type Defines custom events that are raised by one
or more control types defined in this library.
The multiplicity of this property is 0..* (that
is, the library can contain zero or more event
types).

Note: An Event Type is added to the model
using the context menu (right-click) on the
Library element.

Resource External
Resource

The external resources can contain
JavaScript, CSS, image files, or localized
properties. All external resources defined in
the library are loaded when one of the
control types defined in it is loaded by the
form. The multiplicity of this property is 0..*
(that is, the library can contain zero or more
external resources).

Note: An External Resource is added to the
model using the context menu (right-click)
on the Library element.

Component Control Type Specifies the Control Type schema. All
Control Types specified here appear in the
Palette Drawer defined for this Library and
can be used in forms. The multiplicity of this
property is 1..* (that is, the library can
contain one or more Control Types).

Note: A Control Type is added to the model
using the context menu (right-click) on the
Library element.

Property Type Initial Value Description
TIBCO Business Studio Forms

| 259
Table 21 Palette Drawer Properties

Event Type
Custom controls can raise any of the built-in events (for example: Update, Enter,
Exit, Select) or can raise custom events that do not correspond to the semantics of
any of the built-in events. Individual control types can declare the events they
support from the union of built-in events and those defined at the library level.

A detailed description of the Event Type properties is provided in the following
table:

Property Type Initial Value Description

Name String drawer.<libraryName> Defines a unique name for the drawer. The
name must begin with "drawer." and must be
unique within the workspace. This property is
pre-populated based on the original name of the
library file and usually need not be changed.

Label String Generated based on
library name.

Label applied in the form designer.

Order Integer 0 Specifies the order in which the drawer is added
to the palette. Higher numbered drawers
appear later in the palette. Any drawers that
have the same order are arranged alphabetically
by label. Custom drawers are always below the
built-in drawers.
 TIBCO Business Studio Forms

260 | Component Library Model
Table 22 Event Type Properties

External Resource
An External Resource can be defined at two levels:

— Library level: in this case, it applies to all control types defined in the library
and these External Resources are loaded when at least one Control Type in
this library is used by the form.

— Control Type level: in this case, it applies only to the specific Control Type
and is loaded only if this Control Type is used by the form.

Property Type Restrictions Description

Name String • Unique within library.

• Cannot be set to a
same name as any of
the built-in event
names:

— close

— doubleclick

— enter

— exit

— localize

— open

— select

— submit

— update

• Cannot begin with
tibco_, to ensure no
conflict with built-in
events specified by
TIBCO.

Specifies the name of the custom event. This is
used at design time to configure the events
that trigger a rule. At runtime, it is used in the
ControlWrapper to specify which event is
being raised by the custom control.

Label String Label used in the Form Designer for the Event
Type.
TIBCO Business Studio Forms

| 261
All External Resources needed to load a Control Type need to be defined in one or
other of these two places. This includes the JavaScript file that contains the
implementation of the ControlWrapper for the Control Type. An External
Resource can also contain CSS or localized properties.

A detailed description of the properties is provided in the following table:

Table 23 External Resource Properties

Control Type
The Control Type defines the custom control. A library file can contain one or
many Control Types. All Control Types specified here appear in the Palette
Drawer defined for the library.

The detailed description of the properties is provided in the following table:

Property Type Initial Value Description

Name String resource.resource1.
The number increases for
each new resource added
to the library file.

Short identifier of the resource. Resources
should be renamed to something meaningful.
The name must begin with "resource." and
must be unique within the library file. For
properties files, this name is used from script
in order to reference the resource bundle. (For
example resource.<name>.<key>)

Relative
URI

String A URI relative to the Presentation Resources
folder. For example, "css/myControl.css".

A picker is also available to select the external
resource.

Important: you cannot select an external
resource from a referenced project. The
external resource must be available locally.
 TIBCO Business Studio Forms

262 | Component Library Model
Table 24 Control Type Properties

Property Type Restrictions / Initial
Value Description

Canvas Icon String Must be a valid relative
URI that resolves to an
image file in the
Components special
folder.

(Required) Provides the special folder
relative URI of the icon that is used when
rendering the component in the Form
Designer canvas. The icon has to be placed
within the Components special folder and
it can be an image of type .png, .gif, or
.bmp. This icon is used only at design-time.

When a library is first created, a set of
initial icons is provided in the icons folder.
These icons can be used as placeholders for
the three icons needed on a Control Type
until a more specific set of icons can be
provided.

Constructor
Class

String Must be a valid
JavaScript expression
that yields a
constructor function
object when evaluated
at runtime.

(Required) Refers to the name of the
JavaScript constructor that implements the
ControlWrapper interface. The JavaScript
file that defines this constructor should be
specified as an External Resource reference
either at the Library level or the Control
Type level.

Data Type Classifier Must be a BOM
Primitive Type,
Enumeration, or Class

Defines the type of the value managed by
this Control Type. This is a reference to one
of the following types:

• A built-in BOM Primitive Type

• An Enumeration

• A Class

The Data Type determines what can be
bound to the value of controls of this
Control Type in the Form model. If the
BOM Primitive Type of "Object" is specified
for the Data Type, then it allows any
complex object to be bound to the value of
instances of the Control Type.
TIBCO Business Studio Forms

| 263
Event Event
Type
Reference

Can only reference a
built-in Event Type, or
Event Types specified
in this Library file.

Specifies which Event Types can be raised
by this Control Type. The runtime
ControlWrapper can only raise an event of
a given type if it has been declared in the
Control Type model. The events specified
here will be available in the Form Designer
to add as triggers on Rules defined in the
Form.

Handles
Enter Key

Boolean This is set to true if the underlying widget
provides a key handler for the Enter key.
The form needs to know this in order to
prevent a primary button (for example,
'Submit') from being activated by an Enter
keystroke when the custom control has the
input focus.

Hint String (Required) Short description of the Control
Type, which is used as a hower help on the
icon in the palette.

Label String The library designer
should ensure that this
is unique within the
Library.

(Required) Label used in the Forms
Designer palette.

Multi-valued Boolean Indicates whether the value managed by
this Control Type is multi-valued. If true,
then the value for the control can only be
bound to multi-valued values. When this is
true, it is up to the implementation of the
control to manage multiple values. For a
multi-valued control with a simple data
type, the runtime value will be set as a
JavaScript array. When the control is
managing multi-valued structured types,
the values will be provided in a list.

Property Type Restrictions / Initial
Value Description
 TIBCO Business Studio Forms

264 | Component Library Model
Name String • Unique within
library. The
qualified name
should be unique in
the workspace.

• Name must begin
with controls.

The initial value is set
to controls.control1

(Required) This is the name of the Control
Type that is used when adding a reference
from a Form model. The form uses the fully
qualified control type name, prefixed by
the library qualifier, to avoid name
collisions.

Palette Icon
16

String • Must be a valid
relative URI that
resolves to an
image file in a
Components
special folder.

• Must not be the
same as Palette Icon
24

• Can be an image of
type .png, .gif, or
.bmp

(Required) The special folder relative URI
of the small (16x16 pixels) icon that is used
when rendering the component in the
Form Designer palette. The icon has to be
placed within the Components special
folder. This is used only at design-time.

Palette Icon
24

String • Must be a valid
relative URI that
resolves to an
image file in a
Components
special folder.

• Must not be the
same as Palette Icon
16

• Can be an image of
type .png, .gif, or
.bmp

(Required) The special folder relative URI
of the large (24x24 pixels) icon that is used
when rendering the component in the
Form Designer palette when the 'Large
Icons' option is active. The icon has to be
placed within the Components special
folder. This is used only at design-time.

Property Type Restrictions / Initial
Value Description
TIBCO Business Studio Forms

| 265
Qualified
Name

This is a read-only property which
provides the
<library-qualifier>.<element-name>
details.

Property Type Restrictions / Initial
Value Description
 TIBCO Business Studio Forms

266 | Component Library Model
Render Mode String • Render Modes
supported for
Control Types are:

— normal

— static

— view-text

— view-html

— grid-edit

• All Control Types
must support
normal mode.

• A Control Type can
support only one of
view-text or
view-html.

Multi-valued enumerated type that defines
the render modes supported by the
ControlWrapper. The values are:

• normal: single instance rendering of
the control, such as within vertical and
horizontal panes.

• static: Indicates that the control can be
rendered within static panes. If
supported, then the ControlWrapper
must provide the renderStatic()
method.

• view-text: If specified, then the
ControlWrapper must provide a
getFormattedValue() method that
will return a plain text representation of
the value managed by this control.

• view-html: If specified, then the
ControlWrapper must provide a
getFormattedValue() method that
will return an HTML representation (as
a string) of the value managed by this
control.

• grid-edit: Indicates that the Control
Type provides a rendering specific to
edit mode of grid panes. If this mode is
not specified, and the Control Type
otherwise supports grid panes, then the
normal rendering mode will be used in
grid panes.

The value of getFormattedText() is used
in grid panes in the view mode. If neither
view-text or view-html is specified, then
the grid-edit mode will always be used in
grid panes, or will fall back to normal if
grid-edit is not specified.

The Focus capability must be defined for
the grid-edit mode.

Property Type Restrictions / Initial
Value Description
TIBCO Business Studio Forms

| 267
Supported
Parent Pane

Pane Type
Reference

Only one of Supported
Parent Pane or
Unsupported Parent
Pane references can be
used within a given
Control Type.

Specifies a list of pane types that are
supported as a direct parent by this Control
Type. A control of this Control Type can
only be added to panes of types on this list.
If neither Supported Parent Pane or
Unsupported Parent Pane restrictions are
specified, then it is legal to add an instance
of this Control Type into any type of pane
that will accept it as a child.

Some pane types restrict the type of
children they support. For example, grid
panes don't allow panes as children; tabbed
panes only allow panes as children; an
embedded form pane is only allowed to
refer another form in the workspace.

Note: No Control Types are supported in
the Message Pane. You will not be able to
place any Control Type in a Message pane
even if it is selected as one of the Supported
Parent Pane types.

Supported
Type
Conversion

Control
Type
Reference

Only one of Supported
Type Conversion or
Unsupported Type
Conversion references
can be used within a
given Control Type.

Specifies an explicit list of Control Types to
which an instance in a form may be
refactored. If not specified, an instance of
this Control Type may be refactored to any
Control Type. For example: a third party
date picker may only permit itself to be
refactored to one of the built-in date-time
control types.

Unsupported
Parent Pane

Pane Type
Reference

Only one of supported
Parent Pane or
unsupported Parent
Pane references can be
used within a given
Control Type.

Specifies a list of pane types that this
Control Type does not support as a direct
parent. If a pane is included in this list,
then it is not possible to place a control of
this type into an instance of that pane. If
neither Supported Parent Pane or
Unsupported Parent Pane restrictions are
specified, then it is legal to add an instance
of this Control Type into any type of pane
that will accept it as a child.

Property Type Restrictions / Initial
Value Description
 TIBCO Business Studio Forms

268 | Component Library Model
Capabilities

Each capability is specified by an enumerated list comprised of neither, either, or
both of the values [component, form].

• component flag: The presence of this flag indicates that the component will
provide some level of functionality with regards to that capability, so it should
be provided with the necessary information and notified if the information
related to that capability is updated.

• form flag: The presences of this flag indicates that the component expects the
form to carry out its normal handling of the capability, even if the component
flag is also specified for the capability.

The table below provides specific detail for each combination of flags for each of
the capabilities.

Unsupported
Type
Conversion

Control
Type
Reference

Only one of Supported
Type Conversion or
Unsupported Type
Conversion references
can be used within a
given Control Type.

Specifies an explicit list of Control Types to
which an instance in a form may not be
refactored. If not specified, an instance of
this Control Type may be refactored to any
Control Type. For example: a third party
slider control may forbid itself to be
refactored to a tree control in the same
component library.

Property Type Restrictions / Initial
Value Description
TIBCO Business Studio Forms

| 269
Property Description Form
Flag

Component
Flag Outcome

Disabled The form will not
have enough
information to
know how to
disable a widget
within the custom
control. If a
Control Type is to
support the setting
of a disabled state,
then it will have to
handle the update
of this property at
runtime.

true true This is the typical case. Here, the
Form will apply or remove the
"disabled" CSS class at the control
level, and requests the
ControlWrapper to refresh its
rendering of the enablement state.
The form notifies the
ControlWrapper that the
enablement state has changed by
calling its refresh() method with
the updates argument containing
the feature name "enabled".

true false The form will apply or remove the
"disabled" CSS class at the control
level but does not notify the
ControlWrapper of enablement
changes.

false
(default)

true
(default)

No CSS class will be applied at the
control level but the form notifies
the ControlWrapper of enablement
changes.

false false The control does not handle the
disabled state.
 TIBCO Business Studio Forms

270 | Component Library Model
Focus For this capability,
the form value is
always set to
false

true true N/A

true false N/A

false
(default)

true
(default)

ControlWrapper supports a
setFocus() method to allow script
to change the focus to the control
programmatically. If the control
type implicitly or explicitly
supports rendering within a grid
pane, then the focus capability
should be set to "component".
Otherwise keyboard navigation of
the grid pane will skip over cells
that contain instances of this control
type.

false false ControlWrapper does not provide
setFocus() method.

Hint This capability
controls how the
Control Type hint
is handled. This is
the built-in control
hint that is
provided by the
forms framework.

true true The form renders the hint as
normal, and requests the
ControlWrapper to refresh its
custom hint rendering. The form
notifies the ControlWrapper that
the hint state has changed by
calling its refresh() method with
the updates argument containing
the feature name "hint".

true
(default)

false
(default)

This is the typical case. The form
renders the hint as it does for
built-in controls but does not notify
the ControlWrapper of hint
changes.

false true The hint node is not rendered by
the form. It is completely up to the
ControlWrapper to handle the
rendering of the hint.

false false The hint node is not rendered for
the Control Type.

Property Description Form
Flag

Component
Flag Outcome
TIBCO Business Studio Forms

| 271
Invalid This Capability
controls how the
rendering of
"Invalid" feedback
is handled. The
forms framework
continues to
execute validations
on controls that
provide them.

true true The form applies or removes the
"invalid" CSS class at the control
level, and requests the
ControlWrapper to refresh its
rendering of the validity state. This
may be needed by controls that aim
to provide accessibility. For
example, by updating the
corresponding ARIA attributes on
the control widgets. The form
notifies the ControlWrapper that
the validation state has changed by
calling its refresh() method with
the updates argument containing
the feature name "validation".

true
(default)

false
(default)

The form applies or removes the
"invalid" CSS class at the control
level, but does not notify the
ControlWrapper of validity
changes.

false true No CSS class is applied at the
control level but the form does
notify the ControlWrapper of the
change in validity state.

false false The control does not handle the
display of a validation error
decoration.

Property Description Form
Flag

Component
Flag Outcome
 TIBCO Business Studio Forms

272 | Component Library Model
Invisible This Capability
handles how the
visibility setting of
the Control Type is
handled.

true true The form hides or shows the whole
control and also notifies the
ControlWrapper that the visibility
state has changed by using the
refresh() method with the
updates argument containing the
feature name "visible".

true
(default)

false
(default)

The form takes care of hiding and
showing the control when the
visibility state has changed but does
not notify the ControlWrapper of
visibility changes.

false true The form merely notifies the
ControlWrapper of changes in
visibility.

false false The control is always shown.
Changes to the visibility of the
control are ignored. However, if the
containing pane is made invisible,
then the control will be made
invisible.

Property Description Form
Flag

Component
Flag Outcome
TIBCO Business Studio Forms

| 273
Label This Capability
controls how the
control label is
handled. This is
the built-in control
label that is
provided by the
forms framework.
Note that when a
custom control is
rendered in a grid
pane, the column
label will always
be provided by the
form.

true true The form renders the label as
normal, and also requests the
ControlWrapper to refresh its
rendering of the label. The form
notifies the ControlWrapper that
the label value has changed by
calling its refresh() method with
the updates argument containing
the feature name "label".

true
(default)

false
(default)

The form renders the label as it does
for built-in controls but does not
notify the ControlWrapper of label
changes.

false true The label is not rendered by the
form and the form notifies the
ControlWrapper of label changes. It
is completely up to the
ControlWrapper to handle the
rendering of the label. In vertical
panes, this setting will result in
control being rendered completely
to the left, aligned with the labels of
other controls that rely on the form
to render the label.

false false The label is not rendered for the
control.

Property Description Form
Flag

Component
Flag Outcome
 TIBCO Business Studio Forms

274 | Component Library Model
Read
Only

The form does not
have enough
information to
know how to set a
widget within the
custom control as
read only. If a
Control Type
supports the
setting of a read
only state, then this
property is
handled at
runtime.

true true The form applies or removes the
"read-only" CSS class at the control
level, and requests the
ControlWrapper to refresh its
rendering of the read-only state.
The form notifies the
ControlWrapper that the read-only
state has changed by calling its
refresh() method with the
updates argument containing the
feature name "readOnly".

true false The form applies or removes the
"read-only" CSS class at the control
level, but does not notify the
ControlWrapper of changes to the
read-only setting.

false
(default)

true

(default)
The CSS class is not applied at the
control level, but the form notifies
the ControlWrapper of the change
of read-only state.

false false The control does not handle the
read-only state.

Property Description Form
Flag

Component
Flag Outcome
TIBCO Business Studio Forms

| 275
Required This Capability
refers to the
rendering of
"Required"
feedback. The
forms framework
continues to
enforce that values
are indeed
provided when
marked as
required.

true true The form applies or removes the
"required" CSS class at the control
level, and also requests the
ControlWrapper to refresh its
rendering of the required state. This
may be needed by controls that aim
to provide accessibility. For
example, by updating the
corresponding ARIA attributes on
the control widgets. The form
notifies the ControlWrapper that
the required state has changed by
calling its refresh() method with
the updates argument containing
the feature name "required".

true
(default)

false
(default)

The form applies or removes the
"required" CSS class at the control
level, but does not notify the
ControlWrapper of changes to the
required setting.

false true CSS class is not applied at the
control level, but the form notifies
the ControlWrapper of the change
in required state.

false false The control does not handle the
display of a "required" decoration.

Tab
Index

For this capability,
the form flag value
is always set to
false.

true true N/A

true false N/A

false true ControlWrapper will use the Tab
Index property from the control in
the generated markup for the
control.

false
(default)

false
(default)

The control Tab Index property is
not used by the ControlWrapper.

Property Description Form
Flag

Component
Flag Outcome
 TIBCO Business Studio Forms

276 | Component Library Model
Property

The Control Type property details are as follows:

Property Type Description

Bindable Boolean If true, then the following features are enabled:

• It is possible to bind runtime values to this property rather
than just specifying static values at design time.

• It is possible to update this value dynamically using script
actions and that the ControlWrapper has to deal with updates
to the property as notified using the refresh() method.

• The get() and set() methods are automatically generated on
the control, and content assist and script validation reflects this
auto-generated API. For example: if the property name is
"orientation", and it is marked as bindable=true, then the
following two methods will be available on the control:
— <Type> getOrientation()

— setOrientation(<Type> value)

Where <Type> depends on the Data Type specified on the
Property.

The default value is false.

Note: Irrespective of the value of the bindable property, the getter
and setter methods on properties are available to the
ConrolWrapper through the proxy Component.getControl()
method.
TIBCO Business Studio Forms

| 277
Data Type Classifier Defines the type of the value for this property. This is a reference
either to a built-in BOM Primitive Type, or to a Class or
Enumeration defined in a BOM file in the Library project. The Data
Type will determine what can be bound to the value property in
the form model.

When a property type is defined as a specific Class, then it will
limit bindings of that property to objects of that type or a
specialization of that type defined in the model. If the Data Type is
set to BomPrimitiveTypes::Object, then the property can be bound
to an object of any complex type. However, in this case it will be
the responsibility of the person designing the form to ensure that
the binding is to a value that can actually be used by the custom
control.

The use case for supporting complex objects for properties
includes the use of complex third party controls such as tables and
trees. For example, you could define a "Selection" property on a
tree control that will be set to the object currently selected by the
user. It would still be up the person designing the form to make
sure the selected object is used correctly in the rest of the form, for
example, by setting it as the value on a pane that can edit that
particular type of object.

Default Value
Literal

String Provides a default value to use for this property if nothing is
provided in the form model.

The value must be a valid literal representation for the property's
data type.

Property Type Description
 TIBCO Business Studio Forms

278 | Component Library Model
Externalize Boolean Indicates the Property provides a value which could vary based on
locale. A setting of true here will cause the value to be
externalized within the form-level resource bundle that is
generated automatically.

In addition, the property editor generated for instances of this
control will expose the following two settings:

• A property where the user can specify a value directly.

• Allow the user to select a reference to a resource bundle key.
Only one of these settings will be allowed.

If the property is both externalized and multi-valued, then the user
will only be able to specify values directly into the list editor
associated with the property. These values will be written to the
form-level resource bundle and can then be translated into
locale-specific bundles. In this version, you will not be able to
specify a resource bundle reference for multi-valued, externalized
properties.

The default value is false.

Label String Label used in the Form Designer when exposing this property in
the property sheet editor.

Multi-valued Boolean Indicates whether the value for this property is multi-valued. If
true, then the value for this property can only be bound to
multi-valued values.

The default value is false.

Property Type Description
TIBCO Business Studio Forms

| 279
Name String This name is used to expose get() and set() methods on the
form Control object, and is used when providing updates to the
ControlWrapper using the refresh() method.

This property has the following restrictions:

• Unique among Property names of the same Control Type.

• Must be an NCName (that is, a legal, 'non-colonized' XML
name)

• Cannot be set to any of the names in the following restricted
list:

— [n/N]ame

— [f/F]orm

— [c/C]loneIndex

— [c/C]ontrolType

— [p/P]arent

— [l/L]abel

— [s/S]hortLabel

— [h/H]int

— [e/E]nabled

— [v/V]isible

— [r/R]equired

— [c/C]lassName

— [r/R]eadOnly

— [b/B]ackgroundColor

— [f/F]ontColor

— [f/F]ontSize

— [f/F]ontName

— [f/F]ontWeight

— [v/V]isualProperty

— [f/F]ocus

— [s/S]tringValue

— [v/V]alue

Property Type Description
 TIBCO Business Studio Forms

280 | Component Library Model
Description String Provides the descriptive message to display in the status line when
the property is selected in the Properties tab in Form Designer.

Required Boolean Whether a value must be provided for the property. Combined
with multi-valued, determines the multiplicity of the generated
structural feature whose value will be set when editing the
property in the Form Designer Properties tab:

The multiplicity constraint is enforced by the property cell editors
and form validation rules. The default value is false.

Property Type Description
TIBCO Business Studio Forms

| 281
Control Wrapper Implementation

Each custom control needs to have an implementation of the ControlWrapper
interface. This takes the form of a JavaScript class definition that includes the
methods necessary to implement the custom Control Type life cycle. The
constructor is a no-argument function, with the rest of the interface implemented
as function properties on the prototype for this constructor function.

initialize()
The initialize() method must be implemented by the ControlWrapper. It is
invoked once per control instance. It is invoked after all the Control Type resource
dependencies have been loaded, but before the form data model has been
initialized. Any configuration properties that are defined statically will be
provided at this time, although any properties that support binding or API
support may be updated after the initialize() method is called. The
implementation needs to add the markup to the DOM at this point for the given
renderMode, although there are cases when the control is being rendered in a grid
pane where the markup needs to be handled in the refresh() method.

Method
Arguments:

• component: an object of type Component. Component represents the
form-level Control or Pane object that hosts this custom control. The form
model objects obtained through the component represent read-only versions
of the form models. The initial configuration of the control can be accessed
using the control object in the component, including any custom properties
defined by the Control Type.

• renderMode: This is a string that specifies the mode in which the control is to
be rendered. The possible values are:

— normal

— grid-edit

For Control Types that specify any of the renderModes static, view-text, and
view-html, those modes will not be passed into the initialize() method, but
will instead be handled as follows:

— static: If the control is being rendered in a static pane, then no instance of
the control wrapper is instantiated and the renderStatic() method defined
on the ControlWrapper Class is called instead.

— view-text and view-html: The form will access the getFormattedValue()
method of the ControlWrapper when a view-only version of the control is
needed.
 TIBCO Business Studio Forms

282 | Control Wrapper Implementation
Once a control instance has been asked to render in a particular mode, that
instance will not be asked to render in a different mode.

refresh()
This method must be implemented by the ControlWrapper. It is invoked for
rendering of the control in the same Render Mode as originally specified in
initialize(). This method is only called after the initialize() method, and
is called at any point when the control configuration or value has been updated.
This method will be called at least once after initializing.

Functionality for Grid Panes

For Control Type instances that are being rendered in a grid pane, this method is
called once each time a different cell in the grid pane is edited. In those cases, it is
not always necessary to regenerate the entire DOM structure of the control. You
can update the existing DOM structure which was previously rendered, based on
any updates to the configuration or value of the control. This is applicable only if
the control is not in the Always Render mode.

Method Argument • updates: This is an array that contains the names of configuration properties
updated since the last initialize() or refresh() method invocation. For
example: if the array contains the value myProperty, then that means the
value of the custom property named myProperty has been updated since the
last refresh(). The full set of configuration properties can always be
accessed using the control in the component object passed to the
ControlWrapper in the intialize() method. There is a set of built-in keys
that can reference properties common to all controls: "label", "hint", "required",
"enabled", "readOnly", "visible", "locale", and "validation". The updates array
can also contain the custom property names, if the value of any of those
properties changed since the last refresh() method call.

destroy()
This method must be implemented by the ControlWrapper. This method is
invoked when the control instance is being taken out of service.

getValue()
This method returns the value modified or rendered by this control. For complex
types, this is the JavaScript BOM object that corresponds to the instance type.
TIBCO Business Studio Forms

| 283
Method Return
value

• Returns the control value

getFormattedValue()
This is an optional method that returns a simple read-only rendering of the value
managed by this control. This method only needs to be implemented if either the
view-text or view-html render modes are supported. At most, one of these modes
can be supported.

• view-text: The return value of this method will be plain text that is rendered in
the DOM within a DOM Text mode.

• view-html: The return value is a string representation of HTML markup and
is treated as such when added to the DOM.

See the com.tibco.forms.extension package for a set of built-in utilities for
formatting values of various types.

Method Argument • value: This is the value to be formatted.

Method Return
Value

• Returns the formatted control value as text or html.

isReady()
This method returns true if the ControlWrapper is ready to be initialized. This
method is repeatedly called until it returns true or the loading of the form times
out. This gives the wrapper a chance to check whether necessary libraries are
loaded prior to initialization. If only the needed libraries are specified directly in
the Components Library model, then it should be always safe to return true from
this method. However, some frameworks, such as GWT and Dojo, will load
additional files that are not loaded directly by the Forms framework. For these
cases, the wrapper should perform a check. For example: by checking for the
existence of a needed function or class, before returning true.

Method Return
Value

Returns a boolean value.

This must be a static method on the ControlWrapper.
 TIBCO Business Studio Forms

284 | Control Wrapper Implementation
setFocus()
This is an optional method that only needs to be implemented if the "focus"
capability for the Control Type is set to "component". This method sets the focus
for this control. Use in situations where the focus is explicitly set using the API for
this control.

compare()
This method is optional, and only has to be implemented at the class level (not the
prototype level) for ControlWrappers that meet both of the following conditions:

• The value edited by the control is of a complex type, i.e. the type is specified
by a BOM class.

• Instances of the control are allowed to occur in grid panes.

In these situations, if the grid pane has enabled sorting, the form needs to know
how the complex objects should be sorted. The compare method is used in
performing this sorting.

Method
Arguments

• value1: This is the first object to compare.

• value2: This is the second object to compare.

Method Return
Value

• Returns an integer value:

— < 0: if value1 is less than value2

— 0: if value1 is equal to value2

— > 0: if value1 is greater than value2

renderStatic()
This static method is optional, and only has to be provided for Control Types that
support the "static" Render Mode. This method is invoked whenever the form
needs to obtain a static rendering of the value bound to this control.

If the setfocus() method is defined in the ControlWrapper, the capability
always picks the "focus" capability from the ControlWrapper. If you do not want
the component to handle setFocus() then do not define it in ControlWrapper.

This must be a static method on the ControlWrapper, as an instance of the
ControlWrapper is not instantiated when the control is located in a static pane.
TIBCO Business Studio Forms

| 285
The value returned by the control is added as HTML to the form. Any user input
values should be escaped appropriately to avoid them being interpreted as
HTML.

Method
Arguments

• value: This is the value that needs to be formatted.

• label: (Type String) - The label to be rendered for the static control.

• hint: (Type String) - The hint to be rendered for the static control.

• labelId: (Type String) - Identifier of the label as rendered by the form. This is
useful for accessibility.

• propertySet: (Type Associative Array) - Initial configuration of the control,
including custom properties configured in the Form Designer. The key is the
name of the property as defined in the Control Type.

• resource: (Type Object) - The same as retrieved from the
Component.getResources() method.

• textOnly: (Type Boolean) - If true, then the pane this is being rendered in is
expecting a text-only rendering of the value. That is, no rendering of a widget
that displays the value.

• parentPaneType: (Type String) - This is the string that represents the type of
pane. This is equal to the value returned from the Pane.getPaneType()
method. A ControlWrapper identifies the rendering on a grid pane using the
parentPaneType argument.

• logger: (Type logger Object) - This is the same logger object available in Form
action scripts. The logger object helps to log messages to the form log. View
the form log at preview time by using the appropriate logging level in the
Windows -> Preferences -> Form Designer -> Preview page. Enable logging
at runtime by using the query parameter log_level with an appropriate
value: TRACE, DEBUG, INFO, WARN, ERROR, FATAL. For example:
http://<server>:<port>/openspace?log_level=INFO. See Table 98, Logger
Class for the list of available methods.

Method Return
Value

• Returns an HTML string.
 TIBCO Business Studio Forms

286 | Component Interface
Component Interface

The initialize() method for the ControlWrapper receives an object of type
Component. This provides an interface that the ControlWrapper can use to obtain
information and configuration from the form layer, and to also raise events back
to the form so they can trigger rules defined in the form model.

The Component object provides the following APIs:

generateId()
This method generates an identifier that is unique on this page. It allocates IDs to
the HTML Elements created within the ControlWrapper.

A ControlWrapper would want to use this method if it generates any DOM nodes
in the HTML that need to be directly referenced using ID. Using this method will
ensure that the ID used will not be in conflict with other IDs on the page.

Method Argument • suffix (optional)

Method Return
Value

• unique ID

getControl()
This method returns the Form-level Control that corresponds the custom control
instance. This provides access to all the getter methods that are available on the
control object in a form-level action script. It also provides the getter and setter
methods for all the custom properties.

Method Return
Value

• Control

If the ID returned by this method is not used by the wrapper, the next time it will
return the same ID as it is still unique with in the document. As a convenience, if a
suffix is provided as an argument to this method, the returned value will have the
suffix appended. If no suffix is provided, then the base identifier will be returned.
TIBCO Business Studio Forms

| 287
getFactory()
This method returns the factory object that is available within Form action scripts.
This will allow wrappers to create new objects as part of their functionality. This
object will expose factories that are in the library project as well as those available
from the Forms project using the custom control and any in referenced projects,
recursively.

Method Return
Value

• Object

getForm()
This method returns the Form that contains the custom component.

Method Return
Value

• Form

getHintId()
This method returns the ID of the DOM node which renders the standard,
form-supplied hint for this control. It is useful in situations where the hint needs
to be referenced for accessibility purposes. For example: by using the ID in
corresponding ARIA attributes on the control widgets.

Method Return
Value

• String

getLabelId()
This method returns the ID of the DOM node which renders the standard,
form-supplied label for this control. It is useful in situations where the label needs
to be referenced for accessibility purposes. For example: by using the ID in
corresponding ARIA attributes on the control widgets.

Method Return
Value

• String

getLocale()
This method returns the String representation of the locale in which the control
should be rendered.
 TIBCO Business Studio Forms

288 | Component Interface
Method Return
Value

• String

getParentNode()
This method returns the parent DOM node into which this control should render
its contents.

Method Return
Value

• DOM Element Node

getPresentationURL()
This method returns the base URL of the Presentation Resources folder of the
project, in which a custom control is defined.

For example, if a project contains myimage.gif located at
project/Presentation Resources/images, you can compute the URL of this
image using:

var mypath = component.getPresentationURL() +
"/images/myimage.gif";

Method Return
Value

• The base URL without a trailing path separator

getResources()
This method returns an object that provides access to all localized resource
bundles defined at the library level and the component level for this particular
Component. Resources are accessed using the resource name and individual keys.
For example: for a resource with name resource.myName created at the library or
at the component level that has a key called myLabelKey in it, its value can be
retrieved using:

var resources = component.getResources();

var myLabel = resources.myName.myLabelKey;

The resources returned correspond to the locale in effect for the form when
rendered.

Method Return
Value

• Object
TIBCO Business Studio Forms

| 289
getValidationMessageIds()
This method returns an array of DOM identifiers which represents any validation
messages currently in effect for this control. There is one ID for each message
pane in the form. Useful in situations where the messages need to be referenced
for accessibility purposes. If null, then there are currently no validation errors
reported against this control. If the array is non-null but empty, this signifies that
there are errors, but no messages are displayed because the Form does not contain
a Messages pane.

Method Return
Value

• String

raiseEvent()
This method is invoked by the ControlWrapper when it needs to propagate an
event back to the Form layer. Most controls should raise at least the update event
in order to notify the form layer that the control value has changed. It is not
necessary to raise an update event when updating the attribute value of a
complex object or updating the list for a multi-valued complex type. The BOM
JavaScript representations of these objects handle the updates internally.

Method
Arguments

• eventName: Name of the event as configured in the component metadata.
This name should correspond to one of the events specified as supported by
the component type. Built-in events include close, doubleclick, enter, exit,
localize, open, select, submit, and update.

• eventValue: Object that differs depending on the event being raised. For
update events, this is the new value. Other events do not need an eventValue.
Any custom-defined events ignore the eventValue.
 TIBCO Business Studio Forms

290 | BOM JavaScript API for Custom Controls
BOM JavaScript API for Custom Controls

In order to support more complex custom control use cases, the JavaScript API
documented for the auto-generated BOM JavaScript classes has been augmented
to provide a reflective API. This allows controls to write code that can introspect
objects and provide an auto-generated UI based on the type of object. For
example, this would enable implementation of controls such as a tree control that
can provide a user interface based on the structure of arbitrary objects. The API
described here is currently only supported for use within Custom Controls.

Factory Methods
The following methods are available in the factory that is available for each BOM
package.

Table 25 Factory Methods

Method Return
Value Description

create(className)

• className is a
fully-qualified name
of the BOM
JavaScript class. This
must be a class
managed by the
given factory.

Object Creates an instance of the given class.

ControlWrapper uses this method to support cases where
the type of object being managed by a complex custom
control is not known at design time.

From form action methods, the specific createXXX()
method for a given class should be used.

getClass(className)

• className is a
fully-qualified name
of the BOM
JavaScript class. This
must be a class
managed by the
given factory.

Object Returns the class object for the class with the given name.
TIBCO Business Studio Forms

| 291
BOM Class Methods
The following methods are available on the class object returned from the
getClass(className) method of a factory, or the getClass() method of a BOM
JavaScript object instance.

Table 26 BOM Class Methods

Method Return
Value Description

getAttributeNames() String[] Returns a JavaScript string array containing the
names of all attributes for this class. These are names
as defined in the BOM for this class and all of its
super-classes. For complex children, these will
correspond to the name of the association endpoint
for the child.

This array should not be modified.

This array is the union of attribute names retrieved
using getPrimitiveAttributeNames() and
getComplexAttributeNames().

getPrimitiveAttribute
Names()

String[] Returns a JavaScript string array. These are attributes
with simple data types; i.e., primitive types and
enumerations. These are names as defined in the
BOM for this class and all of its super-classes. This
includes both single- and multi-valued attributes.

This array should not be modified.

getComplexAttribute
Names()

String[] Returns a JavaScript string array containing the
names of all complex children of this class. These are
names of the association endpoints for these children
as defined in the BOM for this class and all of its
super-classes. This includes both single- and
multi-valued attributes.

This array should not be modified.
 TIBCO Business Studio Forms

292 | BOM JavaScript API for Custom Controls
getAttributeType
(attName)

• attName: name of
attribute.

String Returns the type for given attribute. This will either
be the fully-qualified class name as defined in the
BOM if the attribute is complex, or will be one of the
following primitive types:

• BomPrimitiveTypes.Boolean

• BomPrimitiveTypes.Dates

• BomPrimitiveTypes.DateTime

• BomPrimitiveTypes.DateTimeTZ

• BomPrimitiveTypes.Decimal

• BomPrimitiveTypes.Duration

• BomPrimitiveTypes.ID

• BomPrimitiveTypes.Integer

• BomPrimitiveTypes.Text

• BomPrimitiveTypes.Time

• BomPrimitiveTypes.URI

isAttributeMultivalued
(attName)

• attName: name of
attribute.

Boolean Returns true if the attribute with the given name is a
multi-valued attribute as defined in the BOM.

isAttributePrimitive
(attName)

• attName: name of
attribute.

Boolean Returns true if the attribute with the given name is of
a primitive type or enumeration. If it returns true, it
will be a member of the array returned from
getPrimitiveAttributeNames().

Method Return
Value Description
TIBCO Business Studio Forms

| 293
BOM Class Instance Methods
The following methods are available on each instance of a BOM JavaScript class.

Table 27 BOM Class Instance Methods

Method Return
Value Description

getAttributeValue
(attName)

• attName: name of
attribute.

Object Returns the value of the attribute with the given name.
The return type depends on the type of attribute being
retrieved. It will be one of the following:

• attName is primitive and single-valued: returns a
value of type String, Number, Date, or Duration,
depending on the specific type of attribute.

• attName is primitive and multi-valued: returns a
JavaScript array containing the underlying values.

• attName is complex and single-valued: returns an
instance of the BOM JavaScript class associated with
the attribute.

• attName is complex and multi-valued: returns a List
object containing the underlying values.

The method throws an exception if the underlying class
does not support an attribute with the given name.
 TIBCO Business Studio Forms

294 | BOM JavaScript API for Custom Controls
setAttributeValue
(attName, value)

• attName: name of
attribute.

• value: new value of
attribute.

Void Sets the value associated with the given attribute name.
The type of object depends on the attribute being set:

• attName is primitive and single-valued: should be a
value of type String, Number, Date, or Duration,
depending on the specific type of attribute.

• attName is primitive and multi-valued: should be a
JavaScript array containing the underlying values.

• attName is complex and single-valued: should be an
instance of the BOM JavaScript class associated with
the attribute.

• attName is complex and multi-valued: unsupported.
In this case, the List object obtained from the object
should be updated directly with additions or
deletions.

The method throws an exception in the following
scenarios:

• if the underlying class does not support an attribute
with the given name.

• if an attempt is made to set the value of a complex
multi-valued attribute.

Method Return
Value Description
TIBCO Business Studio Forms

| 295
Utility Methods

A set of JavaScript methods are provided by the forms framework to aid custom
control developers. These are for use by the custom control wrappers. See Utility
Methods, page 402 for the complete list of API methods.
 TIBCO Business Studio Forms

296 | Utility Methods
TIBCO Business Studio Forms

| 297
Chapter 7 Reference

This section describes various details of the modeling environment, including the
controls that can be placed on a form, the properties associated with each type of
control, the validation errors that can appear in the Problems view, and the use of
scripts to extend the functionality of your forms.

Topics

• The Workbench, page 298

• The Palette for the Form Designer, page 300

• Panes, page 303

• Controls, page 310

• Properties View Tabs, page 315

• Configuring Parameters, page 345

• Context Menus, page 346

• Keyboard Shortcuts, page 347

• CSS Classes, page 355

• Common Resource Keys, page 359

• Design-time Constraints, page 374

• Client-side Validations, page 375

• Scripting, page 376

• API for Scripting, page 381
 TIBCO Business Studio Forms

298 | The Workbench
The Workbench

The Eclipse workbench for modeling forms appears by default when TIBCO
Business Studio is installed. The Modeling perspective provided by TIBCO
Business Studio includes certain views and editors that are important for
designing and deploying forms. These areas of the workbench are described
briefly here, and again in detail throughout the chapter.

Figure 135 Eclipse Workbench with Project Claims Process - No Forms

In Eclipse, the term view refers to an area of the workbench that displays
information related to your Eclipse projects. In the Modeling perspective of
TIBCO Business Studio, for instance, there are a number of views, such as the
Project Explorer view, the Properties view, and the Outline view, that display
objects and information in support of the modeling work you perform in the
Process Editor or Form Designer.
TIBCO Business Studio Forms

| 299
• A: Project Explorer The Project Explorer view shows your TIBCO Business
Studio projects and all project resources, including Process Packages, Business
Assets, and Forms, arranged in hierarchical tree structures.

• B: Outline The Outline view shows non-visual and visual elements of the form
including form parameters, shared actions, rules, controls and panes.

For more details, see Outline View on page 94 and Outline View Context
Menu on page 346.

• C: Canvas The Canvas is where you create your forms. On creating a form,
you notice two tabs at the bottom: a Design tab for modeling forms, and GWT
Preview tab for viewing and testing the forms.

For more details on working in the modeling or preview mode, see The
Design Tab and Preview Tabs on page 86 and Form Designer Canvas Context
Menu on page 346.

• D: Palette The palette is a part of the Form Designer and provides tools for
adding panes and controls to a form, and for selecting objects on a form. Click
on the small arrowhead above the Palette in the upper right corner to open
the palette. The arrow is a toggle between a visible and a hidden palette.

There is also the detachable Palette view (Window > Show View... > Palette).
This palette is very useful to save space when working on multiple processes
and/or forms.

For more details, see The Palette for the Form Designer on page 300

• E: Properties The Properties view shows the properties of a selected object on
a form, such as a pane or a control, and allows you to edit the values of those
properties.

For more details, see

— Properties View Tabs on page 315

— Properties View for Forms on page 317

— Properties View for Panes on page 321

— Properties View for Controls on page 330
 TIBCO Business Studio Forms

300 | The Palette for the Form Designer
The Palette for the Form Designer

To create a form, add parameters to a user task from the existing process data
fields. Right-click the user task, and select Forms > Open. To modify the form,
add or move panes and controls using the tools on the palette.

The palette for the Form Designer looks as shown in Figure 136.

Figure 136 Form Designer Palette

When you hover the mouse over the icons in the palette, a pop-up tool tip
describes the tool indicated by the mouse point. The palette contains tools as
described in Table 28.

Table 28 Form Designer Palette

To add a pane or control, click the tool on the palette for a specific object, position
your mouse pointer in the appropriate location on the Form Designer, and click to
place the object on the form. (To move a pane or control already on the form, use
either the drag-and-drop or cut-and-paste techniques.)

Palette Item Description

Select Allows you to select objects.
TIBCO Business Studio Forms

| 301
Marquee Allows you to select several objects by drawing a box around them.

 Vertical Pane Adds a Vertical Pane, whose children are arranged vertically.

 Horizontal Pane Adds a Horizontal Pane, whose children are arranged horizontally.

 Tabbed Pane Adds a Tabbed Pane, whose sub-panes are represented as clickable tabs.

 Message Pane Adds a Message Pane for displaying error messages.

 Record Pane Adds a Record Pane to edit a list of complex objects, one record at a time.

 Grid Pane Adds a Grid Pane to work with list of complex objects.

 Embedded Form Allows you to embed another form within the parent form.

 Text Adds a Text control for typing a single line of text.

 Text Area Adds a Textarea control for typing multiple lines of text.

 CheckBox Adds a Checkbox control for making a binary (yes or no) choice.

 Date Adds a Date control for specifying or picking a calendar date.

 Time Adds a Time control for specifying or picking a time.

 Date-Time Adds a Date-Time control for specifying or picking a calendar date and time.

 Duration Add a Duration control for specifying duration using a configurable set of units.

 Hyperlink Adds a Hyperlink control that renders a clickable hyperlink.

 Image Adds an Image control that renders an image.

 Label Adds a Label control that renders a non-editable label.

 Optionlist Adds an Optionlist control for picking from a list of options.

 Pass-through Adds a Pass-through control that renders HTML markup.

Radiogroup Adds a Radiogroup control for picking one of a set of mutually exclusive options.

 Button Adds a Button control to the form.

 Cancel Button Adds a Cancel Button for discarding the changes and closing the form.

 Submit Button Adds a Submit Button for submitting the changes and closing the form.

Palette Item Description
 TIBCO Business Studio Forms

302 | The Palette for the Form Designer
The Palette View

To expand the palette, hover the button over Palette to the right of the Form
Designer. To add a pane or a control on the form, click the appropriate button.
After adding the controls, the palette collapses to its original state automatically.

Another way to keep the palette from taking up extra space in the Form Designer
is to use the Palette view, which opens the palette as an ordinary Eclipse view.
When doing this, the Palette view appears by default as a tab along with the
Properties view and Problems tabs, but it can be dragged to other locations. The
Palette view is then shared between all open graphical editor instances, hiding
local fly-out palettes in any open graphical editors.

Open the Palette view by clicking Window > Show View > Palette. If you close
the Palette view (by clicking its close box), the fly-out palette returns for the
graphical editor instances where it was previously displayed.

Figure 137 Palette not Displayed

The arrow now points rightward. When expanded by this method, the palette
remains visible (as the Palette view) until the arrow is clicked again.

Figure 138 Palette Displayed

 Close Button Adds a Close Button for applying the changes and closing the form.

Palette Item Description
TIBCO Business Studio Forms

| 303
Panes

Panes serve as containers for controls or for other panes, and provide a means of
controlling the visual layout of objects on a form. Like controls, panes have
attributes such as a label, background color, and visibility. Use the child properties
of a pane to arrange and display the controls in the pane.

Figure 139 Vertical, Horizontal, Tabbed, and Message Panes

Nesting Panes

Panes can be nested inside other panes for greater flexibility in the positioning of
controls. For instance, you can place two vertical panes within a single horizontal
pane. This results in a two-column layout of controls for the portion of the form
defined by the horizontal (parent) pane.

All types of panes, except for tabbed panes, can be nested to create tabs. Panes can
also be rearranged by dragging and dropping within the form Outline view.

It is strongly encouraged to avoid nesting panes to an extreme number of levels,
since this complicates the form model and can affect performance.
 TIBCO Business Studio Forms

304 | Panes
Nested panes can be used to arrange controls on the form. For instance, you can
create a two-column layout by adding a horizontal pane to the canvas, and then
nesting two vertical panes within it. The same approach can be used to create
additional columns: just place additional vertical panes inside the original
horizontal pane.

Types of Panes
There are several types of panes: vertical, horizontal, tabbed, message, grid, and
record panes. Each pane type is represented by an icon in the palette.

It can be difficult to distinguish between a vertical pane and a horizontal pane
before you place any controls or child panes in them. For this reason, these pane
types are distinguished in the Design tab by small chevron icons pointing down
for vertical panes and to the right for horizontal panes. (The chevrons do not
appear at runtime or in the preview tabs.)

Figure 140 Design View

Vertical Pane

A vertical pane is a pane in which controls are arranged vertically, with one above
the other. Vertical panes are auto-sized to hold controls, child panes, or both.

There are two restrictions on the nesting of panes:

• No other pane can be nested within a message pane

• A tabbed pane cannot be nested in another tabbed pane

Note that special considerations apply for resizing tabbed panes when additional
sub-panes are added. For more information, see Configuring Panes on page 162.
TIBCO Business Studio Forms

| 305
Horizontal Pane

A horizontal pane is a pane in which controls or child panes are arranged
horizontally, with one next to the other. Horizontal panes are auto-sized to hold
the controls or child panes within them.

Tabbed Pane

Tabbed panes provide a means of stacking a set of related panes such that one
pane at a time is visible. Each pane has a corresponding tab, which are arranged
in sequence along one of the tabbed pane’s vertical or horizontal edges.

The direct children of a tabbed pane must be panes, not controls. The canvas
prevents you from inadvertently placing controls directly inside a tabbed pane.
Clicking on or otherwise selecting a tab activates its associated pane (make it
visible). This “select-tab-to-activate-pane” behavior is common to both design
time and runtime. At design time, however, a tabbed pane offers additional
capabilities to aid in the design process:

• Add a new child pane A special button positioned at the end of the tab
collection. Click this button to add a new child pane to the tabbed pane.

• Expand/collapse the tabbed pane A special toggle button positioned after the
new pane button, that toggles the state of the tabbed pane between a collapsed
state and an expanded state. The collapsed state has one pane visible whereas
the expanded state has all child panes visible side-by-side. In the expanded
state, the tabbed pane behaves similar to a horizontal or vertical pane. You can
add, move, and delete controls on the expanded pane. The expanded state is
particularly useful when you want to rearrange or delete child panes or move
controls between panes.

Message Pane

A message pane is used to display validation error messages. Message panes
cannot contain panes or controls. A message pane displays the message typed in
the Message field of a control’s Define Validation dialog if the validation script in
the Script field returns a value of false.

The following example shows a typical validation script and message for a Text
control.

Keyboard Access Change between tabs without a mouse by using the left and
right arrows.

While adding controls to tabbed panes, keep the pane expanded.
 TIBCO Business Studio Forms

306 | Panes
Figure 141 Script and Message Example for a Message Pane

The appearance of a message pane, the label font and layout, can be configured
through the Properties view for the pane.

Record Pane

A record pane is used to edit a list of complex objects, one record at a time. It
supports the ability to view and edit the contents of one element of an array of
complex objects. A set of navigation controls is provided to support moving
between the records in the list. The record pane uses the same layout as the
vertical pane.

The record pane displays the contents of a list of objects. The contents of the list in
a record pane is linked with the list in one of the following ways:

• The pane value is bound to a multi-valued complex parameter.

• The pane value is bound to a multi-valued child of a complex object.

• The value of the pane is updated with a list of complex objects via an API
function call.

• The value of the pane is updated with a list of complex objects via a
computation action.

For either of the latter two approaches, the Pane Data Type property needs to be
set in the form model to the type of object that is set on the pane with a list.
TIBCO Business Studio Forms

| 307
Figure 142 General Properties Tab of Record Pane

The Properties tab of a record pane’s Properties view displays a set of properties.
You can refer to Properties View for Panes section for the complete listing of the
Properties tab.

Figure 143 Properties Tab of Record Pane
 TIBCO Business Studio Forms

308 | Panes
Navigation Controls

Figure 144 Record Pane with Navigation Controls

The controls on the navigation bar perform the following operations:

• - Go to the first record.

• - Go to the previous record. There is no change if you are at the first
record.

• - Go to the next record. There is no change if you are at last record.

• - Go to the last record.

The label displays: Record [index] of ##. The index indicates the current
record and ## indicates the length of the list. You can directly edit the index
value. If a number less than 1 or a number greater than the length of the list is
specified, the index is reset to the value it was set earlier.

Grid Pane

Grid panes are generated in a default form for complex data when the data type is
defined as allowing multiple instances, for example, zero-to-many (*) or
one-to-many (1..*). When a grid pane is rendered, attributes of complex data types
correspond to columns, and each of the multiple instances corresponds to a row.

By default, the data displayed in a grid pane is not sorted by columns. Clicking on
the column header sorts the rows in ascending order based on the values in that
column and clicking again on the column sorts the rows in descending order.
Clicking once more on the column shows the values in the original unsorted
order.
TIBCO Business Studio Forms

| 309
Several properties appear in the Properties tab of a grid pane’s Properties view
that are particular to this type of pane. Refer to Properties View for Panes section
for the complete listing of the Properties tab.

Figure 145 Properties Tab of Grid Pane

Setting Pane Properties with Bindings and Rules
To associate pane properties such as Label, Visibility, and Enabled with the values
of controls or parameters, you can use the following:

• Bindings, page 78

• Rules, page 84
 TIBCO Business Studio Forms

310 | Controls
Controls

Controls are the objects on a form that take your input, such as text fields, check
boxes, and radio buttons. Controls must be placed within a pane. Controls can be
rearranged within the form by dragging-and-dropping them.

Controls can be copied and pasted within a form or between forms. It is also
possible to re-arrange the position of controls by dragging the controls within the
form Outline view. Controls always include their associated labels, although these
can be hidden.

Text

The Text control allows users to type text. You can make this control read-only.

Textarea

The Textarea control allows users to type multiple lines of text. The length, in
number of characters, and the number of lines are configurable. The default
values are 25 characters and 10 lines.

You can make this control read-only.

Checkbox

Checkbox controls represent Boolean values. In effect, they are on/off switches
that may be used as a toggle. The switch is on (that is, the boolean value is true)
when the check box is selected.

Date

The Date control allows users to specify date, either in a string in the correct
format, or by clicking a calendar widget. The calendar opens when the user clicks
the icon next to the Date control’s text field:

You can make this control read-only.
TIBCO Business Studio Forms

| 311
Time

The Time control has up and down arrows for incrementing the hour or minute
value, or for toggling between AM and PM. The value that is changed by clicking
the arrow depends on whether the cursor is in the hour field, the minute field, or
the AM/PM field. You can also specify a time by keying in a string in the correct
format.

You can make this control read-only.

Date-Time

The Date-Time control allows users to input a date and time. The date portion of
the control has a calendar widget for selecting a date with the mouse. The time
portion has up and down arrows for incrementing the hour or minute value, or
for toggling between AM and PM. The value that is changed by clicking the arrow
depends on whether the cursor is in the hour field, the minute field, or the
AM/PM field. You can also specify a date and time by keying in a string in the
correct format.

You can make this control read-only.

Duration

The Duration control allows the users to specify a duration using a configurable
set of units. The Properties tab of the Properties view for the Duration control
allows you to select which units are displayed for parameters of type Duration.
The supported units are:

• Years

• Months

• Days

• Hours

• Minutes

• Seconds

• Milliseconds

Any combination of these units can be enabled.

You can make this control read-only.

To avoid any loss of information throughout a process, it is best to edit Duration
values using the same set of units in all forms that modifies the underlying
Duration parameter. This holds as well for scripts that create or modify Duration
objects.
 TIBCO Business Studio Forms

312 | Controls
Hyperlink

The Hyperlink control allows the Form Designer to place a clickable hyperlink on
the form.

Image

The Image control allows the Form Designer to place an image on the form,
referenced by a URL.

Label

The Label control allows you to display static text that the user cannot edit. Note
that the label control still has its own label field that is used to identify the value
being rendered by the label control.

Optionlist

The Optionlist control allows the Form Designer to create a drop-down list.

Pass-through

The Pass-through control is a widget that allows users to specify a block of
arbitrary HTML into a form. Specify the HTML fragment in the large editing box
on the Properties property sheet. The markup is inserted directly into the browser
DOM at runtime.

The binding dialog allows you to set the markup via a binding or computation
action, just as with other form values. (Bindings allow you to tie the value of an
item, such as a control, to the value of something else in the form, without
coding.) You do not need to configure bindings or computation actions, however,
in order for the Pass-through control to work.

Radiogroup

The Radiogroup control allows users to choose among the listed options. Only
one option (one radio button) can be selected at one time.

Button

There are various kinds of buttons on the palette: Button, Cancel Button, Submit
Button, and Close Button.
TIBCO Business Studio Forms

| 313
When one of the Cancel, Submit, or Close buttons is added to the canvas, an
associated Rule is also added to the Form to handle the select event on that
button. A generic Button that is added must be configured to invoke an action
when clicked.

The Properties views are identical for each of them, except that the default value
that is selected in the Button Type drop-down list on the Properties tab is
primary for the Submit Button, and it is peripheral for the other button types.
This means that a Submit Button that is placed on a form from the palette, by
default, is invoked on a mouse click or when you press the Enter key. (If the focus
is within a textarea control or similar control, the Enter key is interpreted by the
local component. It may not invoke the Submit button.) Buttons of the other types
are invoked only when they are clicked. Primary buttons are distinguished with a
dark single-pixel border. A form may contain at most one Primary button.

In addition to primary or peripheral, the value of the Button Type drop-down list
can be set to associative.

Figure 146 Button Type

An associative button is one that is associated with another control. For example,
an associative button called browse might be located next to a file upload control.

Using "Edit as List" with a Control
The List control is not an independent control in itself, but is a special control
property that can be enabled for a Text, Text Area, Date, Time, Date-Time, or
Duration control to represent multiple instances of primitive data. It allows you to
add and delete items, or move them up and down. The list functionality is
enabled with the check box Edit as List on the Properties tab of the Properties
view for controls that support list editing.

A primitive attribute in the business object model that has a multiplicity of * (zero
or more instances are allowed) corresponds to an array, and is represented on the
default generated form with the Edit as List property enabled.

Likewise, a control with the Edit as List property enabled is rendered for a
primitive process Data Field with the Array check box selected.
 TIBCO Business Studio Forms

314 | Controls
Using Control or Component Labels
You can give a label to each control or component. Sensible labels help users
understand the control or the component easily. Labels are shown together with
the names of the controls. Users in the Business Analysis mode cannot see the
physical name, which is used only by the users in scripts and is visible in property
editors.

Consistent Use of Labels

The same labels must be used through the Forms Designer UI for consistency,
including in the Outline view, pickers, wizards, and property views.

Labels for Rules and Actions

Rules and Actions show the label description even if they are long. For example,
Guardian required for underage drivers (guardian_required)

Get employee details (svc_empdetails)

Using the Option Include Type Name in Labels

When using this option, search expression should start with an asterisk (*) if the
text you're trying to match is not at the beginning of the label. This is applicable to
the various picker UIs such as the Binding picker, Event picker, and so on.

For example, when you are binding the value of a control to synchronize with a
parameter that has a name CustPhone and a label Customer Phone, and if you
want to search that parameter with a keyword Phone, type the keyword
expression as *Phone. This shows all the items that have the text Phone in their
labels.

Similarly, if you are a user with the Solution Design capability and you want to
search the parameter by name, you need to type the keyword expression as
*CustPhone.
TIBCO Business Studio Forms

| 315
Properties View Tabs

Forms, panes, and controls can be configured by specifying or modifying values
in Properties views. Each form, as well as each of its panes and controls, has a
Properties view with a set of tabs, and each tab provides access to a group of
properties.

The tabs on a Properties view provide easy access to the many properties you can
set for the objects on a form. Properties tabs are provided for: Forms, Data,
Parameter, Shared Actions, Rules, Pane, and Controls.

See Table 29 for details.

Table 29 Properties View Tabs

Properties View Tabs Description

Forms

General Tab Specify a CSS class to be used for styling at the form level.

Mappings Tab Shows a global view of all the bindings and computation actions in the
form.

Font Tab Settings for font properties at the form level, which may be inherited by
objects on the form.

Child Layout Tab Settings for layout properties of top-level panes, which inherit from the
form.

Child Labels Tab Setting for label properties of top-level panes, which inherit from the
form.

Rules Tab Shows the rules to be triggered by a form event.

Resources Tab Shows resources associated with the form, such as JavaScript files and
images.

Preview Data Tab Setting for a preview data file, either none (no data appear initially for
the controls), default, or custom (to assign a custom preview data file to
the form).

Panes

General Tab General properties of the pane.
 TIBCO Business Studio Forms

316 | Properties View Tabs
Properties Tab Visual properties of the pane, inherited from the containing pane or
form by default which, in turn, overrides the system defaults.

Mappings Tab Shows a global view of all the bindings and computation actions related
to the pane.

Layout Tab Layout properties for the pane, inherited from the parent pane by
default.

Font Tab Font settings, used if the Form Designer does not want the pane to
inherit these properties from the containing parent form or pane.

Child Layout Settings for layout properties of those objects that inherit from this pane.

Child Labels Setting for label properties of those objects that inherit from this pane.

Validations Tab For writing scripts that run when the form is submitted or updated, and
to check whether you have provided valid input for the pane.

This tab is not visible when in Business Analysis mode.

Rules Tab The Rules tab lists the Rules triggered by each of the events supported
by the pane, and provides a mechanism to create new Rules for that the
pane.

Mobile Tab Used for mobile specific configurations.

Controls

General Tab General properties of a control.

Properties Tab Properties that are specific to the type of the control being configured.
Fields on this tab vary between control types. Some control types do not
have a properties tab.

Mappings Tab Shows a global view of all the bindings and computation actions related
to a control.

Layout Tab Layout properties for the control, inherited from the parent pane by
default.

Font Tab Font properties for the control, inherited from the parent pane by
default.

Table 29 Properties View Tabs

Properties View Tabs Description
TIBCO Business Studio Forms

| 317
Properties View for Forms
The Properties view for a form contains eight tabs: General, Mappings, Font,
Child Layout, Child Labels, Rules, Resources, and Preview Data. The form
Properties view can be found by selecting the root-most element in the Outline
view or clicking outside the panes of the form.

General Tab

The setting in this tab is used to specify one or more CSS classes for styling the
form.

Table 30 Fields on the Forms General Tab

Mappings Tab

This tab is used to view, edit, and create mappings for the form. You can refer to
Working with the Mappings Tab section for further details.

Validations Tab For writing scripts that run when the form is submitted or updated, and
to check whether you have provided valid input for the control.

This tab is not visible when in Business Analysis mode.

Rules Tab The Rules tab lists the Rules triggered by each of the events supported
by the Control, and provides a mechanism to create new Rules for that
control.

Mobile Tab The Mobile tab is used for mobile specific configurations.

Table 29 Properties View Tabs

Properties View Tabs Description

Property Description

Style Class Name
or Names

Field for indicating the name of a CSS class within a CSS file that has been
associated with the form. The CSS class is used for styling at the form level.
 TIBCO Business Studio Forms

318 | Properties View Tabs
Font Tab

Table 31 Fields on the Forms Font Tab

Child Layout Tab

The setting in this tab apply to the labels of the root panes within the Form.

Table 32 Fields on the Forms Child Layout Tab

Property Description

Inherit from
System Defaults

Check box determines whether or not the values on this tab are inherited from
the system defaults.

Font Name Determines the default font used to render control text and hints throughout
the form.

Font Size Determines the default height (in points) of the font used to render control
text and hints throughout the form.

Font Color Determines the default color of the font used to render control text and hints
throughout the form.

Font Weight Determines the default style of the font used to render control text and hints
throughout the form.

Text Align Determines the justification of control text and hints throughout the form.
Supported values are left and right.

Property Description

Inherit from
System Defaults

Check box determines whether or not the values on this tab are inherited from
the system defaults.

Width Determines the default width in pixels inherited by top-level panes. The
width is that of the pane's child content area, excluding any space reserved for
the pane label and hint.

Height Determines the default height in pixels inherited by top-level panes. The
height is that of the pane's child content area, excluding any space reserved
for the pane label and hint.
TIBCO Business Studio Forms

| 319
Child Labels Tab

Table 33 Fields in the Forms Child Labels Tab

Padding Determines the default padding inherited by top-level panes. Padding is the
spacing between adjacent sibling form elements. The value is a
space-separated list of between one and four non-negative integers,
representing the top, right, bottom and left padding respectively, in pixels.
Missing values default to the last value in the list.

Margin Determines the default margin inherited by top-level panes. Margin is the free
space around the edges of a pane. The value is a space-separated list of
between one and four non-negative integers, representing the top, right,
bottom and left margins respectively, in pixels. Missing values default to the
last value in the list.

BG Color Determines the default background color inherited by top-level panes.

Border Determines the default border style inherited by top-level panes. Supported
values are line and none. A line-style pane border is drawn as a horizontal
line beneath the pane label and only appears when the label position is top.

Overflow Determines the default overflow strategy inherited by top-level panes.
Overflow strategy determines how the pane responds to an explicit width
and/or height setting that is less than the minimum required to display all of
its content. Supported values are expand, auto, and hidden. The default
strategy, expand, causes the pane to ignore a width or height setting if it is less
than the minimum required. The auto strategy accepts the explicit size and
displays scrollbars to enabled the hidden content to be revealed. The hidden
strategy simply crops any content which lies outside the explicit bounds.

Property Description

Property Description

Inherit from
System Defaults

Check box determines whether or not the values on this tab are inherited from
the system defaults.

Label Width Determines the default label width in pixels inherited by top-level panes.

Label Position Determines the default label position inherited by top-level panes. Label
position is with respect to the associated pane. Supported values are left and
top.

Label Visible Determines the default label visibility inherited by top-level panes.
 TIBCO Business Studio Forms

320 | Properties View Tabs
Rules Tab

Resources Tab

Table 35 Fields on the Forms Resources Tab

Font Name Determines the default label font inherited by top-level panes.

Font Size Determines the default label font height (in points) inherited by top-level
panes.

Font Color Determines the default label text color inherited by top-level panes.

Font Weight Determines the default label font style inherited by top-level panes.
Supported styles are normal and bold.

Text Align Determines the default label justification inherited by top-level panes.
Supported values are left and right.

Table 34 Fields in the Forms Rules Tab

Property Description

Event Type Open Shows the rules to be triggered when the form is first opened.

Event Type Submit Shows the rules to be triggered by the submit event of the form.

Event Type Close Shows the rules to be triggered when the form is closed. This happens after
the submit event, if there is one.

Event Type
Localize

Shows the rules to be triggered when the form locale is changed.

Property Description

Property Description

Path Displays a path to the resource.

Add (+) button Adds a resource.

Delete (x) button Removes the reference to the resource.
TIBCO Business Studio Forms

| 321
Preview Data Tab

Table 36 Fields on the Preview Data Tab

Properties View for Panes
The Properties view for a pane, whether it be a horizontal, vertical, tabbed, or
message pane, contains nine tabs: General, Properties, Mappings, Layout, Font,
Child Layout, Child Labels, Rules, and Mobile Properties. The Layout and Font
tabs for panes are identical to those for controls.

General Tab

The Properties view for panes contain a General tab. This tab contains general
properties for the pane currently selected in the canvas, and contains the
following fields as shown in Table 37.

Table 37 General Tab for Panes

Property Description

Preview Data File Select a file to furnish initial data values for the controls on the form. Choices
are None, Default, or Custom. If None is selected, no values appear initially in
the form controls. Default provides a default value for each type of control.
To use Custom, first create a copy of the default .data.json file. Edit its
values, and then select the file in the Custom field.

It is also possible to create input data from the data submitted in preview. To
do this, open the form in preview, fill out the values in the form, and click
Submit. The submitted data is logged in the preview application. Copy the
JSON object from the log, and paste it as the content of the custom
.data.json file.

When panes and controls are marked as disabled or invisible, the data normally
displayed by these elements are still delivered to the browser. Therefore, making
panes and controls disabled or invisible should not be used as a mechanism to
protect sensitive data.

Property Description

Name The name of the pane, used in JavaScript to refer to this object. The Rename
button allows you to change the name using the Enter the Name dialog. The
Name field only appears when the Solutions Design mode is active.
 TIBCO Business Studio Forms

322 | Properties View Tabs
Properties Tab

The Properties tab contains special fields that pertain specifically to the type of
pane being configured. Thus the Properties tabs on the Properties view for panes
differ in their fields.

The horizontal pane, vertical pane, tabbed pane, and message pane have a
common set of properties on the Properties tab. The grid pane and record pane
have some additional properties.

The following sections describes the Properties tab for these panes separately.

Label The label for the pane that appears on the form (if the Label Visibility >
Visible check box is selected). This property is bindable.

See Setting Bindings on page 133 and Setting Rules on page 139 for more
details.

Pane Type A drop-down list showing the type of the pane. Allows you to select another
type. If the object is a Vertical Pane, for instance, this setting can be used to
change it to a Horizontal Pane.

Style Class Names Specify a CSS class to be used for styling at the pane level.

Pane Data Type Specifies the type of object that is set on the pane.

Label Visibility Determines whether the pane’s label is visible. This value can either be
inherited from the parent object of the pane, or set explicitly on the pane.

Visible Determines whether the pane (together with its child elements) is visible. This
value can be changed at runtime via scripting. This property is bindable.

See Setting Bindings on page 133 and Setting Rules on page 139 for more
details.

Enabled Determines whether the controls within the pane can be modified or not. This
value can be changed at runtime via scripting. This property is bindable.

See Setting Bindings on page 133 and Setting Rules on page 139 for more
details.

Property Description
TIBCO Business Studio Forms

| 323
Properties Tab for the Horizontal Pane, Vertical Pane, and Tabbed Pane

Properties Tab for the Message Pane

Properties Tab for the Record Pane

Table 38 Properties for Horizontal Pane, Vertical Pane, and Tabbed Pane

Property Description

Static
Rendering

Check box to enable static rendering for a pane. The information displayed within
a static pane is displayed as read-only and you cannot modify the data. This
property can be set only at design-time. It is not possible to convert a pane to
static at runtime.

Text Only Check box to render a static pane as plain text, without any control widgets.This
property is enabled only if the Static Rendering property is selected.

Defer
Rendering

Check box to defer the rendering of a pane until it is made visible. If the pane is
visible at the time of loading, then it is rendered once the form is completely
initialized and the Form Open event is fired. This property can be set only at
design-time and it cannot be updated using bindings or using the API.

Defer
Initialization

Check box to defer the initialization of the children of the pane until the pane is
rendered. This means that the pane object itself is always instantiated and
available, but any nested child is not initialized until the pane is about to be
rendered. This property is enabled only if the Defer Rendering property is
selected.

Table 39 Properties for Message Pane

Property Description

Suppress
Validation
Messages

Check box to suppress the display of messages from the modeled pane and
control validations. The default value is false, in which case the message pane
displays all messages, both modeled validations and those programmatically
added using the API. If true, the message pane displays only programmatically
added messages.

Table 40 Record Pane Properties Tab

Property Description

Support Add
Operation
(and Label)

Check box to render a button in the record pane that can add a new record to the
end of the list being managed by the record pane. The default label is New, but
can be overridden by providing a new value in the Label input box.
 TIBCO Business Studio Forms

324 | Properties View Tabs
Properties Tab for the Grid Pane

Support Delete
Operation
(and Label)

Check box to render a button in the record pane that can delete the currently
viewed record. The default label is Delete, but can be overridden by providing a
new value in the Label input box.

Show
Navigator

Check box to display the navigation bar with the record pane, allowing
navigation across the set of records in the record pane.

Selection Click to specify the binding endpoint for a record pane. This can also be used
when record pane is used in conjunction with a grid pane to offer a master/detail
view of a list of objects. In such a scenario, the selection of the grid pane is bound
to the selection of the record pane, and the value of the grid pane is bound to the
value of the record pane. Whenever you select a different row in the grid pane, the
corresponding record is shown in detail in the record pane.

Defer
Rendering

Check box to defer the rendering of a pane until it is made visible. If the pane is
visible at the time of loading, then it is rendered once the form is completely
initialized and the Form Open event is fired. This property can be set only at
design-time and it cannot be updated using bindings or using the API.

Defer
Initialization

Check box to defer the initialization of the children of the pane until the pane
needs to be rendered. This means that the pane object itself is always instantiated
and available, but any nested child is not initialized until the pane is about to be
rendered. This property is enabled only if the Defer Rendering property is
selected.

Table 40 Record Pane Properties Tab

Property Description

Table 41 Grid Pane Properties Tab

Property Description

Visible Rows Specify the maximum number of visible rows.

Support Add
Operation

Check box to render a button in the record pane that can add a new record to the
end of the list being managed by the record pane. The default label is New, but
can be overridden by providing a new value in the Label input box.

Support Delete
Operation

Check box to render a button in the record pane that can delete the currently
viewed record. The default label is Delete, but can be overridden by providing a
new value in the Label input box.
TIBCO Business Studio Forms

| 325
Movable
Columns

Check box to enable movable columns. This feature is not supported in GWT
runtime.

Sortable Check box to enable sorting of the data in the grid pane.

Editable Check box to enable editing of the data in the grid pane.

Always render
controls

Check box to render a grid pane such that the child controls are directly rendered
in edit mode. It eliminates the additional click action required to activate edit
mode of grid pane. This property is related to Always Render property for
controls. Refer to Properties Tab, page 332 for further details.

Static
Rendering

Check box to enable static rendering for a pane. The information is displayed in a
read-only mode within a static pane, and you cannot modify the data. This
property can be set only at design-time. It is not possible to convert a pane to
static at runtime.

Text Only Check box to render a static pane as plain text, without any control widgets.This
property is enabled only if the Static Rendering property is selected.

Defer
Rendering

Check box to defer the rendering of a pane until it is made visible. If the pane is
visible at the time of loading, then it is rendered once the form is completely
initialized and the Form Open event is fired. This property can be set only at
design-time and it cannot be updated using bindings or using the API.

Defer
Initialization

Check box to defer the initialization of the children of the pane until the pane is
rendered. This means that the pane object itself is always instantiated and
available, but any nested child is not initialized until the pane is about to be
rendered. This property is enabled only if the Defer Rendering property is
selected.

Selection
Model

Radio control used to specify the selection model. The supported values are
single and multiple.

Selection Selection of a binding endpoint for a grid pane or master-detail pane. Click to
open the Edit Binding dialog, which allows you to choose an item and specify the
update behavior invoked for that item when an instance is selected in the grid
pane or master pane.

Table 41 Grid Pane Properties Tab

Property Description
 TIBCO Business Studio Forms

326 | Properties View Tabs
Mappings Tab

The Properties view for panes contain a Mappings tab. This tab is used to view,
edit, and create mappings for the selected pane. You can refer to Working with the
Mappings Tab section for further details.

Layout Tab

Same as for controls. See Layout Tab on page 341.

Font Tab

Same as for controls. See Font Tab on page 342.

Child Layout

Table 42 Fields in the Child Layout Tab

Row Label Used to specify the row label template resource and type. The available options
are:

• External Reference: to pick the row label from an external resource. You need
to define the row labels in the <row_labels>.properties file. The resource
key for the row label must follow the naming convention
<component-name>[.property].<featureName>, and end with .rowLabel
or _rowLabel.

For example, pane.grid.property.rowLabel=Attr1 {0}.

Resources that do not follow these conventions are not displayed in the
Resource Picker.

• Custom: to specify a user-defined row label

By default, the value of the first column of the grid pane is used as the row label.

Note: This property is available only at accessible runtime.

Table 41 Grid Pane Properties Tab

Property Description

Property Description

Inherit from
System Defaults

Check box determines whether or not the values on this tab are inherited from
the system defaults.
TIBCO Business Studio Forms

| 327
Child Labels

The settings in this property tab pertain to the child controls and panes of this
pane. They have no effect on the label of the pane itself.

Table 43 Fields in the Child Labels Tab

Width Determines the width of child objects of this pane.

Height Determines the height of child objects of this pane.

Padding Sets the white-space gap between the outer edge of the child objects of this
pane and their inner content. Specified as one to four implied pixel values
applied in this order: top, right, bottom, and left. For example, 8 pixels of
padding could be specified as 8, or as four space-separated values: 8 8 8 8.

Margin Sets the gap between the border of the pane’s child objects and their parent or
sibling panes. Specified as one to four implied pixel values applied in this
order: top, right, bottom, and left. For example, 4 pixels for margins could be
specified as 4, or as four space-separated values: 4 4 4 4.

BG Color Determines the background color of child objects of this pane.

Border Sets a border around child objects of the pane. Possible values are none and
line.

Overflow Determines how child objects of the pane behave when their content exceeds
their dimensions. Possible values are expand, auto, and hidden.

Property Description

Property Description

Inherit From
Parent

Specifies whether the layout properties of the pane are inherited. If the Inherit
From Parent check box is selected, all fields are disabled for editing. Clearing
the Inherit From Parent field allows you to edit all fields on this tab.

Label Width Determines the width of the label in pixels.

Label Position Determines the label position inherited by child controls and panes. Label
position is with respect to the associated control or pane. Supported values are
left and top.

Label Visible Determines the label visibility inherited by child controls and panes.

Font Name Determines the label font face name inherited by child controls and panes.
 TIBCO Business Studio Forms

328 | Properties View Tabs
Validations Tab

The Validations tab lists the validation scripts defined for the pane, and provides
a mechanism to create new validation for that pane.

Font Size Determines the label font height (in points) inherited by child controls and
panes.

Font Color Determines the label text color inherited by child controls and panes.

Font Weight Determines the label font style inherited by child controls and panes.
Supported styles are normal and bold.

Text Align Determines the label justification inherited by child controls and panes.
Supported values are left and right.

Property Description

Table 44 Fields in the Validation Tab

Fields Description

Name The name of the validation.

Execute When When the validation is executed. The options are:

• On Form Submit

• On Value Change

Script The validation script.

Message Type The type of validation message. The options are:

• External Reference

• Custom

Message The validation message that is displayed in the message pane if your entry is
invalid. This is either a static message defined in the validation, or a reference to a
resource key, where the key begins with "validation_".
TIBCO Business Studio Forms

| 329
Rules Tab

Similar to the Properties tab, not all panes have a Rules tab on their Properties
view, and for those that do, the Rules tabs differ in their supported events.

The following panes do have a Rules tab: Vertical Pane, Horizontal Pane, Record
Pane and Grid Pane. The following panes do not have a Rules tab: Tabbed Pane
and Message Pane.

Table 45 Fields in the Rules Tab

List Check box used to specify whether the validation is to be executed on the
complete list or for each value in the list for a multi-valued control. The
functionality of the two states is as follows:

true: The validation is invoked with the context.value set to the list value of a
multi-valued control.

false: The validation is invoked once for each value in the list, with
context.value set to a specific value each time.

Enabled Check box used to specify whether the validation is to be executed at runtime.
The functionality of the two states is as follows:

true: The validation is invoked at runtime.

false: The validation is not invoked at runtime.

This button opens the Define Validation dialog. The dialog contains two parts, a
Script area for writing the validation script, and a Message area for typing the
message that is displayed in a message pane if your entry is invalid.

The Define Validation dialog allows you to specify when the validation script
runs.

This button deletes the selected validation.

Table 44 Fields in the Validation Tab

Fields Description

Property Description

Event Type
Double-click

Shows the rules to be triggered when a record in the pane is double-clicked.

Event Type Select Shows the rules to be triggered when a record in the pane is selected.
 TIBCO Business Studio Forms

330 | Properties View Tabs
For each pane, only the event types supported by that pane is listed in the tab.

Clicking the icon opens the New Rule wizard, with the corresponding event
already added to the new Rule. To add a new rule, see Setting Rules on page 139.

Mobile Tab

Table 46 Fields in the Mobile Tab

Properties View for Controls

General Tab

The Properties view for controls contains a General tab. This tab contains general
properties for the object currently selected in the Canvas.

Event Type Update Shows the rules to be triggered when the value of the pane is updated.

Property Description

Property Description

Short Label Used to specify a short label which is displayed instead of the ordinary label for
the mobile rendering of the form.

Toolbar Used to mark one pane as the toolbar pane in a form which is targeted for mobile
devices.

When panes and controls are marked as disabled or invisible, the data normally
displayed by these elements are still delivered to the browser. Therefore, making
panes and controls disabled or invisible should not be used as a mechanism to
protect sensitive data.

Table 47 General Tab Fields

Property Description

Name Name of the control. Used in scripts to refer to the control.

The Rename button allows you to change the name using the Enter the Name
dialog. The Name field only appears when the Solutions Design mode is active.
TIBCO Business Studio Forms

| 331
Label Text that appears next to the control. The value of the label can be bound to an
input parameter so that the control can be dynamically labeled at runtime. Labels
can be localized.

This property is bindable. See Setting Bindings on page 133 and Setting Rules on
page 139 for more details.

Control Type A drop-down list showing the type of the control. Allows you to select another
type. If the object is a Date control, for instance, this field can be used to change it
to a Time or DateTime control.

Style Class
Names

Specify a CSS class to be used for styling at the control level.

Hint Text that provides a hint to help you complete the form correctly. For controls, the
hint appears just beneath the control. Text for a hint can be mapped to the value of
a parameter. Hints can be localized.

This property is bindable. See Setting Bindings on page 133 and Setting Rules on
page 139 for more details.

Value At runtime, it is the value with which a control is initialized. Value is not
supported for Hyperlink and Image controls.

This property is bindable. See Setting Bindings on page 133 and Setting Rules on
page 139 for more details.

Label Visibility Whether the label for the control can be seen on the form. Values can be Inherit,
Visible, or not visible (neither check box selected).

Visible Determines whether the control is visible to you. This field can be bound to a
parameter value, or its value can be set at runtime by an Action script, based on
an event.

This property is bindable. See Setting Bindings on page 133 and Setting Rules on
page 139 for more details.

Enabled Determines whether you can update the value of the control.

This property is bindable. See Setting Bindings on page 133 and Setting Rules on
page 139 for more details.

Table 47 General Tab Fields

Property Description
 TIBCO Business Studio Forms

332 | Properties View Tabs
Mappings Tab

The Properties view for controls contain a Mappings tab. This tab is used to view,
edit, and create mappings for the selected control. You can refer to Working with
the Mappings Tab section for further details.

Properties Tab

The Properties tab contains special fields that pertain specifically to the type of
control being configured. Thus, not all controls have a Properties tab on their
Properties view, and for those that do, the Properties tabs differ in their fields.

The following controls do have a Properties tab: Button, Date, Time, Date-Time,
Hyperlink, Image, Optionlist, Passthrough, Radiogroup, Text, and Text Area. The
following controls do not have a Properties tab: Check box and Label.

Required Indicates whether you must provide a value for this control in order for the form
to be successfully validated. At runtime, required fields are preceded by an
asterisk, to indicate that the field is required. If you do not provide a value for a
control that is required, the form cannot be submitted. This property is bindable.
See Setting Bindings on page 133 and Setting Rules on page 139 for more details.

Tab Index Determines the position of the element in the tabbing order for the form. The
tabbing order determines the order in which elements on the form receive focus
when the tab key is used to navigate from one element to another. This attribute is
valid for all controls except Image and Label controls, where focus is irrelevant.
See the note Tabbing Navigation, page 332, for more details.

Table 47 General Tab Fields

Property Description

Tabbing Navigation The Tab Index attribute can be used to determine the order in
which elements receive focus as you navigate from field to field through a form
with the tab key. The tabbing navigation behavior for a form is as follows:

1. Those elements on the form that support the Tab Index attribute, and assign a
positive value to it, are navigated first. Navigation proceeds from the element
with the lowest Tab Index value to the element with the highest value. Values
need not be sequential, nor must they begin with any particular value.
Elements that have identical Tab Index values are navigated in the order in
which they appear on the form.

2. Those elements that do not support the Tab Index attribute, or support it and
assign it a value of “0,” are navigated next. These elements are navigated in
the order in which they appear in the Outline view.
TIBCO Business Studio Forms

| 333
The following controls have an extra property on the Properties tab only if the
control is a child of a grid pane: Date, Time, Date-Time, Optionlist, Radiogroup,
Text, and Text Area.

The property details is as follows:

Table 48 Property for Child Controls of Grid Pane

The details of the Properties tab for each controls that have this tab is described
separately below.

Properties Tab for the Button Control

Property Description

Always
Render in Grid
Pane

Check box to render the grid pane child controls directly in edit mode. This
property is related to Always render controls property for grid pane. If the
Always render controls property is set to true, then all the controls on a grid
pane are directly rendered in edit mode. However, if the Always render controls
property is set to false, then the Always Render property setting on each control
determines whether or not the control is rendered in edit mode. Refer to
Properties Tab for the Grid Pane, page 324 for further details.

This property is only supported in GWT runtime.

Table 49 Button Properties Tab

Property Description

Button Type Radiogroup list that allows the Form Designer to configure the type of button.
Possible values are primary, peripheral, and associative. There are four kinds of
buttons on the palette: Button (generic), Cancel Button, Submit Button, and
Close Button.

The Properties tab is identical for each of them, except that the default value in the
Button Type drop-down list is primary for the Submit button, and peripheral for
the other button types. This means that a Submit button that is placed on a form
from the palette, by default, is invoked on a mouse click or when you press the
Enter key. Buttons of the other types are invoked only when they are clicked or
otherwise selected.
 TIBCO Business Studio Forms

334 | Properties View Tabs
Properties Tab for the Date Control

Properties Tab for the Time Control

Table 50 Date Control Properties Tab

Property Description

Edit as List Check box to enable the Date control to represent multiple date values. It enables
you to add and delete items, or move them up and down.

Maximum
Visible Rows

Specify the maximum number of visible rows.

Start Year Specify the first year that should be displayed in the date picker in mobile forms.
The default value is -20.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

Start Year
Relative

Check box used to specify whether the value of Start Year is interpreted as being
relative to the current year or as an absolute year. The default value is true.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

End Year Specify the last year to be displayed in the date picker in mobile forms. The
default value is 20.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

End Year
Relative

Check box to specify whether the value of End Year is interpreted as being
relative to the current year or as an absolute year. The default value is true.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

Table 51 Time Control Properties Tab

Property Description

Edit as List Check box to enable the Time control to represent multiple time values. It enables
you to add and delete items, or move them up and down.

Maximum
Visible Rows

Specify the maximum number of visible rows.
TIBCO Business Studio Forms

| 335
Properties Tab for the Date-Time Control

Minute
Increment

Specify the increment to be used while displaying the choice of minutes in a time
control. The default value is 15 and the maximum value is 60.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

Table 51 Time Control Properties Tab

Property Description

Table 52 Date Control Properties Tab

Property Description

Edit as List Check box to enable the Date-Time control to represent multiple date-time values.
It enables you to add and delete items, or move them up and down.

Maximum
Visible Rows

Specify the maximum number of visible rows.

Start Year Specify the first year that should be displayed in the date picker in mobile forms.
The default value is -20.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for further details.

Start Year
Relative

Check box used to specify whether the value of Start Year is interpreted as being
relative to the current year or as an absolute year. The default value is true.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

End Year Specify the last year to be displayed in the date picker in mobile forms. The
default value is 20.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

End Year
Relative

Check box to specify whether the value of End Year is interpreted as being
relative to the current year or as an absolute year. The default value is true.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.
 TIBCO Business Studio Forms

336 | Properties View Tabs
Properties Tab for the Hyperlink Control

Properties Tab for the Image Control

Properties Tab for the Optionlist Control

Minute
Increment

Specify the increment to be used while displaying the choice of minutes in the
date-time control. The default value is 15 and the maximum value is 60.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

Table 52 Date Control Properties Tab

Property Description

Table 53 Hyperlink Properties Tab

Property Description

URL The URL for this control.

Link Text The text for the hyperlink that appears on the form. This value can be set via
script actions, computation actions, or bindings.

Table 54 Image Properties Tab

Property Description

URL URL pointing to the image file that is to appear on the form.

The URL can either be an absolute URL, or a special folder relative path to the
form resource. If the path is relative, then the image resource to which it points are
deployed automatically when the form resource is deployed.

This value can be updated via script at runtime or by using a binding. If the
location of the image is set dynamically to a relative path, then those resources are
not be automatically deployed with the form. You can add these images as
references in the form resources tab, so they are deployed when the form resource
is deployed. See Configuring Parameters on page 345 for more details.

Table 55 Optionlist Properties Tab

Property Description

Allow Multiple
Selections

Allow users to choose multiple items from those listed, rather than being
restricted to a single choice.
TIBCO Business Studio Forms

| 337
Choices: Binding

Label Array Use the Add icon to:

• Create a binding for this property

• Update this property using a Computation Action

Value Array Use the Add icon to:

• Create a binding for this property

• Update this property using a Computation Action

Choices:
External
Reference

Click the [...] button to choose an external object with value pairs, such as
enumeration containing label values and name values.

Choices:
Custom Values

Use this table to add (+), delete (x), or reorder the choices in this list.

Table 55 Optionlist Properties Tab

Property Description
 TIBCO Business Studio Forms

338 | Properties View Tabs
Properties Tab for the Pass-through Control

Properties Tab for the Radiogroup Control

Table 56 Pass-through Control Properties Tab

Property Description

Markup Used to specify a block of HTML fragment. This markup is inserted directly into
the browser DOM at runtime.

Click icon to set the markup via a binding or computation action.

Table 57 Radiogroup Control Properties Tab

Property Description

Format Choose the format for this control: auto, columns, horizontal, or vertical

Columns Choose number of columns to display the radio buttons: 1, 2, or more

Choice Layout

Layout type Select one of the following:

• Auto

• Columns

• Horizontal

• Vertical

Columns Select number of columns.

Choices: Bindings

Label Array Use the Add icon to:

• Create a binding for this property

• Update this property using a Computation Action

Value Array Use the Add icon to:

• Create a binding for this property

• Update this property using a Computation Action

Choices: External Reference
TIBCO Business Studio Forms

| 339
Properties Tab for the Text Control

Select object Click the [...] button to choose an object, such as an Enumeration from a
business object model, that contains name-value or label-value pairs.

Choice: Custom Values

Manage the
List

Use this table to add (+), delete (x), or reorder the choices that are part of this list.

Table 57 Radiogroup Control Properties Tab

Property Description

Table 58 Text Properties Tab

Property Description

Edit as List Check box to enable the Text control to represent multiple text values. It enables
you to add and delete items, or move them up and down.

Maximum
Visible Rows

Specify the maximum number of visible rows.

Secret A control that visually masks what is input in order to prevent eavesdropping.
Typically used when you type a password.

Numeric A control with this option selected treats the contents of the text field as a
number with respect to how the decimal point is localized. This allows the
control to work in locales that use a different symbol (such as “,”) for the decimal
point.

Format The Format options are enabled only if the Numeric property is selected. The
supported values are External Reference and Custom. See Using Numeric
Controls for more information.

Maximum
Length

Maximum length of the text field, in numbers of characters.

Display Length The length of the field that can be viewed at one time, in numbers of characters.
 TIBCO Business Studio Forms

340 | Properties View Tabs
Properties Tab for the Text Area Control

The following controls have an extra property on the Properties tab only if the
control is a child of a grid pane: Date, Time, Date-Time, Optionlist, Radiogroup,
Text, and Text Area.

The property details are as follows:

Table 60 Property for Child Controls of Grid Pane

Table 59 Text Area Properties Tab

Property Description

Edit as List Check box to enable the Text Area control to represent multiple text values. It
enables you to add and delete items, or move them up and down.

Maximum
Visible Rows

Specify the maximum number of visible rows.

Rows Determines the number of lines that can be typed in the textarea control.

Columns Determines the number of characters that can be typed in a single line of the
textarea control.

Maximum
Length

Maximum length of the text area, in numbers of characters.

Property Description

Always
Render

Check box to render the grid pane child controls directly in edit mode. This
property is linked to Always render controls property of grid pane. If the Always
render controls property is set to true, then all the controls on a grid pane are
directly rendered in edit mode. However, if the Always render controls property
is set to false, then the Always Render property setting on each control
determines whether or not the control is rendered in edit mode. Refer to
Properties Tab for the Grid Pane, page 324 for further details.

This property is only supported in GWT runtime.
TIBCO Business Studio Forms

| 341
Layout Tab

All Properties views for controls contain a Layout tab, and all Layout tabs contain
the same fields. The following fields appear on the Layout tab for forms and for
all panes and controls.

Table 61 Layout Tab

Property Description

Inherit From
Parent

Specifies whether the layout properties of the control are inherited. If the
Inherit check box is selected, all fields are disabled for editing. Clearing the
Inherit field allows you to edit all fields on this tab.

Width Width of the pane or control. The width is that of the content area. For panes,
this is the area occupied by child panes and controls; for controls, it is the area
occupied by the control body, excluding label and hint areas.

Height Height of the pane or control. The height is that of the content area. For panes,
this is the area occupied by child panes and controls; for controls, it is the area
occupied by the control body, excluding label and hint areas.

BG Color Background color for the object being configured.

Padding Sets the white-space gap between the outer edge of the object and its inner
content. Specified as one to four implied pixel values applied in this order:
top, right, bottom, and left. For example, 8 pixels of padding could be
specified as 8, or as four space-separated values: 8 8 8 8.

Margin Sets the gap between the object’s border and its parent or sibling objects.
Specified as one to four implied pixel values applied in this order: top, right,
bottom, and left. For example, 4 pixels for margins could be specified as 4, or
as four space-separated values: 4 4 4 4.

Border Sets a border around the object. Possible values are none and line.
 TIBCO Business Studio Forms

342 | Properties View Tabs
Font Tab

Overflow Determines how the control or pane behaves when its content exceeds its
dimensions. Possible values are expand, auto, and hidden. These terms are
described here:

• expand The pane expands to show all of its contents. (Manual values for
a pane or control’s width or height that are less than the preferred width
or height are ignored when the overflow mode is expand.)

• auto The pane uses scroll bars to show any content that cannot fit within
the fixed width and height.

• hidden Any content that exceeds the prescribed width and height is not
be shown.

Table 62 Font Tab for Controls

Property Description

Inherit from
Parent

If selected, the font settings are inherited from the parent pane. This check box is
selected by default for all controls and panes. Top level panes inherit their font
settings from the form itself. At the form level, the equivalent default setting is
Inherit from System Defaults. Clearing one of these Inherit check boxes makes
the remaining fields on the Font tab editable.

Font Name A selection of standard browser-supported font names.

Font Size The size of the font. Values can be chosen from the dropdown list or typed in.

Font Color The color of the font, chosen from a standard color picker.

Font Weight The weight of the font. Possible values are normal and bold.

Text Align Alignment of text. Possible values are left and right.

Table 61 Layout Tab

Property Description
TIBCO Business Studio Forms

| 343
Validations Tab

Table 63 Validations Tab for Controls

Property Description

Name The name of the validation.

Execute When When the validation is executed. The options are:

• On Form Submit

• On Value Change

Script The validation script.

Message Type The type of validation message. The options are:

• External Reference

• Custom

Message The error message that is displayed in the message pane if your entry is invalid.

List Check box used to specify whether the validation is to be executed on the
complete list or for each value in the list for a multi-valued control. The
functionality of the two states is as follows:

true : The validation is invoked when the context.value is set to the list value
for a multi-valued control.

false : The validation is executed once for each value in the list, with
context.value set to a specific value each time.

This button opens the Define Validation dialog. The dialog contains two parts, a
Script area for writing the validation script, and a Message area for typing the
message that is displayed in a message pane if your entry is invalid.

The Define Validation dialog allows you to specify when the validation script is
run.

This button deletes the selected validation.
 TIBCO Business Studio Forms

344 | Properties View Tabs
Rules Tab

The Rules tab lists the Rules triggered by each of the events supported by the
Control, and provides a mechanism to create new Rules for that control.

For each Control, only the event types supported by that control is listed in the
tab.

Clicking the icon opens the New Rule wizard, with the corresponding event
already added to the new Rule. To add a new rule, see Setting Rules on page 139.

Mobile Tab

The Mobile tab is used for mobile specific configuration.

Table 64 Fields in the Controls Rules tab

Property Description

Event Type Enter Shows the rules to be triggered when the control gains focus.

Event Type Exit Shows the rules to be triggered when the control looses focus.

Event Type Update Shows the rules to be triggered when the value of the control changes.

Event Type Select Shows the rules to be triggered when the control is selected, such as when a
button is clicked.

Property Description

Short Label Specify a short label which is displayed instead of the Label for the mobile
rendering of the form.
TIBCO Business Studio Forms

| 345
Configuring Parameters

To configure a parameter, you need to define the following:

• Name This field is only seen if the Solution Design capability is enabled. The
Rename button shows a rename dialog.

• Label Business name of the parameter.

• Mode In The value is treated as read-only.

• Mode Out There is no value provided at form load, but the form may provide
a value during submit.

• Mode In/Out The value may be read and written.

• Type One of the following

— Text Supporting single-line and multiple-line strings

— Integer Supporting 32-bit integers

— Decimal Supporting 64-bit double precision floating point numbers

— Boolean

— Date Supporting localized display

— Time Supporting localized display

— DateTime Supporting localized display. Precision to number of seconds.

Length is only used for Text, Integer and Decimal types.

Decimal Places is only used for the Decimal type.

• Bindings Shows bindings and computation actions involving this parameter.
 TIBCO Business Studio Forms

346 | Context Menus
Context Menus

Context menus are available in the Outline view as well as in the Form Designer
canvas.

Outline View Context Menu
You can use a context menu from the Outline view.

For more details, see Use the Context Menu in the Outline View on page 99.

Form Designer Canvas Context Menu
You can also use a context menu from the canvas:

1. Right-click the form icon or any form element in the Outline view.

The pop-up context menu appears.

2. Depending on the element selected different options are available, as
explained in Table 65.

Table 65 Manage Form Elements from the Outline View

Select Definition

Cut
(Ctrl+X)

Available for all elements except for fixed categories (Data, Shared Actions,
Rules)

Copy
(Ctrl+C)

Available for all elements. After you copy an element to the clipboard, you can
paste it within this form or another form.

Paste
(Ctrl+V)

Available when content is available on clipboard

Delete Available for all elements except for fixed nodes (Data, Shared Actions, Rules)
and for the form itself

Rename Available for all elements except for fixed categories (Data, Shared Actions,
Rules), as well as for added actions and rules

Select All
(Ctrl+A)

Selects all root panes. Select All does not select parameters, shared actions, or
rules.

Show Properties
view

Shows the Properties view, if not previously visible.
TIBCO Business Studio Forms

| 347
Keyboard Shortcuts

This section summarizes the keyboard shortcuts for all types of forms, including
the ones rendered in accessible mode.

When a form is rendered, initially the focus is on the first component of the form.

Grid Panes
This section summarizes the keyboard shortcuts you can use for grid panes.

Grid Panes in Display Mode

Grid panes can operate either in display mode or in edit mode. The edit widget
does not pop up in display mode when the focus is on the cell. When the focus
first shifts to a grid pane, the pane is in display mode.

The keyboard shortcuts listed in Table 67 are applicable only to display mode.

Table 66 Generic Keyboard Shortcuts

Press To Do

Tab Shifts the focus to the next component in the form.

Shift+Tab Shifts the focus back to the previous component in the form.

Table 67 Keyboard Shortcuts for Grid Panes in Display Mode

Press To Do

Enter, or F2, or
Click

Activates edit mode, and selects the row. The focus is set on the control in the
current cell. For non-editable grids, clicking or pressing Enter selects the row in a
single-select grid, or toggles the row selection in a multi-select grid.

Delete Deletes the selected row. The focus is set on the same cell of the next row.

Tab Shifts the focus to the navigation bar if the grid is paginated. If the grid is not
paginated and the command bar is visible, the focus shifts to the command bar. If
both, the navigation bar and the command bar are not visible, the focus shifts to
the next component in the form.

Shift+Tab Shifts the focus to the last column heading of the grid pane.
 TIBCO Business Studio Forms

348 | Keyboard Shortcuts
Grid Panes in Edit Mode

When in edit mode, the controls in each cell are displayed as editable when the
cell has the focus. If a control is disabled or read-only, then it continues to display
the text version of the control value. Note that the grid pane does not handle any
of these keys if the active cell editor handles the keystroke. For example, the
textarea controls handle Up/Down Arrow keys. Pressing these keys affects the
textarea and not the grid pane.

Up Arrow key Shifts the focus to the same cell in the previous row. If the focus is on the first
visible row of the table, and the paginated grid pane has a previous page, the
focus shifts to the same cell in the last row of the previous page. If the focus is
already on the first visible row of the first page, it remains on the same cell.

Down Arrow
key

Shifts the focus to the same cell in the next row. If the focus is on the last visible
row of the table, and the paginated grid pane has a next page, the focus shifts to
the same cell in the first row of the next page. If the focus is already on the last
visible row of the last page, it remains on the same cell.

Left Arrow key Shifts the focus to the previous focusable cell in the same row. If none of the
previous cells in the same row is focusable, the focus shifts to the last focusable
cell in the previous row.

Right Arrow
key

Shifts the focus to the next focusable cell in the same row. If none of the next cells
in the same row is focusable, the focus shifts to the first focusable cell in the next
row.

Page Up key Displays the previous page of rows when the grid pane is paginated. The focus
stays on the same cell on the displayed page of records.

Page Down
key

Displays the next page of rows when the grid pane is paginated. The focus stays
on the same cell on the displayed page of records.

Home key Shifts the focus to the first column of the first visible row.

End key Shifts the focus to the first column of the last visible row.

Ctrl+Home Shifts the focus to the first column of the first row in the entire record set.

Ctrl+End Shifts the focus to the first column of the last row in the entire record set.

Table 67 Keyboard Shortcuts for Grid Panes in Display Mode

Press To Do
TIBCO Business Studio Forms

| 349
The keyboard shortcuts listed in Table 68 are applicable only to edit mode.

Grid Pane Column Headers

The heading for each column is rendered as an HTML anchor tag. As they are
rendered as hyperlinks, each column heading is a tab stop when traversing the
form. For sortable grids, pressing the Enter key activates the hyperlink, and sorts
the rows on that column between three possible states: unsorted (the default),
sorted ascending, and sorted descending.

Table 68 Keyboard Shortcuts for Grid Panes in Edit Mode

Press To Do

Enter, or
Escape, or
Ctrl+Enter

Activates display mode, and updates the value. Validations run, and the focus
remains on the recently edited cell, which is now in display mode.

The Enter key within a textarea or list control is not handled by the grid pane.
For such cases, use Ctrl+Enter to activate display mode.

Tab Shifts the focus to the next cell. The grid pane remains in edit mode, and the
editor for the next cell is activated. If the focus is currently on a cell in the last
column, the focus shifts to the first column of the next row. If the focus is on the
last cell of the last visible row, the focus shifts to the grid navigation bar, or the
next component in the form if the grid pane is not paginated.

Shift+Tab Shifts the focus to the previous cell. The grid pane remains in edit mode, and the
editor for the previous cell is enabled. If the focus is in the first cell of the first
visible row, it shifts to the grid column headers.

Up Arrow key,
or Ctrl+Up
Arrow key

Shifts the focus to the cell in the same column in the previous row.

Grid panes do not handle the Up Arrow key within a few controls, such as
Textarea, Optionlist, Radiogroup, or List control. For such cases, use Ctrl+Up
Arrow key.

Down Arrow
key

Shifts the focus to the cell in the same column in the next row.

Grid panes do not handle the Up Arrow key within a few controls, such as
Textarea, Optionlist, Radiogroup, or List control. For such cases, use Ctrl+Down
Arrow key.

Page Up key Displays the previous page of rows. The focus shifts to the upper-left cell of the
new page of records.

Page Down
key

Displays the next page of rows. The focus shifts to the upper-left cell of the new
page of records.
 TIBCO Business Studio Forms

350 | Keyboard Shortcuts
The keyboard shortcuts listed in Table 69 are applicable only to the grid pane
column headers.

Grid Pane Navigation Bar

For grid panes with more rows than a single page can accommodate, a navigation
bar appears at the bottom of the grid pane. By using it, you can go to the first,
previous, next, or last page of the pane. If you press Tab when the focus is on the
navigation bar, the focus shifts to the "First" or the "Next" arrows. The "First" and
"Previous" arrows are disabled when the first page of the grid pane is displayed.
Similarly, the "Next" and the "Last" arrows are disabled when the last page is
displayed.

The keyboard shortcuts listed in Table 70 are applicable only to the grid pane
navigation bar.

Table 69 Keyboard Shortcuts for Grid Pane Column Headers

Press To Do

Tab Shifts the focus to the next heading in the grid pane header row. If the focus is on
the heading of the last column, it shifts the focus to the first cell in the grid pane
content.

Shift+Tab Shifts the focus to the previous heading in the grid pane header row. If the focus is
on the heading of the first column, it shifts to the previous component in the form.

Enter Changes the sorting state of the column to the next state. The states are ascending,
descending, or unsorted (original).

Table 70 Keyboard Shortcuts for Grid Pane Navigation Bar

Press To Do

Tab Shifts the focus either to the next arrow on the navigation bar, or to the New and
Delete buttons if they are enabled. If there is no arrow or button available, the
focus shifts to the next component in the form after the grid pane.

Shift+Tab Shifts the focus to the previous arrow on the navigation bar. If there is no arrow
available, the focus shifts to the last cell in the last row of the grid pane.

Left Arrow,
and Right
Arrow keys

Shift the focus within the arrows on the navigation bar.

Enter Invokes the currently focused arrow on the navigation bar.
TIBCO Business Studio Forms

| 351
List Controls
This section summarizes the keyboard shortcuts you can use for list controls.

List Controls in Display Mode

Similar to grid panes, list controls are either in display mode or in edit mode. If
you press Tab when the focus is on a list control, the control is rendered in display
mode, and the focus shifts to the first item in the list.

The keyboard shortcuts listed in Table 71 are applicable only to list controls in
display mode.

List Controls in Edit Mode

The keyboard shortcuts listed in Table 72 are applicable only to list controls in edit
mode.

Table 71 Keyboard Shortcuts for List Controls in Display Mode

Press To Do

Enter, or Click Activates edit mode, and maintains the focus on the current value.

Delete Deletes the selected item in the list. The focus shifts to the next item in the list, or
to the Add button.

Tab Shifts the focus to the list control command bar.

Shift+Tab Shifts the focus to the previous component in the form.

Up Arrow key Shifts the focus to the previous item in the list.

Down Arrow
key

Shifts the focus to the next item in the list.

Home Shifts the focus to the first item in the list.

End Shifts focus to the last item in the list.

Table 72 Keyboard Shortcuts for List Controls in Edit Mode

Press To Do

Enter, or
Escape

Activates display mode, and maintains the focus on the current value.

Ctrl+Enter Activates display mode when editing a text area in the list.
 TIBCO Business Studio Forms

352 | Keyboard Shortcuts
List Control Command Bar

The keyboard shortcuts listed in Table 73 are applicable only to the list control
command bar.

Record Panes
This section summarizes the keyboard shortcuts you can use for record panes.

The keyboard navigation is just the same within a record pane. There are a few
more keyboard shortcuts listed in the next sub-sections.

Tab Shifts the focus to the next value in the list. If the focus is already on the last value,
it shifts to the list control command bar.

Shift+Tab Shifts the focus to the previous value in the list. If the focus is already on the first
value in the list, it shifts to the previous component in the form.

Up Arrow key Shifts the focus to the previous value in the list. If the focus is already on the first
value, it remains on that value.

Down Arrow
key

Shifts the focus to the next value in the list. If the focus is already on the last value,
it remains on that value.

Table 72 Keyboard Shortcuts for List Controls in Edit Mode

Press To Do

Table 73 Keyboard Shortcuts for List Control Command Bar

Press To Do

Tab Shifts the focus to the next component in the form after the list control.

Shift+Tab Shifts the focus back to the content of the list control.

Left Arrow,
and Right
Arrow keys

Shift the focus within the control buttons (that is, add, delete, up, and down) in
the list control command bar.

Enter Invokes the currently focused control button.
TIBCO Business Studio Forms

| 353
Record Pane Body

The keyboard shortcuts listed in Table 74 are applicable only to the record pane
body.

Record Pane Navigation Bar

If you press Tab when focus is on the component before a record pane, the focus
shifts to the central text field in the navigation bar, which displays the current
record number.

The keyboard shortcuts listed in Table 75 are applicable only to the record pane
navigation bar.

Table 74 Keyboard Shortcuts for Record Pane Body

Press To Do

Page Up key Displays the previous record in the list without shifting the focus. If the displayed
record is the first one, there is no change.

Page Down
key

Displays the next record in the list without shifting the focus. If the displayed
record is the last one, there is no change.

Tab Shifts the focus to the next control within the record pane.

Shift+Tab If pressed when the first control has the focus, it shifts the focus to the central text
field in the navigation bar, which displays the current record number.

Table 75 Keyboard Shortcuts for Record Pane Navigation Bar

Press To Do

Tab Shifts the focus to the first component in the record pane.

Shift+Tab Shifts the focus to the previous component in the form.

Left Arrow,
and Right
Arrow keys

Shift the focus within the control buttons (that is, first, previous, current, next, and
last) in the navigation bar.

Enter Invokes the currently focused control button.
 TIBCO Business Studio Forms

354 | Keyboard Shortcuts
Tabbed Panes
This section summarizes the keyboard shortcuts you can use for tabbed panes.

Table 76 Keyboard Shortcuts for Tabbed Panes

Press To Do

Tab If you press Tab when the focus is on the component before a Tabbed Pane, the
focus shifts on the currently active tab. If you press Tab when the focus is on a tab
in the tab bar, the focus shifts to the first control in the body of the currently active
tab pane.

Shift+Tab Shifts the focus back to the previous component in the form.

Left Arrow /
Right Arrow

Shift the focus within the tabs in the tabbed pane.

Space Makes the currently focused tab active.
TIBCO Business Studio Forms

| 355
CSS Classes

TIBCO Business Studio Forms supports the use of Cascading Style Sheets (CSS)
for customizing how form is rendered. This approach provides more flexibility
and opportunities for reuse of style information than manually setting properties
at the form model level.

This section lists the built-in CSS classes you can use. For general information on
how to use CSS in TIBCO Business Studio Forms, see Styling Forms Using
Cascading Style Sheets on page 145.

Built-in Static CSS Classes
When a form is rendered, there are a set of built-in CSS classes that are used at the
Form, Pane, and Control level. You can use these CSS classes in defining custom
rendering for these types of objects. The classes shown in this table are always
rendered in the HTML DOM.

Table 77 Built-in Static CSS Classes

CSS Class Description

TibcoForms Applied at the root node of the form.

pane Applied at the root node of each pane.

pane-vertical Applied at the root node of each vertical pane, along
with the pane class.

pane-horizontal Applied at the root node of each horizontal pane, along
with the pane class.

pane-tabbed Applied at the root node of each tabbed pane, along
with the pane class.

pane-grid Applied at the root node of each grid pane, along with
the pane class.

pane-grid-content Applied to the underlying HTML table that contains the
header row and values of a grid pane.

pane-grid-content-header-row Applied to the row in the grid pane that contains
column headers.
 TIBCO Business Studio Forms

356 | CSS Classes
pane-grid-sortable Applied to the header row of a grid pane whose
columns are sortable.

pane-grid-sort-asc Applied to the header label of a column that is currently
sorted in ascending order.

pane-grid-sort-desc Applied to the header label of a column that is currently
sorted in descending order.

pane-grid-content-odd-row Applied to odd rows in a grid pane

pane-grid-content-even-row Applied to even rows in a grid pane

pane-messages Applied at the root node of each messages pane, along
with the pane class.

pane-record Applied at the root node of each record pane, along
with the pane class.

pane-label Applied at the node that contains the label of a pane.
This is nested within the node that has the pane class
set.

pane-content Applied at a node that contains all the child controls
and panes of the parent pane.

component Applied at a the root node of each control or pane that is
a child of a pane. So each node that has a class
pane-content contains 0 or more nodes with a class
component.

label Applied at a node within a component. Contains the
label for the control or pane.

container Applied at a node within a component. Contains the
content of the control or pane.

control-widget Applied on the specific element used for the control,
such as an <input> element for text controls. This is a
descendent of the node that contains the container class.

Table 77 Built-in Static CSS Classes

CSS Class Description
TIBCO Business Studio Forms

| 357
hint Applied to the node that contains a hint for a control.
This is a descendent of the node that contains the
container class.

control-textinput Applied at the same node as the component class for
text controls.

control-textarea Applied at the same node as the component class for
textarea controls.

control-date Applied at the same node as the component class for
date controls.

control-time Applied at the same node as the component class for
time controls.

control-datetime Applied at the same node as the component class for
datetime controls.

control-checkbox Applied at the same node as the component class for
checkbox controls.

control-optionlist Applied at the same node as the component class for
optionlist controls.

control-radiogroup Applied at the same node as the component class for
radiogroup controls.

control-image Applied at the same node as the component class for
image controls.

control-label Applied at the same node as the component class for
label controls.

control-hyperlink Applied at the same node as the component class for
hyperlink controls.

control-duration Applied at the same node as the component class for
duration controls.

Table 77 Built-in Static CSS Classes

CSS Class Description
 TIBCO Business Studio Forms

358 | CSS Classes
Built-in Dynamic CSS Classes
A set of CSS classes are used to define when controls and panes are in certain
states such as required and disabled. All of these classes are added to the same level
as the component class when needed.

Table 78 Built-in Dynamic CSS Classes

CSS Class Description

required Added when the control is required.

disabled Added when the control or pane is disabled.

invalid Added when the control has failed validation.

[custom] Custom classes defined in the form designer or set
dynamically via the setClass() API are added at the
same level as the component class.
TIBCO Business Studio Forms

| 359
Common Resource Keys

This section lists all the resource keys that are provided as a part of the common
resources bundle. The keys are grouped into their basic functional areas, and the
default values in the base bundle are given for reference.

For the details on how to override the default values or add new resource keys to
the bundle, see Customizing Property Resource Bundles on page 179.

Keys for Number Patterns
This section lists the resource keys for formatting values in number controls.

The number control shows resource keys that begin with "format_". You can
override their values, and also add new keys that begin with "format_".

For more information on how to specify a number format, see Using Numeric
Controls on page 192.

Table 79 Number Patterns

For these resource keys, the number grouping separator is always represented as
the comma meta-character, and the decimal separator is always represented as the
period meta-character. The actual grouping and separator characters are
translated separately, exactly once. It is not necessary to translate these grouping
and separator meta-characters at every place where they appear.

Resource Key Reference Value Description

format_currency \u00A4#,##0.00;

(\u00A4#,##0.00)

Specifies a basic currency format. The unicode
character \u00A4 represents a currency symbol,
which is substituted at runtime.

For example: $123,344.89 for positive numbers,
($34,121.00) for negative numbers

format_integer #,##0 Basic grouped integer format.

For example: 123,456

format_integer_ungrou
ped

0 Basic ungrouped integer format.

For example: 123456
 TIBCO Business Studio Forms

360 | Common Resource Keys
Keys for Basic Number and Currency Symbols
This section lists the resource keys for values that get substituted in the numeric
formats.

For example, number_grouping substitutes the "," character in the numeric
formats.

Table 80 Basic Number and Currency Symbols

format_decimal #,##0.### Basic decimal format.

For example: 123,456.123

format_decimal_1 #,##0.0 Decimal format showing exactly one decimal
place.

For example: 123.1

format_decimal_2 #,##0.00 Decimal format showing exactly 2 decimal
places.

For example: 123.10

format_decimal_3 #,##0.000 Decimal format showing exactly 3 decimal
places.

For example: 123.100

format_decimal_4 #,##0.0000 Decimal format showing exactly 4 decimal
places.

For example: 123.1000

format_decimal_ungrou
ped

0.### Basic ungrouped decimal format.

For example: 123456.123

Resource Key Reference Value Description

Resource Key Reference Value Description

number_decimal . The decimal point that is substituted for the "."
meta-character.

number_grouping , The grouping separator that is substituted for
the "," meta-character.
TIBCO Business Studio Forms

| 361
Keys for Duration Control Labels
This section lists the resource keys for the labels of duration controls.

For example, duration_label_years substitutes "Years" in the text input field.

Table 81 Duration Control Labels

number_zero 0 The character to be used as the leading zero in
numeric formats.

currency_symbol $ Must be translated only for specific countries.
The currency symbol that is substituted for
\u00A4.

currency_decimal . Used when the currency format is used.

currency_grouping , Used when the currency format is used.

currency_code USD The standard 3-letter currency code.

Resource Key Reference Value Description

Resource Key Reference Value Description

duration_label_years Years Labels the text input field as "Years".

duration_label_months Months Labels the text input field as "Months".

duration_label_days Days Labels the text input field as "Days".

duration_label_hours Hours Labels the text input field as "Hours".

duration_label_minutes Minutes Labels the text input field as "Minutes".

duration_label_seconds Seconds Labels the text input field as "Seconds".

duration_label_millis
econds

Milliseconds Labels the text input field as "Milliseconds".

format_duration_years {0} years Used for the text representation of duration,
where {0} is greater than 1.

For example: "2 years"

format_duration_months {0} months Used for the text representation of duration,
where {0} is greater than 1
 TIBCO Business Studio Forms

362 | Common Resource Keys
format_duration_days {0} days Used for the text representation of duration,
where {0} is greater than 1.

format_duration_hours {0} hours Used for the text representation of duration,
where {0} is greater than 1.

format_duration_minutes {0} minutes Used for the text representation of duration,
where {0} is greater than 1.

format_duration_seconds {0} seconds Used for the text representation of duration,
where {0} is greater than 1.

format_duration_milli
seconds

{0} milliseconds Used for the text representation of duration,
where {0} is greater than 1.

format_duration_years
_singular

{0} year Used for the text representation of duration,
where {0} is equal to 1.

format_duration_months
_singular

{0} month Used for the text representation of duration,
where {0} is equal to 1

format_duration_days_
singular

{0} day Used for the text representation of duration,
where {0} is equal to 1.

format_duration_hours
_singular

{0} hour Used for the text representation of duration,
where {0} is equal to 1.

format_duration_minutes
_singular

{0} minute Used for the text representation of duration,
where {0} is equal to 1.

format_duration_seconds
_singular

{0} second Used for the text representation of duration,
where {0} is equal to 1.

format_duration_milli
seconds_singular

{0} millisecond Used for the text representation of duration,
where {0} is equal to 1.

duration_separator , Separates the values in the text representation
of duration.

duration_order yMdHmsS The order in which the specific duration units
appear in the text representation of duration,
where y = years, M = months, d = days, H =
hours, m = minutes, s = seconds, S =
milliseconds.

Resource Key Reference Value Description
TIBCO Business Studio Forms

| 363
Keys for Date-Time Patterns
This section lists the resource keys for date-time controls.

Table 82 Date Time Keys

duration_items_display
_sep

\ /\ Separates the values in the text representation
of list items.

Note: All the other list controls use
"items_display_sep" as defined in List
Control Keys on page 370. This new separator is
necessary to separate duration items in a list,
because the "duration_separator" that
formats a duration value also uses a "," in the
base bundle.

Resource Key Reference Value Description

Resource Key Reference Value Description

date_month_abbrev ['Jan','Feb','Mar','Ap
r','May','Jun','Jul','A
ug','Sep','Oct','Nov',
'Dec']

Used for the short names of the months in a
calendar control. Specified as a JavaScript array.

date_month ['January','February
','March','April','Ma
y','June','July','Augu
st','September','Oct
ober','November','D
ecember']

Used for the long names of the months in a
calendar control. Specified as a JavaScript array.

date_month_narrow ['J','F','M','A','M','J','J
','A','S','O','N','D']

Used for narrow, one letter abbreviations of the
months in a calendar control. Specified as a
JavaScript array.

date_day_abbrev ['Sun','Mon','Tue','
Wed','Thu','Fri','Sat'
]

Used for the short names of the days of the
week in a calendar control. Always begins with
Sunday. Specified as a JavaScript array.

Note: You can specify the first day of the week
for a locale by using date_first_day_of_week
as listed in this table.
 TIBCO Business Studio Forms

364 | Common Resource Keys
date_day ['Sunday','Monday',
'Tuesday','Wednesd
ay','Thursday','Frid
ay','Saturday']

Used for the long names of the days of the week
in a calendar control. Always begins with
Sunday. Specified as a JavaScript array.

Note: You can specify the first day of the week
for a locale by using
date_first_day_of_week.

date_day_narrow ['S','M','T','W','T','F','
S']

Used for the narrow, one-letter abbreviations of
the days of the week in a calendar control.
Always begins with Sunday. Specified as a
JavaScript array.

Note: You can specify the first day of the week
for a locale by using
date_first_day_of_week.

date_era_long ['Before
Christ','Anno
Domini']

Used for the complete text of era names in
formatted dates.

For example: Before Christ

date_era ['BC','AD'] Used for the short forms of era names in
formatted dates.

For example: BC

time_ampm ['AM','PM'] Used for the Latin abbreviations for the 12-hour
clock convention.

datetime_date_label Date Labels the date portion of a date-time control.

datetime_time_label Time Labels the time portion of a date-time control.

accessible_date_label {0} (enter as {1}) Accessible Forms: Used to augment the label for
date, time, and date-time controls. {0} is
substituted with the original control label, and
{1} is substituted with the edit format used for
the control.

date_today Today Used in the Date Picker. Clicking this label takes
the date control to today's date.

Resource Key Reference Value Description
TIBCO Business Studio Forms

| 365
date_first_day_of_week 0 Used to indicate the first day of the week when
displaying a calendar. If 0 is specified, the first
day of a week is Sunday. If 1 is specified, the
first day of a week is Monday, and so on.

date_hours_circle_basis 24 Used by the Date Picker to show the hours in
24-hour or 12-hour clock.

date_format MMM dd, yyyy Used to display date values in a date-time
control. This is a standard Java date format
string.

date_time_format MMM dd, yyyy
hh:mm:ss a

Used to display date and time values in a
date-time control. This is a standard Java date
format string.

time_format hh:mm:ss a Used to display values in a time control. This is
a standard Java date format string.

date_edit_format MM/dd/yyyy Used when users are expected to edit a date
value directly in the text box. The format must
be kept simple. You can modify the sequence of
the year, month, and day; and then change the
separators.

date_time_edit_format MM/dd/yyyy
HH:mm:ssZ

Used when users are expected to edit a
date-time value directly in the text box. The
format must be kept simple. You can modify the
sequence of the year, month, day, hours,
minutes, and seconds; and then change the
separators.

time_edit_format HH:mm:ssZ Used when users are expected to edit a time
value directly in the text box. The format must
be kept simple. You can modify the sequence of
the hours, minutes, and seconds; and then
change the separators.

date_picker_ok_label OK Labels the OK button in the time and date-time
control pickers.

time_24hour true Used to determine whether the time is to be
displayed in a 24-hour clock format.

Resource Key Reference Value Description
 TIBCO Business Studio Forms

366 | Common Resource Keys
Keys for Optionlist Controls
This section lists the resource key for drop-down list controls.

Table 83 Optionlist Key

Keys for Built-in Buttons
This section lists the resource keys for built-in buttons.

Table 84 Built-in Button Keys

Resource Key Reference Value Description

option_select_label - Select - The value initially displayed in a drop-down
list before the user makes a selection.

Resource Key Reference Value Description

form_cancel_label Cancel Labels the Cancel button that is generated by
default or is added from the palette.

form_submit_label Submit Labels the Submit button that is generated by
default or is added from the palette.

form_close_label Close Labels the Close button that is generated by
default or is added from the palette.

spinner_done_label Done Mobile Forms: Indicates that the user has
picked a value.

spinner_cancel_label Cancel Mobile Forms: Indicates that the user has
cancelled the operation of picking a value.

screen_back_label Back Mobile Forms: Returns to the previously
viewed screen.

screen_add_list_item_
label

+ Mobile Forms: Label on the button to add a new
value or a new record. Must be a single
character.
TIBCO Business Studio Forms

| 367
Keys for Grid and Record Panes
This section lists the resource keys for grid panes and record panes.

Table 85 Grid and Record Pane Keys

Resource Key Reference Value Description

pane_new_label New Used as the default label for adding a new
record to a collection pane representing a
composition reference.

You can override it on specific instances of grid
or record panes.

pane_delete_label Delete Used as the default label for deleting an existing
record from a collection pane representing a
composition reference.

You can override it on specific instances of grid
or record panes.

pane_add_label Add Used as the default label for adding a reference
to an existing object to a collection pane
representing a non-aggregation reference.

You can override it on specific instances of grid
or record panes.

pane_remove_label Remove Used as the default label for removing a
reference to an existing object from a collection
pane representing a non-aggregation reference.

You can override it on specific instances of grid
or record panes.

msgd_pane_confirm_del
ete_label

Delete {0} selected
records?

Used as a confirmation message when users
delete multiple records from a multi-select grid
pane.

msgd_pane_confirm_del
ete_label

Delete the selected
record?

Used as a confirmation message when users
delete a record from a grid pane.

grid_pane_page_info \ {0} - {1} of {2}\ Gives pagination information of the grid pane
navigation bar. It shows the number of active
records and the total number of records.

For example: 11-20 of 35
 TIBCO Business Studio Forms

368 | Common Resource Keys
rp_confirm_delete_label Delete the current
record?

Used as a confirmation message when users
delete the displayed record from a record pane.

nav_first_label First Used as the hover help for the record and grid
pane control button that navigates users to the
first page of records in a paginated grid pane, or
to the first record in a record pane.

nav_last_label Last Used as the hover help for the record and grid
pane control button that navigates users to the
last page of records in a paginated grid pane, or
to the last record in a record pane.

nav_next_label Next Used as the hover help for the record and grid
pane control button that navigates users to the
next page of records in a paginated grid pane,
or to the next record in a record pane.

nav_previous_label Previous Used as the hover help for the record and grid
pane control button that navigates users to the
previous page of records in a paginated grid
pane, or to the previous record in a record pane.

record_record_label Record Used only in the record pane navigation panel.
Used in combination with
record_record_of_label to display "Record x
of y" on the User Interface, where x is a
drop-down list showing the current record, and
y is the total number of records.

record_record_of_label of Used only in the record pane navigation panel.
Used in combination with
record_record_label to display "Record x of y"
on the User Interface, where x is a drop-down
list showing the current record, and y is the
total number of records.

record_pane_record_info Record {0} of {1} Used only in the record pane navigation panel.
Appears in the title of the record number field
in the navigation panel.

Resource Key Reference Value Description
TIBCO Business Studio Forms

| 369
Keys for Built-in Validation Messages
This section lists the resource keys for built-in validation messages.

Table 86 Built-in Validation Message Keys

accessible_gd_pane_sele
ct_row_label

Select row to edit or
delete

Accessible Forms: The label for
radiogroup/checkbox of the grid pane selection
cell in accessible runtime. Rendered as offscreen
text.

accessible_gd_pane_sele
ct_all_rows_label

Select all rows Accessible Forms: The label for
radiogroup/checkbox of the multi-select grid
pane selection header in accessible runtime.
Rendered as offscreen text.

accessible_gd_pane_norm
al_col_header_label

Click to sort in
ascending order

Accessible Forms: The label used in the header
of a grid pane in accessible runtime when
sorting is not in effect.

accessible_gd_pane_asc_
ord_col_header_label

Sorted in ascending
order. Click to sort
in descending
order.

Accessible Forms: The label used in the header
of a grid pane in accessible runtime when the
column is sorted in ascending order.

accessible_gd_pane_desc
_ord_col_header_label

Sorted in
descending order.
Click to remove
sorting.

Accessible Forms: The label used in the header
of a grid pane in accessible runtime when the
column is sorted in descending order.

Resource Key Reference Value Description

Resource Key Reference Value Description

form_validation_error
_message

Error in script for
validation {0} of
Control {1} ({2})\:
{3}

Used to display a message for a script error
while running a validation. {0} is the name of
the validation. {1} is the name of the control. {2}
and {3} are debugging messages.

form_action_error_mes
sage

Error in script for
action {0} ({1})\: {2}

Used to display a message for a script error
while running an action. {0} is the name of the
action. {1} and {2} are debugging messages.
 TIBCO Business Studio Forms

370 | Common Resource Keys
Keys for List Controls
This section lists the resource keys for list controls.

Table 87 List Control Keys

form_required_message {0} is a required
field.

Used to display a message when a required
value is missing. {0} is the label of the control.

record_pane_error_label There are errors on
record(s) {0}.

Mobile Forms: Used to display a message for
errors on multiple records. {0} is a comma
separated list of numbers.

nested_pane_error_label There are errors on
this screen.

Mobile Forms: Used to display a message for
validation failures on one or more components
on the current pane.

Resource Key Reference Value Description

Resource Key Reference Value Description

list_add_label add Used as the hover help for the Add button in
list controls.

list_delete_label delete Used as the hover help for the Delete button in
list controls.

list_move_up_label up Used as the hover help for the Up button in list
controls.

list_move_down_label down Used as the hover help for the Down button in
list controls.

items_display_sep , Used as a separator when displaying text
representation of items in a list.

static_items_display_
sep

|

Used as a separator when displaying text
representation of items in a list, where the items
already use the basic separator.

For example: 1 year, 2 months | 2 years, 5 months
TIBCO Business Studio Forms

| 371
Keys for Implicit Validation Messages
This section lists the resource keys for implicit validation messages.

These messages are used when validations are automatically generated based on
the underlying BOM specification of the value. In all these messages, the value {0}
is substituted with the label of the control that fails the validation.

Table 88 Implicit Validation Messages

Resource Key Reference Value Description

validation_date_format ''{0}'' is
incompatible with
ISO format
'yyyy-MM-dd'

Used when the target value must be a proper
ISO 8601 formatted date. See
http://www.w3.org/TR/NOTE-datetime.

validation_time_format ''{0}'' is
incompatible with
ISO format
'HH:mm:ssZ'

Used when the target value must be a proper
ISO 8601 formatted time. See
http://www.w3.org/TR/NOTE-datetime.

validation_datetime_
format

''{0}'' is
incompatible with
ISO format
'yyyy-MM-dd'T'H
H:mm:ssZ'

Used when the target value must be a proper
ISO 8601 date-time value. See
http://www.w3.org/TR/NOTE-datetime.

validation_decimal_fi
xed_point

''{0}'' must be a
fixed point decimal
number with no
more than {1} digits
and {2} decimal
places

Used for BOM attributes and process data fields
that are configured as fixed point decimal
numbers in the Resources tab of the BOM
editor.

validation_decimal_fl
oating_point

''{0}'' must be a
floating point
decimal number

Used for BOM attributes that are configured as
floating point decimal numbers in the
Resources tab of the BOM editor.

validation_integer_le
ngth

''{0}'' must be an
integer with no
more than {1} digits

Used to specify a length constraint on the
number of digits of Integer type BOM attributes
and process data fields.

validation_integer ''{0}'' must be an
integer.

Used for BOM attributes and process data fields
of the Integer type.
 TIBCO Business Studio Forms

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

372 | Common Resource Keys
validation_text_length ''{0}'' must be a
value with no more
than {1} characters

Used for BOM attributes of the Text type that
have a length constraint.

validation_lower_limit
_inclusive

''{0}'' must be a
number greater
than or equal to {1}

Used for numbers that have a lower limit
specified (including the limit value).

validation_lower_limit ''{0}'' must be a
number greater
than {1}

Used for numbers that have a lower limit
specified (excluding the limit value).

validation_upper_limit
_inclusive

''{0}'' must be a
number less than or
equal to {1}

Used for numbers that have an upper limit
specified (including the limit value).

validation_upper_limit ''{0}' must be a
number less than
{1}

Used for numbers that have a lower limit
specified (excluding the limit value).

validation_multiplici
ty_maximum

''{0}'' must contain
at most {1} values

Used when an upper limit is specified for child
multiplicity.

For example: 0..5

validation_multiplici
ty_exact

''{0}'' must contain
exactly {1} values

Used when an exact number is specified for
child multiplicity, and the number is greater
than 1.

For example: 3

validation_multiplici
ty_minimum

''{0}'' must contain
at least {1} value(s)

Used when only lower limit is specified for
child multiplicity, without an upper limit.

For example: 1..* or 3..*

validation_multiplici
ty_range

''{0}'' must contain
between {1} and {2}
values

Used when an exact multiplicity range is
specified with both a lower and an upper limit.
Both the numbers must be non-zero and the
upper limit must be greater than the lower
limit.

For example: 1..5 or 2..4

validation_numeric ''{0}'' must be a
number

Used for BOM attributes and process data fields
of the Integer or Decimal type.

Resource Key Reference Value Description
TIBCO Business Studio Forms

| 373
Miscellaneous Keys
This section lists miscellaneous resource keys.

Table 89 Miscellaneous Resource Keys

validation_pattern ''{0}'' has the wrong
format for the ''{1}''
data type

Used for BOM attributes of the Text type that
specify a regular expression constraint pattern.

Resource Key Reference Value Description

Resource Key Reference Value Description

data_preview_empty There is no data to
display.

Used as a data preview message for empty data.
 TIBCO Business Studio Forms

374 | Design-time Constraints
Design-time Constraints

The Validation Builder applies the following categories of rules to all form
models:

• Core

• General

• Resources

• JavaScript

• Forms Synchronization

• Components

• GWT/Mobile

You can change the configuration of these issues from the Errors/Warnings page
in the Form Designer on the Preferences dialog. For more information, see Form
Builder and Form Validation on page 75.
TIBCO Business Studio Forms

| 375
Client-side Validations

A component is validated depending on how you configure validations:

— on value change

— on form submission

The following table specifies how validations occur based on the configuration:

If you configure a validation on form submission, it occurs when the user submits
the form, or when the validate(true) API is called on the component, or parent
pane, or the form.

If a validation configured on form submission fails for a component, the runtime
invokes all the validations of that component on its value change until all the
validations pass again. In such a case, it does not consider if the validation is
configured on form submission or on value change. The validation messages
displayed for controls as the result of a failed form submission disappear after the
user provides a valid value.

Runtime Constraints On Value Change On Form Close On Form Submit

BOM Constraint

User-defined

(On Value Change)

User-defined

(On Form Submit)

Required
 TIBCO Business Studio Forms

376 | Scripting
Scripting

You can enhance the functionality of your forms by writing JavaScript code
snippets on certain tabs in the Properties view. There are two contexts where
scripts may be added:

• Actions Actions may contain script, and are invoked as a part of one or more
rules in response to a triggering event.

To learn more, see Actions on page 82 and Setting Rules on page 139.

• Validations Validations are scripts that determine you have specified a valid
value for a control. When you specify a validation script, you configure it to
run either when the form is submitted, or when the value for the control
changes.

To learn more, see Form Builder and Form Validation on page 75 and
Validating Data in a Form on page 147.

Forms Scripting: Scope of Variables
These tables cover the various places with the form model that scripting is
allowed, and describe the default script variables that are in scope in those places.

Business Analysis Capability versus Solution Design Capability To create or
modify scripts as shown in this section, you must ensure that the Solution Design
capability is enabled. You can change modes by clicking the Capability button on
the TIBCO Business Studio toolbar to open the dropdown list, if you are not
already in the desired mode:

When setting a control value via the "f" array, the changes are not realized until
the whole action script ends. This means that any bindings or rules that are tied to
the updating of that control is not triggered until the whole script finishes. Use the
setValue() method for the control whose value you are modifying.

The "f" array and "p" array functionality is deprecated. You can use
control.<control-name>.getValue() instead of using "f" array and use
p.get<parameter-name> instead of using the "p" array. See the Table 90, Action for
details.
TIBCO Business Studio Forms

| 377
Table 90 Action

Variable Description

context read-only. This is a data structure that provides access to the context under
which the action is invoked. There are 6 fields available within this variable:

• context.control: The control object that was the source of the event that
triggered the rule. If the source was not a control, then this field is null.

• context.form: The form object where the event originated.

• context.oldValue: Provides the old value if this is a control or parameter
update event.

• context.newValue: Provides the new value if this is a control or parameter
update event.

• context.pane: The pane object that was the source of the event that triggered
the rule. If the source was not a pane, then this field is null.

• context.record: This field is provided within the computation actions where
the destination control or pane is under a collection pane (grid or record
pane). The record corresponds to the object in the destination control's (or
pane's) parent pane value. For example, when you are computing the value
of a control at the 6th row of a grid pane, the record points to the complex
object at index 5 of the grid pane value. This field can also be used within
validations.

control Use control.<control-name> to access any control defined within the form.

data Use data.get<param-name> to access the values of form parameters or data
fields. This method returns either a primitive value for simple types such as
Text and Boolean, or instances of objects when the type is defined in a BOM. For
primitive types, data.set<param-name> is also available.

factory Use factory.<package-name> to access factories based on packages defined
within the business object models available to the form. These factories allow
you to create new instances of classes defined in that package.

pane Use pane.<pane-name> to access any pane defined within the form.

pkg Use pkg.<package-name> to access package objects based on packages defined
within the business object models available to the form. The package object
allows you access definitions of Enumerations defined within the package.
 TIBCO Business Studio Forms

378 | Scripting
Table 91 Validation

resource Use resource.<external-resource-name>.<property-name> to access the localized
values from property files. A property file can be added to the Presentation
Resources folder and it can be referenced from a form by creating an External
Resource in the form. For example: when a property file in the Presentation
Resources folder is added as an External Resource in the form with the name
resource1, all the properties in that file can be accessed in a user-defined form
action script from the object returned by resource.resource1. Thus if the
property file contains a property with name name1, the value of this property
can be retrieved in a user-defined script as: resource.resource1.name1.

If a localized bundle is provided and a value exist for the property in that
bundle, the value from that bundle is returned. If the property is missing in the
localized bundle, the value from the base bundle is returned.

f read-only. Field value array that accesses the current values of controls in the
form. Field values can be accessed using f.controlName. Field values can be
updated by assigning a new value to them. Example: f.foo=’newValue’;

Deprecated. Use control.cn.setValue(cv) instead of f.cn = cv;

and var cv = control.cn.getValue(); instead of var cv = f.cn;

p read-only. Parameter value array that accesses the inbound values of
parameters. p can replace a pane and control. Parameter values can be accessed
using p.paramName.

Deprecated. Use data.setPn(pv); instead of p.pn = pv; and var pv =
data.getPn(); instead of var pv = p.pn;

this read-write. For actions that are initiated from a control event, this refers to the
control object from which the event is initiated. From this, access the form
object and other controls and make updates to the state of the form model.

Deprecated. Use the new context variable that is available within the script.

Variable Description

f read-only. Field value array that accesses the current values of controls in the
form. Field values can be accessed using f.<control-name>.

Deprecated. Use var cv = control.cn.getValue(); instead of var cv =
f.cn;.

Variable Description
TIBCO Business Studio Forms

| 379
Forms Scripting: Order of Script Execution

The scripts specified in the form model are executed in the following order during
the different form life-cycle events.

When the Form is opened

• Form Open event is published.

When the Submit button is clicked

1. Control validation scripts are executed.

2. Form Submit event is published.

3. Form Close event is published.

When the Close button is clicked

• Form Close event is published.

this read-only. Refers to the control object upon which the validation is configured.
From this, access the form object and other controls, although no updates to
the form model are allowed within a form validation script.

Deprecated. Use context.value to get the value of the control being validated.

context read-only. Within the scope of a validation script, the context variable supports
only the following field:

context.value: This is equal to the value of the control being validated. If the
control is multi-valued, such as a text control with the list setting enabled, then
the validation is run once for each value in the list.

resource User-defined validation scripts can retrieve localized values from property files
using the resource variable. The resource details provided in Table 90, Action
are also applicable for validation scripts.

Variable Description

Errors in user-provided scripts are caught and logged at the error level at runtime
and shown in the preview page logging area in the Form Designer.
 TIBCO Business Studio Forms

380 | Scripting
When the Cancel button is clicked

1. Form Cancel event is published.

2. Form Close event is published.

You Update a Control Value and Navigate out of the Control

1. Control Validation scripts are executed.

2. Control Exit event is published.

3. Control Update event is published.

For the events where the validation scripts are executed, no further steps proceed
if any of the validations fail.
TIBCO Business Studio Forms

| 381
API for Scripting

This section describes API methods that can be used in your JavaScript scripts for
accessing the form model at runtime.

Methods
The following tables describe the API for scripting.

Table 92 FormRunner Class

The API described here can be used for writing validations as well as actions.
Updating form fields or their properties using set methods is allowed only in the
context of actions. Validation scripts cannot modify the fields or their properties.

Method Return
Value Description

renderStaticView() Void Renders a tree representation of the data provided in the
InitialData parameter.

The API has following parameters:

• initialData: specifies the JSON representation of the
initial data that are provided to the form.

• bomJSPath: specifies the root folder path used for
loading the BOM JavaScript files used by the form.

For example:
http://10.97.110.17:8080/bpmresources/1.0.0.201107291435

• locale: specifies the locale to be used in the runtime
form with the <lc>[_<CC>] format, where [] denotes
optionality.

For example: "en_US". The locale needs to be represented
such that <lc> is a valid two-character lower case
ISO-639 language code, and, if present, the optional <CC>
is a valid two-character upper case ISO-3166 country
code. Both '_' and '-' are supported as delimiters.

• parentNodeId: specifies the DOM identifier of the node
to which the form must be added. The value cannot be
null.
 TIBCO Business Studio Forms

382 | API for Scripting
Table 93 Form Class

• onSuccess: is a function that is called after the form is
successfully initialized. The Form object is passed into
this function. It can be used to add custom callback
handlers that implement lifecycle events such as submit,
close, and cancel.

• onError: is a function that is called on encountering any
error in initializing the form. The function receives the
exception encountered during the initialization.

• provideCloseAction: if it is set to true, the form is
rendered with a button that closes the form and cleans up
any resources used. If it is set to false, then it is the
responsibility of the containing application to clean up
the form when it is no longer needed.

• JSONP: informs the Forms Runtime Adapter to use JSON
with Padding (JSONP) when loading JSON resources.
The default value is false. When the custom client and
Forms Runtime Adapter are hosted on different servers,
set the JSONP parameter to true. In this scenario, there
are SOP (Single Origin Policy) issues while loading JSON
resources. By using the JSONP technique, the JSON
response is wrapped as a function by the server and is
sent to the client. A JSON resource can then be loaded
using a script tag to avoid any SOP violations.

Method Return
Value Description

getClassName() String Returns custom CSS classnames set on the form. The value
may be null, a single CSS classname, or a space-separated
list of CSS classnames that are applied to the root level of the
form.

getControl(String

controlName)

Control Returns the control with the given name.

getLocale() String Returns the string representation of the locale currently
being used to render the form.

Method Return
Value Description
TIBCO Business Studio Forms

| 383
getPane(String

paneName)

Pane Returns the pane with the given name.

getPanes() Pane[] Returns an array of root panes of this form.

getParameterValue(

String paramName)

Object Returns the value of the parameter with the given name.
This is either a Duration object, BOM JavaScript wrapper
object or native JavaScript Boolean, Date, Number or String
object, depending on the type of parameter.

invokeAction(

String actionName,

Object control),

Context context

Invokes the shared or default action specified by the
actionName parameter. The object passed as the control
parameter is used as the this variable inside the script of the
invoked action. The third argument is used as the context
variable in the invoked script. If the third argument is null,
then a default context is used in the invoked script. Example
usage:
context.form.invokeAction(’submit’, this,
context);

Either a shared action defined for the form or one of the
pre-defined actions can be used with the invokeAction
method. The pre-defined actions are: submit, apply, close,
cancel, validate, and reset.

isNumber(Object

value)

Boolean Validates whether the value passed is a number or not. It
returns true if the parameter value is a number, and false
otherwise.

maxLength(

Object

value, Integer

length)

Boolean Validates whether the value passed is less than the length
specified. Used to validate the length of parameters like
strings and numbers. It returns true if the value passed is
less than length specified, false otherwise.

numberFormat(

Object value,

Integer

totalLength,

Integer

decimalLength)

Boolean Validates whether the number represented by the value
parameter is less than totalLength parameter and number
of decimal digits is less than decimalLength specified. It
returns true if the value passed is less than length specified
in terms of both total length and length of the decimal digits,
false otherwise.

Method Return
Value Description
 TIBCO Business Studio Forms

384 | API for Scripting
Table 94 Control Class

setClassName(

String className)

Void Sets the custom CSS classnames on the form. The value may
be null, a single CSS classname, or a space-separated list of
CSS classnames that are applied to the root level of the form.
The value replaces any previously set classname whether
that was set in the model or by a previous call to
setClassName().

setLocale(String

locale)

Sets the value of locale used to render the form. It represents
the locale, for example, "en" or "en_US".

setParameterValue(

String paramName,

Object paramValue)

Void Sets the value of the parameter with the given name. The
value should be either a Duration object, BOM JavaScript
wrapper object or native JavaScript Boolean, Date, Number
or String object, depending on the type of parameter.

validate(Boolean

updateMessagePane)

Boolean Forces validation to run on the form and all child panes and
controls. Returns true if all validations return true. If
updateMessagePane is true, then validation messages are
displayed in the messages pane for any validation that
failed. If updateMessagePane is not specified, it is treated as
false.

Method Return
Value Description

getBackgroundColor() String Returns the background color for an element.

The color may be either a hexadecimal value of the form
#RRGGBB, or one of the standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

getClassName() String Returns custom CSS classnames set on the control. The
value may be null, a single CSS classname, or a
space-separated list of CSS classnames that are applied to
the root level of the form.

getControlType() String Returns the control type of this control (for example,
com.tibco.forms.controls.textbox).

getEnabled() Boolean Retrieves the enabled flag for this control.

Method Return
Value Description
TIBCO Business Studio Forms

| 385
getFontColor() String Retrieves the font color for this control. The font color may
be either a hexadecimal value of the form #RRGGBB, or one
of the standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

getFontName() String Returns the name of the font for an element.

getFontSize() Number Returns the size of the font for the element.

getFontWeight() String Returns the weight of the font for an element. The return
value can be either "normal", or "bold".

getForm() Form Returns the form to which this control belongs.

getHint() String Retrieves the hint for this control.

getLabel() String Retrieves the label for this control.

getLink() String Returns the URL used by a hyperlink control.

getLinkText() String Returns the visible text rendered by a hyperlink control.

getOptionLabels() String[] Returns an array of choice labels displayed by a
radiogroup or optionlist control.

getOptionValues() String[] Returns an array of choice values offered by a radiogroup
or optionlist control.

getShortLabel() String Retrieves the short label associated with this control.

The short label property is supported only for mobile
forms.

getName() String Returns the name of this control.

getParent() Pane Returns the parent pane object to which this control
belongs.

getReadOnly() Boolean Returns the read-only state of this control.

getRequired() Boolean Retrieves or sets the required flag for this control.

Method Return
Value Description
 TIBCO Business Studio Forms

http://www.w3.org/TR/CSS1/#color-units

386 | API for Scripting
getTabIndex() Integer Returns the tab index setting configured on the control, or
0 if it is not set. This is useful for custom controls that
support the setting of the tab index in their HTML markup.

getUrl() String Returns the URL used by an image control.

getValue() Object Retrieves the value of this control. Equivalent to
f.controlname (deprecated).

This is either a Duration object or a native JavaScript
Boolean, Date, String or Number value depending on the
control type. Controls configured for list editing or
multi-select drop-down lists return an array of the
underlying control value type. Date, Time, and DateTime
controls return a Date object. Checkbox controls return a
Boolean. Duration controls return a Duration object.
Numeric text input controls return a Number. All others
return String.

getVisible() Boolean Retrieves the visible flag for this control.

getVisualProperty()

(deprecated in 2.0)

String Retrieves visual properties on the control.

The only property supported in versions prior to 2.x was
bgColor. The value for bgColor is hexadecimal, and is the
same format as for font color.

isReallyEnabled() Boolean The enabled setting of a control is controlled both by its
own enabled property, and the enabled properties of any of
its ancestors. If the parent pane of a control is disabled,
then isReallyEnabled() returns false for that control.
The method returns true only if it's own enabled property
is true and all of its ancestor's enabled properties are set to
true.

isReallyVisible() Boolean The visibility of a control is controlled both by its own
visibility property, and the visibility properties of any of its
ancestors. If the parent pane of a control is not visible, then
isReallyVisible() returns false for that control. The
method returns true only if it's own visibility property is
true and all of its ancestor's visibility properties are set to
true.

Method Return
Value Description
TIBCO Business Studio Forms

| 387
setBackgroundColor

(String color)

Void Sets the background color for the element.

The color may be either a hexadecimal value of the form
#RRGGBB, or one of the standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

setClassName(

String className)

Void Sets the custom CSS classnames on the control. The value
may be null, a single CSS classname, or a space-separated
list of CSS classnames that are applied to the component
level of the control. The value replaces any previously set
classname whether that was set in the model or by a
previous call to setClassName().

setEnabled(Boolean

enabledFlag)

Void Sets the enabled flag for this control.

setFocus() Void Sets focus on this control.

setFocus(Integer) Void Sets focus on this control. The API has following optional
parameter:

• index: Use this parameter for controls within a grid or
record pane. Sets the focus on a control instance in the
row specified by the given index. If the specified row is
not visible, scrolls the grid control to the specified row
and page. If the specified row does not exist, logs a
warning message and does not shift the focus. This
parameter is ignored if the control is in a singleton pane
(for instance vertical pane, horizontal pane, and so on).
The default value is 0.

Method Return
Value Description
 TIBCO Business Studio Forms

http://www.w3.org/TR/CSS1/#color-units

388 | API for Scripting
setFocus(Integer

index, Integer item)

Void Sets focus on the control. The API has following two
optional parameters:

• index: Use this parameter for controls within a grid or
record pane. Sets the focus on a control instance in the
row specified by the given index. If the specified row is
not visible, scrolls the grid control to the specified row
and page. If the specified row does not exist, logs a
warning message and does not shift the focus. This
parameter is ignored if the control is in a singleton pane
(for instance vertical pane, horizontal pane, and so on).
The default value is 0.

• item: Is used for list controls and specifies the item
within the list that is to receive the focus. If the
specified item does not exist, logs a warning message
and does not shift the focus. This parameter is ignored
if the control is not a list control. The default value is 0.

The optional parameters need not be specified for controls
that are in a singleton pane (for instance vertical pane,
horizontal pane, and so on).

For a tabbed pane, you need to activate the particular tab
(See setActiveTab() API on pane) before calling this API
on a control within the corresponding child pane.

setFontColor(String

color)

Void Sets the font color for this control. The font color may be
either a hexadecimal value of the form #RRGGBB, or one of
the standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

setFontName(String

fontName)

Void Sets the name of the font for an element.

The fontName parameter is provided as a string to specify
the name of the font.

setFontSize(Integer

size)

Void Sets the size of the font for an element.

The size parameter is provided as an integer to specify
the font size in points.

Method Return
Value Description
TIBCO Business Studio Forms

http://www.w3.org/TR/CSS1/#color-units

| 389
setFontWeight(String

weight)

Void Sets the weight of the font for an element.

The weight parameter is provided as a string to specify
the weight of the font. It can be either "normal", or
"bold".

setHint(String hint) Void Sets the hint for this control.

setLabel(String

label)

Void Sets the label for this control.

setOptions(String[]

values, String[]

labels)

Void Sets the choice values and labels used by a radiogroup or
optionlist control. The values and labels arrays must have
the same length. The values array must not contain any
null elements.

setShortLabel(String

shortLabel)

Void Sets the short label to be used for this control.

The short label property is supported only for mobile
forms.

setRequired

(Boolean

requiredFlag)

Void Sets the required flag for this control.

setValue(Object

value)

Void Sets the value rendered by this control.

Date, Time, and DateTime controls expects a Date object.
Multi-select drop-down lists expect an array of Strings.
Checkboxes expects a Boolean. Duration controls expects a
Duration object. Numeric Text Input controls expects a
Number. All other controls expect a String value. If the
control is configured as a list control, then it expects an
array of the underlying type.

setVisible(Boolean

visibleFlag)

Void Sets the visible flag for this control. If used from an action
script for a control in a grid pane, this controls the visibility
of the entire column represented by this control. If you
update the visibility property of a control in a grid pane
using a computation action, the setting applies to each cell
in the column, but does not affect the visibility of the
column itself.

Method Return
Value Description
 TIBCO Business Studio Forms

390 | API for Scripting
setVisualProperty(

String propName,

String propValue)

(deprecated in 2.0)

Void Sets visual properties on the control.

The only property supported in versions prior to 2.x was
bgColor. The value for bgColor is hexadecimal, and is the
same format as for font color.

setLink(String url) Void Sets the URL used by a hyperlink control.

setLinkText(String

text)

Void Sets the visible text rendered by a hyperlink control.

setReadOnly(Boolean

readOnly)

Void Sets the control to be read-only. This differs from setting
the control to disabled as the user can still copy the value
within the control.

This is only supported for text, textarea, date,
datetime, time, and duration controls.

setUrl(String url) Void Sets the URL used by an image control.

validate(Boolean

updateMessagePane)

Boolean Forces validation to run on the control. Returns true if all
validations for the control return true. If
updateMessagePane is true, then validation messages are
displayed in the messages pane for any validation that
failed. If the control is not visible, the validation runs, but
updateMessagePane is ignored. If updateMessagePane is
not specified, it is treated as false.

Method Return
Value Description
TIBCO Business Studio Forms

| 391
Table 95 Pane Class

Method Return
Value Description

addMessage(String

message, String

cssClasses, Control

or Pane target,

Integer row)

String Adds a message at the end of the message pane and
returns a message identifier, which can be used to remove
the message. The parameters are:

• message: is the message string that is added at the end
of the message pane

• cssClasses: is the space-separated list of CSS classes
to allow custom styling of the message. You need to
add the cssClasses string to the element containing
the message.

• target: is either a control or a pane to which the
message is targeted. If specified, renders a message as
a link, to allow users to navigate directly to the target
of the message. If null, then the message is not
rendered as a link.

• row: is the row of the list control or the control in a grid
pane, to which the message is targeted. This is used
only if a control is specified in the target parameter,
and it is a list control or the control is in a grid pane.
This is an optional parameter. If null, then the first
element in the list control or grid pane column is
targeted with a clickable message. If the target is a list
control within a grid pane, then an array of length two
needs to be specified. The first number in the array
indicates the row of the control. The second value
indicates the index of the value within the list control
that receives the focus.

clearMessages() Void Clears all messages added to the message pane using the
addMessage() API.

getActiveTab() Pane Returns the active child pane for a tabbed pane.

getBackgroundColor() String Returns the background color for an element.

The color may be either a hexadecimal value of the form
#RRGGBB, or one of the standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units
 TIBCO Business Studio Forms

http://www.w3.org/TR/CSS1/#color-units

392 | API for Scripting
getControls() Control[] Returns an array of controls that are direct children of this
pane.

getEnabled() Boolean Retrieves the enabled flag for this pane.

getFontColor() String Retrieves the font color for this pane. The font color may
be either a hexadecimal value of the form #RRGGBB, or one
of the standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

getFontName() String Returns the name of the font for an element.

getFontSize() Number Returns the size of the font for the element.

getFontWeight() String Returns the weight of the font for an element. The return
value can be either "normal", or "bold".

getForm() Form Returns the form object to which this pane belongs.

getLabel() String Retrieves the label for this pane.

getName() String Returns the name of the pane.

getPanes() Pane[] Returns an array of panes that are direct children of this
pane.

getPaneType() String Returns the pane type of this pane (for example,
"com.tibco.forms.panes.vertical").

getParent() Pane or
Form

Returns the parent pane or form object to which this pane
belongs.

getSelection() List or
Object

Returns the object currently selected in the grid or record
pane. If the grid supports multiple selections, then this is a
list that contains the selected records.

getValue() List or
Object

For grid and record panes returns a list. Returns null or a
complex object value for other pane types.

getVisible() Boolean Retrieves the visible flag for this pane.

Method Return
Value Description
TIBCO Business Studio Forms

http://www.w3.org/TR/CSS1/#color-units

| 393
getVisualProperty()

(deprecated in 2.0)

String
(Hexadec
imal)

Retrieves visual properties on the pane.

The only property supported in versions prior to 2.x was
bgColor. The value for bgColor is hexadecimal, and is the
same format as for font color.

isReallyEnabled() Boolean The enabled setting of a pane is controlled both by its own
enabled property, and the enabled properties of any of its
ancestors. If the parent pane of a pane is disabled, then
isReallyEnabled() returns false for that control. The
method returns true only if its own enabled property is
true and all of its ancestor's enabled properties are set to
true.

isReallyVisible() Boolean The visibility of a pane is controlled both by its own
visibility property, and the visibility properties of any of
its ancestors. If the parent pane of a pane is not visible,
then isReallyVisible() returns false for that control.
The method returns true only if it's own visibility
property is true and all of its ancestor's visibility
properties are set to true.

removeMessage(String

messageId)

Void Removes a message previously added to the message
pane using the addMessage()API. You may only remove
the messages added using the addMessage() API. The
messageId is an identifier used to specify which message
needs to be removed.

setActiveTab(Pane

childPane)

Void Sets the active child pane for a tabbed pane. The tab to be
set as active tab is passed as childPane parameter to the
method. The childPane parameter must be a direct child
pane of the tabbed pane.

setBackgroundColor

(String color)

Void Sets the background color for the element.

The color parameter is provided as a String in the form
#RRGGBB, where RR, GG, and BB are hexadecimal numbers
representing the red, blue, and green components
respectively.

setEnabled(Boolean

enabledFlag)

Void Sets the enabled flag for this pane.

Method Return
Value Description
 TIBCO Business Studio Forms

394 | API for Scripting
setFontColor(String

color)

Void Sets the font color for this pane. The font color may be
either a hexadecimal value of the form #RRGGBB, or one of
the standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

setFontName(String

fontName)

Void Sets the name of the font for an element.

The fontName parameter is provided as a string to specify
the name of the font.

setFontSize(Integer

size)

Void Sets the size of the font for an element.

The size parameter is provided as an integer to specify
the font size in points.

setFontWeight(String

weight)

Void Sets the weight of the font for an element.

The weight parameter is provided as a string to specify
the weight of the font. It can be either "normal", or
"bold."

setLabel(String

label)

Void Sets the label for this pane.

setSelection(

List selection |

Object selection)

Void Valid only for grid and record panes. Sets the selected row
or record of the pane to the object passed into the method.
Passing null or an empty list clears the selection. If the
selection is not present in the list managed by the pane,
then this has no effect.

setValue(

List value |

Object value)

Void Sets the value bound to the pane. For grid panes and
record panes, this is a list of objects that represents either
the rows or records represented by the panes. Other pane
types pass a single value.

setVisible(Boolean

visibleFlag)

Void Sets the visible flag for this pane.

setVisualProperty(

String propName,

String propValue)

(deprecated in 2.0)

Void Sets visual properties on the pane.

The only property supported in versions prior to 2.x was
bgColor. The value for bgColor is hexadecimal, and is the
same format as for font color.

Method Return
Value Description
TIBCO Business Studio Forms

http://www.w3.org/TR/CSS1/#color-units

| 395
Table 96 List Class

validate(Boolean

updateMessagePane)

Boolean Forces validation to run on the pane and all child panes
and controls. Returns true if all validations return true. If
updateMessagePane is true, then validation messages
are displayed in the messages pane for any validation that
failed. If updateMessagePane is not specified, it is treated
as false

Method Return
Value Description

add(Object element) Boolean Adds the specified element to the end of the list. If the
element already exists on the list, an exception is thrown.

add(Integer Index,

Object element)

Void Inserts the element at the specified index. If the element
already exists on the list or if the index is out of range, an
exception is thrown.

clear() Void Removes all the elements from the list.

contains(Object

element)

Boolean Returns true if the specified element is part of the list, and
false otherwise.

get(Integer index) Object Returns the element at the given index.

isEmpty() Boolean Returns true if there are no elements in the list, and false
otherwise.

iterator() Iterator Returns an iterator over the elements in the list in proper
sequence. This can be used to iterate over the items of the
given list. The API methods supported by the Iterator
class are listed in Table 98.

remove(Integer

index)

Boolean Removes the element at the specified index from the list. If
the index is out of range, an exception is thrown.

remove(Object

element)

Boolean Removes the first occurrence of the specified element from
the list, if it is present.

set(Integer index,

Object element)

Object Replaces the element at the specified index in the list with
the new specified element. If the index is out of range, an
exception is thrown.

Method Return
Value Description
 TIBCO Business Studio Forms

396 | API for Scripting
Table 97 Iterator Class

size() Integer Returns the number of elements in the list.

subList(Integer

fromIndex,Integer

toIndex)

List Returns a list over a subset (between the specified
fromIndex, inclusive, and toIndex, exclusive) of items
from the original list. The sublist is backed by the original
list, so changes to the sublist is reflected in the original list
and vice-versa until the original list is structurally
modified.

Method Return
Value Description

add(Object element) Void Inserts the specified element into the list immediately
before the element that would be returned by next(), if
any, and after the element that would be returned by
previous(), if any. If the element already exists on the
list, an exception is thrown.

hasNext() Boolean Returns true if the list iterator has more elements when
traversing the list in the forward direction.

hasPrevious() Boolean Returns true if the list iterator has more elements when
traversing the list in the reverse direction.

next() Object Returns the next element in the list. Returns null if the
iteration does not have a next element.

nextIndex() Integer Returns the index of the element that would be returned
by a subsequent call to next(). Returns list size if the
iterator is at the end of the list.

previous() Object Returns the previous element in the list. Returns null if
the iteration does not have a previous element.

previousIndex() Integer Returns the index of the element that would be returned
by a subsequent call to previous() or -1 if iterator is at
beginning of list.

Method Return
Value Description
TIBCO Business Studio Forms

| 397
Table 98 Logger Class

remove() Void Removes from the list the last element that was returned
by next() or previous(). This method can be called only
if either next() or previous() have been called and there
were no calls to add() or remove() after the last call to
next() or previous().

set(Object element) Void Replaces the last element returned by next() or
previous() with the specified element. This method can
be called only if either next() or previous() have been
called and there were no calls to add() or remove() after
the last call to next() or previous().

Method Return
Value Description

fatal(String message) Void Logs the given messages at the fatal logging level.

error(String message) Void Logs the given messages at the error logging level.

warn(String message) Void Logs the given messages at the warn logging level.

info(String message) Void Logs the given messages at the info logging level.

debug(String message) Void Logs the given messages at the debug logging level.

trace(String message) Void Logs the given messages at the trace logging level.

isFatalEnabled() Boolean Checks whether the Fatal logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

isErrorEnabled() Boolean Checks whether the Error logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

isWarnEnabled() Boolean Checks whether the Warn logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

Method Return
Value Description
 TIBCO Business Studio Forms

398 | API for Scripting
Complex Data
The classes defined in the business object model (BOM) are represented in the
runtime JavaScript API. Parameters can be defined as external types to classes
defined in a BOM, either in the same project as the form or in dependent projects.
Each attribute defined in a class results in corresponding get[AttributeName]()
and set[AttributeName](value) methods. For example, a BOM class Customer
that had a firstName attribute would generate a Customer class with the
methods:

String getFirstName();
void setFirstName(String firstName);

Factories
For each package defined in the business object model in the project, or in any
projects upon which the project depends, there is an instance of a factory available
in the form script editors. These are accessed via the available factory variable in
each script.

New instances of complex types are created via the use of these factories. Each
factory has a set of static methods that can be used to create instances of the
classes defined within that package.

The factory for each package is referenced via an instance variable of the form:
factory.[business_object_model_name], where
[business_object_model_name] is the fully qualified BOM package name, with
"." replaced by an underscore "_".

A create method for each class is provided with the signature:

<class-name> create<class-name>()

isInfoEnabled() Boolean Checks whether the Info logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

isDebugEnabled() Boolean Checks whether the Debug logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

isTraceEnabled() Boolean Checks whether the Trace logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

Method Return
Value Description
TIBCO Business Studio Forms

| 399
For example, suppose the package com.example.customer contains classes for
Customer and Address. We would create instances of each of these objects using
the following:

var address = factory.com_example_customer.createAddress();
var customer = factory.com_example_customer.createCustomer();

A factory is only available for packages that directly contain class definitions. For
example, there would not be a factory for the com.example package if there were
no classes defined directly in that package.

The content assist in any script editor displays the available factories after typing
factory. Only factories for packages in the current project or referenced projects
is displayed.

Packages
There is also a corresponding package instance available in the pkg variable.

The naming of the instance of this package follows the same rule as for factories.

Enumerations defined in the package can be retrieved as read-only arrays using a
method with the pattern get[enumName](). So, for example, if the
com.example.customer package contains an enumeration named ServiceLevel
that contains the Enum Literals GOLD, SILVER, BRONZE, then you could access
an array containing these three values using:

pkg.com_example_customer.getServiceLevel()

DateTimeUtil Factory
There is a built-in factory named DateTimeUtil. This factory provides access to
methods used in creating Duration objects:

Method Return
Value Description

createDuration(Boolean
isPositive, Integer
years, Integer months,
Integer days, Integer
hours, Integer
minutes, Integer
seconds)

Duration Creates a Duration object that can then be used to set
as a value on duration controls, the value on
parameters or data fields of type Duration, or as
attributes of complex objects with type Duration.

Example usage:
var duration =
factory.DateTimeUtil.createDuration(true,1,3
,12,12,32,20);
 TIBCO Business Studio Forms

400 | API for Scripting
Duration Class
The value expected by the setValue of the duration control is an object of type
Duration. The Duration class has the following methods:

Method Return
Value Description

getYears() Integer Returns the number of years set in duration.

setYears(Integer years) Void Sets number of years in duration.

getMonths() Integer Returns number of months set in duration.

setMonths(Integer
months)

Void Sets number of months in duration.

getDays() Integer Returns number of days set in duration.

setDays(Integer days) Void Sets number of days in duration.

getHours() Integer Returns number of hours set in duration.

setHours(Integer hours) Void Sets number of hours in duration.

getMinutes() Integer Returns number of minutes set in duration.

setMinutes(Integer
minutes)

Void Sets number of minutes in duration.

getSeconds() Integer Returns number of seconds set in duration.

setSeconds(Integer
seconds)

Void Sets number of seconds in duration.

getMilliseconds() Integer Returns number of milliseconds set in duration.

setMilliseconds(Integer
milliseconds)

Void Sets number of milliseconds in duration.

isNegative() Boolean Returns true if this duration is a negative duration.

setIsNegative(Boolean
isNegative)

Void Sets whether this duration should be treated as a
negative duration.

convert(Boolean years,
Boolean months, Boolean
days, Boolean hours,
Boolean minutes, Boolean
seconds)

Void Converts the internal state of the Duration object to
use only the intervals specified as true.
TIBCO Business Studio Forms

| 401
equals(Duration
duration)

Boolean Returns true if the duration passed in is equal to
this duration.

compareTo(Duration
duration)

Integer Returns a negative integer, zero, or a positive integer
depending on whether this object is less than, equal
to, or greater than the specified duration.

add(Date originalDate) Date Returns a new date that is the result of adding the
duration to originalDate.

toString() String Returns the duration in an ISO-8601 string.

Method Return
Value Description
 TIBCO Business Studio Forms

402 | API for Scripting
Utility Methods
The following table describes the Util class API methods for scripting.

Table 99 Util Class

Method Return
Value Description

tibco.forms.Util.compare(String
value1, String value2)

• value1: first value to compare

• value2: second value to compare

Integer Compares two strings
lexicographically and returns an
integer that represents the
comparison between the values:

• returns < 0: value1 less than
value2.

• returns 0: value1 equal to
value2.

• returns > 0: value1 greater than
value2.

This method is for use by the custom
control wrappers only and is not
supported in JavaScript Editor.

tibco.forms.Util.escapeHtml(String
text)

• text: text to be escaped

String Escapes HTML markup in the given
text value so it can safely be
embedded in the browser without
the content being interpreted as
HTML. Returns the escaped text
value as a string.

This method is for use by the custom
control wrappers only and is not
supported in JavaScript Editor.

tibco.forms.Util.formatDate (String
formatString, Object|String date)

• formatString: a format string that
conforms to the Java date format syntax, as
used in the Forms framework

• date: either a Date object or a string that
conforms to the ISO-8601 date format

String Formats a date value according to the
input format. Returns a formatted
date value as a string.

This method is for use by the custom
control wrappers only and is not
supported in JavaScript Editor.
TIBCO Business Studio Forms

| 403
tibco.forms.Util.formatNumber (String
formatString, Number|String number)

• formatString: a format string that
conforms to the Java number format
syntax, as used in the Forms framework

• number: a JavaScript number or a string
containing a numeric value

String Formats a number object according to
the input value. Returns a formatted
number as a string.

This method is for use by the custom
control wrappers only and is not
supported in JavaScript Editor.

tibco.forms.Util.substitute (String
template, Object args)

• template: containing substitution variables
of the form {0}, {1}, .. {n}

• args: string array containing values to
substitute into the template. The first value
in the array replaces {0} in the template, the
second replaces {1}, and so on.

String Substitutes arguments into a string
template. This is useful when
generating markup for controls that
need an initial DOM structure before
being instantiated. This is common
with libraries such as jQuery or YUI.

Returns a string with values
substituted in the template.

This method is for use by the custom
control wrappers only and is not
supported in JavaScript Editor.

tibco.forms.Util.checkDateFormat
(String value)

• value: string containing the date value

Boolean Checks whether the date passed as a
string is in the forms date edit format
(that is, ISO-8601 date format) or not.

It returns true if the date is in the
required edit format, and false
otherwise.

tibco.forms.Util.checkTimeFormat
(String value)

• value: string containing the time value

Boolean Checks whether the time passed as a
string is in the forms time edit format
(that is, ISO-8601 time format) or not.

Returns true if the time is in the
required edit format, and false
otherwise.

Method Return
Value Description
 TIBCO Business Studio Forms

404 | API for Scripting
tibco.forms.Util.checkDateTimeFormat
(String value)

• value: is a string date-time value

Boolean Checks whether the date-time passed
as a string is in the forms date-time
edit format (that is, ISO-8601
date-time format) or not.

Returns true if the date-time is in the
required edit format, and false
otherwise.

tibco.forms.Util.checkNumberConstraint
(Object value, Integer totalLength,
Integer decimalLength)

• value: is an object to be validated

• totalLength: is an integer value specifying
the maximum number of digits

• decimalLength: is an integer value
specifying the maximum number of digits
following the decimal place

Boolean Validates whether the value
parameter has no more than
totalLength digits and at most
decimalLength digits following the
decimal place.

Returns true if the value conforms
to both totalLength and
decimalLength constraints.

tibco.forms.Util.checkRegExp(String
value, RegExp regExp)

• value: is a string value to be tested against
regExp

• regExp: JavaScript RegExp object with
which the value is to be tested

Boolean Validates a value against a regular
expression.

Returns true if the value matches
regExp.

tibco.forms.Util.checkTextLength
(String value, Integer length)

• value: is a string value to be validated for
length

• length: is an integer value specifying the
maximum length

Boolean Checks whether the specified value
conforms to the given length
constraint.

Returns true if the length of the
specified value is less than or equal
to the given length.

Method Return
Value Description
TIBCO Business Studio Forms

| 405
tibco.forms.Util.checkLowerLimit
(String value, String lowerLimit,
Boolean lowerLimitInclusive)

• value: is a string value to be checked

• lowerLimit: is a string value specifying the
lower limit

• lowerLimitInclusive: is a boolean value.
If true, the lowerLimit is inclusive.

Boolean Checks whether the value is
numerically greater than
lowerLimit, or if
lowerLimitInclusive is true,
greater than or equal to lowerLimit.

Returns true if the value satisfies the
lower limit constraint.

tibco.forms.Util.checkUpperLimit
(String value, String upperLimit,
Boolean upperLimitInclusive)

• value: is a string value to be checked

• upperLimit: is a string specifying the
upper limit

• upperLimitInclusive: is a boolean value.
If true, the upperLimit is inclusive.

Boolean Checks whether the value is
numerically less than upperLimit, or
if upperLimitInclusive is true,
less than or equal to upperLimit.

Returns true if the value satisfies the
upper limit constraint.

tibco.forms.Util.checkInteger(String
value)

• value: is a string value to be checked

Boolean Checks whether the specified value is
a valid integer or not.

Returns true if the value is a valid
integer.

tibco.forms.Util.checkNumeric(String
value)

• value: is a string value to be checked

Boolean Checks whether the specified value is
a valid number or not.

Returns true if the value is a valid
number.

tibco.forms.Util.checkMultiplicity
(Object value, Integer lowerBound,
Integer upperBound)

• value: is an object (array or list) to be
checked

• lowerBound:is an integer value specifying
the lower bound

• upperBound: is an integer value specifying
the upper bound. Set upperBound to -1 to
signify an unbounded object.

Boolean Checks whether a multi-valued
object (array or list) has at least
lowerBound and at most upperBound
elements.

Returns true if the constraints are
satisfied.

Method Return
Value Description
 TIBCO Business Studio Forms

406 | API for Scripting
TIBCO Business Studio Forms

| 407
Chapter 8 Tips and Tricks

This chapter contains tips for working with TIBCO Forms.

Topics

• Recommendations for Forms Modeling, page 408

• Tips for Using TIBCO Business Studio Forms, page 412
 TIBCO Business Studio Forms

408 | Recommendations for Forms Modeling
Recommendations for Forms Modeling

The following recommendations generally give the best results when modeling
large and complex forms. Procedures are presented in the order they would
normally be performed.

Group Related Controls Together in Vertical Panes

When a form is first generated, it contains one large pane with all the controls for
the selected user task parameters.

Begin by organizing large areas. Don’t worry initially about configuring
individual panes and controls. Concentrate on putting controls into panes with
other, related controls. The positioning of the panes can best be done after this
step is accomplished.

1. Create a vertical pane for each group of related controls. Do not nest this pane
inside another pane. Don’t worry about multiple columns initially.

2. Give each pane a label, based on the function of the controls it will contain.

3. Drag the controls into the pane.

4. Repeat this procedure as needed for each group of related controls.

5. Modify the labels of the controls on each pane.

Use the Visibility Property to Simplify User Experience

If you expect to have a number of controls that are irrelevant to certain users or
not applicable in certain situations, group these fields together in a vertical pane.
You can set the visibility property of this pane to false conditionally. The condition
could be determined by another control. For example, a pane containing a set of
controls for previous order information could be made visible or invisible
depending on the runtime value of a radio control.

If “Ongoing Customer” is selected, the pane labeled Previous Orders, and all of its
controls, would be visible, but that pane would be invisible if “New Customer”
were selected.

In addition, the form contains a message pane (for error messages) and a
navigation pane (for the Cancel, Close, and Submit buttons). These objects are
created with default settings that do not normally need to be modified.
TIBCO Business Studio Forms

| 409
Configure the Pane Type Property (optional)

If desired, change vertical panes to horizontal or tabbed panes by configuring the
Pane Type property on the General tab of the pane’s Properties View.

Modify Excessively Long Forms

An extremely long form requires unwanted scrolling to be viewed or filled in and
adversely affects the user’s experience. To minimize the length of a form:

1. Create multiple columns.

a. Place groups of controls into two or more separate vertical panes, each
representing a separate column. Drag the second pane to a position next to
the first pane, so that you see a dotted line appear. The dotted line means
that a horizontal pane will be created to contain the two vertical panes.

b. If you want more than two vertical columns, drag additional panes, one at
a time, next to the right-most vertical pane within the new horizontal
parent pane.

c. If you want to have other groups of fields in the second column, rather
than adding another column next to the existing columns, you will
probably want to first create an additional horizontal pane to hold them.
Then place new vertical panes within this horizontal parent pane, and add
the additional controls to the vertical panes. This ensures that the added
controls are aligned vertically and horizontally.

You can create, for instance, two columns out of four modules by first
creating two horizontal panes, one above the other, and placing two
vertical panes inside each of them. Your controls would be place within the
four vertical panes.

In this way, the default tab sequence will be left-to-right, and then
top-to-bottom, the way you read a book, which is the tabbing behavior
expected by most users.

2. Use tabbed panes in place of vertical panes. See the section, Create Tabbed
Panes.

Expand Narrow Panes to Avoid Wrong Placement at Run Time

When there are two or more narrow root-level panes with a combined fixed width
that is less than the available space into they are rendered, at runtime such panes
may be rendered next to each other instead of on top of each other.

To avoid improper pane placement in this case, you can do one of the following:

• Increase the width of these panes so that there is not enough room left for
them to be rendered side by side
 TIBCO Business Studio Forms

410 | Recommendations for Forms Modeling
• Set the overflow attribute for the panes to expand, so that the panes expand
and fill the available space.

Create Tabbed Panes

Use tabbed panes only when there is information that is seldom used. Because
they are partially hidden and can be hard to find, user interface specialists often
recommend that they be avoided or used cautiously.

Add a Tab to an Existing Tabbed Pane

If you want to add a tab to an existing tabbed pane, click the button for adding a
new child pane. This button is circled in the diagram below:

Additional Recommendations

• During the early stages of form modeling, work with the labels, but don’t
resize panes or controls (excepting tabbed panes). Accept the default sizes
until they are positioned correctly relative to each other.

Better advice is to leave the panes to size themselves automatically. Only set
an explicit size if there is a compelling reason to do so.

Vertical and horizontal panes are automatically resized so that the panes or
controls they contain fit properly.
TIBCO Business Studio Forms

| 411
• Assign meaningful pane, control, parameter, action, and rule names before
creating bindings and other scripts.
 TIBCO Business Studio Forms

412 | Tips for Using TIBCO Business Studio Forms
Tips for Using TIBCO Business Studio Forms

The following suggestions relate to creating and enhancing your forms.

How can I create a Form that is not associated with any business process?

Right-click Forms in the Project Explorer, click New, and click Form.
Alternatively, on the File menu, click New > Other to open the New dialog box.
Expand TIBCO Forms by clicking the plus icon, and click Form.

How can I create multiple columns of controls on a Form?

Create a horizontal pane, and place two or more vertical panes inside of it. Then
add controls to the vertical (child) panes. Each vertical pane will contain a column
of controls.

How can I align the labels between different panes, for example, when there are several panes
that are direct children of a root pane?

To align the label width for all panes to achieve a uniform and consistent
appearance, set an explicit child label width for all panes whose labels should be
aligned.

How can I create option lists or radio buttons using array type parameters?

In the properties tab of the option list or radio button Properties View, create
Label Array and Value Array Choice Bindings. Note that if different parameters
are selected for Values and Labels, you must ensure that the number of items in
both the arrays are equal.

How can I reuse similar behavior between different controls?

Do not reference the control by name in your shared action scripts, but rather use
the context.control object that represents the source control of the fired event.

How can I use part of the parameter value as a value for a control?

While capturing input values for items like social security numbers, different
controls can be used to capture different parts of the same value.

For example a value of parameter ssn, say, 888-78-9898, can be captured in three
text fields. First, a text control named ssn_part1 takes input for the first part,
888.
TIBCO Business Studio Forms

| 413
Second, a text control called ssn_part2 takes input for the second part, 7. Finally,
a text control called ssn_part3 takes input for the last part 9898.

This can be achieved by providing a scriptlet that returns different parts of the
parameter value. In this example the three expressions would be
p.ssn.substring(0,3), p.ssn.substring(5,7), p.ssn.substring(8,12).
Each of these scripts would be provided in their own computation actions within
a rule that fires when the underlying parameter is updated.

Similarly, a scriptlet that assembles the values of 3 controls can be used as an
expression for a parameter.

In the above example this expression would be:
f.ssn_part1 + "-" + f.ssn_part2 + "-" + f.ssn_part3;
 TIBCO Business Studio Forms

414 | Tips for Using TIBCO Business Studio Forms
TIBCO Business Studio Forms

| 415
Index

A

Actions 73, 82
Add a Computation Action Using the Outline

View 138
Add a Rule Using the New Rule Wizard 144
Add a Rule Using the Outline View 139
Add a Script Action Using the Outline View 137
Add a Second Validation for Email Field 46
Add New Panes to the Capture Claim Form 17
Add Syntax Validation for Email Field 45
Add Validation for Date of Birth Field 46
Add Validation for Phone Field 42
Add Validation for Time of Accident Field 49
Add Validation for Witness Phone Field 49
Adding a Tab to an Existing Tabbed Pane 410
Additional Recommendations 410

B

Basic Terms for Working with Forms 71
Button 310

C

Calling External JavaScript Functions 161
Change the Background Colors of Panes 33
Change the Label Width Property of the Panes 36
changes from the previous release xxii
Changes in Migrated Forms 208
Changing Control Type 25
CheckBox 310
Child Label Properties Tab for Forms 319
Child Label Tab for Panes 327
Child Layout Tab for Forms 318

Child Layout Tab for Panes 326
Choosing a locale-specific version of a form at

run-time 201
Concepts 69, 241
Configure the Completed Button 66
Configure the Failed - Do Not Try Again Button 65
Configure the Failed - Try Again Button 65
Configure the Interview Witness Form 31
Configure the Pane Type Property (optional) 409
Configuring Panes 162
Controls 72, 75, 310
Create a New Action 142
Create a New Pane 17
Create a Rule to Compute Age (Capture Claim

Form) 51
Create Rule to Round Amount to Nearest Dollar 56
Create Rule to Update Required Option for Guardian

When Age 53
Create Rules that Display Context-Specific Hints on

Entering Accident Description Control 61
Create Rules that Display Hint on Entering Claim

Amount Controls 58
Create Rules that Hide Hints on Exiting Accident

Description Control 63
Create Rules that Hide Hints on Exiting Amount

Controls 60
Creating a New Form 211
Creating Columns with Nested Panes 162
Creating Tabbed Panes 410
customer support xxiii, xxv

D

Date 310
Date-Time 311
Define Validation Dialog 154
Defining Custom Actions for Buttons 64
 TIBCO Business Studio Forms

416 | Index
Disabling a Control 25
Drag Controls into Appropriate Panes 21

E

Edit an Action 139
Edit Validation for Claim Amount Field 48
Examine Auto-Generated Validation for Age Field 47
Examine the Claims Process Business Process 5

F

Font Tab for Controls 342
Font Tab for Panes 326
Form Builder 76
Form Controls 75
Forms Scripting

Scope of Variables 376

G

General Tab for Controls 330
General Tab for Panes 321
Getting Started 1
Group related controls together in vertical panes 408

H

Horizontal Pane 305
How to Contact TIBCO Support xxiii
Hyperlink 311

I

Image 312

Import the sample Project 5

L

Layout Tab for Controls 341
Layout Tab for Panes 322
Localizing a Form 197

M

Message Pane 305
Migrating from Previous Versions of TIBCO Business

Studio Forms 206
Modify Control Properties

Labels, Required, and Hint Values 22
Type and Enabled 24

Modify Excessively Long Forms 409
Modify Names and Labels of Panes 20
Modify Pane Properties

Visibility 27
Modify the Form Level Child Labels Properties 36

N

Nesting Panes 162, 303

O

Outline View 94

P

Panes 72, 75, 303
Parameters 72, 97
Pass-through 312
TIBCO Business Studio Forms

Index | 417
Pick an Existing Action 141
Positioning Controls into a Multi-Column Layout 162
Preview of Finished Forms 38
Problem Markers 123, 123, 232, 242
Properties Tab for Controls 322, 332
Properties View for Controls 330
Properties View for Panes 321
Properties View for the Option List Control 336
Properties View for the Radio Control 338
Properties View for the Text Area Control 340
Properties View for the Text Control 339
Properties View Tabs 315

Q

Quick Fixes 123

R

Radio 312
Recommendations for Forms Modeling 408
Reference 297
Resequencing Tabbed Panes 164
Resizing a Tabbed Pane 164
Rules 84
Rules Tab for Controls 344

S

Sample Application
General Description 6

Setting Actions 137
Setting Rules 139
Setting Visibility of Panes 28, 30
Steps to create a locale-specific Properties file 198
Summary of Tutorial 1 32
Summary of Tutorial 2 40
Summary of Tutorial 3 50
Summary of Tutorial 4 67

support, contacting xxiii, xxv
Switch to Solution Design Mode 41

T

Tabbed Pane 305
Tasks 125, 209
technical support xxiii, xxv
Text 310
Text Area 310
The Form 71, 197
The Form Builder and Form Validation 75
The Modeling Environment for Forms 70, 192
The Palette for the Form Designer 300
The Palette View 302
Thumbnail Mode 94
TIBCO Business Studio Documentation xxiii
TIBCO_HOME xxiii
Time 311
Tips for Using TIBCO Business Studio Forms 412
To Migrate a Form to the Version 2.2.0 206
Tree Mode 95
Tutorial 1

Forms, Panes, and Controls 5
Tutorial 2

Customizing the Appearance of a Form 33
Tutorial 3

Validations 41
Tutorial 4

Rules, Events, and Actions 51
Typographical Conventions xxiii

U

Updating Forms Using Synchronize Parameters 147
Use the Visibility property to simplify the user

experience 408
Using Business Studio 2
Using the Outline view with forms 95
 TIBCO Business Studio Forms

418 | Index
V

Validating Data in a Form 147
Validation Builder 77
Validations 73
Validations Tab for Controls 343
Vertical Pane 304
View Forms 12

Capture Claim 13
Gateways 16
Interview Witness 14
User Tasks 12

Viewing Pane and Control Borders 165
TIBCO Business Studio Forms

	TIBCO Business Studio™ Forms User’s Guide
	Contents
	List of Tables
	List of Figures
	Preface
	Changes from the Previous Release of this Guide
	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Getting Started
	Introduction
	Using TIBCO Business Studio
	Who Should Use TIBCO Business Studio Forms?

	Tutorials
	Installing the Forms Tutorial Solutions Project
	Tutorial 1: Forms, Panes, and Controls
	Task A: Import the Sample Project
	Task B: Examine the Claims Process Business Process
	Sample Application: General Description

	Task C: Open the Forms
	Open the Capture Claim Form
	Open the Interview Witness Form

	Task D: View Forms
	User Tasks
	Gateways

	Task E: Add New Panes to the Capture Claim Form
	Create a New Pane

	Task F: Modify Names and Labels of Panes
	Task G: Drag Controls into Appropriate Panes
	Modify Control Properties: Labels, Required, and Hint Values
	Modify Control Properties: Type and Enabled
	Modify Pane Properties: Visibility
	Configure the Interview Witness Form

	Summary of Tutorial 1

	Tutorial 2: Customizing the Appearance of a Form
	Task A: Change the Background Colors of Panes
	Task B: Change the Label Width Property of the Panes
	Modify the Form Level Child Labels Properties

	Task C: Preview of Finished Forms
	Summary of Tutorial 2

	Tutorial 3: Validations
	Task A: Switch to Solution Design Mode
	Task B: Add Validation for Phone Field
	Task C: Add Syntax Validation for Email Field
	Task D: Add a Second Validation for Email Field
	Task E: Add Validation for Date of Birth Field
	Task F: Examine Auto-Generated Validation for Age Field
	Task G: Edit Validation for Claim Amount Field
	Task H: Add Validation for Time of Accident Field
	Task I: Add Validation for Phone Field
	Summary of Tutorial 3

	Tutorial 4: Rules, Events, and Actions
	Task A: Create a Rule to Compute Age (Capture Claim Form)
	Task B: Create Rule to Update Required Option for Guardian When Age < 21
	Task C: Create Rule to Round Amount to Nearest Dollar
	Task D: Create Rules that Display Hint on Specifying Claim Amount Controls
	Task E: Create Rules that Hide Hints on Exiting Amount Controls
	Task F: Create Rules to Display Context-Specific Hints on Specifying Customer Description Control
	Task G: Create Rules to Hide Hints on Exiting Customer Description Control
	Task H: Defining Custom Actions for Buttons
	Summary of Tutorial 4

	Chapter 2 Concepts
	The Modeling Environment for Forms
	Working with Forms

	The Form
	Basic Terms for Working with Forms
	Form Elements

	Form Builder and Form Validation
	Bindings
	Setting Bindings
	Set a Binding Between Controls
	Set a Binding Between a Control and a Parameter
	Set a Binding from the Mappings Tab

	Direction of Bindings
	Assign Binding Both Ways

	Actions
	Actions Summary Table

	Rules
	Rules Summary Table

	The Design Tab and Preview Tabs
	Presentation Channel Settings
	Port Settings for Preview
	Copying the Form Preview URL
	Logging
	Locale
	Logging Level
	Reload
	Performance Metrics
	View Datastore Data
	Visibility in the Preview Tab

	Outline View
	Thumbnail Mode
	Tree Mode
	Using the Outline View with Forms
	Parameters
	Parameters Summary Table

	Shared Actions
	Rules
	Managing Form Elements From the Outline View
	Use the Context Menu in the Outline View
	Rearrange Outline by Drag-n-Drop

	Use Business Labels in Outline View

	Using the Business Object Model
	The Objects in a Business Object Model
	Elements
	Children
	Relationships
	Multiplicity of Relationships

	Cross-Resource References
	Breakage Mechanisms
	Quick Fixes
	Reload the working copy - Quick Fix
	Clear the reference - Quick Fix
	Repair the reference - Quick Fix

	Mobile Forms
	Working with Mobile Forms
	How to Enable Mobile Forms?
	Previewing Mobile Forms

	Mobile Specific Configuration of Controls and Panes
	Rendering of Mobile Forms

	Problem Markers
	Quick Fixes

	Chapter 3 Tasks
	Creating a New Form
	Using Drag and Drop Gesture to Customize a Form
	Edit or Remove the Validation Script
	Working with Bindings, Actions, and Rules
	Setting Bindings
	Add a Binding from the General Properties Tab for a Control
	Add a Binding from the Parameter Dialog
	Add a Binding from the Mappings Tab
	Remove a Binding

	Setting Actions
	Add a Script Action Using the Outline View
	Add a Computation Action Using the Outline View
	Edit an Action

	Setting Rules
	Add a Rule Using the Outline View
	Add a Rule Using the Rule Wizard

	Styling Forms Using Cascading Style Sheets
	Setting CSS Classes
	Using an external CSS resource
	Best Practices
	Examples

	Validating Data in a Form
	Helping Users with Validation Messages
	Implementing Validations
	Adding a Validation
	Editing a Validation
	Edit Validation Script Dialog
	Example 1: Custom Validation Message
	Example 2: Custom Validation Message with Substitution Variables
	Example 3: Validation Message Referenced from External Resource

	Enabling or Disabling a Validation

	Calling External JavaScript Functions
	Configuring Panes
	Nesting Panes
	Creating Columns with Nested Panes
	Positioning Controls into a Multi-Column Layout

	Resequencing Tabbed Panes
	Resizing a Tabbed Pane
	Viewing Pane and Control Borders

	Using Embedded Forms
	Working with Embedded Forms
	Working with Embedded Form Parameters
	Rendering of Embedded Forms
	Editing Embedded Forms

	Working with the Mappings Tab
	Coloration Feedback
	Settings Bindings
	Adding Computation Actions
	Editing Computation Action Using the Script Editor Section
	Common Gestures for Editing Mappings

	Customizing Property Resource Bundles
	The Merging Process
	Customizing Property Resource Bundles
	Validations Related to Custom Common Resources

	Customizing the Form’s Preview Data
	Editing the File [form-name].data.json
	Configure the Setting in the Properties View

	Using Form Data Fields
	What Is a Form Data Field?
	Configuring a Form Data Field

	Using Numeric Controls
	What is a Numeric Control?
	Inserting a Numeric Control
	Editing a Numeric Control

	Localizing a Form
	Defining Localization Properties Outside the Form

	Toggling between Business Analysis and Solution Design Modes
	Migrating from Previous Versions of TIBCO Business Studio Forms
	Migrating from TIBCO Business Studio Version 2.2 and 3.0 to Version 3.1
	To Migrate a Form to Version 2.0
	Changes in Migrated Forms

	Chapter 4 Advanced Tasks
	Import the Forms Advanced Samples
	Using CSS to Customize the Rendering of a Form Control
	Creating Custom Add and Delete Buttons for a Grid Pane
	Using Editable List Controls
	Changing a Control’s Background Color Based on its Value
	Controlling the Visibility of a Pane Based on the Value of a Control
	Using a Check Box to Set Properties for Another Control
	Using a Business Object Model with Multiple Sub-types
	Using Enumerations as Choices in an Optionlist or Radiogroup
	Validating Commonly Used Primitive Types

	Chapter 5 Performance Improvements
	Static Rendering
	How does Static Rendering Improve Performance?
	When to Use Static Rendering
	Configuration of Static Rendering
	Static Rendering Constraints
	Model Validations
	Runtime Functionality

	Deferred Rendering and Deferred Initialization
	How do Deferred Rendering and Deferred Initialization Improve Performance?
	Configuration of Deferred Rendering and Deferred Initialization
	Deferred Rendering and Deferred Initialization Constraints
	Model Validations
	Runtime Functionality

	Chapter 6 Custom Controls
	Overview
	Defining Custom Controls
	Working with the Component Library File
	Working with the ControlWrapper
	Using the Custom Control

	Runtime Life Cycle of Custom Controls
	Runtime Life Cycle of Custom Control Used within Grid Pane

	Component Library Model
	Library
	Palette Drawer
	Event Type
	External Resource
	Control Type
	Capabilities
	Property

	Control Wrapper Implementation
	initialize()
	refresh()
	destroy()
	getValue()
	getFormattedValue()
	isReady()
	setFocus()
	compare()
	renderStatic()

	Component Interface
	generateId()
	getControl()
	getFactory()
	getForm()
	getHintId()
	getLabelId()
	getLocale()
	getParentNode()
	getPresentationURL()
	getResources()
	getValidationMessageIds()
	raiseEvent()

	BOM JavaScript API for Custom Controls
	Factory Methods
	BOM Class Methods
	BOM Class Instance Methods

	Utility Methods

	Chapter 7 Reference
	The Workbench
	The Palette for the Form Designer
	Panes
	Types of Panes
	Vertical Pane
	Horizontal Pane
	Tabbed Pane
	Message Pane
	Record Pane
	Grid Pane

	Setting Pane Properties with Bindings and Rules

	Controls
	Text
	Textarea
	Checkbox
	Date
	Time
	Date-Time
	Duration
	Hyperlink
	Image
	Label
	Optionlist
	Pass-through
	Radiogroup
	Button
	Using "Edit as List" with a Control
	Using Control or Component Labels

	Properties View Tabs
	Properties View for Forms
	General Tab
	Mappings Tab
	Font Tab
	Child Layout Tab
	Child Labels Tab
	Rules Tab
	Resources Tab
	Preview Data Tab

	Properties View for Panes
	General Tab
	Properties Tab
	Mappings Tab
	Layout Tab
	Font Tab
	Child Layout
	Child Labels
	Validations Tab
	Rules Tab
	Mobile Tab

	Properties View for Controls
	General Tab
	Mappings Tab
	Properties Tab
	Layout Tab
	Font Tab
	Validations Tab
	Rules Tab
	Mobile Tab

	Configuring Parameters
	Context Menus
	Outline View Context Menu
	Form Designer Canvas Context Menu

	Keyboard Shortcuts
	Grid Panes
	Grid Panes in Display Mode
	Grid Panes in Edit Mode
	Grid Pane Column Headers
	Grid Pane Navigation Bar

	List Controls
	List Controls in Display Mode
	List Controls in Edit Mode
	List Control Command Bar

	Record Panes
	Record Pane Body
	Record Pane Navigation Bar

	Tabbed Panes

	CSS Classes
	Built-in Static CSS Classes
	Built-in Dynamic CSS Classes

	Common Resource Keys
	Keys for Number Patterns
	Keys for Basic Number and Currency Symbols
	Keys for Duration Control Labels
	Keys for Date-Time Patterns
	Keys for Optionlist Controls
	Keys for Built-in Buttons
	Keys for Grid and Record Panes
	Keys for Built-in Validation Messages
	Keys for List Controls
	Keys for Implicit Validation Messages
	Miscellaneous Keys

	Design-time Constraints
	Client-side Validations
	Scripting
	Forms Scripting: Scope of Variables
	Forms Scripting: Order of Script Execution

	API for Scripting
	Methods
	Complex Data
	Factories
	Packages
	DateTimeUtil Factory
	Duration Class
	Utility Methods

	Chapter 8 Tips and Tricks
	Recommendations for Forms Modeling
	Group Related Controls Together in Vertical Panes
	Use the Visibility Property to Simplify User Experience
	Configure the Pane Type Property (optional)
	Modify Excessively Long Forms
	Expand Narrow Panes to Avoid Wrong Placement at Run Time
	Create Tabbed Panes
	Add a Tab to an Existing Tabbed Pane
	Additional Recommendations

	Tips for Using TIBCO Business Studio Forms
	How can I create a Form that is not associated with any business process?
	How can I create multiple columns of controls on a Form?
	How can I align the labels between different panes, for example, when there are several panes that are direct children of a root pane?
	How can I create option lists or radio buttons using array type parameters?
	How can I reuse similar behavior between different controls?
	How can I use part of the parameter value as a value for a control?

	Index

