
TIBCO® BPM Enterprise

Business Data Services
Developer Guide
Version 4.3.2

May 2022

Copyright © 2005-2022. TIBCO Software Inc. All Rights Reserved.

Contents

Business Data . 7

Business Data Services (BDS) . 7

BOM Class . 8

Business Objects . 9

Business Object Scope . 9

Business Object Creation by Factory . 9

Retrieving and Setting Business Object Attributes . 9

Invoking Operations on Business Object Attributes . 10

BOM Relationships and Process Local Data . 10

Composition .10

Specialization and Generalization .11

UML Relationships Supported by Process Local Data .12

Assignment by Value and by Reference . 12

BOM Native Type or Primitive Type Object to Business Object Attribute . 13

Assigning a Business Object .14

Assigning a Basic Type Object to a Process Data Field . 14

Significance of the Script Boundary . 15

Business Data Definition . 16

Business Data Projects . 16

Business Data Project Versioning . 17

Support for Local BOMs in Local Business Object Projects . 18

Support for Local BOMs in Analysis Projects or BPM Developer Projects . 18

Creating a Business Object Model (BOM) . 19

Creating User-defined BOMs in the Business Objects Folder . 19

Importing XSDs and WSDLs into Business Objects . 19

Importing WSDLs into the Service Descriptors Folder . 19

Importing a WSDL when Defining a Web Service Task . 20

Generating a WSDL for a Web Service You Are Creating . 20

BOM Native Types . 21

Value Spaces for BOM Native Types . 22

BOM Design-time Model . 23

Primitive Types . 23

Regular Expression Patterns for Text Fields . 24

Multiplicity .26

Size Restrictions . 26

Default Values .27

BOM Labels and Names .28

2

TIBCO® BPM Enterprise Business Data Services Developer Guide

Label to Name Algorithm . 28

BOM Class Label and Name .29

BOM Attribute Label and Name . 29

BOM Package Label and Name .30

Reserved Words . 31

Name Clashes . 31

BDS Generation and Business Data Usage in TIBCO BPM . 33

BDS Design-time Validations . 33

Process Validations .34

BDS Runtime Validations .34

Process Migration .35

Using BDS in Tasks . 36

Defining Web Services . 37

Business Data Scripting .38

Supplying xsi:type Information in XML Sent to ActiveMatrix BPM . 38

Business Data Scripting by Example . 40

Factories . 40

Creating a New Business Object . 41

Create an Instance of a Class . 41

Create a Copy of a Business Object . 43

Using the Special Value Null . 43

Checking for Null Attributes . 43

Assigning a Null Value .44

Using Content Assist .45

Working with Single Instance Attributes of Business Objects . 47

Multiple Instances of a BOM Class . 47

Multiple Instances of a BOM Class in a Process Data Field . 47

Multiple Instances of a BOM Class in a BOM Class Attribute . 50

Multiple Instances in Sequences and Groups . 51

Passing Multiplicity to a Form . 51

Working with Temporary Variables and Types .51

Loops Within Scripts . 52

Scripting Containment Relationships . 54

Using the List set() Method . 56

Working with Numeric Types . 62

Working with Basic Integer Numbers .62

Signed Integers . 63

Working with Basic Decimal Numbers .64

Implicit Conversions Between Numeric Types . 65

3

TIBCO® BPM Enterprise Business Data Services Developer Guide

Working with Dates and Times . 67

Dates and Times . 67

Durations .68

Using Date and Time Types with Durations .69

Comparing Dates and Times . 69

Working with Enumerated Types (ENUMs) .70

Working with Primitive Types . 72

Using Enumerated Types as Extensions of Primitive Types . 72

Return Values from Scripts .73

Scripting with Web Services .73

Passing Arrays to Web Services . 76

Parse Functions . 77

Advanced Scripting Examples . 79

Working with Fixed Length Integers (BigInteger) . 79

Unsupported Conversions . 81

Working with Fixed Decimals (BigDecimal) . 81

Creating and Initializing Fixed Decimal Values .81

Simple Operations .81

Rounding . 82

Unsupported Conversions . 84

Comparing Fixed Decimals and BigDecimals .84

Object BOM Native Type . 85

Using the Object BOM Native Type . 85

Restrictions . 87

Object BOM Native Type and ScriptUtil.setObject() . 87

Additional JavaScript Global Functions . 88

Business Data Modeling Best Practice . 90

Store Local BOMs in Business Data Projects . 90

Keep Local BOMs and Global BOMs in Separate Business Data Projects . 90

Upgrade Business Data Projects and Dependent Process Projects Together . 90

Use Pre-Compilation for Projects That Contain Large or Generated BOMs . 90

Choose Appropriate Data Types .91

Use Sub-Packages to Aggregate Related Concepts .91

Process Data Field Granularity . 91

BOM Class Attribute and Variable Names . 91

Do Not Split a Namespace Across Projects . 92

Do Not Modify Generated BOMs . 92

Business Data Scripting Best Practice . 92

Troubleshooting . 94

4

TIBCO® BPM Enterprise Business Data Services Developer Guide

Viewing BDS-generated BDS Plug-in Hidden Projects . 94

Troubleshooting BDS Scripting .95

Reasons to Avoid Deleting Case Objects . 95

Reserved keywords to avoid using for attribute names . 95

BDS Classes Do Not Appear or Changes Do Not Appear . 96

Break Script into Smaller Scripts . 96

Examine the Server Logs . 96

Write Variable Values and Progress Updates from the Script to the BPM Log File .97

eval() . 97

Use the Process Debugger .97

Catch Exceptions . 97

BDS Plug-in Generation Problems .98

Supplemental Information . 100

Data Type Mappings . 100

BOM Native Type to BDS Type Mapping . 100

XSD Type to BDS Type Mapping .101

JDBC Database Type to BOM Data Type Mapping . 103

Process Primitive Data Type Mapping .104

Unsupported XSD Constructs .105

BDS Limitations . 105

Fixed Attribute Overwrite . 106

Multiplicity Ordering in a Sequence or Choice . 106

Nested xsd any in Sequences . 106

xsd any ##local . 107

Recurring Elements in Sequence . 107

The block Function . 107

Data Mapping . 108

Converting Values Between Different BOM Attribute Types . 108

Mapping to or from Process Basic Types .113

JavaScript Features not Supported in TIBCO BPM Scripting . 113

Using If For and While Expressions . 114

Reserved Words in Scripts .115

Business Data Scripting . 116

Static Factory Methods . 116

DateTimeUtil . 116

DataUtil . 118

ScriptUtil . 118

IpeScriptUtil (and ScriptUtil) Conversion Date and Time and String Functions .120

BOM Native Type Methods .123

5

TIBCO® BPM Enterprise Business Data Services Developer Guide

Fixed Length Integer (BigInteger) Methods .124

Fixed Point Decimal (BigDecimal) Methods . 124

Date Time Datetime and Datetimetz (XMLGregorianCalendar) Methods . 127

Duration Methods . 131

Text (String) Methods .132

Other Supported Methods . 133

List Methods . 133

ListIterator Methods . 134

Other JavaScript Functions . 134

Math Methods .134

Process Manager and Work Manager Scripting . 136

Process Instance Attributes and Methods . 136

Organization Model Attributes and Methods . 139

WorkManagerFactory . 139

WorkItem .139

OrgModel . 143

TIBCO Documentation and Support Services . 150

Legal and Third-Party Notices . 152

6

TIBCO® BPM Enterprise Business Data Services Developer Guide

Business Data

Business data is structured data that contains information about real-world entities that an organization
deals with, for example Customer, Order, and Orderline.

Each of these entities will have a number of attributes, for example name, address, and date. These entities
will also be related to each other in different relationships and with different multiplicities.

A fundamental part of developing a business process is to understand the data that the process manipulates
and depends upon.

TIBCO Business Studio provides a tool, Business Object Modeler, that allows you to build up a description
of the business data that the process will manipulate. The resulting Business Object Model (BOM) contains
the different types of objects that the business uses, their attributes, and their relationships to each other.
For more information on using Business Object Modeler, see TIBCO Business Studio Modeling User’s Guide.

With the introduction of version 3.0, ActiveMatrix BPM supports two sorts of business data - normal (or
local) business data, and case data. This guide describes the use of normal business data. Additional
information about case data is provided in the TIBCO ActiveMatrix BPM Case Data User's Guide.

Object Orientation

The BPM runtime is an Object Oriented (OO) system, as is the scripting environment that supports it. The
topics in this Introduction describe important concepts that stem from the use of this OO design. It is
important to understand these concepts to achieve the desired behavior when using scripts to manipulate
business data.

If you have difficulty understanding any of these concepts, refer to the examples described in Business Data
Scripting by Example, then return to this section. One of the best ways to understand these concepts is to
learn by example.

Business Data Services (BDS)
Business Data Services (BDS) is the component responsible for handling business data in TIBCO® BPM
Enterprise (formerly TIBCO ActiveMatrix® BPM) . Use TIBCO Business Studio Business Object Modeler to
define a BOM.

BDS converts the design-time BOM definitions into BDS Plug-ins that act as the runtime model for Business
Data. The BDS Plug-ins are based on the Eclipse Modeling Framework (EMF). For more information about
EMF, see:

http://www.eclipse.org/modeling/emf/

You can interact with business data (any BOM-based data) from any activity in a Process (for example, a
user task, script task, database task, and so on). This automatically results in an indirect interaction with
BDS Component.

For example, consider a claims handling system, the data of which might be modeled as follows:

7

TIBCO® BPM Enterprise Business Data Services Developer Guide

http://www.eclipse.org/modeling/emf/

The following business process shows the tasks that handle a claim:

In this example, the user interacts with BDS in each of the activities:

● In the Create Claim script task, the script constructs the Business Objects.

● In the Validate Claim Details user task, a claims handler validates whether the details are correct.

● In the Update Claims Management System with Claim Details service task, details of the claim are
persisted to a database.

BOM Class
As the name implies, the whole focus of OO is on objects. Objects are created to represent real world things
such as a customer or an order.

However, before we can have objects we must create a template, or pattern, for each type of object we want
to process. This template is called a BOM class, and defines what the different objects will be like. For
example, you can define a Customer BOM class and an Order BOM class, which would model real world
customers and orders. Creating BOM classes for your application is a design-time activity.

8

TIBCO® BPM Enterprise Business Data Services Developer Guide

Business Objects
At runtime, instances of these BOM classes are created to represent particular instances of the generic BOM
class. These instances are referred to as Business Objects. For example, the Customer BOM class can have
two Business Objects to represent two actual customers, John Smith and Fred Blogs.

Each of these BOM classes and Business Objects have attributes. For example, a Customer may have
attributes that include a name and number, and an Order may have attributes that include Customer and
DateCreated. Although Customer attributes differ from Order attributes, generally all Customers have the
same set of attributes.

The diagram below shows a simple Customer class and three Business Objects, which are instances of the
class:

Business Object Scope
The life span of a Business Object is typically bounded by the Process Instance in which it is created. This is
called Process Local Scope.

It is possible in a service task to write information out to, or read from, a database. The structure of the
database table may match one of the normal BOM classes, or the data in one of the normal BOM classes
may have to be mapped into a Business Object that matches the database table structure depending on the
implementation.

Business Object Creation by Factory
Business Objects are created by factories. There is a factory method for each class (for example,
createCustomer, createOrder, and so on) within the BOM.

The factory methods have to be used when a Business Object is created. This happens implicitly when
objects are created within User Tasks, but has to be done explicitly when an object is created in a script. See
Business Data Scripting by Example for more information about factories.

Retrieving and Setting Business Object Attributes
Using Business Data Scripting capabilities, retrieving Business Object attributes, for example the attributes
of a customer instance, is as simple as running a script:.

var custName = customerInstance.name;

You can set the value of a Business Object attribute as follows:

customerInstance.name = "Clint Hill";

9

TIBCO® BPM Enterprise Business Data Services Developer Guide

Invoking Operations on Business Object Attributes
As well as attributes, some classes have methods which perform operations on the object.

For example, the String class is used to represent a Text attribute’s value, such as the name of a customer.
Two of its methods are toUpperCase() and toLowerCase().

lowercaseName = customer.name.toLowerCase();
uppercaseName = customer.name.toUpperCase();

In this example, if the Text attribute customer.name was "Fred Blogs", then the first assignment would set
the lowercaseName variable to the value fred blogs, and the second assignment would set the
uppercaseName variable to the value FRED BLOGS. In some cases, such as the example cited above, methods
can return values. In other cases, methods can alter some of the attributes of the instance. It is important to
know how the methods behave when you are using them.

BOM Relationships and Process Local Data
This section describes how BOM relationships are honored by process local data.

Composition
The Composition relationship is used to model the concept that “X is composed of Y”. For example, a Car is
made up of a number of Widgets.

This can be drawn in either of the following ways in the Business Object Modeler:

● In the first example, there is a line drawn between the Car and Widgets, which is labelled "parts".

● In the second example, there is a "parts" attribute in the Car class.

At runtime, these two approaches are treated identically. It does not matter which is used.

The Composition relationship is also known as the Containment relationship.

It is important to understand that in this kind of relationship, if a Car object is composed of a number of
Widget objects, those Widgets cannot be components with other Car objects.

This makes sense if you consider the example of a steering wheel. It cannot be in two cars at the same time.
Also, if the steering wheel from one car was installed into another car, it would no longer exist in the
original car.

Similarly, if a Business Object contained in Business Object A is added to Business Object B, it will no longer
exist in Business Object A.

10

TIBCO® BPM Enterprise Business Data Services Developer Guide

Specialization and Generalization
A useful aspect of OO technology that can be used in BOM and scripting is Specialization and
Generalization. For example, consider the following terms: Animal, Fish, Mammal, Goldfish, Cat, and Dog.
Looking at these terms you can see that we can link some of them with the phrase "is-a" (or "is-an").

For example:

● A Goldfish is-a Fish.

● A Fish is-an Animal. (Also, a Goldfish is-an Animal).

● A Cat is-a Mammal.

● A Mammal is-an Animal. (Also, a Cat is-an Animal and a Dog is-an Animal).

● A Dog is-a Mammal.

In the Business Object Modeler, these relationships would be represented like this:

In OO terms, this means that a Mammal is a specialization of an Animal, and a Cat is a specialization of a
Mammal, and so on.

If someone wants a pet, and they specify that they want a Mammal, a supplier can give them a Cat or a Dog
because they both satisfy the "is-a" Mammal requirement, or they can even be given a Hamster, as a
hamster "is-a" Mammal. However, providing a Goldfish does not satisfy the "is-a" Mammal requirement.

While building up the model of what objects a business deals with, you may discover that some classes
have some things in common. For example, there might be a Customer and an Employee class, both classes
representing a person. When modeling this, you can create a Person class that holds the common attributes
of Customer and Employee (for example, name, email, and telephone). The Customer class can then
specialize the Person class, adding the extra attributes that only a customer has (for example,
customerNumber). Similarly, the Employee class can specialize the Person class, by adding any attributes
that only the Employee had (for example, department, manager and so on).

Generalization is the reverse of specialization (looking at the same relationship from the opposite direction).
We can say that the Person class is a generalization of the Customer and Employee classes. Alternatively, we
can say that the Customer and Employee classes are specializations of the Person class. Having done this, it
is possible in a process to create a list of all the Customers and Employees that have been involved in a
particular Order by creating a list of Person instances (each instance of which could either be a Customer or
an Employee). The relationship between these classes can be represented in the BOM as shown below:

11

TIBCO® BPM Enterprise Business Data Services Developer Guide

Assigning a Subtype to a Super Type

It is always acceptable to assign a subtype to a super type.

Using the diagram above as an example, if you had a Customer business object, as its BOM class is a
subtype of the Person class, you can assign the Customer business object to a business object attribute of
type Person (because you can say that the Customer "is-a" Person).

Assigning a Super Type to a Subtype

Assigning a super type to a subtype is acceptable when the super type actually refers to an instance of the
subtype (or one of its subtypes). In other words, it passes the "is-a" test.

For example, if you have a Business Object Attribute of the Customer subtype that you want to assign from
another attribute of the Person type, it will only work if the Person attribute is actually referring to an
instance of the Customer BOM class. If the Person attribute is referring to a Business Object of the generic
Person, or the Employee BOM classes then it will not work, as they do not satisfy the "is-a Customer"
requirement.

UML Relationships Supported by Process Local Data
The Business Object Modeler uses terms and notation similar to UML (Unified Modeling Language), so an
understanding of UML can be useful.

BDS and Process Local Data support Generalization and Specialization relationships and Uni-directional
Composition relationships.

Although TIBCO Business Studio BOM Editor also supports Association and Aggregation relationships,
these relationships cannot be used in processes.

Assignment by Value and by Reference
Assignments can be made either by reference or by value. For an assignment by reference, the entity to which
the assignment is made refers to the entity being assigned. In other words, subsequent changes to the entity
by either the new or existing reference is reflected in both places (there is only one entity; it isn’t copied).
However, for a by value assignment, a copy of the assigned entity is made, and that is what is applied to the
entity receiving the assignment. This results in two independent objects. Therefore, changes in one place do
not affect the other.

12

TIBCO® BPM Enterprise Business Data Services Developer Guide

Assignment Conventions

Assignment to... ...of type... ...behaves as follows:

Business Object
attribute or
composition

BOM Native or Primitive
Type

Effectively by value.

For efficiency’s sake, objects are only copied where
they are mutable (where their internal value can be
changed). In other words, by reference behavior is
sometimes used, but always behaves like by value. See
BOM Native Type or Primitive Type Object to Business
Object Attribute .

BOM Class By reference.

Important note: If the BOM Object being assigned is
already contained by another BOM object’s
containment, it will be removed from that containment
automatically because it is impossible for an object to
be contained by two containers at the same time. If
this is not the desired behavior, make a copy of the
object first. See Assigning a Business Object .

Process Data Field BOM Class By reference. See Assigning a Business Object .

Basic Type By value. See Assigning a Basic Type Object to a
Process Data Field .

BOM Native Type or Primitive Type Object to Business Object Attribute
Assigning a BOM Native Type or Primitive Type object to a Business Object attribute is by value:

car.make = bus.make;
bus.make = "Ford" // will not affect car.make

person1.age = person2.age;
person2.age = person2.age + 1; // Will not increment person1.age

person1.dob = DateTimeUtil.createDate("1968-01-04");
person2.dob = person1.dob;
person2.dob.setYear(1970); // Value now 1970-01-04; person1.dob
 // is still 1968-01-04

13

TIBCO® BPM Enterprise Business Data Services Developer Guide

Assigning a Business Object
Assigning a Business Object is by reference.

personDataField = car.owner; // Business Object assigned to data
 // field by reference
personDataField.age = 25; // Also affects car.owner.age

var tempPerson = personDataField; // Business Object assigned to
 // local variable by reference
tempPerson.name = "Bob"; // Also affects personDataField.name

var owner = com_example_refval_Factory.createPerson();
car.owner = owner;
owner.name = "Ludwig"; // Also affects car.owner.name;

If a Business Object is assigned, but is already contained in another Business Object’s containment, it is
automatically removed from that containment. It is impossible for an object to be contained by two
containers at the same time. If this is not the desired behavior, make a copy of the object first using the
ScriptUtil.copy(…) utility, see Create a Copy of a Business Object .

In the next example, although all assignments are by reference (there is only ever one Address), the final
line of the script removes the Address from Customer, leaving Customer with no Address:

var address = com_example_refval_Factory.createAddress();
customer.address = address;
account.address = customer.address; // Removes address from
 // customer

If this script is modified to use ScriptUtil.copy(…), account and customer end up with independent copies
of the address:

var address = com_example_refval_Factory.createAddress();
customer.address = address;
account.address = ScriptUtil.copy(customer.address);
// Creates an independent Address

Assigning a Basic Type Object to a Process Data Field
Assigning a Basic Type object to a process Data Field is by value.

14

TIBCO® BPM Enterprise Business Data Services Developer Guide

var greeting="Hello";
greetingDataField = greeting;
greetingDataField = "Goodbye"; // Will not affect local variable
 // greeting

Significance of the Script Boundary
When a script completes, all process Data Fields are independently converted to a form that can be stored
in a database. Therefore, in a later script, modifying a value in one place never affects the other, regardless
of whether a by reference assignment occurred in an earlier script.

This is illustrated by the following two scripts, which can be assumed to run one after the other, operating
on the same process Data Fields:

Script 1:

personDataField1.age = 20;
personDataField2 = personDataField1; // Both data fields now
 // refer to same object
personDataField1.age = 35; // This affects both data fields

Script 2:

// Each data field now refers to an independent Person object
personDataField1.age = 40; // will not affect
 // personDataField2.age (still 35)

15

TIBCO® BPM Enterprise Business Data Services Developer Guide

Business Data Definition

This section describes how you define business data in TIBCO Business Studio Object Model Editor, and the
types of data it supports.

Business Data Projects
Business Data projects are used to store business data models that can be referenced by process projects.

A Business Data project can contain either or both of the following types of Business Object Model (BOM):

● Global BOM - a BOM that contains at least one case class or global class. A global BOM that contains a
case class is also referred to as a case data model. You create a global BOM manually in the project's
Business Objects folder.

● Local BOM - a BOM that contains only local classes. You can create a local BOM in two ways:

— You can create one manually in the project's Business Objects folder.

— You can add a WSDL or XSD to the project's Service Descriptors special folder. When you do this, a
local BOM representing the WSDL or XSD is automatically generated in the project's Generated
Business Objects folder. An automatically generated local BOM is also referred to as a generated
BOM.

When you manually create a BOM the Global Data tools are available in the palette in the
BOM Editor. Global Data tools are not available for an automatically generated local BOM.

Best Practice

For best results, follow these guidelines when creating and using Business Data projects:

● Keep local BOMs and WSDLs or XSDs (and their generated BOMs) in suitable Business Data projects,
rather than in Analysis or BPM Developer projects. This:

— makes it easier to organize and share local data among different processes. (Using a Business Data
project, the local data only needs to be defined and deployed once. If you use an Analysis or BPM
Development project - that is, the same project as a business process that uses the data - whenever
that project is deployed or generated as a DAA, BDS Plug-ins corresponding to the referenced
BOMs are packaged as part of the DAA. That is, every deployed process has its own copy of any
local data it uses.)

— provides better design-time performance, particularly for projects involving large numbers of local/
generated BOMs (by avoiding unnecessary regeneration of BDS Plug-ins).

● Keep local BOMs and global BOMs in separate Business Data projects, unless you have a compelling
reason to keep them together. This is particularly important for application upgrade, as local and global
BOMs have different compatibility requirements:

— Local BOMs: You can still upgrade a Business Data project if a local BOM contains incompatible
changes, but doing so could result in failure to migrate a dependent process instance to the
upgraded version. See Process Migration.

— Global BOMs: You cannot upgrade a Business Data project if a global BOM contains incompatible
(that is, destructive) changes. See "Upgrading a Case Data Model" in the Case Data User's Guide.

● If a process project references a class in a local or global BOM in a Business Data project, the version
number of the Business Data project is used in the reference when the DAA for the process project is
generated. This creates an exact-match dependency on the version number from the process application
to that version of the BDS application. Consequently, when you upgrade a local BOM or a global BOM,
you should also upgrade any existing process project that references that Business Data project - even if
that process project makes no use of the updated parts of the BOM. Keeping BDS applications and

16

TIBCO® BPM Enterprise Business Data Services Developer Guide

dependent process applications in step in this way facilitates subsequent deployments or
undeployments of either application.

● Configure a project that contains generated BOMs to use pre-compilation, so that the BDS plugins
derived from the BOMs are not generated each time that the project is built. Generated BOMs are often
large and, being derived from WSDLs or XSDs, usually will not change very often, so using pre-
compilation can significantly improve design-time performance. (To configure the project to use pre-
compilation, right-click the project in Project Explorer and choose Pre-compile Project > Enable. See
"Pre-Compiling Projects" in the TIBCO Business Studio Modeling Guide for more information about pre-
compilation.)

Business Data Project Versioning
BOMs use the version number of their parent Business Data project. Correct version management of
Business Data projects is essential when upgrading BOMs or process applications that reference them.

Version numbers are set on the Properties > Lifecycle dialog of the Business Data project.

The default format for a Business Data project's version number is:

major.minor.micro.[qualifier]

where:

● major defines the major version number of the project.

● minor.micro.[qualifier] defines the minor version number of the project.

● qualifier is an optional parameter that, if used, will be replaced by the timestamp value in the Properties
> Lifecycle > Build Information > Build Version field. Build Version is a timestamp that is updated
whenever the project is updated.

If you import the project into a different major version of Business Studio (for example, from a
3.x version to a 4.x version) the project is updated automatically and the Build Version
timestamp is changed, even if you make no changes to the project.

Process projects also use a qualifier in their version number, but this is handled differently. On a
process project version number, qualifier is replaced by a timestamp when the DAA is created.
Importing a process project into a different major version of Business Studio does not change
the qualifier timestamp.

The current version number is used when the Business Data project is deployed, and is visible:

● in TIBCO Administrator, as the business data application's Application Template Version.

● (if the project contains a case data model) in the Openspace Data Admin gadget, as the case model's
version number.

If a process project references a class in a local or global BOM in a Business Data project, the version
number of the Business Data project is used in the reference when the DAA for the process project is
generated. This creates an exact-match application dependency from the process application to that version
of the BDS application.

Consequently, when you upgrade a Business Data project (either by modifying a local or global BOM, or by
importing the project into a new major version of Business Studio), you should also upgrade any existing
process application that references that Business Data project - even if that process application makes no
use of any updated parts of a BOM. Keeping BDS applications and dependent process applications in step
in this way facilitates subsequent deployments or undeployments of either application.

See Also

"Case Data Model Versioning" in the TIBCO ActiveMatrix® BPM Case Data User's Guide.

17

TIBCO® BPM Enterprise Business Data Services Developer Guide

Support for Local BOMs in Local Business Object Projects
From version 4.0 of Business Studio, you can no longer create a Local Business Object project. Local BOMs
(whether user-created or generated) in existing Local Business Object projects created in pre-4.0 versions of
Business Studio are still supported.

You can either:

● continue to reference local BOMs in Local Business Object projects from BPM process projects, in which
case they will be handled by ActiveMatrix BPM exactly the same way as in earlier versions. (When you
generate a DAA for or deploy a BPM process project that references a BOM in the Local Business Object
project, a BDS Plug-in corresponding to the BOM is generated and packaged as part of the DAA.)

● move local BOMs or WSDLs into new or existing Business Data projects.

● refactor the Local Business Object project into a Business Data project. (Right-click the Local Business
Object Model project, select Refactor > Convert to Business Data Project, then click OK.)

If you move or refactor local BOMs or WSDLs into Business Data projects, you must update any BPM
process projects that reference those BOMs to reference them from their new location. It is good practice to
only move or refactor local BOMs or WSDLs if you are making other significant changes to your process
application.

Support for Local BOMs in Analysis Projects or BPM Developer Projects
You can still use local BOMs in Analysis projects and BPM Developer projects, but you should only do this
when it is necessary. Best practice is to put local BOMs, WSDLs and XSDs in Business Data projects.

When you create a new BPM Developer project, the project does not by default contain a Business Object
Model folder or Service Descriptors folder. When you create a new Analysis project, the project does not
by default contain a Service Descriptors folder.

You should only add local BOMs, WSDLs or XSDs to a new Analysis project or BPM Developer project if
you need to maintain compatibility with existing (pre-version 4.0) projects:

● If you want to add local BOMs to a project, you must first manually add a special folder of type
Business Object Model to the project.

● If you want to add WSDLs or XSDs to a project, you must first add a special folder of type Service
Descriptors to the project.

You can either select these assets when you create the project using the New Analysis Project or New BPM
Developer Project wizard, or manually add them to the project later.

Local BOMs (whether user-created or generated) in existing Analysis or BPM Developer projects created in
pre-4.0 versions of Business Studio are still supported. You can either:

● continue to use them as they are, in which case they will be handled by ActiveMatrix BPM exactly the
same way as in earlier versions. (A BDS Plug-in corresponding to each BOM in the project is generated
when you generate a DAA for or deploy the project.)

● move local BOMs or WSDLs into new or existing Business Data projects. If you do this, you must update
any BPM process projects that reference the BOM to reference them from their new location.

It is good practice to only move local BOMs or WSDLs if you are making other significant
changes to your process application.

18

TIBCO® BPM Enterprise Business Data Services Developer Guide

Creating a Business Object Model (BOM)
There are two ways to create a BOM, manually in the Business Object Modeler, by one who knows the
structure of the data that the business uses; or by importing existing XSD or WSDL files that contain data
definitions used by existing applications.

There can be multiple BOMs with cross-references between them, although there cannot be circular
references (dependencies) between BOMs.

Creating User-defined BOMs in the Business Objects Folder
You can create a new BOM during or after creating a project.

BOMs are created from the context menu in the Business Objects folder in the Project Explorer.

User-defined BOMs can be found in the Business Objects folder of the TIBCO Business Studio project.

Importing XSDs and WSDLs into Business Objects
If your processes need to manipulate structured data whose structure is defined in XSD files or WSDL files,
the structure of the data can be imported into the Business Objects folder.

This is only done on WSDL files if you are not going to call the interfaces in the web service defined in the
WSDL file. If you intend to call the interfaces, import the WSDL as described in Importing WSDLs into the
Service Descriptors Folder .

Once the import has completed, you can explore the data structures that have been imported in the
Business Objects folder. Structured data can also be manipulated in scripts in the same way as user-defined
BOMs.

If you modify these imported BOMs, the copy of the definitions in TIBCO Business Studio will differ from
the source that they came from, causing TIBCO Business Studio to display a warning.

Despite the warning, this mismatch is normal if you have data types that are defined in an external system,
then imported and extended to cope with known and future requirements. The following is an example of
how this might be used: If you have an existing database, the structure of its tables can be exported into an
XSD file, which can then be imported into TIBCO Business Studio. The information about the table
structure can be used in tasks that interact with the database.

Once the data structure in the XSD (or WSDL) file has been imported into a BOM, web services can be
defined and WSDLs generated for other applications to invoke the new web services that use the structured
data from the imported files.

Importing WSDLs into the Service Descriptors Folder
If you have a web service that you want to invoke, the WSDL defining that service can be imported into the
Service Descriptors folder. This is done by right-clicking the Service Descriptors folder of a TIBCO Business
Studio project, and selecting Import, then Service Import Wizard. This allows you to import a WSDL file
from a number of sources, including a file or a URL.

Once imported, you can view the services defined by the WSDL file, for example:

19

TIBCO® BPM Enterprise Business Data Services Developer Guide

As part of the importing of the WSDL file, a BOM is generated that contains all the structured data
definitions used by the web service. This generated BOM will be created in the Generated Business Objects
folder and can be viewed in the same way as the user-defined BOMs above. However, if you attempt to
change one of the generated BOMs, a warning is generated:.

TIBCO recommends that you do not change a generated file, as you risk losing changes if the file is
regenerated.

In order to call a web service, a service task must be added to a BPM process and the Task Type must be set
to Web Service. Then the operation must be selected from the operations that were imported from the
WSDL file by clicking the Select button in the Service Task General Properties tab.

Script tasks and user tasks can process business objects created from the structured data imported from the
WSDL file in the same way as the structured data defined in the user-defined BOMs. These Business Objects
can then be mapped onto the input and output parameters of the Web Service task that is being called.

Importing a WSDL when Defining a Web Service Task
When a web service task is created in a process, there is an Import WSDL option in the Properties tab to
import the definition of the web service from a WSDL file (if the WSDL file has not already been imported
into the project as described previously). Once the WSDL file has been imported it can be viewed in the
Service Descriptors folder of the TIBCO Business Studio project to explore the different services provided
by the web service.

As previously explained, the data types used by the web service are defined in a BOM created in the
Generated Business Objects folder.

Generating a WSDL for a Web Service You Are Creating
If you do not have a WSDL file for a web service (for example, because it has not yet been produced), you
can use the Generate WSDL button in the Web Service General Properties tab to generate a WSDL file that
you can use to define the contract that the Web Service provides.

The Properties tab for a web service task has buttons for:

● Selecting an existing WSDL service

● Importing a WSDL if the WSDL has not already been imported

● Generating a WSDL. If the WSDL does not exist yet, it can be created here

20

TIBCO® BPM Enterprise Business Data Services Developer Guide

For a more detailed overview of defining Web Services, see Scripting with Web Services.

BOM Native Types
A number of BOM Native Types are supported by BOM Editor.

● Attachment

● Boolean

● Date

● Date Time

● Date Time and Time Zone

● Decimal

● Duration

● ID

● Integer

● Object

● Text

● Time

● URI

There are also:

● two Decimal sub-types (Fixed Point and Floating Point)

● two Integer sub-types (Fixed Length and Signed Integer).

● 4 sub-types of Object (xsd:any, xsd:anyType, xsd:anySimpleType and xsd:anyAttribute).

Therefore, in total, there are 18 different types, if you include the sub-types as types.

The Attachment type is not currently supported by the BPM
runtime.

Using Business Object Modeler, these BOM Native Types can be used to generate Primitive Types that have
some application-specific restrictions, for example, a range or a regular expression that it must match.

21

TIBCO® BPM Enterprise Business Data Services Developer Guide

Value Spaces for BOM Native Types
The value space of the different BOM Native Types is shown in the following table.

Value Spaces for BOM Native Types

BOM Native Type Value Space

Attachment N/A

Boolean true, false

Date Year in range [-999,999,999 – 999,99,999]

Month in range [1 – 12]

Day in range [1 - 31] (dependent on month & year)

For example: "2011-12-31"

Datetime Date fields according to Date type above

Time fields according to Time type below

Optional timezone offset in range [-14:00 - +14:00 or Z for Zero offset]

For example: "2011-12-31T23:59:59" or "2011-12-31T23:59:59-05:00"

Datetimetz Date and Time fields according to Datetime type above, but timezone is
mandatory

For example: "2011-12-31T23:59:59Z" or "2011-12-31T23:59:59+05:00"

Decimal – Fixed Point An arbitrarily long integer number with the which has its decimal
point moved to the left or right by up to 231 places.

For example: 1234567890.1234567890

Decimal – Floating Point
● Negative numbers between -1.79769E+308 and -2.225E-307

● 0

● Positive values between 2.225E-307 and 1.79769E+308.

For example: 1.23

Duration A duration consists of year, month, day, hour, minute, second and sign
attributes. The first 5 fields are non-negative integers, or they can be
null if not set. That is, they can have values in the range [0 -
2,147,483,647]. The seconds field is a non-negative decimal (or null) in
the range [0 - 1.79769E+308] although it is fetched from the object as an
integer and the sign can be "+" or "-".

For example: P3DT2H for 3 days and 2 hours

22

TIBCO® BPM Enterprise Business Data Services Developer Guide

BOM Native Type Value Space

ID Non-colonized name. Starts with a letter or "_", and may be followed by
more letters, numbers, "_", "-", ".", or combinations of characters and
extenders. See http://www.w3.org/TR/1999/REC-xml-names-19990114/
#NT-NCName for more details.

For example: ID1234

Integer – Fixed Length Arbitrarily large length integer

For example: 12345678901234567890

Integer – Signed Integers in the range -2,147,483,648 to 2,147,483,647

For example: 123456789

Object – xsd:any A block of XML satisfying xsd:anySimpleType schema definition. See
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/. This can also
be given the value of a Business Object.

Object - xsd:anyAttribute A block of XML satisfying xsd:anyAttribute schema definition. See
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

Object - xsd:anySimpleType A block of XML satisfying xsd:anySimpleType schema definition See
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/. This can also
be given the value of a BOM Primitive

Object - xsd:anyType A block of XML satisfying xsd:anyType schema definition See http://
www.w3.org/TR/2004/REC-xmlschema-1-20041028/. This can also be
given the value of a Business Object or the value of a BOM Primitive.

Text Arbitrary length of long text string of Unicode characters

For example: Fred Blogs

Time Hour in range [0 – 24] (for value 24 minutes and seconds must be 0)

Minute in range [0 – 59]

Second in range [0 – 60] (NB 60 only allowed for a leap second)

For example: 12:34:56

URI Refers to xsd:anyURI. See World Wide Web Consortium, XML Linking
Language (XLink) available at: http://www.w3.org/TR/2001/REC-
xlink-20010627/

For example: http://www.tibco.com

BOM Design-time Model
The BOM Design-time model is used to define your business object model, and is created using a set of
tools in the Business Object Modeler.

Primitive Types
In a BOM, it is possible to define your own Primitive Types, which are specializations of BOM Native
Types. Usually, the value space of a user-defined Primitive Type is restricted in some way, for example, a

23

TIBCO® BPM Enterprise Business Data Services Developer Guide

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName
http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2001/REC-xlink-20010627/

type called Hour can be defined, based on the Integer(Signed) type with the values restricted to numbers
between 0 and 23. The sub-type and restrictions are defined on the Property tab for Primitive Types:

Regular Expression Patterns for Text Fields
When defining a Primitive Type, text fields can be constrained to match certain patterns.

For example, if you want an OrderId type to be formatted as ORD-NNNNNN, where "N" represents a digit,
then you can specify this by using a Pattern in the Advanced Property Sheet for the Primitive Type:

In the pattern shown in the above example, the "\d" represents any digit and the "{6}" means there must be
6 of the preceding element (in this case, a digit).

Additional example patterns that can be used are listed below.

Regular Expression Example Patterns

Pattern Examples Description

ID-[0123456789abcde
f]*

Correct:

ID-deadbeef

ID-

ID-1234

ID-0fff1234

Incorrect:

ID

ID-0A

The content in the square brackets may include
any number or lowercase letter of the alphabet.
In other words, the square brackets may contain
any hex digit. The asterisk means zero or more
of the previous element. In this case, any number
of lowercase hex digits may be used.

24

TIBCO® BPM Enterprise Business Data Services Developer Guide

Pattern Examples Description

ID-[a-f0-9]+ Correct:

ID-0000dead

Incorrect:

ID-

ID-0000DEAD

As in the previous example, the "a-f" means any
letter in the range "a" to "f" and the "0-9" means
any digit. The "+" means one or more.

[^;]+; Correct:

Hello;

Incorrect:

Hello;Bye;

The "^" at the start of a range refers to characters
outside the allowable range, so "[^;]" matches
any character apart from ";". The "+" after it
means one or more, and must be followed by a
";".

\d{1,3}\.\d{8} Correct:

1.12345678

123.12345678

Incorrect:

1.234

"\d" means any digit. "{1,3}" means between 1
and 3 repetitions of the previous element. "\."
matches a ".". However, because "." normally
matches any character, in this case it must be
escaped. Similar to the "\d" sequence, you can
use "\w" for any word character and "\s" for any
white space character. The "\D", "\W", and "\S"
sequences inverse character sets.

\i\c* Correct:

xml:schema

:schema

Incorrect:

0xml:schema

-schema

"\i" matches the initial character of any valid
XML name, and "\c" matches any character that
can appear after the initial character. Similarly,
the "\I" and "\C" are the negations.

[\i-[:]][\c-[:]]* Correct:

xmlschema

_schema

Incorrect:

xml:schema

:schema

"[a-z-[aeiou]] a-z"matches any lowercase letter,
adding "–[aeiou]" at the end removes the vowels
from the set of letters that are matched. The
example on the left removes ":" from the "\i" and
"\c" lists of characters so the pattern now
matches non-colonized names.

[-+]?\d+(\.\d+)? Correct:

0.1

-2.34

+3

Incorrect:

4.

If you want to include a "-" in a range, then it
should be the first character, as it has a special
meaning if not the first character. The "?"
indicates that the previous element is optional.
The parenthesis marks form a group. The whole
group is optional because of the "?" at the end. If
a decimal point appears, then decimal digits
must follow in this example.

You can read more about regular expressions at:

25

TIBCO® BPM Enterprise Business Data Services Developer Guide

● http://www.regular-expressions.info/xml.html

● http://www.w3.org/TR/xmlschema-2/#regexs

● http://www.xmlschemareference.com/regularExpression.html

Multiplicity
When BOM class attributes and compositions are defined, the developer can define how many values the
attribute can or must have.

When defining the multiplicity for an attribute, content assist is available by typing Ctrl-SPACE. You can
then select one of the following options:

It should be noted, however, that multiplicity can have other values, such as the following:

Multiplicity Meaning

2..3 There must be 2 or 3

4 There must be 4

4..* There must be 4 or more

If there can be more than one element, then the attribute being defined will be a List. Therefore, when
referenced in scripts, the List methods must be used.

Size Restrictions
When Text attributes are defined, they have a maximum size defined. This can be changed in the attribute’s
Advanced Property tab.

When Fixed Length sub-types of Integer and Decimal attributes are defined, the length for the attribute is
specified in the Advanced Property sheet. Additionally, for the Fixed Length Decimal sub-type, the number
of decimals for the attribute is set.

For all Integer and Decimal sub-types, upper and lower bounds can be set on the value that the attribute
can take. Again, this is done through the attribute’s Advanced Property tab. For example:

26

TIBCO® BPM Enterprise Business Data Services Developer Guide

http://www.regular-expressions.info/xml.html
http://www.w3.org/TR/xmlschema-2/#regexs
http://www.xmlschemareference.com/regularExpression.html

Default Values
Default values can be used when defining attributes for BOM classes. This is done through the Advanced
tab in the Properties.

If an attribute has a default value, then as soon as an instance of the class that it is an attribute of is created,
the attribute has that value. For example, if a class has an integer type attribute called quantity, it might be
given a default value of 1 in the Advanced Property tab as shown below:

When an instance of this class is created, the quantity attribute will be 1.

If you attempt to set a default on an optional attribute, for example, one with a potential multiplicity of
zero, the following warning is generated:

If you attempt to set a default on an attribute with a multiplicity greater than 1, the following warning is
generated:

27

TIBCO® BPM Enterprise Business Data Services Developer Guide

BOM Labels and Names
BOM packages, BOM classes, and BOM attributes have a Label as well as a Name.

A Label is a free format field that is designed to be a user-friendly description of the attribute or class. The
label text is displayed by the BOM editor as shown below:

And by the default Forms:

However, the Label cannot be used with the entire product, as in scripting. For example, the names that can
be used to refer to attributes are considerably constrained. Therefore, a name is defined for each class and
attribute. The default name is generated by using the characters from the label that are allowed in names.
Space and most punctuation is removed. The image of the form above shows the names as well as the labels
for the different fields. You can see that the spaces, brackets, and currency symbol have all been ignored
when the names were generated. In scripting, the attribute name is used. For example:

var engineSize = car.engineCapacitycc;
var carPrice = car.listPrice + delivery + tax;

Label to Name Algorithm
All characters in the label that are not valid characters in the name are removed when the label is converted
to the default name.

Only the characters A-Z (excluding accented characters), a-z, and the underscore character "_" are valid for
use as a name's first character.

For subsequent characters in the name, the same characters are valid as for the initial character, with the
addition of the digits 0-9.

Spaces and punctuation characters are not allowed in names, including the following:

28

TIBCO® BPM Enterprise Business Data Services Developer Guide

Character Character Description

. Dot

, Comma

- Hyphen

BOM Class Label and Name
Any characters are valid in a label. As the label is converted to the class name, any illegal name characters
are ignored.

In the following example, you can see the quotation marks and spaces in the Label are removed in the
Name:

The Label is used in BOM diagrams and the Name is used in scripts. Because the Name is used in scripts, it
is easier to read if initial capital letters are used for each separate word, as in the example above. The
following example shows a Label and Name pair where only lowercase letters are used

Compared that to the following:

The Name field is generated from the Label field whenever the label is changed unless the Name field has
been manually set, in which case the name must then be manually changed. For example:

BOM Attribute Label and Name
For the names of class attributes, there is a requirement that the first two characters of the name must use
the same case.

To meet this requirement, the software automatically uses lowercase letters for the first two characters if
they are of different cases, as shown in the following examples:

29

TIBCO® BPM Enterprise Business Data Services Developer Guide

When creating attributes for BOM classes, it is recommend that you use uppercase letters for the initial
letter of each word in the label, and if possible, do not use, a single letter word as the first word. The names
will follow the camelcase convention. ("Camelcase" names have lots of "humps"!)

BOM Package Label and Name
The BOM top-level package or model name must be made up of dot-separated segments, each beginning
with a letter or underscore and containing only letters, underscores, and numbers, and must avoid reserved
words in a similar manner as BOM class names.

Each BOM must have a unique name across all other projects in the TIBCO Business Studio workspace.

The BOM package name must differ from the TIBCO Business Studio project lifecycle ID, which is also a
dot-separated name in the same format. The project lifecycle ID can be viewed by right-clicking on the
Project and selecting Properties > Lifecycle.

30

TIBCO® BPM Enterprise Business Data Services Developer Guide

The BOM Label is free format text, meaning it can be any text that you want to display. The Label is
displayed in the BOM editor, and by default is the same as the name of the BOM, as shown in the following
example:

Reserved Words
There are certain reserved words that cannot be used as Names, but there are no such restrictions for
Labels.

Words that are keywords in Java or JavaScript cannot be used as Class or Attribute names, as they would
cause problems when running the Java script that referenced the class or attribute. A full list of reserved
words can be found in Reserved Words in Scripts.

Name Clashes
If two classes or attributes end up with the same name after the Label to Name mapping has been done, an
error is generated against the BOM.

Errors can be found in the Problems tab or by using the red-cross marker, as shown below:

This is a generic BOM problem and has to be fixed manually.

Because of the internal workings of BDS, there are further restrictions on names that can cause other
clashes. For example, attribute and class names must be unique and ignore case and underscores.
Therefore, if another attribute is added with the name "thmonth", then BDS generates the following errors
indicating a name clash:

This problem marker has a quick fix which can automatically rename an attribute to resolve any clashes, as
shown below:

31

TIBCO® BPM Enterprise Business Data Services Developer Guide

32

TIBCO® BPM Enterprise Business Data Services Developer Guide

BDS Generation and Business Data Usage in TIBCO BPM

Business Data Services generate BDS Plug-ins from BOM Definitions. BDS Plug-ins are based on Eclipse
Modeling Framework (EMF). BDS Plug-ins contain generated interfaces and classes that extend the base
interfaces and classes defined in EMF, and are capable of being serialized and deserialized to or from XML
very easily.

Using TIBCO BPM, you can create Business Objects from a variety of tasks in a BPM Process. For example,
UserTask, ScriptTask, WebServiceTask, and so on. ScriptTask and Web-ServiceTask use JavaScript as the
script grammar for interacting with Business Objects.

When a DAA (Distributed Application Archive) is created for a project containing a Business Object Model,
or the project is deployed, the BDS Generator generates BDS Plug-ins that correspond to the BOM.

The BDS Plug-ins will be generated in a hidden project whose name corresponds to a BOM root package.
For example, if the BOM root package com.example.businessobjectmodel, BDS Plug-ins are generated in a
project named .com.example.businessobjectmodel.bds.

BDS Design-time Validations
During BOM creation, as well as processes that use BOMs, TIBCO Business Studio’s Problems view may
show various errors and warnings from BDS.

This section lists the validation messages that may be seen. Each problem is classified as either an error or a
warning. Errors are shown with a red marker and will prevent application deployment until they are
resolved, whereas warnings, shown with a yellow marker, are merely advisory. Unless otherwise noted, the
messages listed in this section are errors.

Validations in BOM Editor

While BOM Editor is being used to produce a BOM, it checks to make sure that the BOM you have created
is valid and alerts you to any problems that have been found.

For many of the issues, it can help you solve the problem through Quick Fixes. For example, if you have
duplicate Names, or reserved names for Classes or Attributes, it will resolve the problem names by adding
a numerical suffix.

Concerning the Model (Top-Level Package)

● Name must be dot-separated segments, each beginning with a letter or underscore and containing only
letters, underscores and numbers, avoiding reserved words.

● Duplicate model name ’modelname’.

● ’modelname’ cannot be the same name as the project life cycle id.

Concerning Sub-Packages

● Name must begin with a letter or underscore and contain only letters, underscores and numbers,
avoiding reserved words.

● Name must not contain reserved words.

Concerning Classes, Enumerations, and Primitive Types

● Name must begin with a letter or underscore and contain only letters, underscores and numbers.

● Name must not be a reserved word.

● Name must not match the first segment of the fully-qualified package name.

● Another type has the same name. Names are considered to clash even when the case differs.

33

TIBCO® BPM Enterprise Business Data Services Developer Guide

● Generated Java interface name ’name’ will conflict with the implementation class for
'nameofsomethingelse'.

● Generated Java interface name 'name’ will conflict with the EMF factory interface for package
'packagename'.

● Generated Java interface name 'name’ will conflict with the EMF factory implementation class for
package 'packagename'.

● Generated Java interface name 'name’ will conflict with the EMF package interface for package
'packagename’.

● Generated Java interface name 'name’ will conflict with the EMF package implementation class for
package 'packagename'.

● Generated Java interface name 'name’ will conflict with an EMF utility class for package 'packagename>'.

Concerning Attributes

● Another attribute has the same name. Names are considered to clash even when the case differs.

● Default values are ignored for attributes with a multiplicity greater than one [warning].

● It makes no sense having a default value for an optional attribute, as it will always apply [warning].

● Attribute name must begin with a letter or underscore and contain only letters, underscores and
numbers. If it starts with two letters, they must be of the same case.

● Attribute name must not be a reserved word.

● The Attachment type is not supported.

Concerning Primitive Types

● The Attachment type is not supported.

Concerning Enumerations

● Enumeration must contain at least one literal.

Concerning Enumeration Literals

● Enumeration Literal name must begin with an upper-case letter and contain only upper-case letters and
numbers.

Process Validations
BDS performs a number of validations on Processes that make use of BOMs:

● Primitive Types cannot be used for Data Fields or Parameters

● Enumeration Types cannot be used for Data Fields or Parameters.

● Activities responsible for generating WSDL operations cannot have array parameters associated.
Instead, please create a Class to contain the array.

● Document literal type bindings must have formal parameters of type external reference.

BDS Runtime Validations
When a task completes, the BDS ensures that all BDS data is in a valid state. It does this by verifying that all
constraints that exist on the fields are satisfied. If there are any problems, an exception is raised.

For example, if a field has a multiplicity of 3..6, then an exception is generated if the field has more than 6
values or less than 3 values as specified by the multiplicity rule. Similarly, lengths of Text and Fixed Length

34

TIBCO® BPM Enterprise Business Data Services Developer Guide

Numeric fields, ranges of numeric fields, and regular expressions for Text fields are all checked when each
task completes.

Process Migration
If you want to be able to migrate a process instance from one version of a process template to a later one,
you will need to make sure that the data in the first process template is compatible with the second process
template version.

As much of the structure of the data comes from the BOM, you have to ensure that the BOM used by the
two versions of the TIBCO Business Studio project is compatible. This means that the BOM used by the
process template that you are migrating from must be a subset of the BOM used by the process template
that you are migrating to.

Therefore, if you want to be able to migrate process instances from the old process template to the new
version of the process template, you can only make compatible changes to the BOM. If incompatible
changes are made to the BOM, there is a possibility that process instances will not be able to be migrated to
the new version of the process templates.

A compatible change adds a new entity to a BOM, or makes an existing entity less restrictive, for example,
the addition of a new class, or increasing the length of a text attribute from 50 to 60 characters. Examples of
‘incompatible changes’ include removal of a class, making an optional attribute mandatory, or adding a
maximum value to an integer attribute that was previously unrestricted.

The following changes in the process template are considered as compatible when migrating a process
instance from one version of a process template to a later one.

General Changes

Any BOM entity’s label can be changed (as long as the name remains the same).

Diagrams can be rearranged, annotated, and so on.

Changes Within the BOM’s Top Level or Sub-Package

● Addition of a new class, primitive type or enumeration.

● Addition of a sub-package.

Changes to a Class

● Addition of new attributes and composition attributes, as long as they are optional (for example, they
must have multiplicity with a lower bound of zero, such as 0..1 or "*").

Changes to Class Attributes and Composition Relationships

The multiplicity of an attribute or composition relationship may be changed, as long as it makes it less
restrictive (for example, it either increases the upper bound or decreases the lower bound) and it does not
change between having a maximum multiplicity of 1 and greater than 1. Examples are given in the
following table.

From To Valid?

1..5 1..8 Yes - increase in multiplicity

1 0..1 Yes – made optional

0..1 * No (cannot change from single to many)

35

TIBCO® BPM Enterprise Business Data Services Developer Guide

From To Valid?

1 1..* No (cannot change from single to many)

* 1..* No (might have zero)

0..1 1 No (might have zero)

* 4..* No (might have less than 4)

The attribute type cannot be changed. If an attribute’s type remains the same, its restrictions may be altered,
as long as they are less restrictive than the old restrictions.

Restriction Permitted Change

Default value May be changed

Lower limit May be decreased or removed if a former lower limit was set

Upper limit May be increased or removed if a former upper limit was set

Lower limit inclusive May be changed from false to true

Upper limit inclusive May be changed from false to true

Maximum text length May be increased

Number length May be increased

Decimal places May be increased (if length increased by the same amount or more)

Pattern Can be removed

Changes to an Enumeration

Addition of new enumeration literals.

Change to a Primitive Type

When the type has a BOM Native Type as its superclass, it may be altered subject to the compatible change
rules described in Changes to Class Attributes and Composition Relationships.

Using BDS in Tasks

General

All Tasks have an Interface tab that can be used to restrict which fields the task has access to. By default, no
fields are listed, which means there are no restrictions and the Task has access to all the fields in the process.

If the Interface tab is used, and a new field is added to the process, the new field will not be available in the
Task until it is added to the Interface.

Each field that is specified in the Interface tab is specified to be one of the following:

● In

36

TIBCO® BPM Enterprise Business Data Services Developer Guide

● Out

● In / Out

These specifications define whether the value is input or output to the task. There is also a Mandatory flag
that can be specified, which controls whether the field has to have a value.

User Task

BOM fields can be displayed and updated in User Task steps. After a User Task has been completed, all the
BOM fields that are In / Out or Out fields will be initialized.

Script Task

Any BOM fields that have not been initialized by a previous task have a null value, and therefore need to be
initialized using the factory method before any of the attributes can be referenced. See Creating a New
Business Object for more details on using BOM fields in Script Tasks, and using Scripts in general.

Forms

If the form generated from a task includes a sequence, choice, or group with multiplicity assigned to it, that
multiplicity is not reflected in the form. See Passing Multiplicity to a Form for details of this restriction.

Defining Web Services
There are some restrictions as to what types of web services the Web Service Task can invoke. If you need to
call a web service that uses WSDL features not supported by ActiveMatrix BPM, then the Mediation feature
should be used, as it supports more WSDL features and is capable of mediation with other systems.

To define a web service task, do the following:

Procedure

1. In the General tab of the Properties view, type Service Task in the Label field.

2. Set the Service Type to Web Service.

3. If the WSDL has already been imported, click Select to select the service to be called. If the WSDL has
not been imported, click Import WSDL to import it.

Result

Having defined the webservice to call, you need to map the input and output data from the web service
call. If the process that is calling the webservice has a field of the same structure that the webservice takes as
an input parameter, it can be mapped straight across on the Input To Service properties sheet. If not, the
fields can be mapped individually. Similarly, if the process has a variable with the same structure as the

37

TIBCO® BPM Enterprise Business Data Services Developer Guide

response message, then it can be mapped on the Output From Service property sheet. The following
example shows input fields being mapped:

The following example shows output fields being mapped, and a Business Object and all its attributes:

Business Data Scripting
Scripting in BDS uses a script language that is based on JavaScript with extensions to support the different
aspects of BDS.

You can learn more about JavaScript from many sources. A useful introduction to JavaScript can be found
at the W3Schools web site http://www.w3schools.com/.

Supplying xsi type Information in XML Sent to ActiveMatrix BPM gives an example of how to use Business
Data Scripting in practice in ActiveMatrix BPM. It does not include a full description of the syntax of the
JavaScript language. Those not familiar, or who are struggling with the syntax, are encouraged to first learn
the basics of JavaScript before progressing onto ActiveMatrix BPM Scripting.

Supplying xsi:type Information in XML Sent to ActiveMatrix BPM
When using external clients to pass XML representing BOM information to ActiveMatrix BPM, you must
provide an xsi:type when using extended types.

This is described in the specification:

.http://www.w3org/TR/xmlschema-1/#xsi_type

An example of this is shown below:

This example shows that if you wish to pass an XML into an interface that is expecting a Person from a
Customer, it must contain an xsi:type as illustrated below:
<tns1:PersonElement xmlns:tns1="http://example.org/math/types/"
xsi:type="tns1:Customer">

38

TIBCO® BPM Enterprise Business Data Services Developer Guide

http://www.w3schools.com/
http://www.w3.org/TR/xmlschema-1/#xsi_type

 <name>Fred</name>
 <email>fred@myemail.com</email>
 <phone>01234 567890</phone>
 <custNumber>44556677</custNumber>
</tns1:PersonElement >

http://www.w3 BPM adds an xsi:type value to XML data passed to external systems in a verbose manner.
This means that, wherever possible, the xsi:type is present. For clarity, this data is fully compliant with
the use of xsi:type as described in the specifications.

39

TIBCO® BPM Enterprise Business Data Services Developer Guide

Business Data Scripting by Example

The data objects that are passed around the ActiveMatrix BPM system, both within and between processes,
can sometimes be mapped as whole objects from one process to another, or attributes of one object can be
mapped onto attributes of another object in graphical ways using the mappers. However, there are some
places where the processes require custom processing of the data beyond the direct mapping of attributes.
In these cases, the scripting capabilities can be used.

This section illustrates how to write BDS server-side scripts, through a number of examples. The scripting is
provided by the Business Data Services (BDS) component that allows process definers to manipulate the
data objects defined within the BOM.

BPM Script scriptingcan be used in a lot of places within ActiveMatrix BPM processes by selecting
JavaScript as the script grammar, for example:

● Script tasks within processes
● Action Scripts that are run on particular events related to tasks (for example, initiate, complete, timeout,

cancel, open, submit and close)
● Timer Scripts - used to calculate a deadline or duration of a task within a process
● Condition Scripts – used to determine which direction flow should take within a process
● Loop Scripts – control how many times loops are executed within processes

The BPM Script is based on the JavaScript language, but has some unique restrictions and extensions, all of
which are described later in this guide.

Factories
At runtime, when a new object needs to be created to represent a particular Business Object (instance of a
BOM class) or other variable, a Factory method needs to be used to create the object instead of using the new
keyword that is usually used in JavaScript.

Only values for attributes of the following types do not need to be created with Factories:

● Boolean
● Text
● Integer (Signed integer sub-type)
● Decimal (Floating point decimal sub-type)

The primitive field types that represent measurements of time are created by DateTimeUtil factory
methods:

● DateTimeUtil.createDate()
DateTimeUtil.createTime()
DateTimeUtil.createDatetime()
DateTimeUtil.createDatetimetz()
DateTimeUtil.createDuration()

To create fixed integer and fixed decimal object instances, the following two ScriptUtil factory methods are
used:

● ScriptUtil.createBigInteger()
ScriptUtil.createBigDecimal()

Boolean fields can be assigned with the keywords true and false, or the result of an expression (such as
(2 == value)). However, if you want to convert a text value true or false to a Boolean, then the
ScriptUtil.createBoolean() can be used.

The factory methods for BOM classes can be found in Factory classes whose names matches the package
name of the BOM, for example, for a BOM with a package name com.example.ordermodel the factory

40

TIBCO® BPM Enterprise Business Data Services Developer Guide

class would be called com_example_ordermodel_Factory, and there would be methods in the factory
called createClassname for each class in the BOM. For example if the BOM contained Classes called Order,
OrderLine, and Customer, there would be the following factory methods:

● com_example_ordermodel_Factory.createOrder()
com_example_ordermodel_Factory.createOrderLine()
com_example_ordermodel_Factory.createCustomer()

If the scriptingguide BOM contains a sub-package called ordersystem, there would be a factory created for
the classes in that sub-package. Creating objects for classes in the sub-package would be done in a similar
way to creating objects in the top-level package, for example:

order = com_example_scriptingguide_ordersystem_Factory.createOrder();

the name of the factory contains the package and sub-package hierarchy in its name, separated by "_".

Creating a New Business Object
You can either create a new Business Object directly, or use a copy of an existing object.

Create an Instance of a Class
You can create a new Business Object directly.

Taking the example of the Person/Customer/Employee BOM:

In order to create an customer instance, we first need a data field to hold the instance. This is done by
creating a new Data Field in a process, and setting the Type to be an External Reference to a type in the
BOM. Here we have created a field called cust that will be able to hold instances of the Customer class
instances:

41

TIBCO® BPM Enterprise Business Data Services Developer Guide

Then a Script Task can be dragged onto the process diagram from the Tasks palette:

View the Script Task properties and from Script Defined As menu, select JavaScript:

The Describe Task Script dialog is displayed. Type the script. Maximize the Describe Task Script dialog, by
clicking Maximize, as shown below:

42

TIBCO® BPM Enterprise Business Data Services Developer Guide

It is very important to understand that when a process starts, the cust process data field will not contain or
refer to an instance of the Customer class, it just has the ability to. So the first thing to do before attempting
to access the attributes of the process data field is create an instance of the Customer object and assign it to
the cust process data field. The instances of the Customer class are created by the "Customer Factory
Method", the name of the factory that creates Customer instances is based on the name of the BOM package
that contains the Customer class as described in the previous section.
cust = com_example_scriptingguide_Factory.createCustomer();

One of the differences between BPM Script and standard JavaScript is the new operator is not supported.
Factory methods have to be used to create objects.

Create a Copy of a Business Object
One way of creating a new Business Object is to create a copy of an existing object.

The ScriptUtil utility method, as shown below, is provided for doing this:

cust1 = com_example_scriptingguide_Factory.createCustomer();
cust2 = ScriptUtil.copy(cust1);
cust3 = cust1;

The script in the example above, sets the cust2 process data field to refer to a copy of the Business Object
that the cust1 process data field refers to, and cust3 to refer to the same Business Object that the cust1
process data field refers to.

The ScriptUtil.copy() method performs a "deep" copy, which means that it copies all the objects
contained by the Business Object being copied, as well as the Business Object itself. It is only for copying
whole Business Objects, not for just copying BOM Primitive values.

Using the Special Value Null
The special value written as null can be used in several differnet ways.

Checking for Null Attributes
This section is intended chiefly for those readers not familiar with JavaScript.

The default value of the cust variable when the process starts is a special value written as null. If our script
was running later on in the process, and there was a possibility that an earlier script might have set the
cust variable to refer to a Customer, but it could still be null, then this can be checked in the script before
calling the factory method, as shown below:

if (null == cust)
{
 cust = com_example_scriptingguide_Factory.createCustomer();
}
else
{
 // cust was assigned in an earlier script
}

There are several things to note here:

● if (CONDITION) {IF-BLOCK} else {ELSE-BLOCK} is used for testing and conditionally executing
statements. Between the "()" (parenthesis mark), there should be a condition that results in a true or
false result. If the value results in true, then the IF-BLOCK statements between the first "{}" (curly
braces) are processed. If the value results in false the statements between the second curly braces in the
ELSE-BLOCK are processed. There can be multiple statements between the curly braces. These are
referred to as a block of statements. In BPM Script, curly braces are mandatory. In JavaScript, they are
only required if there is more than one statement to be processed.

43

TIBCO® BPM Enterprise Business Data Services Developer Guide

● The "==" operator is used to test for equality. Here, it is being used to test if the cust variable has the
value null. Writing null == cust instead of cust == null can help if you forget to use " ==" and use"
=" instead, since cust = null is valid in some places. However, null = cust is never valid, so the
syntax checker would help you in this case.

● The "//" in the else-block is used to introduce a comment. The rest of the line following "//" is ignored
by the script processing engine.

● If a UserTask is processed that has a BOM field as an Out or In / Out parameter in its Interface (the
default for all fields is In / Out), then after the UserTask is complete the BOM field will always refer to an
object, so it will not be necessary to initialize the BOM field from the Factory method in any scripts that
follow the UserTask that outputs the field.

● This is also true for any other task that has a mandatory Out or In / Out parameter (the difference
between UserTasks and Forms is that it always creates objects, even for Optional parameters).

Once we know that the cust field has a value, we can then set the name. We can check to see if attributes
have been previously assigned by comparing them against null, although this will only work for attributes
that do not have a default value. For example:

if (null == cust)
{
 cust = com_example_scriptingguide_Factory.createCustomer();
}
/*
Set the cust.name if not already set
*/
if (null == cust.name)
{
 cust.name = customerName;
}

The example above shows how to use a multi-line comment. The comment is opened with a "/*", then all
text until a matching "*/" is ignored by the script engine.

Similarly, you should check that an attribute is not null before using any methods on an object, as shown
below:

/*
 * Set the cust.name if not already set
 */
if (null != cust.dateOfBirth)
{
 year = cust.dateOfBirth.getYear();
}

Otherwise you will get a runtime exception.

Assigning a Null Value
The value of single value Data Fields and Business Objects’ attributes and compositions can be cleared by
assigning them the special value, null. If a default value is specified for a Business Object attribute, then
assigning null will return the attribute to its default value.

The following diagram and script illustrate this:

44

TIBCO® BPM Enterprise Business Data Services Developer Guide

// Clear car’s model value (attribute)
myCar.model = null;
// Restore car’s yearBuilt to its default: 1995 (attribute)
myCar.yearBuilt = null;
// Remove car’s roof value (composition)
myCar.roof = null;
// Clear myCar Data Field (Business Object)
myCar = null;
// Clear myInteger Data Field (Integer basic type)
myInteger = null;

For Data Fields or Business Object attributes and compositions that have a multiplicity greater than one, the
assignment of null is not possible. Instead, values can be removed using the appropriate List methods.
Specifically, remove for the removal of a single specific value, or clear for the removal of all values. This is
discussed further in Removing an Item from a List or a Containment Relationship. In the above example,
this applies to Car’s wheels composition and the myDates data field.

When dealing with attributes with a multiplicity greater than one, operations that add a null to the list will
result in nothing being added, resulting in an unchanged attribute. For example, the following script is
equivalent to a no-op, with no changes made to the list.

// Adding null to the list of a car’s wheels does nothing
myCar.wheels.add(null);

Using Content Assist
TIBCO Business Studio can provide some helpful assistance when entering scripts.

If you cannot remember whether you had called the field cust or customer you can type the first few
letters and press Ctrl+Space. You are prompted with a list of words, variables, methods and so on, that are
appropriate for where you are in the script. So, in our example, we can type c then press Ctrl+Space. A list
containing options appears, as shown below:

45

TIBCO® BPM Enterprise Business Data Services Developer Guide

To insert cust in the script, you can:

● Select cust and press ENTER. A list of words, variables, methods and so on, associated with cust is
displayed.

● Type u. Only items beginning with "cu" are displayed.

● Press ENTER.

● Double-click cust.

Next, type =co and press Ctrl+SPACE. Only the content assist that matches "co" in our example is
displayed. Press ENTER to insert the Factory name into the script, as shown below:

cust = com_example_scriptingguide_Factory

Next, type "." to give a list of the factory methods. This allows you to choose the type of Business Object to
create, as shown below:

Since the Business Object we want is already selected, press ENTER to cause the text createCustomer() to
be added to the script. Press ENTER to complete the line.

cust = com_example_scriptingguide_Factory.createCustomer();

46

TIBCO® BPM Enterprise Business Data Services Developer Guide

Working with Single Instance Attributes of Business Objects
To add contact details to a Customer instance, you can write a script..

 if (null != cust)
 {
 cust.phone = phoneNumber;
 cust.email = emailAddress;
 cust.address = postalAddress;
 }

Ensure that no variables used to assign attributes are null. Otherwise, the script will cause a runtime
exception that can cause the process to fail when the script is run.

If the address attribute of the Customer class is an attribute of an Address type rather than a Text type, the
address attribute needs to be set to refer to an instance of the Address class before the attributes of the
customer.address can be set. For example, the following can be done:

if (null != cust)
{
 cust.phone = phoneNumber;
 cust.email = emailAddress;
 if (null == cust.address)
 {
 cust.address = com_example_scriptingguide_Factory.createAddress();
 }
 cust.address.street = streetAddress;
 cust.address.district = districtAddress;
 cust.address.city = cityAddress;
 cust.address.country = countryAddress;
 cust.address.postcode = postCode;
}

Multiple Instances of a BOM Class
It is possible for the process data field to refer to multiple instances.

Multiple Instances of a BOM Class in a Process Data Field
If a process data field is flagged as being an Array Field when the process data field is created (or its
properties are changed later), then instead of referring to a single Business Object, the process data field will
refer to multiple instances of the Business Object. This is done through a List object, which can contain
multiple Business Objects.

Let us consider a process data field that holds a List of Customer objects called custList. The properties
sheet for custList has Array selected and is of type Customer:

Array fields with a multiplicity greater than 1 are implemented using the List object. The List objects do not
need to be created. They are created by default as empty Lists. If you want to associate a particular

47

TIBCO® BPM Enterprise Business Data Services Developer Guide

Customer with the custList variable, you can assign the cust field with a single instance field. This is
shown below.

cust = com_example_scriptingguide_Factory.createCustomer();
cust.name = "Fred Blogs";
cust.custNumber = "C123456";

Another way is to add the new customer to the custList. We can add multiple customers to a list as well,
as shown below:

// Using cust variable created above (Fred Blogs / C123456) is
// added to the List custList:
custList.add(cust);
// Now add a second customer to the list (John Smith):
cust2 = com_example_scriptingguide_Factory.createCustomer();
cust2.name = "John Smith";
cust2.custNumber = "C123457";
custList.add(cust2);

This can be pictured as follows:

WARNING: If, after you used the script above, you then used the following script to add a third customer
to the list, this would go wrong on two accounts.

cust2.name = "Clint Hill";
cust2.custNumber = "C123458";
custList.add(cust2);

First, a new Customer instance has not been created for Clint Hill, so the first two lines above modify the
John Smith Customer instance to refer to Clint Hill. Then when the add() method is called for the third
time, it will attempt to add a second reference to the same Customer instance. However, this add will fail
because the List type used does not allow the same object to be included more than once. So the list ends up
containing the Fred Blogs and Clint Hill Customer instances but not John Smith:

Instead, a Customer instance must be created using the factory method for each Customer to be added to
the list. If references to the individual customer cust are not required outside of the script then local script,

48

TIBCO® BPM Enterprise Business Data Services Developer Guide

variables can be used in place of the process variable cust. The example below shows two script local
variables c1 and c2 being used to correctly add two Customers to a custList:

// Create first customer instance
var c1 = com_example_scriptingguide_Factory.createCustomer();
c1.name = "Fred Blogs";
c1.custNumber = "C123456";
custList.add(c1);
// Create second customer instance
var c2 = com_example_scriptingguide_Factory.createCustomer();
c2.name = "John Smith";
c2.custNumber = "C567890";
custList.add(c2);

It is not necessary to use different variable names for the two Customer instances, variable c could have
been used throughout the script in place of c1 and c2, but then the word var would have to be removed
from the line that contains the second call to the createCustomer():

var c = com_example_scriptingguide_Factory.createCustomer();
c.name = "Fred Blogs";
c.custNumber = "C123456";
custList.add(c);
c = com_example_scriptingguide_Factory.createCustomer();
c.name = "John Smith";
c.custNumber = "C567890";
custList.add(c);

Another way of creating the second and subsequent instances would be to make copies of the first. This can
be useful if there are a lot of attributes with the same value, for example:

// Create first customer instance
var c1 = com_example_scriptingguide_Factory.createCustomer();
c1.name = "Fred Blogs";
c1.custNumber = "C123456";
c1.isRetail = true;
c1.dateAdded = DateTimeUtil.createDate();
custList.add(c1);
// Create second customer instance by copying the first
var c2 = ScriptUtil.copy(c1);
c2.name = "John Smith";
c2.custNumber = "C567890";
custList.add(c2);

We can use the same var to store the new customer once the first customer has been added to the list. We
do not need to keep a reference to it any longer:

// Create first customer instance
var cust = com_example_scriptingguide_Factory.createCustomer();
cust.name = "Fred Blogs";
cust.custNumber = "C123456";
cust.isRetail = true;
cust.dateAdded = DateTimeUtil.createDate();
custList.add(cust);
// Create second customer instance by copying the first
cust = ScriptUtil.copy(cust);
cust.name = "John Smith";
cust.custNumber = "C567890";
custList.add(cust);

49

TIBCO® BPM Enterprise Business Data Services Developer Guide

Multiple Instances of a BOM Class in a BOM Class Attribute
Just as we defined Process Fields that contained Multiple Instances of Customer Business Objects in the
previous section, we can also specify that an attribute of a BOM Class can have and must have multiple
instances, for example, an Order may contain multiple OrderLine objects.

In BOM Editor, this is configured by setting the multiplicity of the attribute, as shown here:

The above screenshot shows some example values that can be used to specify the multiplicity, however,
other values can also be used, for example, 3..6 would mean between 3 and 6 instances must be added to
the field.

If the multiplicity is greater than one (e.g. "*"; "1..*" or "3..6") then a List is used to manage the field, and
values must be added to the field using List methods. Otherwise, if the multiplicity is 1 (for example,
multiplicity is "1" or "0..1"), then a straightforward assignment can be used.

When the multiplicity of an attribute is greater than one, a List is used to manage the data at runtime, in the
same way Process Fields are managed when the Array checkbox is set in the Field Properties. To manage
the multiple orderlines associated with an Order, the following script can be written.

var orderline = com_example_scriptingguide_Factory.createOrderLine();
orderline.partNumber = 10023;
orderline.quantity = 3;
order.orderlines.add(orderline);
orderline = com_example_scriptingguide_Factory.createOrderLine();
orderline.partNumber = 10056;
orderline.quantity = 1;
order.orderlines.add(orderline);

or using the ScriptUtil.copy() method:

var orderline = com_example_scriptingguide_Factory.createOrderLine();
orderline.partNumber = 10023;
orderline.quantity = 3;
order.orderlines.add(orderline);
orderline = ScriptUtil.copy(orderline);
orderline.partNumber = 10056;
orderline.quantity = 1;
order.orderlines.add(orderline);

The List object provides methods for finding out how many items there are in the list, accessing particular
entries in the list, and enumerating the list. Some further examples of working with multi-instance fields
and attributes are provided in the following sections:

50

TIBCO® BPM Enterprise Business Data Services Developer Guide

● Looping Through Lists and Copying Elements in Lists.

● Scripting Containment Relationships.

● Using the List set() Method.

● Removing an Item from a List or a Containment Relationship.

To learn more about what you can do with the List object, see Using the List set() Method.

Multiple Instances in Sequences and Groups
BDS supports the use of multiplicity on a sequence, choice, or group in an imported schema or WSDL.

This support is only available on imported data. You cannot define multiplicity on a sequence, choice, or
group in a user-defined BOM.

For example, an imported sequence might be defined in an XML schema as follows:

<xs:complexType name="PlaneOptionalElms">

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="freightDetails" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="passengers" type="xs:int" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="PlaneOptionalElmsElement" type="PlaneOptionalElms"/>

The support for multiplicity on imported data means that, for example, important data passed in to your
process over a web service, and defined with multiplicity on a sequence or a choice, will maintain the order
in the content of the original message. However, you can retrieve the data only by requesting all
occurrences of a given element within the sequence or choice. This applies when data is passed to scripts,
mapping screens, or forms.

Note that if you use a script to populate or to add to a sequence or a choice with a multiplicity greater than
one, the order in which the data is added in the script will be maintained in the order of the BOM class
instance containing the data. So if you add data in a particular order, that same order will appear in the
XML if the data is later passed over a web service.

Passing Multiplicity to a Form
When an ordered set of data produced by a sequence, choice, or group with a multiplicity greater than one
is passed to a user task or to a form, the BOM Class involved can only be used as an In parameter or data
field on a user task. This prevents any changes to the data altering the order of an already set sequence or
choice.

If you wish to add more data to an existing sequence or to populate a new sequence, TIBCO suggests that
you write a pageflow to collect the data from a form, and then use a script to copy the data into the
sequence with multiplicity.

Working with Temporary Variables and Types
When writing scripts, the need for temporary variables often arises. In JavaScript, a temporary variable is
declared using the var keyword. This saves having to add all variables as Process Data Fields, which is
especially useful if the variables are only used within a single script. Adding them to the list of Data Fields
would just end up complicating the process.

For example, to declare (that is, to tell the script engine about) two temporary variables called x and
carName you can write:

51

TIBCO® BPM Enterprise Business Data Services Developer Guide

var x;
var carName;

The variables can also be initialized (given initial values) when they are declared like this:

var x = 5;
var carName = "Herbie";

When writing BPM scripts, it is always best to initialize variables when they are declared so that TIBCO
Business Studio’s Script Validation and Content Assist code knows what type the variables are. If you do
not initialize a variable, you will get the following warnings:

Unable to determine type, operation may not be supported and content assist will not be available

The content assist will not work. So, using the example from the previous section, it would not be a good
idea to write:

var c1;
var c2;
c1 = com_example_scriptingguide_Factory.createCustomer();
c1.name = "Fred Blogs";
c1.custNumber = "C123456";
custList.add(c1);
c2 = com_example_scriptingguide_Factory.createCustomer();
c2.name = "John Smith";
c2.custNumber = "C123457";
custList.add(c2);

Instead, the variables should be initialized when they are declared:

var c1 = com_example_scriptingguide_Factory.createCustomer();
c1.name = "Fred Blogs";
c1.custNumber = "C123456";
custList.add(c1);
var c2 = com_example_scriptingguide_Factory.createCustomer();
c2.name = "John Smith";
c2.custNumber = "C123457";
custList.add(c2);

Loops Within Scripts
This section is intended chiefly for those readers not familiar with JavaScript.

There are three different JavaScript loop syntaxes that can be used in BPM Script, and one that cannot be
used. The ones that are supported are:

while (CONDITION) { BLOCK }
do { BLOCK } while (CONDITION);
for (INITIALIZER; CONDITION; INCREMENT) { BLOCK }

One that is not supported is:

for (FIELD in ARRAYFIELD) { BLOCK }

Here is a simple while loop that loops until the ix variable becomes less than 0:

52

TIBCO® BPM Enterprise Business Data Services Developer Guide

var result = "";
var ix = 10;
while (ix >= 0)
{
 result = result + " " + ix;
 ix = ix - 1;
}

Things to note:

● result = result + " + ix; can be written result += " " + ix; using abbreviations allowed in
JavaScript.

● ix = ix - 1; can be written ix--; or --ix; using abbreviations allowed in JavaScript.

● ix++; or ++ix; can be used similarly instead of ix = ix + 1; .

● The curly braces are required for loops in TIBCO Business Studio JavaScripts just as they are for if/else
statements.

The do-while loop is very similar, but the condition is evaluated at the end of the loop, so the loop is
always executed at least once:

var result = "";
var ix = 10;
do
{
 result += " " + ix;
 ix--;
}
while (ix >= 0);

The for loop is similar to the while loop, but has two extra expressions in it. One is executed before the
loop starts and the other is executed at the end of each loop. It results in a more compact script. Here is the
equivalent for loop to the above while loop:

var result = "";
for (var ix = 10; ix >= 0; ix--);
{
 result += " " + ix;
}

Looping Through Lists and Copying Elements in Lists

In order to iterate through a List, a ListIterator is used. First you need to obtain the ListIterator from the List
using the listIterator() method. Two methods on the ListIterator are used to enumerate the items in the
List: the hasNext() method returns true if there are more items in the list, and the next() method returns
the next item in the list (or the first item in the list the first time it is called):

// Iterate through the list of customers to calculate the total
// credit limit:
var totalCreditLimit = 0;
for (var iterator=custlist.listIterator(); iterator.hasNext();)
{
 // Get the first/next item in the list
 var customer = iterator.next();
 // add customer’s credit limit to total credit limit
 totalCreditLimit += customer.creditLimit;
 // above statement is equivalent to:
 //totalCreditLimit = totalCreditLimit + // customer.creditLimit;
}

53

TIBCO® BPM Enterprise Business Data Services Developer Guide

Note that when the three temporary variables: totalCreditLimit, iterator and customer are declared,
they are all initialized so that TIBCO Business Studio knows what type they are. This helps with Script
Validation and Content Assist.

If one of the inputs to a script is a field called oldOrder, which contains multiple Orderline Business
Objects in an attribute called orderliness, and you want to copy these to another Order Business Object
called order, then the orderlines List in the new Order object cannot just be assigned:

Instead, the instances in the List need to be copied over. You might think of doing it like this:

for (var iterator=oldOrder.orderlines.listIterator(); iterator.hasNext();)
{
 var orderline = iterator.next();
 order.orderlines.add(orderline);
}

However, this should not be done, as Business Objects can only be contained in one Business Object.
Attempting to add a Business Object to a second Business Object in a containment relationship could have
unexpected consequences, and therefore should not be done (it will remove the object from the oldOrder
Business Object). Instead, the content of the List needs to be copied over, as shown below:

for (var iterator=oldOrder.orderlines.listIterator(); iterator.hasNext();)
{
 var orderline = iterator.next();
 var newOrderline = com_example_scriptingguide_order1_Factory.createOrderline();
 newOrderline.amount = orderline.amount;
 newOrderline.description = orderline.description;
 newOrderline.productCode = orderline.productCode;
 order.orderlines.add(newOrderline);
}

This can be simplified by using the ScriptUtil.copy() method to:

for (var iterator= oldOrder.orderlines.listIterator(); iterator.hasNext(); {
 var orderline = iterator.next();
 order.orderlines.add(ScriptUtil.copy(orderline));
}

It can be simplified even more by using the ScriptUtil.copyAll() method, as shown below:

order.orderlines.addAll(ScriptUtil.copyAll(oldOrder.orderlines));

This method will copy all elements from the oldOrder.orderlines List to the order.orderlines List.

Scripting Containment Relationships
The BOM editor allows you to say that one class is contained within another. For example, if there were
classes for Car and Widget, the Widget class can be said to be contained by the Car class. For the contained
relationship, the contained objects are affected by the container’s lifecycle events. So when the Container
(Car in our example) is destroyed, all the contained (Widget in our example) objects will be destroyed too.

54

TIBCO® BPM Enterprise Business Data Services Developer Guide

The diagram below shows that Widget objects can be contained by a Car or a Bike. However, for an
individual Widget object instance, it can only belong to a Car or a Bike instance, not both at once, as when
its parent object is destroyed, the child object is destroyed also.

There are two ways to model this in the BOM editor. First, a Composition link can be drawn between the
two classes, like this:

Alternatively, the Car and Bike class can be given an attribute called widgets of type Widget, as shown
below:

Both of these two Car/Widget relationships appear the same when scripting. There is an attribute of the Car
object called widgets, which will be a List type, that can contain Widget objects. This would be processed in
a similar way to the List processing examples already covered.

For example, to create a Car and add two Widgets, we can write:

55

TIBCO® BPM Enterprise Business Data Services Developer Guide

var car = com_example_scriptingguide_containment_Factory.createCar();
car.model = "Saloon";
var widget = com_example_scriptingguide_containment_Factory.createWidget();
widget.description = "M8 Bolt";
car.widgets.add(widget);
widget = com_example_scriptingguide_containment_Factory.createWidget ();
widget.description = "M8 Nut";
car.widgets.add(widget);

We have already mentioned that the contained objects can only be contained by one container, so an object
cannot be added to the same container more than once. Another aspect of the way that this relationship is
enforced is that if an object is contained within container A, and it is then added to container B, as part of
the process of inserting the object into container B, it is implicitly removed from container A.

For example, if you have a car object that contains a number of Widgets, and you attempt to copy them into
another Car or Bike object using the following script, it will fail as described below:

for (var iter = car.widgets.listIterator(); iter.hasNext();)
{
 bike.widgets.add(iter.next());
}

As mentioned above, adding the Car’s Widgets to the Bike removes them from the Car. This interferes with
the iterator which is attempting to iterate over a changing list. When a list is being iterated over, it should
not be changed unless by means of the ListIterator methods. Instead, the following should be done:

for (var iter = car.widgets.listIterator(); iter.hasNext();)
{
 bike.widgets.add(ScriptUtil.copy(iter.next()));
}

The above script takes copies of the objects, and leaves the original copies contained in the Car object. You
can also use the copyAll() method discussed in the previous section:

bike.widgets.addAll(ScriptUtil.copyAll(car.widgets));

Using the List set() Method
It is important to note that the List set() method cannot be used for adding new items to a list, for
example, if you have an empty list, you cannot add two elements like this:

bike.widgets.set(0, widgetA); // This is wrong!
bike.widgets.set(1, widgetB); // This is wrong!

The reason this is wrong is that the set() method is for updating existing entries. The above will fail
because the list is empty. Instead, the add() method must be used for adding new entries into a list.
Existing entries can be directly updated, so set() may not even be needed:

var widget = bike.widgets.get(0);
widget.description = “Widget A”;

Removing an Item from a List or a Containment Relationship

In order to remove an item from a containment relationship or a list, the remove() method should be used.
It can be used with the object to be removed, or the index of the object to be removed:

56

TIBCO® BPM Enterprise Business Data Services Developer Guide

//Remove an object from a collection
order.orderlines.remove(orderline1);

or:

order.orderlines.remove(0);

Be careful using the first example above. The Business Object, or other value passed, must be the same
Business Object instance that is in the list, and not a copy of it. This method checks to see if it is the same
object that was added. It does not compare the contents of the objects.

If you don’t know which item you want to remove, you should use the Iterator’s remove method. To
remove an item from a list means iterating through the list to find the item and then deleting it. This is done
using the list iterator as we have done before:

// Iterate through the list of customers removing customers with large credit
// limit
for (var iterator=custlist.listIterator(); iterator.hasNext();)
{
 var customer = iterator.next();
 // check if credit limit above 1,000,000
 if (customer.creditLimit >= 1000000)
 {
 iterator.remove();
 }
}

Alternatively this can be done just using the methods on the List object:

// Iterate through the list of customers removing customers with large credit
// limit
for (var ix=0; ix < custlist.size(); ix++)
{
 var customer = custlist.get(ix);
 // check if credit limit above 1,000,000
 if (customer.creditLimit >= 1000000)
 {
 custlist.remove(ix);
 ix--; // decrement index so next iteration check the new nth item
 }
}

If the list index is managed in the script, as in the second example, you have to be careful not to skip past
elements after an element that is remove by only incrementing the index if the item is not removed! So
using the iterator is easier.

There is also a clear() method on Lists that can be used to remove all entries in the list, for example:

bike.widgets.clear();
custList.clear();

Scripting on Business Objects That Use Inheritance

Using BOM Editor, you can define BOM classes that inherit attributes from other classes. Another way of
expressing this is to say that you can create BOM classes that specialize other classes.

An example of this is shown in the screenshot below:

57

TIBCO® BPM Enterprise Business Data Services Developer Guide

In this example, there is a general Product type, and then there are two different types of Products:

● Book, which additionally have an isbn attribute

● Electrical, which additionally have a serialNumber attribute.

If we had a Process Data Field called orderline of type Orderline, then the containment of type Product,
can be assigned Business Objects of type Product, Book, or Electrical:

var book = com_example_spec3_Factory.createBook();
orderline.product = book; // Set the product attribute to a Book
 // Business Object
var elec = com_example_spec3_Factory.createElectrical();
orderline.product = elec; // Set the product attribute to an
 // Electrical Business Object
var prod = com_example_spec3_Factory.createProduct();
orderline.product = prod; // Set the product attribute to a
 // Product Business Object

Similarly, if we have a Process Data Field called productCatalog of type ProductCatalog, the products
containment can contain many Product Business Objects, some of these which can Book Business Objects,
some Electrical Business Objects, and some may just be Product Business Objects. For example, you can add
all three types to the products list, as shown here:

var book = com_example_spec3_Factory.createBook();
var elec = com_example_spec3_Factory.createElectrical();
var prod = com_example_spec3_Factory.createProduct();
productCatalog.products.add(book);
productCatalog.products.add(elec);
productCatalog.products.add(prod);

If a Process Data Field productCatalog of type ProductCatalog type appears on a Form in a UserTask, it will
just show the Product details. You will not be able to access the attributes of the Book or Electrical classes,
however, it does allow you to add new instances of Book, Electrical, or the base type Product.

Similarly, in scripts, if you iterate through the products List, the Script Editor just gives you the content
assist for the Product object. You will get an error if you attempt to access the isbn attribute of a Product
Business Object, as shown below:

58

TIBCO® BPM Enterprise Business Data Services Developer Guide

The above code sample shows an attempt to create a List of Text that contains the ISBN number of the
Product instances that are Book subtype Book instances.

To get around this problem, we can create a variable called book, which we initialize to an object of type
Book. Then we assign the Product Business Object to the book variable, after which TIBCO Business Studio
allows access to the attributes of the Book class. However, a warning is given that the assignment may not
work at runtime:

bookList = com_example_spec3_Factory.createISBNList();
for (var iter = productCatalog.products.listIterator(); iter.hasNext();)
{
 var product = iter.next();
 if (ProductType.BOOK == product.type)
 {
 var book = com_example_spec3_Factory.createBook();
 book = product;
 bookList.isbns.add(book.isbn);
 }
}

The TIBCO Business Studio Script Editor gives a warning about the assignment of a field that it thinks
contains a Product to a field that it treats as holding a Book. However we know, from the test that we
conducted previously, that in this case it is safe:

If we do not have the above check, then the above code can fail at runtime when attempting to access the
isbn attribute if the product (and hence the book) was referring to a Product or an Electrical Business
Object as these do not have the isbn attribute.

It is always OK to assign a sub-type (specialized type) object to a supertype (generalized) attribute or
variable because you can say that the sub-type object satisfies the "is-a" relationship. In our example, Book
"is-a" Product.

However, it is not always OK to do things the other way around. Assigning an attribute or process data
field that is a Book type, from a variable or attribute of a Product type, will only work at runtime if the
Product actually refers to an instance of the Book class (or a sub-type). If the Product field or attribute
actually refers to a Product or Electrical Business Object, then it does not satisfy the "is-a" Book condition.
The assignment will fail when the value is saved at the end of the task.

59

TIBCO® BPM Enterprise Business Data Services Developer Guide

If, instead of building up a list of ISBN Text values, we wanted to create a List of Products that were also
Books and, if the bookList is a Book type Process Data field, then we can write:

bookList = com_example_spec3_Factory.createBookList();
for (var iter = order.products.listIterator(); iter.hasNext();)
{
 var product = iter.next();
 if (ProductType.BOOK == product.type)
 {
 bookList.add(product);
 }
}

However, if the booklist refers to a BookList type Business Object with an attribute or composition
relationship called Books, then instead of writing:

bookList = com_example_spec3_Factory.createBookList();
for (var iter = order.products.listIterator(); iter.hasNext();)
{
 var product = iter.next();
 if (ProductType.BOOK == product.type)
 {
 bookList.books.add(product); // THIS IS WRONG
 }
}

We should write:

bookList = com_example_spec3_Factory.createBookList();
for (var iter = order.products.listIterator(); iter.hasNext();)
{
 var product = iter.next();
 if (ProductType.BOOK == product.type)
 {
 bookList.books.add(ScriptUtil.copy(product));
 }
}

Otherwise, we are moving the Book Product out of the containment relationship with the order and
products into the relationship with booklist/books. Remember that a contained Business Object can only be
in one container at a time. To stop this from happening, you must make a copy of the object, and add that to
the booklist/books containment relationship.

Working with Strings or Text Fields

String values can easily be assigned using either single or double quotation marks. However, they must be
of the same type.

For example:

var firstString = "Hello World!"; // quoted using double quote character
var nextString = 'Hello Fred!'; // quoted using single quote character
var thirdString = "Fred's World"; // includes single quote so used double
 // quote
var fourthString = ' "The Old House" '; // includes double quote so used
 // single quote
var fifthString = "Fred's \"Old\" House"; // string includes both so need \
 // character to escape use of quote in
 // string

String values can be compared with the "==" operator, for example:

60

TIBCO® BPM Enterprise Business Data Services Developer Guide

if (firstString == nextString)
{
 // do something
}
else
{
 // do something else
}

There are a number of methods on the String class that can be used to manipulate the value of the String
object, for example, considering the following String variable:

var str = "Hello TIBCO!";

The following operations can be done on the String.

String Operations

Expression Result Comment

str.length 12 Returns length of string

str.substr(0,5) Hello Return substring starting at offset 0, 5 characters long

str.substr(6) TIBCO! Return substring starting at 6th position in string

str.slice(6,9) TIB Returns substring starting at offset 6 and finishing
before offset 9

str.slice(-6).toLowerC
ase();

tibco! Returns substring starting 6 characters from end of
String and changes all letters to lowercase

str.slice(0,
str.indexOf(" ")))

Hello Returns first word in string, or whole string if one
word

str.slice(str.lastInde
xOf(" ")+1)

TIBCO! Returns last word in String, or whole string if one word

For more information about String class methods, see Text (String) Methods.

The String objects are immutable, so when one of the above functions returns a String value, it is a reference
to a new String. The original String is not changed.

If you want to restrict what Strings can be put into certain Text fields, consider using the User-defined
Types described in Working with Primitive Types.

Working with Booleans

Boolean fields can be simply assigned from constants, other Boolean fields, or expressions.

For example:

customer.initialized = true;
customer.isOnCreditHold = false;
customer.staffDiscount = memberOfStaff;
customer.isWholesale = ! isRetailCustomer;

61

TIBCO® BPM Enterprise Business Data Services Developer Guide

The exclamation mark "!" is the "not" operator, changing the sense of a true value to false, and a false value
to true.

When attempting to convert a text field value to a Boolean (for example, from "true" to true), the
ScriptUtil.createBoolean() method should be used. If the text field is not exactly true or false,
attempting to assign a text field to a Boolean will generate an exception. Using the createBoolean()
method if the value of the Text field is TRUE (in any case), then the Boolean result is true, otherwise it is
false.

Similarly, if you want to convert a numeric value (0 or 1) to a Boolean, then the
ScriptUtil.createBoolean() method should be used. For example:
Customer.isTrade = ScriptUtil.createBoolean(isTradeParameter);

can be used to convert from a text (true/false) or numeric (1/0) Boolean representation to the Boolean type.
Values greater than or equal to 1 get converted to true, and values less than or equal to 0 get converted to
false.

Boolean values can be compared with the "==" and "!=" operators, for example:

if (cust1.isWholesale == cust2.isWholesale)
{
 …

Boolean values can also be combined with the following logical operators.

Operators that can be used with Boolean Values

Operator Description Example

&& And – both are true cust.isWholesale && order.discountApplied

|| Or – either is true cust.isWholesale || order.discountApplied

! Not – reverses result !(cust.isWholesale && order.discountApplied)

Working with Numeric Types
BDS supports different types of both Integer and Decimal numbers.

Working with Basic Integer Numbers
There are two types of integers (whole numbers such as 1, 2, 457, and so on) that are supported: Signed
Integers and Fixed Length Integers. When working with integer numbers, you need to be aware of what the
largest value is that you could be dealing with.

If you are dealing with smaller numbers, for example, a number of people, then the signed integer type can
cope with numbers up to 2,000,000,000 (actually, numbers up to 2,147,483,647, or 231-1), however, if you are
dealing with larger, for example, astronomical numbers, then the fixed form of integers needs to be used.
The larger Fixed Integers are dealt with in Advanced Scripting Examples.

62

TIBCO® BPM Enterprise Business Data Services Developer Guide

Signed Integers

For smaller numbers, either form of integers can be used, but the Signed Integer sub-type is easier to use
from a scripting point of view, so it is probably the sub-type of choice. In order to select the sub-type, select
the attribute in the BOM class, and look at the Advanced Properties sheet:

In scripting, to work out the average weight of a team member, you can do the following:

var totalKgs = 0;
var teamSize = 0;
for (var iterator = team.members.listIterator(); iterator.hasNext();)
{
 var member = iterator.next();
 totalKgs = totalKgs + member.weightKgs;
 teamSize = teamSize + 1;
}
if (teamSize > 0)
{
 team.averageWeight = totalKgs / teamSize;
}
else
{
 team.averageWeight = 0;
}

Note that the two lines in the loop that update the running totals can be shortened to:

totalKgs += member.weightKgs;
teamSize++;

using the arithmetic abbreviations that can be used in scripting.

When dividing, do not divide by 0. The code above checks for this special case. The operators for
comparing signed integers are:

Operators for Comparing Signed Integers

Operator Description Example Result

== Equals 1 == 2

12 == 12

false

true

!= Not Equals 1 == 2

12 == 12

true

false

63

TIBCO® BPM Enterprise Business Data Services Developer Guide

Operator Description Example Result

< Less than 1 < 2

12 < 12

21 < 20

true

false

false

<= Less than or equals 1 <= 2

12 <= 12

21 <= 20

true

true

false

>= Greater than or equals 1 >= 2

12 >= 12

21 >= 20

false

true

true

> Greater than 1 > 2

12 > 12

21 > 20

false

false

true

See Working with Fixed Length Integers (BigInteger) for more information.

Working with Basic Decimal Numbers

Just as Integers have two variants, there are two variants of Decimal attributes in BOM classes: Floating
Point and Fixed Point. The sub-type to use is selected in the Advanced Property sheet for the attribute, just
as the Integer attributes in Signed Integers.

The Floating Point variant can store:

● Negative numbers between -1.79769E+308 and -2.225E-307

● 0

● Positive values between 2.225E-307 and 1.79769E+308.

The Floating Point variant stores numbers with 16 significant digits of accuracy. However, it should not be
used for storing values that have to be exact, for example, money amounts. Rounding errors may occur,
especially if large amounts are involved.

The Fixed Point variant can store numbers to an arbitrarily large size, and can perform arithmetic using
many different types of rounding as required. However, the downside is that the Fixed Point attributes are
implemented as BigDecimal objects, which, like the BigInteger objects in the previous section, have to be
manipulated using their methods (add(), subtract, divide(), multiple(), and so on.) instead of the normal
arithmetic operators ("+", "-", "/", "*", and so on.).

For more information about the Fixed Point decimal attributes, see Advanced Scripting Examples.

Here are some examples that demonstrate how decimals can be used in scripts. For Floating Point decimals,
assuming that averageWeight is now a Floating Point decimal attribute of the team Data Field, we can
write:

64

TIBCO® BPM Enterprise Business Data Services Developer Guide

var totalKgs = 0.0;
var teamSize = 0;
for (var iterator = team.members.listIterator(); iterator.hasNext();)
{
 var member = iterator.next();
 totalKgs = totalKgs + member.weightKgs;
 teamSize = teamSize + 1;
}
team.averageWeight = totalKgs / teamSize;

As in the integer example, the two additional lines can be abbreviated as:

totalKgs += member.weightKgs;
teamSize++;

To compare Floating Point decimal values, use the standard "<", "<="," ==", "!=", ">=" and, ">" operators. It is
possible that two numbers that appear to be the same may not be equal using the "==" operator due to
rounding errors in the way that the numbers are represented. (These operators are the same as for the
Signed Integers. For more information about how these operators can be used, see Operators for
Comparing Signed Integers.)

As an example of how Floating Point numbers may not be exactly as they seem, the result of the following
expression is false due to rounding errors:

(((1/10) * 14) == 1.4)

To get around this problem, the values should be rounded before comparison.

Rounding of Floating Point Decimals can be done using the ScriptUtil.round() method, for example, to
convert a number to 3 decimal places you can write:

roundedValue = ScriptUtil.round(value, 3);

This converts 1234.56789 to 1234.568 using HALF_UP rounding. If you wanted to round down, then the
Math.floor() method can be used instead of the ScriptUtil.round() method:

roundedValue = Math.floor(value*1000)/1000;

The ScriptUtil.round() method can also be used to round to a power of 10, for example, to round to the
nearest 100, the power of 10 is 2, so use:

roundedValue = ScriptUtil.round(value, -2);

This rounds 1234.56789 to 1200. The Math class provides other methods, for example, log & trig functions
and random() and floor() functions. See Math Methods for details.

See also Working with Fixed Decimals (BigDecimal).

Implicit Conversions Between Numeric Types
Data of one type can be converted to another type either implicitly or explicitly.

This section describes some of the implications of the implicit conversions that are supported between
different numeric data types. Explicit conversions can be carried out using the factory methods provided, as
described in Supplemental Information.

When data of one numeric type is converted to another, there is not always any simple direct conversion,
for example if you store a decimal value into a non-decimal field, or a BigInteger into an Integer.

65

TIBCO® BPM Enterprise Business Data Services Developer Guide

In general:

● If a decimal is stored into a non-decimal (such as BigDecimal stored into BigInteger), then the part of the
data will be discarded. No rounding up is performed in this case: "9.99" is stored as "9".

● If the maximum numeric size is exceeded (such as BigInteger stored into Integer) in such a way that the
numeric value cannot be stored in the target type, then a NumberFormatException will be generated.

Support for assigning different numeric types

Data of one numeric type can be converted to another simply by assigning an object of one type to a value
of a different type. In the following example, a BigDecimal item is converted to a BigInteger value.

A business process used by a bank contains a BOM class Balance, with two attributes:

● accountBalanceinWholeNumbers This is an integer, of sub-type Fixed Length (BigInteger), to provide
an approximate value for the balance.

● accountBalanceInDecimals This is a decimal, of sub-type Fixed Point.

In the process, a data field balance is defined as an external reference to the BOM class Balance. The field is
used in a script task, as shown in the following illustration.

An extract from the script is shown both in the illustration above and in the snippet that follows:

/*
Map the integer accountBalanceInWholeNumbers to the decimal accountBalanceInDecimals
*/
balance = com_example_accountconversion_Factory.createBalance();
balance.accountBalanceInDecimals = ScriptUtil.createBigDecimal("100.1");
balance.accountBalanceInWholeNumbers = balance.accountBalanceInDecimals;

BDS checks which data type is being passed in as input and performs the conversion accordingly. In this
example, the code would convert the decimal 100.1 to the integer value 100.

66

TIBCO® BPM Enterprise Business Data Services Developer Guide

Support for adding to Lists

BDS supports adding an item of one numeric type to a List object that is listing items of a different numeric
type: for example, adding a Floating Point decimal to a list of Integers.

For example, if the variable approxWeight in the example below is an integer, and weightObservations is a
list of these integers, you can add a decimal preciseWeight value to the list.

// Using the approxWeight variable already created, a new
// weight is added to the List weightObservations:
weightObservations.add(approxWeight);
...
// It is necessary to add to the list a more precise observation
// The fact that this is a decimal makes no difference to the
// script user:
weightObservations.add(preciseWeight);

So if the following observations are added to the list:

approxWeight = 200;
preciseWeight = 324.26;
approxWeight = 196

The weightObservations list would contain the values [200, 324, 196] after the script has run.

As this example shows, some data may be lost when converting from decimal to integer.

Working with Dates and Times

Dates and Times
The Date, Time, Datetime, and Datetimetz types are represented using a XMLGregorianCalendar object
within the Script Engine. This provides methods to manipulate the date/time type variables and attributes.

The date/time attributes and fields can be initialized in scripts using methods on the DateTimeUtil factory,
as shown below.

DateTimeUtil Factory Methods

Factory Method BOM Type Comment

createDate() Date This type is used to hold a Date, for example, 1st January
2011.

createTime() Time This type is used to hold a time, for example 4:25 P.M.

createDatetime() Datetime This type is used to hold a date and time, with an optional
timezone offset.

createDatetimetz() Datetimetz This type is used to hold a date and time, with a
mandatory timezone offset.

With no parameters these methods create an object representing the current date or time, or alternatively,
they can be given a string or other parameter types to construct the appropriate object with the required
value. One thing to be aware of if using String values to create date/time objects is that all the relevant fields
need to be specified or an exception will be thrown. Specifically, the seconds need to be specified for all
types except the Date type. The following are some examples of date/time types.

67

TIBCO® BPM Enterprise Business Data Services Developer Guide

time = DateTimeUtil.createTime("17:30:00");
time = DateTimeUtil.createTime(17,30,0,0); // equivelant to “17:30:00”
date = DateTimeUtil.createDate("2010-12-25");
date = DateTimeUtil.createDate(2010, 12, 25); // equivelant to “2010-12-25”
datetime = DateTimeUtil.createDatetime("2010-12-25T15:00:00");
datetime = DateTimeUtil.createDatetime("2010-12-25T15:00:00Z");
datetime = DateTimeUtil.createDatetime("2010-12-25T15:00:00+05:00");
datetimetz = DateTimeUtil.createDatetimetz("2010-12-25T15:00:00Z");
datetimetz = DateTimeUtil.createDatetimetz("2010-12-25T15:00:00+05:00");

When initializing the datetime, the timezone is optional, but when initializing the datetimetz, the timezone
is required. The timezone can be designated using one of the following formats:

● Z for Zulu, or Zero, timezone offset (GMT or UTC time).

● +HH:MM for timezones that are ahead of UTC time, e.g. Berlin timezone is +01:00.

● -HH:MM for timezones that are behind UTC time, e.g. USA Pacific Time has a timezone of -08:00.

When working with global data, you should use Datetimetz to represent any timezone-dependent Datetime
values entered from a form. This is because global data automatically sets any Datetime/Datetimetz values
to UTC, meaning that dates in forms may not be the same ones you originally created (they could be one
day different due to timezone differences).

See the reference section for more choices of parameter values, for example, for separated parameters for
year, month, and day when create date types.

Durations
An important attribute/variable type when dealing with dates and times is the Duration type, which is used
to hold periods of time, such as 1 year, minus 10 days, or 2 hours.

A duration object can be created in a similar way:

duration = DateTimeUtil.createDuration("P1Y"); // 1 year
duration = DateTimeUtil.createDuration("-P10D"); // minus 10 days
duration = DateTimeUtil.createDuration("PT2H"); // 2 hours
duration = DateTimeUtil.createDuration("PT23.456S"); // 23.456 seconds
duration = DateTimeUtil.createDuration("P1DT2H"); // 1 day and 2 hours

When constructing a period of time from a string, always begin with a P for period. Then add nY, nM, or
nD, where n is a number of years, months, or days. Any fields that are zero can be omitted. If there is any
time component to the Duration, a T must follow the date parts, followed by nH, nM, or nS for specifying
hours, minutes, or seconds.

A leading minus sign can be used to create a negative duration. This can be used with the add() method to
subtract a time period. The Duration type can also be created by specifying each of the components as
integers with a flag to say whether the duration is positive:

duration = DateTimeUtil.createDuration(true, 1, 0, 0, 0, 0, 0); // 1 year
duration = DateTimeUtil.createDuration(false,0, 0,10, 0, 0, 0); // minus 10 days
duration = DateTimeUtil.createDuration(true, 0, 0, 0, 2, 0, 0); // 2 hours
duration = DateTimeUtil.createDuration(true, 0, 0, 0, 0, 0, 23.456); // 23.456
seconds
duration = DateTimeUtil.createDuration(true, 0, 0, 1, 2, 0, 0); // 1 day and 2
hours

68

TIBCO® BPM Enterprise Business Data Services Developer Guide

Using Date and Time Types with Durations
One important point to be aware of is that the date/time (XMLGregorainCalendar) objects are not
immutable, so the add() and setXXX() methods update the object that the method is on, rather than return
a new value.

To add 2 hours onto a Datetime, write:

datetime.add(DateTimeUtil.createDuration(“PT2H”));

Not:

datetime = datetime.add(DateTimeUtil.createDuration(“PT2H”));

The second code results in datetime being set to null, since the add() method does not return a value.
Duration objects are Immutable, like BigDecimal and BigInteger objects.

If you want to subtract a time period from a date or time type, you can add a negative duration. This is the
same as in normal arithmetic where there are two ways of taking 2 from 10. The result of 10 - 2 is the same
as 10 + -2. In order to subtract durations, we must use the format of adding a negative amount. The
following example calculates 1 year ago.

var date = DateTimeUtil.createDate(); date.add(DateTimeUtil.createDuration("-
P1Y"));

The following example calculates a datetime corresponding to 36 hours ago.

var datetime = DateTimeUtil.createDatetime();
datetime.add(DateTimeUtil.createDuration(false,0,0,0,36,0,0));

Comparing Dates and Times
In order to compare two date/time types, either the compare() or equals() method should be used. The
equals() method is just a wrapper around the compare() method. The compare() method should be used
to compare items that either do or do not have a timezone. The method still works if the date/times are
more than 14 hours apart, but if they are less than 14 hours apart, the result is deemed to be indeterminate.

An example of using the compare()method to compare two date fields is shown below:

// Verify that end date is greater than start date
if (enddate.compare(startdate) == DatatypeConstants.GREATER)
{
 // End date is greater than start date
}

Do not use the XMLGregorianCalendar compare() method in the same way you would use the
compareTo() method to compare BigInteger and BigDecimal objects due to the possibility of it returning
INDETERMINATE. To check for greater than or equals, use the following:

// Verify end date is greater than or equal to start date
if (enddate.compare(startdate) == DatatypeConstants.GREATER ||
enddate.compare(startdate) == DatatypeConstants.EQUAL)
{
 // End date is greater than or equal to start date
}

Using the following will also include the INDETERMINATE result:

69

TIBCO® BPM Enterprise Business Data Services Developer Guide

// Verify end date is greater than or equal to start date
if (enddate.compare(startdate) != DatatypeConstants.LESSER)
{
 // End date is greater than or equal to start date – OR INDETERMINATE!!
}

The XMLGregorianCalendar class does not provide a method for finding the difference between two
XMLGregorianCalendar objects, so one is provided in ScriptUtil. To find out how many days have elapsed
since the start of the year, write:

// Calculate date of first day of the year by getting current date
// and setting day and month to 1
var startOfYear = DateTimeUtil.createDate();
startOfYear.setDay(1);
startOfYear.setMonth(1);
// get today’s date
var today = DateTimeUtil.createDate();
// Subtract the start of year from today to work out how many days have elapsed
var duration = ScriptUtil.subtract(today, startOfYear);
// Extract the days from the duration type and add 1
dayOfYear = duration.getDays() + 1;

You can read about the different methods that are available on the date/time attributes in Business Data
Scripting.

Working with Enumerated Types (ENUMs)
If you want to categorize objects as different types, instead of using a number or a free format string, use an
Enumerated Type (ENUM). Enumerated Types provide a better solution because they are restricted, in that
they can only take a fixed limited number of values. The names of the values can be made meaningful.

The use of ambiguous enumerations in script, when two enumerations with the same name exist in the
same xpdl package, is managed by using a fully-qualified name (qualified by the package name) for the
enumerations in the script.

The qualified name of enumerations to be used in script is similar to the Factory names, with the qualified
name formatted to replace dot '.' by '_' an underscore character. For example,
com.example.shared.ColorEnum will be used as com_example_shared_ColorEnum in script.

Unqualified names (for example, Color.GREEN) are supported only in validation for unambiguous
situations (the unqualified name will not be available in content assist).

An ENUM is created in the BOM editor by selecting the Enumeration type from the Elements section of the
Palette. Having selected the Enumeration Element, it can be named, and values can be added to it. The
following is an example of an Enumerated type called SpaceType, with PLANET, MOON, ASTEROID, and
STAR values:

Having defined the Enumeration type, a class attribute can be set to that type:

70

TIBCO® BPM Enterprise Business Data Services Developer Guide

The following is an example of a loop, which can be used to calculate the average weight of the planets in a
list of astronomical bodies.

var dTotalKgs = 0.0;
var dPlanetCount = 0;
for (var iterator = solarSystem.objectList.listIterator(); iterator.hasNext();)
{
 var body = iterator.next();
 if (SpaceType.PLANET == body.type)
 {
 dTotalKgs = dTotalKgs + body.weightKgs;
 dPlanetCount ++;
 }
}
solarSystem.averagePlanetWeight = dTotalKgs / dPlanetCount;

A Business Object attribute that is configured to be of a particular Enumeration type can only be assigned
with values of that enumeration type. Either constants of that type, such as:

 body.type = SpaceType.PLANET;

or other attributes of that type, such as:

 aggregation.type = body.type;

An attribute of an enumeration type cannot be assigned from any other type. For example, the following is
not valid:

body.type = "PLANET"; // This is wrong!

The Enumerated Type also enables you to get a specific enumeration literal from its text value. For example,
if you want to pass an enumeration value as a string to an external application and then pass it back to a
process. You can use this in scripts with all available enumeration data types. Either text data types, as in
the following example:

spaceTypeEnum = SpaceType.get('PLANET');

and non-text data types, such as:

OrderSizeEnum = OrderSize.get('100');

71

TIBCO® BPM Enterprise Business Data Services Developer Guide

For non-text data types, the mapped text value must be the text used in the enumeration value and not its
enumeration attribute name. For example, for an integer OrderSizeEnum (Large-100, Medium-50,
Small-20) the mapping must use the values '100', '50', '20', and not the enumeration attribute names, Large,
Medium, Small.

Working with Primitive Types
If you want to have field that can contain a restricted set of values, but the set of values is too big for an
enumerated type, you can use a Primitive Type. For example, if you need to store a Part Number in a field,
this field will probably have a restricted format, such as PN-123456. If all Part Numbers have a fixed format
like this, set up a User-defined Type to hold the Part Number, and restrict the type so that it only holds
strings that start with PN- and are followed by six digits.

To do this, select the Primitive Type from the Elements section of the Palette. Having created one of these,
you can name it. For our example, call it PartNumber. In the Advanced Properties sheet, you can define
restrictions that are imposed on the field, such as numeric ranges for numeric fields and patterns for text
fields. The patterns are specified using regular expressions. For our example, use:
PN-\d{6}

Which means PN- followed by 6 digits (\d is the code for a digit and {6} means six of the previous entity).

Set a class attribute to contain a PartNumbertype attribute as shown above. In scripts and forms, you can
only assign values to the partNum attribute that matched the pattern PN-\d{6}.

Attributes of Primitive Types can be assigned in the same way as the BOM Native Type on which they are
based, so, using the above example, the partNum field can be assigned using:

order.orderline.partNum = "PN-123456";

If a script is written with an invalid format value, as shown in the example below:

order.orderline.partNum = "ROB-123456";

the script editor will not detect this as an error, since it does not check that Strings have the correct content.
Instead, this will cause a runtime validation exception when the Task that contains the script completes.

Using Enumerated Types as Extensions of Primitive Types
A BOM Primitive Type, of any type (superclass), can be mapped as a Generalization of an Enumeration in
order to extend the primitive type’s range of possible values.

For example, the following illustration shows an Integer primitive type, Speed Limit. The possible kinds of
Speed Limit are given as enumeration literals within an Enumeration called Legal limits. The value of each
of these enumeration literals is an integer representing the speed limit currently in force in the

72

TIBCO® BPM Enterprise Business Data Services Developer Guide

circumstances described by the enumeration literal. For example, the literal Motorway has the value of 70,
because the speed limit on motorways is 70 mph. If this speed limit were to increase to 80 mph, for
example, the value of this literal could be changed to 80.

Return Values from Scripts
The following expressions use these return values from scripts to perform certain functions:

● Conditional flows – Boolean expressions that control whether a path is followed or not.

● Loop Conditions – Boolean expressions that determine whether a loop should continue or not.

● Task TimerEvent – Datetime expressions that determine when a task should timeout.

These expressions can be multi-line expressions. The value of the script is the value of the last line in the
script. For example, if we want a script to calculate a timeout to be the end of the month, which is 7 days in
the future, we can use the following:

var datetime = DateTimeUtil.createDatetimetz(); // get current datetime
datetime.add(DateTimeUtil.createDuration("P7D")); // change to 7 days time
datetime.setDay(1); // adjust in case on 31-Jan
datetime.add(DateTimeUtil.createDuration("P1M")); // move on to next month
datetime.add(DateTimeUtil.createDuration("-P1D")); // back to end of prev. month
datetime.setTime(0,0,0); // clear hours, minutes & seconds
datetime; // return value of script

Scripting with Web Services
To invoke a web service and use scripts to prepare data for the web service, you perform the tasks described
in this topic.

First, add a Service Task onto the process diagram by dragging it from the tasks palette:

73

TIBCO® BPM Enterprise Business Data Services Developer Guide

Then, in the General Properties sheet, set the Service Type to Web Service, then click Import WSDL. Locate
your WSDL using one of the mechanisms provided (file location, URL, and so on), and select the
webservice you want to invoke from the WSDL:

Looking in the Package Explorer, we can see the WSDL file under the Service Descriptors heading. You can
open the WSDL by double-clicking the WSDL entry (or right-clicking on the WSDL entry and selecting
OpenWith/WSDL Editor). Viewing the WSDL in the WSDL Editor, we can see what types the Web Service
takes as parameters:

We can now create two Data Fields in the process of the appropriate types:

74

TIBCO® BPM Enterprise Business Data Services Developer Guide

Then, from the Input To Service property sheet, map the requestInfo field to the RequestInfoType input of
the Web Service by dragging the field name onto the parameter name, as shown in the diagram below:

The mapping will then be shown like this:

Then, repeat for the output of the Web Service:

Then, on the General property sheet, change the name of the task to something appropriate, for example,
Call "Request" Web Service. Then, we have completed the Web Service task:

Now we need to prepare the data to go into the webservice and process the data that comes out of the web
service. This can be done in scripts. To do this, drag two script tasks onto the Process Diagram before and
after the Web Service call and name them appropriately:

75

TIBCO® BPM Enterprise Business Data Services Developer Guide

The error markers in the figure above indicate that the scripts have not been written yet. In the General
property sheet of the first script, set the Script Defined As property to JavaScript, and enter the script. First,
we need to make the RequestInfo variable refer to an actual RequestInfo object by initializing it using the
factory method (don’t forget to use the content assist to help. See Using Content Assist for more
information). The following script is one example:

// Prepare Web Serice Call Request
requestInfo =
com_amsbqa_linda01_xsd_define_types_types_Factory.createRequestInfoType();
requestInfo.correlationId = 123456;
requestInfo.password = "Password!";
requestInfo.requestName = "Search";
requestInfo.userName = "Fred Blogs";

Something similar can be done in the script after the Web Service task. It is not necessary to make the
flexpaySubscriberId field point to an object, because this will have already been done by the Web Service
task. All that remains to do is process the values, for example:

// Process response from Web Service Call
if (null != flexpaySubscriberId)
{
 ban = flexpaySubscriberId.ban;
 msisdn = flexpaySubscriberId.msisdn;
}

Passing Arrays to Web Services
Web Services cannot be passed (in or out) of an array field. Therefore, if a process needs a field that contains
multiple instances of a Business Object that it wants to pass in or out of a web service, it will have to wrap it
in a BOM class. The BOM class must contain a multi-instance attribute. The multi-instance attribute must
contain the multiple instances rather than an Array field.

For example, if you want to pass an array of Strings to a webservice, then you cannot just have a Text
parameter flagged as an Array:

Instead, create a BOM class to wrap the multiple Text values like this (Note that multiplicity of 0..*
indicates that the attribute can contain zero or more values which is like the Array setting on a Process
Field):

And then reference this type as a parameter:

76

TIBCO® BPM Enterprise Business Data Services Developer Guide

If you define a webservice with an Array parameter, the following error message appears:

BDS Process 1.0 : Activities responsible for generating WSDL operations cannot have array parameters
associated, instead please create a business object class to contain the array.
(ProcessPackageProcess:StartEvent)

When calling the webservice, copy the text array into the parameter structure with a loop like this in the
ServiceTask’s Init Script, as shown below:

If an array of Business Objects was being passed using the ScriptUtil.copyAll() method, as described in
Looping Through Lists and Copying Elements in Lists, could be used to copy the array of Business Objects
in a single statement, but that cannot be used for Basic fields like the Text array in this example.

An Array object can be passed to other Task types, for example, User Tasks or ScriptTasks. Only the
WebService task does not support Array fields.

Parse Functions
This section contains notes on parseInt() and parseFloat().

parseInt()

The parseInt(string [, radix]) function parses a string and returns an integer.

The radix parameter specifies which numeral system is to be used, for example, a radix of 16 (hexadecimal)
indicates that the number in the string should be parsed from a hexadecimal number to a decimal number.

If the radix parameter is omitted, JavaScript assumes the following:

● If the string begins with 0x, the radix is 16 (hexadecimal).

● If the string begins with 0, the radix is 8 (octal). This feature is deprecated.

77

TIBCO® BPM Enterprise Business Data Services Developer Guide

● If the string begins with any other value, the radix is 10 (decimal).

parseFloat()

The parseFloat() function parses a string and returns a floating point decimal number.

This function determines if the first character in the specified string is a number. If it is, it parses the string
until it reaches the end of the number, and returns the number as a number, not as a string.

78

TIBCO® BPM Enterprise Business Data Services Developer Guide

Advanced Scripting Examples

This section gives some examples of scripting using some classes and methods that require special
attention.

Working with Fixed Length Integers (BigInteger)
If we are working with large integer numbers, and want to work out the weight of the average planet, then
we would want to use the Fixed Length integers which are implemented using Java BigIntegers. The "+", "-",
"*", "/", "==", ">", "<", and so on, operators cannot be used. Instead, the methods of the BigInteger class have
to be used when doing arithmetic and comparisons. In the BOM editor, the attribute sub-type should be set
to Fixed Length:

The script should be written as shown below:
var totalKgs = ScriptUtil.createBigInteger(0);
var planetCount = ScriptUtil.createBigInteger(0);
var one = ScriptUtil.createBigInteger(1);
for (var iterator = planets.planetList.listIterator(); iterator.hasNext();)
{
 var planet = iterator.next();
 totalKgs = totalKgs.add(planet.weightKgs);
 planetCount = planetCount.add(one);
}
if (planetCount.compareTo(one) >= 0)
{
 planets.averageWeight = totalKgs.divide(planetCount);
}
else
{
 planets.averageWeight = ScriptUtil.createBigInteger("0");
}

Or, since the number of planets will not have a very large value, we can have the planet counter as a signed
integer, and then convert it into BigInteger for the divide operation at the end of the script:
var totalKgs = ScriptUtil.createBigInteger(0);
var planetCount = 0;
for (var iterator = planets.planetList.listIterator(); iterator.hasNext();)
{
 var planet = iterator.next();
 totalKgs = totalKgs.add(planet.weightKgs);
 planetCount ++;
}
if (planetCount >= 1)
{
 planets.averageWeight = totalKgs.divide(ScriptUtil.createBigInteger(planetCount));
}

79

TIBCO® BPM Enterprise Business Data Services Developer Guide

else
{
 planets.averageWeight = ScriptUtil.createBigInteger("0");
}

In order to compare Fixed Integers, you have to use the compareTo() or equals() methods. The equals()
method returns true or false depending on whether the values are equal or not. Given two BigInteger
variables x and y, the expression
 x.compareTo(y) <op> 0

returns the same results as the following when using the Signed Integer sub-type if x and y were signed
integer values:
 x <op> y

(Where <op> is one of the 6 comparison operators: {==, !=, <, <=, >=, >}).

For example, assuming that variable one has a value of 1 and variable two has a value of 2:
var one = ScriptUtil.createBigIntger(1);
var two = ScriptUtil.createBigIntger(2);

Then:

Operator Description Example Result

x.compareTo(y) == 0 Equals one.compareTo(two) == 0

one.compareTo(one) == 0

false

true

x.compareTo(y) != 0 Not Equals one.compareTo(two) != 0

one.compareTo(one) != 0

true

false

x.compareTo(y) < 0 Less than one.compareTo(two) < 0

one.compareTo(one) < 0

two.compareTo(one) < 0

true

false

false

x.compareTo(y) <= 0 Less than or equals one.compareTo(two) <= 0

one.compareTo(one) <= 0

two.compareTo(one) <= 0

true

true

false

x.compareTo(y) >= 0 Greater than or
equals

one.compareTo(two) >= 0

one.compareTo(one) >= 0

two.compareTo(one) >= 0

false

true

true

x.compareTo(y) > 0 Greater than one.compareTo(two) > 0

one.compareTo(one) > 0

two.compareTo(one) > 0

false

false

true

There are other methods available on the BigInteger objects, which you can read about in Fixed Length
Integer (BigInteger) Methods. These are:

abs add compareTo divide equals gcd max

min mod multiply negate pow remainder subtract

80

TIBCO® BPM Enterprise Business Data Services Developer Guide

One thing to note about BigIntegers is that they are Immutable, for example, they do not change once they
are created. Therefore, all the above methods do not change the object that they are working on. However, if
appropriate, they return a new BigInteger object that has the new value.

Another thing to bear in mind when creating BigInteger objects with the
ScriptUtil.createBigInteger() method is that the number to create can be passed as a String or a
Numeric type. It is important to be aware that the JavaScript numeric type is only accurate to about 16
significant figures, so when initializing large BigInteger values, the value should be passed as a String.
Otherwise accuracy can decrease since it is converted to a double and then onto a BigInteger. For example:
var bigInt = ScriptUtil.createBigInteger(12345678901234567890)

The result is the creation of the number 9223372036854776, rather than 12345678901234567890 as might be
expected.

For more details on the BigInteger type, see the Java documentation, located at the following web site:

http://download.oracle.com/javase/8/docs/api/java/math/BigInteger.html

Unsupported Conversions
Implicit conversions between different numeric types are not carried out for the BigDecimal and BigInteger
methods.

See Implicit Conversions Between Numeric Types.

See Unsupported Conversions.

Working with Fixed Decimals (BigDecimal)
Fixed Point (BigDecimal) objects are immutable like the BigInteger objects, so those methods that generate
new BigDecimal results all return the new value, rather than update the object that is being operated on.

Creating and Initializing Fixed Decimal Values
Instead of just initializing variables or attributes in scripts with numbers, as is done with Floating Point
decimals, Fixed Decimal values are Java Objects that need to be created using the
ScriptUtil.createBigDecimal() factory method.

For example:

var dTotalKgs = ScriptUtil.createBigDecimal(0.0);
var dTotalKgs = ScriptUtil.createBigDecimal("0.0");

The value passed to the factory method can either be a JavaScript number (or a BOM Floating Point
attribute value), or a quoted string (or a BOM Text attribute value). In most cases, it is best to use a Text
parameter, which is converted to the exact number, whereas some small errors can occur when using
numeric parameters, especially if the values are large.

Simple Operations
Instead of using operators like "+" and "-" to perform basic arithmetic with Fixed Decimals, you must use
methods to perform these operations.

For example, if we had two Business Objects called earth and moon, and each had a weight attribute of
Fixed Decimal type, in order to add the two fixed decimals together, we would use the add() method of the
Fixed Decimal attribute:

dTotalKgs = earth.weight.add(moon.weight);

There are similar methods called subtract(), multiply(), and divide() that can be used to perform the
other arithmetic operators. For more details on these methods, see the reference section at the end of this
document.

81

TIBCO® BPM Enterprise Business Data Services Developer Guide

http://download.oracle.com/javase/8/docs/api/java/math/BigInteger.html

Rounding
If we needed more accuracy we would use a BigDecimal, also known as a Fixed Point Decimal, for the
averageWeight attribute as represented in the code below (however, there is a problem with the code,
which is discussed following it):

var dTotalKgs = ScriptUtil.createBigDecimal(0.0);
var dPlanetCount = 0;
for (var iterator = planets.planetList.listIterator(); iterator.hasNext();)
{
 var planet = iterator.next();
 dTotalKgs = dTotalKgs.add(planet.weightKgs);
 dPlanetCount ++;
}
planets.averageWeight = dTotalKgs.divide(ScriptUtil.createBigDecimal(dPlanetCount));

This would work quite well now that we have 8 planets, but in the days before Pluto was downgraded to a
Dwarf Planet we had nine planets, and attempting to divide a number by 9 often results in a recurring
string of decimals if done exactly. This causes problems for BigDecimals, since the BigDecimal class stores
numbers up to an arbitrary level of precision. However, it does NOT store numbers to an infinite level of
precision, which would be required to store 1/9 = 0.111111…, for example. So when doing division
operations that can result in recurring decimals or other overflows, Rounding Mode must be applied to the
BigDecimal method that is being used.

There are two ways that Rounding Mode can be applied to the divide() method: either directly, or by way
of a MathContext object that contains a precision and RoundingMode. If applied directly, it can be applied
with or without the precision. There are eight possible values for RoundingMode: UP, DOWN, CEILING,
FLOOR, HALF_UP, HALF_DOWN, HALF_EVEN, or UNNECESSARY. Additional details of the behavior regarding the
different modes can be found in the reference section, but you can also see from the example here how
different values are rounded according to the different RoundingModes.

Example Rounding Mode Results According to Single Digit Rounding Input

Input
Number Up Down Ceiling Floor

Half
_up Half_down Half_even Unnecessary

5.5 6 5 6 5 6 5 6 5.5

2.5 3 2 3 2 3 2 2 2.5

1.6 2 1 2 1 2 2 2 1.6

1.1 2 1 2 1 1 1 1 1.1

1.0 1 1 1 1 1 1 1 1.0

-1.0 -1 -1 -1 -1 -1 -1 -1 -1.0

-1.1 -2 -1 -1 -2 -1 -1 -1 -1.1

-1.6 -2 -1 -1 -2 -2 -2 -2 -1.6

-2.5 -3 -2 -2 -3 -3 -2 -2 -2.5

-5.5 -6 -5 -5 -6 -6 -5 -6 -5.5

There are three built-in MathContexts provided: DECIMAL32, DECIMAL64, and DECIMAL128. If the
DECIMAL64 MathContext is used, then a precision (number of significant figures) and Rounding Mode

82

TIBCO® BPM Enterprise Business Data Services Developer Guide

(HALF_UP) equivalent to that used by the Floating Point Decimal sub-type (which is the same as the Double
type used in languages such as Java and C, and the Numeric type used in JavaScript) is used.

The UNNECESSARY rounding mode is the default RoundingMode, and will generate an exception if the
resultant number of digits used to represent the result is more than the defined precision.

The table below shows the results of dividing 12345 by 99999 using BigDecimals with different Precisions,
RoundingModes, and MathContexts.

Example Rounding Mode Results According to BigDecimals Digit Rounding Input

Rounding Mode Precision Math Context Result

java.lang.ArithmeticException: Non-
terminating decimal expansion; no exact
representable decimal result.

UP 1

HALF_UP 0

UP 10 0.1234512346

HALF_UP 10 0.1234512345

UP 50 0.1234512345123451234512345123451234512345
1234512346

HALF_UP 50 0.1234512345123451234512345123451234512345
1234512345

DECIMAL32 0.1234512

DECIMAL64 0.1234512345123451

DECIMAL128 0.1234512345123451234512345123451235

java.lang.ArithmeticException: Non-
terminating decimal expansion; no exact
representable decimal result.

The divide() method called above should be changed to:

// 30 significant digits, rounding 0.5 up
planets.averageWeight =
totalKgs.divide(ScriptUtil.createBigDecimal(planetCount),30,RoundingMode.HALF_UP);

or

// 34 significant digits, rounding 0.5 up
planets.averageWeight = totalKgs.divide(ScriptUtil.createBigDecimal (planetCount),
MathContext.DECIMAL128);

or

83

TIBCO® BPM Enterprise Business Data Services Developer Guide

// 30 significant digits, rounding 0.5 up (using MathContext)
var mc = ScriptUtil.createMathContext(30,RoundingMode.HALF_UP);
planets.averageWeight = totalKgs.divide(ScriptUtil.createBigDecimal
(planetCount),mc);

When comparing BigDecimal values it is best to use the compareTo() method, as the equals() method
considers 1.4 to differ from 1.40. This is because 1.4 is stored in BigDecimal as the number 14 with a scale of
1 and a precision (for example, number of digits) of 2. 1.40 is stored as the number 140 with a scale of 2 and
a precision of 3. The equals() method does not recognize them as the same. However, the compareTo()
method sees that there is no difference between them, and returns 0, meaning they have the same value.

Unsupported Conversions
Implicit conversions between different numeric types are not carried out for the BigDecimal and BigInteger
methods.

See Implicit Conversions Between Numeric Types.

For example, the following is not valid:

// Invalid example
var pi = ScriptUtil.createBigDecimal("3.14159");
var twoPi = pi.multiply(2);
// Implicit conversion of integer to BigDecimal is not done here

Instead, you must always pass BigDecimal parameters to the BigDecimal methods that require them as
shown in this example:

var pi = ScriptUtil.createBigDecimal("3.14159");
var twoPi = pi.multiply(ScriptUtil.createBigDecimal(2));

Comparing Fixed Decimals and BigDecimals
The BigDecimal compareTo() method can be used in the same way as the BigInteger compareTo() method.

Detailed information on how this can be used is available in the section on Integers, but in summary, when
comparing two decimal fields x and y, instead of using
x <relational_operator> y

you must use
x.compareTo(y) <relational_operator> 0

This will return the value that you expect the first expression to return. For example, if you want to use the
expression
x <= y

you should write
x.compareTo(y) <= 0

As with all divide operations, care should be taken to ensure that the divisor is not zero, otherwise an
exception will be generated. If there is a problem with the script so that there are no planets in the list, then
the planetCount variable will be 0, and our divide operation will cause an exception. Therefore, scripts
should be programmed defensively to protect against such things. The following example here is a version
of the script that checks that the planetCount is greater than or equal to one using the BigDecimal
compareTo() method:
var totalKgs = ScriptUtil.createBigDecimal("0.0");
var planetCount = ScriptUtil.createBigDecimal ("0");
var one = ScriptUtil.createBigDecimal ("1");
for (var iterator=planets.planetList.listIterator(); iterator.hasNext();)
{

84

TIBCO® BPM Enterprise Business Data Services Developer Guide

 var planet = iterator.next();
 totalKgs = totalKgs.add(planet.weightKgs);
 planetCount = planetCount.add(one);
}
if (planetCount.compareTo(one) >= 0)
{
 // 30 significant digits, rounding 0.5 up
 planets.averageWeight = totalKgs.divide(planetCount,30,RoundingMode.HALF_UP);
}
else
{
 planets.averageWeight = ScriptUtil.createBigDecimal("0.0");
}

When creating BigDecimal objects with the ScriptUtil.createBigDecimal() method, the number to
create can be passed as a String or a Numeric type. It is important to be aware that the JavaScript numeric
type is only accurate to about 16 significant figures, so when initializing BigDecimal types, if great accuracy
is required, the value should be passed as a String. If the value is not passed in a String, the value entered in
the script will first be converted to a Numeric type, which may introduce some rounding errors, even for
values that you would not expect it to. For example, the value 0.1 may not be stored exactly in a Numeric
type, as it results in a recurring sequence of binary digits when expressed in binary:
0.00011001100110011001100110011...

When rounding BigDecimal variables, you need to be aware of how BigDecimal values are stored. They are
stored as two integer values: unscaled value and scale. For example, if the number 123.456789 is stored as a
BigDecimal value, it will have an unscaled value of 123456789 and a scale of 6. The value of a BigDecimal is:

(unscaled_value) * 10-scale

The setScale() method is used to round values. If the setScale() method is called with a scale of 10,
then the scale would become 10 and the unscaled value would be changed to 1234567890000 so that the
number still has the same numerical value. However, it would actually represent 123.4567890000. When
reducing the number of decimal places, for example, to 3, rounding must take place often. You must tell
setScale() how you want to round the value, otherwise an exception will be generated at runtime. To
convert to 3 decimals using the HALF_UP rounding strategy, write:
roundDecimal = decimal.setScale(3, RoundingMode.HALF_UP);

This converts, in our example, 123.4567890000 to 123.457.

For more information on BigDecimal, see Fixed Point Decimal (BigDecimal) Methods, or the Java
Documentation, available at the following web site:

http://download.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

Object BOM Native Type
There are four different varieties of BOM objects. xsd:any, xsd:anyAttribute, xsd:anyType,
xsd:anySimpleType.

All of these allow for different assignments. However, once data has been stored in an object, it cannot be
read back out into its original type. It must remain in that object. It is also not possible to assign a BOM
object of one variety into a BOM object of a different variety.

Using the Object BOM Native Type

xsd:any

The Object Type is used to handle sections of XML with an unknown format or where content is not known,
but the data of which can still be passed on by the system. BOM Attributes can be defined as Object type
(for example, xsd:any). An Object type BOM class attribute can be assigned either another Object attribute,
or a BOM class. For example, given the following BOM:

85

TIBCO® BPM Enterprise Business Data Services Developer Guide

http://download.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

If a Web Service process has the following fields and parameters

Data Field / Parameter Type Name

Input Parameter Class1 inputField1

Data Field Class2 bomField2

Data Field Class3 bomField3

Output Parameter Class2 outputField1

Then a script in the process can be written as

bomField2.bomObject1 = inputField1.bomObject1;

bomField2 can be used as the input parameter to another Web Service, which would pass the xsd:any
value from the input parameter of one service to the input parameter of another service.

You can also write

outputField1.bomObject1 = bomField3;

which would pass the Business Object bomField3 in an xsd:any type construct in the response XML
message for the web service.

Object BOM Native Type attributes can have a multiplicity greater than one, in which case the add()
method will be used as usual for assigning values to the field, for example:

outputField1.bomObject1.add(bomField3);

xsd:anyAttribute

The xsd:anyAttribute is a very restrictive form of Object BOM Native Type. This type can only be assigned
to itself. No other BOM type can be assigned either to or from it.

xsd:anySimpleType

The xsd:anySimpleType is very similar to xsd:any, it behaves in the same manner but instead of taking a
BOM Class as its input it takes a primitive type.

xsd:anyType

The xsd:anyType is again similar to both the xsd:any and xsd:anySimpleType. The difference is that it can
be assigned either a BOM Class or primitive type. This makes it the most flexible of storage types. One
important difference is that if you wish to set the value of an xsd:anyType to the same value as either
another xsd:anyType or a Business Object (that is, a BOM Class instance), then you must use
ScriptUtil.copy() in order to take a copy of the source object before assigning it to the xsd:anyType.

86

TIBCO® BPM Enterprise Business Data Services Developer Guide

// Copy an entire BOM Class Instance

 Class1.anyType1 = ScriptUtil.copy(Class2); //
Copy an anyType from one Class to another Class1.anyType1 = ScriptUtil.copy(Class2.anyType2); //
Copy a text field into the anyType Class1.anyType1 = Class2.textData

Restrictions
There can only be one Object BOM Native Type attribute in any class hierarchy (this is the only case for
xsd:any and xsd:anyAttribute), due to ambiguities with knowing how to parse incoming XML if there
are more than one.

You cannot examine the contents of any of the Object BOM Native Types.

BPM Forms do not support the Object BOM Native Type, so do not use a Business Object that includes an
Object BOM Native Type attribute as a parameter to the UserTask.

Object BOM Native Type and ScriptUtil.setObject()
The default assignment of a Business Object (for example, a BOM Class instance) to an Object BOM Native
Type attribute (imported xsd:any) looks like this [from the previous example]:

outputField1.bomObject1 = bomField3;

If the BOM was created in TIBCO Business Studio, then there is only one element for each type, so the
above example will always produce the desired result. However, if the BOM was created by importing an
XSD Schema and the simple assignment interface is used, then BDS will automatically select the best
available element in which to store the complex object.

For situations where you wish to specify which element the complex data is stored as, a utility method can
be used, as in the following example:

ScriptUtil.setObject(outputField1.bomObject1, bomField3,
 "com.example.bomobjectexample.Class3Element");

For the above example, to find the parameters that can be used in this case you need to find the name of the
element associated with the class (type). Select the class in the BOM editor, and look at the advanced
properties sheet:

87

TIBCO® BPM Enterprise Business Data Services Developer Guide

At the bottom of the property sheet, the XsdTopLevelElement property is listed. In the screenshot above,
there are two elements: Class3Element and Class3ElementB. This ScriptUtil function allows the script writer
to define which element the xsd:any should be associated with.

The element name is combined with the BOM namespace to make up the third parameter to the
ScriptUtil.setObject() method. For this BOM example, the namespace can be found in the Name field
of the BOM properties sheet:

Concatenating the two parts results in the following ScriptUtil.setObject() line:

ScriptUtil.setObject(outputField1.bomObject1, bomField3,
 "com.example.bomobjectexample.Class3Element");

Additional JavaScript Global Functions
This topic describes some additional JavaScript global functions you can use.

escape() and unescape()

The JavaScript escape() and unescape() functions can be used to encode strings that contain characters
with special meanings or outside the ASCII character set.

The escape() function encodes a string. This function makes a string portable, so it can be transmitted
across any network to any computer that supports ASCII characters.

88

TIBCO® BPM Enterprise Business Data Services Developer Guide

The function does not encode A-Z, a-z, and 0-9. Additionally, the function encodes all other characters with
the exception of: "*", "@", "-", "_", "+", ".", "/".

The escape() function maps:

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\
\]^_`abcdefghijklmnopqrstuvwxyz{|}~

To:

%20%21%22%23%24%25%26%27%28%29*+%2C-./0123456789%3A%3B%3C%3D%3E
%3F@ABCDEFGHIJKLMNOPQRSTUVWXYZ%5B%5C%5D%5E_%60abcdefghijklmnopqrstuvwxyz%7B%7C%7D%7E

encodeURI() and decodeURI()

The encodeURI() function is similar to the escape() function but encodes fewer character. Encoding the
string:

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\
\]^_`abcdefghijklmnopqrstuvwxyz{|}~

Will produce:

%20!%22#$%25&'()*+,-./0123456789:;%3c=%3e?@ABCDEFGHIJKLMNOPQRSTUVWXYZ%5b%5c%5d%5e_
%60abcdefghijklmnopqrstuvwxyz%7b%7c%7d~

So only the following characters are encoded:

SPACE, "“", "&", "<", ">", "[", "\", "]", "^", "`", "{", "|", "}"

encodeURIComponent() and decodeURIComponent()

These functions are similar to the encodeURI() and decodeURI() methods, but they additionally encode
and decode the following characters:

, / ? : @ & = + $ #

89

TIBCO® BPM Enterprise Business Data Services Developer Guide

Business Data Modeling Best Practice

This section gives some brief guidance on best practice.

Store Local BOMs in Business Data Projects
Keep local BOMs and WSDLs or XSDs (and their generated BOMs) in suitable Business Data projects,
rather than in Analysis or BPM Developer projects.

Keeping local BOMs separate from the process projects that reference them has the following advantages:

● It makes it easier to organize and share local data among different processes. (Using a Business Data
project, the local data only needs to be defined and deployed once. If you use an Analysis or BPM
Development project - that is, the same project as a business process that uses the data - whenever that
project is deployed or generated as a DAA, BDS Plug-ins corresponding to the referenced BOMs are
packaged as part of the DAA. That is, every deployed process has its own copy of any local data it uses.)

● It provides better design-time performance, particularly for projects involving large numbers of local/
generated BOMs (by avoiding unnecessary regeneration of BDS Plug-ins).

Keep Local BOMs and Global BOMs in Separate Business Data Projects
Keep local BOMs and global BOMs in separate Business Data projects, unless you have a compelling reason
to keep them together.

This is particularly important for application upgrade, as local and global BOMs have different
compatibility requirements:

● Local BOMs: You can still upgrade a Business Data project if a local BOM contains incompatible
changes, but doing so could result in failure to migrate a dependent process instance to the upgraded
version. See Process Migration.

● Global BOMs: You cannot upgrade a Business Data project if a global BOM contains incompatible (that
is, destructive) changes. See "Upgrading a Case Data Model" in the Case Data User's Guide.

Upgrade Business Data Projects and Dependent Process Projects Together
Keep BDS applications and dependent process applications in step to facilitate subsequent deployments or
undeployments of either application.

If a process project references a class in a local or global BOM in a Business Data project, the version
number of the Business Data project is used in the reference when the DAA for the process project is
generated. This creates an exact-match application dependency from the process application to that version
of the BDS application.

Consequently, when you upgrade a local BOM or a global BOM, you should also upgrade any existing
process project that references that Business Data project - even if that process project makes no use of the
updated parts of the BOM.

Use Pre-Compilation for Projects That Contain Large or Generated BOMs
Configure a project that contains generated or other large BOMs to use pre-compilation, so that the BDS
plugins derived from the BOMs are not generated each time that the project is built.

Generated BOMs are often large and, being derived from WSDLs or XSDs, usually will not change very
often, so using pre-compilation can significantly improve design-time performance.

To configure the project to use pre-compilation, right-click the project in Project Explorer and choose Pre-
compile Project > Enable. See "Pre-Compiling Projects" in the TIBCO Business Studio Modeling Guide for
more information about pre-compilation.

90

TIBCO® BPM Enterprise Business Data Services Developer Guide

Choose Appropriate Data Types
Take care when selecting attribute types.

● Be aware of the value space of the default Signed Integer sub-type [-231,231-1]. If it is insufficient, use
the Fixed Integer type.

● Be aware of the limitations of the default Floating Point Decimal sub-type - 16 significant digits.
Limitation of accuracy and rounding issues may indicate that it is not suitable for handling large values.

● Remember that when you are converting a data item from one type to another, either explicitly or
implicitly, it is possible to exceed the limitations of the target type and generate an error. See Business
Data Scripting by Example for examples of conversion limitations.

● With Datetime types if a timezone is required, use Datetimetz.

Use Sub-Packages to Aggregate Related Concepts
It is a good practice to put all related concepts in a sub-package.

For example, in a claim model BOM there can be classes, primitive types, and enumerations relating to
customers, policies, and claims. So three sub-packages can be created to collect the different types together
in different groups. If the root package name is com.example.claimmodel, then there can be sub-packages
called:
com.example.claimmodel.customer
com.example.claimmodel.policy
com.example.claimmodel.claim

Organizing classes, enumerations, and primitive types in sub-packages makes them easier to find when
viewing the BOM, and also when scripting it means that the factory has fewer methods in it, which makes it
easier to find the method that you need.

As an extension to this, you can actually have sub-packages in different BOM files. When doing this, it is
important that each package or sub-package is only in one BOM file. Using the above example, you can
have three BOM files for the three sub-packages, or you can have four if some things are defined in the root
package. Alternatively, it can just be split into two BOM files with the root package and two sub-packages
in one BOM file, and the third sub-package in the second file.

Process Data Field Granularity
If a number of related parameters are commonly passed to Tasks, it is a good idea to create a BOM class that
contains all the parameters. Then, all the values can be passed to the tasks as a single parameter.

However, one thing to be aware of is that if you have parallel paths within your process that are both
processing a Business Object, then the changes made by the first branch to complete may be overwritten by
data from the second branch if it is all stored in a single Business Object. To get around this problem, each
branch should only be given the data it needs. Then, the data should be merged back into the single
Business Object after the branches have merged together.

BOM Class Attribute and Variable Names
It is recommended that BOM class names begin with an uppercase letter and that variable and attribute
names begin with a lowercase letter so that they can easily be distinguished. This is the convention used by
Java, and what is done by the label to name mapping if Labels contain words with initial capital letters.

In order to read variable names that are made up of several words, it is recommended that you use
"camelcase", where the initial letter of every word (apart from the initial word in a data field or attribute
name) is capitalized. A data field holding a customer account should be written customerAccount.
Similarly you can have data fields called headOfficeName. This naming convention is used in the factory
methods, so if there is a CustomerAccount class, then there will be a createCustomerAccount() method
in the factory. If you enter Labels with initial capitals for each word then this will be achieved. Therefore, a

91

TIBCO® BPM Enterprise Business Data Services Developer Guide

label written as "Customer Account" will be converted to a class name of CustomerAccount, or an attribute
name of customerAccount. If the label is written as "Customer account", the class name and attribute name
will be Customeraccount and customeraccount, both of which are not so readable.

If you use certain reserved keywords for BOM attribute names and assign them a value using javascript, at
runtime you get a scripting error while evaluating the javascript expression. Avoid using the following
names for BOM attributes if you intend using such attributes in scripting:

● - notify

● - equals

● - wait

● - finalize

● - hashCode

● - toString

Do Not Split a Namespace Across Projects
Classes from the same package must not be defined in separate BOM files.

For example, the following classes must both be defined in the package that defines the
com.example.claimmodel.customerdetails package:
com.example.claimmodel.customerdetails.Address
com.example.claimmodel.customerdetails.Customer

Do Not Modify Generated BOMs
Do not modify the contents of BOMs in the Generated Business Objects folder of a project.

The BOMs created in the Generated Business Objects folder as a result of importing XSDs or WSDLs into
the Service Descriptors folder should not be edited because if the file is regenerated, then any changes made
by editing the BOM could be lost.

If the intention is to import an XSD and generate a BOM, then the XSD (or WSDL) should be imported into
the Business Objects folder.

Business Data Scripting Best Practice
This section contains some suggestions for Business Data scripting.

Keep the Scripts Small

It is recommended that you keep scripts small. You can do this by breaking potentially large chunks of logic
into separate scripts.

Ensure Business Objects Are Valid Before Scripts Complete

Remember that the length, limits, and multiplicity are checked at the end of every script, so ensure that all
the Out and In / Out fields for the task have valid values before the script task is completed.

Check for Nulls

It is very important to check that fields and attributes are not null before attempting to get their values.

Use Comments in Scripts

It is good practice to comment code to make it easier for others who follow you to understand what the
scripts are doing.

92

TIBCO® BPM Enterprise Business Data Services Developer Guide

Use Constant First when Comparing a Constant with a Variable

Using:
constant == variable

is safer than:
variable == constant

If "=" is used instead of "==" by mistake, the former construction will result in a syntax error.

93

TIBCO® BPM Enterprise Business Data Services Developer Guide

Troubleshooting

This section describes how to identify and resolve some problems you may encounter when using Business
Data Services.

Viewing BDS-generated BDS Plug-in Hidden Projects
When a DAA (Distributed Application Archive) is created for a project containing a Business Object Model,
or the project is deployed, the BDS Generator generates a BDS Plug-in that corresponds to the BOM.

These BDS Plug-ins can be seen in the Project Explorer, but are hidden by default.

To view the BDS Plug-ins that have been generated, change the view so that it does not hide folder and file
names that begin with ".". This can be done by clicking the View Menu in the Project Explorer:

Select Customize View …. In the Available Customizations dialog, uncheck .*resources.

For each BOM, a pair of projects are created:

Looking at these can be useful to understand how things are working.

94

TIBCO® BPM Enterprise Business Data Services Developer Guide

Troubleshooting BDS Scripting
Occasionally, a script does not function as planned.

This section provides instruction on how to identify and resolve BDS scripting problems.

Reasons to Avoid Deleting Case Objects

The best practice is to not delete case objects as part of a normal operation. If you do delete case objects, the
best practice is to only delete using a single case reference from within a service task in a business process.

The primary reason to not delete case objects is that if there are other processes (other than the process
performing the deletion) that have a reference to the deleted case object, those processes become halted and
cannot proceed. In addition, case history (audit trail) is constructed using case objects; if those objects are
deleted, the history is no longer available.

Therefore, case objects should not be deleted until it is known for certain that no other processes are
referencing the object, and that the case history is no longer needed.

If you delete a case object using a single case reference from within a service task in a business process,
built-in checking is provided for other processes that are referencing the case object. (You can catch the
UnsafeToDeleteCaseError error code.)

It is also possible to use the following methods to delete case objects, but these methods do not provide any
error checking for other processes that are referencing the case object(s) that will be deleted. Using any of
these methods could result in processes being halted because they are referencing a case object that no
longer exists.

● Using the "deleteCase" operations in the BusinessDataServices API.

● Using a service task in a business process to delete:

— multiple case objects using an array of case references.

— a single case object using a case identifier.

— a single case object using a composite case identifier.

● Using a service task in any type of process other than a business process - for example, a pageflow
process or service process - to delete case objects (by any method).

Deletion of case objects is controlled by a system action (Delete Global Data) that defaults to deny, therefore
you must be explicitly granted the permission to delete case objects.

Reserved keywords to avoid using for attribute names

If you use certain reserved keywords for BOM attribute names and assign them a value using javascript, at
runtime you get a scripting error while evaluating the javascript expression.

Avoid using the following names for BOM attributes if you intend using such attributes in scripting:

● notify

● equals

● wait

● finalize

● hashCode

● toString

95

TIBCO® BPM Enterprise Business Data Services Developer Guide

BDS Classes Do Not Appear or Changes Do Not Appear

Check that there are no problems with the BDS Plug-in generation, as described previously.

Break Script into Smaller Scripts

Add User Tasks between script tasks to see the field values.

Examine the Server Logs

TIBCO BPM components write out logging information as they process work. It can be useful to look at
these logs when debugging scripts that are not working. In order to do this, ensure that the debugging level
is turned up to maximum (see the Administrator interface documentation for your BPM runtime for more
information about editing logging levels).

Log files are located in:

CONFIG_HOME/tibcohost/INSTANCE_NAME/nodes/BPMNode/logs/BPM.log

On Windows, the default location for CONFIG_HOME is:

C:\ProgramData\amx-bpm\tibco\data

On UNIX, the default location for CONFIG_HOME is:

/opt/amxbpm/tibco/data

The default INSTANCE_NAME is Admin-AMX BPM-AMX BPM Server.

Checking the log file can help locate the cause of scripting problems. For example:
23 Mar 2011 17:53:50,417 [Default Service Virtualization Thread_72] [ERROR]
com.tibco.n2.brm.services.impl.AsyncWorkItemSchedulerServiceImpl - [ERROR] -
{BRM_WORKITEM_ASYNC_SCHEDULE_WORK_ITEM_WITH_MODEL_MESSAGE_FAILED} - Async schedule
work item with model message failed Â¬{extendedMessage=`Param [integer] Value
[111222333444] exceeds the defined maximum limit of 9`,
componentClassName=`com.tibco.n2.brm.services.impl.AsyncWorkItemSchedulerServiceImpl`,
requestReceived=`Wed Mar 23 17:53:50 GMT 2011`, hostAddress=`10.100.83.80`,
nodeName=`BPMNode`, eventType=`FAULT`, messageCategory=`WORK_ITEM`, componentId=`BRM`,
stackTrace=`com.tibco.n2.brm.services.WorkItemFault: Param [integer] Value
[111222333444] exceeds the defined maximum limit of 9
 at
com.tibco.n2.brm.model.util.DataModelFactory.checkDataTypeValue(DataModelFactory.java:2
280)
 at
com.tibco.n2.brm.model.util.DataModelFactory.checkDataTypeValues(DataModelFactory.java:
2185)
 at
com.tibco.n2.brm.model.util.DataModelFactory.checkItemBodyDataTypesFromPayload(DataMode
lFactory.java:1707)
 at
com.tibco.n2.brm.services.impl.WorkItemSchedulerBase.privScheduleWorkItem(WorkItemSched
ulerBase.java:621)
 at
com.tibco.n2.brm.services.impl.WorkItemSchedulerBase.scheduleWorkItemWithWorkModel(Work
ItemSchedulerBase.java:1323)
 at
com.tibco.n2.brm.services.impl.AsyncWorkItemSchedulerServiceImpl.scheduleWorkItemWithMo
del(AsyncWorkItemSchedulerServiceImpl.java:263)
 at sun.reflect.GeneratedMethodAccessor635.invoke(Unknown Source)
…
 at java.lang.Thread.run(Thread.java:619)
`, serviceName=`AsyncWorkItemSchedulerService`, principalId=`tibco-admin`,
priority=`HIGH`, managedObjectId=`78`, hostName=`uk-keitht`,
creationTime=`2011-03-23T17:53:50.417+0000`, methodName=`scheduleWorkItemWithModel`,
methodId=`asyncScheduleWorkItemWithModel`, principalName=`tibco-admin`,
correlationId=`6fb66791-595c-499b-ad55-5b56b7404fac`, threadId=`1056`,
compositeApplicationName=`amx.bpm.app`, severity=`ERROR`, message=`Async schedule work
item with model message failed`, contextId=`6fb66791-595c-499b-ad55-5b56b7404fac`,

96

TIBCO® BPM Enterprise Business Data Services Developer Guide

threadName=`Default Service Virtualization Thread_72`,
environmentName=`BPMEnvironment`, lineNumber=`290`,
messageId=`BRM_WORKITEM_ASYNC_SCHEDULE_WORK_ITEM_WITH_MODEL_MESSAGE_FAILED`, Â¬}

Write Variable Values and Progress Updates from the Script to the BPM Log File

A facility for writing messages from scripts to the server called the BPM Log file is provided.

For example, the following can be done from a script:

Log.write("New Customer Process, Customer: '"+cust.name + "' added");

This generates a message like the following in the BPM Log file, which can be found by searching for the
text stdout - or part of the message, for example, New Customer Process.

11 Feb 2011 09:42:06,529 [PVM:Persistent STWorkProcessor:5] [INFO] stdout - New
Customer Process, Customer: Fred Blogs added

See Examine the Server Logs for the location of the log.

However, this function is only useful if you have access to the BPM Log file which is stored on the server.

eval()

The eval() function provides the ability to execute a dynamic script useful for debugging purposes. This is
given a string, and executes it as if it was part of a script.

For example, to test some expressions, you could enter them into a Text field on a Form. Then, get a script
to execute the commands in the Text field.

eval (scriptField);

Although useful for experimenting with scripts and testing them, TIBCO recommends that
you do not use this function in a production environment because it allows the execution
of any script text that is provided at runtime.

Use the Process Debugger

A debugger, which allows you to step through a process and to examine process flow and data
manipulation, is provided with TIBCO Business Studio.

For more information, see the tutorial "Debugging a Business Process -> How to Debug a Business Process",
in the TIBCO ActiveMatrix BPM Tutorials.

Catch Exceptions

If there is the possibility that a script will generate an exception at runtime, you can catch the exception and
take corrective action in the process using a catch event.

For example, the following are some ScriptTasks with IntermediateCatch events attached to them, and the
properties of one of them:

97

TIBCO® BPM Enterprise Business Data Services Developer Guide

BDS Plug-in Generation Problems
Check to see if the BDS plug-ins are being created by looking for the hidden folders as described in the
previous section. To verify that they are being generated, the BDS plug-in folders can be removed. Then, if a
DAA is generated or the project is deployed, the BDS Plug-in folders should be regenerated:

In the above screenshot, the two Scripting Guide folders can be deleted. Then the project that the Scripting
Guide BOM comes from can be cleaned and rebuilt to regenerate the projects. If the projects are not
regenerated, then click the Problems tab to check for reasons that the BOM generation may not be working:

The BOM editor warns you about problems by showing a red cross in the upper-right corner of the problem
element:

Pointing to the red cross causes a dialog to display containing information about the error, for example:

98

TIBCO® BPM Enterprise Business Data Services Developer Guide

99

TIBCO® BPM Enterprise Business Data Services Developer Guide

Supplemental Information

This topic includes reference material to support your use of Business Data Services.

Data Type Mappings
This section contains tables showing data type mappings.

BOM Native Type to BDS Type Mapping
This table shows which Java Type the BOM Native Types are mapped onto, and whether they are mutable
or not.

BOM Native Type to BDS Type Mapping

BOM Native Type BDS Java Type Mutable?

Attachment N/A N/A

Boolean java.lang.Boolean No

Date javax.xml.datatype.XMLGregorianCalendar Yes

Datetime javax.xml.datatype.XMLGregorianCalendar Yes

Datetimetz javax.xml.datatype.XMLGregorianCalendar Yes

Decimal – Fixed Point java.Math.BigDecimal No

Decimal – Floating Point java.lang.Double No

Duration javax.xml.datatype.Duration No

ID java.lang.String No

Integer – Fixed Length java.Math.BigInteger No

Integer – Signed java.lang.Integer No

Object - xsd.any org.eclipse.emf.ecore.util.FeatureMap No

Object - xsd.anyAttribute org.eclipse.emf.ecore.util.FeatureMap No

Object - xsd.anytype EObject No

Object - xsd.anySimpleType java.lang.Object No

Text java.lang.String No

Time javax.xml.datatype.XMLGregorianCalendar Yes

URI java.lang.String No

The values of mutable types can be changed, but the values of immutable types cannot. The methods that
operate on them return new objects with the new values instead of mutating the value of the original object.

100

TIBCO® BPM Enterprise Business Data Services Developer Guide

XSD Type to BDS Type Mapping
The following table shows what BDS types the different XSD types are mapped to

XSD Type BOM Native Type BDS Type

xsd:base64Binary Text String

xsd:byte
xsd:byte (nillable)

Integer (signed) Integer

xsd:decimal Decimal (fixed – BigDecimal) BigDecimal

xsd:float
xsd:float (nillable)

Decimal (floating point – Double) Double

xsd:gDay Text String

xsd:gMonth Text String

xsd:gMonthDay Text String

xsd:gYear Text String

xsd:gYearMonth Text String

xsd:hexBinary Text String

xsd:IDREF Text String

xsd:IDREFS Text String

xsd:integer Integer (fixed – BigInteger) BigInteger

xsd:language Text String

xsd:long
xsd:long (nillable)

Integer (fixed – BigInteger) BigInteger
BigInteger

xsd:Name Text String

xsd:NCName Text String

xsd:negativeInteger Integer (fixed – BigInteger) BigInteger

xsd:NMTOKEN Text String

xsd:NMTOKENS Text String

xsd:nonNegativeInteger Integer (fixed – BigInteger) BigInteger

xsd:nonPositiveInteger Integer (fixed – BigInteger) BigInteger

101

TIBCO® BPM Enterprise Business Data Services Developer Guide

XSD Type BOM Native Type BDS Type

xsd:normalizedString Text String

xsd:positiveInteger Integer (fixed – BigInteger) BigInteger

xsd:QName Text String

xsd:short
xsd:short (nillable)

Integer (signed) Integer

xsd:unsignedByte
xsd:unsignedByte (nillable)

Integer (signed) Integer

xsd:unsignedInt
xsd:unsignedInt (nillable)

Integer (fixed – BigInteger) BigInteger

xsd:unsignedLong Integer (fixed – BigInteger) BigInteger

xsd:unsignedShort
xsd:unsignedShort (nillable)

Integer (signed) Integer

xsd:string Text String

xsd:int

xsd:int (nillable)

Integer (signed) Integer

xsd:double

xsd:double (nillable)

Decimal (floating point – double) Double

xsd:ID Text String

xsd:date Date XMLGregorianCalen
dar

xsd:datetime Datetime XMLGregorianCalen
dar

xsd:duration Duration Duration

xsd:time Time XMLGregorianCalen
dar

xsd:anyURI URI String

xsd:boolean
xsd:boolean (nillable)

Boolean Boolean

xsd:ENTITY Text String

xsd:ENTITIES Text String

xsd:anyType Object EObject

102

TIBCO® BPM Enterprise Business Data Services Developer Guide

XSD Type BOM Native Type BDS Type

xsd:anySimpleType Object Java Object

xsd:token Text String

xsd:any Object FeatureMap

xsd:anyAttribute Object FeatureMap

JDBC Database Type to BOM Data Type Mapping
The following table shows mappings between:

● JDBC database types and

● TIBCO Business Studio Business Object Model (BOM) types.

See TIBCO Business Studio Modeling User's Guide for more detail.

JDBC Database Type BOM Type

BIT Boolean

TINYINT Integer (signed)

SMALLINT Integer (signed)

INTEGER Integer (signed)

BIGINT Integer (fixed - BigInteger)

FLOAT Decimal (floating point - double)

REAL Decimal (floating point - double)

DOUBLE Decimal (floating point - double)

NUMERIC Decimal (fixed point - BigDecimal)

DECIMAL Decimal (fixed point - BigDecimal)

CHAR Text

VARCHAR Text

LONGVARCHAR Text

DATE Date

TIME Time

TIMESTAMP Datetime

BINARY Attachment(1)

103

TIBCO® BPM Enterprise Business Data Services Developer Guide

JDBC Database Type BOM Type

VARBINARY Attachment(1)

LONGVARBINARY Attachment(1)

NULL Text

OTHER Text

JAVA_OBJECT Attachment(1)

DISTINCT Text

STRUCT Text

ARRAY Text

BLOB Attachment(1)

CLOB Text

REF URL

DATALINK URL

BOOLEAN Boolean

ROWID Text

NCHAR Text

NVARCHAR Text

LONGNVARCHAR Text

NCLOB Text

SQLXML Text

(1) Not currently supported.

Process Primitive Data Type Mapping
TIBCO Business Studio supports the following process basic data types.

Process Primitive
Type Java Type Representation Comments

Boolean Boolean

104

TIBCO® BPM Enterprise Business Data Services Developer Guide

Process Primitive
Type Java Type Representation Comments

Integer Integer Constrained to <=15 digits.

TIBCO Business Studio validates
that the upper limit is not
exceeded.

Decimal Double A 64-bit floating point number.

Text String

Date XMLGregorianCalendar Date, without timezone offset.

Time XMLGregorianCalendar Time, without timezone offset.

Datetime XMLGregorianCalendar Date and time, with optional
timezone offset.

Performer String

Unsupported XSD Constructs
The following XSD Constructs are not supported:

● XSD list

● XSD Redefine

● XSD Key

● XSD KeyRef

● XSD Unique

● XSD Notation

BDS Limitations
The following sub-sections contain further notes and restrictions on BDS and Forms.

Object Type

The BDS Object type is not supported in Forms, so Business Objects that include Object type attributes
cannot be displayed on Forms.

Change of Order in Multiple Data

BDS supports the use of multiplicity on a sequence, choice, or group. See Multiple Instances in Sequences
and Groups for details.

However:

● Data with multiplicity greater than one can only be used as an input parameter to a form.

● When an ordered set of data from such a source is loaded into a form, any ordering in the original is
lost. The data is grouped by type rather than by its original ordering. The data is read-only, so the user
cannot change it.

105

TIBCO® BPM Enterprise Business Data Services Developer Guide

No Support for Nillable with Multiplicity Greater Than 1

BDS does not support having an element in an XSD or WSDL set to:

● nillable, and

● multipicity set to greater than 1.

BDS only allows one element in an XSD or WSDL to be set to nillable.

Fixed Attribute Overwrite
If an element or attribute in a complex object exists, it is possible in EMF to actually overwrite the fixed
value with a different value. This is then persisted in the XML instead of the fixed value, thus creating
invalid XML against the schema.

For example:

<xsd:complexType name="compType">
 <xsd:sequence>
 <xsd:element name="anElement" type="xsd:string" fixed="A fixed value"/>
 </xsd:sequence>
</xsd:complexType>

Multiplicity Ordering in a Sequence or Choice
If you have multiplicity (such as maxOccurs) in a sequence or choice in a user-defined BOM, the XML
generated may not be valid. (Multiplicity is supported in imported schemas or WSDLs.) This problem
could occur if users write scripts to populate these sequences or choices, and add elements in an incorrect
order. Note that elements will appear in the XML in the same order that they were added in the script.

For example, the following is an XSD fragment:

<xs:sequence maxOccurs="unbounded">
<xs:element name="fruit" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="cake" type="xs:int" minOccurs="1" maxOccurs="1"/>
</xs:sequence>

Nested xsd any in Sequences
EMF is unable to handle nested sequences where there is an xsd:any or xsd:anyattribute in each
sequence.

For example, in the following schema, there is a sequence within another sequence, of which contain an
xsd:any:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://example.com/
NestedAny" targetNamespace="http://example.com/NestedAny">
 <xs:element name="train" type="TrainType"/>
 <xs:complexType name="TrainType">
 <xs:sequence>
 <xs:element name="line" type="xs:string"/>
 <xs:element name="company" type="xs:string"/>
 <xs:any processContents="lax" minOccurs="1" maxOccurs="1"/>
 <xs:sequence>
 <xs:any processContents="skip" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

106

TIBCO® BPM Enterprise Business Data Services Developer Guide

xsd any ##local
When there is an xsd:any, where the namespace is set to ##local, it is not possible to set another class in
the BOM to it. This is because the BOM class will already have a namespace associated with it. EMF will
not strip the namespace automatically.

For example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://example.com/
nsLocalAny" targetNamespace="http://example.com/nsLocalAny">
 <xs:element name="TrainSpotter" type="ResearchType"/>
 <xs:complexType name="ResearchType">
 <xs:sequence>
 <xs:element name="details" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="train">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="line" type="xs:string"/>
 <xs:element name="company" type="xs:string"/>
 <xs:any namespace="##local" processContents="lax" minOccurs="0"
maxOccurs="5"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Recurring Elements in Sequence
Having an ordered sequence with multiple instances of the same element name is not supported in XML
schemas due to an EMF restriction.

For example, the following schema would not be supported:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://example.com/
RecurringElements" targetNamespace="http://example.com/RecurringElements">
 <xs:element name="BoatElement" type="Boat"/>
 <xs:complexType name="Boat">
 <xs:sequence>
 <xs:element name="power" type="xs:string" minOccurs="3" maxOccurs="3"/>
 <xs:element name="hulltype" type="xs:string" minOccurs="1"
maxOccurs="1"/>
<xs:element name="power" type="xs:string" minOccurs="3" maxOccurs="3"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Attempting to import the above schema into TIBCO Business Studio will fail with the following message:

XML Schema contains unsupported duplicate element names inside the same complex type.

The block Function
EMF will not enforce a block if used on either Complex Types or Elements. They will be allowed to import
and run as if the block does not exist.

For example, see the following schema fragment:

107

TIBCO® BPM Enterprise Business Data Services Developer Guide

<xsd:complexType name="coreIdentifier" block="#all">
 <xsd:sequence>
 <xsd:element name="surname" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="enhancedIdentifier">
 <xsd:complexContent>
 <xsd:extension base="ns1:coreIdentifier">
 <xsd:sequence>
 <xsd:element name="firstname" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="Household">
 <xsd:sequence>
 <xsd:element name="family" type="ns1:coreIdentifier"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="myBaseInfo" type="ns1:coreIdentifier"/>
<xsd:element name="myFullInfo" type="ns1:enhancedIdentifier"/>
<xsd:element name="myHousehold" type="ns1:Household"/>

Data Mapping
These tables show data mappings within the BOM.

See Converting Values Between Different BOM Attribute Types.

See Mapping to or from Process Basic Types.

Converting Values Between Different BOM Attribute Types
This section shows how to convert between fields of different types, for example, how to convert between a
text field containing the String 123 and an integer field containing the number 123.

In some cases you can convert between two different types implicitly, without using the factory methods
listed in this table. See Implicit Conversions Between Numeric Types

To Type From Type Example Comments

Boolean Text bomField.booleanAttribute =

ScriptUtil.createBoolean(

bomField.textAttribute);

Parameter to createBoolean()
should be true or false

Boolean Integer-Signed bomField.booleanAttribute =

(1 == bomField.integerSigned);

Boolean Integer-Fixed bomField.booleanAttribute =

bomField.integerFixed.equals(

ScriptUtil.createBigInteger(1));

Boolean Decimal Signed bomField.booleanAttribute =

(1.0 == bomField.decimalFloat);

Testing for equality may not
give expected result due to
floating point inaccuracies, e.g.
(14/10==1.4) evaluates to false
due to rounding errors

108

TIBCO® BPM Enterprise Business Data Services Developer Guide

To Type From Type Example Comments

Boolean Decimal Fixed bomField.booleanAttribute =

(bomField.decimalFixed.compar
eTo(

ScriptUtil.createBigDecimal(1))
== 0);

Boolean Date, Time,
Datetime,

Datetimetz
Duration, ID, URI,
Object, Attachment

N/A N/A

Text Boolean bomField.text = bomField.bool; Results in true or false value
being assigned.

Text Integer-Signed bomField.text = bomField.
intSigned;

Text Integer-Fixed bomField.text =
bomField.integerFixed;

Text Decimal Float bomField.text =
bomField.decimal;

Text Decimal Fixed bomField.text =
bomField.decimalFixed;

Text Date, Time,
Datetime,

Datetimetz

bomField.text = bomField.date;

bomField.text = bomField.time;

bomField.text =
bomField.datetime;

bomField.text =
bomField.datetimetz;

yyyy-mm-dd

hh:mm:ss

yyyy-mm-ddThh:mm:ss

yyyy-mm-ddThh:mm:ssZ

Text Duration bomField.text =
bomField.duration;

For example, P12DT3H for 12
days and 3 hours.

Text ID, URI bomField.text = bomField.id;

bomField.text = bomField.uri;

Same value

Text Object, Attachment N/A N/A

Integer
Signed

Text bomField.intSigned =
parseInt(bomField.text);

bomField. intSigned =

parseInt(bomField.text,10);

parseInt() stops at first non-
number character. Copes with
base.

109

TIBCO® BPM Enterprise Business Data Services Developer Guide

To Type From Type Example Comments

Integer
Signed

Integer-Fixed bomField. intSigned =

parseInt(bomField.intFixed.toStri
ng());

Goes by a String

Can result in loss of precision

Integer
Signed

Decimal Float bomField. intSigned =

bomField.decFloat;

Rounds toward 0

Integer
Signed

Decimal Fixed bomField. intSigned =

parseInt(bomField.intFixed.toStri
ng());

Goes by a String

Integer
Signed

Boolean, Date,
Time, Datetime,

Datetimetz,

Duration, ID, URI,
Object, Attachment

N/A N/A

Integer
Fixed

Text bomField.intFixed =
ScriptUtil.createBigInteger(

bomField.text);

Using ScriptUtil Factory

Integer
Fixed

Integer-Signed bomField.intFixed =
ScriptUtil.createBigInteger(

bomField.intSigned);

Using ScriptUtil Factory

Integer
Fixed

Decimal Float bomField.intFixed =
ScriptUtil.createBigInteger(

bomField.decFloat);

Rounds towards 0

Integer
Fixed

Decimal Fixed bomField.intFixed =
ScriptUtil.createBigInteger(

bomField.decFixed);

Rounds towards 0

Integer
Fixed

Boolean, Date,
Time, Datetime,
Datetimetz,
Duration, ID, URI,
Object, Attachment

N/A N/A

Floating
Point

Text bomField.decFloat =
parseFloat(bomField.text);

NaN if starts with non-digit.
Or ignores after non-digit, for
example, 45z à 45.

Floating
Point

Integer-Fixed bomField.decFloat
=parseFloat(bomField.intFixed.to
String());

First converts value to a String
and then to a Floating Point.
Possible loss of precision.

110

TIBCO® BPM Enterprise Business Data Services Developer Guide

To Type From Type Example Comments

Floating
Point

Decimal Fixed bomField.decFloat
=parseFloat(bomField.decFixed.t
oString());

First converts value to a String
and then to a Floating Point.
Possible loss of precision.

Floating
Point

Boolean , Date,
Time, Datetime,

Datetimetz,

Duration, ID, URI,
Object, Attachment

N/A N/A

Decimal
Fixed

Text bomField.decFixed =

ScriptUtil.createBigDecimal(

bomField.text);

Using ScriptUtil Factory

Decimal
Fixed

Integer-Signed bomField.decFixed =

ScriptUtil.createBigDecimal(

bomField.intSigned);

Using ScriptUtil Factory

Decimal
Fixed

Decimal Float bomField.decFixed =

ScriptUtil.createBigDecimal(

bomField.decFloat);

Using ScriptUtil Factory

Decimal
Fixed

Integer Fixed bomField.decFixed =

ScriptUtil.createBigDecimal(

bomField.text);

Using ScriptUtil Factory

Decimal
Fixed

Boolean , Date,
Time, Datetime,
Datetimetz,
Duration, ID, URI,
Object, Attachment

N/A N/A

111

TIBCO® BPM Enterprise Business Data Services Developer Guide

To Type From Type Example Comments

Date, Time,
Datetime,
Datetimetz

Text bomField.date =
DateTimeUtil.createDate(

bomField.text);

bomField.time =
DateTimeUtil.createTime(

bomField.text);

bomField.datetime =

DateTimeUtil.createDatetime(

bomField.text);

bomField.datetimetz =

DateTimeUtil.createDatetimetz(

bomField.text);

Date, Time,
Datetime,
Datetimetz

Integer, Decimal
Float

e.g.

bomField.date =
DateTimeUtil.createDate(

bomField.intYear,
bomField.intMonth,
bomField.intDay);

See DateTimeUtil for more
factory methods

Date, Time,
Datetime,
Datetimetz

Date, time,
Datetime,
Datetimetz

bomField.datetime =
DateTimeUtil.createDatetime(

bomField.date, bomField.time);

See DateTimeUtil for more
factory methods

Date, Time,
Datetime,
Datetimetz

Boolean, Fixed
Integer, Fixed
Decimal, Duration,

ID, URI, Object,
Attachment

N/A N/A

Duration Text bomField.duration =
DateTimeUtil.createDuration(

bomField.text);

Duration Signed Integer,
Fixed Integer,
Decimal Float,
Decimal Fixed

bomField.duration =
DateTimeUtil.createDuration(

bomField.integerOrDecimal);

Specify duration in
milliseconds using any of the 4
numeric sub-types

Duration All other types N/A N/A

ID, URI Text bomField.uri = bomField.text;

bomField.id = bomField.text;

ID, URI All other types N/A N/A

112

TIBCO® BPM Enterprise Business Data Services Developer Guide

To Type From Type Example Comments

Object All Business
Objects

N/A Can only be assigned an Object
attribute or a Business Object

Attachment All Types N/A N/A

Mapping to or from Process Basic Types
There are 8 different Process Basic Types that Business Object Attributes can be assigned to or from. Some
of these types have equivalent BDS Attribute types. Others are slightly different, as shown below.

Process Basic
Type

Equivalent BOM Attribute
Type Comments

Text Text No problems mapping data

Decimal Decimal (Floating Point sub-
type)

No problems mapping data

Integer Integer (Signed Integer sub-
type)

The range of values supported by the Process
Basic Integer is constrained to <=15 digits.

The BOM Integer primitive type will
only accommodate up to 10-digits. So,
you need to make sure that
assignments in JavaScript or in
mappings are done accordingly to
avoid truncation.

Boolean Boolean No problems mapping data

Date Date No problems mapping data

Time Time No problems mapping data

Datetime Datetime No problems mapping data. The Basic Datetime
type can be assigned to a BOM Datetimetz
Attribute, provided that it contains a timezone. If
it doesn’t, an exception will be raised.

Performer Text No problems mapping data

The Process Basic Types can be mapped to BOM Attributes of different types if the guidelines in the
previous section are followed.

JavaScript Features not Supported in TIBCO BPM Scripting
Certain JavaScript features are not supported.

New Operator

The new operator from JavaScript is not supported. Instead, the factory methods must be used to create
new instances of classes.

113

TIBCO® BPM Enterprise Business Data Services Developer Guide

Switch Statement

The switch statement from JavaScript is not supported:

switch (value) {
 case constant:
 BLOCK;
 break;
 …
 default:
 BLOCK;
 break
}

Instead, an if () {} else if () {} … statement should be used.

try/catch Statement

The try/catch statement is not supported:

try {
 BLOCK;
}
catch (error) {
 BLOCK;
}
Finally {
 BLOCK;
}

The only way to catch an exception in a script is to catch the error on ScriptTask or another task.

JavaScript Functions

JavaScript functions are not supported. Code must be written out in full.

JavaScript RegExp Object

The JavaScript RegExp object is not supported. For example, the Text field replace() method only
supports string substitution, not the substitution of a pattern matched by a regular expression.

"==="operator

The === operator (same value and type) is not supported.

JavaScript Arrays

Using [] for array indices is not supported, as there is no way to create JavaScript arrays in TIBCO BPM.
Instead, the List type is used. Consequently, the following loop is not supported:

for (FIELD in ARRAYFIELD) {
 BLOCK;
}

Using If For and While Expressions
The curly braces are required in TIBCO Business Studio scripts for if, while, and for expressions.

114

TIBCO® BPM Enterprise Business Data Services Developer Guide

Reserved Words in Scripts

Array Boolean Date Math Number Object

RegExp String abstract assert bdsId(1) bdsVersion1

boolean break byte case catch char

class const continue debugger default delete

do double else enum export extends

false final finally float for function

goto if implements import in instanceof

int interface long native new null

package private protected public return short

static strictfp super switch synchronized this

throw throws transient true try typeof

upper var void volatile while with

(1) Cannot be used, regardless of case. Other reserved words cannot be used in the case shown, but can
be used by changing the case (for example, while is prohibited, but WHILE is acceptable).

115

TIBCO® BPM Enterprise Business Data Services Developer Guide

Business Data Scripting

TIBCO Business Studio used with TIBCO BPM enables you to write scripts for various purposes.

Standard JavaScript is supported. This appendix describes the additional functions that are supported to
help with BDS scripting.

Static Factory Methods
This section describes the following classes of factory methods: DataTimeUtil, ScriptUtil, IpeScriptUtil.

● DateTimeUtil

● ScriptUtil

● IpeScriptUtil (and ScriptUtil) Conversion Date and Time and String Functions

DateTimeUtil
These methods are used to create date and time objects of the types used in BPM, as shown in the following
tables. Parameters, such as seconds and minutes, should be in the range 0-59. Other parameters, such as
year, month, day, hours, and seconds, should also be within normal ranges.

Type Name Factory Method

Date

This is a native type
used in BPM for
storing dates in
YYYY-MM-DD
format only.

createDate(int year, int month, int day)

createDate(Text isoFormatDate)

This ignores any timezone offset. For example: 2009-11-30T23:50:00-05:00 becomes
2009-11-30.

createDate(Datetime datetime)

This ignores any timezone offset.

createDate(Datetimetz datetime, Boolean normalize)

This is a Boolean that, if set to True, normalizes to Zulu time. For example,
2009-11-30T23:50:00-05:00 becomes 2009-12-01. If set to False, it strips timezone.
The same example date becomes 2009-11-30.

createDate()

This creates a Date object set to today’s date.

Time createTime(int hour, int minute, int second, BigDecimal fractionalSecond)

createTime(int hour, int minute, int second, int millisecond)

createTime(Text isoFormatTime)

This ignores any timezone offset.

createTime(Datetime datetime)

This ignores any timezone offset.

116

TIBCO® BPM Enterprise Business Data Services Developer Guide

Type Name Factory Method

createTime(Datetimetz datetimetz, Boolean normalize)

This is a Boolean that, if set to True, normalizes to Zulu time. If it is set to False, it
strips timezone as with Date previously mentioned.

createTime()

This creates a Time object set to the current time.

Datetime createDatetime(BigInteger) year, int month, int day, int hour, int minute,
int second, BigDecimal fractionalSecond)

createDatetime(int year, int month, int day, int hour, int minute, int second,
int millisecond)

createDatetime(String lexicalRepresentation)

This creates a new Datetime by parsing the String as a lexical representation. The
Timezone offset is to be set only if specified in the string.

createDatetime(Date date, Time time)

No timezone offset set.

createDatetime(Datetimetz datetime, Boolean normalize)

This is a Boolean that, if set to True, normalizes to Zulu time. If it is set to False, it
strips timezone, as with Date above.

createDateTime()

This creates a Datetime object set to the current date and time.

Datetimetz createDatetimetz(BigInteger) year, int month, int day, int hour, int minute,
int second, BigDecimal fractionalSecond, int timezone_offset)

This is a constructor allowing for complete value spaces allowed by W3C XML
Schema 1.0 recommendation for xsd:dateTime and related built-in datatypes.

createDatetimetz(int year, int month, int day, int hour, int minute, int second,
int millisecond, int timezone_offset)

This is a constructor of value spaces that a java.util.GregorianCalendar
instance would need to convert to an XMLGregorianCalendar instance.

createDatetimetz(Datetime datetime, Integer offset_minutes)

createDatetimetz(Date date, Time time, Integer offset_minutes)

createDatetimetz(String lexicalRepresentation)

This creates a new Datetimetz by parsing the String as a lexical representation. It
takes the timezone offset from string, and defaults to zulu time if not specified.

createDateTimetz()

This creates a Datetimetz object set to the current date and time.

117

TIBCO® BPM Enterprise Business Data Services Developer Guide

Type Name Factory Method

Duration createDuration(boolean isPositive, BigInteger years, BigInteger months,
BigInteger days, BigInteger hours, BigInteger minutes, BigDecimal seconds)

This obtains a new instance of a Duration specifying the Duration as isPositive,
years, months, days, hours, minutes and seconds.

createDuration(boolean isPositive, int years, int months, int days, int hours,
int minutes, int seconds)

This obtains a new instance of a Duration specifying the Duration as isPositive,
years, months, days, hours, minutes, seconds.

createDuration(long durationInMilliSeconds)

This obtains a new instance of a Duration specifying the Duration as milliseconds.

createDuration(String lexicalRepresentation)

This obtains a new instance of a Duration specifying the Duration as its string
representation PnYnMnDTnHnMnS.

DataUtil
DataUtil provides a single method that allows you to create a List object for use in scripting.

Return Type method Description

Listobjects createList() Create a List object for use in
scripting.

ScriptUtil
ScriptUtil provides methods to create various types of object, to modify Duration objects, and to serialize
business objects into or deserialize them from their XML representation.

Some of the functions provided by the ScriptUtil factory are also supported in an IpeScriptUtil factory. See
IpeScriptUtil (and ScriptUtil) Conversion Date and Time and String Functions for more information.

Factory Methods

Return Type Function Comments

BigInteger createBigInteger(Integer)

createBigInteger(Text)

createBigInteger(BigDecimal)

BigDecimal createBigDecimal(Integer)

createBigDecimal(Decimal) This uses an implicit
MathContext.DECIMAL64.

createBigDecimal (Text)

118

TIBCO® BPM Enterprise Business Data Services Developer Guide

Return Type Function Comments

createBigDecimal (BigInteger)

MathContext createMathContext(Integer
setPrecision)

createMathContext(Integer
setPrecision, RoundingMode
setRoundingMode)

RoundingMode is an enumeration with
the following values: CEILING, FLOOR,
UP, DOWN, HALF_UP, HALF_DOWN,

HALF_EVEN, UNNECESSARY

Boolean createBoolean(Text booleanText)

The MathContext object specifies the number of digits used to store the number (that is, the size of the
mantissa), and also how to round numbers (of various forms, up, down, and nearest to use). For more
information about MathContext, see http://java.sun.com/j2se/1.5.0/docs/api/java/math/MathContext.html.

MathContext is not used when creating BigDecimal objects unless otherwise stated. It is the scale parameter
in BigDecimal methods that specifies the number of decimal places that should be maintained in the
objects. See Other Supported Methods for more details on this format.

Duration Methods

The following ScriptUtil methods are provided to enhance the basic interfaces provided for Duration
objects.

Return
Type Method Comments

BigDecimal getFractionalSeconds(Duration dur) Returns the fractional part of the
seconds of the duration.

Integer getMilliseconds(Duration dur) Returns the fractional second part of the
duration measured in milliseconds.

For example:
dstField.integerSigned =

ScriptUtil.getMilliseconds(srcFi

eld.duration);

XML Serialization Methods

The following ScriptUtil methods allow you to serialize business objects into or deserialize them from their
XML representation.

Return Type Method Comments

Boolean isConvertableToXML(Class
object)

Returns true if the specified
object can be converted to XML.

String toXML(Class object) Returns the XML representation
of the specified object.

119

TIBCO® BPM Enterprise Business Data Services Developer Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/math/MathContext.html

Return Type Method Comments

String toXML(Class object, String type) Returns the XML representation
of the specified object, using the
specified type (which can either
be the element name or fully
qualified class name.

Class fromXML(String string) Returns the business object
represented by the the specified
XML string.

IpeScriptUtil (and ScriptUtil) Conversion Date and Time and String Functions
The following functions are supported both in the ScriptUtil factory and, for compatibility with the TIBCO
iProcess Suite, in an IpeScriptUtil factory designed for assistance in migrating iProcess scripts to BPM.

iProcess expressions support the addition and subtraction of dates and times, expressed in arithmetic form
"date + num", "time - time", and so on. Operations of this kind in BPM should be performed by the supported
add() or subtract() methods on the date and time objects. Functions relating to the internal operations of
iProcess or its environment are not supported.

You can access these functions using either of the following:

● ScriptUtil.<FunctionName>

● IpeScriptUtil.<FunctionName>.

Return Type Syntax and Example Comments

Conversion Functions

Text DATESTR(Date)

Field =
ScriptUtil.DATESTR(DateTimeUtil.cre
ateDate());

Converts a date field into a locale-
specific string, for example,
20/08/2009.

Decimal NUM(Text)

Field = ScriptUtil.NUM("123");

Converts String to Decimal.

Text STR(Decimal DECIMAL, Integer
DECIMALS)

ScriptUtil.STR(2.3,2); // Generate "2.30"

Converts from Decimal to a string
with a specified number of decimal
places.

120

TIBCO® BPM Enterprise Business Data Services Developer Guide

Return Type Syntax and Example Comments

Text STRCONVERT(Text TEXT, Integer
OPCODE)

ScriptUtil.STRCONVERT("test",32);

Depending on which bits are set in the
opcode parameter, the following
conversions are applied to the text
parameter - the result is returned:

1 Delete all spaces.

2 Delete all leading spaces.

4 Delete all trailing spaces.

8 Reduce sequences of multiple spaces
to single spaces.

16 Convert to lowercase.

32 Convert to uppercase.

Text STRTOLOWER(TEXT)

ScriptUtil.STRTOLOWER("TEST");

Returns a lowercase copy of the string
passed in.

Text STRTOUPPER(TEXT)

ScriptUtil.STRTOUPPER("test");

Returns an uppercase copy of the
string passed in.

Text TIMESTR(TIME) Converts a time field into a locale-
specific string, for example, 21:23.

Date and Time Functions

Date CALCDATE(Date date, Integer dDy,
Integer dWk, Integer dMo, Integer
dYr)

ScriptUtil.CALCDATE(DateTimeUtil.c
reateDate(), 0, 0, 1, 0);

Adds an offset to a date. Note that the
offset is not restricted by the units
used, for example, an offset expressed
as a number of days is not restricted
to the number of days in a week or a
month.

Time Time CALCTIME(Time time, Integer
dHr, Integer dMi)

newTime =
ScriptUtil.CALCTIME(DateTimeUtil.c
reateTime("12:00:00"),2,40);

Adds an offset to a time. The time
plus offset is returned by the function.

Integer CALCTIMECARRYOVER(Time time,
Integer dHr, Integer dMi)

carryDays =
ScriptUtil.CALCTIMECARRYOVER(
DateTimeUtil.createTime("12:00:00"),2,
40);

Adds an offset to a time. The function
returns an integer whose value is the
number of days apart. The new time is
from the original time, so for a 48
hour offset, the function would return
2 (or -2 for -48hours).

Date DATE(Integer day, Integer mon,
Integer year)

ScriptUtil.DATE(31,12,2009)

Constructs a Date.

121

TIBCO® BPM Enterprise Business Data Services Developer Guide

Return Type Syntax and Example Comments

Integer DAYNUM (Date date)

ScriptUtil.DAYNUM(DateTimeUtil.cre
ateDate("2001-10-08"));

Returns the day of the month of the
specified date.

Text DAYSTR (Date date)

ScriptUtil.DAYSTR(DateTimeUtil.crea
teDate("2001-10-08"));

Returns the day of the week as a
string, for example, Monday, for the
specified date.

Integer HOURNUM (Time time)

ScriptUtil.HOURNUM(DateTimeUtil.
createTime("06:24:00"));

Returns the hour of the specified time.

Integer MINSNUM (Time time)

DateTimeUtil.MINSNUM(DateTimeU
til.createTime("06:24:00"));

Returns the minutes from the
specified time.

Integer MONTHNUM (Date date)

ScriptUtil.MONTHNUM(DateTimeUt
il.createDate("2001-10-08"));

Returns the month number (1-12)
from the specified date.

Text MONTHSTR (Date date)

ScriptUtil.MONTHSTR(DateTimeUtil.
createDate("2001-10-08"));

Returns the month name from the
specified date, for example, January.

Time TIME (Integer hours, Integer minutes)

ScriptUtil.TIME(6,24);

Constructs a time.

Integer Integer WEEKNUM (Date date)

ScriptUtil.WEEKNUM(DateTimeUtil.c
reateDate("2001-10-08"));

Returns the week number from the
specified date.

Integer YEARNUM (Date date)

ScriptUtil.YEARNUM(DateTimeUtil.c
reateDate("2001-10-08"));

Returns the year from the specified
date.

String Functions

Integer RSEARCH

ScriptUtil.RSEARCH("abc",
"junkabcdefs");

Reverse search for substring in string.
The indices are 1-based. Returns "5".

Integer SEARCH

ScriptUtil.SEARCH("abc",
"junkabcdefs");

Search for substring in string. The
indices are 1-based. Returns "5".

122

TIBCO® BPM Enterprise Business Data Services Developer Guide

Return Type Syntax and Example Comments

Integer STRLEN (Text)

ScriptUtil.STRLEN("abcdef");

Count the number of characters in a
string, returning the string length.

Text SUBSTR

ScriptUtil.SUBSTR("abcdefgh", 3, 3);

The indices are 1-based. Returns "cde".

BigDecimal getFractionalSecond(Duration dur)

dstField.integerSigned =
ScriptUtil.getFractionalSecond(srcFiel
d.duration);

Returns the fractional part of the
seconds of the duration (0 <= value <
1.0).

Int getMilliseconds(Duration dur)

dstField.integerSigned =
ScriptUtil.getMilliseconds(srcField.du
ration);

Returns the duration measured in
milliseconds

BDSObject copy(BDSObject) Copies a BDS object as a BDS Object
so it can be included in a second
collection, since each BDS object can
only be referenced from one
collection.

List<BDSObject copyAll(SrcBDSObjectList)

destList.addAll(ScriptUtil.copyAll
(sourceList));

Copies all the objects in the source List
returning a new List that can be
passed to the add All() method of
another List.

Note that this is for BDS objects only.
It is not for use with Process Array
fields.

Void setArrayElement(arrayData, Integer
index, Object value)

Set an element in a JavaScript list (that
represents a process data array).

It can be used to set the existing or
append a new item to the end of the
list if the index is passed as the zero-
based index of the last item+1 (that is,
the current size of list) for example,
setArrayElement(array, array.size(),
value).

Object getArrayElement(arrayData, Integer
index)

Get an element in a JavaScript list
(that represents a process data array).

BOM Native Type Methods
This section describes supported methods using different BOM native types.

These include the following:

● Fixed Length Integer (BigInteger) Methods

123

TIBCO® BPM Enterprise Business Data Services Developer Guide

● Fixed Point Decimal (BigDecimal) Methods
● IpeScriptUtil (and ScriptUtil) Conversion Date and Time and String Functions
● Duration Methods
● Text (String) Methods

Fixed Length Integer (BigInteger) Methods
The following methods using the BigInteger numeric format are supported in TIBCO BPM.

Type Method Notes

BigInteger abs() Returns a BigInteger whose value is the absolute
value of this BigInteger.

BigInteger add(BigInteger val) Returns a BigInteger whose value is (this plus val).

int compareTo(BigInteger val) Compares this BigInteger with the specified
BigInteger.

int compareTo(Object o) Compares this BigInteger with the specified Object.

BigInteger divide(BigInteger val) Returns a BigInteger whose value is (this divided
by val).

boolean equals(Object x) Compares this BigInteger with the specified Object
for equality.

BigInteger gcd(BigInteger val) Returns a BigInteger whose value is the greatest
common divisor of abs(this) and abs(val).

BigInteger max(BigInteger val) Returns the maximum of this BigInteger and val.

BigInteger min(BigInteger val) Returns the minimum of this BigInteger and val.

BigInteger mod(BIgInteger m) Returns a BigInteger whose value is (this mod m).

BigInteger multiply(BigInteger val) Returns a BigInteger whose value is (this times
val).

BigInteger negate() Returns a BigInteger whose value is (minus this).

BigInteger pow(int exponent) Returns a BigInteger whose value is (thisexponent).

BigInteger remainder(BigInteger val) Returns a BigInteger whose value is (this % val).

BigInteger subtract(BigInteger val) Returns a BigInteger whose value is (this minus
val).

Fixed Point Decimal (BigDecimal) Methods
Some numeric objects in BPM are expressed in BigDecimal format.

BigDecimal format can cope with arbitrarily large numbers. However, it is necessary to specify what
precision to use in certain circumstances. For example, calculating one-third would produce an exception if
precision is not specified. BigDecimal supports three standard levels of precision:

124

TIBCO® BPM Enterprise Business Data Services Developer Guide

● static MathContext DECIMAL32: A MathContext object with a precision setting matching the IEEE
754R Decimal32 format, seven digits, a rounding mode of HALF_EVEN, and the IEEE 754R default
(which is equivalent to "float" arithmetic).

● static MathContext DECIMAL64: A MathContext object with a precision setting matching the IEEE
754R Decimal64 format, 16 digits, a rounding mode of HALF_EVEN, and the IEEE 754R default (which
is equivalent to "double" arithmetic).

● static MathContext DECIMAL128: A MathContext object with a precision setting matching the IEEE
754R Decimal128 format, 34 digits, a rounding mode of HALF_EVEN, and the IEEE 754R default.

In addition, when using the BigDecimal type, the rounding rules can be specified when a particular method
of rounding is required for a particular type of calculation (for example, tax calculations). The type of
rounding to be used by a BigDecimal operation can be specified when creating a MathContext, or passed
directly to the relevant methods of BigDecimal. Possible values are:

● CEILING

● FLOOR

● UP

● DOWN

● HALF_UP

● HALF_DOWN

● HALF_EVEN

● UNNECESSARY

The following table lists the methods available for BigDecimal objects.

Type Method Notes

BigDecimal abs() Returns a BigDecimal whose value is the absolute
value of this BigDecimal, and whose scale is
this.scale().

BigDecimal add(BigDecimal augend) Returns a BigDecimal whose value is (this +
augend), and whose scale is max(this.scale(),
augend.scale()).

BigDecimal add(BigDecimal augend,
MathContext mc)

Returns a BigDecimal whose value is (this +
augend), with rounding according to the context
settings.

int compareTo(BigDecimal val) Compares this BigDecimal with the specified
BigDecimal.

BigDecimal divide(BigDecimal divisor) Returns a BigDecimal whose value is (this /
divisor), and whose preferred scale is
(this.scale() - divisor.scale()). If the exact
quotient cannot be represented (because it has a non-
terminating decimal expansion), an
ArithmeticException is thrown.

BigDecimal divide(BigDecimal divisor, int
scale, RoundingMode
roundingMode)

Returns a BigDecimal whose value is (this /
divisor), and whose scale is as specified.

125

TIBCO® BPM Enterprise Business Data Services Developer Guide

Type Method Notes

BigDecimal divide(BigDecimal divisor,
MathContext mc)

Returns a BigDecimal whose value is (this /
divisor), with rounding according to the context
settings.

BigDecimal divide(BigDecimal divisor,
RoundingMode
roundingMode)

Returns a BigDecimal whose value is (this /
divisor), and whose scale is this.scale().

BigDecimal divideToIntegralValue(BigDeci
mal divisor)

Returns a BigDecimal whose value is the integer part
of the quotient (this / divisor) rounded down.

BigDecimal divideToIntegralValue(BigDeci
mal divisor, MathContext mc)

Returns a BigDecimal whose value is the integer part
of (this / divisor).

BigDecimal max(BigDecimal val) Returns the maximum of this BigDecimal and val.

BigDecimal min(BigDecimal val) Returns the minimum of this BigDecimal and val.

BigDecimal multiply(BigDecimal
multiplicand)

Returns a BigDecimal whose value is (this ×
multiplicand), and whose scale is (this.scale()
+ multiplicand.scale()).

BigDecimal multiply(BigDecimal
multiplicand, MathContext mc)

Returns a BigDecimal whose value is (this ×
multiplicand), with rounding according to the
context settings.

BigDecimal negate() Returns a BigDecimal whose value is (-this), and
whose scale is this.scale().

BigDecimal pow(int n) Returns a BigDecimal whose value is (thisn). The
power is computed exactly, to unlimited precision.

BigDecimal pow(int n, MathContext mc) Returns a BigDecimal whose value is (thisn).

int precision() Returns the precision of this BigDecimal.

BigDecimal remainder(BigDecimal divisor) Returns a BigDecimal whose value is (this %
divisor).

BigDecimal remainder(BigDecimal divisor,
MathContext mc)

Returns a BigDecimal whose value is (this %
divisor), with rounding according to the context
settings.

BigDecimal round(MathContext mc) Returns a BigDecimal rounded according to the
MathContext settings.

int scale() Returns the scale of this BigDecimal.

BigDecimal scaleByPowerOfTen(int n) Returns a BigDecimal whose numerical value is
equal to (this * 10n).

126

TIBCO® BPM Enterprise Business Data Services Developer Guide

Type Method Notes

BigDecimal setScale(int newScale) Returns a BigDecimal whose scale is the specified
value, and whose value is numerically equal to this
BigDecimal's.

BigDecimal setScale(int newScale,
RoundingMode
roundingMode)

Returns a BigDecimal whose scale is the specified
value, and whose unscaled value is determined by
multiplying or dividing this BigDecimal's unscaled
value by the appropriate power of ten to maintain its
overall value.

int signum() Returns the signum function of this BigDecimal.

BigDecimal stripTrailingZeros() Returns a BigDecimal that is numerically equal to
this one, but with any trailing zeros removed from
the representation.

BigDecimal subtract(BigDecimal
subtrahend)

Returns a BigDecimal whose value is (this -
subtrahend), and whose scale is
max(this.scale(), subtrahend.scale()).

BigDecimal subtract(BigDecimal
subtrahend, MathContext mc)

Returns a BigDecimal whose value is (this -
subtrahend), with rounding according to the
context settings.

String toEngineeringString() Returns a string representation of this BigDecimal,
using engineering notation if an exponent is needed.

String toPlainString() Returns a string representation of this BigDecimal
without an exponent field.

String toString() Returns the string representation of this BigDecimal,
using scientific notation if an exponent is needed.

BigDecimal ulp() Returns the size of an ulp (a unit in the last place) of
this BigDecimal.

BigInteger unscaledValue() Returns a BigInteger whose value is the unscaled
value of this BigDecimal.

Date Time Datetime and Datetimetz (XMLGregorianCalendar) Methods

Type Method
Dat
e

Tim
e

Dat
e
Tim
e

Dat
e
Tim
etz

gD
ay

gM
ont
h

gM
ont
hD
ay

gYe
ar

gYe
ar
Mo
nth

void add(Duration duration)

Add duration to this
instance.

Y Y Y Y Y Y Y Y Y

127

TIBCO® BPM Enterprise Business Data Services Developer Guide

Type Method
Dat
e

Tim
e

Dat
e
Tim
e

Dat
e
Tim
etz

gD
ay

gM
ont
h

gM
ont
hD
ay

gYe
ar

gYe
ar
Mo
nth

void clear()

Unset all fields to
undefined.

Y Y Y Y Y Y Y Y Y

int compare(XMLGregorianC
alendar
xmlGregorianCalendar)

Compare two instances of
XMLGregorianCalendar

Y Y Y Y n/a n/a n/a n/a n/a

boolean equals(Object obj)

Indicates whether
parameter obj is equal to
this one.

Y Y Y Y Y Y Y Y Y

int getDay()

Return day in month or
DatatypeConstants.FIELD_
UNDEFINED.

Y n/a Y Y Y n/a Y Y n/a

BigDecimal getFractionalSecond()

Return fractional seconds.

n/a Y Y Y n/a n/a n/a n/a n/a

int getHour()

Return hours or
DatatypeConstants.FIEL

D_UNDEFINED.

n/a Y Y Y n/a n/a n/a n/a n/a

int getMillisecond()

Return millisecond
precision of
getFractionalSecond()

n/a Y Y Y n/a n/a n/a n/a n/a

int getMinute()

Return minutes or
DatatypeConstants.FIEL

D_UNDEFINED.

n/a Y Y Y n/a n/a n/a n/a n/a

int getMonth()

Return number of month or
DatatypeConstants.FIEL

D_UNDEFINED.

Y n/a Y Y n/a Y Y n/a Y

128

TIBCO® BPM Enterprise Business Data Services Developer Guide

Type Method
Dat
e

Tim
e

Dat
e
Tim
e

Dat
e
Tim
etz

gD
ay

gM
ont
h

gM
ont
hD
ay

gYe
ar

gYe
ar
Mo
nth

int getSecond()

Return seconds or
DatatypeConstants.FIEL

D_UNDEFINED.

n/a Y Y Y n/a n/a n/a n/a n/a

int getTimezone()

Return timezone offset in
minutes or
DatatypeConstants.FIEL

D_UNDEFINED if this
optional field is not
defined.

n/a n/a Y Y n/a n/a n/a n/a n/a

int getYear()

Return low order
component for XML
Schema 1.0 dateTime
datatype field for year or
DatatypeConstants.FIELD_
UNDEFINED.

Y n/a Y Y n/a n/a n/a Y Y

void setDay(int day)

Set days in month.

Y n/a Y Y Y n/a Y n/a n/a

void setFractionalSecond(BigD
ecimal fractional)

Set fractional seconds.

n/a Y Y Y n/a n/a n/a n/a n/a

void setHour(int hour)

Set hours.

n/a Y Y Y n/a n/a n/a n/a n/a

void setMillisecond(int
millisecond)

Set milliseconds.

n/a Y Y Y n/a n/a n/a n/a n/a

void setMinute(int minute)

Set minutes.

n/a Y Y Y n/a n/a n/a n/a n/a

void setMonth(int month)

Set month.

Y n/a Y Y n/a Y Y n/a Y

void setSecond(int second)

Set seconds.

n/a Y Y Y n/a n/a n/a n/a n/a

129

TIBCO® BPM Enterprise Business Data Services Developer Guide

Type Method
Dat
e

Tim
e

Dat
e
Tim
e

Dat
e
Tim
etz

gD
ay

gM
ont
h

gM
ont
hD
ay

gYe
ar

gYe
ar
Mo
nth

void setTime(int hour, int
minute, int second)

Set time as one unit.

n/a Y Y Y n/a n/a n/a n/a n/a

void setTime(int hour, int
minute, int second,
BigDecimal fractional)

Set time as one unit,
including the optional
infinite precision fractional
seconds.

n/a Y Y Y n/a n/a n/a n/a n/a

void setTime(int hour, int
minute, int second, int
millisecond)

Set time as one unit,
including optional
milliseconds.

This method should not be
used in scripts where the
time field has been set
before the script. In this
case it is best to use two
separate calls to set the
hour, minute, second, and
millisecond fields as:

setTime(int hour, int
minute, int second)

setMillisecond(int
millisecond)

n/a Y Y Y n/a n/a n/a n/a n/a

void setTimezone(int offset)

Set the number of minutes
in the timezone offset.

n/a n/a Y Y n/a n/a n/a n/a n/a

void setYear(BigInteger year)

Set low and high order
component of XSD
dateTime year field.

Y n/a Y Y n/a n/a n/a Y Y

130

TIBCO® BPM Enterprise Business Data Services Developer Guide

Type Method
Dat
e

Tim
e

Dat
e
Tim
e

Dat
e
Tim
etz

gD
ay

gM
ont
h

gM
ont
hD
ay

gYe
ar

gYe
ar
Mo
nth

void setYear(int year)

Set year of XSD dateTime
year field.

This method should not be
used in scripts where the
date field has been set
before the script. In this
case it is best to use
setYear(BigInteger year)
instead.

Y n/a Y Y n/a n/a n/a Y Y

String toXMLFormat()

Return the lexical
representation of this
instance.

Y Y Y Y Y Y Y Y Y

Duration Methods

Type Method

Duration add(Duration rhs)

Computes a new duration whose value is this+rhs.

int compare(Duration duration)

Partial order relation comparison with this Duration instance.

boolean equals(Object duration)

Checks if this duration object has the same duration as another Duration object.

int getDays()

Obtains the value of the DAYS field as an integer value, or 0 if not present.

int getHours()

Obtains the value of the HOURS field as an integer value, or 0 if not present.

int getMinutes()

Obtains the value of the MINUTES field as an integer value, or 0 if not present.

int getMonths()

Obtains the value of the MONTHS field as an integer value, or 0 if not present.

int getSeconds()

Obtains the value of the SECONDS field as an integer value, or 0 if not present.

131

TIBCO® BPM Enterprise Business Data Services Developer Guide

Type Method

int getYears()

Get the years value of this Duration as an int or 0 if not present.

boolean isLongerThan(Duration duration)

Checks if this duration object is strictly longer than another Duration object.

boolean isShorterThan(Duration duration)

Checks if this duration object is strictly shorter than another Duration object.

Duration multiply(BigDecimal factor)

Computes a new duration whose value is factor times longer than the value of this
duration.

Duration multiply(int factor)

Computes a new duration whose value is factor times longer than the value of this
duration.

Duration subtract(Duration rhs)

Computes a new duration whose value is this-rhs.

Text (String) Methods
The following methods are supported for use with String objects.

Method Description

Properties

length Returns the length of a string.

Methods

charAt(index) Returns the character at the specified zero-based index.

indexOf(str[,fromIndex]) Returns the position of the first found occurrence of a specified value
in a string.

lastIndexOf(str[,fromIndex]) Returns the position of the last found occurrence of a specified value
in a string.

replace() Searches for a match between a substring (or regular expression) and
a string, and replaces the matched substring with a new substring.

slice() Extracts a part of a string and returns a new string.

substr() Extracts the characters from a string, beginning at a specified start
position, and through the specified number of characters.

substring() Extracts the characters from a string, between two specified indices.

132

TIBCO® BPM Enterprise Business Data Services Developer Guide

Method Description

toLowerCase() Converts a string to lowercase letters.

toUpperCase() Converts a string to uppercase letters.

Other Supported Methods
The methods described in the sections List Methods and ListIterator Methods are supported for the types of
object listed. Methods not described are not supported.

This section includes:

● List Methods

● ListIterator Methods

List Methods
The following List methods are supported for use in manipulating a range of values.

Type Method Notes

boolean add(E o) Appends the specified element to the end of this list.

void add(int index, E element) Inserts the specified element at the specified position
in this list.

void clear() Removes all of the elements from this list.

boolean contains(Object o) Returns true if this list contains the specified element.

E get(int index) Returns the element at the specified position in this
list.

boolean isEmpty() Returns true if this list contains no elements.

ListIterator<E> listIterator() Returns a list iterator of the elements in this list (in
proper sequence).

E remove(int index) Removes the element at the specified position in this
list.

boolean remove(Object o) Removes the first occurrence in this list of the
specified element.

E set(int index, E element) Replaces the element at the specified position in this
list with the specified element.

int size() Returns the number of elements in this list.

List subList(int fromIndex, int
toIndex)

Returns a view of the portion of this list between the
specified fromIndex, inclusive, and toIndex,
exclusive.

133

TIBCO® BPM Enterprise Business Data Services Developer Guide

Type Method Notes

boolean addAll(Collection c) Appends all of the elements in the specified collection
to the end of this list, in the order that they are
returned by the specified collection's iterator
(optional operation).

ListIterator Methods
The following ListIterator methods are supported.

Type Method Notes

void add(E o) Inserts the specified element into the list.

boolean hasNext() Returns true if this list iterator has more elements when
traversing the list in the forward direction.

boolean hasPrevious() Returns true if this list iterator has more elements when
traversing the list in the reverse direction.

E next() Returns the next element in the list.

int nextIndex() Returns the index of the element that would be
returned by a subsequent call to next.

E previous() Returns the previous element in the list.

int previousIndex() Returns the index of the element that would be
returned by a subsequent call to previous.

void remove() Removes from the list the last element that was
returned by next or previous.

void set(E o) Replaces the last element returned by next or previous
with the specified element.

Other JavaScript Functions
Some other JavaScript methods are supported for Math objects.

Math Methods
The following methods are supported for use with Math objects.

Method Description

Properties

E Returns Euler’s number (approximately 2.718).

LN2 Returns the natural logarithm of 2 (approximately 0.693).

LN10 Returns the natural logarithm of 10 (approximately 2.302).

134

TIBCO® BPM Enterprise Business Data Services Developer Guide

Method Description

PI Returns Pi (approximately 3.14159).

Methods

abs(x) Returns the absolute value of x.

acos(x) Returns the arccosine of x, in radians.

asin(x) Returns the arcsine of x, in radians.

atan(x) Returns the arctangent of x, as a numeric value between -Pi/2 and
+Pi/2 radians.

ceil(x) Returns x, rounded up to the nearest integer.

cos(x) Returns the cosine of x (where x is in radians).

exp(x) Returns the value of Ex.

floor(x) Returns x, rounded down to the nearest integer.

log(x) Returns the natural logarithm (base E) of x.

max(x,y, z, ... , n) Returns the number with the highest value, using 2 arguments.

min(x,y, z, ... , n) Returns the number with the lowest value, using 2 arguments.

pow(x,y) Returns the value of x to the power of y.

random() Returns a random number between 0 and 1.

round(x) Rounds x to the nearest integer.

sin (x) Returns the sine of x (where x is in radians).

sqrt(x) Returns the square root of x.

tan(x) Returns the tangent of the angle x.

135

TIBCO® BPM Enterprise Business Data Services Developer Guide

Process Manager and Work Manager Scripting

TIBCO Business Studio used with TIBCO BPM enables you to write scripts for various purposes. This
section describes the additional functions that are provided to help with process scripting, work item and
organization model scripting.

Process Instance Attributes and Methods
This section summarizes the attributes and methods that are available for accessing information about
process instances using the Process class.

Attribute/Method Example Description

priority : Integer priority = Process. priority; Returns priority of the Process Instance

getName() : String name = Process.getName(); Returns Process Template name

getDescription() :
String

description = Process.
getDescription();

Returns description of Process

getStartTime() :
Datetimetz

start = Process.
getStartTime();

Returns date/time the Process Instance was
started

getPriority() : Integer priority = Process.
getPriority();

Returns priority of the Process Instance

getOriginator() : String originator = Process.
getOriginator();

Returns originator of Process Instance, e.g.
uid=admin, ou=system

getId() : String id = Process. getId(); Returns Process Instance ID, for example,
pvm:0a128cu

136

TIBCO® BPM Enterprise Business Data Services Developer Guide

Attribute/Method Example Description

getActivityLoopIndex(
) : Integer

index = Process.
getActivityLoopIndex() ● Retrieves the most local loop index.

● Index starts from 0 (zero) for first loop/multi-
instance instance.

● In a parallel loop/multi-instance task or
embedded sub-process, all loop instances run
concurrently. To pass the loop index of a
particular loop instance to a task:

— Use the input mapping functionality if
this is available.

— If it is not, use a local data field.

— Use a process-level data field only as a
last resort. Each loop instance will try to
set the field with the index of that
particular loop instance; but the field is
common to all loop instances in the
process and can only contain a single
value. A task can successfully get and set
the index in the same transaction, but if
there is any delay in getting the index
the field may have been overwritten by
another instance.

● For a non-multi-instance task, this will be the
loop index for the nearest multi-instance
embedded sub-process ancestor (defaulting
to 0 if no multi-instance ancestor found).

● In nested multi-instance situations, the user
can transfer an embedded sub-process loop
index into a embedded sub-process local
data field.

addActivityLoopAddi
tionalInstances:
(String, Integer)

add =
Process.addActivityLoopA
dditionalInstances
("UserTask",1)

Adds additional instances to a multi-instance
loop task while that task is in progress

getActivityType(String
) : String

type =
Process.getActivityType('U
serTask2');

Returns task type, for example, userTask

getActivityState(String
) : String

state =
Process.getActivityState('U
serTask2');

Returns task state, for example, done.state

getActivityStartTime(S
tring) : Datetimetz

started =
Process.getActivityStartTi
me('UserTask2');

Returns time task was started

137

TIBCO® BPM Enterprise Business Data Services Developer Guide

Attribute/Method Example Description

getActivityCompletion
Time(String) :
Datetimetz

completed = Process.
getActivityCompletionTim
e('UserTask2');

Returns time task was completed

getActivityDeadline(St
ring) : Datetimetz

deadtime =
Process.getActivityDeadlin
e('UserTask2');

Returns task deadline time

getActivityAttribute(St
ring, String) : String

workItemId =
Process.getActivityAttribut
e('UserTask2','WorkItemId'
);

completer =
Process.getActivityAttribut
e('UserTask2','Completer');

Returns value of attribute, for example, 430

Only WorkItemId and Completer are supported
as attribute names.

getActivityArrayAttri
bute(String, String) :
List<String>

attrs =
Process.getActivityArrayAt
tribute('UserTask2','Partici
pant');

Returns array of attribute values. Only
Participant is supported as an attribute name.**

setPriority() : Integer priority =
Process.setPriority();

Once a process instance has been created, it can
change its own priority.

The default value is 200. Valid entries are 100,
200, 300 and 400.

getOriginatorName():
String

name =
Process.getOriginatorNam
e()

Returns the process instance originator login
name. For use with a pageflow or business
process.

setContextVariable
(String varName,
BusinessObject data)

contextVariable =
Process.setContextVariable
(cargoType, steel);

For use with pageflow processes. Enables a BDS
context variable to be created as an attribute on
the main process. These context variables can be
accessed by the main process or any of its sub-
processes.

For a pageflow process, there is only one thread
of execution so a single script can access a
context variable in a thread-safe manner. These
methods are not intended for use in a business
process.

getContextVariable
(String varName,
String className)

contextVariable =
Process.getContextVariable
(cargoType, "className");

For use with pageflow processes. Gets a BDS
context variable created as in the previous
method.

138

TIBCO® BPM Enterprise Business Data Services Developer Guide

Attribute/Method Example Description

auditLog (String
message)

Process.auditLog
("Unknown Cargo Type " +
cargoType.name) ;

Adds a simple text entry to the audit log
(process-instance related event log entry).

Use of the Process.auditLog() method is not
supported for in-memory process instances
(service processes, pageflow processes or
business services). If the Process.auditLog()
method is used on one of these processes
(whether started from within a parent business
process or independently), no audit entries will
be generated.

Organization Model Attributes and Methods
Process Manager scripting supports all the organization model methods that are supported in Work
Manager scripts.

These are defined in OrgModel.

TIBCO Business Studio used with TIBCO BPM enables you to write scripts for various purposes.
WorkManagerFactory describes the additional functions that are provided to help with work item and
organization model scripting.

WorkManagerFactory
This table lists the WorkManagerFactory attributes and methods provided.

Attribute / Method Comments

WorkManagerFactory

getWorkItem() : WorkItem Returns WorkItem object. See WorkItem for
properties & methods.

getOrgModel() : OrgModel Returns an OrgModel object. See OrgModel for
methods.

getOrgModelByVersion(version:
Integer) : OrgModel

Returns an OrgModel object. The parameter
specifies which major version of the model is
required.

WorkItem
This table lists the WorkItem attributes and methods provided.

Attribute / Method Comments

WorkItem

cancel : Boolean Cancels an API that exists in BRM.

description : Text The description of the work item.

139

TIBCO® BPM Enterprise Business Data Services Developer Guide

Attribute / Method Comments

priority : Integer The specified priority of the work item.

getId() : Integer Returns the work item’s unique ID.

getVersion() : Integer Returns the version number of the work item.

getWorkItemResource() : EntityDetail Returns a resource that has this work item. It
contains all the organizational entities whose work
list currently contains this work item.

getWorkItemOffers() : List<EntityDetail> Returns a work item resource object for the work
item. If the item was originally offered to more
than one organizational entity and is now
allocated, this will contain all the entities to which
the item was originally offered.

getContext() : ItemContext Returns the work item's context information and
provides read only methods to access the
following information:

● activity ID

● activity name

● application name

● application instance

● application ID

● application instance description

getSchedule() : ItemSchedule Returns the work item's schedule information and
provides read only methods to access the start date
and target date.

workItemAttributes.attribute1: Integer These work item attributes (attribute1 and the
others listed below) can be used to contain data
associated with a work item and to sort and filter
your work list. They are available where the
WorkManagerFactory object can be accessed (for
example, on a user task schedule script). For
example, attribute2 can be used to hold a customer
name, and attribute1 a customer reference number
to aid work list sort and filter choices.

The attribute1 work item attribute can be assigned
integer values in the range -2,147,483,648 to
2,147,483,647.

workItemAttributes.attribute2: Text

workItemAttributes.attribute3: Text

workItemAttributes.attribute4: Text

Limited to 64 characters in length.

See description above.

140

TIBCO® BPM Enterprise Business Data Services Developer Guide

Attribute / Method Comments

workItemAttributes.attribute5: BigDecimal See description above.

This can be assigned Decimal or BigDecimal
values.

workItemAttributes.attribute6: DateTime See description above.

workItemAttributes.attribute7: DateTime See description above.

workItemAttributes.attribute8: Text

workItemAttributes.attribute9: Text

workItemAttributes.attribute10: Text

workItemAttributes.attribute11: Text

workItemAttributes.attribute12: Text

workItemAttributes.attribute13: Text

workItemAttributes.attribute14: Text

Limited to a maximum of 20 characters - anything
larger will be truncated.

See description above.

workItemAttributes.attribute15: Integer The attribute15 work item attribute can be
assigned integer values in the range -2,147,483,648
to 2,147,483,647.

workItemAttributes.attribute16: BigDecimal See description above.

This can be assigned Decimal or BigDecimal
values.

workItemAttributes.attribute17: BigDecimal See description above.

This can be assigned Decimal or BigDecimal
values.

workItemAttributes.attribute18: BigDecimal See description above.

This can be assigned Decimal or BigDecimal
values.

workItemAttributes.attribute19: DateTime See description above.

workItemAttributes.attribute20: DateTime See description above.

workItemAttributes.attribute21: Text

workItemAttributes.attribute22: Text

workItemAttributes.attribute23: Text

workItemAttributes.attribute24: Text

workItemAttributes.attribute25: Text

workItemAttributes.attribute26: Text

Limited to a maximum of 20 characters - anything
larger will be truncated.

See description above.

141

TIBCO® BPM Enterprise Business Data Services Developer Guide

Attribute / Method Comments

workItemAttributes.attribute27: Text

workItemAttributes.attribute28: Text

workItemAttributes.attribute29: Text

workItemAttributes.attribute30: Text

workItemAttributes.attribute31: Text

workItemAttributes.attribute32: Text

workItemAttributes.attribute33: Text

workItemAttributes.attribute34: Text

workItemAttributes.attribute35: Text

workItemAttributes.attribute36: Text

workItemAttributes.attribute37: Text

workItemAttributes.attribute38: Text

Limited to a maximum of 64 characters - anything
larger will be truncated.

See description above.

workItemAttributes.attribute39: Text

workItemAttributes.attribute40: Text

Limited to a maximum of 255 characters - anything
larger will be truncated.

See description above.

ItemContext

getActivityId() : Text

getActivityName() : Text

getAppName() : Text

getAppInstance() : Text

getAppId() : Text

getAppInstanceDescription() : Text

ItemSchedule

getStartDate() : Datetime

getTargetDate : Datetime

When using getWorkItem() or getSchedule(), note that the following will be shown:

● A null object when there is a null value.

● An empty object, "", when there is a 0 length value.

142

TIBCO® BPM Enterprise Business Data Services Developer Guide

OrgModel
This table lists the OrgModel attributes and methods provided.

Attribute / Method Comments

OrgModel

ouByGuid (guid:Text) : EntityDetail Returns the single EntityDetail that describes the
Organizational Unit identified by its GUID. If no
such Organizational Unit exists, the return value
will be null.

ouByName(name:Text) : List<EntityDetail> Returns the list of EntityDetails that describe the
Organizational Units identified by the given name.
If no such named Organizational Units exist, the
return value will be an empty list.

groupByGuid(guid:Text) : EntityDetail Returns the single EntityDetail that describes the
Group identified by its GUID. If no such Group
exists, the return value will be null.

groupByName(name:Text) : List<EntityDetail> Returns the list of EntityDetails that describe the
Groups identified by the given name. If no such
named Groups exist, the return value will be an
empty list.

resourceByGuid(guid:Text) : EntityDetail Returns the single EntityDetail that describes the
Human Resource identified by its GUID. If no
such Human Resource exists, the return value will
be null.

resourceByName(name:Text) : List<EntityDetail> Returns the list of EntityDetails that describe the
Human Resources identified by the given name. If
no such named Human Resources exist, the return
value will be an empty list.

resourceByLdapDN(ldapDN:Text):
List<EntityDetail>

Returns the collection of Resources identified by
the given LDAP DN, or an empty list if none can
be found. Ideally, there should be only one such
Resource for a given DN.

positionByGuid(guid:Text) : EntityDetail Returns the single EntityDetail that describes the
Position identified by its GUID. If no such Position
exists, the return value will be null.

positionByName(name:Text) : List<EntityDetail> Returns the list of EntityDetails that describe the
Positions identified by the given name. If no such
named Positions exist, the return value will be an
empty list.

orgByGuid(guid:Text) : EntityDetail Returns the single EntityDetail that describes the
Organization identified by its GUID. If no such
Organization exists, the return value will be null.

143

TIBCO® BPM Enterprise Business Data Services Developer Guide

Attribute / Method Comments

orgByName(name:Text) : List<EntityDetail> Returns the list of EntityDetails that describe the
Organizations identified by the given name. If no
such named Organizations exist, the return value
will be an empty list.

EntityDetail

getEntityType() : Text Returns the type identifier for this organizational
model entity. Example values are:

● ORGANIZATION

● ORGANIZATIONAL_UNIT

● GROUP

● POSITION

● RESOURCE

getGroups() : List<EntityDetail> For Human Resource entities, this will return the
EntityDetails that describe the Groups to which
the Resource is associated.

getPositions() : List<EntityDetail> For Human Resource entities, this will return the
EntityDetails that describe the Positions to which
the Resource is associated.

getName() : Text The name of the organizational model entity.

getGuid() : Text The GUID that uniquely identifies the
organizational model entity.

getAlias() : Text For Human Resource entities, this is the Alias of
the LDAP Source from which the Resource is
derived.

getDn() : Text For Human Resource entities this is the
Distinguishing Name (DN) of the LDAP entry
from which the Resource is derived.

getResourceType() : Text For entities of Entity Type RESOURCE, this
identifies the type of Resource:

● "DURABLE"

● "CONSUMABLE"

● "HUMAN"

Currently, only HUMAN Resources are
supported.

144

TIBCO® BPM Enterprise Business Data Services Developer Guide

Attribute / Method Comments

getResources() : List<EntityDetail> For non-Resource entity types (such as Positions
and Groups), this will return the Resource entities
associated with that entity. For example, for a
Position, it will be all the Resources that hold that
Position.

getAttributeValue(attrName:Text) :List<Text> For Resource entity types, this will return the
value of the named Resource Attribute held by
that Resource entity.

getAttributeType(attrName:Text) : Text For Resource entity types, this will return the data
type of the named Resource Attribute. Possible
values are:

● string

● decimal

● integer

● boolean

● datetime

● date

● time

● enum

● enumset

145

TIBCO® BPM Enterprise Business Data Services Developer Guide

Business Data Services Glossary

A

Aggregation
Aggregation is a specialized form of association. Objects in an aggregation relation have their own lifecycle, but one
object is related to the other object with a “has-a” type of relationship, for example, Department-Teacher.

Association
Association is a relationship where all the objects have their own lifecycle and there is no parent. For example: the
Teacher-Student relationship. This is the most general of the UML relationships.

Attribute
A property of a Class, for example an Order class, may contain date and orderNumber attributes, amongst others.

The type of attribute can be one of the following:

● Primitive Type (see below)
● Enumerated Type (see below)
● Class Type (see below)

When choosing a type for an attribute, BOM Editor refers to the BOM Native Types as Primitive Types. Primitive
Types which are not pre-defined, for example those that are defined within a BOM, have the package name of the
BOM against them when selecting the Type to use. This can be useful, for instance, if there is more than one BOM that
contains an OrderId class.

B

Basic Type
Process Template field values can be of a Basic Type or an External Reference Type that refers to a BOM Class.

The Basic Types are:

● Text
● Decimal
● Integer
● Boolean
● Date
● Time
● Date Time
● Performer

Note: There is no Datetimetz, Duration, BOM Object, URI, or ID type (nor an Attachment type), and the Performer
field is a special type of Text field that contains an RQL query string.

The Basic Types are also known as Process Types.

BDS
Business Data Services

146

TIBCO® BPM Enterprise Business Data Services Developer Guide

See Business Data Services.

BOM
Business Object Model

See Business Object Model (BOM).

BOM Class
An entity in the BOM that represents a particular part of the application data, for example, an Order or a Customer. A
BOM Class is a template for a Business Object.

BOM Native Types
There are 13 predefined primitive types (or 15, if you count the numeric sub-types) that can be used to build other
Primitive Types, or used as types of attributes of classes:

● Boolean, String
● Integer (Signed integer and Fixed integer sub-types)
● Decimal (Floating Point and Fixed Point sub-types)
● Date, Time, Datetime, Datetimetz, Duration
● URI, ID, Object, Attachment *

Note that the Attachment type is not currently supported.

Business Data
Structured data that contains information about real-world entities that an organization deals with, for example
Customer, Order, and Orderline. Each of these entities will have a number of attributes, for example name, address,
and date. These objects will also be related to each other in different relationships and with different multiplicities.

Business Data Application
An application in the ActiveMatrix BPM runtime that is created by deploying a Business Data project. A Business
Data application contains the BDS Plug-ins generated from the BOM or BOMs in the Business Data project.)

Business Data Services
A Component of ActiveMatrix BPM that handles all the application data needs of the ActiveMatrix BPM system.

Business Object
An instance of a BOM Class. For example, for a Customer class, there is a Business Object that represents and holds
information about a particular customer. Do not confuse this term with Object BOM Native Type.

Business Object Model (BOM)
The Model representing the structure of the application data created using the BOM editor. A BOM that contains only
local classes is a local BOM. A BOM that contains at least one case or global class is a global BOM.

C

Composition
Composition is a specialized form of the Aggregation relationship. In this relationship if the parent object is deleted,
all the child objects will be deleted too. This is not the case for Aggregation. An example of this type of relationship is
School-Classroom. If the School is destroyed, the classrooms will be destroyed too.

147

TIBCO® BPM Enterprise Business Data Services Developer Guide

E

EMF
Eclipse Modeling Framework.

See:

http://www.eclipse.org/modeling/emf/

Enum or Enumerated Type
A type that can have a restricted set of values. For example, DayOfWeek can have the following values:

SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

G

Generalization
The Generalization relationship indicates that one of the two related classes (the subtype) is considered to be a
specialized form of the other (the super type), and supertype is considered as a Generalization of the subtype. These
types of relationships are characterized by the "is-a" phrase. For example, Oak "is-a" Tree. An Oak is a Specialization
of the more general Tree class, and Tree is a generalization of the more specific Oak class.

Global BOM
A BOM that contains at least one case class or global class.

L

Local BOM
A BOM that contains only local classes. (A local BOM cannot contain a global class or a case class.)

P

Primitive Type
In a BOM, it is possible to define a type based on one of the BOM Native Types or another Primitive Type. When these
Primitive Types are defined, it is possible to add some limitations using a regular expression or a range.

Data Fields of Primitive Types cannot be used in processes. They must be of BOM Types or Basic Types.

Process Instance
An instance of a flow through a Process Template with data values that reflect the information being processed by this
particular instance of the process.

Process Local Data
Data that lives within a Process Instance. The object will either be a Business Object or a Basic Type.

Process Template
The definition of what a process should do.

148

TIBCO® BPM Enterprise Business Data Services Developer Guide

http://www.eclipse.org/modeling/emf/

Process Types
Basic Type.

See Basic Type.

R

RQL
Resource Query Language – a language for selecting which resources can have access to a UserTask in a process. For
example:
resource(name="Clint Hill")

S

Specialization
Generalization.

See Generalization.

U

UML
Unified Modeling Language – an international standard modeling language supported by many tools. Identifies
different types of relationships that can exist between the objects being modelled, for example: composition,
generalization/specialization, association, and aggregation.

UserTask
A UserTask is a step in a process that is handled by a user and requires the user to complete a form. On completing
the form, the user submits the values causing the changes to the field values to be saved. A user may Close a form so
that they can complete it later.

W

WSDL
WSDL stands for Web Service Definition Language. A file with a .wsdl extension contains the definition of a Web
Service, defining the format of the request and responses. A WSDL file can be imported by TIBCO Business Studio to
make it easy to call web services.

X

XSD
XSD stands for XML Schema Definition. A file with a .xsd extension contains XML that defines the format that some
other XML should take. This other XML is used to pass data between processes.

149

TIBCO® BPM Enterprise Business Data Services Developer Guide

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly in
HTML and PDF formats.
The website is updated frequently and is more current than any other documentation included with the
product.

Product-Specific Documentation

The following documentation for TIBCO BPM Enterprise is available on the TIBCO BPM Enterprise
Product Documentation page:

● TIBCO BPM Enterprise Release Notes

● TIBCO BPM Enterprise SOA Concepts

● TIBCO BPM Enterprise Concepts

● TIBCO BPM Enterprise Developer's Guide

● TIBCO BPM Enterprise Web Client Developer's Guide

● TIBCO BPM Enterprise Tutorials

● TIBCO BPM Enterprise Business Data Services Developer Guide

● TIBCO BPM Enterprise Case Data User Guide

● TIBCO BPM Enterprise Event Collector Schema Reference

● TIBCO BPM Enterprise - Integration with Content Management Systems

● TIBCO BPM Enterprise SOA Composite Development

● TIBCO BPM Enterprise Java Component Development

● TIBCO BPM Enterprise Mediation Component Development

● TIBCO BPM Enterprise Mediation API Reference

● TIBCO BPM Enterprise WebApp Component Development

● TIBCO BPM Enterprise Administration

● TIBCO BPM Enterprise Performance Tuning Guide

● TIBCO BPM Enterprise SOA Administration

● TIBCO BPM Enterprise SOA Administration Tutorials

● TIBCO BPM Enterprise SOA Development Tutorials

● TIBCO BPM Enterprise Client Application Management Guide

● TIBCO BPM Enterprise Client Application Developer's Guide

● TIBCO Openspace User's Guide

● TIBCO Openspace Customization Guide

● TIBCO BPM Enterprise Organization Browser User's Guide (Openspace)

● TIBCO BPM Enterprise Organization Browser User's Guide (Workspace)

● TIBCO BPM Enterprise Spotfire Visualizations

● TIBCO Workspace User's Guide

150

TIBCO® BPM Enterprise Business Data Services Developer Guide

https://docs.tibco.com/
https://docs.tibco.com/products/tibco-bpm-enterprise-4-3-2
https://docs.tibco.com/products/tibco-bpm-enterprise-4-3-2

● TIBCO Workspace Configuration and Customization

● TIBCO Workspace Components Developer Guide

● TIBCO BPM Enterprise Troubleshooting Guide

● TIBCO BPM Enterprise Deployment

● TIBCO BPM Enterprise Hawk Plug-in User's Guide

● TIBCO BPM Enterprise Installation: Developer Server

● TIBCO BPM Enterprise Installation and Configuration

● TIBCO BPM Enterprise Log Viewer

● TIBCO BPM Enterprise Single Sign-On

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

● For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support website.

● For creating a Support case, you must have a valid maintenance or support contract with TIBCO. You
also need a user name and password to log in to TIBCO Support website. If you do not have a user
name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

151

TIBCO® BPM Enterprise Business Data Services Developer Guide

https://www.tibco.com/services/support
https://support.tibco.com/
https://support.tibco.com/
https://ideas.tibco.com/
https://community.tibco.com

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, TIBCO Administrator, Business Studio, Enterprise Message
Service, Hawk, iProcess, JasperReports, and Spotfire are either registered trademarks or trademarks of
TIBCO Software Inc. in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system platforms
for a specific software version are released at the same time. See the readme.txt file for the availability of
this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2005-2022. TIBCO Software Inc. All Rights Reserved.

152

TIBCO® BPM Enterprise Business Data Services Developer Guide

https://www.tibco.com/patents

	Contents
	Business Data
	Business Data Services (BDS)
	BOM Class
	Business Objects
	Business Object Scope
	Business Object Creation by Factory
	Retrieving and Setting Business Object Attributes
	Invoking Operations on Business Object Attributes

	BOM Relationships and Process Local Data
	Composition
	Specialization and Generalization

	UML Relationships Supported by Process Local Data
	Assignment by Value and by Reference
	BOM Native Type or Primitive Type Object to Business Object Attribute
	Assigning a Business Object
	Assigning a Basic Type Object to a Process Data Field
	Significance of the Script Boundary

	Business Data Definition
	Business Data Projects
	Business Data Project Versioning
	Support for Local BOMs in Local Business Object Projects
	Support for Local BOMs in Analysis Projects or BPM Developer Projects

	Creating a Business Object Model (BOM)
	Creating User-defined BOMs in the Business Objects Folder
	Importing XSDs and WSDLs into Business Objects
	Importing WSDLs into the Service Descriptors Folder
	Importing a WSDL when Defining a Web Service Task
	Generating a WSDL for a Web Service You Are Creating

	BOM Native Types
	Value Spaces for BOM Native Types

	BOM Design-time Model
	Primitive Types
	Regular Expression Patterns for Text Fields
	Multiplicity
	Size Restrictions
	Default Values
	BOM Labels and Names
	Label to Name Algorithm
	BOM Class Label and Name
	BOM Attribute Label and Name
	BOM Package Label and Name
	Reserved Words
	Name Clashes

	BDS Generation and Business Data Usage in TIBCO BPM
	BDS Design-time Validations
	Process Validations

	BDS Runtime Validations
	Process Migration
	Using BDS in Tasks
	Defining Web Services

	Business Data Scripting
	Supplying xsi:type Information in XML Sent to ActiveMatrix BPM

	Business Data Scripting by Example
	Factories
	Creating a New Business Object
	Create an Instance of a Class
	Create a Copy of a Business Object

	Using the Special Value Null
	Checking for Null Attributes
	Assigning a Null Value

	Using Content Assist
	Working with Single Instance Attributes of Business Objects
	Multiple Instances of a BOM Class
	Multiple Instances of a BOM Class in a Process Data Field
	Multiple Instances of a BOM Class in a BOM Class Attribute

	Multiple Instances in Sequences and Groups
	Passing Multiplicity to a Form

	Working with Temporary Variables and Types
	Loops Within Scripts
	Scripting Containment Relationships
	Using the List set() Method

	Working with Numeric Types
	Working with Basic Integer Numbers
	Signed Integers

	Working with Basic Decimal Numbers
	Implicit Conversions Between Numeric Types

	Working with Dates and Times
	Dates and Times
	Durations
	Using Date and Time Types with Durations
	Comparing Dates and Times

	Working with Enumerated Types (ENUMs)
	Working with Primitive Types
	Using Enumerated Types as Extensions of Primitive Types

	Return Values from Scripts
	Scripting with Web Services
	Passing Arrays to Web Services

	Parse Functions

	Advanced Scripting Examples
	Working with Fixed Length Integers (BigInteger)
	Unsupported Conversions

	Working with Fixed Decimals (BigDecimal)
	Creating and Initializing Fixed Decimal Values
	Simple Operations
	Rounding
	Unsupported Conversions
	Comparing Fixed Decimals and BigDecimals

	Object BOM Native Type
	Using the Object BOM Native Type
	Restrictions

	Object BOM Native Type and ScriptUtil.setObject()
	Additional JavaScript Global Functions

	Business Data Modeling Best Practice
	Store Local BOMs in Business Data Projects
	Keep Local BOMs and Global BOMs in Separate Business Data Projects
	Upgrade Business Data Projects and Dependent Process Projects Together
	Use Pre-Compilation for Projects That Contain Large or Generated BOMs
	Choose Appropriate Data Types
	Use Sub-Packages to Aggregate Related Concepts
	Process Data Field Granularity
	BOM Class Attribute and Variable Names
	Do Not Split a Namespace Across Projects
	Do Not Modify Generated BOMs
	Business Data Scripting Best Practice

	Troubleshooting
	Viewing BDS-generated BDS Plug-in Hidden Projects
	Troubleshooting BDS Scripting
	Reasons to Avoid Deleting Case Objects
	Reserved keywords to avoid using for attribute names
	BDS Classes Do Not Appear or Changes Do Not Appear
	Break Script into Smaller Scripts
	Examine the Server Logs
	Write Variable Values and Progress Updates from the Script to the BPM Log File
	eval()
	Use the Process Debugger
	Catch Exceptions

	BDS Plug-in Generation Problems

	Supplemental Information
	Data Type Mappings
	BOM Native Type to BDS Type Mapping
	XSD Type to BDS Type Mapping
	JDBC Database Type to BOM Data Type Mapping
	Process Primitive Data Type Mapping

	Unsupported XSD Constructs
	BDS Limitations
	Fixed Attribute Overwrite
	Multiplicity Ordering in a Sequence or Choice
	Nested xsd any in Sequences
	xsd any ##local
	Recurring Elements in Sequence
	The block Function

	Data Mapping
	Converting Values Between Different BOM Attribute Types
	Mapping to or from Process Basic Types

	JavaScript Features not Supported in TIBCO BPM Scripting
	Using If For and While Expressions
	Reserved Words in Scripts

	Business Data Scripting
	Static Factory Methods
	DateTimeUtil
	DataUtil
	ScriptUtil
	IpeScriptUtil (and ScriptUtil) Conversion Date and Time and String Functions

	BOM Native Type Methods
	Fixed Length Integer (BigInteger) Methods
	Fixed Point Decimal (BigDecimal) Methods
	Date Time Datetime and Datetimetz (XMLGregorianCalendar) Methods
	Duration Methods
	Text (String) Methods

	Other Supported Methods
	List Methods
	ListIterator Methods

	Other JavaScript Functions
	Math Methods

	Process Manager and Work Manager Scripting
	Process Instance Attributes and Methods
	Organization Model Attributes and Methods
	WorkManagerFactory
	WorkItem
	OrgModel

	Business Data Services Glossary
	A
	Aggregation
	Association
	Attribute
	B
	Basic Type
	BDS
	BOM
	BOM Class
	BOM Native Types
	Business Data
	Business Data Application
	Business Data Services
	Business Object
	Business Object Model (BOM)
	C
	Composition
	E
	EMF
	Enum or Enumerated Type
	G
	Generalization
	Global BOM
	L
	Local BOM
	P
	Primitive Type
	Process Instance
	Process Local Data
	Process Template
	Process Types
	R
	RQL
	S
	Specialization
	U
	UML
	UserTask
	W
	WSDL
	X
	XSD

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

