
TIBCO® BPM Enterprise

WebApp Component Development
Version 4.3.2

May 2022

Copyright © 2010-2022. TIBCO Software Inc. All Rights Reserved.

Contents

Overview . 4

Introduction . 4

Approaches . 4

Web Application Components . 6

Creating a WebApp Component . 6

Creating an SOA Project .6

Adding an Empty WebApp Component .6

Starting With an Existing Implementation .6

OSGi-enabled WebApp Component .7

Creating an OSGi-enabled WebApp Component . 8

Configuring a Web Application Component . 8

Configuring a WebApp Components Custom Feature .8

Configuring a WebApp Components External Custom Feature .9

WebApp Component Reference .9

Adding Configuring a WebApp Components Security .11

Using Form-based Authentication Policy .12

Adding Configuring Form-based Authentication Policy . 12

Security Constraint Policy . 12

Security Constraint Definition Example .13

Adding or Configuring a Security Constraint Policy . 13

Updating a WebApp Component . 15

ZeroConfiguration DAA Creation Using WAR . 16

Limitations on WAR Files .16

Web Application Component Implementations . 17

Opening an Implementation . 17

Generating an Implementation . 17

Generate WebApp Component Implementation . 18

Code Generation Details Dialog . 18

XML Data Binding Classes Dialog . 18

Create Servlet Dialog . 20

Regenerating an Implementation . 21

Refreshing an Implementation .21

Accessing a Property . 21

Invoking a Reference Operation . 22

Enabling a Reference Injection . 22

Adding a Reference to a WebApp Component with Implementation Type as WAR . 23

2

TIBCO® BPM Enterprise WebApp Component Development

Adding a Reference in TIBCO Business Studio . 23

Creating a WAR File with the Reference Details . 23

Adding a WebApp Component Using the WAR File .26

Adding a Context Parameter to an Implementation of Type WAR .29

Adding a Dynamic Endpoint Reference to an Implementation of Type WAR . 30

Adding a Reference Outside of TIBCO Business Studio .30

WebApp Component Testing . 31

RAD Communication . 31

JAD Communication .32

Logging .32

Handling Errors . 32

URL Mappings .33

Use of URL Paths .33

Specification of Mappings . 33

Implicit Mappings .33

TIBCO Documentation and Support Services . 35

Legal and Third-Party Notices . 37

3

TIBCO® BPM Enterprise WebApp Component Development

Overview

WebApp components can be created by bringing in an existing Web application in the TIBCO ActiveMatrix
platform.

Introduction
A Web application is a group of HTML pages, JSP pages, servlets, resources and source file, which can be
managed as a single unit.

Web applications can be simple (consisting of only static Web pages) or they can be advanced and include
JavaServer Pages (JSP) files and Java servlets. During development, these resources, along with an XML
deployment descriptor (and other Web resources), are contained within a Web project.

When you are ready to publish the Web application to the Web, you deploy the Web project to the server as
a Web archive (WAR) file. The end user can then view the Web application as a website from a URL.

In TIBCO ActiveMatrix Service Grid, all the resources are archived in the distributed application archive
(DAA), which then internally deploys the required WAR file.

The structure of a standard web module is shown in the following diagram.

The WebApp component integrates Java EE web applications into TIBCO ActiveMatrix Service Grid and
TIBCO ActiveMatrix BPM platform. The integration conforms to the SCA Java EE Integration Specification
(https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-j).

Approaches
You can create a WebApp component either top-down, bottom-up, by bringing an existing Web application
into the TIBCO ActiveMatrix platform.

Top-down approach:

● You can configure the component reference implementation using a WTP (Web Tools Platform) project
created in SOA Development Studio (SDS) during Generate Servlet Implementation.

● Plugin project: use this option to create an OSGi-enabled web application.

4

TIBCO® BPM Enterprise WebApp Component Development

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-j

Bottom-up approach: You bring an already existing Web application into the TIBCO ActiveMatrix platform.
The existing Web application can be a WAR (Web Archive) file, WTP project, or an OSGi-fied WebApp. If
you start with an existing:

● WAR file: you cannot add Properties or References on a component. The DAA has the WAR file bundled
in it.

● WTP project: you can add Servlets, References, and properties if required. The WTP project is exported
into a WAR file and bundled inside the DAA.

5

TIBCO® BPM Enterprise WebApp Component Development

Web Application Components

WebApp components can be created, configured, and updated. You can configure a WebApp component's
custom feature or external custom feature. You can create a ZeroConfiguration DAA if needed.

Creating a WebApp Component
To create a WebApp component you add an empty WebApp component or use an existing implementation.

Creating an SOA Project
A new SOA project can be created from an existing WAR file or WTP project.

Procedure

1. Select File > New > TIBCO SOA Resources.

2. Click TIBCO SOA Project and click Next.

3. In the Project Name field, type a name for the project and click Next twice.

4. In the Project Types list, choose one of the following ways to create the project:
a) SOA Project From Implementation

You can create a Web application project from an existing WAR file or WTP project.
b) Empty SOA Project
c) Basic SOA Project

5. Click Finish.

Adding an Empty WebApp Component
There are several ways to add an empty WebApp component.
To add an empty WebApp component, do one of the following:

● Right-click the composite canvas and select Add > WebApp, or
● Click the canvas and click the WebApp icon in the pop-up toolbar, or
● Click the WebApp icon in the Palette and click the canvas.

Starting With an Existing Implementation
You can create a SOA project from an existing implementation either using a bottom-up approach or a top-
down approach.

● Bottom-up approach:

● Method 1: Drag and drop the existing WAR file from the Project Explorer to the composite canvas.
● Method 2: In the Properties tab, select Implementation > Basic, and specify a WTP project or WAR
file. WTP project as the default option.

● Top-down approach:

1. Drag and drop the WebApp component on the composite canvas.

2. Add a reference on the WebApp component and attach WSDL port type to the reference.

3. In the Properties tab, select WTP Project or Plugin Project.

4. Select Generate Servlet Implementation. If WTP Project was selected, a WTP project is generated.
If Plugin Project was selected, a Plugin project is generated.

6

TIBCO® BPM Enterprise WebApp Component Development

OSGi-enabled WebApp Component
You can create an OSGi-enabled web application by selecting the implementation type as a Plugin Project.
When the web application is OSGi-enabled, a web.xml file is packaged in the OSGi plug-in. The advantages
of creating an OSGi-enabled WebApp component are:

● Loads all the resources from the Implementation Bundle (OSGi-enabled WebApp) using the
Implementation Bundle Class Loader instead of the Component Bundle Class Loader.

● Removes the overhead of exporting all the resources from the Implementation Bundle (which require
user inference and is error prone).

● Behaves as a self-justifying bundle where all the dependencies can be specified in its own MANIFEST.MF
file instead of specifying them in the component's .requirement file.

Structure of Bundle

The WebApp component is composed as a set of OSGi bundles. OSGi bundles are JAR files that typically
contain Java class files of the service interfaces, their implementation, and some meta information in a
META-INF/manifest.mf file. Services are Java interfaces. After the bundle is registered as a service with
the OSGi framework, other bundles can use the "published" service. You can add Servlets, References, and
properties if required. The Servlets and all static content (HTML, JPEG files, and so on) reside in Java plug-
ins.

The typical directory structure is shown below:

● Static resources such as HTML files or image files can directly be placed in the WebContent directory or
in a sub-directory.

● All dependencies of the Implementation Bundle needs to be specified in its own MANIFEST.MF file
instead of a .requirement file.

7

TIBCO® BPM Enterprise WebApp Component Development

● The WebApp component has a require-bundle dependency to its implementation.

Web.xml File

The web.xml file is generated using a Generate Servlet Implementation wizard. This wizard generates a
default web.xml. Using any other existing web.xml is not allowed. The default values in web.xml are inline
with the Generate WTP Wizard provided by Eclipse. The default web.xml is of version 2.4. Selecting
different versions of web.xml while generating the implementation is not supported. If required, you need
to manually change the version of web.xml. Supported versions are 2.4, 2.5, 3.0, and 3.1.

Creating an OSGi-enabled WebApp Component

Procedure

1. Create an empty SOA project as described in Creating an SOA Project.

2. Create an empty WebApp component as described in Adding an Empty WebApp Component.

3. In the Properties tab, select Plugin Project.

4. Select the WebApp component created, right-click, and select Generate Servlet Implementation. After
the implementation is generated successfully, the:

● Plugin Project and Deployment Descriptor (web.xml) File fields are populated.

● Implementation bundle includes the web.xml file (see the Project Explorer view).

● MANIFEST.MF file is created (see the Project Explorer view).

Configuring a Web Application Component
You can configure a WebApp component's custom feature or external custom feature. You can also use the
ZeroConfiguration WAR file.

Configuring a WebApp Components Custom Feature
One option to configure a WebApp component is to use the custom feature.

When you generate a Web application whose implementation type is Plugin Project, a custom feature is
automatically created and configured. A custom feature is not automatically created if you choose the WTP
and WAR file options. For more information on custom features, see TIBCO ActiveMatrix Java Component
Development.
If you manually configure the component's implementation, you must manually create and configure the
custom feature by selecting File > New > Other > Custom Feature. If the component implementation uses a
library, add the custom feature containing the library in the Properties view.

Procedure

1. In the Properties view, click the component.

2. Click the Implementation tab.

3. Click the button to the right of the Features tables.
The Select a Feature dialog displays.

4. In the Select an item to open field, type a partial feature name.
The feature that matches the name displays in the Matching items list.

5. Click a feature and click OK.
The feature is added to the Features list.

8

TIBCO® BPM Enterprise WebApp Component Development

Configuring a WebApp Components External Custom Feature
One option to configure a WebApp component is to use the external custom feature.

If your WebApp component implementation references a plug-in containing a shared library, you must add
the custom feature that contains the plug-in to the WebApp component’s configuration. For more
information on custom features, see TIBCO ActiveMatrix Java Component Development.

Procedure

1. Click the component.

2. In the Properties view, click the Implementation tab.

3. Click the button to the right of the Features table.
The Select a Feature dialog displays.

4. Click OK.
The feature is added to the component’s Features list.

WebApp Component Reference

Field Description

WTP Project Start with the Eclipse WTP project containing the WebApp component
implementation. Alternatively, you can create a new WTP project from the generate
servlet implementation.

WAR Start with the WAR file containing the WebApp component implementation.

Plugin Project Creates a plugin project implementation.

Properties

The Context Root and Connector Name properties must always be set.

Field Description

contextRoot The context root of a web application determines which URLs are to be
delegated to your web application. If your application's context root is myapp,
any request for /myapp or /myapp/* are handled. For example, http://
localhost:8080/myapp/index.html.

NOTE:

● A WebApp component must have a unique context root.

● The contextRoot property must have only one element.

defaultConnector This property defines the name for an HTTP Inbound connector. For a Web
application, a browser is only way of communication and as browser uses HTTP
to communicate with any Web application. In TIBCO ActiveMatrix, you need to
configure this HttpInbound Resource template in Administrator before
deploying a Web application.

9

TIBCO® BPM Enterprise WebApp Component Development

Compute Feature Dependencies

Field Description

Compute Feature
Dependencies

Indicate whether to compute the features on which the component bundle
depends. When unchecked, the Feature Dependencies table displays.

Default:

● New projects - selected.

● Legacy projects - cleared.

Preview Displays a dialog containing a list of features on which the component bundle
depends.

Features Dependencies

Column Description

Feature ID ID of the feature.

Version Range Range of feature versions.

By default, the table lists the details of the automatically-generated feature containing the component
implementation bundle.

Plugin Project

Field Description

Plugin Project Selected plugin project implementation.

Deployment
Descriptor
(web.xml) File

Location of the web.xml file.

Thread Context
Class Loader Type

Configures the Thread Context Class Loader property:

● component - The class loader of the component bundle. The class loader has
visibility to the component bundle class path space, Import-Package, and
Require-Bundle entries from the component.

● bundle - The class loader of the implementation bundle. The class loader has
visibility to the bundle class path space and the Class-Space because of entries
in the MANIFEST.MF file.

● none - A null thread context class loader.

Default: component

10

TIBCO® BPM Enterprise WebApp Component Development

Package the Implementation Bundle with the Application

Field Description

Package the
implementation
bundle with the
application

Indicate whether to compute the component bundle dependencies. When a
component is deployed on a node, ActiveMatrix generates a component bundle.
When selected, the component implementation bundles required by the
component bundle are computed and identified when you package the composite.
When cleared, the Implementation Dependency and Compute Feature
Dependencies fields display and you can manually specify the dependencies.

Default:

● New projects - selected.

● Legacy projects - cleared.

Implementation
Dependency

Type of the dependency of the component bundle on the component
implementation.

● Require Bundle - The bundle containing the component implementation is
declared as a required bundle. When selected, the Bundle Name field displays.

Default: Require Bundle

Bundle Name Symbolic name of the bundle containing the component implementation.

Default: The bundle in which the component implementation class is present.

Package Name Name of the package containing the component implementation.

Default: The package in which the component implementation class is present.

Version Range Versions of the bundle or package that satisfy the component bundle's dependency.
When specifying a range for a bundle, you may require an exact match to a version
that includes a build qualifier. In contrast, the range for a package is inexact.

Default:

● Bundle - [1.0.0.qualifier,1.0.0.qualifier].

● Package - [1.0.0, 2.0.0).

Adding Configuring a WebApp Components Security
Resources of a Web application are secured using security policies that provide authentication, access
control for resources, and confidentiality or data privacy.

Authentication: The means by which communicating entities prove to one another that they are acting on
behalf of specific identities authorized for access.

Access control for resources: The means by which interactions with resources are limited to collections of
users or programs in order to enforce integrity, confidentiality, or availability constraints.

Confidentiality or data privacy: The means used to ensure that information is made available only to users
who are authorized to access it.

The WebApp component provides the Form-based Authentication and the Security Constraint policies to
implement security policies for authentication and authorization of resources.

11

TIBCO® BPM Enterprise WebApp Component Development

If a WebApp component is created from a WAR file or WTP project, which already contains the security
configuration in web.xml, the security configuration from web.xml will be mapped to the WebApp’s policy
configuration.

Do not add or modify the form-based authentication data directly in web.xml. You must use the provided
interface (Implementation > Security tab or Policies tab) to do this.

Using Form-based Authentication Policy

The authentication mechanism provides the means for verifying user access to the website’s protected area,
based on user name and password. The form-based authentication mechanism lets you set up the look and
feel of login as well as error screens.

Login screens present a form to enter username and password while accessing a protected resource. The
login module checks user authority to access the resource. If the user is not authenticated, the error page is
returned.

Form-based login uses sessions for login. The system automatically logs out a user from the application if
the session is invalidated.

Adding Configuring Form-based Authentication Policy

WebApp components can be configured for form-based authentication.

Procedure

1. Select the WebApp component you need to configure in the editor.

2. Select the Properties view and use either of the following approaches to open the Form-based
Authentication Configuration wizard window:

● Approach 1: In the Properties view, click the Implementation vertical tab and select the Security
tab. Under the Authentication section, select Form as authentication type from the drop-down.

● Approach 2: In the Properties view, click the Policies vertical tab and click the Add Policy Set icon.
Select Embedded as the Policy Set type, and Form-Based Authentication Policy under the System
Policies list and click Next.

3. In the Form-based Authentication Configuration wizard window, specify the following parameters:
a) Login page. This page contains fields for entering username and password. Click Browse to select

the desired login page from the project resource list and click OK.
b) Error page. This page displays if authentication fails. Click Browse to select the desired error page

from the project resource list and click OK.
c) Login module.. Resource instance for LDAP configuration.

4. Click Finish.

Security Constraint Policy

A security constraint associates authorization and/or user data constraints with HTTP operations on web
resources. A Security Constraint policy allows you to set security constraints on one or more web resource
collections.

A security constraint, which is represented by security-constraint in the deployment descriptor,
consists of two main elements:

● Web resource collection. The HTTP operations and web resources to which a security constraint applies
(i.e., the constrained requests) are identified by one or more web resource collections (web-resource-
collection in the deployment descriptor). A web resource collection consists of URL patterns (url-
pattern in deployment descriptor), and HTTP methods (http-method in deployment descriptor).

12

TIBCO® BPM Enterprise WebApp Component Development

● Authorization constraint. An authorization constraint (auth-constraint in the deployment descriptor)
establishes a requirement for authentication, and names the authorization roles permitted to perform
the constrained requests. A user must be a member of at least one of the named roles to be permitted to
perform the constrained requests. An authorization constraint consists of the role name element (role-
name in deployment descriptor).

The special role name “*” is a shorthand for all role names defined, while an authorization constraint that
names no roles indicates that access to the constrained requests is not permitted under any circumstances.

Security Constraint Definition Example

The following is sample web.xml code to define a security constraint.
<web-app
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_2_5.xsd"
version="2.5">
<display-name>Test WebApp</display-name>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin Role</web-resource-name>
 <url-pattern>/dump/auth/admin/*</url-pattern>
 <url-pattern>*.htm</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>content-administrator</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Super User Role</web-resource-name>
 <url-pattern>/dump/auth/admin/*</url-pattern>
 <url-pattern>/dump/auth/display/*</url-pattern>
 <http-method>HEAD</http-method>
 </web-resource-collection>
 <web-resource-collection>
 <web-resource-name>Super User Role</web-resource-name>
 <url-pattern>/dump/auth/system/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Super-User</role-name>
 </auth-constraint>
 </security-constraint>
</web-app>

Adding or Configuring a Security Constraint Policy

In TIBCO Business Studio, you can add/configure a security constraint policy using a wizard.

Procedure

1. Open the Configure Web Security Constraint wizard using either of the following approaches:

● Approach 1: In the Properties view, click the Implementation vertical tab and select the Security
tab.

Under the Web Security Constraint section, either click the policy set to configure it, or click the -
not set- hyperlink to add a new Web Security Constraint policy set.

● Approach 2: In the Properties view, click the Policies vertical tab, and click the Add Policy Set
icon.

Select Embedded as the Policy Set type, Web Security Constraint Policy under the System Policies
list, and click Next.

13

TIBCO® BPM Enterprise WebApp Component Development

2. Select the security constraint and rename the security constraint if required.

3. Click on the add web resource collection icon to add web resources under the security constraint
or select existing web resource collection to update.

4. Type the Name and Description of the web resource collection.

5. In the URL pattern field, click the plus icon to add a URL pattern. Double-click on a listed URL pattern
to modify it.

6. Check the HTTP methods to be allowed for the web resource collection. Default is "all" HTTP methods.
If no methods are selected then "all" HTTP methods option is checked.

7. Click the add auth-constraint icon to add an authorization constraint.

8. Type the Description.

9. Click on plus icon to add a role name to the permissible roles list for the security constraint. Click on a
listed role name to modify the role name.

14

TIBCO® BPM Enterprise WebApp Component Development

10. Click the add security constraint icon to add another security constraint to the policy and repeat
steps 2 through step 9.

11. Click Finish when you are done updating the security constraint policy.

Updating a WebApp Component
You can update a component after you have configured its implementation.

Follow the steps in the table below to update a component.

Control Procedure

Canvas Right-click the component and select Refresh from Implementation.

Canvas Right-click the component and select Quick Fixes > Update Component from
Implementation. (The "Quick Fixes" option is available when you add, delete or
update a service, reference and property from the WebApp component.)

Properties View
1. Select Properties > General > Validation Report and click the fix... link.

2. Select Generate Servlet Implementation.

Problems View
1. In the Problems View, right-click an error of the form "The component

<ComponentName> is out of sync with its implementation" and select
Quick Fix. (The "Quick Fix" option is available when you add, delete or update a
service, reference and property from the WebApp component.)

2. In the Quick Fix dialog, select Update Component from Implementation.

3. Click Finish.

15

TIBCO® BPM Enterprise WebApp Component Development

ZeroConfiguration DAA Creation Using WAR
ZeroConfiguration DAA creation supports existing WebApps that do not invoke an SCA reference.
ZeroConfiguration DAA creation is based on SDS command-line support.

You can create a DAA using existing WebApp components (WAR files) on the ActiveMatrix platform
without using the composite editor. For details, refer to SDS Commandline help.

You must not bundle any of the following files inside the WAR file: WEB-INF/lib: j2ee.jar, jasper-
*.jar, jsp-api.jar, rt.jar, tools.jar, servlet.jar, servlet-api.jar, xerce.jar,

xerces.jar, or xercesImpl.jar.

Limitations on WAR Files
If the Web application code in the WAR file uses APIs from the following packages, perform the steps listed
in this section.

● javax.xml.*

● org.xml.*

● org.w3c.*

● org.apache.commons.logging.*

● org.apache.log4j.*

Imports in .requirements File for Necessary APIs

Make sure that all the packages and sub-packages from the above list are declared as imports in
the .requirements file of the WebApp IT component.

For example, if the web application uses the javax.xml.transform package, add it in the .requirements
file as follows:

1. Search for the required package using the Plugin Registry View in TIBCO Business Studio.

2. Override the .requirements file of the WebApp IT component and add the necessary import package
entry.

Remove API implementation from WAR

When any of the above mentioned APIs are being imported, remove the conflicting implementation JARs
from the WAR (using a tool such as 7-zip).

For example, let us say, your application uses the JAXP APIs. You have added the necessary import
packages in the .requirements file for the API packages. The WAR file bundles the Apache Xalan JAR file
that provides the implementation of these APIs. In this case, you need to remove the Xalan JAR from the
WAR's lib folder.

Declaring Dependencies on org.ietf.jgss Packages

Normally, if you import packages and do not add them to the manifest, TIBCO Business Studio displays an
error. However, if you import any of the org.ietf.jgss packages and do not declare the import in the
manifest, TIBCO Business Studio does not display an error because TIBCO Business Studio resolves those
packages from the configured JRE. If you then deploy the application without the declaration in the
manifest, the application will not run. Hence, you must ensure that you import the org.ietf.jgss package
in the manifest file.

16

TIBCO® BPM Enterprise WebApp Component Development

Web Application Component Implementations

WebApp component implementations can be generated, regenerated, and refreshed. You can access
properties and invoke reference options, as well as test your components.

Opening an Implementation
For WTP and Plugin Project options, the web.xml file is opened. For a WAR file, the WAR file is just
highlighted in the Project Explorer.

The following table explains how to open an implementation.

Control Procedure

Canvas Double-click the component.

Project Explorer Select the WTP project and open the implementation.

Canvas Right-click the component and select Open Implementation.

Generating an Implementation
You generate an implementation by generating the servlet and then using the Code Generation Details
dialog.

Procedure

1. Select Properties General > Validation Report, and click the fix... link.

2. Click Generate Servlet Implementation.

3. Using the Canvas control, right-click the component and select Quick Fixes > Generate Servlet
Implementation.

4. Right-click the component and select Generate Servlet Implementation.

5. In the Problems view, right-click an error of the form "Component <ComponentName> is not
configured" and select Quick Fix.

6. In the Quick Fix dialog, click Generate Servlet Implementation.

7. Click Finish.
The Code generation details dialog displays.

8. Complete the process described in Generate WebApp Component Implementation.

9. Click Finish.
A WTP implementation is generated.

The WebContent folder contains items to be published to the server. By default, this folder will be
named WebContent for newly created static and dynamic Web projects.

● META-INF — This directory contains the MANIFEST.MF file, which is used to map class paths for
dependent JAR files that exist in other projects in the same Enterprise Application project. An entry
in this file will update the run-time project class path and Java build settings to include the
referenced JAR files.

● WEB-INF — The directory where supporting Web resources for a Web application are kept (for
example: .xmi files, .xml files, and web.xml.)

17

TIBCO® BPM Enterprise WebApp Component Development

Generate WebApp Component Implementation
To generate a WebApp component implementation refer to the following tables describing the Code
Generation Details dialog, the XML Data Binding Classes dialog, and the Create Servlet dialog.

Code Generation Details Dialog

Refer to this table when generating a WebApp component implementation.

Field Description

Project The name of the web application project to contain the
implementation.

Default:

● For WTP: "WebApp" + <name of composite>

● For Plugin Project: "com.webapp" + <name of composite in lower case>

Source Location The name of the source folder in the plug-in project.

Default: src

Package The name of the package of the implementation.

Class The name of the class of the implementation.

Default: The name of component is the default class name.

Use default location for
generated superclass

Default: checked.

Superclass package The name of the package of the abstract superclass of the
implementation class.

Superclass class The name of the abstract superclass of the implementation class.

Default: Abstract<WebappComponentName>

Normally, if you import packages and do not add them to the manifest, TIBCO Business Studio displays an
error. However, If you import any of the javax.xml.* or org.ietf.jgss packages and do not declare the
import in the manifest, TIBCO Business Studio does not display an error because TIBCO Business Studio
resolves those packages from the configured JRE. If you then deploy the application without the declaration
in the manifest, the application will not run. Hence, you must ensure that you import javax.xml or
org.ietf.jgss packages in the manifest file.

XML Data Binding Classes Dialog

Refer to this table when generating a WebApp component implementation.

The XML Data Binding Classes dialog appears if the WebApp component is wired to any reference.

WebApp component supports code generation based on JAXB and XMLBeans. For details, refer to TIBCO
ActiveMatrix Java Component Development.

18

TIBCO® BPM Enterprise WebApp Component Development

Field Description

Type The type of the data binding being generated: XMLBeans or JAXB.

If a JAR file already exists for the contract selected in the Contracts list, and you
choose a binding type different than the one that exists in the JAR file, or the
contract has changed since the JAR file was generated, the Overwrite Existing
JAR checkbox will be checked.

Default: XMLBeans.

Contracts Details

Contracts A list of WSDL and schema files for which XML data binding classes will be
generated.

JAR Type The type of JAR file being generated: Beans or Interface. (read only)

Source File The path to the source file containing the selected contract. (read only)

JAR File The path to the JAR file.

Default: When generating a component implementation:

● Beans

— For a Plugin Project: projectName/libs/contractFileName.wsdl.jar

— For a WTP Project: /projectName/WebContent/WEB-INF/lib/
contractFileName.wsdl.jar

● Interface

— For a Plugin Project: projectName/libs/
contractFileName.wsdl_interface.jar

— For a WTP Project: /projectName/WebContent/WEB-INF/lib/
contractFileName.wsdl_interface.jar

Where contractFileName is the name of the file containing the contract selected in
the Contracts list and projectName is the name of the project containing the
component implementation.

Set JAR Destination
Folder

Invokes a dialog where you can set the folder to contain generated JAR files:

● All Generated JARs - All JAR files will be generated in the same folder as the
destination of the currently selected JAR.

● New Generated JARs - Only newly generated JAR files will be generated in
the same folder as the destination of the currently selected JAR file.

Setting the JAR folder affects only the JAR files generated by the wizard. It has no
effect outside the wizard nor on subsequent wizard runs.

Default: All Generated JARs.

19

TIBCO® BPM Enterprise WebApp Component Development

Field Description

JAR Status The status of the JAR file containing the classes generated for the selected
contract:

● JAR is non-existent and will be generated. - The JAR file does not exist.

● Different binding type. JAR must be overwritten. - The value of the Type field
is different than the type of the data binding classes in the JAR file.

● JAR exists and will be overwritten. - The JAR file exists and the Overwrite
Existing JAR checkbox is checked.

● JAR exists and will be preserved. - The JAR file exists and the Overwrite
Existing JAR checkbox is unchecked.

● JAR is outdated and will be overwritten. - The selected contract has changed
since the JAR file was generated and the Overwrite Existing JAR checkbox is
checked, so the JAR file will be generated.

● JAR is outdated and will be preserved. - The selected contract has changed
since the JAR file was generated and the Overwrite Existing JAR checkbox is
unchecked, so the JAR file will not be generated.

Overwrite Existing
JAR

Enabled only when the JAR file exists. When checked, the JAR file will be
regenerated. When unchecked, the existing file will be reused and will not be
modified.

Advanced

Use Configuration
File

Indicate that the specified data binding configuration file should be used when
generating JAR files. When you check the checkbox, the text field is enabled.

Default: Unchecked.

Create Servlet Dialog

Refer to this table when generating a WebApp component implementation.

Field Description

Name Name of the servlet

Description Description of the servlet

Initialization Parameters Name-value initialization parameters are used to
convey setup information. Typical examples are a
Webmaster’s e-mail address, or the name of a
system that holds critical data.

URL Mappings Upon receipt of a client request, the URL
mappings determine the Web application to which
to forward it. For more details, see URL Mappings.

20

TIBCO® BPM Enterprise WebApp Component Development

Regenerating an Implementation
You can regenerate an implementation without recreating everything. For example, if you have a Web
application with a Java SOA project, each can have their respective implementations.

After developing the component, if you need to make a change to the WSDL (for example, a change to the
datatype), you can use this option to change the existing implementation to apply the updated WSDL
instead of creating everything from scratch again.

The implementation must have been originally generated before you can regenerate.

You should regenerate the component implementation after you add (or delete) a service, reference, or
property to the component.

Control Procedure

Canvas Right-click the component and select Regenerate Servlet
Implementation.

Problems View 1. In the Problems view, right-click an error of the form "The component
<ComponentName> is out of sync with its implementation" and
select Quick Fix.

2. In the Quick Fix dialog select Update Component from
Implementation or Update/Create Servlet.

3. Click Finish.

The implementation is updated to match the component.

Refreshing an Implementation
This option updates the SDS WebApp component based on an underlying implementation. For example, a
WebApp component is configured with two properties and an implementation is generated. If one of the
properties is accidentally deleted, you can use the Refresh option. The SDS component reads the underlying
implementation and refreshes the UI with the two properties.
The following table explains how to refresh an implementation.

Control Procedure

Canvas Right-click the component and select Refresh from Implementation.

Problems View 1. In the Problems view, right-click an error of the form "The
component <ComponentName> is out of sync with its

implementation" and select Quick Fix.

2. In the Quick Fix dialog select Update Component from
Implementation or Update/Create Servlet.

3. Click Finish.

Accessing a Property
When you generate a WebApp component implementation for a component with a property, TIBCO
Business Studio adds a field that represents the property and accessor methods to the WebApp
component's abstract implementation servlet.

See TIBCO ActiveMatrix Java Component Development for details.

21

TIBCO® BPM Enterprise WebApp Component Development

Invoking a Reference Operation
You can add a reference to a WebApp component. When you add a reference to a WebApp component,
TIBCO Business Studio adds a field and accessor methods to the abstract component implementation.
TIBCO ActiveMatrix injects the referenced object into the component implementation.

You can add a reference to a WebApp component with the following implementation types:

● WTP Project: For more information, see the "Invoking a Reference Operation" section of the TIBCO
ActiveMatrix Java Component Development Guide.

● Plugin Project: For more information, see the "Invoking a Reference Operation" section of the TIBCO
ActiveMatrix Java Component Development Guide.

● WAR: For more information, see Adding a Reference to a WebApp Component with Implementation
Type as WAR.

Enabling a Reference Injection
Reference injection in a WebApp Component with implementation type as WAR is not enabled by default.
To enable a reference injection for an implementation type as WAR:

Procedure

1. Select Window > Preferences.

22

TIBCO® BPM Enterprise WebApp Component Development

2. Select TIBCO SOA Platform > Web-App IT.

3. Select Allow Reference injection to WAR Type Web app. By default, this option is disabled.

4. Click Apply and Close.

Adding a Reference to a WebApp Component with Implementation Type as WAR
You can begin by creating a WAR file with the reference details in TIBCO ActiveMatrix Business Studio
itself or begin by using a WAR file created outside of TIBCO ActiveMatrix Business Studio. In both cases,
make sure:

● Reference code is defined using @Reference annotations in the servlet file.

● All the servlets using the @Reference annotation are defined in the web.xml file.

● The interface JAR files of the WSDL file are available in the WEB-inf/lib folder.

For more information about creating the WAR file, see the following sections.

● In TIBCO Business Studio: see Adding a Reference in TIBCO Business Studio

● Outside of TIBCO Business Studio: see Adding a Reference Outside of TIBCO Business Studio

Adding a Reference in TIBCO Business Studio

To add a reference in TIBCO Business Studio, you need to:

1. Create a WAR file with the reference details.

For more information, see Creating a WAR File with the Reference Details.

2. Create a new SOA project and add a WebApp component to it using the WAR file created in step 1.

For more information see, Adding a WebApp Component Using the WAR File.

Creating a WAR File with the Reference Details

Procedure

1. Create a WTP or dynamic project for the WAR project.

2. Generate the interface JAR files (using JAXB or XMLBeans) using the WSDL.
a) Select the WSDL file associated with the WebApp component.

23

TIBCO® BPM Enterprise WebApp Component Development

b) Right-click and select Generate XML Data Bindings. The XML Data Binding Classes dialog is
displayed. For more information about the fields in the XML Data Binding Classes dialog box, see
XML Data Binding Classes Dialog.

c) Select the Type as JAXB or XMLBeans. The default is XMLBeans.
d) Note the location of the JAR file in the JAR File field.
e) Click Finish.

3. Add the JAR file mentioned in the location in step 2d to the WEB-INF/lib folder of the WTP project.

4. Create the reference in the servlet file using the @Reference annotation (Java resources > src >
<name>.wtp). For example, for the <TIBCO_HOME>/amx/<version>/samples/webapp/helloworld2
sample, copy the code as documented below.

● From:

Java resources > src > com.webapp.helloworld2.wtp > AbstractWebAppHelloComponent.java

● Copy code:
private HelloWorldPT HelloWorldPT;
@Reference(name = "HelloWorldPT")
public void setHelloWorldPT(HelloWorldPT HelloWorldPT)
{
this.HelloWorldPT = HelloWorldPT;
}
public HelloWorldPT getHelloWorldPT()
{
return this.HelloWorldPT;
}

24

TIBCO® BPM Enterprise WebApp Component Development

● To:

Java resources > src > com.webapp.helloworld2.wtp > WebAppHelloComponent.java

5. Add the code to call the reference. (to WebAppHelloComponent.java in this example).

6. Make sure all the servlets using the @Reference annotation are declared in the web.xml file. For
example:
<servlet>
<display-name>WebAppHelloComponent</display-name>
<servlet-name>WebAppHelloComponent</servlet-name>
<servlet-class>com.webapp.helloworld2.wtp.WebAppHelloComponent</servlet-class>
</servlet>

<servlet>
<display-name>AbstractWebAppHelloComponent</display-name>
<servlet-name>AbstractWebAppHelloComponent</servlet-name>
<servlet-class>com.webapp.helloworld2.wtp. AbstractWebAppHelloComponent</servlet-
class>
</servlet>

7. Export the WTP project or dynamic project to WAR file. Right-click on the composite and select Export >
WAR file.

25

TIBCO® BPM Enterprise WebApp Component Development

8. Click Finish.

Adding a WebApp Component Using the WAR File

Procedure

1. Create an empty SOA project.

2. Import the generated WAR file to the Service Descriptors folder.

26

TIBCO® BPM Enterprise WebApp Component Development

3. Add a WebApp component.

27

TIBCO® BPM Enterprise WebApp Component Development

4. Select the WAR file as implementation.

Business Studio scans the servlet classes declared in the web.xml file of the WAR file. If the @Reference

annotation is found in a servlet class, is displayed on the WebApp component in Business Studio.

5. Add the WSDL file to the component reference. Use the same WSDL file that was used for generating
interface JARs. Select the reference and specify the WSDL Interface details (Port Type and WSDL
Location).

6. Promote the component reference. Select the component reference, right-click, and select Promote.

28

TIBCO® BPM Enterprise WebApp Component Development

7. Create a DAA. Right-click on the composite and select Create DAA.

8. In TIBCO Administrator, deploy the DAA and invoke the application.

The reference application is called.

Adding a Context Parameter to an Implementation of Type WAR

Prerequisites

For more information about context parameters, see the "Context Parameters" section of the TIBCO
ActiveMatrix® Service Grid Java Component Development Guide. Steps specific to a WebApp component (with
implementation type of WAR) are listed in this section.

Procedure

1. Add a context parameter to the servlet class as follows:
@Context public ComponentContext componentContext;

2. For a WAR file that uses the @Context annotation, copy
com.tibco.amf.platform.common_1.4.0.001.jar and
com.tibco.amf.platform.runtime.extension_1.6.0.004.jar from <TIBCO_HOME>/component/
shared/1.0.0/plugins to the system's %temp%/.SDSWAR-<WAR filename>/WEB-INF/lib folder.

29

TIBCO® BPM Enterprise WebApp Component Development

3. Clean the SOA WebApp project using Project > Clean and rebuild it.

Adding a Dynamic Endpoint Reference to an Implementation of Type WAR

Prerequisites

For information on endpoint references, refer to the "Endpoint References" section of the TIBCO
ActiveMatrix® Service Grid Java Component Development Guide. Only steps specific to the WebApp
component are listed in this section.

Procedure

1. Add the endpoint reference, as documented in the "Endpoint References" section of the TIBCO
ActiveMatrix® Service Grid Java Component Development Guide.

2. Enable Wired by Implementation for the Promoted Reference (at the interface level; not binding level).
a) Select the promoted reference.
b) In the Properties View, click General > Advanced.
c) Select Wired by Implementation.

Result

The binding type sends the message to the complete URI specified in the code in step 1 instead of the URL
it is configured with (via binding or HTTP client).

Adding a Reference Outside of TIBCO Business Studio

Using a WAR file that was not created in TIBCO ActiveMatrix Business Studio, you can add a reference to a
WebApp component.

To do this:

Procedure

1. Ensure that the reference code is added using @Reference annotations and is made available through
the CLASSPATH.

2. Use the command-line or Eclipse to generate the interface JAR files from the WSDL. The WSDL can also
be generated using JAXB or XMLBeans.

30

TIBCO® BPM Enterprise WebApp Component Development

3. Place the interface JAR files in the WEB-INF/lib folder.

4. Copy com.tibco.amf.platform.common_1.4.0.001.jar and
com.tibco.amf.platform.runtime.extension_1.6.0.004. jar from <TIBCO_HOME>/component/
shared/1.0.0/plugins to the WEB-INF/lib folder of the WTP or dynamic web project.

5. Create a WAR file from the dynamic web project.

6. Using a ZIP utility, remove the JAR files copied in step 4 from the WEB-INF/lib folder of the exported
WAR file.

7. Write the code to invoke the reference.

8. Follow the procedure documented in the Adding a WebApp Component Using the WAR File section.

WebApp Component Testing
When AMX composite applications run in RAD, or a remote admin is connected through TIBCO Business
Studio, you can view information about the WebApp components using the internal WebApp component
testing servlet.

The WebApp component testing servlet launches the OSGi-based Jetty server that hosts the WebApp
component to be tested. It launches the WebApp component in the Eclipse internal browser.

To test the WebApp component, right click the WebApp component running in the Administrator Explorer
view, and select Invoke WebApp with Web Explorer.

The application detects if the WebApp component is running in RAD environment or at remote machine
(JAD environment). Based on the communication environment, the WebApp component is processed.

RAD Communication
If the WebApp component is running in RAD, the launch configuration is resolved as follows:

Procedure

1. The launch configuration for the web application DAA or composite file is resolved.

● If launched from DAA, the web.xml file is extracted from the composite file.

● If launched from the composite file, web.xml is resolved from the Eclipse workspace.

2. The contextRoot and defaultConnector property values are extracted from the composite resource.
The HTTP port number associated with the defaultConnector property is then extracted from the
Debug/RunConfiguration > Advanced > HTTP Connectors section.

3. A test URL using contextRoot and HTTP port number (http://localhost:port number/contextRoot) is
constructed. It opens it in the Eclipse internal browser.

● If contextRoot is mapped to a welcome page, the browser displays the welcome page.

● If contextRoot is not mapped to a welcome page, the browser loads the RAD testing page, which
displays all the servlets and their mappings from web.xml. Click on any servlet link in the RAD
testing page to load the associated web page in other frame.

31

TIBCO® BPM Enterprise WebApp Component Development

JAD Communication
If the web application runs in a remote machine (JAD environment), administrator web services are
invoked using SOAP requests to retrieve the properties for the WebApp component.

Procedure

1. The values of the contextRoot and defaultConnector properties are extracted from the property map.
If the properties are substitutable, the composite properties are resolved from administrator. This is a
recursive process until the final value of the substitution is not found.

2. The HTTP host address and HTTP port number are extracted from defaultConnector. Then, the
following information is retrieved:
a) Node on which component is running
b) Resource instance of the defaultConnector on the node
c) Resource template for the resource instance
d) HTTP port number from the resource template
e) HTTP host address from the node.

3. A test URL is constructed using contextRoot, the HTTP port number, and the HTTP host address
(http://host address:port number/contextRoot). It is opened in the Eclipse internal browser.

● If contextRoot is mapped to a welcome page, the browser displays the welcome page.

● If contextRoot is not mapped to a welcome page, the browser displays the Page Not Found error
page.

Logging
TIBCO ActiveMatrix Service Grid supports logging to standard out and using a logging API. For simple
demonstration applications, you can log to SDTOUT. However, for product applications you should use the
logging API.

For WebApp implementations of type WAR or WTP (non-OSGified WebApp), application-level loggers
work only when the loggers are defined in servlets and filters. If loggers are defined in any other class in
the web-inf/lib folder or a separate jar file, it does not use the application-level logging configuration. Such
classes use the node-level logging configuration.

See TIBCO ActiveMatrix Java Component Development for details.

Handling Errors
The WebApp component handles errors in the same way as the Java component. See TIBCO ActiveMatrix
Java Component Development for details on handling declared and undeclared faults.

32

TIBCO® BPM Enterprise WebApp Component Development

URL Mappings

The path used for mapping to a servlet is the request URL from the request object minus the context path
and the path parameters. The URL path mapping rules follow a prescribed order.

There are explicit mappings, and in certain cases, implicit mappings are allowed.

Use of URL Paths
Upon receipt of a client request, the Web container determines the Web application to which to forward it.
The Web application selected must have the longest context path that matches the start of the request URL.

The matched part of the URL is the context path when mapping to servlets. The Web container next must
locate the servlet to process the request, using the path mapping procedure described below.

The path used for mapping to a servlet is the request URL from the request object, minus the context path
and the path parameters. The URL path mapping rules below are followed in sequence. The first successful
match is used with no further matches attempted.

Procedure

1. The container looks for an exact match of the path of the request to the path of the servlet. A successful
match selects the servlet.

2. The container recursively attempts to match the longest path-prefix. This is done by stepping down the
path tree a directory at a time, using the ’/’ character as a path separator. The longest match determines
the servlet selected.

3. If the last segment in the URL path contains an extension (for example, jsp), the servlet container tries to
match a servlet that handles requests for the extension. An extension is defined as the part of the last
segment after the last ’.’ character

4. If neither of the previous three rules result in a servlet match, the container tries to serve content
appropriate for the resource requested. If a "default" servlet is defined for the application, it will be
used. The container must use case-sensitive string comparisons for matching.

Specification of Mappings
In the Web application deployment descriptor, the following syntax is used to define mappings.

● A string beginning with a ‘/’ character and ending with a ‘/*’ suffix is used for path mapping.

● A string beginning with a ‘*.’ prefix is used as an extension mapping.

● A string containing only the ’/’ character indicates the "default" servlet of the application. The servlet
path is the request URI minus the context path, and the path info is null.

● All other strings are used for exact matches only.

Implicit Mappings
If the container has an internal JSP container, the *.jsp extension is mapped to it, allowing JSP pages to be
executed on demand. This mapping is termed an implicit mapping. If a *.jsp mapping is defined by the
Web application, its mapping takes precedence over the implicit mapping.

A servlet container is allowed to make other implicit mappings as long as explicit mappings take
precedence. For example, an implicit mapping of *.shtml could be mapped to include functionality on the
server.

Example Mapping Set

Consider the following set of mappings:

33

TIBCO® BPM Enterprise WebApp Component Development

Path Pattern Servlet

/foo/bar/* servlet1

/bar/* servlet2

/catalog servlet3

*.bop servlet4

The following behavior would result:

Incoming Path Servlet Handling Request

/foo/bar/index.html servlet1

/foo/bar/index.bop servlet1

/bar/index.bop servlet2

/catalog servlet3

/catalog/index.html "default" servlet

/catalog/racecar.bop servlet4

/index.bop servlet4

In the case of /catalog/index.html and /catalog/racecar.bop, the servlet mapped to "/catalog" is not
used because the match is not exact.

34

TIBCO® BPM Enterprise WebApp Component Development

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly in
HTML and PDF formats.
The website is updated frequently and is more current than any other documentation included with the
product.

Product-Specific Documentation

The following documentation for TIBCO ActiveMatrix® Service Grid is available on the TIBCO
ActiveMatrix® Service Grid product documentation page.

Use of the following features, installation profiles and development tools requires a TIBCO ActiveMatrix
Service Grid license:

● TIBCO ActiveMatrix Policy Director Governance, TIBCO ActiveMatrix SPM Dashboard, and TIBCO
ActiveMatrix SPM Runtime Server profiles; and

● TIBCO ActiveMatrix Service Grid development tools for Java, Webapp and Spring components.

Customers with only a TIBCO ActiveMatrix Service Bus license are not licensed to use these features, tools
or profiles.

The following documents form the documentation set:

● TIBCO ActiveMatrix Service Grid Concepts: Read this manual before reading any other manual in the
documentation set. This manual describes terminology and concepts of the platform. The other manuals
in the documentation set assume you are familiar with the information in this manual.

● TIBCO ActiveMatrix Service Grid Development Tutorials: Read this manual for a step-by-step introduction
to the process of creating, packaging, and running composites in TIBCO Business Studio.

● TIBCO ActiveMatrix Service Grid Composite Development: Read this manual to learn how to develop and
package composites.

● TIBCO ActiveMatrix Service Grid Java Component Development: Read this manual to learn how to configure
and implement Java components.

● TIBCO ActiveMatrix Service Grid Mediation Component Development: Read this manual to learn how to
configure and implement Mediation components.

● TIBCO ActiveMatrix Service Grid Mediation API Reference: Read this manual to learn how to develop
custom Mediation tasks.

● TIBCO ActiveMatrix Service Grid Spring Component Development: Read this manual to learn how to
configure and implement Spring components.

● TIBCO ActiveMatrix Service Grid WebApp Component Development: Read this manual to learn how to
configure and implement Web Application components.

● TIBCO ActiveMatrix Service Grid REST Binding Development: Read this manual to learn how to configure
and implement REST components.

● TIBCO ActiveMatrix Service Grid Administration Tutorials: Read this manual for a step-by-step
introduction to the process of creating and starting the runtime version of the product, starting TIBCO
ActiveMatrix servers, and deploying applications to the runtime.

● TIBCO ActiveMatrix Service Grid Administration: Read this manual to learn how to manage the runtime
and deploy and manage applications.

● TIBCO ActiveMatrix Service Grid Hawk ActiveMatrix Plug-in: Read this manual to learn about the Hawk
plug-in and its optional configurations.

35

TIBCO® BPM Enterprise WebApp Component Development

https://docs.tibco.com/
https://docs.tibco.com/products/tibco-activematrix-service-grid
https://docs.tibco.com/products/tibco-activematrix-service-grid

● TIBCO ActiveMatrix Service Grid Policy Director Governance Custom Actions: Read this manual to learn
how you can configure and enforce policies for ActiveMatrix and external services hosted in third party
containers, using TIBCO ActiveMatrix Policy Director Governance.

● TIBCO ActiveMatrix Service Grid Service Performance Manager API Reference: Read this manual to learn
how to use the SPM APIs.

● TIBCO ActiveMatrix Service Grid Error Codes: Read this manual to know more about the error messages
and how you could use them to troubleshoot a problem.

● TIBCO ActiveMatrix Service Grid Installation and Configuration: Read this manual to learn how to install
and configure the software.

● TIBCO ActiveMatrix Service Grid Security Guidelines: Read this manual to learn more about security
guidelines and recommendations for TIBCO ActiveMatrix Service Grid.

● TIBCO ActiveMatrix Service Grid Release Notes: Read this manual for a list of new and changed features,
steps for migrating from a previous release, and lists of known issues and closed issues for the release.

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

● For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support website.

● For creating a Support case, you must have a valid maintenance or support contract with TIBCO. You
also need a user name and password to log in to TIBCO Support website. If you do not have a user
name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

36

TIBCO® BPM Enterprise WebApp Component Development

https://www.tibco.com/services/support
https://support.tibco.com/
https://support.tibco.com/
https://ideas.tibco.com/
https://community.tibco.com

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, TIBCO O logo, ActiveMatrix, Business Studio, Enterprise Message Service, and
Hawk are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or
other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system platforms
for a specific software version are released at the same time. See the readme.txt file for the availability of
this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2010-2022. TIBCO Software Inc. All Rights Reserved.

37

TIBCO® BPM Enterprise WebApp Component Development

https://www.tibco.com/patents

	Contents
	Overview
	Introduction
	Approaches

	Web Application Components
	Creating a WebApp Component
	Creating an SOA Project
	Adding an Empty WebApp Component
	Starting With an Existing Implementation
	OSGi-enabled WebApp Component
	Creating an OSGi-enabled WebApp Component

	Configuring a Web Application Component
	Configuring a WebApp Components Custom Feature
	Configuring a WebApp Components External Custom Feature
	WebApp Component Reference
	Adding Configuring a WebApp Components Security
	Using Form-based Authentication Policy
	Adding Configuring Form-based Authentication Policy

	Security Constraint Policy
	Security Constraint Definition Example
	Adding or Configuring a Security Constraint Policy

	Updating a WebApp Component
	ZeroConfiguration DAA Creation Using WAR
	Limitations on WAR Files

	Web Application Component Implementations
	Opening an Implementation
	Generating an Implementation
	Generate WebApp Component Implementation
	Code Generation Details Dialog
	XML Data Binding Classes Dialog
	Create Servlet Dialog

	Regenerating an Implementation
	Refreshing an Implementation
	Accessing a Property
	Invoking a Reference Operation
	Enabling a Reference Injection
	Adding a Reference to a WebApp Component with Implementation Type as WAR
	Adding a Reference in TIBCO Business Studio
	Creating a WAR File with the Reference Details
	Adding a WebApp Component Using the WAR File
	Adding a Context Parameter to an Implementation of Type WAR
	Adding a Dynamic Endpoint Reference to an Implementation of Type WAR

	Adding a Reference Outside of TIBCO Business Studio

	WebApp Component Testing
	RAD Communication
	JAD Communication

	Logging
	Handling Errors

	URL Mappings
	Use of URL Paths
	Specification of Mappings
	Implicit Mappings

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

