
TIBCO Business Studio™
Customization
Version 4.3.2

May 2022

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.

Contents

Understanding the Process Package File Format . 4

Implementing Business Process Integration (Import) . 4

Exporting from TIBCO Business Studio . 4

XPDL 2.1 Schema Overview . 5

XPDL Migration Injector . 9

Configuration Markup . 9

Execution Details of a Package . 9

Creating a Package . 10

Setting the Destination Environment . 11

Date and Time Data Types .11

Customizing Configurations for Process Editors .12

Visual Characteristics of a Package . 13

NodeGraphicsInfo . 13

ConnectorGraphicsInfo . 14

References Between Elements . 16

Schema Extensions .17

Schema Extensions for Service Tasks . 18

Simulation Schema Overview . 18

Implementation .18

Activity Parameters (ActivitySimulationData) . 18

Specifying Duration Distributions . 19

Specifying the Time Unit . 20

Adding a Looping Control Strategy . 21

Adding SLA Information . 22

Participant Parameters (ParticipantSimulationData) . 23

Sequence Flow Splits (SplitSimulationData) .24

Simulation Start Parameters (StartSimulationData) . 24

Sequence Flow Parameters (TransitionSimulationData) .25

Parameter Distribution (WorkflowProcessSimulationData) . 26

Javadoc Locations . 27

Creating an XSLT-Based Import Export Wizard . 28

Installation of an Export/Import Plug-in into Post TIBCO Business Studio 3.6.0 . 28

Creating Import/Export Plug-in .28

Importing Plug-in into the Workspace . 30

Creating a Feature Project .32

Creating Categories (Optional) .32

Switching Target Platform to the “Running Platform” . 33

2

TIBCO Business Studio™ Customization

Exporting P2 Repository .34

Switching the Target Platform Back to TIBCO ActiveMatrix Runtime . 35

Installing the Feature from the Repository . 36

Recreating TIBCO Active Matrix Runtime Target Platform Definition (If it Disappears) . 37

Deployment Framework . 38

Deployment Repository . 38

Implementing Deployment .38

Define the Module . 39

Define the Management Operations .39

Defining the Server . 39

Connecting to a Server .39

Define the Possible Server Elements .40

Define States for Elements . 40

Configuring the Repository . 40

Repository Types . 41

Define the Deployment Wizard .41

Worked Example - Deployment to a WebDAV Server . 42

Prerequisites before you follow the Example . 42

Creating the Server . 42

Set the Target Platform .42

Creating a WebDAV Server Type Extension . 43

Connecting to WebDAV server .46

Providing Server Elements .47

Deploying Modules . 48

Implementing the deployModule Method .49

Providing the Deployment Wizard . 49

Implementing Operations for ServerElements . 50

Summary . 50

TIBCO Documentation and Support Services . 52

Legal and Third-Party Notices . 53

3

TIBCO Business Studio™ Customization

Understanding the Process Package File Format

The TIBCO Business Studio package file uses the following schemas:

● XPDL Version 2.1

● XPDL Version 1.0 (Internally, for direct deployment to the TIBCO iProcess Engine)

● Extensions schema - process-related XPDL extensions

● Simulation schema - XPDL extensions to support the simulation of Processes

To import a file, only the correct XPDL and Extensions semantics are required; simulation is
optional and default simulation parameters can be added by TIBCO Business Studio once the
process has been imported.

● Various extension schemas, each describing meta-data for one or more sub-types of service task.

This section describes the extensions and simulation schemas used by TIBCO Business Studio.

Implementing Business Process Integration (Import)
Scenario: TIBCO Business Studio is not yet the primary corporate modeling tool.

Goal: To leverage the investment in the current Business Process Analysis (BPA) tool by importing existing
processes into TIBCO Business Studio and getting the processes into an executable form.

To import a process from an established BPA tool into TIBCO Business Studio, you must do the following:

Procedure

1. Study the selected BPA tool, particularly the XML export facility.

2. Identify the significant elements in the BPA tool’s XML format.

3. Referring to Understanding the Process Package File Format, familiarize yourself with the XPDL format
and the TIBCO extensions.

4. Construct a mapping table (for example, a spreadsheet) between the interesting elements. This will be
the basis of the XSLT that will transform elements from the BPA XML output into XPDL that can be
imported into TIBCO Business Studio.

5. Implement the mapping in XSLT.

6. Register the XSLT as a plug-in that may be distributed to all users (by copying to the plugins directory)
or installed directly. See Creating an XSLT-Based Import Export Wizard.

Exporting from TIBCO Business Studio
Scenario: Application developer or systems integrator wants to take output from TIBCO Business Studio
and embed it within a custom BPM solution (for example, create a JSP web page for each user task).

Goal: Transform part or all of the process into supporting artifacts in the overall solution (for example, JSP
forms, portal pages and document management systems).

To export process information from TIBCO Business Studio to another application:

Procedure

1. Referring to Understanding the Process Package File Format, familiarize yourself with the XPDL format
and the TIBCO extensions.

2. Study the required output.

4

TIBCO Business Studio™ Customization

For example, in the case of JSP forms, suppose that for each user task in the Process, the desired output
is a default form with a field for each parameter of the user task.

3. Construct a mapping table (for example, a spreadsheet) between the significant TIBCO Business Studio
XPDL elements and their target objects (be they XML objects or widgets in a GUI toolkit).

4. Implement the mapping in XSLT.

5. (Optional) Document any restrictions on creating the output (such as the JSP form generator supporting
only simple data field types).

6. Register the XSLT as a plug-in that may be distributed to all users (by copying to the plugins directory)
or installed directly.
See Creating an XSLT-Based Import Export Wizard.

XPDL 2.1 Schema Overview
The XPDL Version 2.1 schema provides all the elements needed to execute a process as well as the visual
elements necessary to view a process in TIBCO Business Studio. The following series of diagrams show the
relationship between the BPMN elements in TIBCO Business Studio and their mapping to the XPDL
schema.

For more information, see:

● XPDL - http://www.wfmc.org/standards/xpdl.htm

● BPMN - http://www.bpmn.org/

Process Flow Objects

This diagram shows the major process flow objects (package, process, activity and transitions), excluding
the visual objects such as pools, lanes:

5

TIBCO Business Studio™ Customization

http://www.wfmc.org/standards/xpdl.htm
http://www.bpmn.org/

Artifacts

XPDL artifacts belong to the package and are referred to in a process by lanes and pools. this diagram
shows the relationship of artifacts to other objects:

6

TIBCO Business Studio™ Customization

Associations

This diagram shows how optional associations are made between non-flow objects (such as a text
annotation) and flow objects or flows:

Message Flow

Message flow can connect objects in different pools or objects in one pool with the boundary of another
pool. the following diagram shows message flow:

7

TIBCO Business Studio™ Customization

Data Fields, Formal Parameters, Participants, and Type Declarations

Data fields and participants can be scoped in that they can be created at the process level or at the package
level (if you want to share them amongst processes). Formal parameters can only be created at the process
level and type declarations can only be created at the package level.

The following diagram shows the relationship of data fields, formal parameters, participants, and type
declarations to pools, process, and package:

The relationship of a participant to a pool is denoted in BPMN, but neither required nor enforced by TIBCO
Business Studio. A BPMN participant is always represented by a pool. However, an XPDL participant
describes a resource that can perform an activity and is not necessarily represented by a pool.

8

TIBCO Business Studio™ Customization

XPDL Migration Injector
The XPDL Migration Injector is implemented in the
com.tibco.xpd.analyst.resources.xpdl2.xpdlMigrationInjector plugin.

The XPDL Migration Injector allows a contributor to inject an extra xslt transformation into the sequence of
migration xslts used to bring a TIBCO Business Studio XPDL process package file from its defined format
version to the current format version of TIBCO Business Studio.

Each TIBCO Business Studio XPDL contains the format version extended attribute of the version of TIBCO
Business Studio it was created with or for. If the format version is less than that in current use by the
version of TIBCO Business Studio in question it is migrated to the latest format version via a sequence of
xslt transformations. Each transformation increases the format version by 1 and performs the necessary
transformations to convert the file from one format version to the next format version.

The contributor can decide upon a format version (which governs at what point in the migration sequence
it is executed) and whether it should be executed before or after the built in TIBCO Business Studio
transformation between the 2 versions.

Great care should be taken to ensure that undesirable side effects are avoided and that unaffected XPDL
elements are output from the transformation unchanged.

Configuration Markup
<!ELEMENT extension (migrationInjector)+>
<!ATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
<!ELEMENT migrationInjector EMPTY>
<!ATTLIST migrationInjector
beforeOrAfter (Before|After) "Before"
formatVersion CDATA "1"
xsltFile CDATA #REQUIRED>

Each migration injector can inject one xslt transformation before or after migration to a given TIBCO
Business Studio XPDL format version.

beforeOrAfter - Whether the xslt should be injected and executed before or after the standard TIBCO
Business Studio migration to the given formatVersion.

formatVersion - Format version - effectively the position in XPDL migration sequence where to inject the
xslt.

xsltFile - Xslt transformation to perform just before or after standard migration conversion to a given
formatVersion from the previous formatVersion.

Execution Details of a Package
This section describes the parts of the XPDL package file that must be present if you want to execute a
TIBCO Business Studio XPDL package/process in BPM or iProcess Engine.

It does not cover visual aspects of a process (see Visual Characteristics of a Package).

9

TIBCO Business Studio™ Customization

Creating a Package
The root XPDL element is Package and the following namespaces are used:

The semantics for the Package, Process and Redefineable Headers allow the least restrictive interpretation
of the XPDL schema possible.

A Package Header in TIBCO Business Studio is defined by XPDL as follows:

TIBCO Business Studio contributes the following elements to the Package only:

Attribute Example Notes

CreatedBy <xpdl2:ExtendedAttribute
Name="CreatedBy" Value="TIBCO
Business Studio"/>

You can provide any value. The
example indicates that the
process was created in TIBCO
Business Studio, but there is no
checking or validation.

FormatVersion <xpdl2:ExtendedAttribute
Name="FormatVersion" Value="8"/>

Mandatory. The FormatVersion
must be set to match the version
of TIBCO Business Studio you
are working with. When
importing into newer versions,
TIBCO Business Studio has a
Quick Fix that allows you to
migrate to the latest
FormatVersion, thus providing a
level of backwards compatibility
in new versions of TIBCO
Business Studio without the
necessity to change your import.

10

TIBCO Business Studio™ Customization

These are also elements called ExtendedAttribute that are in the base namespace. For example:
<xpdl2:Task>
<xpdl2:TaskService xpdExt:ImplementationType="E-Mail"
 xpdl2:Implementation="Other">
 <xpdl2:MessageIn Id="_V_wdICrAEdy4JvZXy-dYnw"/>
 <xpdl2:MessageOut Id="_V_wdISrAEdy4JvZXy-dYnw"/>
 <email:Email>
 <email:Definition>
 <email:From email:Configuration="Server"/>
 <email:To>manager@foo.com</email:To>
 <email:Subject>RE: minutes of our
 meeting</email:Subject>
 </email:Definition>
 <email:SMTP email:Configuration="Server"/>
 </email:Email>
</xpdl2:TaskService>
</xpdl2:Task>

Setting the Destination Environment
Setting the destination environment on a process controls the validation that is performed on that process
and also, in the case of simulation, what simulation parameters are associated with the process. You can
specify multiple destination environments.

The following example shows the XPDL for a process intended for simulation:
<xpdl2:ExtendedAttribute Name="Destination" Value="Simulation"/>

TIBCO Business Studio provides several destination environments, including BPM and Simulation.

Value Description

BPM Specifies that the process is validated for direct deployment to the TIBCO
BPM 1.0.

Simulation Specifies that the process is validated for simulation.

iProcess Specifies that the process is validated for direct deployment to the iProcess
Engine 10.5 or higher.

The specific "destination components" that make up these destination environments can be customized in
the Preferences. For more information about destination components, see TIBCO Business Studio iProcess
Implementation Guide or TIBCO Business Studio BPM Implementation Guide.

Date and Time Data Types
TIBCO Business Studio now supports separate date and time data fields, as well as the previous combined
datetime data field:
<xpdl2:DataFields>
 <xpdl2:DataField Id="_PEzc0HQNEd2Pfrjp77cFsg"
 xpdExt:DisplayName="Date" Name="Date">
 <xpdl2:DataType>
 <xpdl2:BasicType Type="DATE"/>
 </xpdl2:DataType>
 <xpdl2:InitialValue></xpdl2:InitialValue>
 </xpdl2:DataField>
 <xpdl2:DataField Id="_RvJjMHQNEd2Pfrjp77cFsg"
 xpdExt:DisplayName="Time" Name="Time">
 <xpdl2:DataType>
 <xpdl2:BasicType Type="TIME"/>
 </xpdl2:DataType>
 <xpdl2:InitialValue></xpdl2:InitialValue>
 </xpdl2:DataField>
</xpdl2:DataFields>

11

TIBCO Business Studio™ Customization

Customizing Configurations for Process Editors
You can customize configurations for process editors (to change such things as the available object type,
exclusion, and font size).

Studio Analyst Edition: You can see and change the configurations directly in the following configuration
file:

● TIBCO-HOME\eclipse-platform\bundlepool\1.0\org.eclipse.equinox.p2.touchpoint.eclipse

\plugins\com.tibco.xpd.rcp_n.n.n.nnn\plugin_customization.ini

● The necessary configurations to exclude object types are included by default in this ini file. You can set
the value of these configurations (before starting TIBCO Business Studio).

● In order for changes to Pools exclusion to be reflected in New Process Wizard templates images, the
internal workspace must be recreated. Shut down all running instances of TIBCO Business Studio
Analyst Edition and then delete <user home>/rcp-workspaces.

Studio BPM Edition: The example configurations are provided in the following file :

● TIBCO-HOME\eclipse-platform\bundlepool\1.0\org.eclipse.equinox.p2.touchpoint.eclipse

\plugins

\com.tibco.xpd.process.editor.branding_n.n.n.nnnprocess_editor_preference_options.txt

The configurations in this file must be copied to the product configuration file: TIBCO-
HOME\eclipse-platform\bundlepool
\1.0\org.eclipse.equinox.p2.touchpoint.eclipse\plugins

\com.tibco.xpd.branding_n.n.n.nnn\plugin_customization.ini.
● Changing the configurations in this process_editor_preference_options.txt only has no affect. In

order for changes to Pools exclusion to be reflected in New Process Wizard template images, you must
create a new workspace on the start-up of TIBCO Business Studio.

Notes:

● Object type exclusions exclude the visibility of the following types of objects:

● Tool Palette
● Property sheet type select
● on diagram context menu type selection
● on diagram change object type gadget
● on diagram connect and create gadget

Any pre-defined object that is already of an excluded object type will still be visible, as will its
object type in the property sheet (unless/until the object type is changed).

● Pool is a special case - this prevents Pools being displayed in a diagram except if there are multiple
pools or pools with multiple lanes (in which case the pools and lanes must be made visible). Note that
process creation templates images show pools for workspaces that existed prior to changing the
configuration to exclude pools.

● Exclusions are per-process-diagram types (Business Process, Pageflow Process and Business Service).
For example:
Business Process Excluded Object Types ############
Set to true to exclude object types from the process editor tool palette and type
selection menus, properties and diagram widgets.

Business Process Task types..
com.tibco.xpd.analyst.resources.xpdl2/BusinessProcess_Exclude_task_none=false
com.tibco.xpd.analyst.resources.xpdl2/BusinessProcess_Exclude_task_user=false

12

TIBCO Business Studio™ Customization

com.tibco.xpd.analyst.resources.xpdl2/BusinessProcess_Exclude_task_manual=false
com.tibco.xpd.analyst.resources.xpdl2/BusinessProcess_Exclude_task_service=false
com.tibco.xpd.analyst.resources.xpdl2/BusinessProcess_Exclude_task_script=false
com.tibco.xpd.analyst.resources.xpdl2/BusinessProcess_Exclude_task_send=false

● The default entry for process editor font sizing preference can be edited. For example, edit the font size
of 16 in the Studio for Analysts ini file in the example below:
Process diagram editor font size (pitch)
com.tibco.xpd.processwidget/processEditorFontSize=16

Visual Characteristics of a Package
This section describes how the visual characteristics of a package/process are created. This would be
important for example, if you have your own XPDL that you want to import and display in TIBCO Business
Studio.

NodeGraphicsInfo
This XPDL2 element stores graphical information (for example, color, size, and so on) about visual objects,
except for connecting lines.

See ConnectorGraphicsInfo.

The following table describes the standard Attributes/Elements of NodeGraphicsInfo.

Attribute/Element Description

ToolId For all standard NodeGraphicsInfo elements (for example,
activities, pools, or sequence flow), this is unspecified.

For special purpose NodeGraphicsInfo elements (those that
specify position or size information), use XPD for the ToolId.
ToolId is extended for different purposes (for example,
XPD.BorderEventPosition). For more information, see Special
Purpose NodeGraphicsInfo Elements.

BorderColor, FillColor String containing three comma-separated numeric values
representing Red, Green, Blue values for the color (each
between 0 and 255). For example, 255,0,0 (bright red), 0,0,0
(black), and so on.

Height, Width Height and width of the object in pixels.

● Width is never specified for a lane (this is calculated
automatically from its content).

● Width and Height are never specified for a Pool (these are
calculated automatically from its content).

● Height is always calculated automatically for diagram
notes. If width is present for diagram note, text is wrapped
at the specified width; if not present, width is set
automatically.

13

TIBCO Business Studio™ Customization

Attribute/Element Description

Coordinates XCoordinate and YCoordinate specify the pixel location of the
center of the object, relative to the containing lane or embedded
sub-process.

Notes:

● Intermediate events that are attached to a task boundary
should be specified as 0.0.

● For text annotations (diagram notes), these coordinates
define the center of the the left hand edge.

LaneId XPDL is not specific about the requirements for various BPMN
concepts. Therefore, LaneId is dependent on object type.

TIBCO Business Studio specifies the LaneId value as follows

● Activities in a lane - The parent LaneId.

● Activities in an embedded sub-process - LaneId not set.

● Artifacts in a lane – The parent LaneId.

● Artifacts in an embedded sub-process - The ActivitySetId
for the embedded sub-process.

IsVisible For lanes only:

● false – Lane is closed.

● true – Lane is open (default if not present).

Special Purpose NodeGraphicsInfo Elements

In addition to the standard NodeGraphicsInfo elements listed in the previous table, the following special
purpose NodeGraphicsInfo element is used when extra graphical information does not fit into the single
standard NodeGraphicsInfo element for an object. These are distinguished from the standard
NodeGraphicsInfo elements by their extended ToolId value.

ToolId Description

XPD.BorderEventPosition An Intermediate event on a task boundary is specified as a
percentage of distance around the parent task’s boundary line
(going clockwise from top right corner).

This distance is specified in the Coordinates/XCoordinate
attribute as a floating point number.

ConnectorGraphicsInfo
This XPDL2 element stores graphical information about connection lines such as transition (sequence
flows), messageflow and association.

The following table describes the standard attributes/elements of ConnectorGraphicsInfo.

14

TIBCO Business Studio™ Customization

Attribute/Element Description

ToolId For all standard ConnectorGraphicsInfo elements this is
XPD.ConnectionInfo. For special purpose
ConnectorGraphicsInfo elements, specify XPD as the ToolId.
ToolId is extended for different purposes (for example,
XPD.LabelAnchorPosition). For more information, see Special
Purpose ConnectorGraphicsInfo Elements.

Border Color Specifies the connection line color as a string containing three
comma-separated numeric values representing Red, Green,
Blue values for the color (each between 0 and 255). For
example, 255,0,0 (bright red), 0,0,0 (black), and so on.

Special Purpose ConnectorGraphicsInfo Elements

In addition to the standard ConnectorGraphicsInfo elements listed in the previous table, the following
special purpose ConnectorGraphicsInfo elements are used for extra graphical information that does not fit
into the single standard ConnectorGraphicsInfo element for an object. These are distinguished from the
standard ConnectorGraphicsInfo elements by their extended ToolId value.

ToolId Description

XPD.StartAnchorPosition Specifies a fixed position on a source object’s boundary for the
connection line to start.

The actual position is stored in the Coordinate/XCoordinate
attribute.

The value of this depends on the source object type:

● Pool (Message flows only) - The offset, in pixels, from the left
hand edge of the Pool.

● Connection (Associations only) - The percentage of total
length distance from start of the connection line.

● Other Objects - The percentage distance around the object’s
boundary. This is always clockwise, starting from point
dependent on the object type:

— Task – Top right corner.

— Event – Right hand side (middle).

— Gateway – Top (middle).

— Data Object – Bottom left corner.

— Diagram Note – Top left corner.

XPD.EndAnchorPosition Specifies a fixed position on target object’s boundary for the
connection line to end.

The actual position is stored in the Coordinate/XCoordinate
attribute. The value of this is as for the XPD.StartAnchorPosition
detailed above.

15

TIBCO Business Studio™ Customization

ToolId Description

XPD.LabelAnchorPosition Specifies the anchor position for a connection’s label in relation to
the connection line itself as two Coordinate elements.

● The first Coordinate specifies the anchor point of the label as a
percentage distance along connection line (from start of
connection) in the XCoordinate attribute.

● The second Coordinate specifies a horizontal and vertical
offset from the anchor position (in the XCoordinate and
YCoordinate attributes).

XPD.LabelSize XCoordinate=Width, YCoordinate=Height. If text wrapped at the
given width is too large for the height, the height is automatically
adjusted on screen.

References Between Elements
This section describes the values that TIBCO Business Studio specifies for various standard XPDL2 cross
references between elements.

For top-level elements (objects on a process diagram), TIBCO Business Studio treats the XPDL2 Name
attribute as a token name, and uses the XPDL2 Name attribute for all references by name. There is also a
label name that is stored in XPDExt:DisplayName and used for display purposes only.

Element Cross Reference Value

Reference Task A reference task references the target task using the target task’s
Activity/Id attribute.

16

TIBCO Business Studio™ Customization

Element Cross Reference Value

Intermediate Link Event The throw event of the link event pair specifies the Activity/Id
attribute of the catch event (using the TriggerResultLink/Name
attribute). The process reference is WorkflowProcess Id of the
catch event’s parent process.

The catch link event specifies its own TriggerResultLink/Name
attribute as 0, process is always -unknown-.

For example:
<xpdl2:Activity Id="_O1nEsHsoEd2RMpxlT5DsGQ"
Name="LinkToCatchLinkEvent" xpdExt:DisplayName="Link
To: CatchLinkEvent">
 <xpdl2:Event>
 <xpdl2:IntermediateEvent Trigger="Link">
 <xpdl2:TriggerResultLink
 CatchThrow="THROW"
 Name="_Q1uiUHsoEd2RMpxlT5DsGQ"/>
 </xpdl2:IntermediateEvent>
 </xpdl2:Event>
.
.
.
</xpdl2:Activity>
<xpdl2:Activity Id="_Q1uiUHsoEd2RMpxlT5DsGQ"
Name="CatchLinkEvent" xpdExt:DisplayName="Catch Link
Event">
 <xpdl2:Event>
 <xpdl2:IntermediateEvent Trigger="Link">
 <xpdl2:TriggerResultLink
 CatchThrow="CATCH" Name="0"/>
 </xpdl2:IntermediateEvent>
 </xpdl2:Event>
.
.
.
</xpdl2:Activity>

Activity Performers (Task
Participants)

Activity performers are references to the Ids of participants,
performer type data fields, or performer type formal parameters.

Data Fields / Formal Parameters All references to data fields and formal parameters (except from
activity performers), use the name of the field or parameter.

Type Declarations References are from data field / formal parameter by the type
declaration’s Id.

Processes Inter-process references (for example from sub-process call tasks)
use the process Id. References to a process in another package
use the XPDL filename of the package (without the .xpdl
extension).

Schema Extensions
TIBCO Business Studio uses the standard XPDL 2.1 schema with extensions for implementation elements
such as invocation style or delayed release type for integration steps.

17

TIBCO Business Studio™ Customization

Schema Extensions for Service Tasks
TIBCO Business Studio uses the standard XPDL 2.1 schema with extensions for certain types of service
tasks.

All other types of Service Task (for example, a web services Service Task) conform to the base XPDL 2.1
schema.

Simulation Schema Overview
When you import a Process into TIBCO Business Studio and with Simulation as the destination
environment, default simulation parameters are added for Simulation. If you want to over-ride any default
simulation parameters, use the simulation schema extensions as described in this section.

You can view HTML documentation for the simulation schema extensions and also actual schema by
clicking the following links:

● Simulation HTML

● Simulation XSD

Implementation
The Activity child Implementation and its child (No) must be present for simulation (there is no impact on
modeling).

For example:
<xpdl:Implementation>
 <xpdl:No/>
</xpdl:Implementation>

Activity Parameters (ActivitySimulationData)
This section describes the extensions that allow you to specify simulation data for activities:

18

TIBCO Business Studio™ Customization

Specifying Duration Distributions

The following allows you to specify either basic distribution types (where the Activity duration is defined
by a mathematical distribution) or a parameter-based distribution (where imported parameters are used):

For basic distributions, you can specify the following types:

Attribute Example Notes

ConstantReal
Distribution

<simulation:ConstantRealDistribution
ConstantValue="5.0"/>

Specify a decimal value
for ConstantValue.

UniformReal
Distribution

<simulation:UniformRealDistribution
LowerBorder="2.0" UpperBorder="5.0"/>

Specify decimal values for
LowerBorder and
UpperBorder.

NormalReal
Distribution

<simulation:NormalRealDistribution
Mean="5.0" StandardDeviation="2.0"/>

Specify a decimal value
for the Mean and
StandardDeviation.

Exponential
RealDistribution

<simulation:ExponentialRealDistribution
Mean="5.0"/>

Specify a decimal value
for Mean.

Parameter-based distributions allow you to specify a distribution for each parameter. For example, in the
example below:

● First section specifies the distribution for the default case.

● Second section specifies the distribution for new customers (ExistingCustomer=No).

● Third section specifies the distribution for existing customers (ExistingCustomer=Yes

19

TIBCO Business Studio™ Customization

In this example, three different distributions are specified, depending on whether the customer is new or
existing; all other values are handled by the default.

You must specify a default distribution to handle parameters with values other than the ones you explicitly
specify.

Specifying the Time Unit

The time unit specifies the time unit that is used for display purposes in the TIBCO Business Studio user
interface. All values for time units (with the exception of SLA information) are stored in the XPDL in
minutes. They are then displayed in the user interface in the unit you specify for TimeDisplayUnit.

Example

<simulation:TimeDisplayUnit>HOUR</simulation:TimeDisplayUnit>

Valid values include YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

20

TIBCO Business Studio™ Customization

Adding a Looping Control Strategy

A looping control strategy provides the Simulation engine with the necessary mechanism to break out of
loops:

MaxLoopCountStrategy

This strategy allows sequence flow to traverse a loop up to the specified maximum number of times.
<simulation:LoopControl>
 <simulation:MaxLoopCountStrategy>
 <simulation:DecisionActivity>5</simulation:DecisionActivity>
 <simulation:ToActivity>8</simulation:ToActivity>
 <simulation:MaxLoopCount>5</simulation:MaxLoopCount>
 </simulation:MaxLoopCountStrategy>
</simulation:LoopControl>

Attribute Notes

DecisionActivity Specifies the Activity that will be used to decide whether to end the
loop.

ToActivity Specifies the Activity to proceed with once the loop is finished.

MaxLoopCount Specifies the maximum number of times that the loop should be
followed.

NormalDistributionStrategy

This strategy allows sequence flow to traverse a loop based on a normal distribution of times (which you
specify by providing the mean and standard deviation).
<simulation:LoopControl>
 <simulation:NormalDistributionStrategy>
 <simulation:DecisionActivity>5</simulation:DecisionActivity>
 <simulation:ToActivity>8</simulation:ToActivity>
 <simulation:Mean>2.0</simulation:Mean>
 <simulation:StandardDeviation>0.5</simulation:Standard
 Deviation>
 </simulation:NormalDistributionStrategy>
</simulation:LoopControl>

Attribute Notes

DecisionActivity Specifies the activity that will be used to decide whether to end
the loop.

ToActivity Specifies the activity to proceed with once the loop is finished.

21

TIBCO Business Studio™ Customization

Attribute Notes

Mean Specifies the mean used to construct the normal distribution.

StandardDeviation Specifies the standard deviation used to construct the normal
distribution.

MaxElapseTimeStrategy

This strategy allows sequence flow to traverse a loop for an elapsed period of time.
<simulation:LoopControl>
 <simulation:MaxElapseTimeStrategy>
 <simulation:DecisionActivity>5</simulation:DecisionActivity>
 <simulation:ToActivity>8</simulation:ToActivity>
 <simulation:DisplayTimeUnit>MINUTE</simulation:DisplayTimeUnit>
 <simulation:MaxElapseTime>10.0</simulation:MaxElapseTime>
 </simulation:MaxElapseTimeStrategy>
</simulation:LoopControl>

Attribute Notes

DecisionActivity Specifies the activity that will be used to decide whether to end
the loop.

ToActivity Specifies the activity to proceed with once the loop is finished.

DisplayTimeUnit Specifies the unit in which the elapsed time is measured. Valid
values include YEAR, MONTH, DAY, HOUR, MINUTE, and
SECOND.

MaxElapseTime Specifies the elapsed time in which you want the loop to finish.

Adding SLA Information

This specifies the maximum amount of delay permissible on the activity:
<xpdl:ExtendedAttribute
Name="ActivitySimulationData"><simulation:ActivitySimulationData SlaMaximumDelay="3.0">

The unit used for SlaMaximumDelay is specified using TimeDisplayUnit (see Specifying the Time Unit).

22

TIBCO Business Studio™ Customization

Participant Parameters (ParticipantSimulationData)
This allows you to specify the information about the participant that is necessary for simulation (instances,
cost, SLA information and so on).

<xpdl:Participants>
 <xpdl:Participant Id="1" Name="Call Center Operator">
 <xpdl:ParticipantType Type="ROLE"/>
 <xpdl:ExtendedAttributes>
 <xpdl:ExtendedAttribute Name="ParticipantSimulationData">
 <simulation:ParticipantSimulationData SlaMaximumUtilisation="95.0">
 <simulation:Instances>3</simulation:Instances>
 <simulation:TimeUnitCost>
 <simulation:Cost>0.125</simulation:Cost>
 <simulation:TimeDisplayUnit>HOUR
 </simulation:TimeDisplayUnit>
 </simulation:TimeUnitCost>
 </simulation:ParticipantSimulationData>
 </xpdl:ExtendedAttribute>
 </xpdl:ExtendedAttributes>
</xpdl:Participant>

Attribute Example Notes

Instances <simulation:Instances>1
</simulation:Instances>

Specifies the number of
participants.

TimeUnitCost <simulation:TimeUnitCost>
<simulation:Cost>0.8333333333333334
</simulation:Cost>
<simulation:TimeDisplayUnit>HOUR
</simulation:TimeDisplayUnit>
</simulation:TimeUnitCost>

Specifies the cost and
time unit used for the
participant in
simulation.

SlaMinimumUtilisation <xpdl:ExtendedAttribute
Name="ParticipantSimulationData">
<simulation:ParticipantSimulationData
SlaMinimumUtilisation="65.0"
SlaMaximumUtilisation="85.0">

Specifies the minimum
utilization percent for
the participant. This is
displayed visually
when the process is
simulated.

23

TIBCO Business Studio™ Customization

Attribute Example Notes

SlaMaximumUtilisation see SlaMinimumUtilisation example Specifies the maximum
utilization percent for
the participant. This is
displayed visually
when the process is
simulated.

Sequence Flow Splits (SplitSimulationData)
This specifies the parameter that is used to distribute sequence flow through a split.

For example:

SplitSimulationData specifies the parameter associated with the gateway (in this case
isPaperworkCorrect):
<xpdl:ExtendedAttribute Name="SplitSimulationData"><simulation:SplitSimulationData>
 <simulation:ParameterDeterminedSplit>true
 </simulation:ParameterDeterminedSplit>
 <simulation:SplitParameter ParameterId="isPaperworkCorrect"/>
</simulation:SplitSimulationData></xpdl:ExtendedAttribute>

Simulation Start Parameters (StartSimulationData)
This provides the start parameters needed for simulation such as the distribution and number of cases.
These are found on the Properties view of the start event:

<xpdl:ExtendedAttribute Name="StartSimulationData">
<simulation:StartSimulationData NumberOfCases="100">
 <simulation:Duration>
 <simulation:ConstantRealDistribution ConstantValue="5.0"/>
 </simulation:Duration>
 <simulation:DisplayTimeUnit>MINUTE
 </simulation:DisplayTimeUnit>
</simulation:StartSimulationData></xpdl:ExtendedAttribute>

24

TIBCO Business Studio™ Customization

Attribute Example Notes

NumberOfCases <simulation:StartSimulationData
NumberOfCases="100">

Specifies the number of cases for
simulation.

Duration <simulation:Duration>
<simulation:BasicDistribution>
<simulation:NormalRealDistribution
 Mean="5.0"
StandardDeviation="2.0"/>
</simulation:BasicDistribution>
</simulation:Duration>

Specifies the distribution for case
starts as one of the following:

● ConstantRealDistribution
(Specify a decimal value for
ConstantValue).

● UniformRealDistribution (Specify
decimal values for LowerBorder
and UpperBorder).

● NormalRealDistribution (Specify
a decimal value for the Mean and
StandardDeviation).

● ExponentialRealDistribution
(Specify a decimal value for the
Mean).

Sequence Flow Parameters (TransitionSimulationData)
This allows you to specify an expression that is evaluated to determine whether a sequence flow is
traversed. In TIBCO Business Studio, this is specified as a rule:

In this case, the sequence flow highlighted will only be traversed if the parameter isPaperworkCorrect is
equal to Wrong receipts. This is specified as follows:
<xpdl:ExtendedAttributeName="TransitionSimulationData">
<simulation:TransitionSimulationData>
 <simulation:ParameterDeterminedCondition>true
 </simulation:ParameterDeterminedCondition>
 <simulation:StructuredCondition>
 <simulation:ParameterId>isPaperworkCorrect
 </simulation:ParameterId>
 <simulation:Operator>=</simulation:Operator>
 <simulation:ParameterValue>Wrong receipts
 </simulation:ParameterValue>
 </simulation:StructuredCondition>
</simulation:TransitionSimulationData></xpdl:ExtendedAttribute>

This specifies that the sequence flow will only be traversed when the parameter isPaperworkCorrect has
the value Wrong receipts.

25

TIBCO Business Studio™ Customization

Attribute Example Notes

ParameterDetermined
Condition

<simulation:ParameterDeterminedConditio
n>true
</
simulation:ParameterDeterminedCondition
>

Specifies whether a
parameter will be
evaluated to determine
flow through the
sequence flow.

StructuredCondition <simulation:StructuredCondition>
 <simulation:ParameterId>isPaperwork
Correct
 </simulation:ParameterId>
 <simulation:Operator>=</
simulation: Operator>
 <simulation:ParameterValue>Wrong
 receipts
 </simulation:ParameterValue>
</simulation:StructuredCondition>

Specifies the condition
that is evaluated to
allow the sequence
flow to be traversed.
The condition is made
up of:

● ParameterId

● Operator (>, =, >=, <,
< =)

● ParameterValue

Parameter Distribution (WorkflowProcessSimulationData)
Allows you to define simulation parameters and distributions. Simulation parameters are used in splits and
in parameter-based distributions for activities.

<xpdl:ExtendedAttributeName="WorkflowProcessSimulationData">
<simulation:WorkflowProcessSimulationData>
 <simulation:ParameterDistributionParameterId=
 "ExistingCustomer">
 <simulation:EnumerationValue Value="Yes" WeightingFactor="10.0"/>
 <simulation:EnumerationValue Value="No" WeightingFactor="10.0"/>
 </simulation:ParameterDistribution>
</simulation:WorkflowProcessSimulationData>
</xpdl:ExtendedAttribute>

Attribute Example Notes

ParameterDistributionId <simulation:ParameterDistributionParame
terId="ExistingCustomer">

Specifies the parameter
that will be evaluated
to determine flow
through the split.

EnumerationValue <simulation:EnumerationValue
Value="Yes" WeightingFactor="10.0"/>

Specifies the possible
values for the
parameter.

26

TIBCO Business Studio™ Customization

Attribute Example Notes

WeightingFactor See EnumerationValue example. Specifies the weighting
given to each transition
in the split. For
example, if each
transition has the same
weighting (10 in the
previous example), the
split will be 50:50.

Javadoc Locations
Javadoc documentation is available as part of TIBCO Business Studio for the core and BOM features.

For the core feature the index file of the Javadoc can be found here:

docs.com.tibco.xpd.core/html/reference/javadoc/index.html

For the BOM feature the index file of the Javadoc can be found here:

docs.com.tibco.xpd.bom/html/reference/javadoc/index.html

27

TIBCO Business Studio™ Customization

Creating an XSLT-Based Import Export Wizard

This section describes how to create either an import wizard for a file format that you want to import into
TIBCO Business Studio or an export wizard for exporting a TIBCO Business Studio package into another
file format.

Once you have written the XSLT that will be used either to import your files into TIBCO Business Studio or
to export from TIBCO Business Studio into another format, you need to create a wizard that will allow
users to perform the export or import. The New Import/Export Wizard Plug-in Generator Wizard allows
you to do this. Using these, you can create a plug-in for your product with all the required JAR files for
exporting from and importing to TIBCO Business Studio.

● This section describes import and export wizards for mappings implemented in XSLT. You can however
use the Eclipse extension points and implement mappings in Java although this is beyond the scope of
this document.

● Use the xpdl2html.xsl XSLT file (located in the com.tibco.xpd.procdoc plug-in) as a starting point for
creating your own XSLT for the wizard.

The xpdl2html.xsl XSLT file contains Java extension functions that are internal and unavailable to
customized exports. The resolution is to remove all such extension functions (search for 'java:'). The
resulting XSLT will still be a reasonable starting point since the primary use of the extension functions is
to support localisation of the text in the output documentation, and this is just an example to help you
get started.

Installation of an Export/Import Plug-in into Post TIBCO Business Studio 3.6.0
In order to create a custom import/export plug-in and enable it for installation into TIBCO Business Studio
you must first create and export the plug-in, create a feature for this plug-in, and finally create an Eclipse P2
Repository containing the feature.

From your P2 Repository your custom import/export feature can be installed into one or more TIBCO
Business Studio installations. The following tasks describe how this is achieved in detail.

Creating Import/Export Plug-in

Procedure

1. Click File > New > Other... and then select New Import/Export Plug-in Generator Wizard from the
wizard list.

2. Fill in the details on the Plug-in Information page (com.example.xyz.import in the example below) and
click Next.

28

TIBCO Business Studio™ Customization

3. Fill in the Import Wizard Information page and click Next (also provide the schema if necessary).

4. Select special folder(s) to filter the content of what can be browsed as a destination folder of the import
wizard. You can also use the Set file extensions filter... field to filter on specific extensions in the source
files browser of the import wizard (all files will be shown if it is empty). Click Next.

5. Click Folder radio button to specify a folder to export the new plug-in and then click Finish.

29

TIBCO Business Studio™ Customization

Importing Plug-in into the Workspace

Procedure

1. Click File > Import, select the Plug-ins and Fragments wizard and click Next.

2. Under Import From, click Directory and specify the folder you used to export the plug-in into step 5 in
Creating Import/Export Plug-in and click Next.

30

TIBCO Business Studio™ Customization

3. Select the import plug-in in the list on the left and click Add to add it to the list on the right. Click
Finish.

31

TIBCO Business Studio™ Customization

Creating a Feature Project

Procedure

1. Click File > New > Other..., select the Feature Project in the wizard and click Next.

2. Fill in the Feature Properties page specifying Project name and Feature name (for example
com.example.xyz.import.feature and XYZ Example Import Feature) and click Finish.

3. Open the com.example.xyz.import.feature/feature.xml file in the feature editor, click the Plug-ins tab
and add com.example.xyz.import plug-in (and then save the file).

Creating Categories (Optional)

Procedure

1. Create a category definition for the feature:
a) Select the feature project and click New > Other….
b) Select Category Definition wizard.
c) ClickNext.
d) Click Finish
This step should create a category.xml file in your feature project and open it in the category definition
editor.

2. In the category editor add a new category and fill in its ID and Name properties (for example you can
use "XYZ Wizards" for both), then select the new category and click Add Feature…. Select
com.example.xyz.import.feature in the dialog window and finally save the file.

32

TIBCO Business Studio™ Customization

Switching Target Platform to the “Running Platform”

Procedure

● Click Window > Preferences…, select the Target Platform page and switch target platform from TIBCO
Active Matrix Runtime to Running Platform and then click OK. This step is necessary to be able to
export the plug-in as it requires dependencies which are not present in the TIBCO Active Matrix
Runtime.
Please switch back target platform after you have finished exporting the plug-in to be able to export
DAAs.

33

TIBCO Business Studio™ Customization

Exporting P2 Repository

Procedure

1. Open feature.xml in the feature editor and select the Overview tab and select the Export Wizard link
in the Exporting section.

2. On the Export wizard's Destination tab click Directory and specify a folder for the export of the feature
(the folder will contain a P2 repository).For example use the C:\XYZWizard\repo folder.

3. On the Options tab select both the Generate metadata repository and Categorize repository checkbox.
Browse for the category.xml file (if you have done the steps in Creating Categories (Optional)) and
click Finish.

34

TIBCO Business Studio™ Customization

As a result you should be able to see that the P2 repository containing your feature (and plug-in) has
been created. (P2 repository is a folder containing installable artefacts in the features and plugins
folders and metadata in the artifacts.jar and content.jar files.)

Switching the Target Platform Back to TIBCO ActiveMatrix Runtime

Procedure

● You must switch the target platform back to TIBCO Active Matrix Runtime. If the target platform is no
longer present, follow the steps in Recreating TIBCO Active Matrix Runtime Target Platform Definition
(If it Disappears).

35

TIBCO Business Studio™ Customization

Installing the Feature from the Repository
You can now install your feature into multiple TIBCO Business Studio installations on different machines.

Procedure

1. Click Help > Install New Software… and press Add… to add a new repository. Click Local… and
choose C:\XYZWizard\repo folder, then set the name of the repository (for example, XYZ Import
Repo). Click OK .

2. Select your feature to install and click Next and you see the Install details. (If you haven't specified a
category you may need to clear the Group items by category check box to be able to see and select the
feature to install.)

3. Click Next to accept the licenses (this can be filled in in the feature editor) and click Finish. Accept the
warning about unsigned content by clicking OK, and restart Eclipse at the end of the installation.

4. After restarting Eclipse you can confirm that your feature has been installed successfully by clicking
Help > About TIBCO Business Studio and clicking Installation Details.

36

TIBCO Business Studio™ Customization

What to do next

The feature can be uninstalled by clicking Uninstall….

You must switch back to the TIBCO ActiveMatrix Runtime target platform when you have finished
creating your P2 Repository. See Recreating TIBCO Active Matrix Runtime Target Platform Definition for
steps to take if your TIBCO ActiveMatrix Runtime target platform is missing.

Recreating TIBCO Active Matrix Runtime Target Platform Definition (If it Disappears)
If TIBCO Business Studio is re-started at anytime when the target platform is switched to the running
platform (see Switching Target Platform to the “Running Platform”) then it is possible that the TIBCO
ActiveMatrix Runtime target platform will no longer be available for selection. In this case you can simply
create a new TIBCO Business Studio workspace and or re-create the target platform using the following
steps.

Procedure

1. From Preferences > Target Platform click Add… to create a new Target Definition and on the first
wizard page choose Nothing: Start with an empty target definition and click Next.

2. On the Target Content page, type TIBCO ActiveMatrix Runtime into the Name field and click Add….

3. On the Add Content page select the Dictionary option and click Next, fill in the Location field with $
{eclipse_home}../../../components/shared/1.0.0 and click Finish.

4. Click Finish to end New Target Definition wizard.

5. Select the newly created TIBCO ActiveMatrix Runtime target definition and accept with OK button.

37

TIBCO Business Studio™ Customization

Deployment Framework

By default, TIBCO Business Studio includes deployment to the iProcess engine. This section describes how
to use the deployment framework to create a server so you can deploy your own artifact (Module) on a
remote server other than iProcess.

You should be proficient in Eclipse and Java development before using the deployment framework.
Recommended reading: Eclipse: Building Commercial-Quality Plug-ins, by Eric Clayberg and Dan Rubel.

The deployment framework allows you to deploy a resource (represented in TIBCO Business Studio as a
Module) on a local or remote system (represented in TIBCO Business Studio as a Server). The Module can
be a resource or set of resources, but it must be located using a Uniform Resource Locator (URL).

The deployment framework assumes that the physical machine referred to by the Server is running; you
cannot start and stop the Server from within TIBCO Business Studio. However, you can connect and
disconnect from the Server. Once connected, you can manage Modules and other objects on the Server by
interrogating their states and performing operations on them.

The typical way deployment is used is as follows:

● The user creates a Server within TIBCO Business Studio that contains all the necessary connection
parameters and details.

● The user connects to the running Server, deploys Modules, interrogates server objects and performs
operations on them.

● The user disconnects from the Server.

Deployment Repository
The deployment framework also supports the concept of a deployment repository. Modules that are going
to be deployed are placed in the repository where the Server can obtain instances of the Modules to deploy.

Using the repository allows the separation of deployment into two distinct phases:

● Providing the Module to the Server (for example, by sending them to a location known to the server).

● Actual deployment

Deployment repositories only handle the first phase of deployment (providing the Module).

Deployment Policy

The deployment framework also handles the deployment policy.

Modules are stored in the Eclipse workspace, which means that they can have the following deployment
policies:

● Deploy on request - the Module is only deployed (or redeployed) when the user explicitly chooses to do
so.

● Deploy on save - the Module is deployed (or redeployed) whenever the Package is saved.

Implementing Deployment
This section describes the steps that you must follow to implement deployment.

The deployment framework provides the following:

● definition of the server type

● abstract connection

● server element structure.

38

TIBCO Business Studio™ Customization

TIBCO Business Studio provides extension points (some of which are optional) that you can implement to
do the following:

● define the server

● specify the method of connection to the server

● define how the server elements will be retrieved from servers

● detail the operations and states that are possible from each operation.

Define the Module
The artifacts that you want to deploy are managed as Modules in TIBCO Business Studio. You also need to
define how the Modules are created.

Define the Management Operations
When a Module is deployed on the server, you can use the TIBCO Business Studio user interface to perform
operations on the deployed Modules. You must define these operations.

Defining the Server
The com.tibco.xpd.deploy.core.ServerType extension point allows you to define the type of server on
which you want to deploy. In your extension, you must provide a reference to a class that implements
com.tibco.xpd.deploy.model.extension.ConnectionFactory, and optionally all necessary server
configuration parameters. ConnectionFactory has a createConnection method that takes a Server object and
should return a connection specific to your server.

The connection to the server is represented by a class that implements the
com.tibco.xpd.deploy.model.extension.Connection interface. For example:
public interface Connection extends IAdaptable {
 void connect();
 void disconnect();
 boolean isConnected();
 void refreshServerContent();
 Object deployModule(String url);
 Object performServerElementOperation(ServerElement serverElement,
 Operation operation);
 Server getServer();
}

The Connection interface has a validateModule() method that validates a module for deployment on the
server. This method must be implemented. If true is returned, the module is deployed. If false is returned,
the module is not deployed. Deployment extensions developed against TIBCO Business Studio Version 2.0
must be recompiled against a later version. This method must be implemented, but can return true to
continue the existing behavior.

Connecting to a Server

Connection holds a reference to a server which you can obtain using the getServer() method. The Connect
method is responsible for connecting to a Server. All necessary parameters needed to obtain connection can
usually be taken from the server configuration, which is initialized when the server is created. The available
configuration parameters are defined in the serverTypes extension point. The values for these parameters
are provided by the user when creating an instance of the Server using the New Server Wizard.

When the connection with the server is established and valid, the isConnected() method should return true;
otherwise it returns false.

When the connection is no longer needed, you can close the connection by invoking the disconnect()
method.

39

TIBCO Business Studio™ Customization

Defining a Runtime (Optional)

A Runtime is configuration data that is shared amongst many server types. For example, if you use a client-
side management system such as a JMX console to manage many servers, this server type could use
common configuration details. This is implemented using the extension point
com.tibco.xpd.deploy.core.runtimeTypes and by providing values for the necessary runtime parameters.

If a server type has an associated runtime, it should be reflected in the serverTypes extension by providing
the associated RuntimeType sub element with the identifier of the runtime type extension.

Define the Possible Server Elements
Next, you must define the possible server elements and the method for obtaining them.

You must do the following:

● define the hierarchy and way of displaying the elements in the Project Explorer
● you must create the structure such that it conforms to the Composite Design Pattern.
When the Framework needs to refresh, the method refreshServerContent retrieves the structure of objects
on the server from which it builds the tree of server elements from the model.

Define States for Elements
You must define the possible states in which an element can be. For example, an iProcess procedure can be
Released, Unreleased, Withdrawn, and so on.

In this process you define the possible states for a given element type. For each operation, you also define
the setTo state (the state that logically follows the success of the operation). The method
getPossibleOperations defines the legal progression of states. For more information see Implementing
Operations for ServerElements.

The operation names and states that you choose will be displayed in the user interface.

Configuring the Repository
The Repository is where a server can obtain Modules which are going to be deployed.

The following diagram shows the phases of deployment based on the Java Business Integration (JBI)
example:

● Phase 1 - The Module is published to the Repository and the inquiry URL is evaluated. The inquiry URL
is an absolute or a relative URL of the Module in the Repository which is known and accessible from the
server.

● Phase 2a, 2b -The deploy module operation is invoked on the server. The parameter of the deployment
operation is the inquiry URL of the Module. The deployModule(String inquiryUrl) method which is a
part of the Connection interface is responsible for this step.

40

TIBCO Business Studio™ Customization

Repository Types

Each server type must be associated with at least one repository type.

There are two pre-defined repository types:

● Workspace - In this case, the publish action (Phase 1) does nothing, and the inquiry URL is the same as
the URL of the Module in the workspace. This repository type is default, and it works well if the server
is on the same machine as the client and the server can deploy Modules directly from the Eclipse
workspace.

● Local folder - The repository will be located in a local folder or equivalent (for example mapped
network folder, or WebDAV mapped folder). This repository type requires two additional configuration
parameters:

— Publishing folder - a path to the repository folder.

— Inquiry URL prefix - a prefix of the enquiry URL that can be resolved on the server (the URL server
will use this to obtain the module).

If you need to define another type of repository, implement the com.tibco.xpd.deploy.core.repositoryTypes
extension point and reference the repository from the serverType extension. You also must provide the
implementation of the com.tibco.xpd.deploy.model.extension.RepositoryPublisher interface for the newly
defined repository type and provide any additional configuration parameters that are needed:
public interface RepositoryPublisher {
 public void publish(RepositoryConfig config, File file);
 public URL getInquiryUrl(RepositoryConfig config, File file);
}

The publish(RepositoryConfig config, File file) method is responsible for publishing Modules to the
repository and will be invoked before deployment. The config parameter references all repository
configuration parameters and their values (that were provided when the server was created). The second
method: getInquiryUrl(RepositoryConfig config, File file) is for obtaining the inquiry URL corresponding
to the file parameter.

If the repository type needs parameters, the values for which should be provided by the user, you should
implement a repository configuration wizard page. To do this, extend the
com.tibco.xpd.deploy.ui.repositoryConfigWizardPage extension. This extension requires the
implementation of the com.tibco.xpd.deploy.ui.wizards.repository.RepositoryConfigWizardPage interface
that defines the additional wizard page with configuration details:
public interface RepositoryConfigWizardPage extends IWizardPage {
 void init(RepositoryType type, RepositoryConfig config);
 void transferStateToConfig();
}

The init(RepositoryType type, RepositoryConfig config) method will be invoked before the page is
created. This provides the RepositoryConfig reference that can be interrogated for configuration
parameters and filled by the user accordingly. The configuration state can also be cached in controls and
transferred to the configuration object just before finish. In this case, the appropriate code to transfer the
state to the configuration has to be put to the transferStateToConfig() method.

Define the Deployment Wizard
You need to define a wizard that allows users to deploy your Module. The key to this is that your artifact
must be capable of being represented as a URL. Your deployment wizard must conform to the Eclipse
iDeployWizard. This requires the implementation of getModulesURL.

In ui.deployWizards, you make the association between the server type id and the wizard.

When you deploy on the server, the extension point registry is searched, and the available wizards for the
server type that you are deploying are displayed. The user then chooses a wizard.

41

TIBCO Business Studio™ Customization

Worked Example - Deployment to a WebDAV Server
This example shows how to use the TIBCO Business Studio Deployment Framework to create a plug-in for
the deployment of a workspace file to a WebDAV (Web-based Distributed Authoring and Versioning)
server. It also describes how to retrieve server objects, information about them, and how to implement
operations performed on these objects.

WebDAV is an extension of the HTTP protocol designed to facilitate editing of web resources. In this
tutorial, we will create a deployment system based on a WebDAV folder (also called a collection in
WebDAV terminology). The TIBCO Business Studio Deployment module will be any workspace file.
During deployment, the file will be put to the selected WebDAV folder which in our example we will call
“site”. We will also display content of the site underneath the server and implement a delete operation
which you can use to remove deployed files.

Prerequisites before you follow the Example
This section lists the tasks that you must complete before you can follow the example.

Creating the Server

Create or obtain access to a WebDAV compatible server. Open source alternatives such as Apache Web
Server WebDAV module are available as well as WebDAV support in commercial web server products. This
tutorial uses Apache Slide, which is based on the Tomcat application server.

To install Apache Slide do the following:

Procedure

1. Download the binary Tomcat bundle from:

http://jakarta.apache.org/slide/download.html

2. Unpack the zipped package.

3. Set the JAVA_HOME environment variable to root directory of Java SDK and run startup.bat (startup.sh
on Unix systems). For detailed installation instructions, see http://jakarta.apache.org/slide/
installation.html.

Result

By default the server runs on port 8080, the default path to the WebDAV root is /slide, and the username
and password are “root”.

To test if the installation was successful, enter http://localhost:8080/slide in your browser. After providing
the correct username and password, a simple directory structure should be displayed.

Set the Target Platform

Set the target platform as follows:

Procedure

1. Install the latest release of TIBCO Business Studio.

2. From the Eclipse development environment, select WindowPreferences, then Plug-in
DevelopmentTarget Platform.

3. Browse for the location where you installed TIBCO Business Studio, and click Reload to load the target
platform.

42

TIBCO Business Studio™ Customization

http://jakarta.apache.org/slide/download.html
http://jakarta.apache.org/slide/installation.html
http://jakarta.apache.org/slide/installation.html

4. When the target platform is finished loading, click OK.

Creating a WebDAV Server Type Extension

Procedure

1. To add a new server type (also called Runtime in TIBCO Business Studio) you must extend
com.tibco.xpd.deploy.core.serverTypes. By convention, servers are defined in separate eclipse plug-ins
named com.tibco.xpd.deploy.server.servername. Therefore, create a new plug-in for the deployment
server called com.tibco.xpd.deploy.server.webdav.

2. Next, provide the necessary dependencies:

3. Add the serverType extension that looks similar to the following:
<serverType connectionFactory=
"com.tibco.xpd.deploy.server.webdav.WebDavConnectionFactory"
 id="com.tibco.xpd.deploy.server.webdav"
 name="Web DAV">
 <supportedRepository
 repositoryId="com.tibco.xpd.deploy.ui.WorkspaceRpository">
 </supportedRepository>
 <configParameter
 key="siteUrl"
 label="&Site URL:"
 name="Site URL"
 parameterType="string"
 required="true">
 </configParameter>
 <configParameter
 key="username"
 label="&User Name:"
 name="User Name"
 parameterType="string"
 required="false">
 </configParameter>
 <configParameter
 key="password"
 label="&Password:"
 name="Password"
 parameterType="password"
 required="false">
 </configParameter>
 <configParameter
 defaultValue="false"
 key="showSubfolders"
 label="Sho&w Sub Folders"
 name="Show Sub Folders"
 parameterType="boolean"
 required="true">
 </configParameter>
</serverType>

43

TIBCO Business Studio™ Customization

● The connectionFactory attribute points to an instance of ConnectionFactory interface, and its
purpose is to provide the server connection implementation class for a particular server:
public class WebDavConnectionFactory implements ConnectionFactory {
 public Connection createConnection(Server server) {
 return new WebDavConnection(server);
 }
}

Connection implementation is the central class of the server and is described in Creating the Server
Type Connection Implementation.

● Server type must support at least one repository type. There are two repository types already
defined in the com.tibco.deploy.ui plug-in, but you can also define your own repository type by
extending the com.tibco.xpd.deploy.core.repositoryTypes extension. This tutorial uses the default,
com.tibco.xpd.deploy.ui.WorkspaceRpository, which simply provides deployment modules
directly from Eclipse workspace.

● Finally, all necessary server connection parameters are defined:

siteUrl – URL to the WebDAV directory (also called collection) where files will be deployed.

username, password – Authentication information for the WebDAV server.

showSubfolders – Sets whether subfolders of the site should be shown. By default this parameter is
false. If the repository is large, setting this parameter to true can cause refresh problems.

Creating the Server Type Connection Implementation

Result

The server type Connection implementation class is responsible for communication with a remote server.

This includes the following:

● connecting to / disconnecting from server
● deploying modules
● providing and refreshing server elements
● updating server state
● performing server element operations
The simplest form of Connection implementation could look like this:
public class WebDavConnection implements Connection {
 private final Server server;
 public WebDavConnection(Server server) {
 this.server = server;
 }
 public void connect() throws ConnectionException {
 server.setServerState(ServerState.CONNECTED_LITERAL);
 }
 public void disconnect() throws ConnectionException {
 server.setServerState(ServerState.DISCONNECTED_LITERAL);
 }
 public boolean isConnected() throws ConnectionException {
 return server.getServerState() == ServerState.CONNECTED_LITERAL;
 }
public DeploymentStatus deployModule(String url) throws DeploymentException {
 return new DeploymentSimpleStatus(
 DeploymentSimpleStatus.Severity.OK, "", null);
 }
 public void refreshServerContent() throws ConnectionException {
 }
 public Server getServer() {
 return server;
 }
 public Object performServerElementOperation(ServerElement serverElement,
 Operation operation) throws DeploymentException {

44

TIBCO Business Studio™ Customization

 return null;
 }
 public Object getAdapter(Class adapter) {
 return null;
 }
}

Although this implementation only changes the server state on a connect or disconnect action, it is sufficient
for the purposes of the tutorial.

In TIBCO Business Studio, you should now be able to start the New Server Wizard and choose Web DAV as
the Runtime. For example:

If you select Web DAV as the runtime, on the screen that follows, you can view the rendered parameters of
the server and the assigned repository. The widgets to capture parameter values are automatically
generated using the parameter descriptions provided in the extension.

After clicking the Finish button, you can view the new server created under the Deployment Servers in the
Project Explorer. You can also invoke connect and disconnect actions from the context menu and as a result
see the server state change.

45

TIBCO Business Studio™ Customization

Connecting to WebDAV server
To make a real connection to the server, you must implement the connect() method. The following example
implementation of the method checks if the authentication information is correct for the provided site, and
also checks that the site is a valid WebDAV resource.
private CollectionHandle siteHandle;
public void connect() throws ConnectionException {
 ServerConfig config = server.getServerConfig();
 String siteUrl = config.getConfigParameter(“siteUrl”).
 getValue().toString();
 String username = config.getConfigParameter(“username”).
 getValue().toString();
 String password = config.getConfigParameter(“password”).
 getValue().toString();
 try {
 password = EncryptionUtil.decrypt(password);
 } catch (IllegalArgumentException e) {
 throw new ConnectionException(
 "Connection failed. "
 + "Password has changed in the servers configuration file. "
 + "Please re-enter the server password.", e);
 }
 WebDAVFactory davFactory = new WebDAVFactory();
 HttpClient httpClient = new HttpClient();
 httpClient.setAuthenticator(new SimpleBasicAuthenticator(username,
 password));
 DAVClient davClient = new RemoteDAVClient(davFactory, httpClient);
 ILocator siteLocator = davFactory.newLocator(siteUrl);
 siteHandle = new CollectionHandle(davClient, siteLocator);
 try {
 if (siteHandle.canTalkDAV()) {
 server.setServerState(ServerState.CONNECTED_LITERAL);
 } else {
 throw new ConnectionException(
 "Cannot connect to WebDAV site.");
 }
 } catch (DAVException e) {
 throw new ConnectionException(e);
 }
}

In this example, the server parameters’ values are read from the server configuration. Then, we create
davClient and siteLocator (which is responsible for locating DAV resource). Next we create
CollectionHandle (the proxy for a remote resource) for the site and invoke the canTalkDAV() method. This
method checks if the connection to the server can be made, and if the corresponding remote resource is a
valid WebDAV collection resource.

The WebDAV is a request response protocol, so there is no explicit session associated with a connection.
However, the HttpClient used by siteHandle does contain some session information (for example
authentication information) that is sent with every request.

46

TIBCO Business Studio™ Customization

Providing Server Elements
The server can contain multiple ServerElement objects which represent objects on the server (usually
existing modules). They are displayed in the Project Explorer under the server and can be arranged in a
hierarchical structure:

The refreshServerContent() method from the Connection interface is responsible for providing and
updating server elements. The following example shows an implementation of the method for a WebDAV
server.
public void refreshServerContent() throws ConnectionException {
 if (isConnected() && siteHandle != null) {
 try {
 refreshServer(siteHandle);
 } catch (DAVException e) {
 server.getServerElements().clear();
 disconnect();
 throw new ConnectionException(e);
 }
 } else {
 server.getServerElements().clear();
 }
}
private void refreshServer(CollectionHandle site) throws DAVException {
 boolean showSubfolders = Boolean.parseBoolean(WebDavConstants
 .getConfigParamValue(server.getServerConfig(),
 WebDavConstants.SHOW_SUBFOLDERS));
 HashSet<String> existingFileNames = new HashSet<String>();
 HashSet<String> existingDirNames = new HashSet<String>();
 Set<AbstractResourceHandle> members = site.getMembers();
 for (Iterator iter = server.getServerElements().iterator(); iter
 .hasNext();) {
 ServerElement se = (ServerElement) iter.next();
 String name = se.getName();
 if (se instanceof ModuleContainer) {

47

TIBCO Business Studio™ Customization

 boolean exist = false;
 for (AbstractResourceHandle member : members) {
 if (isCollectionMember(member)
 && name.equals(getMemberName(member))) {
 if (showSubfolders) {
 refreshCollection((CollectionHandle) member,
 (ContainerElement) se);
 }
 exist = true;
 existingDirNames.add(name);
 }
 }
 if (!exist) {
 iter.remove();
 }
 } else if (se instanceof ServerModule) {
 boolean exist = false;
 for (AbstractResourceHandle member : members) {
 if (!isCollectionMember(member)
 && name.equals(getMemberName(member))) {
 setModuleProperties((ServerModule) se, member);
 exist = true;
 existingFileNames.add(name);
 }
 }
 if (!exist) {
 iter.remove();
 }
 }
 }
 for (AbstractResourceHandle member : members) {
 String memberName = getMemberName(member);
 if (isCollectionMember(member)) {
 if (!existingDirNames.contains(memberName)) {
 ModuleContainer moduleContainer = DeployFactory.eINSTANCE
 .createModuleContainer();
 moduleContainer.setName(memberName);
 if (showSubfolders) {
 refreshCollection((CollectionHandle) member,
 moduleContainer);
 }
 server.getServerElements().add(moduleContainer);
 }
 } else {
 if (!existingFileNames.contains(memberName)) {
 ServerModule module = DeployFactory.eINSTANCE
 .createServerModule();
 module.setName(memberName);
 setModuleProperties(module, member);
 server.getServerElements().add(module);
 }
 }
 }
}

During the method invocation, we connect to the WebDAV server and obtain remote resources’
information. Then we create corresponding server modules and/or update their state and properties.

When the user disconnects from the server, all server elements should be removed.

In a future implementation, the server elements could be enhanced to better support hierarchical structures
of server objects.

Deploying Modules
To implement modules deployment we will have to do the following:

● Implement DeploymentStatus deployModule(String url) method for the Connection implementation.

● Provide a deployment wizard.

48

TIBCO Business Studio™ Customization

Implementing the deployModule Method

The example in this section shows an implementation of the deployModule method for a WebDAV server.
This method is responsible for the deployment of a single file to the WebDAV site.
public DeploymentStatus deployModule(String url)
 throws DeploymentException {
 Assert.isNotNull(siteHandle);
 Assert.isTrue(url != null && url.trim().length() > 0);
 InputStream inputStream = null;
 String deploymentMsg = "Deploying: " + url;
 try {
 DAVClient client = siteHandle.getDAVClient();
 String remoteUrl = getSiteRelativeURL(siteHandle, url);
 ILocator resourceLocator = client.getDAVFactory().newLocator(
 remoteUrl);
 URL localUrl = new URL(url);
 inputStream = localUrl.openStream();
 IResponse response = client.put(resourceLocator, client
 .getDAVFactory().newContext(), inputStream);
 int statusCode = response.getStatusCode();
 String statusMessage = response.getStatusMessage();
 String responseMessage = "\n" + statusCode + ':' + statusMessage;
 if (statusCode == IResponse.SC_CREATED
 || statusCode == IResponse.SC_NO_CONTENT) {
 return new DeploymentSimpleStatus(
 DeploymentSimpleStatus.Severity.OK, deploymentMsg
 + responseMessage, null);
 } else {
 return new DeploymentSimpleStatus(
 DeploymentSimpleStatus.Severity.ERROR, deploymentMsg
 + responseMessage, null);
 }
 } catch (IOException e) {
 return new DeploymentSimpleStatus(
 DeploymentSimpleStatus.Severity.ERROR, deploymentMsg, e);
 } finally {
 try {
 inputStream.close();
 } catch (IOException e) {
 // TODO Log error
 e.printStackTrace();
 }
 }
}

The method’s parameter is a string that contains the URL of the file in the deployment repository (also
called the inquiry URL). Because we use “Workspace Repository” this URL is the same as the URL of the
local file. Before the module is deployed, it is published to the server repository and the repository is asked
to provide the inquiry URL for the published module. This inquiry URL is passed as a parameter to the
deployModule method, and it is used by the server to access the module from the repository (it could be
different to the local module URL).

Providing the Deployment Wizard

This section describes how to provide a deployment wizard and associate it with the WebDAV server type
by implementing the com.tibco.xpd.deploy.ui.deployWizards extension point.
<extension
 point="com.tibco.xpd.deploy.ui.deployWizards">
 <deployWizard
 class="com.tibco.xpd.deploy.server.webdav.ui.WorkspaceFileDeployWizard"
 id="com.tibco.xpd.deploy.server.webdav.workspaceFileWizard"
 name="Workspace File"
 serverTypeId="com.tibco.xpd.deploy.server.webdav"/>
</extension>

49

TIBCO Business Studio™ Customization

The main purpose of a deployment wizard is to provide a list of URLs for local modules. To do this, the
wizard class must implement IDeployWizard. The most important method in this interface is List<URL>
getModulesUrls(), which (after the wizard finishes) should return a list of modules’ local URLs.

Implementing Operations for ServerElements
To implement operations for server elements, you must define the following:

● Types of elements

● Possible states for a defined element type

● Operations that can be performed

● Operations that can be performed when an element is in a particular state

It is also necessary to set the correct type and state for every server element created when calling the
refreshServer method.

The following code fragment shows how to create and configure all necessary elements to implement a
WebDAV module (file) delete operation.
private OperationImpl deleteFileOperation;
private ServerElementType fileType;
private ServerElementState publishedState;
private void initialiseServerElementTypes() {
 DeployFactory f = DeployFactory.eINSTANCE;
 fileType = f.createServerElementType();
 // states. States should not be shared between different element types
 publishedState = f.createServerElementState();
 publishedState.setName("Published");
 // all states server element type could be in
 fileType.getStates().add(publishedState);
 // operations
 deleteFileOperation = new OperationImpl() {
 @Override
 public Object execute(ServerElement serverElement)
 throws DeploymentException {
 try {
 return deleteRemoteFile(serverElement);
 } finally {
 refreshServerContent();
 }
 }
 };
 deleteFileOperation.setName("Delete");
 // all available operations for server element type
 fileType.getOperations().add(deleteFileOperation);
 // possible operations for states
 publishedState.getPossibleOperations().add(deleteFileOperation);
}

Also when you create modules using the refreshServer method, you must set an element’s type and state as
follows:
serverElement.setServerElementType(fileType);
serverElement.setServerElementState(publishedState);

Summary
This tutorial showed how to use the TIBCO Business Studio Deployment Framework to create a plug-in for
the deployment of a workspace file to a WebDAV server. It also described how to retrieve server objects,
information about them, and how to implement operations performed on these objects.

The following features are available, but were not demonstrated by this tutorial:

● The ability of the deployment framework to allow you to create additional module repository types.

● The reuse of configuration information in a client runtime. This is useful, for example, if many server
types use common configuration data or a common platform on the client side. This common

50

TIBCO Business Studio™ Customization

configuration information can be stored by the client runtime which can be shared by multiple servers.
For more information about runtimes, see Defining a Runtime (Optional).

● "On save" module deployment, in which a module is automatically deployed when the content of the
module changes.

51

TIBCO Business Studio™ Customization

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly in
HTML and PDF formats.
The website is updated frequently and is more current than any other documentation included with the
product.

Product-Specific Documentation

The following documentation for TIBCO Business Studio is available on the TIBCO Business Studio
Product Documentation page:

● TIBCO Business Studio™ Release Notes

● TIBCO Business Studio™ Concepts

● TIBCO Business Studio™ Modeling User's Guide

● TIBCO Business Studio™ - Analyst Edition User's Guide

● TIBCO Business Studio™ - BPM Implementation

● TIBCO Business Studio™ Forms User's Guide

● TIBCO Business Studio™ Simulation User's Guide

● TIBCO Business Studio™ Customization

● TIBCO Business Studio™ - Analyst Edition Installation

● TIBCO Business Studio™ - BPM Edition Installation

● TIBCO Business Studio™ iProcess to BPM Conversion

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

● For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support website.

● For creating a Support case, you must have a valid maintenance or support contract with TIBCO. You
also need a user name and password to log in to TIBCO Support website. If you do not have a user
name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

52

TIBCO Business Studio™ Customization

https://docs.tibco.com/
https://docs.tibco.com/products/tibco-business-studio-bpm-edition-4-3-2
https://docs.tibco.com/products/tibco-business-studio-bpm-edition-4-3-2
https://www.tibco.com/services/support
https://support.tibco.com/
https://support.tibco.com/
https://ideas.tibco.com/
https://community.tibco.com

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, Enterprise Message Service, Business Studio, and ActiveMatrix
are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other
countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system platforms
for a specific software version are released at the same time. See the readme.txt file for the availability of
this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.

53

TIBCO Business Studio™ Customization

https://www.tibco.com/patents

	Contents
	Understanding the Process Package File Format
	Implementing Business Process Integration (Import)
	Exporting from TIBCO Business Studio
	XPDL 2.1 Schema Overview
	XPDL Migration Injector
	Configuration Markup

	Execution Details of a Package
	Creating a Package
	Setting the Destination Environment
	Date and Time Data Types

	Customizing Configurations for Process Editors
	Visual Characteristics of a Package
	NodeGraphicsInfo
	ConnectorGraphicsInfo

	References Between Elements
	Schema Extensions
	Schema Extensions for Service Tasks
	Simulation Schema Overview
	Implementation
	Activity Parameters (ActivitySimulationData)
	Specifying Duration Distributions
	Specifying the Time Unit
	Adding a Looping Control Strategy
	Adding SLA Information

	Participant Parameters (ParticipantSimulationData)
	Sequence Flow Splits (SplitSimulationData)
	Simulation Start Parameters (StartSimulationData)
	Sequence Flow Parameters (TransitionSimulationData)
	Parameter Distribution (WorkflowProcessSimulationData)

	Javadoc Locations

	Creating an XSLT-Based Import Export Wizard
	Installation of an Export/Import Plug-in into Post TIBCO Business Studio 3.6.0
	Creating Import/Export Plug-in
	Importing Plug-in into the Workspace
	Creating a Feature Project
	Creating Categories (Optional)
	Switching Target Platform to the “Running Platform”
	Exporting P2 Repository
	Switching the Target Platform Back to TIBCO ActiveMatrix Runtime
	Installing the Feature from the Repository
	Recreating TIBCO Active Matrix Runtime Target Platform Definition (If it Disappears)

	Deployment Framework
	Deployment Repository
	Implementing Deployment
	Define the Module
	Define the Management Operations
	Defining the Server
	Connecting to a Server

	Define the Possible Server Elements
	Define States for Elements
	Configuring the Repository
	Repository Types

	Define the Deployment Wizard

	Worked Example - Deployment to a WebDAV Server
	Prerequisites before you follow the Example
	Creating the Server
	Set the Target Platform

	Creating a WebDAV Server Type Extension
	Connecting to WebDAV server
	Providing Server Elements
	Deploying Modules
	Implementing the deployModule Method
	Providing the Deployment Wizard

	Implementing Operations for ServerElements
	Summary

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

