
TIBCO Business Studio™

Forms User's Guide
Version 4.3.2

May 2022

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.



Contents

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

The Modeling Environment for Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

The Form and Form Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Form Builders and Form Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Viewing the Build Configuration of a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Data Mappings File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Structure of the Data Mappings File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Data Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Enabling the Generation of the Data Mappings File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Direction of Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Assigning Binding Both Ways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Actions Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Rules Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

The Design Tab and Preview Tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Configuring Presentation Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Port Settings for Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Copy Form Preview URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Locale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Logging Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Reload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Instrumentation Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

View Datastore Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Visibility in the Preview Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Outline View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Forms Compact Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Thumbnail Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Tree Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Usage of the Outline View with Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Data Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2

TIBCO Business Studio™ Forms User's Guide



Shared Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Managing Form Elements From the Outline View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Use Business Labels in Outline View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Business Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

The Objects in a Business Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Multiplicity of Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Live Development of Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Viewing Forms in BPM Live Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Setting Preferences for BPM Live Dev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Setting Preferences from the Properties View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Setting Preferences from the Preferences Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Cross-Resource References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Breakage Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Quick Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Mobile Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Modified Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Enabling Mobile Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Mobile Forms Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Mobile Specific Configuration of Controls and Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Rendering of Mobile Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Problem Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Creation of a New Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

Drag and Drop Gesture to Customize a Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

Setting Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Adding a Binding from the General Properties Tab for a Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Adding a Binding from the Parameter Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Adding a Binding from the Mappings Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

Removing a Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Setting Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Adding a Script Action Using the Outline View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Adding a Computation Action Using the Outline View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Editing an Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Setting Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Adding a Rule Using the Outline View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Picking an Existing Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Creating a New Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Adding a Rule Using the Rule Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3

TIBCO Business Studio™ Forms User's Guide



Enhanced User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

Enhanced User Interface on Custom Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

CSS Best Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Cascading Style Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Data Validation in a Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Validation Messages and Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Validation Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Implementing Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Adding a Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Editing a Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Examples of Validation Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Example 1 Setting a Custom Validation Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Example 2 Custom Validation Message with Substitution Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Example 3 Validation Message Referenced from External Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Calling External JavaScript Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Specialized Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

Nesting Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

Creating Columns with Nested Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Positioning Controls into a Multi-Column Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Resequencing Tabbed Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Resizing a Tabbed Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Positioning a Modal Dialog Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

Setting Visibility of Pane and Control Borders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Embedded Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

Working with Embedded Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Creating an Embeddable Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Embedding a Form by Using the Embedded Form Icon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Embedding a Form from the Project Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Adding a BOM Class or Form Parameter to a Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Embedded Form Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Setting Bindings from the Mappings Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Rendering of Embedded Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Editing Embedded Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Mappings Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

Coloration Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Setting Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Adding Computation Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

Editing Computation Action Using the Script Editor Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Editing Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4

TIBCO Business Studio™ Forms User's Guide



Property Resource Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

The Merging Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Customizing Property Resource Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

Validations Related to Custom Common Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Customizing the Form’s Preview Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Editing the File form-name .data.json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Configuring the Setting in the Properties View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

Form Data Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Configuring a Form Data Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Numeric Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Inserting a Numeric Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

Inserting External Reference Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Creating a Custom Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Adding the Properties File in the Resource List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Inserting a Custom Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Editing a Numeric Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Localization of Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Creating a Locale-specific Properties File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Language-specific and Country-specific Properties Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Locale-specific Version of a Form at Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Defining Localization Properties Outside the Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Example Using a Localization Properties File Defined Outside the Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

Business Analysis and Solution Design Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Migration from Previous Versions of TIBCO Business Studio Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Advanced Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Using CSS to Customize the Rendering of a Form Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Using Editable List Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Changing a Control’s Background Color Based on its Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Performance Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Static Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Constraints on Model Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Restrictions on Runtime Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Deferred Rendering and Deferred Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Constraints on Model Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Restrictions on Runtime Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Custom Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Working with the Component Library File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Working with the ControlWrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Usage of Custom Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5

TIBCO Business Studio™ Forms User's Guide



Runtime Life Cycle of Custom Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Runtime Life Cycle of Custom Control Used within Grid Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Component Library Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Palette Drawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Event Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

External Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Control Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Control Wrapper Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

initialize() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

refresh() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

destroy() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

getValue() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

getFormattedValue() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

isReady() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

setFocus() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

compare() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

renderStatic() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Component Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

generateId() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

getControl() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

getFactory() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

getForm() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

getHintId() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

getLabelId() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

getLocale() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

getParentNode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

getPresentationURL() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

getResources() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

getValidationMessageIds() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

raiseEvent() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

BOM JavaScript API for Custom Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Factory Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

BOM Class Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

BOM Class Instance Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Utility Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6

TIBCO Business Studio™ Forms User's Guide



The Workbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

The Palette for the Form Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Types of Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

Setting Pane Properties with Bindings and Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Edit as List with a Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Control or Component Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Properties View Tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Properties View for Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Mappings Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Font Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

Child Layout Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

Child Labels Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

Rules Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Resources Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Preview Data Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Properties View for Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Properties Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Mappings Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Layout Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Font Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

Child Layout Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

Child Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Validations Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Rules Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Mobile Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

Properties View for Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Mappings Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Properties Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

Layout Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Font Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Validations Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Rules Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Mobile Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

Configuration of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7

TIBCO Business Studio™ Forms User's Guide



Context Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Keyboard Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

Grid Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

Grid Panes in Display Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

Grid Panes in Edit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Grid Pane Column Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

Grid Pane Navigation Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

List Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

List Controls in Display Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

List Controls in Edit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

List Control Command Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Record Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177

Record Pane Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177

Record Pane Navigation Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Tabbed Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

CSS Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Built-in Static CSS Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Built-in Dynamic CSS Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

Common Resource Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

Keys for Number Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Keys for Basic Number and Currency Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

Keys for Duration Control Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

Keys for Date-Time Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186

Keys for Optionlist Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Keys for Built-in Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Keys for Grid and Record Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

Keys for Modal Dialog Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Keys for Built-in Validation Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Keys for List Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

Keys for Implicit Validation Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Keys for Enhanced User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Miscellaneous Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Design-time Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Client-side Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208

Forms Scripting Scope of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208

Forms Scripting Order of Script Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

API for Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Methods for Form Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8

TIBCO Business Studio™ Forms User's Guide



Methods for Control Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Methods for Pane Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Methods for List Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223

Methods for Iterator Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Methods for Logger Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Complex Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

Factories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

DateTimeUtil Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

Duration Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Utility Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Tips and Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Recommendations for Forms Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234

Grouping Related Controls Together in Vertical Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234

The Visibility Property to Simplify User Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234

Configuration of the Pane Type Property (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Modifying Excessively Long Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Expansion of Narrow Panes to Avoid Wrong Placement at Run Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Creation of Tabbed Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Addition of a Tab to an Existing Tabbed Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

FAQs on TIBCO Business Studio Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Tips for Using TIBCO Business Studio Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

TIBCO Documentation and Support Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Legal and Third-Party Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

9

TIBCO Business Studio™ Forms User's Guide



Figures

Form Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Invisible and Visible Form Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Business Object Model Editor Showing Child Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Date Spinner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Time Spinner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Duration Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Choice Spinner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Record Panes Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

DND Items from the Project Explorer View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

DND Items from the Form Designer Outline View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

The Define Validation Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

The Resource Picker Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

The Edit Validation Script Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

The General Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Defining Custom Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Validation Script Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Defining Custom Validation Using Substitution Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Validation Script Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

The Define Validation Dialog Using External Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Place Vertical Panes on the Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Position the New Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

New Horizontal Pane is Automatically Created . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Preview Rendering of the Parent Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Mappings Tab of the Properties View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

Merging Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

Sample Resource Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Base Properties File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Business Analysis and Solution Design Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Custom Control Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Component Library Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Component Library Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Library Editor Properties View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ControlWrapper Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Eclipse Workbench with Project Claims Process - No Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Vertical, Horizontal, Tabbed, and Message Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

Design View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Script and Message Example for a Message Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

New Child Pane Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

10

TIBCO Business Studio™ Forms User's Guide



Concepts

It is important to understand concepts and terminology related to creating forms in TIBCO Business Studio.

The Modeling Environment for Forms
The context for creating and deploying forms is the BPM Modeling perspective of TIBCO Business Studio.

An understanding of the terms and concepts explained in the TIBCO Business Studio guides and tutorials
on Process Modeling and the Business Object Modeler are useful for performing the procedures used to
create and deploy forms. In addition, familiarity with the basics of the Eclipse environment makes it easier
to work with TIBCO Business Studio and Forms. You can refer to The Workbench to get a general idea
about the Eclipse workbench. You can also see the Concepts chapter in the Workbench User Guide for
information about projects, folders, perspectives, views, menus, and toolbars as they are applied in Eclipse.
That guide, as well as all guides related to TIBCO Business Studio and your Eclipse environment, can be
accessed by clicking Help Contents on the Help menu.

The Eclipse Workbench User Guide describes the ways you can customize your Eclipse environment to suit
your personal preferences.

The Form and Form Elements
Forms can be created as a stand-alone resources. A form is a model of a user interface designed for a
particular task or type of task. When deployed to an execution environment, the form drives the user
interface or interaction with the human who has been assigned the associated task.

The user interface helps the user to complete the task quickly and correctly by presenting information that
is relevant to the task, asking for information that is required, and validating any information that the user
provides. All of these capabilities are modeled within the form in TIBCO Business Studio.

Forms contain user interface controls and panes as well as input and output parameters. They may also
contain control validations, bindings, actions, and rules.

A form contains two main types of objects in its visual layout: panes and controls. Each pane and control on
a form has a Properties view associated with it, where you can view and edit the properties that determine
the layout and functionality of that object. See the figure Form Elements for the form element presentation.

Form Elements

Panes

Panes are used as a mechanism to control the layout of the form.

11

TIBCO Business Studio™ Forms User's Guide



Several types of panes are found in the palette. Vertical and horizontal panes support the visual alignment
of controls as well as other nested panes. When nested inside a special tabbed pane, these panes behave
similar to tab pages. Error messages from control validations are displayed in a Message pane.

Panes can also specify the default rendering of controls they contain (called child controls), such as the font
and label position.

Panes and controls may be generated automatically from an underlying Business Object Model (BOM) or
an application-specific model in a product making use of TIBCO Business Studio Forms.

Panes and controls can be added manually by clicking the icon for the desired object in the palette and then
clicking again in the location where you wish to place the object on the canvas. The object can also be
inserted by clicking the item in the palette and dragging it to the desired location in the canvas.

Ergonomic best practice is to use the “click-move-click” gesture instead of “click-drag-drop” in order to
avoid strain on the Carpel Tunnel that can cause Repetitive Strain Injury (RSI).

See Panes for more details.

Controls

Controls are user input elements. They include text controls, date and time controls, radio buttons, check
boxes, and images.

They enable the display and capture of data in different ways. Controls have text labels, and usually have
fields that display and accept input from a user. A number of settings can be configured for a control, such
as labels, hints, visibility, fonts, and others. Control labels, hints, and choice labels can be localized in
properties files.

See Controls for more details.

Parameters

Parameters represent the data passed between the form and the containing application. The values of
parameters can be bound to the values of controls, or to the other settings on controls and panes.

Output parameters can also be mapped to controls. The parameter can be an IN parameter, which means
the value is read-only and provided to the form when it is opened. An OUT parameter is provided by the
user and sent back to the containing application. A parameter can also be IN/OUT.

Parameters have unique names within a specific form. Each parameter has a type, which can either be one
of the pre-defined primitive types such as Integer or DateTime, or a complex type defined by the user in a
Business Object Model.

For more details, see Configuration of Parameters.

Validations

Validations are used to check the validity of data specified by the user and specify an appropriate message
to display to the user in the event the validation fails. Validations are executed either when the form is
submitted or when the value of the control is updated.

Errors and warnings that result from validation are displayed in the Problems view. Validation messages
can be localized.

See Form Builders and Form Validation for more details.

Bindings

Bindings are used to synchronize values within a form, such as binding the value of a parameter to the
value of a control, or using the value of one control to update the visible flag on another control or pane.

See Bindings for more details.

12

TIBCO Business Studio™ Forms User's Guide



Actions

An action is a unit of executable functionality. Actions have names and can be executed from rules or
scripts. Predefined system actions include submit, reset, and validate.

See Actions for more details.

Rules

Rules are used to encapsulate business logic that is to be executed at certain points within the form. A rule
specifies one or more actions that are to be executed in response to one or more event triggers within the
form.

See Rules for more details.

Form Builders and Form Validation
The Form Builders and Validation Builder are Eclipse builders that perform various post-processing
operations on a form model when the project is built. Generally speaking, the Eclipse auto-build feature
will be enabled, which causes an incremental build to run automatically whenever a file is saved. When you
create a new Business Studio project that includes forms functionality, the New Project Wizard configures
the project with the Form Builders and Validation Builder.

Consult the Eclipse documentation for further information on the Eclipse build system.

The Validation Builder also performs live validation, which occurs automatically whenever any aspect of
the form is modified through the Form Designer canvas, Outline view, or Property view. Form validations
can be configured via the Preferences dialog at Window > Preferences > Form Designer > Errors/
Warnings .

For each of the validation rules enforced by the Validation Builder, you can use the dropdown list to
configure the severity of each problem as Error, Warning, Info, or Ignore.

The default problem severities are carefully chosen to minimize the possibility of errors at runtime. Change
them only on the recommendation of TIBCO Support.

Form Builders

The Form Builders externalize display strings from the form model into property resource files with the
path name /<project>/<form-folder>/<form-name>.properties, where

<project> is the project name,

<form-folder> is the folder containing the form file, and

<form-name> is the unqualified name of the form file, minus the .form file extension.

To create a localized version of a form, you will make a copy of this .properties file, rename it by
appending the appropriate standard two-character ISO language code (and, optionally, country and variant
codes), and translate the strings into the desired language.

For more information about how to localize a form, see The Form and Form Elements .

Validation Builder

The Validation Builder performs these functions:

● Analyses the form model for general syntactical and semantic errors and inconsistencies

● Applies constraints specific to the target platform/version

● Reports any such problems as problem markers, which show up in the Problems view. To make it easier
to locate problems, the problem markers for errors also appear as decorator icons adjacent to the

13

TIBCO Business Studio™ Forms User's Guide



offending form element in the Project Explorer, the Outline view, and in the Form Designer. For more
information about problem markers, see Problem Markers.

Viewing the Build Configuration of a Project
You can see the builders for a particular project in the project properties.

Procedure

1. In the Project Explorer view, right-click a TIBCO Forms project to display the Context Menu and click
Properties.

2. Click Builders in the left-hand panel.

The entries for Validation Builder and Form Builders are displayed in the right-hand panel.

Data Mappings File
The data mappings file provides mapping information between the form-level parameters and the controls
or panes that render or update those parameters. The generation of this file is optional.

You can use the information in the file to determine which controls and panes of a form are bound to the
form-level parameters and the properties within those parameters. For each bound pane and control, a key
is generated that represents a full path to the property to which the control or pane is bound.

Any control or pane whose value is directly or indirectly bound to a form-level parameter, is listed in the
data mappings file. If a control is bound to a pane value or a data field value, and if that value is bound to a
parameter, the key is expressed in terms of the full path from the underlying parameter. The generated
key:value pairs within the data mappings file are accessible from form scripts.

The data mappings file is automatically added to the form as an external resource and the key:value pairs
within it are accessible in the same manner as other property files associated with the form. It is not
generated for default forms.

A single mappings file covers all the control and pane bindings in the form, even those that occur within
nested embedded forms. The control and pane names within the mappings file correspond to the names of
the embedded controls and panes after they are prefixed. The generated keys remain stable as long as the
name of the underlying parameter and those of the properties on the path remain the same.

Structure of the Data Mappings File

The Form Designer generates the data mappings file in the Presentation Resources folder for each form.

The naming convention is as follows:
<form-name>.mappings.properties

The mappings file provides keys that correspond to the form parameters and provide a reference to the
control or pane that renders the value. The value of any given key depends only on the name of the
parameter upon which it is based. As long as the parameter names remain stable, the generated keys also
remain stable.

The format of each line in the property file is as follows:
<key>=<value>
where:
  <key> ::= <bindable-name> ['$' <property-name>]*
  <bindable-name> ::= 'param'_<element-name>
  <element-name> ::= [a-zA-Z][0-9a-zA-Z_]*
  <property-name> ::= [a-zA-Z_][a-zA-Z0-9_]*
  <value> ::= <element-ref> [',' <element-ref>]*
  <element-ref> ::= <element-prefix> '.' <element-name>
  <element-prefix> ::= 'control' | 'pane'

14

TIBCO Business Studio™ Forms User's Guide



Data Binding

Keys that begin with param are serialized alphabetically in the data mappings file. These keys signify that
the component in the value can be traced back to a specific property in a form parameter.

For example:
  param_customer$firstName = control.fname

This signifies that the control fname is bound to the firstName attribute of the parameter customer. If the
parameter type contains nested classes, the key consists of multiple property names, separated by $.

For example:
  param_customer$address$zipCode = control.zip

Here, the key refers to the zipCode property of the Address object, which is contained by the Customer
object.

In some situations, more than one component may reflect the value in the property of a form parameter. For
instance, consider a master-detail pane where a property can show up as both a column in the master grid
pane, and also as an editable field in the detail pane. In such cases, all components that can be traced back
to the same data key are shown as a comma-separated list on the corresponding value.

For example:
  param_customer$firstName=control.fname__master,control.fname

Bindings are also provided for panes:
  param_customer=pane.customer

Here, the value of the customer parameter itself is bound to the customer pane.

Enabling the Generation of the Data Mappings File

The generation of the data mappings file is controlled by the project-level and workspace preferences.

If the generation is enabled and you remove or edit the data mappings file, the Form Designer regenerates
it when the project or form is built. The corresponding *.mappings.properties.json file is deployed
along with other form resources.

If you change the 'Generate a form mappings file' preference, the 'Internal resource references are
incorrect' problem marker occurs on all the forms. You can fix it by using the Quick Fix context menu and
by selecting 'Configure internal resource references' on the Quick Fix popup.

Procedure

1. In the Project Explorer, right-click the project, and select Properties. Or click the Project menu, and
select Properties.

The Properties dialog for the project name opens.

2. In the left pane, click the Form Designer arrow to expand it, and select Resources.

3. Select Enable project specific settings.

4. Select Generate a form mappings file.

The check box is cleared by default.

5. Click Apply, and in the ensuing Rebuild? dialog, click Yes.

You can also enable the generation of the Data Mappings file at the workspace level. Clicking
Window > Preferences opens the Preferences dialog, in which, Resources is displayed in the
expanded Form Designer. In the Resources pane, the Generate a form mappings file check
box is available.

15

TIBCO Business Studio™ Forms User's Guide



Bindings
TIBCO Business Studio Forms uses bindings to update properties in the runtime forms data model by
connecting attribute values of parameters, controls, and panes. A binding always has two endpoints.

An absolute binding can connect the value of a control to the value of a parameter’s data field, or to one of
the child attributes or objects of that parameter.

Depending on the properties to be connected, bindings can be added from the General Properties tab of a
control, pane, or a parameter.

An optionlist and radiogroup, a URL and URL Text of Hyperlink, and the URL of an Image control can also
have bindings, which you can establish from the Properties tab of these controls. You can also use the
Mappings tab to view, edit, and create bindings.

Click the Add a Binding button to set a binding for the given property or update that property using a rule
that specifies a computation action.

Binding Between Controls

The General Properties tab for controls provides a mechanism for setting bindings between the value or
property of one control and the value or property of another control or parameter.

When you define a binding for a control, its value is used to update the secondary properties of another
control such as Label, Hint, and so on. The update is one way only, that is, the secondary properties cannot
use bindings to update the value of the initially selected control.

Binding Between a Control and a Parameter

To connect a control with a parameter, you can use either the General tab of a control, or the parameter
dialog for that parameter.

For information on working with bindings, see Setting Bindings.

Binding from the Mappings Tab

You can use the Mappings tab of the Properties view for selected element in the Form Designer canvas to
set bindings. For more information, see Mappings Tab.

Direction of Bindings
A binding can have three directions.

The three directions are:

●
Updated By :
This signifies that the targeted value will be updated when the other value is updated.

However, if the target value changes for any reason, the other value in the binding will not be affected.

●

Update :
Updates to this value will cause the other value in the binding to be updated.

The control and parameter values can update other properties, but properties such as control visibility,
enabled, required, label, and hint cannot update other values in a binding.

●
Synchronizes With :
With this type of binding, updates to either value will cause the other value to be updated to the same
value. Each end of the binding must be either a control or parameter value.

16

TIBCO Business Studio™ Forms User's Guide



Assigning Binding Both Ways

A two ways binding can be added for controls (only for values).

Procedure

1. Add a text control textinput1.

2. Add another text control textinput2.

3. Go to Properties tab of the control textinput1 and click the binding icon for the Value field.

4. Search for textinput2 control in the list and expand the items under it.

5. Click the Value field of the textinput2 control.
You will be able to assign a binding both ways.

Actions
Actions are invoked from rules in response to form events or programmatically from within a script. An
action can be private to a single rule, or shared amongst multiple rules.

TIBCO Business Studio Forms uses three types of actions:

● System actions
These actions, also called built-in actions, are pre-defined and are used for common tasks such as
Submit, Close, Cancel, Reset, Validate, and Apply.

● Script actions
Use JavaScript to create additional custom actions. Script actions run a specified script, with no other
action attached to it.

● Computation actions 
These actions will update a specified value or property with the result of an expression written in
Javascript. The destination of a computation action can be the value of a parameter or control, or a
secondary property such as label or hint of a control, or a visible flag for a pane, and so on. After the
script in the computation action is run, it produces a value that can be used by another action.

Actions can be flagged as “shared” allowing them to be used in multiple rules.

System actions can be used also by the users working in Business Analysis mode, while the scripted actions
and computation action can be developed only by the users working in Solution Design mode. Once actions
have been defined within a form by a developer, business analysts can re-use them for similar purposes in
their projects.

To add an action, right click the Shared Actions system group in the Outline view.

To add and configure actions, see Setting Actions.

To associate actions with rules, see Setting Rules.

Actions Summary Table
The Actions summary table provides a useful overview of the shared actions. Clicking the Shared Actions
node in the Outline view displays the Actions summary table in the Properties view, listing each shared
action in the current project.

The Actions summary table displays the following columns:

● Name

17

TIBCO Business Studio™ Forms User's Guide



Name of the action. You can edit the name by clicking the ellipsis (...) button, which appears when you
select the name. You can edit the name using the Enter the Name page.

● Label
Label of the action.

● Edit
Displays the text Edit as a hyperlink. When clicked, it navigates to the configuration property screen
for that action.

● Type 
A  non-editable field that shows either ScriptAction or ComputationAction.

● Detail
A   non-editable detail of the action specific to the action type.

— ScriptAction display as much script as fits in the column, with “...” at the end if truncated.

— ComputationActions display [property] updated by expression: [script].

Rules
Rules provide a way to model the behavior or presentation logic of the form with minimal coding. This
makes the logic easier to identify and maintain by both developers and business analysts.

Rules consist of events and actions. For example, the rule “Guardian required when Age < 21” is modeled
as:

Event:
CustAge updated

Action:
GuardianName.Required = (CustAge < 21)

Whenever Customer Age changes, the Guardian Name field is marked as required only if Customer
Age is less than 21.

Rules are associated with events and actions as follows:

● Events are used to trigger the rules, to define when the actions are performed. For any rules that are
triggered by the same event, they will be executed in the order in which they are defined in the form
model.

● Actions define what will be performed. They can be individually enabled or disabled in the rule. The
actions within a rule will also execute in the order defined in the form model.

Business analysts can add rules, edit their general properties and descriptions, and add events.
They cannot create new actions, but they can re-use the already defined shared actions.

You can add and edit rules in TIBCO Business Studio Forms as described in the following sections:

● Adding a Rule Using the Outline View: To associate rules with events and actions, select the appropriate
Events or Actions tab.

● Adding a Rule Using the Rule Wizard: When using the Rule wizard, you can also remove the rule.

● To select actions and events to associate with a specific rule, see Setting Rules.

18

TIBCO Business Studio™ Forms User's Guide



Rules Summary Table
The summary table for rules provides a useful overview of the rules.

Clicking the Rules node in the Outline view, displays the Rules summary table in the Properties view,
listing each rule in the current project.

The Rules summary table displays the following columns:

Name
Name of the rule. To edit the name, click on the ellipsis (...) button, which appears when the name is
selected. Edit the name using the Enter the Name page.

Label
Editable label of the rule.

Edit
Displays the text Edit as a hyperlink. When clicked, will navigate to the configuration property screen for
that rule.

Enabled
Displays a check box. If selected, then the rule is enabled.

Cancel On Error
Displays a check box. If selected, then the form is cancelled on the occurrence of an error.

Events
Non-editable, drop-down list of events that trigger this rule; for example, Form Open, Update of
Control FirstName (firstName).

Actions
Non-editable, drop-down list of actions that are invoked by this rule. Each item will be in the form of
[Action Label] (Action Name).

The standard cancel, close, and submit actions destroy the form. You need to ensure that any user-defined
actions for the Cancel, Close, and Submit button click event should precede their respective standard
actions.

The Design Tab and Preview Tabs
The Form Designer in TIBCO Business Studio can have three tabs, the Design tab, the GWT Preview tab,
and the Mobile Preview tab.

Each tab plays a different role:

● The Design tab is where you model your form and configure its properties.

● The GWT Preview tab shows how the form looks at runtime in a Google Web Toolkit (GWT)
environment.

● The Mobile Preview tab shows the URL used to navigate and preview the mobile forms on a mobile
device at design time.

TIBCO Forms uses Google Web Toolkit (GWT) as the rendering technology for forms. The GWT
Preview and Mobile Preview tabs are displayed or hidden based on the active runtime environment
specified in the Presentation Channel preferences. See Configuring Presentation Channels for details.

The appearance of the form in the preview tabs is determined by settings that are configured on the
property sheets of the form itself, and for the panes and controls within the form.

The GWT Preview tab act as working GWT application. You can specify data in the form, press the Submit
button, and see the data that would be submitted to the server at runtime.

19

TIBCO Business Studio™ Forms User's Guide



For example, if the user specifies a new customer name and clicks Submit, the System Log panel displays
information about the specified text in GWT preview, if the INFO logging is enabled. To enable INFO
logging, go to Window - > Preferences - > Form Designer - > Preview . GWT log samples are as follows:

GWT:
(-:-) 2011-08-18 11:15:49,242 [INFO ] **** Form Inout and Out Data ****
(-:-) 2011-08-18 11:15:49,242 [INFO ] { items:[{"$param":"text_field", "mode":"INOUT", 
"type":"STRING", "$value":"John Smith"}]} 

Thus the preview tab allows you not only to evaluate the appearance of your form with the current
Properties view settings, but also to test its functionality.

Configuring Presentation Channels
The Presentation Channel preferences govern the runtime environment in which forms are built, previewed
and deployed. These can be configured at project level or globally for all projects.

If multiple form designers are working on the same project or projects, they should all have the same
Presentation Channels configured in their respective workspaces.

For more information on Presentation Channels, see TIBCO Business Studio Process Modeling Guide.

Procedure

1. Select the project in the Project Explorer, and click File > Properties .

2. In the navigation pane on the left side of the Properties dialog, click Presentation Channels, and select
the Enable project specific settings check box.

3. Double-click Default Channel (or other presentation channel you are using, if applicable) to edit the list
of included channel types. You can have the following setting:

● By default, Google Web Toolkit (GWT) environment is enabled. Workspace Google Web Toolkit,
Openspace Google Web Toolkit, and Openspace Email check boxes are selected (GWT Preview
tab is displayed)

● To enable the Openspace Mobile environment, select the Openspace Mobile check box (Mobile
Preview tab is displayed)

4. Click Finish and OK when you are done to close the dialogs. In Google Web Toolkit (GWT)
environment, the changes take effect immediately just by refreshing or reactivating the preview tab.

To configure Presentation Channel globally, go to Window > Preferences > Presentation
Channels . The Default Channel (Default) is displayed in the right side pane. Double-click
Default Channel to edit the list of included channel types. The changes made at this level will
apply to all projects that do not have the Enabled project specific settings check box enabled.

Port Settings for Preview
You can set the port used to serve up the preview of forms for both the internal preview tabs and the
preview of mobile forms from external applications or devices. By default, this is set to 8888.

You can change the port if there is a conflict with another application using port 8888 on your machine.

To change the port, go to Window > Preferences > Forms Designer > Preview . If you change it to a value of
0, then an arbitrary, available port number will be used.

If you are using external devices such as mobile forms to test forms via the mobile index, it is recommended
to keep this as a fixed port number so that you will be able to keep bookmarks to the mobile test index.

Copy Form Preview URL
By clicking the Copy form preview URL  button in the main toolbar, you can copy the form preview
URL to the system clipboard. You can then paste the URL in any browser to preview the form. This way

20

TIBCO Business Studio™ Forms User's Guide



you can see how the form is rendered in other browsers on a specific platform apart from the built-in
browser used in Eclipse.

Logging
A system log pane for the preview tabs is provided to display trace and debug messages from the system as
well as any logging messages from your JavaScript code.

The logging window displays the log output generated by the application, filtered according to the
verbosity level set by the Logging Level list.

Locale
You can choose the locale from the drop-down list: English, Chinese, French, German, Spanish, and so on.
Changing this setting only has an effect if locale-specific resource bundles are defined for the form.

For more info about localizing a form, refer to Localization of Forms.

The locale selected applies only to the form, not to the other components in the preview tab for instance the
log window, Locale list, and so on.

Logging Level
For the GWT preview, the setting made in Preferences is the lowest level of logging available in preview.
For example, if the logging level is set to INFO in the Preferences, you cannot change it to DEBUG in the
preview pane.

The available log levels (GWT) are:

● FATAL

● ERROR

● WARN

● INFO (The default logging level)

● DEBUG

● TRACE

The verbosity (detail) of logging increases with the logging level in cumulative fashion. For example, the
WARN level also shows all ERROR and FATAL messages; INFO also shows WARN messages; and so on.

You can choose the logging level in the preview pane using context.form.log or context.form.logger.
The logger API is available in all the script contexts and it allows the user to log at all logging levels. See 
API for Scripting for details of log and logger APIs. The logging level specified applies only to that specific
preview session. Messages logged by user scripts are shown in the DEBUG log level.

You can change the default logging level used in the preview tabs in the user preferences, under Window >
Preferences > Form Designer > Preview .

At runtime, when GWT Forms are used, you can enable logging by using a URL parameter log_level. You
need to set the value of the log_level parameter to any logging level. The specified log level is enabled in
that case. For example, if you access Openspace as: http://<server>:<port>/openspace?
log_level=INFO

You see INFO, WARN, ERROR and FATAL messages in the log viewer.

21

TIBCO Business Studio™ Forms User's Guide



Reload
The Reload button in the GWT preview and in Mobile preview mode closes the current form and reloads it.

Performance Metrics
By default, the performance metrics option is disabled in GWT preview. The Performance Metrics button
displays the form load timings.

You can view the performance metrics by pressing ALT+F12. The performance table is displayed with the
timings for the operations listed in this table:

Performance Metrics Table

Column Name Description

Overall Form Load Time The time taken to load the form completely. It starts from the time a form
is requested from the server and finishes at the time the form is loaded
completely. This includes the Form Open scripts if any.

Model Initialization Time The time taken to create and initialize the various form elements, such as
parameters, panes, and controls. It does not include the time taken to load
them with the initial data.

Resource Loading Time The total time taken for various form resources to load. The resources
include various external resources configured on the form and the
generated BOM JavaScript files. The external resources include JavaScript,
CSS, image, and property bundles referenced from the Resources tab in
the Properties view of the form.

Library Resource Loading
Time

The total time taken to load various library resources used by the form.
The Resource Loading Time does not include this, but it is included in the
Overall Form Load Time.

Form Rendering Time The total time taken to render the form after the form model and various
external resources are loaded. This does not include the time taken for
creating various form elements, but includes the time taken for attaching
the widgets, initializing the bindings, and loading the initial data to the
form.

Datastore Initialization
Time

The time taken for initializing the form elements from the initial data
provided to the form.

Initial Deferred Rendering
Time

The time taken to render the panes (and the components inside the panes)
that are marked for deferred rendering but are visible on loading the
form. This is not included in the Overall Form Load Time.

Post-Open Library
Resource Loading Time

Tthe time taken for various library resources used by the visible deferred
initialized panes to load during the form load but after the form open
event. This is not included in the Overall Form Load Time and the
Resource Loading Time.

You can use this information to analyze the load timings of various forms. This information is useful in UI
automation and reporting.

In addition to the operations listed in the table, runtime also captures the time taken to destroy the form.
All these timings are logged in the GWT log on destroying (that is, canceling, closing or submitting) the
form.

22

TIBCO Business Studio™ Forms User's Guide



It is displayed in the following format:
Perf Metrics: <form name and path>[<internal_form_id>], [instrument_id, <total_time>, 
<start_time>, <end_time>]*

The Instrument IDs are:

● 1 - Overall Form Load Time
● 2 - Resource Loading Time
● 3 - Datastore Initialization Time
● 4 - Model Initialization Time
● 5 - Form Rendering Time
● 6 - Initial Deferred Rendering Time
● 7 - Library Resource Loading Time
● 8 - Post-Open Library Resource Loading Time
● 9 - Form Destroy Time

The start time and end time is relative to the start time of the form load.

Instrumentation Level

Instrumentation levels collect performance metrics of a form. There are four instrumentation levels - 0, 1, 2,
and 3.

● The default is level 0, that is None, which does not collect any metrics
● Level 1, that is Basic collects the load timings of the form
● Level 2, that is Call counts collects the details of the number of times each action or validation script was

executed in addition to the load timings
● Level 3, that is Call times collects the details of the duration of the execution of each action and

validation script in addition to the number of executions and load timings

You can change the default instrumentation level from Window > Preferences > Form Designer > Preview/
Live Dev by selecting an appropriate Instrumentation Level.

At runtime (Openspace, Workspace or a Custom Client Application), if you want to collect performance
metrics, you can pass in a URL query parameter tibco_instr with a value 0,1, 2, or 3. For example:
http://<server-host>:<port>/openspace/openspace.html?tibco_instr=1

With this URL query parameter, you can view the performance metrics anytime during the lifecycle of the
form by pressing ALT+F12.

The earlier value of tibco_instr=true is now deprecated. Passing true is equivalent to passing 1.

View Datastore Data
The View Datastore Data button in GWT preview mode displays a preview of the current state of the form
data that would be submitted to the server.

You can click this button at any point during form usage.

Visibility in the Preview Tab
All panes and controls are visible in the Design tab so that you can edit them, even if they are configured to
be initially invisible at runtime.

For instance, the figure Invisible and Visible Form Parts is a form as it appears in the Design tab.

This form has panes with Visible property (on the General tab of the Properties View for each pane)
cleared.

23

TIBCO Business Studio™ Forms User's Guide



Invisible and Visible Form Parts

The shaded diagonal lines across two of the panes in this form indicate that the Visible property of those
panes is initially cleared, or set to false.

In another section of the Capture Claim form, the visibility flag of the Witness Information pane is bound to
the value of the Witness Available check box. When the check box is selected, the visibility of this pane is
set to true, and the pane is shown. When the check box is cleared, the visibility of this pane is set to false,
and the pane disappears. This behavior is fully functional in GWT Preview.

Outline View
While the Project Explorer provides an easy way to find, select, and open project resources, the Outline
view provides a quick and convenient way to navigate within a particular model, such as a form.

If the Outline view is not visible, open it by selecting Window > Show View > Outline . (If Outline is not
among the view choices, click Window > Show View > Other > General > Outline .)

The default area for the Outline view is the lower left corner of the Eclipse workbench but, as with other
views, it can be moved to another area by dragging its title bar.

There are two modes for using the Outline view: as a hierarchical tree with expandable nodes, or as a
thumbnail graphical image of the form. You can switch between the two modes by clicking the button for
the desired mode in the upper right corner of the Outline view.

Forms Compact Mode
Forms compact mode has an additional mode that reduces the spacing between controls along with the
spacing between labels and value fields within a control.

The forms_compact_mode common resource key controls the use of this mode.

Miscellaneous Resource Keys

Resource Key Reference Value Description

data_preview_empty There is no data to
display.

Used as a data preview message for empty data.

24

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

forms_compact_mode [1], [2], [3], [1,2],
[1,2,3], [2,3], [1,3], or
empty to disable the
key

The key applies to all controls and panes on a
form to make the form smaller in size. When the
value contains 1, the width of the grid panes in the
form is set to a maximum of 600 pixels. When the
value contains 2, the labels align to the top even if
the child labels are configured to be aligned to the
left. However, if the pane has only controls in it,
the labels are not aligned to the top. When the
value contains 3, it reduces the spacing between
controls along with the spacing between labels
and value fields within a control.

The default value for the run time is [3].

If you want to disable the compact mode, specify
an empty value for it in the custom property
resource bundle.

align_toolbar_left true, false Unused by default. Aligns the contents of the
toolbar pane to the left when set to true.

The toolbar buttons, such as Submit, Close, and
Cancel are aligned to the right by default. For
large forms that need horizontal scrolling, you can
align the buttons to the left using this key.

See the TIBCO Business Studio Forms User's Guide for more information about resource keys.

Thumbnail Mode
The thumbnail mode shows the entire form scaled down to fit within the space designated to the Outline
view.

When a form cannot be entirely rendered within the canvas, a blue-shaded rectangle appears in the Outline
view representing the visible portion. You can drag this rectangle with the mouse to make a different
portion of the form visible in the canvas. This is a good way to move quickly from one section to another of
a large form.

Tree Mode
The hierarchical tree mode contains nodes for the form’s elements. At the top level is a node for the form
itself. The top-level nodes under the form are for the data interface to the form, shared actions, rules, and
the root panes.

In the tree mode, clicking on an item in the Outline view causes the Properties view for that item to appear
in the Properties tab , and causes that item to be selected in the canvas as well, if it is a visible object. This is
a good way to move quickly to a particular Properties view. Items can be copied and pasted within the
Outline view, as well as rearranged by using drag-and-drop.

Usage of the Outline View with Forms
When a form is open in the Form Designer, the Outline view’s tree mode shows the elements that have
been placed on the form, and provides a convenient way to select a pane or control and display its
properties in the Properties view.

For instance, when a check box called checkbox1 is clicked in the Outline view, the checkbox1 control is
selected on the canvas, and the Properties view displays the properties of that control.

25

TIBCO Business Studio™ Forms User's Guide



There are situations where you may also find it easier to re-arrange the order of controls and panes in the
form using the Outline view instead of the canvas, such as moving a control or pane to different locations
in a large form where it is difficult to view the whole form in the canvas at once.

Although the order of Parameters, Shared Actions, and Rules in the form model does not have a bearing on
the execution of the form, you have the option to arrange the order of these objects in the Outline view to
aide in readability, or to group by functionality. By default, items are added to these nodes in the order they
were originally added to the model.

Clicking on the Data node shows a summary table of all the parameters defined in the form. From this
table, you can edit some of the properties, add new parameters, and navigate to the detailed Properties
view of any of the parameters. Similar tables are displayed on clicking either Shared Actions or Rules.

Data
Data node, the first node beneath the form node in the Outline view, shows Data Fields and Parameters.

You can add new parameters or data fields from the context menu of Data.

Parameters

Clicking a parameter causes the Properties view for that parameter to appear in the Properties tab.

The Context Menu of a parameter allows you to delete, copy, or rename the parameter in the data model.
Right-clicking on the Data node provides an option to add a new parameter.

Clicking a parameter in the tree mode of the Outline view is the only way to access the Properties view for
the parameter.

For more details, see Configuration of Parameters.

Parameters Summary Table

The Parameters summary table provides an overview of the parameters. To see each parameter in the
current project, select the Data node in the Outline view.

The Parameters summary table has the following fields:

● Name
Name of the parameter. To edit the name, click anywhere within the Name cell and edit the contents.

● Label
Editable label of the parameter.

● Edit
Displays the text Edit as a hyperlink. When clicked, will navigate to the configuration property screen
for that parameter.

● Mode
Displays either IN, OUT, or INOUT. Specifies the direction of data flow for this parameter with respect
to the Form.

● Type
Displays the primitive type of the parameter. When selected, a drop-down list becomes available to
choose among the predefined primitive types, or select External Reference to choose a BOM type from
a user-defined business object model.

● Length

26

TIBCO Business Studio™ Forms User's Guide



Editable field for setting the length. It is active only if the selected type supports the length setting.
Otherwise displays NA.

● Decimal Places
Editable field for setting the decimal places attribute. It is active only if the selected type supports the
decimal places setting. Otherwise displays NA.

● Array
Check box that sets the array attribute of the parameter.

● External Reference
Displays the external reference associated with the parameter. Clicking the external reference enables
the picker button, which displays a list of available external references for that parameter.

Data Fields

Data fields hold private data for internal use by the form. You can consider them as a local or private
scratchpad area.

Their values are not returned via parameters unless you specifically arrange for them to be returned. You
can do this by using bindings, computations, or by passing them to setValue() API calls on parameters or
components. You can use data fields in many ways, such as implementing OK or Cancel behavior for a
modal dialog. For example, you may want to roll back the form changes on Cancel, or to commit them on
OK by using data fields, events, and API methods.

The Context Menu of a data field allows you to delete, copy, or rename the data field in the data model.
Right-clicking on the Data node provides an option to add a new data field.

Selecting a data field in the tree mode of the Outline view is the only way to access the Properties view for
the data field.

Data Fields Summary Table

The data fields summary table provides an overview of the data fields. To see each data field in the current
project, select the Data node in the Outline view, followed by the Data Fields tab in the Properties view.

The Data fields summary table has the following columns:

● Name
Name of the data field. To edit the name, click anywhere within the Name cell and edit the contents.

● Label
Editable label of the data field.

● Edit
Displays the text Edit as a hyperlink. When clicked, will navigate to the configuration property screen
for that data field.

● Type
Displays the primitive type of the data field. When clicked, a drop-down list becomes available, and
you can select one of the predefined primitive types, or select External Reference to choose a BOM type
from a user-defined business object model.

● Array
Check box that sets the array attribute of the data field.

27

TIBCO Business Studio™ Forms User's Guide



● External Reference
Displays the external reference associated with the data field. Clicking the external reference enables
the picker button, which displays a list of available user-defined BOM types for that data field.

Shared Actions
Actions available to all rules are listed under the Shared Actions node. With the help of the Context Menu
of the Actions node, you can add a new action to this group.

To read an overview, see Actions.

To learn how to add actions to a form, see Setting Actions.

Rules
Rules are listed under the Rules node. With the help of the Context Menu of the Rules node, you can add a
new rule to the form. You can add a rule that is either enabled or disabled using this interface.

To read an overview, see Rules.

To learn how to add rules to a form, see Setting Rules.

Managing Form Elements From the Outline View
You can manage form elements in the Outline view, such as copy an element and and paste it on the
canvas , or re-arrange the order of elements within the form.

You can rearrange form elements in the Outline view by dragging them and dropping them on the desired
new place. The new arrangement will immediately be reflected on the canvas.

Procedure

1. Right-click the Form icon or any form element in the Outline view.

The pop-up Context Menu appears.

2. Depending on the element selected different options are available, as explained in the table Manage
Form Elements from the Outline View.

Manage Form Elements from the Outline View

Select Definition

Cut
(Ctrl+X)

Available for all elements except for fixed nodes (Form, Data, Shared Actions,
Rules)

Copy
(Ctrl+C)

Available for all elements except the fixed categories mentioned for 'Cut'. After
you copy an element to the clipboard, you can paste it within this form or
another form.

Paste
(Ctrl+V)

Available when forms content is present on the clipboard

Delete
(Delete)

Availble for all elements except for fixed nodes (Form, Data, Shared Actions,
Rules)

Rename
(F2)

Available for all named elements.

28

TIBCO Business Studio™ Forms User's Guide



Select Definition

Select All
(Ctrl+A)

Selects all root panes. Select All will not select parameters, shared actions, or
rules.

Show Properties
View

Shows the Properties view, if not currently visible.

Use Business Labels in Outline View
The User Preference controls the display of labels throughout the Forms Designer.

This is specified using the option Include type name in labels, which improves accessibility by helping to
distinguish the type of control or pane in various dialogs, instead of just relying on the icon. For more
details on using this option, see Using the Option Include Type Name in Labels.

For more details about Labels, see Label.

Business Object Model
The business object model provides a way to define in business terms the Classes, Attributes, Primitive
Types, Operations, Associations, and so on that describe a business or organization. In terms of forms
design, the business object model is a powerful and convenient way of defining primitive and complex
types.

A business object model is defined using the Business Object Model Editor. For complete information on
using this editor to create business object models, see the TIBCO Business Studio Business Object Modeler
User’s Guide. Information on business object models in the present guide is limited to instructions for
creating classes and other objects in the business object model to define complex data types, and using these
data types in forms modeling.

The Objects in a Business Object Model
Objects are added to a business object model in the Business Object Model Editor much as panes and
controls are added to forms, either by clicking the desired object in the palette and then clicking in the
desired location on the canvas of the editor, or by dragging and dropping the object onto the canvas.

Objects that can be placed into a business object model include the Elements (Package, Class, Primitive
Type, and Enumeration), Children (Attribute and Enum Literal), and Relationships (Generalization and
Composition).

The objects in the palette are of several kinds, each distinguished by an icon and color, which appears (as an
aid to the identifying the object) in various places throughout the Business Studio interface, including in the
title bars of the objects on the canvas. The objects most important for creating complex types to be used in
forms modeling are described in this section.

Elements

Class
 A container for a complex data object. Classes contain children, such as attributes and enum literals. A
class from the BOM can later be specified as the type for a data field in the Forms Editor.

Primitive Type
 An object of one of the BOM Primitive Types (Integer, Boolean, Date, Time, Integer, and so on), or of the
type of a previously-defined primitive type object.

In the latter case, the previously-defined primitive type might be, for instance, a zip code object that was
defined as an integer with a pattern (specified in the Advanced tab of the object’s Properties view) as a
regular expression) that limits its value to 5 single-digit integers. The Pattern value restricts valid entries to
five integers. This restriction is enforced at runtime.

29

TIBCO Business Studio™ Forms User's Guide



A pattern that has been specified as a restriction for a data type in the BOM does not appear in the Forms
modeling environment. For instance, if a ZIP Code primitive type is defined in the BOM as requiring a
value of five single-digit integers, and that primitive type is included in an Address class in the BOM
which, in turn, is used as a data type for a form parameter, the default generated form will not display the
restriction in the Validations tab of the zip code text control’s Properties view. Nonetheless, the restriction
will be enforced at runtime, and cannot be modified or overwritten by different restrictions defined in the
Forms Editor on the text control’s Properties view.

Enumeration
 A data type that can contain a list of values. Selecting this type enables you to specify a set of
enumerated values. For example, an enumeration called Color might have the values Red, Blue, and
Green.

An enumeration from the BOM can be included as an attribute for a class in the BOM or be specified later as
the type for a data field in the Forms Editor. On the default generated form, this type will be rendered by
default as an optionlist. (The control type could later be changed in the form control’s Properties view to a
radiogroup, or other control type.)

Children

Attribute
 Attributes are data members that make up a class. By default, new attributes are created with the
primitive BOM type text. A different data type can be chosen in the attribute’s Properties view, either
another primitive type, or an existing class or enumeration. Each attribute type ends up corresponding to
a different control type in a generated form.

The attributes in a class can be re-ordered in the Attributes tab of the class’s Properties view using the up
and down arrows. Their order in the BOM determines the order in which they appear in the default form.

Enum Literal
  These are the values within an enumeration. For example, an enumeration called Color might have the
enum literals with the names Red, Blue, and Green.

The enum literals in an enumeration can be re-ordered in the Enum Literals tab of the enumeration’s
Properties view using the up and down arrows. Their order in the BOM determines the order in which they
appear in the default form.

Relationships

Generalization
 This is a relationship of inheritance: a class that is related to an existing class by generalization will
inherit the qualities of the existing class, and hence will contain members of the same type as the existing
class.

Composition
 This relationship indicates that the child class is wholly contained within the parent class.

Multiplicity of Relationships

Relationships between BOM classes have a multiplicity, for instance, one-to-one (1..1), zero-to-many (0..*), or
one-to-many (1..*). You can also have a finite lower or upper multiplicity bound like one-to-finite upper
bound (1..m), finite lower bound-to-finite upper bound (n..m), or exactly finite bound (n). On a generated
form, a particular pane type is rendered for a child class based on the multiplicity value.

If a Student class, for instance, has a child class called Course, with a 0..* relationship (meaning that one
student can have many courses), the Course class will be rendered as a grid pane. The attributes of the
Course class (for instance, course number, course name, time, room number, and so on.) will appear as
columns in the grid pane. Each course for a given student will be represented by a row in the grid pane.

30

TIBCO Business Studio™ Forms User's Guide



Implicit Validations

The multiplicity constraints defined in the BOM are reflected in the implicit validations. The validation
messages conform to the following:

Validation Messages for BOM Level Multiplicity Constraints

Multiplicity Constraint Validation Message

One-to-many (1..*) Must contain at least one value.

One-to-finite upper
bound(1..m)

Must contain between one and {m} values.

Finite lower bound-to-finite
upper bound (n..m)

Must contain between {n} and {m} values.

Zero-to-finite upper bound
(0..m)

Must contain between zero and {m} values.

Exactly one (1) Must contain exactly one value.

Exactly equal to the finite
bound (n)

Must contain exactly {n} values.

These apply for both primitive attributes and complex children.

The implicit validations for multiplicity constraints are configured to execute on form submit.

Master-Detail Panes

If a child class has a relationship to the parent class that allows multiple instances of the child class, and the
child class itself contains a child class with multiple attributes, the two child classes will be rendered on the
default form in a master-detail pane.

The first child, the master pane, will be rendered in the form as a grid pane, and the second child, the detail
pane, will appear as a vertical pane which can be used for editing all attributes of both child classes.

If you want the detail pane to be generated as a record pane, go to Preferences > Form Designer >
Generator, and select the check box Generate master-detail configuration with record pane for details.

By default, the check box is cleared, and the detail pane is generated as a vertical pane. This information
applies to the default forms and newly generated forms. The forms that are already generated, remain
unaffected.

In this case, the grid pane will be read-only, but a row can be selected for editing in the vertical pane (detail)
by clicking that row in the grid pane (master).

As an example, a Student class might be the parent of a child class called Course. Each student could have
zero-to-many courses. The course class, in turn, might have a child class called Course Details. The BOM
diagram is shown in the figure Business Object Model Editor Showing Child Classes.

31

TIBCO Business Studio™ Forms User's Guide



Business Object Model Editor Showing Child Classes

The business object model shown in the figure Business Object Model Editor Showing Child Classes is
rendered in a form with a master-detail pane for the Course and Course Details classes.

Selecting a row in the grid pane (that is, the master pane) allows that row to be edited in the vertical or
record pane (that is, the detail pane). An alternate way of selecting rows for editing is to enable navigation
for the record pane. Navigation is turned off by default, but is enabled by selecting the Show Navigator
check box in the Properties tab of the record pane’s Properties view. The navigator then appears for the
record pane.

With navigation enabled, you can delete the grid pane from the form if you consider it unnecessary to
provide users with two methods for selecting records to edit. However, you cannot do this for the vertical
detail pane, as it is single-valued, and thus does not provide a navigator. You can manually refactor the
detail pane from vertical to record, and then bind it to the correct data.

Live Development of Forms
With the BPM Live Development capability, a BPM client such as Openspace runs using the form resources
in the local TIBCO Business Studio workspace rather than those previously deployed to the server, without
the need for redeployment.

This way, you can iteratively make incremental changes to the form and instantly see the results in the
context of the real-life deployed application, using live process instance data. When using the BPM Live
Development mode, you can change the user interface of a form, but not its data interface. You cannot
change other deployable models such as process packages, organization models, and business object
models. If you do update other assets such as processes, organization models, or business object models,
you need to redeploy the project to the run time.

The BPM Live Development (BPM Live Dev) perspective contains the TIBCO ActiveMatrix Openspace view
hosting a browser session connected to Openspace and a Properties view for setting the Live Dev session
preferences. When this perspective is active, the Project Explorer view is automatically filtered to show only
form-related resources, and the Form Designer actively prevents changes to data interfaces of the form.
Once the form is loaded in the BPM Live Dev perspective, you can load the latest changes to the form in the
workspace by using the Refresh button.

The BPM Live Dev perspective is not supported on mobile Openspace and accessible Openspace.

32

TIBCO Business Studio™ Forms User's Guide



Viewing Forms in BPM Live Development
Use BPM Live Development when you want to make quick changes to elements of your project, then test
the results immediately without having to redeploy an entire project. This is especially relevant to Forms
development, where small changes require a rapid turnaround for retesting.

Modifications to assets like process, BOM, and organization model are not supported in BPM Live
Development. If you change those types of assets, the project needs to be redeployed. If you change the
Forms data interface, the project must be redeployed or the form will not open.

If you are running Openspace on an HTTPS server, you may need to disable protection in order to load the
form. This is due to the mixing of the HTTPS content from the server and the HTTP content from TIBCO
Business Studio.

Procedure

1. Deploy the entire BPM application in the default BPM Modeling (or Modeling) perspective (if not
already deployed).

2. Switch to the BPM Live Dev perspective (select Open Perspective > BPM Live Dev in the top right of
the pane).

3. Log in to Openspace (in the embedded view, or open an external browser).
Any BPM server can be used, not just the Local Development Server. (For more information about the
Local Development Server, see TIBCO Business Studio BPM Implementation.)
You can edit the information in Openspace View Connection for Openspace/Client Base URL and then
refresh the view for the development server.
The Openspace view provides a Copy openspace url button that copies the openspace URL, which can
be pasted into an external browser to log in to Openspace in Live Dev mode.

4. Start a process and proceed until the required work item arrives (or start a business service and
progress to the appropriate form).

5. Access a form on opening a work item/business service. The form from your design-time workspace is
used instead of the deployed one.

6. Iteratively:

● Test the form.
● Edit the form in the local workspace and click Save.
● Either use the Refresh button provided on the form, which reloads the form with the latest changes

without the need to re-open it or restart the pageflow for instance, or close the work item or
business service in Openspace. A Cancel button is also provided on the form in cases where the
Form loading fails. The Cancel button cancels the form if the form fails to load.

● Reopen the work item / business service in Openspace.
The process flow works as normal and you can complete/edit data in the same way as normal in
Openspace.

Setting Preferences for BPM Live Dev
You can set preferences for the BPM Live Dev perspective at the workspace level.
The following preferences are available for BPM Live Dev:

● Local host (Live Dev): By default, the host name of the machine hosting the local TIBCO Business
Studio instance is selected. It lists all the DNS host names configured on the local machine, which can be
passed to the remote server. You can also refresh the list of DNS host names using the Refresh button
next to the list.

This host address is passed to Openspace and must be resolvable and reachable from the computer that
hosts the Openspace server. By default, Openspace connects to Studio through the local loop-back

33

TIBCO Business Studio™ Forms User's Guide



interface to the host localhost/127.0.0.1. If Openspace is hosted remotely, virtually or both, you
must set the local host to an address that is resolvable and reachable from the Openspace server. If the
network configuration of the local machine is multi-homed, the list contains all the host names and IP
addresses from those network interfaces through which the configured Openspace host is reachable. To
support a remote Openspace server, the firewall of the local computer must accept incoming HTTP
connections on the configured preview port.

● Render accessible user interface - It is not selected by default.

The BPM Live Dev perspective is not supported on accessible Openspace.

● Render enhanced user interface - By default, forms in the old format are not rendered with the
enhanced UI, and forms in the new format are rendered in the enhanced UI. You can force the enhanced
user interface by selecting Always, or disable it entirely by selecting Disable.

● Channel Type - The default channel is used. You can explicitly specify Desktop or Mobile to force the
use of a particular channel type, however, it is discouraged. You can use it to force mobile forms to
render on a desktop browser and vice versa, but it may not work well with all the browsers.

● Logging Level - By default, no logging is done for BPM Live Dev. You can specify any of the following
logging levels:

— None

— Fatal

— Error

— Warn

— Info

— Debug

— Trace

● Instrumentation Level: By default, performance metrics is not collected. However, you can specify
either of the following levels:

— None

— Basic

— Call counts

— Call times

For more information on the instrumentation levels, see Performance Metrics.

Setting Preferences from the Properties View

You can set the preferences for BPM Live Dev from the Properties view of Openspace.

Procedure

1. Open the Openspace view in the BPM Live Dev perspective.

2. In the General tab of the Properties view, specify preferences under Forms Live Development.

3. Click the Refresh button under Openspace View Connection so that the changes you made take effect.

34

TIBCO Business Studio™ Forms User's Guide



Setting Preferences from the Preferences Dialog

You can set the preferences for the BPM Live Dev perspective from Window > Preferences .

Procedure

1. Open the Preferences dialog by clicking Window > Preferences .

2. Expand Form Designer, and select Preview / Live Dev.
Available preferences for preview and BPM Live Dev are displayed in the right panel.

3. Specify the preferences, click Apply, and then click OK.

Cross-Resource References
The Business Studio workspace acts as a container for resources such as projects, folders, and files, each of
which corresponds to a directory or file in the operating system’s underlying file system.

Workspace files can contain models (such as forms or business object models), which are comprised of
model elements (such as panes and controls or classes and properties).

A form can refer to model elements in other resources in the Business Studio workspace, for example:

● A user task or its parameters
● A business object model class or its properties
● An embedded form or its parameters

These references are often many-to-many, with one form referencing many external model elements and
resources, each of which could potentially be referenced from multiple forms, business object models,
processes and so on. These external references are known as cross-resource references.

Since the referenced model elements reside in independently modifiable files such references are
susceptible to breakage if proper working procedures are not observed. When Business Studio detects
breakages, it creates unresolved reference problem markers on the referencing forms.

For more information, see Breakage Mechanisms and Quick Fixes.

Breakage Mechanisms
There are several ways in which a cross-resource references can be broken.

Some examples are:

● The referenced model element could be deleted
● The referenced model element could be renamed
● The element’s containing resource, folder or project could be deleted, renamed or moved elsewhere

When such changes are made using Business Studio, it attempts to prevent reference breakage by cascading
such updates through all references. For example:

● In the case of rename and move of an element or a containing resource, the references are all
automatically updated to point to the new element name or workspace location.

● In the case of deletion of a cross-referenced workspace resource, Business Studio presents a confirmation
dialog offering the choice of clearing or retaining the references or cancelling the delete command.
Clearing the references means that the connections between referenced and referencing elements are
permanently severed and can only be restored manually.

In most cases such changes might prevent the referencing forms from working as intended
and can cause other problem markers to appear if it places the forms into an invalid state.

We now discuss some breakage scenarios in detail.

35

TIBCO Business Studio™ Forms User's Guide



Deletion of an Embedded Form

When an embedded form is deleted, you are offered a choice of either clearing the reference or retaining it.

● Clearing the references to a deleted embedded form leaves the embedded form panes in an invalid state
because they no longer point to a form to embed.

● Conversely, retaining the references means that the referencing forms are left pointing at a resource or
model element that no longer exists in the workspace, which will cause unresolved reference problem
markers to appear.

The confirmation dialog presented by Business Studio when any form-referenced resource is deleted can be
suppressed by selecting the Do not ask this question again check box on the Clear Forms References
dialog.

In this case, in future by default all the references are cleared.

If necessary, you can still use the Preview button, and deselect any Clear forms references to deleted
elements changes.

Whether it is appropriate to clear or retain the references depends on your intentions.

● If you are deleting the resource because it is no longer required you should probably clear the
references. In this case you would have to edit the forms to restore functionality.

● If you are deleting the resource with the intention of reinstating it later, it is probably appropriate to
retain the references. However, if you do this the form will be left in an unusable state and all manner of
errors and problems would ensue if you tried to work with it.

Considerations for Making Changes to Business Studio Resources

Cross-resource references can also get broken by editing, renaming, moving or deleting resources without
Business Studio’s knowledge, for example by changing the files directly in the underlying file system.

References can also get broken by making changes in one workspace and copying only a subset of the
affected resources into another workspace.

These practices are strongly discouraged but unfortunately it may not always be obvious that a given action
runs the risk of breaking a reference.

The basic principle is that related projects and the resources they contain are densely interconnected and
should therefore be treated as an indivisible whole, managed exclusively from within Business Studio.

Problems with Business Studio Project Export/Import Wizard

Some development teams try to use the Eclipse File System or Business Studio Project Export/Import
wizards to share projects or individual files and folders.

This practice is not recommended, as project-level exchange is at once too coarse-grained for convenient
team development (where different developers make incremental changes to individual resources) and/or
too fine-grained to maintain the integrity of cross-resource references and dependencies.

For example - if you move or rename a BOM file that is referenced from another project, this will update all
forms references including those in referencing projects. If you then export just the project containing the
changed BOM and import it to another workspace, the referencing forms in the target workspace will
acquire unresolved reference problem markers because they will still be pointing to the old BOM file name
or location.

If you have to use project export/import, you are recommended always to transfer a consistent set of
projects, where all dependencies can be resolved from within the export/import location. Similarly, when
importing projects, be sure to import all their dependencies as well.

Remember that you will be unable to import a project that already exists in the workspace and that the
existing project may be inconsistent with the remaining visible incoming projects.

36

TIBCO Business Studio™ Forms User's Guide



Advantages of Using Eclipse Team Providers

There is really only one satisfactory way for a development team to share resources, which is to place all
projects under version control managed by an Eclipse team provider.

Business Studio bundles the Subclipse team provider for Subversion for this purpose. Many other version
control systems have Eclipse team providers, which may or may not work well with Business Studio
projects. Business Studio assumes optimistic version control concurrency semantics, so it does not support
team providers which create read-only working copies or require an explicit working copy lock prior to
editing (such as Perforce).

Even so, team members must take care not to do things which affect resources being modified by other
team members – if this happens a merge conflict will result. The most reliable way to resolve a merge conflict
is the ‘optimistic locking’ approach of rejecting one change set in its entirety then reapplying the rejected
changes to the accepted change set. Otherwise, you will be faced with a tricky, error-prone textual merge of
complex XML model files.

Quick Fixes
If a reference does get broken, Business Studio provides several quick fixes.

● Reload the working copy quick fix removes stale unresolved reference problem markers.
● Clear the reference quick fix simply clears the offending reference.
● Repair the reference quick fix helps you to locate a suitable replacement model element.

Reload the working copy - Quick Fix

This quick fix is used to remove the unresolved reference markers that can sometimes linger after the
missing resource has been reinstated; this can sometimes happen during project import.

Clear the reference - Quick Fix

This quick fix can be applied to multiple unresolved reference problem markers simultaneously. It simply
clears the offending references, which often places the referencing form model into an invalid state that is
then reported by other problem markers. Such problems must then be fixed individually from within Form
Designer.

Repair the reference - Quick Fix

This quick fix can only be applied to one unresolved reference problem marker at a time. It presents a
dialog that lists all the possible model elements that could be used as a replacement for the missing
referenced model element.

The Repair Reference dialog has a set of filters that allow you to broaden or narrow the scope used to
identify potential matches. When the dialog first comes up, all filters are active and no candidate items are
visible. You can selectively disable filters to broaden the match scope until the list of candidates includes the
desired replacement. The dialog remembers the filter settings. You can also type part of the target element
name in the search box at the top the list will be filtered to show just the elements which match the search
string. The filters are:

Project name

When this filter is active the list shows only matching items from the same project as that containing the
originally referenced element. If no project of that name exists in the workspace you will have to deselect
this filter to see anything at all.

File name

When this filter is active the list shows only items which reside in a file of the same unqualified name as
that containing the originally referenced element. If no file of that name exists in the workspace you will
have to deselect this filter to see anything at all.

37

TIBCO Business Studio™ Forms User's Guide



Element type

When this filter is active the list shows only items which have the same type as the originally referenced
element. For example, if the originally referenced element was a BOM class, the list will only show BOM
classes. It is recommended to leave this filter enabled.

Element qualifier

When this filter is active the list shows only items which have the same qualifier name as the originally
referenced element. For example, if the originally referenced element was a BOM type or property, the
qualifier is the containing BOM package, so the list will only show BOM types or properties from a BOM
package of the same qualified name as the original.

Element name

When this filter is active the list shows only items which have the same unqualified element name as the
originally referenced element. For example, if the originally referenced element was a BOM type or
property, the element name is the unqualified BOM type or property name (not the label).

Selecting the desired replacement and pressing the OK button closes the dialog and updates the form to
point to the selected element, and the unresolved reference marker goes away. If the chosen item is in an
unreferenced project the wizard requests permission to add a project reference.

Alternatively, pressing the Clear button closes the dialog and clears the unresolved reference – see the
description for the Clear the reference quick fix.

Delete the model element - Quick Fix

This quick fix cascade-deletes the model element that holds the unresolved reference. That is, depending on
the actual element type, it deletes either the element itself or the nearest containing model element whose
removal would restore the form model to consistency.

For example, consider the end-point of a binding that references an object which no longer exists. This end-
point holds an unresolved cross-reference. If the quick fix were to delete only the offending end-point, the
binding would remain broken, as one of its two mandatory end-points would be missing. So, the quick fix
cascade-deletes the entire binding rather than just the offending end-point.

In many cases, cascade is not necessary and the quick fix removes only the element bearing the unresolved
reference.

Mobile Forms
TIBCO Forms is designed to provide rendering suitable to the device used to access it. Mobile forms
functionality of TIBCO Forms ensures optimized rendering on mobile devices.

TIBCO Forms is supported on Apple iOS devices. The supported platform is iOS 7.

You can design mobile forms by configuring the controls specifically for mobile usage. The Mobile Preview
tab is provided to view mobile forms at design time: you can type the URL specified in the Mobile Preview
tab in the mobile device’s web browser to access the form.

Due to space limitations on a mobile screen, mobile forms are displayed one pane at a time. If the form has
nested panes, they are shown as links. You can use the Back button on the form to navigate back to the
containing panes in the form.

Most of the functionality available on the desktop version of forms is supported on the mobile version.
However, there are some features which are not supported currently and few controls behave differently on
mobile devices. The limitations are as follows:

● The settings on the Layout tab and the Font tab in the Properties view of controls are not supported.

● The settings on the Child Labels tab and the Child Layout tab in the Properties view of the pane is not
supported.

38

TIBCO Business Studio™ Forms User's Guide



● The Label Visibility flag on the General tab in the Properties view of controls and panes is not
supported.

● The Hint field on the General tab in the Properties view of controls is not supported.

● The Maximum Length and Display Length fields on the Properties tab in the Properties view for text
controls are not supported.

● Custom controls are not supported.

● The Pass-through control is not supported.

● Multi-select Grid panes are not supported.

● Modal dialog panes are not supported.

● Static and deferred rendering are not supported. The panes are rendered as ordinary panes.

● The BPM Live Dev perspective is not supported on mobile forms.

Modified Functionality
Some of the panes and controls function differently when they are rendered on a mobile device.

See Rendering of Mobile Forms for more details.

● Horizontal panes are displayed as vertical panes

● Message panes are ignored. Messages are displayed under each control instead of the message panes. If
the control is inside a nested pane, the pane links in the form indicates errors if there are errors inside its
controls.

● Grid Panes are edited only via master-detail pane pattern.

● Certain data entry controls such as Date, Time, DateTime, Duration, and Optionlist behave differently.

Enabling Mobile Forms
You have to enable the Openspace Mobile channel type to activate mobile forms.

You can enable mobile forms globally within the workspace or for specific projects in your workspace. You
can enable the Openspace Mobile channel locally within a project by going to Context Menu > Properties >
Presentation Channels > Enable project specific settings .

Procedure

1. Go to Window > Preferences > Presentation Channels .

2. The Default Channel (Default) is displayed in the right pane.

3. Select the Default Channel (Default), and click the Edit Item  button.

The Presentation Channel dialog is displayed.

4. Select the Openspace Mobile check box from the list.

5. Click Finish.

6. Click Project > Clean to clean the project.
This will activate mobile forms.

Result

Once mobile forms are activated, the Mobile Preview Tab is displayed in the editor.

39

TIBCO Business Studio™ Forms User's Guide



Mobile Forms Preview
The Mobile Preview tab provides the URL used to navigate and preview the forms on mobile at design
time.

The URL is in the following format: http://<host>:<port>/forms/mobile

where:

● <host> is the name or IP address of the machine on which TIBCO Business Studio is running.

● <port> is the forms preview port. By default the port is 8888. To change the port, go to Window >
Preferences > Forms Designer > Preview .

Typing this URL in an iPhone, iPod touch, or the iPhone emulator available from Apple takes you to a page
that provides a list of the projects in the workspace. Drilling down in a project, displays a list of the forms
available in that project.

The iPhone emulator runs only on Mac OS. There are no viable emulators available in Windows. You can
use the desktop version of Safari to view forms on a Windows machine. However, certain controls (Date,
Time, Date Time and single select Optionlist) do not function in the desktop version of Safari.

Mobile Specific Configuration of Controls and Panes
When you are designing a form for mobile devices, you need to configure specific pane and control
properties.

You can configure the following properties:

Mobile Specific Configuration of Pane and Control Properties

Property Configuration and Behavior

Short Label Used to specify a short label which is displayed instead of the label for the mobile
rendering of the form. All controls and panes support a Short Label. To set the Short
Label, go to the Mobile tab in the Properties view of the component and specify the
Short Label. The Short Label can be updated via the API, bindings, or computation
actions.

Toolbar Pane Used to mark one pane as the toolbar pane in a form which is targeted for mobile
devices.

Mobile Forms adds a toolbar at the top of the page. You have to set a pane in your
form as a toolbar pane so that it can be rendered in the toolbar area. A toolbar pane
must be the root pane and only one toolbar in your form must be targeted for mobile
devices. A toolbar renders the controls horizontally, so it is recommended to use only
3 button controls in toolbars. Toolbars typically provides a set of actions to the user, so
you should only have button controls in them. A navigation pane in the form is
automatically set as toolbar pane.

To set the toolbar pane, go to the Mobile tab in the Properties view of the pane and
select the Toolbar check box. This toolbar pane is rendered at the top of the screen.

To set the maximum number of buttons controls go to Preferences > Form Designer >
GWT Forms > Maximum mobile toolbar buttons .

40

TIBCO Business Studio™ Forms User's Guide



Property Configuration and Behavior

Start Year Used to specify the first year that should be displayed in the date picker in mobile
forms. To set the Start Year, go to the Properties tab in the Properties view of the date
and datetime controls. The default value is -20.

The value specified in the Start Year determines the earliest year to display. The value
specified is either an absolute value or relative to the current year when the form is
viewed depending on the Start Year Relative field settings.

Start Year
Relative

Used to specify whether the value of Start Year is interpreted as being relative to the
current year or as an absolute year. To set Start Year Relative, go to the Properties tab
in the Properties view of date and datetime controls. The default is true.

If this is set to true, then the value of Start Year is interpreted as being relative to the
current year. The value specified is added to the current year to determine the earliest
year to display.

End Year Used to specify the last year to be displayed in the date picker in mobile forms. To set
the End Year, go to the Properties tab in the Properties view of the date and datetime
controls. The default value is 20.

The value specified in the End Year determines the latest year to display. The value
specified is either an absolute value or relative to the current year when the form is
viewed depending on the End Year Relative field settings.

End Year
Relative

Used to specify whether the value of End Year is interpreted as being relative to the
current year or as an absolute year. To set End Year Relative, go to the Properties tab
in the Properties view of date and datetime controls. The default is true.

If this is set to true, then the value of End Year is interpreted as being relative to the
current year. The value specified will be added to the current year in determining the
latest year to display.

Minute
Increment

Used to specify the increment to use when displaying the choice for minutes in a time
or datetime control. To set Minute Increment, go to the Properties tab in the
Properties view of time and datetime controls. The default value is 15 and the
maximum value is 60.

For example, a value of 10 will display choices of 0, 10, 20, 30, 40, 50. A value of 60
will only display 0 as a choice.

Rendering of Mobile Forms
A few controls behave in a different way when they are used in mobile forms and rendered on a mobile
device.

The differences are as follows:

Date Control

The pane that contains the date control displays the formatted date. On selecting the date, a date spinner is
shown that allows you to select day, month, and year. The range of years is bounded and is configured in
the Properties tab in the Properties view of the control.

41

TIBCO Business Studio™ Forms User's Guide



Date Spinner

Time Control

The pane that contains the time control displays the formatted time. Selecting the time displays a time
spinner that allows you to select hour and minute. The selector uses a 12 hour spinner with AM/PM.

Time Spinner

Datetime Control

The pane that contains the datetime control displays the formatted date and time. On selecting datetime,
you go to the next screen where the date and time are displayed as two separate links. You can click on the
date and time links to set them individually. Clicking the Back button will take you back to the previous
screen.

Duration Control

The pane that contains the duration control displays a read-only summary of the information. Clicking on
the control displays a detail screen where values can be specified for each of the fields.

42

TIBCO Business Studio™ Forms User's Guide



Duration Control

Image Control

The pane containing the image control has a link for the image. Clicking on the link takes you to the next
screen that displays the full image.

Optionlist Control (Single Value)

The pane that contains an Optionlist control shows the label of the selected option, clicking on which shows
a choice spinner from which you can select a choice.

Choice Spinner

Radiogroup Control

Radiogroup controls are converted to optionlist controls in the mobile version of the form.

Textarea Control

The pane containing the textarea control displays the label. You can select the control to see the text area
appear in a full screen. Selecting the Back button returns to the parent pane.

Horizontal Panes

Horizontal panes are converted to vertical panes in the mobile version of a form.

Record Panes

Record panes are used at runtime to handle both grid panes and record panes. The record pane supports all
navigation functionality such as go to first, previous, nth, next, and last record. You can navigate to a

43

TIBCO Business Studio™ Forms User's Guide



specific record using the spinner control. The plus and minus icons on the navigation bar are used to add
and delete records.

Record Panes Display

The navigation bar in a record pane displays information on which records in the record pane have
validation errors.

Tabbed Panes

Tabbed panes are represented as vertical panes with each of the tabs being a nested pane. It will therefore
be displayed in the UI as a list of links to the individual tabs.

Problem Markers
Problem markers are a standard Eclipse feature that track issues associated with workspace resources.

They appear in the Problems view, which can be filtered in various ways, as well as on elements in the
Outline view and in the Form Designer. A marker includes a summary of the problem and identifies the
affected file and the internal location. It also has a severity level (error, warning, or informational). The
marker icons indicate the severity level:

Error

Warning

Informational    

Double-clicking a form validation marker will open or activate the Form Designer and select the offending
form element (generally a pane or control). You can then use the Properties view or canvas to fix the
problem manually.

Quick Fixes

Some of the problems detected by the Validation Builder can be corrected automatically by applying a
Quick Fix. If a Quick Fix is available, the corresponding action on the problem marker’s Context Menu is
enabled.

With the Quick Fix dialog, you can select the fix to apply (there may be more than one), and also select
other instances of the same problem in order to fix them all at once. You can do this only for non-interactive
quick fixes.

44

TIBCO Business Studio™ Forms User's Guide



The Quick Fix dialog inherits the filter settings from the Problems view. The dialog displays other instances
of a given problem that could be fixed by the selected Quick Fix, but only those which are visible in the
Problems view. For example, to fix all instances of a given problem within the enclosing project or the
entire workspace, you may need to select Configure Contents action from the Problems view menu and
change the Configuration or Scope and Severity filters.

45

TIBCO Business Studio™ Forms User's Guide



Tasks

Using TIBCO Business Studio Forms, you can create user-friendly forms by changing the layouts, by
configuring panes to have various components, and by setting rules for validating input data.

Creation of a New Form
The forms, created using TIBCO Business Studio Forms, are associated with a process task or a pageflow
task, or are embeddable in other forms.

There are several ways to create a new form in TIBCO Business Studio.

● Go to the context menu of the Forms special folder, or any folder under the Forms special folder in the
Project Explorer and click New > Form .

● On the File menu, click New > Other > TIBCO Forms > Form .

● Go to the context menu of a user task in a business process, and click Form > Open .

● On the General tab of a user task’s Properties view, select the Form... radio button.

Of these approaches, the first two are equivalent. Both of these approaches trigger the opening of the New
Form dialog.

You need to specify the Form type on the New Form dialog. The type of form that is selected here
determines the components that are initially part of the form model. The form types details are as follows:

● Process task: This creates a form that is the same as one created from a User Task in a process definition.
It will contain a root pane, a toolbar with Cancel, Close, and Submit buttons, and a messages pane for
displaying error messages.

● Pageflow task: This creates a form that is the same as one created from a User Task in a Pageflow
Process. The only difference to a Process task form is that the toolbar contains only Cancel and Submit
buttons. The Close operation is not supported in pageflows since there is no way to re-open a step in a
pageflow once it has been closed.

● Embeddable: This creates a form that is suitable for embedding within another form. This only contains
a single root pane. This is because the parent form typically contains the toolbar and messages pane, so
these components are not needed in an embeddable form.

The other two approaches are equivalent. They will generate a form that has parameters and a user
interface component corresponding to each of the parameters in the user task interface. For more
information on creating a new form for a user task, see BPM Implementation Guide, Chapter 4, Using Forms
for User Tasks.

Drag and Drop Gesture to Customize a Form
You can customize a default form or create a free standing form by using the drag and drop (DND) gestures
supported by the Form Designer. With these gestures, you can quickly add new user interface items onto
the form canvas.

● From the Project Explorer view, you can use the DND gestures for:

— Business Object Model (BOM) class

— User task parameters

— Process datum (Parameter, Data Field)

— Form files

46

TIBCO Business Studio™ Forms User's Guide



DND Items from the Project Explorer View

● From the Form Designer Outline view, you can use the DND gestures for:

— BOM property

— Form datum (Parameter, Data Field)

The BOM property can only be dropped onto a pane that is associated with a BOM class
that actually owns or inherits the dropped property.

Using the DND gesture for BOM property is very helpful in restoring any missing user
interface items in the form.

DND Items from the Form Designer Outline View

The drop gesture results in the creation of any or all of the following, as appropriate:

47

TIBCO Business Studio™ Forms User's Guide



● A matching form parameter is created, if no matching parameter exists. This applies only to the Project
Explorer drags.

● A suitable user interface component (control or pane with child components) is created, if none already
exists.

● Bindings from the new or implied form datum and its children to the generated user interface
component and its children are created.

For Project Explorer DND:

● the drop handler matches an existing parameter if one with the same generator source or of the same
name already exists

● If not, it creates new parameters of type corresponding to the dropped objects

Matching is performed on the basis of whether a parameter exists that was originally generated from the
same model as is being dropped, or failing that matching on type.

DND UI creation is essentially a form synchronization operation. The form synchronizer attempts to create
any missing components within a hierarchical UI structure that matches that of the underlying data. If you
heavily modify a form and move components around to a point where the synchronizer cannot identify the
UI component (or ancestors thereof) corresponding to a dropped UML property, it re-creates the UI
structure matching the data. You can then move the newly created components of interest to the
appropriate location in the form, safe in the knowledge that any bindings will be automatically refactored.
You can also safely delete any extraneous components.

The new form model elements are created by the standard form generator and thus follow the same
generation rules. If attached to an existing generated form structure, they also become candidates for
subsequent sync validation and synchronization.

When dragging from Project Explorer view it is important to drag the most appropriate model element. For
example, if you are working on a form for a user task, drag the user task parameter, or (if these are not
explicitly modelled) drag the process parameter or data field. If you are working on an embeddable form,
drag the BOM class. Dragging a BOM class onto a form intended for use with a user task may produce a
deceptively correct-looking User Interface. However, this interface is with the BOM class rather than the
user task parameter, process parameter, or process data field. This may lead to ambiguity and unexpected
results in subsequent synchronization operations.

Setting Bindings
For most controls, many properties on the Properties view can be initialized by an inbound parameter or
expression.

The properties that may be initialized in this way are identified by the presence of an Add a Binding button
to the right of the field where the property’s value is set.

As explained in Bindings, the options for adding a binding are:

● From the General Properties tab for a control

● From the parameter dialog for a specific parameter

● From the Mappings tab of the Properties view for the selected element

You can also set bindings from the Properties tab of the properties sheet for some controls, such as
hyperlink.

For an overview of bindings and their use in TIBCO Business Studio Forms, see Bindings.

48

TIBCO Business Studio™ Forms User's Guide



Adding a Binding from the General Properties Tab for a Control
The General tab of the Properties view for a control may contain the binding icons indicating that a
parameter or expression can be bound to any of the following properties: Label, Hint, Value, Visible,
Enabled, and Required, which each can have only one binding or computation action.

The value property can have multiple bindings and/or computation actions. For details about these
properties, see General Tab.

Procedure

1. Click the Add a binding button next to a property.

The Select Type dialog appears.

2. Select the radio button Create a binding for this property.

3. Click Next.

4. In the Edit Binding dialog, configure the binding as explained in the table Edit Binding from the
General Properties Tab for a Control.

Edit Binding from the General Properties Tab for a Control

Select Definition

(Down arrow above
the Select an Items
text box)

Click the Down arrow on the right (above the Select an item... window) to
select from these options:

● Show controls and panes
If this is not selected, then only parameters will be shown in the
Matching and selected items pane.

● Show unbound items only
If this is selected, then any properties that already have bindings will not
be shown.

You can select either one, both, or none by clicking on the corresponding
check mark.

Select an item This text box allows you to type in a filter expression that will restrict the
items shown in the Matching and selected items pane. Names, labels, and
property names are matched by the filter.

You can use the * and ? wildcard characters to represent any string or any
character respectively.

Matching and
selected items

In the Matching and selected items list, select a property to which you want to
bind the initially selected property. This selection appears right under the
Matching and selected items list as a complete path to the selected property:

../pane/control/property

For example, select the parameter (CustAge), which will update the Guardian
Name if the customer age is less than 21.

49

TIBCO Business Studio™ Forms User's Guide



Select Definition

Define the binding
type for the
selected property

In the section property of control, the three binding directions are displayed:

● Updates property of control

● Is updated by property of control

● Synchronizes with property of control

The binding types that are available for use are enabled, while the ones
that are not available appear as disabled (grayed out).

Select Binding
Endpoint window

If the selected binding type for the specified property is not allowed, an error
will appear in the Select Binding Endpoint window.

Finish If the selected property can be bound the way it was selected, the Finish
button in the bottom of the diagram is enabled.

5. Once the binding configuration is finished, all new binding icons appear next to the property.

Adding a Binding from the Parameter Dialog
The General tab of the Properties view for a parameter contains a binding icon indicating that a parameter
can be bound to a control.

Procedure

1. Select the property in the Outline View, such as Name (CustName).

The General Properties tab for the value Name is displayed.

2. Click the Add a binding button next to a property, such as for the Label property of the Name control.

The Select Type dialog appears.

3. Select the Create a binding for this property radio button, and click Next.

4. In the Edit Binding dialog, configure the binding as explained in the table Edit Binding from the
General Properties Tab for a Control.

5. Once the binding is configured, it appears next to the property.

Adding a Binding from the Mappings Tab
The Mappings tab of the Properties view for a selected element provides a comprehensive view of all the
bindings and computation actions. You can view, edit, and create bindings from the Mappings tab.

Refer to Mappings Tab for further details.

Removing a Binding
You may want to remove a binding before deleting or moving the element elsewhere.

Procedure

● Click the Remove button in the Edit Binding dialog.
The binding will be removed along with the icon in the general tab.

50

TIBCO Business Studio™ Forms User's Guide



Setting Actions
You can set either a script action, or a computation action.

For an overview of actions and their use in TIBCO Business Studio Forms, see Actions.

Adding a Script Action Using the Outline View
You can add a script action from the Outline view.

Procedure

1. In the context-menu of Shared Actions, select New Script Action.

2. Type or select data as explained in the table Specify Details to Define a New Script Action.

Specify Details to Define a New Script Action

Field Description

Name   Type the name for the new action.

The name is only visible with the Solutions Design capability. It must be unique
among all actions in the form and comprised only of alphanumeric characters and
the underscore “_”. The name may be referenced from the JavaScript of other
actions when using the invokeAction method.

Label   Type a descriptive label for the new action.

The Label is used in other parts of the Form Designer to identify the action. It is
not used at runtime.

Script   In the Script window, type the script for the new action.

See Scripting for a discussion of the variables available in this script.

3. Click Finish.

The new script action button is displayed in the Outline view indicating a shared action.

Adding a Computation Action Using the Outline View
You can add a computation action from the Outline view.

Procedure

1. In the context-menu of Shared Actions, select New Computation Action.

2. In the Enter the Action Details dialog, type or select data as explained in the table Specify Details to
Define a New Computation Action.

51

TIBCO Business Studio™ Forms User's Guide



Specify Details to Define a New Computation Action

Field Description

Name Type the name for the new action.

The name is only visible when the Solutions Design mode is active. The name
must be unique among all actions in form and must be comprised only of
alphanumeric characters and the underscore “_”. The name may be referenced
from the JavaScript of other actions when using the invokeAction method.

Label Type a descriptive label for the new action.

The Label is used in other parts of the Form Designer to identify the action. It
is not used at runtime.

Destination Click the Browse (...) button to select a property to update with the results of
the script evaluation.

Once you select the value, it will appear in the Destination window, such as
Value of Claim Amount (ClaimAmount).

Expression   Type the script that will be evaluated in order to update the property selected
in the Destination field.

This is a JavaScript expression. The expression may contain multiple lines, but
the last line in the script must be an expression that will be used to update the
destination.

Note:
Do not use a return, since you are not writing a function.

3. Click Finish.

The new script action button is displayed in the Outline view indicating a shared action.

Editing an Action
You can modify script and computation actions that are shared by selecting them in the Outline view and
specifying the changes in the General Properties tab for that action.

Setting Rules
By setting rules on event triggers, you can make the form more responsive.

For an overview of rules and their use in TIBCO Business Studio Forms, see Rules.

Adding a Rule Using the Outline View
You can add a rule from the Outline view.

Procedure

1. In the context-menu of Rules, select New Rule.

2. In the Rule Details page of the New Rule dialog, specify data as explained in the table Specify the
Details for Rules.

52

TIBCO Business Studio™ Forms User's Guide



Specify the Details for Rules

Field Description

Name Type the name for the new rule.

The name is only visible when the Solutions Design mode is active. The name must
be unique among all actions in form and must be comprised only of alphanumeric
characters and the underscore “_”. The name may be referenced from the
JavaScript of other actions when using the invokeAction method.

Label Type a descriptive label for the new rule.

The Label is used in other parts of the Form Designer to identify the rule. It is not
used at runtime.

Enabled   Enable (default) or disable the new rule by selecting or clearing the check box.

If disabled, the actions defined in the rule will not be executed, even if the one of
the rule events is triggered. This option is provided primarily as an aid in
debugging a form.

3. Click Next to define the rule.

In the Rule: Pick Events page, use the Add button to add events or the Delete button to remove events
associated with the rule.

4. Click the Add button.

The Select Event page , which is used to select the events that trigger a rule, opens with a dialog Select
Item.

5. Click the event you want to associate with the rule, such as update property. You may select multiple
events by holding down the control key as you select the events.

6. Click OK to confirm the selection.

You can add multiple events to the rule. You can also delete any of the previously associated events
from the list.

7. To define an event, click Next in the Rule: Pick Events page.

The Define Actions page opens.

8. Click Add.

9. In the Pick an existing action or choose the create a new one dialog, there are two choices:

● Picking an Existing Action

● Creating a New Action

Picking an Existing Action

You can pick an existing action to define an event.

Procedure

1. Click the Browse button (...) next to Pick an existing action.

This will allow you to choose one of the system actions, or to select one of the custom shared actions
defined in the form.

2. In the Select Item dialog, select an action from the list of Matching and selected items, and click OK.

53

TIBCO Business Studio™ Forms User's Guide



A new row appears in the table with the details of the action.

3. Click Finish.

The Define actions dialog appears.

4. In the Define actions dialog, you can further configure the new action by selecting (or clearing) the
check boxes to enable (or disable) the action, or to designate the action to be shared.

5. Use up or down arrows to move the selected actions and rearrange them in the window.

The actions will execute in the defined order when the rule is triggered by one of its events.

6. Click Finish.

Creating a New Action

You can create a new action to define an event.

Procedure

1. Click the Create a New Action radio button.

Two additional radio buttons become available: Script Action and Computation Action.

2. Select the type of action you want to create.

3. Click Next.

4. If you selected Script Action, specify the data as in the table Specify the Action Details for the Script
Action:

Specify the Action Details for the Script Action

Field Description

Name Type the name for the new rule.

The name is only visible when the Solutions Design mode is active. The name must
be unique among all actions in form and must be comprised only of alphanumeric
characters and the underscore “_”. The name may be referenced from the
JavaScript of other actions when using the invokeAction method.

Label Type a descriptive label for the new rule.

The Label is used in other parts of the Form Designer to identify the rule. It is not
used at runtime.

Script   Type the script to run.

If you selected Computation Action, specify the data as in the table Specify the Action Details for the
Computation Action:

54

TIBCO Business Studio™ Forms User's Guide



Specify the Action Details for the Computation Action

Field Description

Name Type the name for the new rule.

The name is only visible when the Solutions Design mode is active. The name must
be unique among all actions in form and must be comprised only of alphanumeric
characters and the underscore “_”. The name may be referenced from the
JavaScript of other actions when using the invokeAction method.

Label Type a descriptive label for the new rule.

The Label is used in other parts of the Form Designer to identify the rule. It is not
used at runtime.

Destination Click the Browse icon (...) to select a value of the property to update based on the
script evaluation.

Once you select the value, it will appear in the Destination window, such as Value
of Claim Amount (ClaimAmount).

Expression   Type the script that will be evaluated in order to update the property selected in
the Destination field.

5. Select the Shared check box on the actions dialog to create shared actions from your new custom
actions. This makes actions visible under shared actions in the Outline view and available for use in
other rules.

Adding a Rule Using the Rule Wizard
In addition to adding new rules through the Outline view, you can also create a computation rule (a rule
with a computation action) directly from property you want to create a computation rule for.

Procedure

1. Click the Add a binding or rule button next to a property, such as for the Value property of the Name
control.

2. In the Select Type dialog, select the Update this property using a Computation Action radio button.

3. Click Next.

In the Provide Expression dialog, provide the script. In this case, there is no option to select the
destination, since the destination is implicit on where you are adding the computation action.

4. Click Next.

In the Events Configuration dialog, use the Add button to add events or the Delete button to remove
events associated with the rule.

5. Click the Add button.

The Event Picker, which is used to select the events that trigger a rule, opens with a dialog Select Item.

6. Click the event you want to associate with the rule.

7. Click OK to confirm the selection.

You can add multiple events to associate with the rule. You can also delete any of the previously
selected events from the list.

8. Click Finish when you are done configuring the rule.

55

TIBCO Business Studio™ Forms User's Guide



A rule icon appears next to the property, and allows easy editing of the compute action. Additionally,
the rule appears in the Outline view and can be edited as a regular rule.

Enhanced User Interface
TIBCO Forms uses an enhanced user interface from the 3.1.0 release. The default styling of forms is now
enhanced using the widely accepted Bootstrap styles.

In addition to the current set of custom CSS classes, the forms are rendered with a specific set of pre-
defined classes applied by the run time.

In the case of projects deployed from a previous version of TIBCO Business Studio (up to 3.8.0) to its
compatible run time (up to 3.0.0), the forms are not rendered in the enhanced user interface. If you redeploy
the project after upgrading to the latest release, its forms are rendered in the enhanced user interface.

You can enforce the enhanced user interface using the URL parameter, tibco_enhanced_ui.

The values permissible for the parameter are:

● default: All the newly deployed forms are rendered in the enhanced user interface, while the forms
deployed in previous releases (up to and including TIBCO Business Studio 3.8.0) are rendered as before.

● enable: All the forms, including the older ones, are rendered in the enhanced user interface.

● disable: All the forms are rendered in the old interface. If you are opening the forms in a new window
every time, you must pass the value as part of the parent window URL.

If the URL parameter is missing, the run time considers a meta declaration for gwt:property in the host
HTML file with the name tibco_enhanced_ui with the same set of values as mentioned above. For
example,
<meta name="gwt:property" content="tibco_enhanced_ui=enable"/>

If both the URL parameter and the meta declaration are missing, the run time considers the value defined in
the common bundle of the respective forms. For example,
tibco_enhanced_ui=enable

You can enhance the UI that uses Bootstrap, or integrate another CSS framework by making changes to the
default configuration properties in the common resource bundle as follows:

● By overriding the specific entries for each component type in the common resource bundle

● By adding style declarations in the relevant CSS file

The keys for static panes are different than the keys for the controls in a static pane. Also, there are different
keys for list controls.

For each pane and control on a form, two keys are used:

● A generic key for a pane with the name pane_class_defs

● A generic key for a control with the name control_class_defs

You can use a generic key control_custom_class_defs to write class definitions for custom controls,
which are similar to the class definitions for built-in controls.

The format for the second key is control_<control_type>_class_defs, where the <control_type> is
the last part of the control type in the model. For example, for the control type
"com.tibco.forms.controls.textinput", the key is control_textinput_class_defs. For the form itself, the
key is form_class_defs.

For information on control types, see Control Type.

Definitions for each control or pane are in a JSON format, that is a JSON array containing JSON objects with
the following properties:

56

TIBCO Business Studio™ Forms User's Guide



● selector: Mandatory. This property specifies the path of an element inside the control or pane from its
top level div unless specified explicitly using the target property. The path must be an absolute path in
the DOM. You need not provide the top level node. If you do, start the expression with //. In the
expression, you can use the HTML attributes in the DOM using the syntax [attribute=value].

● classes: Mandatory. This is a space-separated list of CSS classes to be applied on the element matching
the selector expression.

● when: Optional. The value can be valid or invalid, specifying when to add the respective classes. If not
specified, the classes are always applied on the element.

● where: Optional. It is applicable only to controls. The value can be in-grid or not-in-grid. If it is in-
grid, the classes are applied only when the control is in a grid. If it is not-in-grid, the classes are
applied only when the control is not in a grid. If not specified, the classes are always applied irrespective
of where the control is.

● target: Optional. Its value can be widget, label, or list-edit-widget. When not specified, the path in
the selector starts from the outer div of the component. If the path has to start from the widget, the
value must be set to widget. Similarly it must be set to label if the path is taken from the label. The
value must be set to list-edit-widget if the path is taken from the edit widget in a list control. With
the target property, you can define styles specifically for when the control is in a grid or not in a grid.

Both, controls and panes have a top-level div that contains two divs - one represents the label and the other
contains the actual widget, such as an input box for a Text control and its corresponding hint.

To know more, see Keys for Enhanced User Interface and Customizing Property Resource Bundles.

Enhanced User Interface on Custom Clients
The runtime bundles the Bootstrap, but does not load it by default. You can include the Bootstrap by using
the exported API, tibco.forms.Util.loadCSS().

The Bootstrap is bundled in the default theme with path bootstrap/bootstrap.min.css. If the containing
application needs to load Bootstrap, you can call the above API from the onTIBCOFormRunnerLoad()
callback. For example,
tibco.forms.Util.loadCSS("bootstrap/bootstrap.min.css");

For more information, see Utility Methods.

CSS Best Practice
CSS best practices are enforced while creating or editing a form, with the help of a work-space level
preference Enforce CSS best practice. It hides the Font, Layout, Child Layout, and Child Label properties,
and disables the resizing gestures on the canvas.

You can disable this preference from Window > Preferences > Form Designer.

Defining explicit overrides to fonts, colors, borders, and sizing of form elements results in generating
<form>.css or explicit HTML attributes, thus violating the HTML best practices. If the existing forms contain
such overrides, a warning marker appears in the Problems view, saying "explicit styling violates
CSS best practice". Applying the quick fix restores the enforcement of CSS best practice.

Cascading Style Sheets
It is possible to specify additional CSS classes that are applied to form components at the form, pane, and
control level.

This approach provides more flexibility and opportunities for reuse of style information than manually
setting properties at the Form model level. You can control some layout and font properties using the form
model Property tabs.

Setting CSS Classes

The General property sheet for the form, panes, and controls includes an input box to specify the CSS class
for the given component. The value can be either a single value, or a space-separated list of CSS classes.

57

TIBCO Business Studio™ Forms User's Guide



When the component is rendered in the web page, the CSS classes specified here are added to the HTML
along with other built-in CSS classes. The value of the CSS class for a form, pane, or control can also be
updated using bindings, computation actions, or set via the API.

Using an external CSS resource

The Resources property sheet for a form allows one or more external CSS files to be referenced from the
form. When added as an external reference, the CSS is loaded prior to the loading of the form. To load an
external CSS file in a form:

● Place the CSS resource within the Presentation Resources special folder.

● Select the root of the form by either clicking in the background of the canvas or selecting the root node
in the Outline view.

● Select the "External Resources" Properties view.

● Click the (plus) button to add a reference to the CSS.

See Scripting for lists of the built-in static and dynamic CSS classes.

Internet Explorer 8 and 9 have a limitation on the number of CSS files that can be loaded by a webpage.
Due to this limitation, some of the custom forms with additional CSS may not render as expected.

Best Practices

Follow these best practices for better stylistic consistency and code reuse.

● Use .TibcoForms in class selectors.

The root node of each form specifies the TibcoForms class. You can then write CSS selectors that are
specific to Forms and that do not conflict with other elements on the page. For example, suppose you
have a CSS class highlight that you apply to a pane. The corresponding CSS rule may be written as
follows:
    .TibcoForms .highlight {background-color: yellow;}

This ensures that the highlight class gets applied only to elements within a form.

● Share CSS between forms.

You can share the same CSS between multiple forms to avoid duplication. Just add a reference to the
shared CSS from one or more forms.

● Avoid introducing new custom CSS classes if the desired styling can be achieved through selectors
using the built-in CSS classes.

For more information, see CSS Classes.

Examples

A vertical pane might make use of a set of classes such as:
pane pane-vertical
    pane-label
    pane-content
        component control-textinput required
            label
            tf-container
                widget-text
                hint
        component control-date
            label
            tf-container
                widget-date
                hint

The following selectors may be useful:

58

TIBCO Business Studio™ Forms User's Guide



.pane-vertical .hint
 Applies to hints within vertical panes

.control-date .label
 Applies to labels of Date controls

.pane-vertical .required
 Applies to required controls within a vertical pane

.pane-vertical .pane-horizontal .label
 Applies to the labels of controls and panes in horizontal panes nested within vertical panes.

Data Validation in a Form
TIBCO Forms supports runtime validation of data as the user fills up the forms. You can configure
validations for the fields defined on the form. You can configure the validations to occur either when the
user changes a field value, or when the user submits the form.

Validations help users to specify correct data, thereby enhancing the overall experience. On the server side,
the submitted data are validated against the restrictions specified in the business object models used within
the form.

You can write validation scripts for each control as well as each pane on a form. Validation scripts usually
run when users update data or submit the form. The scripts need to be written to explicitly return a Boolean
or an Array.

● If the returned value for all validation scripts on the form is true, the form data are valid.

● If the returned value for one or more validation scripts is false, the validation error messages are
displayed on the form in a special pane called a Messages pane. Users can click the error message to
navigate to the first instance of the error in the form.

● If the validation expression evaluates to an array of strings, it indicates a failed validation. In this case,
the Messages pane substitutes each indexed parameter marker in the validation message template with
the corresponding array element.

The Messages pane displays the validation messages. You can specify a validation message either using a
key reference from the External Resources of a *.properties file or as a Custom Message.

By default, the Messages pane opens at the bottom of the form when a validation fails. By manually adding
a Messages pane to the form, you can configure the font and layout properties of the pane, and place it
anywhere other than the default position.

Validation Messages and Usability
Good validation messages help users complete the forms faster and without any error in the specified data.
Users get to see error messages for various types of controls and panes.

If you configure validation messages for each control, the user gets the validation message for the control
after specifying data and moving on to the next control. If you configure the validation to occur on
submitting the form, the validation message appears after the user clicks Submit to submit the form.

Clicking the message associated with an individual control sets the focus on that control. Record and Grid
panes automatically navigate to the correct page in order to show the invalid control. If you configure
validation for the entire pane, the focus of the screen shifts to the beginning of the pane in case of a failed
validation.

For information about invoking validations programmatically, see validate in the API reference.

59

TIBCO Business Studio™ Forms User's Guide



Validation Script
The final expression in the validation script must evaluate to true (if the data are valid), false (if the data
are invalid), or an array of strings (if the data are invalid and the validation message contains substitution
variables).

In the Edit Validation Script dialog, you can edit the script that determines whether the data submitted are
valid, or you can modify the error message that appears when users submit invalid data.

You can use the notation this in your script to refer to the control or pane during a given validation
invocation. A validation script, for instance, might contain a statement such as:
this.getValue() == "New York";

You can also use the context object provided while executing the validation to retrieve the value of the
given control or pane:
context.value == "New York";

You can refer to any control by using the “control.” notation, or to a pane using "pane." notation. To
refer to the value of a control, use the latter notation in conjunction with the Control.getValue() method:
control.city_name.getValue() == "New York";

Validation scripts must have no side effects. Do not set the value of controls nor make any modifications to
the form model from within a validation script.

Implementing Validations
You can add, edit, or remove validation scripts only when using the Solution Design capability. If the
Solution Design capability is disabled, the Validations tab does not appear on the Properties view of a
control.

You can enable or disable a validation at the time of defining it, or after defining it. If disabled, the
validation definition remains in the form model, but is not invoked at runtime. This may be useful during
troubleshooting of a form.

● When defining a validation, you can enable it or disable it by using the Enabled check box on the Define
Validation dialog.

● You can enable or disable a defined validation by using the Enabled check box in the Validations tab of
the Properties view.

Adding a Validation

TIBCO Forms does not validate controls and panes that are invisible, disabled, have any empty value, or
that are contained within a pane that is invisible or disabled. Only collection panes are validated even if
they are empty.

Procedure

1. With the form open in the Form Designer, click the control or pane where you wish to add new
validations.

The Properties view shows the properties for that control or pane. You can view the validation script for
any control or pane by clicking the control or pane, and clicking the Validations tab in the Properties
view of the control or the pane. See Reference for a detailed description of each property available on
the Validations tab.

2. Click the Add button to add a new validation.

The Define Validation dialog opens.

60

TIBCO Business Studio™ Forms User's Guide



The Define Validation Dialog

3. Specify a unique name for the script in the Name field.

4. Select the Execute When option from:
a) On Form Submit: Sets the validation script to run when the user submits the form. When more than

one control is involved, such as when you want to ensure that at least one of the two or more fields
are filled in, you can select On Form Submit.

b) On Value Change: Sets the validation script to run when the user specifies a value in the field, and
then exits that field. The validations of the syntax of specified values are best performed On Value
Change.

5. If you are defining a validation on a pane or control that supports multiple values (for example, grid
panes, list controls, and multi-select optionlists), select Validate As List to control how the validation is
run.

If you select Validate As List, then the validation runs just once for the entire list of items, and
context.value contains an Array (for primitive values) or a list (for multi-valued pane
validations). If you do not select Validate As List, then the validation runs once for each item
in the multi-valued control or pane, with context.value set to a new item each time the
validation is invoked.

6. Specify the validation script in the Script text area.

7. Select the type of Message from:

● External Reference: Picks the validation message from an external *.properties resource. You
can define validation messages at the form level in an external resource file with validation_ as a
prefix in the key, and share the file across forms or projects. Also, the default implicit validations

61

TIBCO Business Studio™ Forms User's Guide



can reference messages in the common resource bundle. External reference validation messages can
use substitution variables to include runtime data values in an externalized static text string.

● Custom: Allows you to specify custom text message or a message that contains substitution
variables, for example: “Sorry, you cannot have more than {0} {1}”. You can dynamically determine
the validation message at the runtime using substitution variables.

8. If you select the Message type as External Reference, click the picker button to open the Resource
Picker dialog. Select a validation message from all the available validation_* resource keys, and click
OK.

The Resource Picker dialog displays a filtered list of only validation_* resource keys.

The Resource Picker Dialog

See Example 3 Validation Message Referenced from External Resource for details.

9. If you select the Message type as Custom with substitution variables, ensure that the validation script
expression evaluates to an array of strings.

The length of the array must be equal to the number of substitution variables in the message. See 
Example 2 Custom Validation Message with Substitution Variables for details.

10. Confirm that the Enabled check box is selected, and click Finish to complete the process of defining a
validation.

Editing a Validation

Editing a validation involves similar steps as adding a validation.

Procedure

1. With the form open in the Form Designer, select the control whose validation you wish to edit or delete.

2. In the Properties view of the control or the pane, click the Validations tab.

3. From the Validations tab of the Properties view, edit the Name, Execute When, Message Type,
Message, and List fields.

62

TIBCO Business Studio™ Forms User's Guide



If the message is an external reference, a cell editor appears on clicking in the message cell.
Clicking the cell editor opens the Resource Picker, from where you can select an appropriate
message key.

4. Select the script you wish to edit.

An ellipsis (...) button appears next to the script.

5. Click the ellipsis (...) button.

The Edit Validation Script dialog opens.

The Edit Validation Script Dialog

6. Edit the code in the Script field, and click Finish.

Result

The script editor provides content-assist editing. On typing the beginning of a legal value, such as
“control.”, a pop-up window appears listing the available completion proposals. If you type CTRL
+Space, a list displays containing all the top-level variables that are available in the given context.

Examples of Validation Messages
You can configure validation messages from external references, or you can also specify a custom validation
message.

63

TIBCO Business Studio™ Forms User's Guide



Example 1 Setting a Custom Validation Message

In this example, the text field has the name petNumber.

The General Tab

This means that the value submitted for this text field by a user can be referenced in the validation script by
the expression control.petNumber.getvalue().

Procedure

1. In the Define Validation dialog, specify the value in the Script field.

64

TIBCO Business Studio™ Forms User's Guide



Defining Custom Validation

2. In the Custom text field, type the validation error message that you want the user to see on specifying
incorrect data.

3. Confirm that the Enabled check box is selected, and click Finish.

If the user submits a value other than the one specified in the validation script, the validation error
message appears on the form.

Validation Script Example 1

Example 2 Custom Validation Message with Substitution Variables

You can specify a validation message with substitution variables.

Procedure

1. In the Define Validation dialog, type the code as shown in the Script field in the figure Defining Custom
Validation Using Substitution Variables.

65

TIBCO Business Studio™ Forms User's Guide



Defining Custom Validation Using Substitution Variables

2. In the Custom message field, specify the validation error message using substitution variables from an
array.

3. Confirm that the Enabled check box is selected, and click Finish.

If the user submits a value other than the one specified in the validation script, a validation error
message using the substitution variables from the array appears on the form.

Validation Script Example 2

Example 3 Validation Message Referenced from External Resource

You can specify a validation message from an external resource.

Procedure

1. Create <validations>.properties file under the Presentation Resources special folder in Project
Explorer.

The name of the file does not matter as long as the extension is .properties. The file can contain any
arbitrary custom display strings, not necessarily only validation messages.

66

TIBCO Business Studio™ Forms User's Guide



2. Define validation messages in the <validations>.properties file.

The validation message key must have "validation_" as a prefix. If a key does not start with
"validation_", the system does not treat it as a validation message.

3. Add the newly-created <validations>.properties file to the resources list of the form.

After adding the .properties file as a form external resource reference, the new validation messages
are available in the Resource Picker.

4. In the Define Validation dialog, provide the details of the external resource reference.

The Define Validation Dialog Using External Resources

5. Click Finish.

If the user submits a value other than the one specified in the validation script, the validation error
message from the external resource file appears on the form.

You can localize the validation error messages. See Localization of Forms .

Calling External JavaScript Functions
Often, a single JavaScript function is useful for many different forms. Typical utility functions are reused
commonly, such as functions for validating common types of input, or for making calls to external services,
and so on.

It is not necessary to rewrite or copy these functions from one form to another. To facilitate reuse, common
JavaScript can be placed in one or more JavaScript files external to the form. These JavaScript files are
deployed to the WebDAV server with your form files, and can be used by multiple forms in the browser
client.

67

TIBCO Business Studio™ Forms User's Guide



To use an external JavaScript file in a form, you need to add it to the form resources. Once added, the
JavaScript files get deployed automatically when the form is deployed, and loaded at runtime before the
form is loaded.

Specialized Layouts
You may need to resize, re-sequence, and nest panes to create forms with specialized layouts.

Nesting Panes
Panes may be nested within other panes to achieve specialized layouts. In particular, panes with different
layout directions can be nested to achieve column- or row-wise layouts.

You cannot add a modal dialog pane to another modal dialog pane, nor to a record pane, nor as a direct
child (tab) of a tabbed pane.

Creating Columns with Nested Panes

You can create a multi-column layout by nesting two vertical panes, side-by-side, within a horizontal parent
pane.

Procedure

1. Place groups of controls into two separate vertical panes, each representing a separate column.

2. Drag the second pane to a position next to the first pane, so that you see a dotted line appear. The dotted
line means that a horizontal pane will be automatically created for you to hold the two vertical panes.

As you drag the pane, you will see feedback on the new position of the pane prior to releasing the
mouse button.

3. If you want more than two vertical columns, drag additional panes, one at a time, next to the right-most
vertical pane within the new horizontal parent pane.

Positioning Controls into a Multi-Column Layout

A multi-column layout is created by positioning multiple vertical panes within a horizontal pane. The
creation of a two-column layout is used here to demonstrate this technique.

Procedure

1. Vertical panes A, B, C, and D are placed on the form, one beneath the other.

Place Vertical Panes on the Form

2. Drag the Pane B up and to the right, close enough so that a colored background appears around Pane
A.

68

TIBCO Business Studio™ Forms User's Guide



Position the New Pane

3. A new horizontal pane is automatically created, containing the two vertical panes, side by side.

New Horizontal Pane is Automatically Created

Resequencing Tabbed Panes
Tabbed panes can also be resequenced in the Outline view using drag-and-drop.

Procedure

1. Expand the tabbed pane using the arrow to the right of the tabs.
2. Use drag-and-drop to move the child pane to its new position.

Result

The pane's tab will automatically adjust itself to the new index position.

Resizing a Tabbed Pane
If you add or delete child panes within the tabbed pane, or add or remove controls from a child pane, or
move controls between panes, you may need to resize the tabbed pane to account for the resulting increase
or decrease in the child pane's width, height, or both.

Procedure

1. Collapse the tabbed pane.
2. Select each tab in turn, checking that all child panes fit comfortably within the tabbed pane's content

area and resize as necessary.
3. Verify the run-time appearance by clicking the GWT Preview tab in the Form Designer. If scrollbars

appear or there is excessive unused space, you may need to make further adjustments.

69

TIBCO Business Studio™ Forms User's Guide



Positioning a Modal Dialog Pane
By default, a modal dialog pane is configured to render at the center of the window. However, you can
change its position to suit the form.

Procedure

1. Select a modal dialog pane, and display its tab from the Properties view.

2. Specify the Dialog Position.
The available choices are:

Option Description

Center of the
window

Default. Use this if you want the modal dialog pane to be displayed at the center of
the window.

Center of the
form

Use this if you want the modal dialog pane to be displayed over the form, when the
form is being rendered as a part of a larger application.

Relative to the
focused element

Use this if you want the users to fill the data in the modal dialog pane with a
context to the focused element. (0,0) is the top left position of the element clicked
by the user. Specify the X and Y coordinates accordingly. Positive values move the
pane downward and to the right by specified pixels.

Absolute
Position

Use this if you want the modal dialog pane to be displayed at an absolute position
irrespective of the scrolling. (0,0) is the top left point in the view port. Specify the X
and Y coordinates accordingly. Positive values move the pane downward and to
the right by specified pixels.

3. Click Save.

Setting Visibility of Pane and Control Borders
The controls and panes on a form, including nested panes, are sometimes clearer and easier to distinguish
from one another when viewed with borders around them. The borders do not appear at runtime (or in the
GWT Preview mode), but only in Design mode.

It is a matter of personal preference whether to display the borders in Design mode. To switch between
showing and hiding borders around controls and panes, click the Toggle Pane and Control Borders button
at the far right of the TIBCO Business Studio Forms toolbar.

Procedure

1. Click Window > Preferences to open the Preferences dialog.

2. Click Form Designer in the left navigation pane.

3. Select or clear the Show pane and control borders check box as desired, and click OK.

Borders are displayed or hidden as specified.

Embedded Forms
Many forms may use similar sections, such as profile information of a user, contact information, postal
address, and so on. You can create these sections separately, and reuse them in several forms.

To reuse such sections, you need to create a reusable fragment of a form separately, and embed it later in
parent forms. These reusable sections are called Embeddable Forms.

70

TIBCO Business Studio™ Forms User's Guide



In the Embedded Forms topic the following terms are used frequently:

Embeddable Form A form that has been designed to be embedded is referred to as an embeddable form.

Embedded Form Once a form is embedded within the parent form, it is referred to as an embedded form.

For example: you have to design a form for delivery of goods to customers. In such a form, different types
of address information is required, such as delivery address and personal address. If you design a normal
form, you have to create the same set of address fields at two places. By using the embedded forms feature,
you can create a reusable embeddable form with the address fields and embed this form at multiple
locations in the parent form.

Prerequisites of an Embeddable Form

An embeddable form has no navigation or message panes, as navigation and messaging are taken care of
by the parent form.

If you want to embed an existing form within another form, it is advisable to make the following changes to
make the existing form suitable for embedding:

● Remove the navigation and messages panes from the embeddable form.

● If the embeddable form has any dynamic behavior that must be exposed to the parent form, you must
tie the dynamic behavior to parameters on the embedded form, which can then be updated by parent
forms.

Working with Embedded Forms
When you create an embeddable form, you also need to create different gestures for embedding that form.

Creating an Embeddable Form

You can create an embeddable form from the Project Explorer.

Procedure

1. Go to the Forms folder, or any folder under the Forms folder in the Project Explorer and click Context
Menu > New > Form . The New Form dialog opens.

2. On the New Form dialog box, specify the File name. Select the Form type as Embeddable.

3. Click OK.

Result

This newly created form will only have a single root pane. Messages and navigation panes are not created.

Embedding a Form by Using the Embedded Form Icon

The embedded form icon  is displayed on the Palette in the Panes section.

Procedure

1. Select the embedded form icon from the Palette and drop it in the required location on the Form
Designer canvas.

2. The Select the form to embed dialog is displayed. All the forms available in all the projects in the
workspace are listed in the dialog. Select the required form.

71

TIBCO Business Studio™ Forms User's Guide



If the selected form is from another project, you are prompted to add the other project as a
reference.

3. The Embedded Form dialog is displayed asking you to map the embedded form parameters in the
‘Mapping’ property section. Click Yes to continue or No to skip the parameter binding. See Embedded
Form Parameters for the details of parameter binding.

Embedding a Form from the Project Explorer

You can embed any form within the project or any project on which the existing project depends.

Procedure

1. Select the form from the Project Explorer and drop it in the required location on the Form Designer
canvas or Outline view.

2. The form is embedded within the form. An embedded form is represented as a pane containing a form
icon, labelled with the name of the embedded form.

A form is embedded only at design time. You can have multiple levels of nesting. The nested
form is embedded by reference.

Adding a BOM Class or Form Parameter to a Form

You can create an embeddable form UI components directly from a BOM class.

Write the task in procedure format post conversion.

Select a BOM class in the Project Explorer and drop it in the Form Designer canvas. All the UI components
associated with the BOM class are automatically created on the form.

Similarly, you can select a form parameter in the Outline view and drop it in the Form Designer canvas.
This will also automatically create all the UI components associated with the parameter.

It is recommended to define a separate project with all the reusable embeddable forms along with the BOM
classes they represent. Add this project as a dependency in other projects to make use of the data model.

Embedded Form Parameters
Once a form is embedded within a parent form, the embedded form parameters can be accessed only via
the parent form. An embedded form exposes an interface that consists of its parameters.

The panes and controls in an embedded form are generally bound or otherwise mapped to its parameters.
These parameters in the embedded form are in turn mapped to parameters, data fields, controls, or panes in
the parent form.

For example: we have an embeddable form which contains a single pane that is bound to a parameter of
particular type defined as a BOM class. This form is embedded in a parent form. You bind an embedded
form parameter to one of the parent form’s IN OUT parameters of the same type. When the parent form is
loaded with an instance of that parameter, the embedded form is updated via the binding. This is one of the
mechanisms by which information is exchanged between the parent form and the embedded form

There are many ways in which data can be exchanged between the parent and the embedded forms:

● Using absolute bindings from parent form panes or parameters

● Using computation actions

● Using the API in script actions

For details of how to set bindings and actions, see Setting Bindings and Setting Actions.

72

TIBCO Business Studio™ Forms User's Guide



Accessing Embedded Form Parameters

You can access the embedded form parameters using action scripts and computation actions.

The parameters of the embedded form appear as Data Fields in the deployed copy of the parent form. The
names of these parameters are scoped by the name of the embedded form.

Example:
data.get<EmbeddedFormName>_<ParamName>();

For example, data.getCustomerForm_Customer();

Setting Bindings from the Mappings Tab
You can bind parameters of a parent form to an embedded form.

Procedure

1. In the Form Designer canvas or Outline view, select the embedded form.

2. Go to the Mappings tab in the Properties view of the parent form.

3. All the parent form parameters are displayed in the left pane. The right pane displays each embedded
form, along with the parameters defined in that embedded form.

4. Drag the required parent form parameter and drop it onto the embedded form parameter to bind it.
This creates the required binding, which is represented by a connecting line between the parameters.

Rendering of Embedded Forms
On the Form Designer canvas, an embedded form is represented as a pane containing a form icon. When
the builder runs, it creates a deployable copy of the parent form. Each embedded form pane is replaced by
the contents of its respective embeddable form, recursively.

At preview and runtime, the GWT implementation renders the deployable copy of the parent form.

Preview Rendering of the Parent Form

Editing Embedded Forms
You cannot directly edit an embedded form within the context of the parent form. It is possible to move it to
a different location within the form, but it cannot be edited directly.

Procedure

1. In the Form Designer canvas or Outline view, select the embedded form pane.

73

TIBCO Business Studio™ Forms User's Guide



2. Go to the Properties tab in the Properties view of the embedded form pane. The Form Reference
displays a link to the embedded form.

3. Click the link to open the embedded form in the Form Designer.

4. Click the ellipsis (...) button to change the embedded form.

5. Update the embedded form using the Form Designer.

The updates are available in the parent forms without having to re-embed the form.

The changes made in the embedded form can be seen in preview and at runtime after the
parent form is redeployed.

Mappings Tab
The Mappings tab of the Properties view provides a global view of all the bindings and computation
actions related to the selected element in the Form Designer canvas or Outline view.

You can view, edit, and create mappings from the Mappings tab. It displays the values of the source and
target fields of the existing mappings in the left and right trees respectively.

The term mappings used in this topic, is a generic word which covers both bindings and computation
actions.

Mappings Tab of the Properties View

The details are as follows:

● The right pane displays the bindable properties of the selected target element.

● The left pane displays the bindable source properties to which the target elements are bound. It displays
the selected object and its ancestors all the way up to the containing form and also includes the form
parameters and data fields.

● The connecting lines represent the existing mappings between the source and target properties.

● The arrow end-point represents unidirectional mappings.

● The red triangle at one end-point of the connecting line represents collapsed mappings.

The default view of the Mappings tab is focussed on the mappings of the selected element.

A set of buttons and filters are provided in the toolbar. Each of these filters has a corresponding toolbar
button and a toolbar menu item: both are associated with same filter action. The buttons control the depth
to which the source and target trees are expanded. The filters help you to control the properties to be
displayed in the source and target panes. The details are explained in the table Toolbar Buttons for the
Mappings Tab.

74

TIBCO Business Studio™ Forms User's Guide



Toolbar Buttons for the Mappings Tab

Button Description

Expands the source and target trees just to the extent required to reveal all the
existing mappings.

Expands both the source and target trees to the maximum possible extent.

Collapses both the source and target trees to the maximum possible extent.

Deletes all the bindings and computation actions related to the selected element.

This filter shows only the selected element and its related ancestors in the source tree.
By default this filter is enabled. When disabled, unrelated components are also visible
but initially shown collapsed. You can expand these unrelated nodes manually.

This filter shows only the bindable value property in the source tree. By default this
filter is enabled. When disabled, the other bindable properties of the selected element
are also displayed in the source tree.

This filter shows only the bindable value property in the target tree. By default this
filter is enabled. When disabled, the other bindable properties of the selected element
are also displayed in the target tree.

This filter hides the descendants of the selected pane in the target tree. By default this
filter is enabled. When disabled, all the target pane’s children are visible but initially
shown collapsed. You can expand the child nodes manually.

Coloration Feedback
The connecting lines representing the existing mapping can be difficult to understand especially if there are
many mappings between the elements of the source and target tree. The coloration feedback is very useful
in such scenario as it allows you to see at a glance which mappings are defined within a given component
tree.

Some examples are:

● When you select a bindable element in the source or target tree, all mappings involving that element
and its visible children are highlighted in bold. In the figure Mappings Tab of the Properties View, when
you select Customer_order_item_SKU/Value node in the target tree, the corresponding binding is
highlighted in bold. This is especially helpful when the ‘show only source ancestors’ and ‘hide target
descendants’ filters are disabled.

● When you click a collapsed mapping (represented by a red triangle), it automatically expands and
displays both of the end-points of the mapping.

The Mappings tab’s user interface (UI) simplifies tasks such as property binding and creating computation
actions.

75

TIBCO Business Studio™ Forms User's Guide



Setting Bindings
Bindings are represented by a connecting line between the properties.

Procedure

1. In the Form Designer canvas or Outline view, select the target element.

2. Go to the Mappings tab in the Properties view of the selected element.

If you are adding a binding to a grid pane control, make sure the Visible property is enabled.

3. Drag the property of a component, parameter or data field from the source tree and drop it over the
property of a component in the target tree to which you want to bind it.

You can also create a binding in the opposite direction, that is from the target tree to the source tree.

Adding Computation Actions
You can add a computation action from the mappings tab of an element.

Procedure

1. In the Form Designer canvas or Outline view, select the component or element for which you want to
add a computation action.

2. Go to the Mappings tab in the Properties view of the selected element.

If you are adding a computation action to a grid pane control, make sure the Visible property
is enabled.

3. Click the New Computation Action node in the source tree. By clicking on this node, you can specify the
name of the computation action in direct edit mode.

4. Press Enter to commit the newly created computation action name and display the Rule Details page of
the New Rule dialog.

5. Follow the instructions given in the Adding a Rule Using the Outline View section to create a new
computation action.

After the new computation action is created, it is visible in the source tree.

6. To connect the newly-created computation action to its destination, drag the computation action and
drop it on the target property of a component in the target tree.

This completes the creation of computation action.

Editing Computation Action Using the Script Editor Section
You can update all the fields of the computation action from the Script Editor.

Procedure

1. Go to the Mappings tab in the Properties view.

2. Select the computation action to be edited, from the source tree.

3. Expand the Script Editor section to see the computation action section in the Mappings tab view, and
update all the fields of the action.

Editing Mappings
You can edit the binding or the computation action from the Mappings tab.

76

TIBCO Business Studio™ Forms User's Guide



Procedure

1. In the Form Designer canvas or Outline view, select the target element.

2. Go to the Mappings tab in the Properties view of the selected element.

3. Select the mapping to be edited and invoke the Edit Binding or Edit Computation Action dialog by:
a) Double-clicking the selected mapping
b) OR presssing Enter
c) OR executing Context Menu > Edit

The Edit Binding or Edit Computation Action dialog is displayed. See Setting Bindings and Setting
Actions for details.

When you create mappings from the Mappings tab, it prevents you from creating invalid
mappings. Look for the following cursor feedback when you drag a property between
trees:

●  - Not valid binding.

●  - Valid binding

Property Resource Bundles
In TIBCO Forms, you can configure the resource keys in the Property Resource Bundles or .properties
files. You can override the values of the existing resource keys, and also add new resource keys.

Such customizations may be necessary for:

● Changing the value of a resource key, for example the default date format used by all the controls

● Adding a new locale for adding a new language that is not already listed in the default locales

● Adding new resource keys, for example new numeric formats

● Adding a new .properties file that is automatically added to all the forms in a project, or to all the
projects in a workspace

● Using implicit validations that use the messages specified in the common resource bundle

It is possible to do such customizations at the project level and also at the workspace level.

For information on the default common resources, see Common Resource Keys.

The Merging Process
TIBCO Forms creates a merged bundle of common resources from the overridden resource keys and the
default resource keys from the base bundle. This merged bundle resides in the Presentation Resources
folder.

The .common sub-folder is hidden by default. To display it, you need to disable the .*resources Project
Explorer filter.

The entries in your <custom>.properties file are compared with the existing entries in the default
common.properties file. If a resource key already exists in the default file, its value in the
<custom>.properties file is used in the merged bundle. If the resource key is not in the default
common.properties file, it is added to the new merged file.

If the custom bundle does not specify a file for a specific locale, the entire file from the default bundle is
passed on to the merged bundle. Similarly, you can also specify a new locale that is not a part of the default
bundle.

77

TIBCO Business Studio™ Forms User's Guide



The figure Merging Process illustrates the merging process.

Merging Process

Customizing Property Resource Bundles
You can override the values of the properties in the resource bundle at the project level, or at the workspace
level.

Procedure

1. Right click the Presentation Resources folder and click New > File .

The New File dialog appears.
2. In the New File dialog, name the file with .properties as its extension, and click Finish.

In the example, the name of the file is customer_specific and the extension is .properties.
3. In the new .properties file, type the resource entries that you wish to add or override.

Sample Resource Entries

In this example, the new resource key is:

● validation_PetCount

The table Example Resource Keys with Overridden Values lists the existing resource keys with
their default values and their new values.

78

TIBCO Business Studio™ Forms User's Guide



Example Resource Keys with Overridden Values

Resource Key Default Value Overridden Value

dpane_new_label Add a new record Add a new report

time_24hour true false

form_submit_label Submit Enter

The merged common resources bundle now consists of the old resource keys with the new
overridden values along with the new resource keys.

4. In the Project Explorer, right click the project, and select Properties.

OR

Click the Project menu, and select Properties.

The Properties for project name dialog opens.

5. In the left pane, click the Form Designer arrow to expand it, and select resources > Common
properties.

You can also specify the properties file at the workspace level from this dialog. To do that, click
the Configure Workspace Settings link. When opened this way, the dialog shows filtered
options, and it only shows the Form Designer and Common properties file.

Else, you can go to Window > Preferences , and expand the Form Designer to select resources
> Common properties. Continue the remaining procedure from the next step.

6. Select the Enable project specific settings check box.

7. Click the Browse button next to the Common properties File.

The Pick Resource dialog opens.

8. Select the new properties file, and click OK.

9. Click Apply, and in the ensuing Rebuild? dialog, click Yes.

In the Properties view > Resources tab, the URI field shows that the common properties resource is now
overridden.

Validations Related to Custom Common Resources
The default validations available on custom common resources have the following objectives:

● To check if the project has a project reference to the project containing the common properties override

● To check if an override is set at the project level or workspace level

● To check if the properties override file actually exists

● To warn about any form that uses a form-level common properties override

If you see such validation messages, do one of the following as appropriate:

● Add the missing project reference

● Create the missing common.properties file

● Remove the common properties override from the preference node

● Remove the common properties override from the form

79

TIBCO Business Studio™ Forms User's Guide



Customizing the Form’s Preview Data
By default, when a form is previewed, sample data is included for each control to give a better idea of how
the form appears to a user at runtime. You can customize the preview data that appears, rather than using
the default data generated for each control type.

Editing the File form-name .data.json
The .data.json file is a generated file. Do not edit the original file. If you edit it, your customizations are
overwritten when the file is regenerated.

Also, be sure to maintain the file extension, .data.json. Otherwise, your customized preview data file is
not accessible to the form.

Procedure

1. In the Project Explorer, find the file that contains the preview data.

The default location of this file is: [project-name ] > Forms > ProcessPackage > [ business-process-name ]
> [ user-task-name ] > [ form-name].data.json

2. Right-click the .data.json file and click Copy. Then, in the same location in the Project Explorer, right-
click and click Paste.

The Name Conflict dialog appears asking you to type a new name for the file. Rename the file keeping
the extension .data.json. Do not delete the original preview data file.

3. Right-click your newly-named custom preview data file, and click Open With > Text Editor .

4. Edit the file, providing your desired values for the preview data in place of the default values in the file.

Result

Example of Default Preview Data File
{ items: [
   { $param:'AnotherDemo', $value:                    
{$type:'com.example.demo.Demo',               normalText:        "normalText"    ,list:
[
   "list"
   ],duration:        ""    ,attribute1:[
   "2010-05-16"
   ]}
   },
   { $param:'Demo', $value:                    
{$type:'com.example.demo.Demo',               normalText:        "normalText"    ,list:
[
   "list"
   ],duration:        ""    ,attribute1:[
   "2010-05-16"
   ]}
   }
   ]}

Example of Customized Preview Data File
{ items: [
   { $param:'AnotherDemo', $value: {$type:'com.example.demo.Demo',
   normalText: "My Sample Data"    ,
   list:["list", "John", "George", "Ringo"],
   duration: "P4Y"    ,
   attribute1:["2010-05-07", "2010-02-11"]}
   },
   { $param:'Demo', $value: {$type:'com.example.demo.Demo',
      normalText: "normalText", list:["list"],duration: "",
      attribute1:["2010-05-07"]}
   }
]}

80

TIBCO Business Studio™ Forms User's Guide



Configuring the Setting in the Properties View
Once you have created a custom preview data file, you can configure the form to use this file rather than the
default file (or no file at all) for preview data.

Procedure

1. In the Properties view for the form, click the Preview Data tab.

2. Select one of the following radio buttons:

None
Select this option if you prefer that no data be displayed initially for the controls when the form is
previewed.

Default
Select this option if you want to use the default data for each control on the form.

Custom
Select this option if you want to use your customized .data.json file for the preview data values. The
Custom radio button is paired with an optionlist that shows all the .data.json files associated with
the current form. Select the custom preview data file you want to use from the optionlist.

Form Data Fields
Form data fields are used to store data that is needed only for the lifetime of the form.

User task parameters offer a way to associate a user task with process data fields so that data that is
available to the entire process can be used, viewed, or modified through the form associated with the user
task. But in some cases, you want to track data that is useful for the functioning of the form, but is unrelated
to other tasks in the process and is not needed by the server. In such a case, instead of using parameters,
you can create one or more form data fields to store that data for the lifetime of the form.

The same data types available for parameters are also available for form data fields. The key difference
between a form data field and a parameter is that a form data field has no Mode property (In, Out, or In/
Out). Since a parameter’s Mode property is used to specify the way parameter data interacts with the larger
business process, it has no relevance to form data fields.

Configuring a Form Data Field
You can use a form data field to make a set of invisible panes in the form visible when user specifies a
certain value (or takes other action). In this case, by using a form data field you can track which of those
panes are visible. The form data field functions as a global variable within the context of the form.

You can also use a form data field in a form containing a wizard pane to track which page of the wizard is
currently visible to the user.

Procedure

1. Open the form in the Form Editor view, if it is not already open.

2. In the Outline view for the form, right click the Data folder and click New Data Field.

3. Provide a label, name, and type for the data field.

4. Select External Reference to choose a type from all the types defined for the process.

81

TIBCO Business Studio™ Forms User's Guide



Numeric Controls
A numeric control is not a distinct control type, but is a special property that can be enabled for a text input
control. It is used to display data in a specified format so that it is easier to read.

The numeric control property of a text control enables you to specify the display format of numeric and
currency values. It only changes the way the control value is displayed and does not affect the way the
value is edited or saved.

To define a format, you can use the following pattern:
PosPrefix PosFormat PosSuffix;NegPrefix NegFormat NegSuffix

The spaces between prefix, format, and suffix are used only for clarity and should not be included in the
actual format.

This pattern defines a format for positive numbers (PosPrefix PosFormat PosSuffix) and a format for
negative numbers (NegPrefix NegFormat NegSuffix) separated by a semicolon (;).

The format can include the formatting characters shown in the table Numeric Control Formatting
Characters. Each character is replaced with locale-specific text when the number is formatted.

Numeric Control Formatting Characters

Character Description

0 (Digit) Used to signify the minimum number of digits to be displayed. Each instance of the
character represents a position for one digit. If no value exists in a position, a zero (0)
is displayed. This character is not valid within prefix or suffix.

Left of the decimal point: leading 0's are shown.

Right of the decimal point: trailing 0's are shown.

# (Optional
Digit)

Used to signify the minimum number of digits to be displayed. Each instance of the
character represents a position for one digit. If no value exists in a position, a blank
space is displayed. This character is not valid within prefix or suffix.

Left of the decimal point: leading 0's are not shown.

Right of the decimal point: trailing 0's are not shown

. (Decimal
separator)

Used as a numeric or monetary decimal separator. This character is not valid within
prefix or suffix and is localized based on the locale settings.

- (Minus sign) Used to indicate a negative number. This character is only valid in the prefix or suffix.

, (Grouping
separator)

Used to group the number format. The grouping separator must not be used to the
right of the decimal point in a number format.

This character is localized and is not valid within prefix or suffix.

; Separates positive and negative sub-patterns. This character is not valid within
number format, prefix or suffix.

¤ Currency sign (Unicode code point-\u00A4). This character is valid only within prefix
or suffix and is replaced by the localized currency symbol.

Some sample formats are listed in the table Numeric Control Sample Formats:

82

TIBCO Business Studio™ Forms User's Guide



Numeric Control Sample Formats

Number Format Pattern Displayed

0 0 0

0 #

123 0 123

1234.123 #,###.0000 1,234.1230

1234.123 #,###.00 1,234.12

1234567.123 #,###.00 1,234,567.12

1234.123 000,000.00 001,234.12

1234.12345 #,##0.00## 1,234.1234

1234.123 #,##0.00## 1,234.123

Inserting a Numeric Control
You can specify the display format of a numeric control either using an external reference or by using your
own custom format.

Procedure

1. Select a text input control from the Palette and drop it in the form.

2. Go to the Properties tab in the Properties view for the text input control and select the Numeric check
box. This enables the Format options.

3. Specify the display format from the following options:
a) External Reference: Select a format from an external resource. See Inserting External Reference

Format
b) Custom: Define a custom format. See Inserting a Custom Format.

Inserting External Reference Format

By selecting the External Reference option, you can use one of the predefined formats from the common
resource bundle.

Procedure

1. Select External Reference under the Format options.

2. Click the ellipsis (...) button to display the Resource Picker.

3. Select a format from the list and click OK.

83

TIBCO Business Studio™ Forms User's Guide



Creating a Custom Format

You can also create your own custom formats and add them to the Resource Picker list. The new custom
formats must be placed under the Presentation Resources special folder.

A sample custom format is as follows:
format_myformat1 = 000.000
  format_myformat2 = \u00A4#,#0.0;[\u00A4#,##0.0]

’\u00A4’ is the Unicode value for the ¤ currency symbol.

Procedure

1. In the Project Explorer, go to the context menu of the Presentation Resources folder and click New >
File.

2. On the New File dialog box, type the file name and use the extension .properties. The builder creates
matching <name>.properties.json and <name>.locales.json files in the same folder.

3. The newly-created properties file is automatically opened in the Properties File Editor for editing. Edit
the file to add custom number formats.

Adding the Properties File in the Resource List

The newly-created properties file must be added to the resources list of the form.

Procedure

1. Go to the Resources tab in the Properties view at the root level of the form.

2. The common resource bundle (common) and the default resource bundle for each form (form) are
predefined for each project.

3. Click the (plus) button to display the Pick Resource dialog box.

4. Select the newly-created .properties file from the list, and click OK.

Once you have added the newly-created .properties file as a form external resource reference, the
new formats are available in the Resource Picker.

Inserting a Custom Format

By using the Custom option, you can choose from some example formats or define your own format inline.

Procedure

1. Select Custom under the Format options.

2. Type the custom format in the text box. A list of example formats is available in the selection list.

3. You can select one of the example formats or define your own format inline using the formatting
characters listed in the table Numeric Control Formatting Characters.

Editing a Numeric Control
To edit a numeric control, the text input control must have focus.

For editing, the number is displayed in the raw format and in full precision. The prefix, suffix, and the
group separators are not displayed. The decimal point is displayed using the conventions of the active
locale. You can edit the values and move out of the control.

84

TIBCO Business Studio™ Forms User's Guide



When the text input control loses focus, the value in the text input control is displayed using the specified
display format.

Localization of Forms
With TIBCO Forms, you can create forms that support multiple languages.

Form logic, including layout and control types and validation rules, is stored in the form file. Language-
specific information, including labels and validation messages, is stored in locale-specific properties files.

To simplify the localization of forms, all text that appears on a form is stored in a properties file. The
properties file includes the strings that make up the labels for controls and panes, as well as the strings for
hints, validation messages, and error messages.

You can view the localized version and change the locale of a form in the preview pane.

Each form has a base properties file that is generated automatically when the form is created, and is
regenerated each time the form is saved. This file appears in Presentation Resources special folder in the
Project Explorer. The base properties file contains the strings that appear as labels and messages in the
form’s property sheets.

Base Properties File

To create a localized version of a form, you will make a copy of the base properties file, rename it, and edit
the strings it contains.

Do not edit the strings in the base properties file itself. Any changes you make to this file will be lost as soon as
the project is built (which is to say, as soon as you save the form, with the default setting, where auto-build is
enabled). To change the labels and messages for the base version of the form, use the form’s property sheets
instead. The changes you make in the property sheets will appear in the base properties file when the form
is saved.

85

TIBCO Business Studio™ Forms User's Guide



The renamed locale-specific versions of the properties file will not be automatically regenerated, and thus
your locale-specific strings will not be lost when the form is saved.

Creating a Locale-specific Properties File
The localized version must be present in the same directory, which contains the original base properties file.

Procedure

1. Select the <form>.properties file from the Presentation Resources special folder in the Project
Explorer. Make a copy of this file for each locale.

2. Rename the copy, using the naming conventions for languages and regions. See Language-specific and
Country-specific Properties Files for more details.

3. For every new properties file created in the Presentation Resources folder, the builder automatically
creates a matching <file.properties.json file at the same location.

4. Open a locale-specific version of the properties file in the Properties File editor and manually translate
the strings into the desired language.

5. Click Project > Clean to clean and rebuild the project. This updates the <form>.locales.json file with
the details of the language in which the form has been localized. For example, if you create
DemoForm_fr.properties file, then the Demoform.locales.json will contain ["fr"]. This file is
updated when the you rebuild the project after creating a new locale-specific version of the properties
file.

6. Run the JDK command-line tool native2ascii, using the locale-specific properties file as input, to ensure
that the file contains only ISO_8859-1-encoded characters:

The native2ascii command-line tool is available in the directory %JDK_HOME%\bin.

7. Move the completed locale-specific version or versions into the same directory where you found the
original base properties file.

You can find the directory that contains all the properties files by using the context menu of
one of the form’s files in the Project Explorer (for instance, the base properties file) and clicking
Properties to open the properties dialog. The path to the selected form resource is shown as
Location.

8. Save the locale-specific version and deploy the form into the runtime environment.

Language-specific and Country-specific Properties Files
The language specific properties file is a copy of the base properties file. This file is renamed using the
naming conventions for languages and regions.

Each localized language is represented by a two-letter code, in the format ll, where ll is a lowercase, two-
letter ISO 639 language code. For a list of language codes, visit the following web site:
http://www.loc.gov/standards/iso639-2/langhome.html

Each country is represented by a two-letter code, in the format CC, where CC is an uppercase, two-letter
ISO 3166 country code. For a list of country codes, visit the following web site:
http://www.iso.org/iso/english_country_names_and_code_elements

The form name, language code, and optional country code are separated by underscores. The table 
Renaming Locale-specific Properties Files shows examples of locale-specific properties files for a form
named DemoForm.)

86

TIBCO Business Studio™ Forms User's Guide



Renaming Locale-specific Properties Files

Filename Locale description

DemoForm.properties Original filename. This is the base properties file.

DemoForm_fr.properties Contains localized strings for the French version of the form. Use
this format (without specifying a region) when there is only a single
version of the form for this language.

DemoForm_fr_FR.properties Contains localized strings for the French version of the form used in
France.

DemoForm_fr_CA.properties Contains localized strings for the French version of the form used in
Canada.

DemoForm_ja.properties Contains localized strings for the Japanese version of the form.

As shown in the table Renaming Locale-specific Properties Files, if your form is called DemoForm, the
automatically generated base properties file will be called DemoForm.properties. This is the file that will
contain the strings typed on the form’s property sheets.

To create a French version of this form, copy the DemoForm.properties file and rename the copy
DemoForm_fr.properties. This is a language specific variant of the properties file which contains the
translation for the French language.

You can also create country specific versions of DemoForm_fr.properties file for France and French-
speaking Canada. The country specific variant of the properties file contains only those keys for which the
translation varies locally in each country.

While creating country specific properties file such as DemoForm_fr_FR.properties and
DemoForm_fr_CA.properties, it is better to create the DemoForm_fr_FR.properties and do all the
translations. Then copy the latter to DemoForm_fr_CA.properties and make the additional changes.

Finally, in both DemoForm_fr_FR.properties and DemoForm_fr_CA.properties delete all the entries
whose keys and values are identical to those in DemoForm_fr.properties.

The hierarchy in which the keys are resolved is as follows:

● The keys are first resolved in country specific versions of the properties file such as
DemoForm_fr_FR.properties and DemoForm_fr_CA.properties.

● The keys not provided in the country specific versions are resolved in the language specific version of
the properties file such as DemoForm_fr.properties.

● The keys not provided in the language specific version are resolved in the base properties file such as
DemoForm.properties.

If you want to make changes to the labels or messages in the base properties file of your form, and you want
corresponding changes to appear in the language specific versions of the properties file, you must make the
latter changes manually by editing the strings in the language-specific version of the properties files. An
alternative way of doing these changes is as follows:

1. You can select both the base properties and your language specific properties file in Project Explorer and
use Context Menu > Compare With > Each Other to open them side-by-side in the Property Compare
editor.

2. Use the  Copy All Non-Conflicting Changes or  Copy Current Change (From ... To ...) actions to
add new keys and delete old keys from your localized version. For new keys and those with updated
values you can provide a new translation.

87

TIBCO Business Studio™ Forms User's Guide



If the property keys are very similar, the Property Compare editor sometimes misidentifies
change types. It is up to you to inspect each change and decide whether the default merge
action proposed by the editor is appropriate. If not, you can manually add, delete or amend
the localized keys and values instead of using the Copy Current Change (From ... To ...) action.

Locale-specific Version of a Form at Runtime
When localized versions of a form exist along with the base version in the runtime environment, the
runtime will choose the locale-specific version that corresponds to the locale that is set on the user’s system.
If no version is present on the runtime server for that locale, the base version will be used.

You can use the Form.setLocale(String) and Form.getLocale() methods to change the locale settings
of the form.

Defining Localization Properties Outside the Form
In addition to creating localized versions of the base properties file of a form, TIBCO Forms supports the
creation and localization of additional properties files whose scope is not limited to a given form.

These properties files can be referenced by a form and, in fact, shared by any number of different forms
within the same or other projects.

Procedure

1. Create a new resource file, with the extension .properties, within the folder /<project > /Presentation
Resources in the Project Explorer. (This is unlike the base properties file, which is also contained in the
Presentation Resources folder, but is within a sub-folder for resources specific to the form, a sub-folder
named with the name of the form.)

2. Edit the properties file by adding key-value pairs in the format <key> = <value>, each on a separate
line. For example:
       mykey1 = My Key One
       mykey2 = My Key Two

The format is that of a standard Java resources file, identical to the generated base properties file found
in the form folder.

3. Copy the new resource file and save it with the same name but with an underscore and the locale code
added before the file extension. For instance, if you wish to create a French version of a properties file
named myResources.properties, save the first file as myResources_fr.properties.

4. In the key-value pairs of the localized version of the properties file, translate or edit the values as
desired, while leaving the keys unchanged.

5. The localized version is now available, and can be used as shown in the example that follows.

Example Using a Localization Properties File Defined Outside the Form

A localized properties file can be used within a form. In the example, a button is created that changes the
label for a text field. The value for the label is localized using properties files external to the form’s own
properties files.

Procedure

1. Add a text field and a button to a form.

2. In the Properties view for the form, go to the Resources tab. Click the plus sign to add a resource, locate
the new properties file you created in the Presentation Resources folder, and add it as a resource for the
form.

88

TIBCO Business Studio™ Forms User's Guide



You will add the new properties file as a form resource using the base name. The various
localized versions, with the locale code appended to the file name (preceding the .properties
extension) will be inferred from the base name, based on the user’s locale, at runtime.

The properties file now appears as a resource in the Resources tab, identified by a name and path (URI).
The Localized button is automatically selected for the properties file, indicating that the run time should
search for localized copies to match the user’s locale.

3. In the Properties view for the text control, give the control a name in the Name field on the General tab,
for instance localizedText.

4. Go to the Rules tab in the Properties view for the button. Click the button to Define a new rule for the
button that will be triggered when the button is clicked.

5. Leave the values unchanged in the Rule Details dialog, and click Next.

6. Leave the values unchanged in the Rule: Pick Events dialog and click Next. This simply means the rule
we create will be triggered when the button is clicked, which is the default event for buttons.

7. In the Define Actions dialog, click the plus sign to define a new action.

8. In the Add Action dialog, select the radio button Create a new action, and leave the radio button Script
Action selected. Click Next to specify a script that defines the action.

9. Using the content assist pop-ups to ensure correct values, type the following line of script (assuming
there is an item in your properties file whose key is mykey1 and whose value is My Key One):
      control.localizedText.setLabel(resource.
         MyLocalizedResourceFile.mykey1);

10. Preview the form in the GWT Preview tab. Click the button on the form, and the text field’s label should
say My Key One.

11. While still in preview mode, scroll down to the area immediately below the form and change the locale
used for the preview from Default Locale to French - France.

At runtime, the locale of an actual user is set on the user’s system or in the user’s browser. The
locale setting currently is not available for the GWT Preview.

12. Click the button on the form again, and the text field’s label should now show the localized French text
for the button’s label.

Business Analysis and Solution Design Modes
There are two capabilities within the Forms Designer in TIBCO Business Studio, Business Analysis and
Solution Design. Using the Solution Design capability, you can write scripts for actions and validations, and
deploy forms.

If you are in the Business Analysis perspective, you do not have access to:

● The Deployment Servers tab in the Project Explorer.

● The script input pane on Actions. Business Analysts can only change the label on Actions.

● The names or Rename Button on Controls, Panes, Actions, and Rules.

● The Validations tab on a control’s Properties View.

To enable or disable these capabilities, click the “triangle and rule” toolbar button to open the drop-down
list that lets you select the desired capability.

89

TIBCO Business Studio™ Forms User's Guide



Business Analysis and Solution Design Modes

Migration from Previous Versions of TIBCO Business Studio Forms
The form model schema changed from version 1.0 in TIBCO Business Studio 3.9 to version 2.0 in TIBCO
Business Studio 4.0. Therefore, forms created in TIBCO Business Studio pre-version 4.0 require migration
from form schema version 1.0 to version 2.0.

If you import a form that was created in TIBCO Business Studio pre-version 4.0, it appears with a red X
problem marker decoration. If you select the form, the Problems view displays the message:
This resource has an old format and requires migration.

1. In the Problems view, right-click the marker for the form you want to migrate.

2. Select Quick Fix from the context menu.

3. In the Quick Fix popup, select the form(s) you want to migrate, then click Finish.

After the migration is finished, the Problem marker decorations are removed from the migrated forms in
the Project Explorer view.

The Problems view Configure Contents... action allows you to specify what content to display in the view.
For each active Configuration, you can filter the view contents by restricting the Scope, Description,
Severity, and marker Types displayed.

These content restrictions also apply within the Quick Fix popup, so if your intention is to 'quick fix' all
instances of a given problem in a given project or the entire workspace, you should ensure that the
Problems view contents are configured to include the required resources and marker types. For example, to
migrate all forms in the workspace, you would need to have Scope = On any element.

The changes within the migrated forms are:

● Mapping In and Mapping Out expressions are replaced with bindings where possible.

● If a Mapping In expression did more than just assign the value of a parameter, that Mapping In
expression is replaced with a computation action rule triggered by the Form open event.

● If a Mapping Out expression did more than just assign the value of a control, that Mapping Out
expression is replaced with a computation action rule triggered on Form submit event.

● Event handlers on controls or the form are migrated to rules triggered on the specific control or the
form.

● Actions are migrated to script actions.

● If the special file <project>/<form folder>/META-INF/form_ext.js is detected during migration, it
is added as a JavaScript resource.

● Validations such as during form submit no longer execute validations for controls that are invisible, or
are inside panes that are invisible.

90

TIBCO Business Studio™ Forms User's Guide



● This release includes additional design-time checks. You may see problem markers appear in migrated
forms that were not seen in earlier versions of TIBCO Business Studio.

91

TIBCO Business Studio™ Forms User's Guide



Advanced Tasks

You can improve usability, and enhance the appearance of your forms by performing a few advanced tasks
using TIBCO Business Studio Forms.

Using CSS to Customize the Rendering of a Form Control
TIBCO Business Studio Forms supports the use of Cascading Style Sheets (CSS) for customizing how form
controls are rendered. You can use CSS with Business Studio Forms to apply styling to a form control.

Explanation

This task covers the case where you want to apply special styling to a specific control in a form.

In order to design the rendering of a control, it is useful to know how the control is rendered in the browser.
TIBCO Forms makes use of CSS classes attached to the HTML DOM nodes in order to control rendering.
Generally, it is not necessary to know which actual HTML elements are being used in the rendering, and as
a practice you should try to use only the CSS classes in devising CSS selectors in your stylesheets, as this
approach is the most portable across different target platforms.

Shown here is a representation of the CSS classes that are used to render a control, and their relationship to
one another within the nested DOM:
     —component, customclass
          —label
          —container
               —control
               —hint

See Reference for a detailed description of the CSS classes used in rendering forms.

The customclass is the name of a CSS class specified in the design time model.

Procedure

1. Create a form that contains one or more controls.

2. Link the form to a custom CSS stylesheet.

To create a CSS file in your project
 In the Project Explorer, right-click the Presentation Resources folder for your project and
click New > File . The New File dialog opens, where you indicate the parent folder where the
CSS file for this form will be contained, and the file name. If there is already a css folder
within your Presentation Resources folder, you can choose that one or, if not, create a folder
with that name. But whether you use a subfolder, and if so, what it is named is unimportant.
What is important is that the CSS file be placed in or under the Presentation Resources folder
and that its filename ends with the extension .css. When you click Finish, the CSS file is
created and opened in the editor.

To link a form to a CSS stylesheet
 Be sure the CSS file is already present in the Presentation Resources folder. Then, in the
Properties view for the form, click the Resources tab. Click the plus sign (+) to add a
resource. The Pick Resource dialog opens, displaying a list of the resources currently residing
in the Presentation Resources folder, including CSS files, JavaScript, and image files, if any.
Select the desired CSS file and click OK. Your CSS file has now been added as a resource to
your form. The definitions it contains will be used to render the form in HTML.

3. With the form open and visible in the editor, click one of the controls on the form to open the Properties
view for the control.

92

TIBCO Business Studio™ Forms User's Guide



4. Enter a name in the Style Class Name(s) box on the General tab of the Properties view for the control.

5. Change the label font properties for this control. For example, add the following lines in the linked CSS
stylesheet:

    .highlight .label,
    {
        color: #FF0000;
        font-family: Helvetica, sans-serif;
        font-size: 12px;
        font-weight: bold;
    }

The CSS selector used here is .highlight .label. This is used for clients that use GWT, which is the
rendering used in AMX BPM Openspace and Workspace.

6. Put a border around the highlighted control and change the background color. For example, add the
following lines to the linked CSS stylesheet:
    .highlight,
    {
        border-style:solid;
        border-width: thin;
        background-color: #DDFFDD;
    }

Using Editable List Controls
You can bind editable list controls to data parameters of the primitive array data type.

If you have data parameters of the primitive array data type, you can bind the editable list controls to them.
You can create action scripts for adding items or for deleting items from the list control. You can also add
scripts for validating the values provided in the list control.

Procedure

1. Add new data parameters strArray, intArray, and decArray of the respective types Text, Integer, and
Decimal. All of these should be of array type.

2. Add three Text controls with labels Text List, Integer List, and Decimal List in to the form. Set the
names of these controls to textList, integerList, and decimalList.

For each of these controls:

Go to the Properties tab and select the Edit as List check box.

Go to the General tab and add a new binding for the Value that points to the value of the respective
data parameter array.

3. In the form preview, you will see the three editable list controls.

4. Add a new button Add Item to the form.

Add a new rule for this button and associate following action script for the Select event of this button.
This script adds the last item into the list.
      var list = control.textList.getValue();
      list.push("New Value");
      control.textList.setValue(list);

5. Add a new button Delete Item to the form.

Add a new rule for this button and associate the following action script for the Select event of this
button. This script deletes the last item from the list.
      var list = control.textList.getValue();
      list.pop();
      control.textList.setValue(list);

93

TIBCO Business Studio™ Forms User's Guide



6. For the text control named Text List, add the following validation script for the On Value Change event.
This validation is successful when the item added in the list control starts with Text. Otherwise, a
problem marker appears near the list control.
      var result = true;
      var arr = this.getValue();
      if (arr instanceof Array) {
         var length = arr.length;
         for (var i=0; (i<length) && result; i++) {
            if (arr[i].indexOf("Text")==-1) {
               result = false;
               break;
            }
         }
      }
      result;

Also add an error message to be displayed in case the validation fails:
Provide input that starts with Text.

Changing a Control’s Background Color Based on its Value
You can customize the background color of a control using a computation action and CSS classes.

Explanation

This topic covers the case where you want to apply a background color to a given control in a form based
on the control’s value.

In order to implement this task, you will need to know:

● How to specify a custom CSS document and refer it in the form.

● How to add a computation action that is targeted to a property of the control

Procedure

1. Create a form with one or more controls.

2. Add following classes to the custom CSS document and refer to the document in the form
      .normalbg,
      {
         background-color: #808080;
      }
      .warningbg,
      {
         background-color: #00FF00;
      }
      .problembg,
      {
         background-color: #FF0000;
      }

3. Add a computation action for the Style Class Name(s) property in the General Properties view for the
form.

Provide following JavaScript code for this action and select the update event of this control.
      var value = parseInt(control.textinput1.getValue());
      var bgclass = "normalbg";
      if ( value <= 100) {
         "normalbg";
      } else if ( value > 100 && value <= 500 ) {
         "warningbg";
      } else if ( value > 500 && value <= 1000 ) {
         "problembg";
      }

4. Preview the form.

94

TIBCO Business Studio™ Forms User's Guide



Provide an integer value between 0 - 100 and the background color for the control is set to gray.

Provide an integer value between 101 - 500 and the background color for the control is set to green.

Provide an integer value between 501 - 1000 and the background color for the control is set to red.

95

TIBCO Business Studio™ Forms User's Guide



Performance Improvements

You can improve the performance of forms in TIBCO Business Studio in many ways.

Static Rendering
There are certain cases where the information displayed within a pane is read-only, and the user does not
need to edit the values in the pane. In such scenarios, you may gain a performance boost in the load time of
the form by marking the pane to use static rendering.

How does Static Rendering Improve Performance?

When a pane is marked to use static rendering, the following optimizations are applied:

● Faster Rendering: Form uses an optimized rendering of the controls and markup within the pane which
helps the form to render faster.

● Reduced Load Time: For a pane having multiple child controls and child panes, individual objects are
not instantiated for each child. This reduces the load time considerably. The drawback is that it is not
possible to reference those objects using JavaScript in form actions.

Although the static rendering feature helps to enhance the performance of forms it imposes constraints on
model validations. The runtime functionality of static panes is also restricted. Refer to Runtime
Functionality for details.

When to Use Static Rendering

The use of static rendering may not make a big difference in simple and small panes. The difference in load
time is more pronounced as the panes get larger in terms of child controls and child panes.

Using static rendering can be useful in the following scenarios:

● Panes that need to display a large amount of non-editable information.

● Non-editable grid panes, such as those used in a master-detail implementation. It is possible to select
individual rows, and the data within the pane are refreshed if the underlying records are modified.
However, the static grid pane renders faster than the corresponding editable grid pane.

Configuration of Static Rendering

Panes support the static rendering functionality. You can configure this feature using the options available
on the Properties tab in the Properties view of a pane.

● Static Rendering: Check box used to mark a pane to use static rendering. If selected, the pane is
rendered as static pane. This property can be set only at design-time. It is not possible to convert a pane
to static at runtime.

● Text Only: Check box used to mark a static pane to use text-only rendering. If selected, the pane is
rendered as plain text, with no control widgets. This check box is enabled only if the Static Rendering
check box is selected.

Constraints on Model Validations
Panes with the Static Rendering property set to true have a few constraints on model validation.

The constraints are as follows:

● Static panes are only supported for the GWT desktop runtime.

● Static panes are only supported for grid, vertical, and horizontal panes. Any pane marked as static can
contain only these types of panes.

96

TIBCO Business Studio™ Forms User's Guide



● Controls and panes within static panes cannot be referenced using JavaScript. These controls and panes
do not show up in content assist, and any references to these components in JavaScript or computation
actions display an error-level problem marker.

● Panes and controls, except button controls, contained within a static pane do not raise events, and thus
cannot be used to trigger rules. Events for components within a static pane do not show up as choices
for rules.

● Controls and panes within static panes do not support computation actions.

● Controls and panes within static panes do not support validations.

● Controls and panes within static panes do not support bindings to properties. However, binding to the
following features are supported:

— Values

— Choice values

— Labels of optionlist

— Radiogroup

— Hyperlink

— Linktext

— Image URL

● Panes contained within static panes are also considered static panes.

● Tab order is ignored on controls within static panes.

● Values on controls and panes in static panes support absolute bindings and absolute ancestor pane
value bindings to data fields and parameters. Bindings to other controls in the form are flagged with an
error-level problem marker.

● Static panes cannot contain tabbed, grid, record, or message panes.

● Static panes cannot contain embedded forms.

● The Static Rendering property setting is ignored by the Mobile runtime. A warning-level problem
marker is shown if a pane has the Static Rendering property set to true and any of the presentation
channels uses Mobile rendering.

Top-level static panes can be referenced in form action scripts, computation action
destinations, and bindings. But, nested panes and nested controls cannot be referenced.

Restrictions on Runtime Functionality
For static panes, contents of the pane are rendered in simple HTML using streamlined JavaScript generated
at design-time.

● Validation markers are not displayed on controls in static panes.

— Initial data are assumed to be valid.

— For master-detail configurations, the grid pane can be updated using a non-static detail pane, but
validation markers are only shown in the detail pane.

— Data can be changed using the data API.

The values updated using the data API are not validated if they are shown only within a
static pane.

● ’Required value’ indicators are not displayed on controls in static panes.

97

TIBCO Business Studio™ Forms User's Guide



Static panes should only be used in cases where you are assured that all required values have
already been filled out, or when the user has an alternate method of specifying data, such as
master-detail configurations. An example would be a step in a process where a user confirms
previously specified data before proceeding.

● Controls in static panes are completely static. It is possible to set a Style Class Name on a static pane and
the child components, but the value is fixed at design-time.

Pane Value Update

When the value of a static pane is updated using either script, binding or computation action, the content of
the pane is regenerated using the same JavaScript initially used to render the pane.

A control within a static pane will not be refreshed when the underlying data value is updated if the control
is directly bound to either of the following:

● A primitive parameter or data field.

● A primitive attribute of a data field.

Static Grid Panes

Static grid panes support the following functionality:

● Row selection

● Pagination

● Adding records

● Deleting records

● Sorting

The following functionality is not supported in static grid panes:

● Editing

● Validations on controls

● Computation actions on controls

A static grid pane is rendered as a compact non-editable grid pane, with the values represented as plain
text.

It is possible to use a static grid pane as a part of a master-detail configuration. The non-static detail pane
can be bound to the selection of the grid pane as is currently done. When a value is changed in the detail
pane, the corresponding row in the static grid pane is re-rendered using the original generated JavaScript.

Tabbed Panes

Although tabbed panes cannot be marked as static, child panes that are vertical, horizontal, or grid panes
can be marked as static.

Localization

Static panes support localization and will be regenerated if the form locale is updated.

Renderings for Specific Controls

Most controls in a static pane are rendered in the same fashion as in a normal pane, but are rendered in a
read-only fashion.

If the Text Only property is set to true, then the value of each control is rendered as plain text. The values
are formatted appropriately according to the type (as listed in the table Rendering of Specific Controls). The
control widgets are not rendered. Although, the rendering of images, hyperlinks, buttons, and pass-through
controls is the same as in a static pane.

The table Rendering of Specific Controls lists how specific controls in a static pane are rendered:

98

TIBCO Business Studio™ Forms User's Guide



Rendering of Specific Controls

Control Rendering in Static Panes

Text Rendered as a read-only text input.

Text-Secret Rendered as a read-only secret text input (values are obscured).

Text-Numeric Rendered as a read-only text input. Numbers are formatted according to the format
set on the control.

Textarea Rendered as a read-only text area. The content of the text area is scrollable.

Checkbox Rendered as a read-only check box.

Date Rendered as a read-only input. Value is formatted using the date format.

Time Rendered as a read-only input. Value is formatted using the time format.

DateTime Rendered as a read-only input. Value is formatted using the datetime format.

Duration Rendered as a read-only input; formatted as is done for the read-only view in grid
panes. For example: 3 hours, 15 minutes.

Hyperlink Rendered as a normal, active hyperlink.

Image Rendered within an img element.

Label Rendered as plain text.

Optionlist The label for the selected value is displayed in a read-only input element.

Multi-select
Optionlist

A read-only version of the multi-select optionlist is displayed, with the selected
values highlighted.

Pass-through Static pass-through content is inserted as normal.

Radiogroup Rendered as a read-only radiogroup, showing the selected value.

Button Rendered normally. The button is active and can trigger rules defined in the form
model.

List controls Values rendered in a string, in a read-only input, using the localized list item-
separator.

Deferred Rendering and Deferred Initialization
The initial load time for complex forms can hinder the user experience. There can be a delay if the user
interface is initially hidden within the tabs of a tabbed pane. In such scenarios, using deferred rendering or
deferred initialization of panes can help to reduce initial load-time.

By using these features, the rendering of panes on a page is deferred until after the basic framework of the
form is loaded and is operational.

99

TIBCO Business Studio™ Forms User's Guide



How do Deferred Rendering and Deferred Initialization Improve Performance?

When a pane is marked to use deferred rendering or deferred initialization, the following optimizations are
applied:

● Deferred Rendering: The rendering of the pane is deferred till the pane is made visible by the user. The
panes that are visible at initial load-time are rendered when:

— The form is completely initialized.

— Form open event has fired.

— All the form open rules have been executed.

In tabbed panes, the rendering of each tab is deferred until the user clicks on the tab to view the
contents.

● Deferred Initialization: The deferred initialization feature can only be used for panes that are marked
to use deferred rendering. The children of the pane marked to use deferred initialization are not
initialized until the pane needs to be rendered. This means that the pane object itself is always
instantiated and available, but any nested children are not initialized.

Deferred initialization imposes restrictions on the types of references that can be made to the
child controls of the pane. Refer to Deferred Rendering and Deferred Initialization Constraints
for details.

Configuration of Deferred Rendering and Deferred Initialization

Panes support the deferred rendering and deferred initialization functionality. You can configure these
features on the Properties view of a pane. Both the options are available on the Properties tab.

● Defer Rendering: Check box used to mark a pane to use deferred rendering. If selected, the user
interface for the pane is not rendered until the pane is made visible. This property can be set only at
design-time and it cannot be updated using bindings or using the API.

● Defer Initialization: Check box used to mark a pane to use deferred initialization. This check box is
enabled only if the Defer Rendering check box is selected. If selected, the children of the pane are not
initialized until the pane needs to be rendered.

Constraints on Model Validations
Panes with the Deferred Rendering property set to true have a few constraints on model validation.

● Deferred rendering of a pane is supported for the GWT runtime.

● The Deferred Rendering property setting is ignored by the Mobile runtime. A warning-level problem
marker is shown if a pane has the Deferred Rendering property set to true and any of the presentation
channels uses Mobile rendering.

100

TIBCO Business Studio™ Forms User's Guide



● When a pane is marked for deferred initialization, all references to child or nested controls of that pane
are flagged with an error-level problem marker. This includes references in script or computation
actions. The following quick fixes are available:

— Remove deferred initialization.

— Use Defer Rendering only.

● Panes marked for deferred initialization cannot contain embedded forms, either directly or in any of the
nested panes. This is indicated by an error-level problem marker. The following quick fixes are available:

— Remove deferred initialization.

— Use Defer Rendering only.

Modal dialog panes cannot be marked for deferred rendering or deferred initialization. However, a child
pane of a modal dialog pane can be marked for deferred rendering or for deferred initialization.

Restrictions on Runtime Functionality
For deferred panes, you may observe a few restrictions on runtime functionality.

Handling Bindings to Deferred Panes and Child Controls

● If the Defer Initialization check box is cleared, then bindings, script references, and computation action
references to the pane and its children are not affected.

● If the Defer Initialization check box is selected, then any references to child or nested controls using
scripts or computation actions are flagged with an error-level problem marker. You can make use of
events tied to the pane and its children in rule definitions. Binding to panes are always active and
working, but the bindings to child and nested controls are inactive until the pane and child controls
have been fully initialized.

● If the Defer Rendering check box is selected, and the Defer Initialization check box is cleared, bindings
to panes and controls are active even if the pane is not currently rendered. The internal model of the
pane or child controls can be updated using scripts, bindings, or computation actions. The effects of
such updates are visible after the pane is rendered.

Handling Validations in Deferred Panes

An un-rendered pane is treated the same as an invisible pane with respect to the suppression of validation
checking.

Loading Deferred Panes

Panes marked to use deferred rendering display a spinning wheel to indicate that the content is being
initialized. This loading indicator is visible only if there is a noticeable delay in rendering the pane.

101

TIBCO Business Studio™ Forms User's Guide



Custom Controls

TIBCO Business Studio supports integration of third-party custom controls. Users can provide
configuration information about any third party widgets, and can expose those controls in the palette. You
can work with these extended controls in the same fashion as you do with the set of built-in controls.

Definition of Custom Controls

There are two key items that a developer needs to provide for the definition of a custom control - a Control
Wrapper, and the definition of the custom control in the component library file.

● A ControlWrapper is a JavaScript class that either implements the runtime functionality of the control,
or wraps a third-party library. The figure below provides a look at how the ControlWrapper exposes the
implementation of a third-party library as a Custom Control within Forms.

It is also possible to provide the entire implementation of a custom control within a
ControlWrapper with no reliance on a third-party library. However, that is not the typical case.

Custom Control Architecture

● The custom control definition must be specified in a component library file. The component library file
provides information on how to display and configure instances of the custom control in the Form
Designer. The information will also be used at runtime in order to determine the capabilities of the
control.

The figure below provides a description of the various design-time and runtime artifacts that go into a
Components Library project.

102

TIBCO Business Studio™ Forms User's Guide



Component Library Project

Working with the Component Library File
A special folder of type Components is used to store component library files. A library file defines a set of
custom controls which are available in the Forms Designer palette.

The option to create the Components special folder is presented at the time of new project creation.

Procedure

1. Click File > New > BPM Developer Project . The New BPM Developer Project dialog opens.

2. Specify the Project name and select the BPM check box as the Destination Environments. Click Next.

3. The Form Component Library option is provided on the Asset Type Selection page. Specify the asset
types.

A Business Object Model asset is only required if you wish to add or use model types that will
be used in the component library.

4. The Asset Type Selection page provides the following two options for creating a component library
project:

103

TIBCO Business Studio™ Forms User's Guide



Result

● Click Finish: creates a new project with a Components special folder. The <library>.library file is
created in the Components special folder.

● Click Next: displays a wizard page that guides you to create a new component library project.

1. Specify Folder and Filename on the Business Object Model page and click Next.

2. Specify Folder and Library filename on the Component Library page and click Next.

3. Specify Folder details on the Set Special Folders page and click Finish. This is an optional step. You
can also click Finish in the preceding step. Creates a new project with a Components special folder.
The .library file is created based on the details provided in the wizard.

You can designate a normal folder as a Components special folder as well, using a similar
'Special Folders > Use as Components Folder' technique as with other special folder types.

The contents of the Components special folder are:

— .library file: the .library file contains the configuration information for a set of custom controls.
For example: MyComponents.library.

— icons folder: the icons folder contains sample design-time icons for the custom controls.

1. Right-click the <library>.library file, and select Open. The library file is opened in the Component
Library Editor for editing.

An overview of the various parts of the Component Library Model is provided in the figure Component
Library Model.

104

TIBCO Business Studio™ Forms User's Guide



Component Library Model

The editor supports editing of the .library file, and provides an easy way to specify the configuration
details for each custom control definition.

2. Select the <Librarynode to view and edit the configuration details for the library element in the
Properties view. Refer to Library section for a detailed description.

The .library file displays a problem marker for defining the Constructor Class property.

The library element can have the following child elements:

● Palette Drawer: a Library has a single Palette Drawer element. Refer to Palette Drawer section for
the details.

● Event Type: a Library can have multiple Event Type elements. Refer to Event Type section for the
details.

● External Resource: a Library can have multiple External Resource elements. Refer to External
Resource section for the details.

105

TIBCO Business Studio™ Forms User's Guide



● Control Type: a Library can have multiple Control Type elements. Refer to Control Type section for
the details.

By default, the following elements are added to the Library root element:

● Palette Drawer

● Control Type

The other supported elements can be added according to your requirements.

3. To add Event Type and External Resource elements at the Library level:

● Event Type: select the Library element, right-click, and select New Child > Event Type. A new
Event Type element is added.

● External Resource: select the Library element, right-click, and select New Child > External
Resource.

A new External Resource element is added. An External Resource defined at the Library level
applies to all Control Types defined in the Library. It gets loaded into the page if the form uses at
least one control type from the library.

4. Select each library element’s child elements to view and edit the configuration details in the Properties
view. In the case of properties which refer to elements in the workspace, the cell editor consists of a
hyperlink and a '...' button to activate the associated property value editor dialog. The figure Library
Editor Properties View provides more details.

Library Editor Properties View

5. The Control Type element can have the following child elements:

● Capabilities: a Control Type has a single Capabilities element. Refer to Capabilities section for
details.

● External Resource: a Control Type can have multiple External Resource elements. The properties are
same as for an External Resource element at the Library level.

● Property: a Control Type can have multiple Property elements. Refer to Property section for details.

By default, only the Capabilities element is added to the Control Type node. The other
supported elements can be added as per your requirements.

106

TIBCO Business Studio™ Forms User's Guide



6. To add External Resource and Property elements at the Control Type level:

● External Resource: select the Control Type element, right-click and select New Child > External
Resource. A new External Resource element is added. An External Resource defined at the Control
Type level is guaranteed to be loaded into the page only when a form uses this control type from the
library.

● Property: select the Control Type element, right-click and select New Child > Property. A new
Property element is added.

7. Select each Control Type’s child elements to view and edit the configuration details in the Properties
view.

Working with the ControlWrapper
You can add a reference to a ControlWrapper class.

Procedure

1. Create a folder in the Presentation Resources folder and place the .js file with the JavaScript wrapper
implementation in this folder.

2. Select the External Resource element (either at the Control Type level or Library level) to view the
configuration options in the Properties view.

3. Click the picker provided for the Relative URI property.

The Pick Resource dialog lists the JavaScript files available in the Presentation Resources folder.

You have to select the Relative URI property sheet entry in order to activate the cell editor.
Once activated, the '...' button opens the resource picker dialog.

4. Select the ControlWrapper class implementation file and click OK.

Refer to Control Wrapper Implementation section for details.

Usage of Custom Controls
Once the custom component definition is complete, the project with the component library file has to be
added as a project reference in a Forms project. The icons for the custom components are displayed in the
Form Designer palette.

When adding a project reference to a library project, forms that are open in the referring project will not
immediately reflect the new palette drawers available from that project. You will need to close and re-open
those forms in order to see the new palette drawers.

The Form Designer supports the following functionality when working with custom controls:

● You can create a new control instance from the palette by clicking the custom control type, moving the
mouse to the desired position on the form canvas, and clicking again.

● Controls of other types can be refactored to custom control types by changing the control type field on
the General Properties tab for the control.

● The Form Designer Properties tab presents a table for editing the extended properties defined for the
custom control.

● The preview makes use of the custom controls.

● Custom control libraries are made available by adding a reference to the library project.

● All built-in control functionality is available, unless specifically prevented by the custom control type
definition. For example: validation, labels, hints, visibility, and data binding.

107

TIBCO Business Studio™ Forms User's Guide



● Deployment of custom controls is handled the same as for other BPM projects.

Runtime Life Cycle of Custom Controls

The ControlWrapper implementation is subject to a very specific life cycle, which is described in the figure 
ControlWrapper Life Cycle.

ControlWrapper Life Cycle

Preparation

The forms runtime repeatedly calls the ControlWrapper's isReady() method until it returns true.

Initialization

The forms runtime calls the constructor function to create an instance of the ControlWrapper and then calls
the initialize() method on this instance.

Refresh

Whenever you update the configuration or value of the control, the form invokes the
ControlWrapper.refresh() method to give the ControlWrapper a chance to update the rendering of the
control.

108

TIBCO Business Studio™ Forms User's Guide



Destruction

When the form is being taken out of service, it invokes the destroy() method on the ControlWrapper.

If a control is within a static pane, the form does not create an instance of the ControlWrapper. Instead, it
invokes the renderStatic() for the ControlWrapper to get the markup used in the static mode.

Runtime Life Cycle of Custom Control Used within Grid Pane
Using a custom control within a grid pane uses a specialized life cycle. It depends on the supported Render
Modes of the Control Type and the Always Render setting on the Control.

If a grid pane is not in the Always Render mode, only one instance of the ControlWrapper gets created for a
column. Each cell in that column shares that single instance. When the runtime invokes methods, such as
refresh() and getFormattedValue() on the wrapper, the getControl() method on the component
interface returns the specific instance for that cell. This way, the ControlWrapper implementation gets
specific configuration details of that cell.

Preparation

The forms runtime repeatedly calls the ControlWrapper's isReady() method until it returns true.

Initialization

When you configure the control in the Always Render mode, the form creates an instance of the
ControlWrapper for each cell in the grid table. Users can view the rendering that happens at this point.

When you do not configure the control in the Always Render mode (default), the form creates a single
ControlWrapper instance that is shared between the cells in a grid table column. Users cannot view the
rendering that happens at this point. The form does not attach the parent node to the DOM at this point but
invokes the ControlWrapper.getFormattedValue() method for each visible cell in the column of the grid
table.

Refresh

When you configure the control in the Always Render mode, the form calls the refresh() method as soon as
the value or other configuration settings are changed.

When you do not configure the control in the Always Render mode and focus on a cell to edit the value, the
form calls the ControlWrapper.refresh() method to allow the ControlWrapper to update the rendering and
reflect the current value being edited. If you change any of the configuration settings after the last refresh(),
the wrapper is notified through the updates argument.

Sorting

If a control manages a complex value, the static compare() method on the ControlWrapper class is called
each time user sorts the grid on that column.

Destruction

When you configure the control in Always Render mode, the form invokes the destroy() method on all
instances of the ControlWrapper when the form is being taken out of service or on the specific instance
when that row is deleted from the table.

If you do not configure the control in the Always Render mode, the form invokes the destroy() method on
the shared instance of the ControlWrapper only when the form is being taken out of service.

109

TIBCO Business Studio™ Forms User's Guide



Component Library Model
For each library definition in the component library model, there is a palette drawer that displays all the
controls defined in the library. In addition to the built-in events, you can also define custom events at the
library level.

Library
The Library is the root element in the component library definition.

Library Element Properties

Property Type Initial Value Description

Name String Library file base
name

Library name.

Qualifier String Generated
based on
containing
project identifier
and the nsPrefix

The qualifier should be unique within the
workspace.

XML
Namespace
Prefix

String <libraryName>.
toLowerCase()

Used in form models when referencing
Control Types in this model. This is pre-
populated based on the original name of the
library file and usually does not need to be
changed (it can be manually abbreviated to
something short and intuitive).

XML
Namespace
URI

URI Generated
based on the
library name

Defines a unique namespace URI reference
that is used in referring to form definitions.
This is pre-populated based on the original
name of the library file and usually does not
need to be changed (it can be manually
changed to conform to your organization's
end-point naming policy).

Drawer Palette Drawer Provides basic information about the drawer
in which custom controls in this library will be
displayed in the Form Designer palette.

Event Event Type Defines custom events that are raised by one
or more control types defined in this library.
The multiplicity of this property is 0..* (that is,
the library can contain zero or more event
types).

Note: An Event Type is added to the model
using the context menu (right-click) on the
Library element.

110

TIBCO Business Studio™ Forms User's Guide



Property Type Initial Value Description

Resource External Resource The external resources can contain JavaScript,
CSS, image files, or localized properties. All
external resources defined in the library are
loaded when one of the control types defined
in it is loaded by the form. The multiplicity of
this property is 0..* (that is, the library can
contain zero or more external resources).

Note: An External Resource is added to the
model using the context menu (right-click) on
the Library element.

Component Control Type Specifies the Control Type schema. All Control
Types specified here appear in the Palette
Drawer defined for this Library and can be
used in forms. The multiplicity of this property
is 1..* (that is, the library can contain one or
more Control Types).

Note: A Control Type is added to the model
using the context menu (right-click) on the
Library element.

Palette Drawer
There is a single Palette Drawer for each library file. All controls defined in a library file are displayed in
this drawer in the Form Designer palette beneath the built-in drawers of Panes, Controls, and Action
Buttons.

Palette Drawer Properties

Property Type Initial Value Description

Name String drawer.<libraryName> 
   

Defines a unique name for the drawer. The name
must begin with "drawer." and must be unique
within the workspace. This property is pre-
populated based on the original name of the
library file and usually need not be changed.

Label String Generated based on
library name.

Label applied in the form designer.

Order Integer 0 Specifies the order in which the drawer is added
to the palette. Higher numbered drawers appear
later in the palette. Any drawers that have the
same order are arranged alphabetically by label.
Custom drawers are always below the built-in
drawers.

111

TIBCO Business Studio™ Forms User's Guide



Event Type
Custom controls can raise any of the built-in events (for example: Update, Enter, Exit, Select) or can raise
custom events that do not correspond to the semantics of any of the built-in events. Individual control types
can declare the events they support from the union of built-in events and those defined at the library level.

Event Type Properties

Property Type Restrictions Description

Name String
● Unique within library.

● Cannot be set to a same
name as any of the built-
in event names:

— close
— doubleclick
— enter
— exit
— localize
— open
— select
— submit
— update

● Cannot begin with
tibco_, to ensure no
conflict with built-in
events specified by
TIBCO.

Specifies the name of the custom event. This is
used at design time to configure the events that
trigger a rule. At runtime, it is used in the
ControlWrapper to specify which event is being
raised by the custom control.

Label String Label used in the Form Designer for the Event
Type.

External Resource
An External Resource can be defined either at library level or at control type level.

● Library level: in this case, it applies to all control types defined in the library and these External
Resources are loaded when at least one Control Type in this library is used by the form.

● Control Type level: in this case, it applies only to the specific Control Type and is loaded only if this
Control Type is used by the form.

All External Resources needed to load a Control Type need to be defined in one or other of these two places.
This includes the JavaScript file that contains the implementation of the ControlWrapper for the Control
Type. An External Resource can also contain CSS or localized properties.

112

TIBCO Business Studio™ Forms User's Guide



External Resource Properties

Property Type Initial Value Description

Name String resource.resource1. The
number increases for each
new resource added to the
library file.

Short identifier of the resource. Resources
should be renamed to something meaningful.
The name must begin with "resource." and
must be unique within the library file. For
properties files, this name is used from script in
order to reference the resource bundle. (For
example resource.<name>.<key>)

Relative
URI

String A URI relative to the Presentation Resources
folder. For example, "css/myControl.css".

A picker is also available to select the external
resource.

Important: you cannot select an external
resource from a referenced project. The external
resource must be available locally.

Control Type
The Control Type defines the custom control. A library file can contain one or many Control Types. All
Control Types specified here appear in the Palette Drawer defined for the library.

The detailed description of the properties is provided in the table Control Type Properties:

Control Type Properties

Property Type
Restrictions / Initial
Value Description

Canvas Icon String Must be a valid relative
URI that resolves to an
image file in the
Components special
folder.

(Required) Provides the special folder
relative URI of the icon that is used when
rendering the component in the Form
Designer canvas. The icon has to be placed
within the Components special folder and it
can be an image of type .png, .gif, or .bmp.
This icon is used only at design-time.

When a library is first created, a set of initial
icons is provided in the icons folder. These
icons can be used as placeholders for the
three icons needed on a Control Type until a
more specific set of icons can be provided.

Constructor
Class

String Must be a valid
JavaScript expression
that yields a constructor
function object when
evaluated at runtime.

(Required) Refers to the name of the
JavaScript constructor that implements the
ControlWrapper interface. The JavaScript file
that defines this constructor should be
specified as an External Resource reference
either at the Library level or the Control Type
level.

113

TIBCO Business Studio™ Forms User's Guide



Property Type
Restrictions / Initial
Value Description

Data Type Classifier Must be a BOM
Primitive Type,
Enumeration, or Class

Defines the type of the value managed by
this Control Type. This is a reference to one
of the following types:

● A built-in BOM Primitive Type

● An Enumeration

● A Class

The Data Type determines what can be
bound to the value of controls of this
Control Type in the Form model. If the
BOM Primitive Type of "Object" is
specified for the Data Type, then it allows
any complex object to be bound to the
value of instances of the Control Type.

Event Event
Type
Reference

Can only reference a
built-in Event Type, or
Event Types specified in
this Library file.

Specifies which Event Types can be raised by
this Control Type. The runtime
ControlWrapper can only raise an event of a
given type if it has been declared in the
Control Type model. The events specified
here will be available in the Form Designer to
add as triggers on Rules defined in the Form.

Handles Enter
Key

Boolean This is set to true if the underlying widget
provides a key handler for the Enter key. The
form needs to know this in order to prevent a
primary button (for example, 'Submit') from
being activated by an Enter keystroke when
the custom control has the input focus.

Hint String (Required) Short description of the Control
Type, which is used as a hower help on the
icon in the palette.

Label String The library designer
should ensure that this is
unique within the
Library.

(Required) Label used in the Forms Designer
palette.

Multi-valued Boolean Indicates whether the value managed by this
Control Type is multi-valued. If true, then
the value for the control can only be bound to
multi-valued values. When this is true, it is
up to the implementation of the control to
manage multiple values. For a multi-valued
control with a simple data type, the runtime
value will be set as a JavaScript array. When
the control is managing multi-valued
structured types, the values will be provided
in a list.

114

TIBCO Business Studio™ Forms User's Guide



Property Type
Restrictions / Initial
Value Description

Name String
● Unique within

library. The qualified
name should be
unique in the
workspace.

● Name must begin
with controls.

The initial value is set
to
controls.control1

(Required) This is the name of the Control
Type that is used when adding a reference
from a Form model. The form uses the fully
qualified control type name, prefixed by the
library qualifier, to avoid name collisions.

Palette Icon 16 String
● Must be a valid

relative URI that
resolves to an image
file in a Components
special folder.

● Must not be the same
as Palette Icon 24

● Can be an image of
type .png, .gif,
or .bmp

(Required) The special folder relative URI of
the small (16x16 pixels) icon that is used
when rendering the component in the Form
Designer palette. The icon has to be placed
within the Components special folder. This is
used only at design-time.

Palette Icon 24 String
● Must be a valid

relative URI that
resolves to an image
file in a Components
special folder.

● Must not be the same
as Palette Icon 16

● Can be an image of
type .png, .gif,
or .bmp

(Required) The special folder relative URI of
the large (24x24 pixels) icon that is used
when rendering the component in the Form
Designer palette when the 'Large Icons'
option is active. The icon has to be placed
within the Components special folder. This is
used only at design-time.

Qualified
Name

This is a read-only property which provides
the <library-qualifier>.<element-name>
details.

115

TIBCO Business Studio™ Forms User's Guide



Property Type
Restrictions / Initial
Value Description

Render Mode String
● Render Modes

supported for
Control Types are:

— normal
— static
— view-text
— view-html
— grid-edit

● All Control Types
must support normal
mode.

● A Control Type can
support only one of
view-text or view-
html.

Multi-valued enumerated type that defines
the render modes supported by the
ControlWrapper. The values are:

● normal: single instance rendering of the
control, such as within vertical and
horizontal panes.

● static: Indicates that the control can be
rendered within static panes. If
supported, then the ControlWrapper
must provide the renderStatic()
method.

● view-text: If specified, then the
ControlWrapper must provide a
getFormattedValue() method that will
return a plain text representation of the
value managed by this control.

● view-html: If specified, then the
ControlWrapper must provide a
getFormattedValue() method that will
return an HTML representation (as a
string) of the value managed by this
control.

● grid-edit: Indicates that the Control Type
provides a rendering specific to edit
mode of grid panes. If this mode is not
specified, and the Control Type otherwise
supports grid panes, then the normal
rendering mode will be used in grid
panes.

The value of getFormattedText() is
used in grid panes in the view mode. If
neither view-text or view-html is
specified, then the grid-edit mode will
always be used in grid panes, or will fall
back to normal if grid-edit is not
specified.

The Focus capability must be defined for
the grid-edit mode.

116

TIBCO Business Studio™ Forms User's Guide



Property Type
Restrictions / Initial
Value Description

Supported
Parent Pane

Pane Type
Reference

Only one of Supported
Parent Pane or
Unsupported Parent
Pane references can be
used within a given
Control Type.

Specifies a list of pane types that are
supported as a direct parent by this Control
Type. A control of this Control Type can only
be added to panes of types on this list. If
neither Supported Parent Pane or
Unsupported Parent Pane restrictions are
specified, then it is legal to add an instance of
this Control Type into any type of pane that
will accept it as a child.

Some pane types restrict the type of children
they support. For example, grid panes don't
allow panes as children; tabbed panes only
allow panes as children; an embedded form
pane is only allowed to refer another form in
the workspace.

Note: No Control Types are supported in the
Message Pane. You will not be able to place
any Control Type in a Message pane even if it
is selected as one of the Supported Parent
Pane types.

Supported
Type
Conversion

Control
Type
Reference

Only one of Supported
Type Conversion or
Unsupported Type
Conversion references
can be used within a
given Control Type.

Specifies an explicit list of Control Types to
which an instance in a form may be
refactored. If not specified, an instance of this
Control Type may be refactored to any
Control Type. For example: a third party date
picker may only permit itself to be refactored
to one of the built-in date-time control types.

Unsupported
Parent Pane

Pane Type
Reference

Only one of supported
Parent Pane or
unsupported Parent
Pane references can be
used within a given
Control Type.

Specifies a list of pane types that this Control
Type does not support as a direct parent. If a
pane is included in this list, then it is not
possible to place a control of this type into an
instance of that pane. If neither Supported
Parent Pane or Unsupported Parent Pane
restrictions are specified, then it is legal to
add an instance of this Control Type into any
type of pane that will accept it as a child.

Unsupported
Type
Conversion

Control
Type
Reference

Only one of Supported
Type Conversion or
Unsupported Type
Conversion references
can be used within a
given Control Type.

Specifies an explicit list of Control Types to
which an instance in a form may not be
refactored. If not specified, an instance of this
Control Type may be refactored to any
Control Type. For example: a third party
slider control may forbid itself to be
refactored to a tree control in the same
component library.

117

TIBCO Business Studio™ Forms User's Guide



Capabilities

Each capability is specified by an enumerated list comprised of neither, either, or both of the values
[component, form].

● component flag: The presence of this flag indicates that the component will provide some level of
functionality with regards to that capability, so it should be provided with the necessary information
and notified if the information related to that capability is updated.

● form flag: The presences of this flag indicates that the component expects the form to carry out its
normal handling of the capability, even if the component flag is also specified for the capability.

The table Flagging and Outcomes provides specific detail for each combination of flags for each of the
capabilities.

Flagging and Outcomes

Property Description Form Flag
Component
Flag Outcome

Disabled The form will not
have enough
information to
know how to
disable a widget
within the custom
control. If a Control
Type is to support
the setting of a
disabled state, then
it will have to
handle the update
of this property at
runtime.

true true This is the typical case. Here, the form
applies or removes the "disabled" CSS
class at the control level, and requests
the ControlWrapper to refresh its
rendering of the enablement state.
The form notifies the ControlWrapper
that the enablement state has changed
by calling its refresh() method
with the updates argument
containing the feature name
"enabled".

true false The form will apply or remove the
"disabled" CSS class at the control
level but does not notify the
ControlWrapper of enablement
changes.

false

(default)
true (default) No CSS class is applied at the control

level but the form notifies the
ControlWrapper of enablement
changes.

false false The control does not handle the
disabled state.

Focus For this capability,
the form value is
always set to false

true true N/A

true false N/A

118

TIBCO Business Studio™ Forms User's Guide



Property Description Form Flag
Component
Flag Outcome

false 
(default)

true 
(default)

ControlWrapper supports a
setFocus() method to allow script to
change the focus to the control
programmatically. If the control type
implicitly or explicitly supports
rendering within a grid pane, then
the focus capability should be set to
"component". Otherwise keyboard
navigation of the grid pane will skip
over cells that contain instances of
this control type.

false false ControlWrapper does not provide
setFocus() method.

Hint This capability
controls how the
Control Type hint is
handled. This is the
built-in control hint
that is provided by
the forms
framework.

true true The form renders the hint as normal,
and requests the ControlWrapper to
refresh its custom hint rendering. The
form notifies the ControlWrapper that
the hint state has changed by calling
its refresh() method with the
updates argument containing the
feature name "hint".

true 
(default)

false 
(default)

This is the typical case. The form
renders the hint as it does for built-in
controls but does not notify the
ControlWrapper of hint changes.

false true The hint node is not rendered by the
form. It is completely up to the
ControlWrapper to handle the
rendering of the hint.

false false The hint node is not rendered for the
Control Type.

Invalid This Capability
controls how the
rendering of
"Invalid" feedback is
handled. The forms
framework
continues to execute
validations on
controls that
provide them.

true true The form applies or removes the
"invalid" CSS class at the control
level, and requests the
ControlWrapper to refresh its
rendering of the validity state. This
may be needed by controls that aim
to provide accessibility. For example,
by updating the corresponding ARIA
attributes on the control widgets. The
form notifies the ControlWrapper that
the validation state has changed by
calling its refresh() method with
the updates argument containing the
feature name "validation".

119

TIBCO Business Studio™ Forms User's Guide



Property Description Form Flag
Component
Flag Outcome

true

(default)
false

(default)
The form applies or removes the
"invalid" CSS class at the control
level, but does not notify the
ControlWrapper of validity changes.

false true No CSS class is applied at the control
level but the form does notify the
ControlWrapper of the change in
validity state.

false false The control does not handle the
display of a validation error
decoration.

Invisible This Capability
handles how the
visibility setting of
the Control Type is
handled.

true true The form hides or shows the whole
control and also notifies the
ControlWrapper that the visibility
state has changed by using the
refresh() method with the updates
argument containing the feature
name "visible".

true

(default)
false

(default)
The form takes care of hiding and
showing the control when the
visibility state has changed but does
not notify the ControlWrapper of
visibility changes.

false true The form merely notifies the
ControlWrapper of changes in
visibility.

false false The control is always shown.
Changes to the visibility of the
control are ignored. However, if the
containing pane is made invisible,
then the control will be made
invisible.

Label This Capability
controls how the
control label is
handled. This is the
built-in control label
that is provided by
the forms
framework. When a
custom control is
rendered in a grid
pane, the column
label is always

true true The form renders the label as normal,
and also requests the ControlWrapper
to refresh its rendering of the label.
The form notifies the ControlWrapper
that the label value has changed by
calling its refresh() method with
the updates argument containing
the feature name "label".

true

(default)
false

(default)
The form renders the label as it does
for built-in controls but does not
notify the ControlWrapper of label
changes.

120

TIBCO Business Studio™ Forms User's Guide



Property Description Form Flag
Component
Flag Outcome

provided by the
form.

false true The label is not rendered by the form
and the form notifies the
ControlWrapper of label changes. It is
completely up to the ControlWrapper
to handle the rendering of the label.
In vertical panes, this setting will
result in control being rendered
completely to the left, aligned with
the labels of other controls that rely
on the form to render the label.

false false The label is not rendered for the
control.

Read
Only

The form does not
have enough
information to
know how to set a
widget within the
custom control as
read only. If a
Control Type
supports the setting
of a read only state,
then this property is
handled at runtime.

true true The form applies or removes the
"read-only" CSS class at the control
level, and requests the
ControlWrapper to refresh its
rendering of the read-only state. The
form notifies the ControlWrapper that
the read-only state has changed by
calling its refresh() method with
the updates argument containing
the feature name "readOnly".

true false The form applies or removes the
"read-only" CSS class at the control
level, but does not notify the
ControlWrapper of changes to the
read-only setting.

false

(default)
true

(default)
The CSS class is not applied at the
control level, but the form notifies the
ControlWrapper of the change of
read-only state.

false false The control does not handle the read-
only state.

121

TIBCO Business Studio™ Forms User's Guide



Property Description Form Flag
Component
Flag Outcome

Required This Capability
refers to the
rendering of
"Required"
feedback. The forms
framework
continues to enforce
that values are
indeed provided
when marked as
required.

true true The form applies or removes the
"required" CSS class at the control
level, and also requests the
ControlWrapper to refresh its
rendering of the required state. This
may be needed by controls that aim
to provide accessibility. For example,
by updating the corresponding ARIA
attributes on the control widgets. The
form notifies the ControlWrapper that
the required state has changed by
calling its refresh() method with
the updates argument containing
the feature name "required".

true

(default)
false

(default)
The form applies or removes the
"required" CSS class at the control
level, but does not notify the
ControlWrapper of changes to the
required setting.

false true CSS class is not applied at the control
level, but the form notifies the
ControlWrapper of the change in
required state.

false false The control does not handle the
display of a "required" decoration.

Tab Index For this capability,
the form flag value
is always set to
false.

true true N/A

true false N/A

false true ControlWrapper will use the Tab
Index property from the control in
the generated markup for the control.

false 
(default)

false 
(default)

The control Tab Index property is not
used by the ControlWrapper.

122

TIBCO Business Studio™ Forms User's Guide



Property

The Control Type property details are as follows:

Property Type Description

Bindable Boolean If true, then the following features are enabled:

● It is possible to bind runtime values to this property rather than just
specifying static values at design time.

● It is possible to update this value dynamically using script actions
and that the ControlWrapper has to deal with updates to the
property as notified using the refresh() method.

● The get() and set() methods are automatically generated on the
control, and content assist and script validation reflects this auto-
generated API. For example: if the property name is "orientation",
and it is marked as bindable=true, then the following two methods
will be available on the control:

— <Type> getOrientation()
setOrientation(<Type> value)

Where <Type> depends on the Data Type specified on the
Property.

The default value is false.

Note: Irrespective of the value of the bindable property, the
getter and setter methods on properties are available to the
ConrolWrapper through the proxy Component.getControl()
method.

Data Type Classifier Defines the type of the value for this property. This is a reference either
to a built-in BOM Primitive Type, or to a Class or Enumeration defined
in a BOM file in the Library project. The Data Type will determine
what can be bound to the value property in the form model.

When a property type is defined as a specific Class, then it will limit
bindings of that property to objects of that type or a specialization of
that type defined in the model. If the Data Type is set to
BomPrimitiveTypes::Object, then the property can be bound to an
object of any complex type. However, in this case it will be the
responsibility of the person designing the form to ensure that the
binding is to a value that can actually be used by the custom control.

The use case for supporting complex objects for properties includes the
use of complex third party controls such as tables and trees. For
example, you could define a "Selection" property on a tree control that
will be set to the object currently selected by the user. It would still be
up the person designing the form to make sure the selected object is
used correctly in the rest of the form, for example, by setting it as the
value on a pane that can edit that particular type of object.

123

TIBCO Business Studio™ Forms User's Guide



Property Type Description

Default Value
Literal

String Provides a default value to use for this property if nothing is provided
in the form model.

The value must be a valid literal representation for the property's data
type.

Externalize Boolean Indicates the Property provides a value which could vary based on
locale. A setting of true here will cause the value to be externalized
within the form-level resource bundle that is generated automatically.

In addition, the property editor generated for instances of this control
will expose the following two settings:

● A property where the user can specify a value directly.

● Allow the user to select a reference to a resource bundle key. Only
one of these settings will be allowed.

If the property is both externalized and multi-valued, then the user
will only be able to specify values directly into the list editor
associated with the property. These values will be written to the
form-level resource bundle and can then be translated into locale-
specific bundles. In this version, you will not be able to specify a
resource bundle reference for multi-valued, externalized properties.

The default value is false.

Label String Label used in the Form Designer when exposing this property in the
property sheet editor.

Multi-valued Boolean Indicates whether the value for this property is multi-valued. If true,
then the value for this property can only be bound to multi-valued
values.

The default value is false.

124

TIBCO Business Studio™ Forms User's Guide



Property Type Description

Name String This name is used to expose get() and set() methods on the form
Control object, and is used when providing updates to the
ControlWrapper using the refresh() method.

This property has the following restrictions:

● Unique among Property names of the same Control Type.

● Must be an NCName (that is, a legal, 'non-colonized' XML name)

● Cannot be set to any of the names in the following restricted list:

— [n/N]ame

— [f/F]orm

— [c/C]loneIndex

— [c/C]ontrolType

— [p/P]arent

— [l/L]abel

— [s/S]hortLabel

— [h/H]int

— [e/E]nabled

— [v/V]isible

— [r/R]equired

— [c/C]lassName

— [r/R]eadOnly

— [b/B]ackgroundColor

— [f/F]ontColor

— [f/F]ontSize

— [f/F]ontName

— [f/F]ontWeight

— [v/V]isualProperty

— [f/F]ocus

— [s/S]tringValue

— [v/V]alue

Description String Provides the descriptive message to display in the status line when the
property is selected in the Properties tab in Form Designer.

125

TIBCO Business Studio™ Forms User's Guide



Property Type Description

Required Boolean Whether a value must be provided for the property. Combined with
multi-valued, determines the multiplicity of the generated structural
feature whose value will be set when editing the property in the Form
Designer Properties tab:

The multiplicity constraint is enforced by the property cell editors and
form validation rules. The default value is false.

Control Wrapper Implementation
Each custom control needs to have an implementation of the ControlWrapper interface.

This takes the form of a JavaScript class definition that includes the methods necessary to implement the
custom Control Type life cycle. The constructor is a no-argument function, with the rest of the interface
implemented as function properties on the prototype for this constructor function.

initialize()
The initialize() method must be implemented by the ControlWrapper. It is invoked once per control
instance. It is invoked after all the Control Type resource dependencies have been loaded, but before the
form data model has been initialized.

Any configuration properties that are defined statically will be provided at this time, although any
properties that support binding or API support may be updated after the initialize() method is called.
The implementation needs to add the markup to the DOM at this point for the given renderMode, although
there are cases when the control is being rendered in a grid pane where the markup needs to be handled in
the refresh() method.

Method Arguments:

● component: an object of type Component. Component represents the form-level Control or Pane object
that hosts this custom control. The form model objects obtained through the component represent read-
only versions of the form models. The initial configuration of the control can be accessed using the
control object in the component, including any custom properties defined by the Control Type.

● renderMode: This is a string that specifies the mode in which the control is to be rendered. The possible
values are:

— normal
— grid-edit

For Control Types that specify any of the renderModes static, view-text, and view-html, those modes will
not be passed into the initialize() method, but will instead be handled as follows:

● static: If the control is being rendered in a static pane, then no instance of the control wrapper is
instantiated and the renderStatic() method defined on the ControlWrapper Class is called instead.

126

TIBCO Business Studio™ Forms User's Guide



● view-text and view-html: The form will access the getFormattedValue() method of the ControlWrapper
when a view-only version of the control is needed.

Once a control instance has been asked to render in a particular mode, that instance will not be asked to
render in a different mode.

refresh()
This method must be implemented by the ControlWrapper. It is invoked for rendering of the control in the
same Render Mode as originally specified in initialize().

This method is only called after the initialize() method, and is called at any point when the control
configuration or value has been updated. This method will be called at least once after initializing.

Functionality for Grid Panes

For Control Type instances that are being rendered in a grid pane, this method is called once each time a
different cell in the grid pane is edited. In those cases, it is not always necessary to regenerate the entire
DOM structure of the control. You can update the existing DOM structure, which was previously rendered,
based on any updates to the configuration or value of the control. This is applicable only if the control is not
in the Always Render mode. The getControl() method on the component interface at this point returns
the control instance for the grid pane cell, which is being edited.

Method Argument:

● updates: This is an array that contains the names of configuration properties updated since the last
initialize() or refresh() method invocation. For example: if the array contains the value
myProperty, then that means the value of the custom property named myProperty has been updated
since the last refresh(). The full set of configuration properties can always be accessed using the
control in the component object passed to the ControlWrapper in the intialize() method. There is a
set of built-in keys that can reference properties common to all controls: "label", "hint", "required",
"enabled", "readOnly", "visible", "locale", and "validation". The updates array can also contain the
custom property names, if the value of any of those properties changed since the last refresh() method
call.

When the control is in a grid pane that is not in Always Render mode, the ControlWrapper is
shared among the cells of a column. The refresh() method is not called immediately after a
property is changed on a cell but only when that cell is edited. The updates array in such cases
is empty. The ControlWrapper implementation must query the specific control instance for any
change in property values. You can retrieve the specific control instance by using the
getControl() method on the component interface.

destroy()
This method must be implemented by the ControlWrapper. This method is invoked when the control
instance is being taken out of service.

getValue()
This method returns the value modified or rendered by this control. For complex types, this is the
JavaScript BOM object that corresponds to the instance type.

Method Return value:

● Returns the control value

127

TIBCO Business Studio™ Forms User's Guide



getFormattedValue()
This is an optional method that returns a simple read-only rendering of the value managed by this control.
This method only needs to be implemented if either the view-text or view-html render modes are
supported. At most, one of these modes can be supported.

● view-text: The return value of this method will be plain text that is rendered in the DOM within a DOM
Text mode.

● view-html: The return value is a string representation of HTML markup and is treated as such when
added to the DOM.

See the com.tibco.forms.extension package for a set of built-in utilities for formatting values of various
types.

Method Argument:

● value: This is the value to be formatted.

Method Return Value:

● Returns the formatted control value as text or html.

isReady()
This method returns true if the ControlWrapper is ready to be initialized. This method is repeatedly called
until it returns true or the loading of the form times out.

This gives the wrapper a chance to check whether necessary libraries are loaded prior to initialization. If
only the needed libraries are specified directly in the Components Library model, then it should be always
safe to return true from this method. However, some frameworks, such as GWT and Dojo, will load
additional files that are not loaded directly by the Forms framework. For these cases, the wrapper should
perform a check. For example: by checking for the existence of a needed function or class, before returning
true.

This must be a static method on the ControlWrapper.

Method Return Value:

Returns a boolean value.

setFocus()
This is an optional method that only needs to be implemented if the "focus" capability for the Control Type
is set to "component". This method sets the focus for this control. Use in situations where the focus is
explicitly set using the API for this control.

If the setfocus() method is defined in the ControlWrapper, the capability always picks the "focus"
capability from the ControlWrapper. If you do not want the component to handle setFocus() then do not
define it in ControlWrapper.

compare()
This method is optional.

It only has to be implemented at the class level (not the prototype level) for ControlWrappers that meet
both of the following conditions:

● The value edited by the control is of a complex type, i.e. the type is specified by a BOM class.

● Instances of the control are allowed to occur in grid panes.

In these situations, if the grid pane has enabled sorting, the form needs to know how the complex objects
should be sorted. The compare method is used in performing this sorting.

128

TIBCO Business Studio™ Forms User's Guide



Method Arguments:

● value1: This is the first object to compare.

● value2: This is the second object to compare.

Method Return Value:

● Returns an integer value:

— < 0: if value1 is less than value2
— 0: if value1 is equal to value2
— > 0: if value1 is greater than value2

renderStatic()
This static method is optional, and only has to be provided for Control Types that support the "static"
Render Mode. This method is invoked whenever the form needs to obtain a static rendering of the value
bound to this control.

This must be a static method on the ControlWrapper, as an instance of the ControlWrapper is not
instantiated when the control is located in a static pane.

The value returned by the control is added as HTML to the form. Any user input values should be escaped
appropriately to avoid them being interpreted as HTML.

Method Arguments:

● value: This is the value that needs to be formatted.

● label: (Type String) - The label to be rendered for the static control.

● hint: (Type String) - The hint to be rendered for the static control.

● labelId: (Type String) - Identifier of the label as rendered by the form. This is useful for accessibility.

● propertySet: (Type Associative Array) - Initial configuration of the control, including custom properties
configured in the Form Designer. The key is the name of the property as defined in the Control Type.

● resource: (Type Object) - The same as retrieved from the Component.getResources() method.

● textOnly: (Type Boolean) - If true, then the pane this is being rendered in is expecting a text-only
rendering of the value. That is, no rendering of a widget that displays the value.

● parentPaneType: (Type String) - This is the string that represents the type of pane. This is equal to the
value returned from the Pane.getPaneType() method. A ControlWrapper identifies the rendering on a
grid pane using the parentPaneType argument.

● logger: (Type logger Object) - This is the same logger object available in Form action scripts. The logger
object helps to log messages to the form log. View the form log at preview time by using the appropriate
logging level in the Windows - > Preferences - > Form Designer - > Preview page. Enable logging at
runtime by using the query parameter log_level with an appropriate value: TRACE, DEBUG, INFO,
WARN, ERROR, FATAL. For example: http://<server>:<port>/openspace?log_level=INFO. See the table 
Logger Class for the list of available methods.

Method Return Value:

● Returns an HTML string.

129

TIBCO Business Studio™ Forms User's Guide



Component Interface
The initialize() method for the ControlWrapper receives an object of type Component. This provides an
interface that the ControlWrapper can use to obtain information and configuration from the form layer, and
to also raise events back to the form so they can trigger rules defined in the form model.

The Component object provides the following APIs:

generateId()
This method generates an identifier that is unique on this page. It allocates IDs to the HTML Elements
created within the ControlWrapper.

If the ID returned by this method is not used by the wrapper, the next time it will return the same ID as it is
still unique with in the document. As a convenience, if a suffix is provided as an argument to this method,
the returned value will have the suffix appended. If no suffix is provided, then the base identifier will be
returned.

A ControlWrapper would want to use this method if it generates any DOM nodes in the HTML that need to
be directly referenced using ID. Using this method will ensure that the ID used will not be in conflict with
other IDs on the page.

Method Argument:

● suffix (optional)

Method Return Value:

● unique ID

getControl()
This method returns the Form-level Control that corresponds the custom control instance. This provides
access to all the getter methods that are available on the control object in a form-level action script. It also
provides the getter and setter methods for all the custom properties.

Method Return Value:

● Control

getFactory()
This method returns the factory object that is available within Form action scripts. This will allow wrappers
to create new objects as part of their functionality. This object will expose factories that are in the library
project as well as those available from the Forms project using the custom control and any in referenced
projects, recursively.

Method Return Value:

● Object

getForm()
This method returns the Form that contains the custom component.

Method Return Value:

● Form

130

TIBCO Business Studio™ Forms User's Guide



getHintId()
This method returns the ID of the DOM node which renders the standard, form-supplied hint for this
control. It is useful in situations where the hint needs to be referenced for accessibility purposes. For
example: by using the ID in corresponding ARIA attributes on the control widgets.

Method Return Value:

● String

getLabelId()
This method returns the ID of the DOM node which renders the standard, form-supplied label for this
control. It is useful in situations where the label needs to be referenced for accessibility purposes. For
example: by using the ID in corresponding ARIA attributes on the control widgets.

Method Return Value:

● String

getLocale()
This method returns the String representation of the locale in which the control should be rendered.

Method Return Value:

● String

getParentNode()
This method returns the parent DOM node into which this control should render its contents.

Method Return Value:

● DOM Element Node

getPresentationURL()
This method returns the base URL of the Presentation Resources folder of the project, in which a custom
control is defined.

For example, if a project contains myimage.gif located at project/Presentation Resources/images,
you can compute the URL of this image using:
var mypath = component.getPresentationURL() + "/images/myimage.gif";

Method Return Value:

● The base URL without a trailing path separator

getResources()
This method returns an object that provides access to all localized resource bundles defined at the library
level and the component level for this particular Component.

Resources are accessed using the resource name and individual keys. For example: for a resource with
name resource.myName created at the library or at the component level that has a key called myLabelKey
in it, its value can be retrieved using:

      var resources = component.getResources();
      var myLabel = resources.myName.myLabelKey;

The resources returned correspond to the locale in effect for the form when rendered.

Method Return Value:

131

TIBCO Business Studio™ Forms User's Guide



● Object

getValidationMessageIds()
This method returns an array of DOM identifiers which represents any validation messages currently in
effect for this control. There is one ID for each message pane in the form. Useful in situations where the
messages need to be referenced for accessibility purposes.

If null, then there are currently no validation errors reported against this control. If the array is non-null
but empty, this signifies that there are errors, but no messages are displayed because the Form does not
contain a Messages pane.

Method Return Value:

● String

raiseEvent()
This method is invoked by the ControlWrapper when it needs to propagate an event back to the Form layer.
Most controls should raise at least the update event in order to notify the form layer that the control value
has changed. It is not necessary to raise an update event when updating the attribute value of a complex
object or updating the list for a multi-valued complex type. The BOM JavaScript representations of these
objects handle the updates internally.

Method Arguments:

● eventName: Name of the event as configured in the component metadata. This name should correspond
to one of the events specified as supported by the component type. Built-in events include close,
doubleclick, enter, exit, localize, open, select, submit, and update.

● eventValue: Object that differs depending on the event being raised. For update events, this is the new
value. Other events do not need an eventValue. Any custom-defined events ignore the eventValue.

BOM JavaScript API for Custom Controls
In order to support more complex custom control use cases, the JavaScript API documented for the auto-
generated BOM JavaScript classes has been augmented to provide a reflective API.

This allows controls to write code that can introspect objects and provide an auto-generated UI based on
the type of object. For example, this would enable implementation of controls such as a tree control that can
provide a user interface based on the structure of arbitrary objects. The API described here is currently only
supported for use within Custom Controls.

Factory Methods

The methods listed in the table Factory Methods are available in the factory that is available for each BOM
package.

Factory Methods

132

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

create(className)

● className is a fully-
qualified name of the
BOM JavaScript class.
This must be a class
managed by the given
factory.

Object Creates an instance of the given class.

ControlWrapper uses this method to support cases where the
type of object being managed by a complex custom control is
not known at design time.

From form action methods, the specific createXXX() method
for a given class should be used.

getClass(className)

● className is a fully-
qualified name of the
BOM JavaScript class.
This must be a class
managed by the given
factory.

Object Returns the class object for the class with the given name.

BOM Class Methods

The methods listed in the table BOM Class Methods are available on the class object returned from the
getClass(className) method of a factory, or the getClass() method of a BOM JavaScript object instance.

BOM Class Methods

Method
Return
Value Description

getAttributeNames() String[] Returns a JavaScript string array containing the names
of all attributes for this class. These are names as defined
in the BOM for this class and all of its super-classes. For
complex children, these will correspond to the name of
the association endpoint for the child.

This array should not be modified.

This array is the union of attribute names retrieved
using getPrimitiveAttributeNames() and
getComplexAttributeNames().

getPrimitiveAttribute 
Names()

String[] Returns a JavaScript string array. These are attributes
with simple data types; i.e., primitive types and
enumerations. These are names as defined in the BOM
for this class and all of its super-classes. This includes
both single- and multi-valued attributes.

This array should not be modified.

133

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

getComplexAttribute 
Names()

String[] Returns a JavaScript string array containing the names
of all complex children of this class. These are names of
the association endpoints for these children as defined in
the BOM for this class and all of its super-classes. This
includes both single- and multi-valued attributes.

This array should not be modified.

getAttributeType (attName)

● attName: name of attribute.

String Returns the type for given attribute. This will either be
the fully-qualified class name as defined in the BOM if
the attribute is complex, or will be one of the following
primitive types:

● BomPrimitiveTypes.Boolean

● BomPrimitiveTypes.Dates

● BomPrimitiveTypes.DateTime

● BomPrimitiveTypes.DateTimeTZ

● BomPrimitiveTypes.Decimal

● BomPrimitiveTypes.Duration

● BomPrimitiveTypes.ID

● BomPrimitiveTypes.Integer

● BomPrimitiveTypes.Text

● BomPrimitiveTypes.Time

● BomPrimitiveTypes.URI

isAttributeMultivalued 
(attName)

● attName: name of attribute.

Boolean Returns true if the attribute with the given name is a
multi-valued attribute as defined in the BOM.

isAttributePrimitive 
(attName)

● attName: name of attribute.

Boolean Returns true if the attribute with the given name is of a
primitive type or enumeration. If it returns true, it will
be a member of the array returned from
getPrimitiveAttributeNames().

BOM Class Instance Methods

The methods listed in the table BOM Class Instance Methods are available on each instance of a BOM
JavaScript class.

BOM Class Instance Methods

134

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

getAttributeValue 
(attName)

● attName: name of
attribute.

Object Returns the value of the attribute with the given name. The
return type depends on the type of attribute being retrieved.
It will be one of the following:

● attName is primitive and single-valued: returns a value of
type String, Number, Date, or Duration, depending on the
specific type of attribute.

● attName is primitive and multi-valued: returns a
JavaScript array containing the underlying values.

● attName is complex and single-valued: returns an
instance of the BOM JavaScript class associated with the
attribute.

● attName is complex and multi-valued: returns a List
object containing the underlying values.

The method throws an exception if the underlying class
does not support an attribute with the given name.

setAttributeValue 
(attName, value)

● attName: name of
attribute.

● value: new value of
attribute.

Void Sets the value associated with the given attribute name. The
type of object depends on the attribute being set:

● attName is primitive and single-valued: should be a value
of type String, Number, Date, or Duration, depending on
the specific type of attribute.

● attName is primitive and multi-valued: should be a
JavaScript array containing the underlying values.

● attName is complex and single-valued: should be an
instance of the BOM JavaScript class associated with the
attribute.

● attName is complex and multi-valued: unsupported. In
this case, the List object obtained from the object should
be updated directly with additions or deletions.

The method throws an exception in the following
scenarios:

● if the underlying class does not support an attribute with
the given name.

● if an attempt is made to set the value of a complex multi-
valued attribute.

Utility Methods
A set of JavaScript methods are provided by the forms framework to aid custom control developers. These
are for use by the custom control wrappers.

See Utility Methods for the complete list of API methods.

135

TIBCO Business Studio™ Forms User's Guide



Reference

In order to work with TIBCO Business Studio Forms, you must be aware of various details of the modeling
environment.

You must know and understand the controls that can be placed on a form, the properties associated with
each type of control, the validation errors that can appear in the Problems view, and the use of scripts to
extend the functionality of your forms.

The Workbench
The Eclipse workbench for modeling forms appears by default when TIBCO Business Studio is installed.
The BPM Modeling perspective provided by TIBCO Business Studio includes certain views and editors that
are important for designing and deploying forms.

In Eclipse, the term view refers to an area of the workbench that displays information related to your Eclipse
projects. In the BPM Modeling perspective of TIBCO Business Studio, for instance, there are a number of
views, such as the Project Explorer view, the Properties view, and the Outline view, that display objects and
information in support of the modeling work you perform in the Process Editor or Form Designer.

Eclipse Workbench with Project Claims Process - No Forms

● A: Project Explorer
The Project Explorer view shows your TIBCO Business Studio projects and all project resources,
including Process Packages, Business Assets, and Forms, arranged in hierarchical tree structures.

● B: Outline
The Outline view shows non-visual and visual elements of the form including form parameters, shared
actions, rules, controls and panes.

For more details, see Outline View and Outline View Context Menu.

136

TIBCO Business Studio™ Forms User's Guide



● C: Canvas

The Canvas is where you create your forms. On creating a form, you notice two tabs at the bottom: a
Design tab for modeling forms, and GWT Preview tab for viewing and testing the forms.

For more details on working in the modeling or preview mode, see The Design Tab and Preview Tabs
and Form Designer Canvas Context Menu.

● D: Palette
The palette is a part of the Form Designer and provides tools for adding panes and controls to a form,
and for selecting objects on a form. Click the Palette arrowhead in the upper right corner to open the
palette. The arrow is a toggle between a visible and a hidden palette.

There is also the detachable Palette view ( Window > Show View... > Palette ). This palette is very useful
to save space when working on multiple processes and/or forms.

For more details, see The Palette for the Form Designer

● E: Properties
The Properties view shows the properties of a selected object on a form, such as a pane or a control,
and allows you to edit the values of those properties.

For more details, see

— Properties View Tabs

— Properties View for Forms

— Properties View for Panes

— General Tab

The Palette for the Form Designer
To create a form, you need to add parameters to a user task from the existing process data fields.

Right-clicking the user task, and selecting Forms > Open , opens the relevant form. You can modify the
form by adding or moving panes and controls using the tools on the palette.

To add a pane or control, click the tool on the palette for a specific object, position your mouse pointer in the
appropriate location on the Form Designer, and click to place the object on the form. (To move a pane or
control already on the form, use either the drag-and-drop or cut-and-paste techniques.)

When you hover the mouse over the icons in the palette, a pop-up tool tip describes the tool indicated by
the mouse point. The palette contains tools as described in the table Form Designer Palette.

Form Designer Palette

Palette Item Description

   Select
Allows you to select objects.

   Marquee
Allows you to select several objects by drawing a box around them.

Vertical Pane

Adds a Vertical Pane , whose children are arranged vertically.

137

TIBCO Business Studio™ Forms User's Guide



Palette Item Description

Horizontal Pane

Adds a Horizontal Pane , whose children are arranged horizontally.

 Tabbed Pane
Adds a Tabbed Pane , whose sub-panes are represented as clickable tabs.

 Message Pane
Adds a Message Pane for displaying error messages.

 Record Pane
Adds a Record Pane to edit a list of complex objects, one record at a time.

 Grid Pane
Adds a Grid Pane to work with list of complex objects.

 Embedded Form
Allows you to embed another form within the parent form.

 Text Adds a Text control for typing a single line of text.

 Text
Area

Adds a Textarea control for typing multiple lines of text.

CheckBox

Adds a Checkbox control for making a binary (yes or no) choice.

 Date
Adds a Date control for specifying or picking a calendar date.

 Time
Adds a Time control for specifying or picking a time.

Date-Time

Adds a Date-Time control for specifying or picking a calendar date and time.

 Duration
Add a Duration control for specifying duration using a configurable set of
units.

Hyperlink

Adds a Hyperlink control that renders a clickable hyperlink.

Image

Adds an Image control that renders an image.

 Label
Adds a Label control that renders a non-editable label.

Optionlist

Adds an Optionlist control for picking from a list of options.

138

TIBCO Business Studio™ Forms User's Guide



Palette Item Description

  
Pass-through

Adds a Pass-through control that renders HTML markup.

   Radiogroup
Adds a Radiogroup control for picking one of a set of mutually exclusive
options.

Button

Adds a Button control to the form.

  
Cancel Button

Adds a Cancel Button for discarding the changes and closing the form.

Submit Button

Adds a Submit Button for submitting the changes and closing the form.

 Close
Button

Adds a Close Button for applying the changes and closing the form.

The Palette View

To expand the palette, hover the button over Palette to the right of the Form Designer. To add a pane or a
control on the form, click the appropriate button. After adding the controls, the palette collapses to its
original state automatically.

Another way to keep the palette from taking up extra space in the Form Designer is to use the Palette view,
which opens the palette as an ordinary Eclipse view. When doing this, the Palette view appears by default
as a tab along with the Properties view and Problems tabs, but it can be dragged to other locations. The
Palette view is then shared between all open graphical editor instances, hiding local fly-out palettes in any
open graphical editors.

Open the Palette view by clicking Window > Show View > Palette . If you close the Palette view (by
clicking its close box), the fly-out palette returns for the graphical editor instances where it was previously
displayed.

The arrow now points rightward. When expanded by this method, the palette remains visible (as the Palette
view) until the arrow is clicked again.

Panes
Panes serve as containers for controls or for other panes, and provide a means of controlling the visual
layout of objects on a form.

Similar to controls, panes have attributes such as a label, background color, and visibility. The child
properties of a pane define the arrangement and display of the controls in the pane.

139

TIBCO Business Studio™ Forms User's Guide



Vertical, Horizontal, Tabbed, and Message Panes

Nesting Panes

Panes can be nested inside other panes for greater flexibility in the positioning of controls. For instance, you
can place two vertical panes within a single horizontal pane. This results in a two-column layout of controls
for the portion of the form defined by the horizontal (parent) pane.

All types of panes, except for tabbed panes, can be nested to create tabs. Panes can also be rearranged by
dragging and dropping within the form Outline view.

It is strongly encouraged to avoid nesting panes to an extreme number of levels, since this complicates the
form model and can affect performance.

Nested panes can be used to arrange controls on the form. For instance, you can create a two-column layout
by adding a horizontal pane to the canvas, and then nesting two vertical panes within it. The same

140

TIBCO Business Studio™ Forms User's Guide



approach can be used to create additional columns: just place additional vertical panes inside the original
horizontal pane.

There are two restrictions on the nesting of panes:

● No other pane can be nested within a message pane

● A tabbed pane cannot be nested in another tabbed pane

Types of Panes
There are several types of panes: vertical, horizontal, tabbed, message, grid, record, embedded form, and
modal dialog panes. Each pane type is represented by an icon in the palette.

It can be difficult to distinguish between a vertical pane and a horizontal pane before you place any controls
or child panes in them. For this reason, these pane types are distinguished in the Design tab by small
chevron icons pointing down for vertical panes and to the right for horizontal panes. (The chevrons do not
appear at runtime or in the preview tabs.)

Design View

Special considerations apply for resizing tabbed panes when additional sub-panes are added. For more
information, see Specialized Layouts.

Vertical Pane

A vertical pane is a pane in which controls are arranged vertically, with one above the other. Vertical panes
are auto-sized to hold controls, child panes, or both.

Horizontal Pane

A horizontal pane is a pane in which controls or child panes are arranged horizontally, with one next to the
other. Horizontal panes are auto-sized to hold the controls or child panes within them.

Tabbed Pane

Tabbed panes provide a means of stacking a set of related panes such that one pane at a time is visible. Each
pane has a corresponding tab, which are arranged in sequence along one of the tabbed pane’s vertical or
horizontal edges.

Keyboard Access
 Change between tabs without a mouse by using the left and right arrows.

The direct children of a tabbed pane must be panes, not controls. The canvas prevents you from
inadvertently placing controls directly inside a tabbed pane. Clicking on or otherwise selecting a tab
activates its associated pane (make it visible). This “select-tab-to-activate-pane” behavior is common to both
design time and runtime. At design time, however, a tabbed pane offers additional capabilities to aid in the
design process:

● Add a new child pane

141

TIBCO Business Studio™ Forms User's Guide



  A special button positioned at the end of the tab collection. Click this button to add a new child pane
to the tabbed pane.

● Expand/collapse the tabbed pane
  A special toggle button positioned after the new pane button, that toggles the state of the tabbed pane
between a collapsed state and an expanded state. The collapsed state has one pane visible whereas the
expanded state has all child panes visible side-by-side. In the expanded state, the tabbed pane behaves
similar to a horizontal or vertical pane. You can add, move, and delete controls on the expanded pane.
The expanded state is particularly useful when you want to rearrange or delete child panes or move
controls between panes.

While adding controls to tabbed panes, keep the pane expanded.

Message Pane

A message pane is used to display validation error messages. Message panes cannot contain panes or
controls. A message pane displays the message typed in the Message field of a control’s Define Validation
dialog if the validation script in the Script field returns a value of false.

If a message pane is added to a modal dialog pane, it shows only the validations that are applicable on the
modal dialog pane.

The figure Script and Message Example for a Message Pane shows a typical validation script and message
for a Text control.

Script and Message Example for a Message Pane

The appearance of a message pane, the label font and layout, can be configured through the Properties view
for the pane.

Record Pane

A record pane is used to edit a list of complex objects, one record at a time. It supports the ability to view
and edit the contents of one element of an array of complex objects. A set of navigation controls is provided
to support moving between the records in the list. The record pane uses the same layout as the vertical
pane.

The record pane displays the contents of a list of objects. The contents of the list in a record pane is linked
with the list in one of the following ways:

● The pane value is bound to a multi-valued complex parameter.

● The pane value is bound to a multi-valued child of a complex object.

● The value of the pane is updated with a list of complex objects via an API function call.

● The value of the pane is updated with a list of complex objects via a computation action.

For either of the latter two approaches, the Pane Data Type property needs to be set in the form model to
the type of object that is set on the pane with a list.

The Properties tab of a record pane’s Properties view displays a set of properties. You can refer to 
Properties View for Panes section for the complete listing of the Properties tab.

Navigation Controls

The controls on the navigation bar perform the following operations:

142

TIBCO Business Studio™ Forms User's Guide



● Go to the first record.

● Go to the previous record. There is no change if you are at the first record.

● Go to the next record. There is no change if you are at last record.

● Go to the last record.

The label displays: Record [index] of ##. The index indicates the current record and ## indicates the
length of the list. You can directly edit the index value. If a number less than 1 or a number greater than
the length of the list is specified, the index is reset to the value it was set earlier.

Grid Pane

Grid panes are generated in a default form for complex data when the data type is defined as allowing
multiple instances, for example, zero-to-many (*) or one-to-many (1..*). When a grid pane is rendered,
attributes of complex data types correspond to columns, and each of the multiple instances corresponds to a
row.

By default, the data displayed in a grid pane is not sorted by columns. If the default sort column and sort
order are specified, the form is loaded initially according to the specified sorting. At runtime, clicking the
column header sorts the rows in ascending order based on the values in that column, and clicking the
column again sorts the rows in descending order. Clicking once more on the column restores the unsorted
natural record order.

Sorting data in a grid pane is case insensitive. Numbers in a text control are sorted as text, and not as
numeric data. To sort numbers in numerical order, use the numeric control.

Several properties appear in the Properties tab of a grid pane’s Properties view that are particular to this
type of pane. Refer to Properties View for Panes section for the complete listing of the Properties tab.

Modal Dialog Pane

A modal dialog pane blocks the rest of the form until the user closes the modal dialog.

This pane has a title bar and an optional Close button. However, by default a Close (X) button is displayed
on the title bar. You can configure OK and Cancel buttons as required. By default, the pane also supports
the Escape key.

Vertical or horizontal panes can be converted into modal dialog panes. You cannot add a modal dialog pane
to another modal dialog pane, nor to a record pane, nor as a direct child (tab) of a tabbed pane. A modal
dialog pane cannot be static.

Modal dialog panes cannot be marked for deferred rendering or deferred initialization. However, a child
pane of a modal dialog pane can be marked for deferred rendering or for deferred initialization.

Modal dialog panes support the following events:

● open
Fired when the dialog is opened, that is, made visible

● close
Fired when the dialog is closed using the explicit Close button

● cancel
Fired when the dialog is closed using either the close button (X) on the title bar, or using the Cancel
button, ignoring the changes made by the user on the dialog

143

TIBCO Business Studio™ Forms User's Guide



Setting Pane Properties with Bindings and Rules
To associate pane properties such as Label, Visibility, and Enabled with the values of controls or
parameters, you can use bindings and rules.

See the following:

● Bindings

● Rules

Controls
Controls are the objects on a form that take your input, such as text fields, check boxes, and radio buttons.
Controls must be placed within a pane. Controls can be rearranged within the form by dragging-and-
dropping them.

Controls can be copied and pasted within a form or between forms. It is also possible to re-arrange the
position of controls by dragging the controls within the form Outline view. Controls always include their
associated labels, although these can be hidden.

Text

The Text control allows users to type text. You can make this control read-only.

Textarea

The Textarea control allows users to type multiple lines of text. The length, in number of characters, and the
number of lines are configurable. The default values are 25 characters and 10 lines.

You can make this control read-only.

Checkbox

Checkbox controls represent Boolean values. In effect, they are on/off switches that may be used as a toggle.
The switch is on (that is, the Boolean value is true) when the check box is selected. By default, a Boolean
IN/OUT data parameter is displayed as a check box. If the data parameter is mandatory, it means the check
box must be selected, otherwise a form validation rule prevents the form from being submitted. Use this
feature when you want the user to acknowledge that some aspect of the form has been checked or
considered. If you need the user to select true or false with the check box, the data parameter must be
optional rather than mandatory.

Date

The Date control allows users to specify date, either in a string in the correct format, or by clicking a
calendar widget. The calendar opens when the user clicks the icon next to the Date control’s text field:
 

144

TIBCO Business Studio™ Forms User's Guide



 

You can make this control read-only.

Time

The Time control has up and down arrows for incrementing the hour or minute value, or for toggling
between AM and PM. The value that is changed by clicking the arrow depends on whether the cursor is in
the hour field, the minute field, or the AM/PM field. You can also specify a time by keying in a string in the
correct format.

You can make this control read-only.

Date-Time

The Date-Time control allows users to input a date and time. The date portion of the control has a calendar
widget for selecting a date with the mouse. The time portion has up and down arrows for incrementing the
hour or minute value, or for toggling between AM and PM. The value that is changed by clicking the arrow
depends on whether the cursor is in the hour field, the minute field, or the AM/PM field. You can also
specify a date and time by keying in a string in the correct format.

You can make this control read-only.

Duration

The Duration control allows the users to specify a duration using a configurable set of units. The Properties
tab of the Properties view for the Duration control allows you to select which units are displayed for
parameters of type Duration. The supported units are:

● Years

● Months

● Days

● Hours

● Minutes

● Seconds

● Milliseconds

Any combination of these units can be enabled.

You can make this control read-only.

145

TIBCO Business Studio™ Forms User's Guide



To avoid any loss of information throughout a process, it is best to edit Duration values using the same set
of units in all forms that modifies the underlying Duration parameter. This holds as well for scripts that
create or modify Duration objects.

Hyperlink

The Hyperlink control allows the Form Designer to place a clickable hyperlink on the form.

Image

The Image control allows the Form Designer to place an image on the form, referenced by a URL.

Label

The Label control allows you to display static text that the user cannot edit. The label control still has its
own label field that is used to identify the value being rendered by the label control.

Optionlist

The Optionlist control allows the Form Designer to create a drop-down list.

Pass-through

The Pass-through control is a widget that allows users to specify a block of arbitrary HTML into a form.
Specify the HTML fragment in the large editing box on the Properties property sheet. The markup is
inserted directly into the browser DOM at runtime.

The binding dialog allows you to set the markup via a binding or computation action, just as with other
form values. (Bindings allow you to tie the value of an item, such as a control, to the value of something else
in the form, without coding.) You do not need to configure bindings or computation actions, however, in
order for the Pass-through control to work.

Radiogroup

The Radiogroup control allows users to choose among the listed options. Only one option (one radio
button) can be selected at one time.

Button

There are various kinds of buttons on the palette: Button, Cancel Button, Submit Button, and Close Button.

When one of the Cancel, Submit, or Close buttons is added to the canvas, an associated Rule is also added
to the Form to handle the select event on that button. A generic Button that is added must be configured to
invoke an action when clicked.

The Properties views are identical for each of them, except that the default value that is selected in the
Button Type list on the Properties tab is primary for the Submit Button, and it is peripheral for the other
button types. This means that a Submit Button that is placed on a form from the palette, by default, is
invoked on a mouse click or when you press the Enter key. (If the focus is within a textarea control or
similar control, the Enter key is interpreted by the local component. It may not invoke the Submit button.)
Buttons of the other types are invoked only when they are clicked. Primary buttons are distinguished with a
dark single-pixel border. A form may contain at most one Primary button.

In addition to primary or peripheral, the value of the Button Type list can be set to associative.

An associative button is one that is associated with another control. For example, an associative button
called browse might be located next to a file upload control.

146

TIBCO Business Studio™ Forms User's Guide



Edit as List with a Control
The List control is not an independent control in itself, but is a special control property that can be enabled
for a Text, Text Area, Date, Time, Date-Time, or Duration control to represent multiple instances of
primitive data.

It allows you to add and delete items, or move them up and down. The list functionality is enabled with the
check box Edit as List on the Properties tab of the Properties view for controls that support list editing.

A primitive attribute in the business object model that has a multiplicity of * (zero or more instances are
allowed) corresponds to an array, and is represented on the default generated form with the Edit as List
property enabled.

Likewise, a control with the Edit as List property enabled is rendered for a primitive process Data Field
with the Array check box selected.

Control or Component Labels
You can give a label to each control or component. Sensible labels help users understand the control or the
component easily. Labels are shown together with the names of the controls.

Users in the Business Analysis mode cannot see the physical name, which is used only by the users in
scripts and is visible in property editors.

Consistent Use of Labels

The same labels must be used through the Forms Designer UI for consistency, including in the Outline
view, pickers, wizards, and property views.

Labels for Rules and Actions

Rules and Actions show the label description even if they are long. For example,
Guardian required for underage drivers (guardian_required)
Get employee details (svc_empdetails)

Using the Option Include Type Name in Labels

When using this option, search expression should start with an asterisk (*) if the text you're trying to match
is not at the beginning of the label. This is applicable to the various picker UIs such as the Binding picker,
Event picker, and so on.

For example, when you are binding the value of a control to synchronize with a parameter that has a name
CustPhone and a label Customer Phone, and if you want to search that parameter with a keyword Phone,
type the keyword expression as *Phone. This shows all the items that have the text Phone in their labels.

Similarly, if you are a user with the Solution Design capability and you want to search the parameter by
name, you need to type the keyword expression as *CustPhone.

Properties View Tabs
Forms, panes, and controls can be configured by specifying or modifying values in Properties views. Each
form, as well as each of its panes and controls, has a Properties view with a set of tabs, and each tab
provides access to a group of properties.

The tabs on a Properties view provide easy access to the many properties you can set for the objects on a
form. Properties tabs are provided for: Forms, Data, Parameter, Shared Actions, Rules, Pane, and Controls.

147

TIBCO Business Studio™ Forms User's Guide



Properties View Tabs

Properties View Tabs Description

Forms

General Tab Specify a CSS class to be used for styling at the form level.

Mappings Tab Shows a global view of all the bindings and computation actions in the
form.

Font Tab Settings for font properties at the form level, which may be inherited by
objects on the form.

Child Layout Tab Settings for layout properties of top-level panes, which inherit from the
form.

Child Labels Tab Setting for label properties of top-level panes, which inherit from the form.

Rules Tab Shows the rules to be triggered by a form event.

Resources Tab Shows resources associated with the form, such as JavaScript files and
images.

Preview Data Tab Setting for a preview data file, either none (no data appear initially for the
controls), default, or custom (to assign a custom preview data file to the
form).

Panes

General Tab General properties of the pane.

Properties Tab Visual properties of the pane, inherited from the containing pane or form by
default which, in turn, overrides the system defaults.

Mappings Tab Shows a global view of all the bindings and computation actions related to
the pane.

Layout Tab Layout properties for the pane, inherited from the parent pane by default.

Font Tab Font settings, used if the Form Designer does not want the pane to inherit
these properties from the containing parent form or pane.

Child Layout Tab Settings for layout properties of those objects that inherit from this pane.

Child Labels Setting for label properties of those objects that inherit from this pane.

Validations Tab For writing scripts that run when the form is submitted or updated, and to
check whether you have provided valid input for the pane.

This tab is not visible when in Business Analysis mode.

Rules Tab The Rules tab lists the Rules triggered by each of the events supported by
the pane, and provides a mechanism to create new Rules for that the pane.

148

TIBCO Business Studio™ Forms User's Guide



Properties View Tabs Description

Mobile Tab Used for mobile specific configurations.

Controls

General Tab General properties of a control.

Properties Tab Properties that are specific to the type of the control being configured. Fields
on this tab vary between control types. Some control types do not have a
properties tab.

Mappings Tab Shows a global view of all the bindings and computation actions related to a
control.

Layout Tab Layout properties for the control, inherited from the parent pane by default.

Font Tab Font properties for the control, inherited from the parent pane by default.

Validations Tab For writing scripts that run when the form is submitted or updated, and to
check whether you have provided valid input for the control.

This tab is not visible when in Business Analysis mode.

Rules Tab The Rules tab lists the Rules triggered by each of the events supported by
the Control, and provides a mechanism to create new Rules for that control.

Mobile Tab The Mobile tab is used for mobile specific configurations.

Properties View for Forms
The Properties view for a form contains eight tabs: General, Mappings, Font, Child Layout, Child Labels,
Rules, Resources, and Preview Data. The form Properties view can be found by selecting the root-most
element in the Outline view or clicking outside the panes of the form.

General Tab

The setting in this tab is used to specify one or more CSS classes for styling the form.

Fields on the Forms General Tab

Property Description

Style Class Name
or Names

Field for indicating the name of a CSS class within a CSS file that has been
associated with the form. The CSS class is used for styling at the form level.

Mappings Tab

This tab is used to view, edit, and create mappings for the form. You can refer to Mappings Tab section for
further details.

149

TIBCO Business Studio™ Forms User's Guide



Font Tab

Fields on the Forms Font Tab

Property Description

Inherit from System
Defaults

Check box determines whether or not the values on this tab are inherited from the
system defaults.

Font Name Determines the default font used to render control text and hints throughout the
form.

Font Size Determines the default height (in points) of the font used to render control text
and hints throughout the form.

Font Color Determines the default color of the font used to render control text and hints
throughout the form.

Font Weight Determines the default style of the font used to render control text and hints
throughout the form.

Text Align Determines the justification of control text and hints throughout the form.
Supported values are left and right.

Child Layout Tab

The setting in this tab apply to the labels of the root panes within the Form.

Fields on the Forms Child Layout Tab

Property Description

Inherit from System
Defaults

Check box determines whether or not the values on this tab are inherited from the
system defaults.

Width Determines the default width in pixels inherited by top-level panes. The width is
that of the pane's child content area, excluding any space reserved for the pane
label and hint.

Height Determines the default height in pixels inherited by top-level panes. The height is
that of the pane's child content area, excluding any space reserved for the pane
label and hint.

Padding Determines the default padding inherited by top-level panes. Padding is the
spacing between adjacent sibling form elements. The value is a space-separated
list of between one and four non-negative integers, representing the top, right,
bottom and left padding respectively, in pixels. Missing values default to the last
value in the list.

Margin Determines the default margin inherited by top-level panes. Margin is the free
space around the edges of a pane. The value is a space-separated list of between
one and four non-negative integers, representing the top, right, bottom and left
margins respectively, in pixels. Missing values default to the last value in the list.

150

TIBCO Business Studio™ Forms User's Guide



Property Description

BG Color Determines the default background color inherited by top-level panes.

Border Determines the default border style inherited by top-level panes. Supported
values are line and none. A line-style pane border is drawn as a horizontal line
beneath the pane label and only appears when the label position is top.

Overflow Determines the default overflow strategy inherited by top-level panes. Overflow
strategy determines how the pane responds to an explicit width and/or height
setting that is less than the minimum required to display all of its content.
Supported values are expand, auto, and hidden. The default strategy, expand,
causes the pane to ignore a width or height setting if it is less than the minimum
required. The auto strategy accepts the explicit size and displays scrollbars to
enabled the hidden content to be revealed. The hidden strategy simply crops any
content which lies outside the explicit bounds.

Child Labels Tab

Fields in the Forms Child Labels Tab

Property Description

Inherit from System
Defaults

Check box determines whether or not the values on this tab are inherited from the
system defaults.

Label Width Determines the default label width in pixels inherited by top-level panes.

Label Position Determines the default label position inherited by top-level panes. Label position
is with respect to the associated pane. Supported values are left and top.

Label Visible Determines the default label visibility inherited by top-level panes.

Font Name Determines the default label font inherited by top-level panes.

Font Size Determines the default label font height (in points) inherited by top-level panes.

Font Color Determines the default label text color inherited by top-level panes.

Font Weight Determines the default label font style inherited by top-level panes. Supported
styles are normal and bold.

Text Align Determines the default label justification inherited by top-level panes. Supported
values are left and right.

Rules Tab

Fields in the Forms Rules Tab

Property Description

Event Type Open Shows the rules to be triggered when the form is first opened.

151

TIBCO Business Studio™ Forms User's Guide



Property Description

Event Type Submit Shows the rules to be triggered by the submit event of the form.

Event Type Close Shows the rules to be triggered when the form is closed. This happens after the
submit event, if there is one.

Event Type Localize Shows the rules to be triggered when the form locale is changed.

Resources Tab

Fields on the Forms Resources Tab

Property Description

Path Displays a path to the resource.

Add (+) button Adds a resource.

Delete (x) button Removes the reference to the resource.

Preview Data Tab

Fields on the Preview Data Tab

Property Description

Preview Data File Select a file to furnish initial data values for the controls on the form. Choices are
None, Default, or Custom. If None is selected, no values appear initially in the
form controls. Default provides a default value for each type of control. To use
Custom, first create a copy of the default .data.json file. Edit its values, and
then select the file in the Custom field.

It is also possible to create input data from the data submitted in preview. To do
this, open the form in preview, fill out the values in the form, and click Submit.
The submitted data is logged in the preview application. Copy the JSON object
from the log, and paste it as the content of the custom .data.json file.

Properties View for Panes
The Properties view for a pane, whether it be a horizontal, vertical, tabbed, or message pane, contains nine
tabs: General, Properties, Mappings, Layout, Font, Child Layout, Child Labels, Rules, and Mobile
Properties. The Layout and Font tabs for panes are identical to those for controls.

General Tab

The Properties view for panes contain a General tab. This tab contains general properties for the pane
currently selected in the canvas, and contains the fields shown in the table General Tab for Panes.

When panes and controls are marked as disabled or invisible, the data normally displayed by these
elements are still delivered to the browser. Therefore, making panes and controls disabled or invisible
should not be used as a mechanism to protect sensitive data.

General Tab for Panes

152

TIBCO Business Studio™ Forms User's Guide



Property Description

Name The name of the pane, used in JavaScript to refer to this object. The Rename button
allows you to change the name using the Enter the Name dialog. The Name field
only appears when the Solutions Design mode is active.

Label The label for the pane that appears on the form (if the Label Visibility > Visible
check box is selected). This property is bindable.

See Setting Bindings and Setting Rules for more details.

Pane Type A drop-down list showing the type of the pane. Allows you to select another type.
If the object is a Vertical Pane, for instance, this setting can be used to change it to
a Horizontal Pane.

Style Class Names Specify a CSS class to be used for styling at the pane level.

Pane Data Type Specifies the type of object that is set on the pane.

If there is a value binding for a pane but the pane data type is not set explicitly, a
warning message displays: [pane_name]: pane mappings need an explicit
pane data type. You can set the explicit data type by using a quick fix, or by
selecting the data type picker from the property sheet.

For a pane data type determined by a binding, the interface also shows the data
type.

Label Visibility Determines whether the pane’s label is visible. This value can either be inherited
from the parent object of the pane, or set explicitly on the pane.

Visible Determines whether the pane (together with its child elements) is visible. This
value can be changed at runtime via scripting. This property is bindable.

See Setting Bindings and Setting Rules for more details.

Enabled Determines whether the controls within the pane can be modified or not. This
value can be changed at runtime via scripting. This property is bindable.

See Setting Bindings and Setting Rules for more details.

Read Only Determines whether the pane (together with its child elements) is read-only. The
check box is disabled for pane types, which do not support a read-only setting at
runtime.

Properties Tab

The Properties tab contains special fields that pertain specifically to the type of pane being configured. Thus
the Properties tabs on the Properties view for panes differ in their fields.

The horizontal pane, vertical pane, tabbed pane, and message pane have a common set of properties on the
Properties tab. The grid pane and record pane have some additional properties.

The following sections describe the Properties tab for these panes separately.

153

TIBCO Business Studio™ Forms User's Guide



Properties for Horizontal Pane, Vertical Pane, and Tabbed Pane

Property Description

Static
Rendering

Check box to enable static rendering for a pane. The information displayed within a
static pane is displayed as read-only and you cannot modify the data. This property
can be set only at design-time. It is not possible to convert a pane to static at runtime.

Text Only Check box to render a static pane as plain text, without any control widgets.This
property is enabled only if the Static Rendering property is selected.

Defer
Rendering

Check box to defer the rendering of a pane until it is made visible. If the pane is
visible at the time of loading, then it is rendered once the form is completely
initialized and the Form Open event is fired. This property can be set only at design-
time and it cannot be updated using bindings or using the API.

Defer
Initialization

Check box to defer the initialization of the children of the pane until the pane is
rendered. This means that the pane object itself is always instantiated and available,
but any nested child is not initialized until the pane is about to be rendered. This
property is enabled only if the Defer Rendering property is selected.

Properties for Message Pane

Property Description

Suppress
Validation
Messages

Check box to suppress the display of messages from the modeled pane and control
validations. The default value is false, in which case the message pane displays all
messages, both modeled validations and those programmatically added using the
API. If true, the message pane displays only programmatically added messages.

Record Pane Properties Tab

Property Description

Support Add
Operation (and
Label)

Check box to render a button in the record pane that can add a new record to the end
of the list being managed by the record pane. The default label is New, but can be
overridden by providing a new value in the Label input box.

Support Delete
Operation (and
Label)

Check box to render a button in the record pane that can delete the currently viewed
record. The default label is Delete, but can be overridden by providing a new value in
the Label input box.

Show
Navigator

Check box to display the navigation bar with the record pane, allowing navigation
across the set of records in the record pane.

Selection Click the Add a Binding button to specify the binding endpoint for a record pane.
This can also be used when record pane is used in conjunction with a grid pane to
offer a master/detail view of a list of objects. In such a scenario, the selection of the
grid pane is bound to the selection of the record pane, and the value of the grid pane
is bound to the value of the record pane. Whenever you select a different row in the
grid pane, the corresponding record is shown in detail in the record pane.

154

TIBCO Business Studio™ Forms User's Guide



Property Description

Defer
Rendering

Check box to defer the rendering of a pane until it is made visible. If the pane is
visible at the time of loading, then it is rendered once the form is completely
initialized and the Form Open event is fired. This property can be set only at design-
time and it cannot be updated using bindings or using the API.

Defer
Initialization

Check box to defer the initialization of the children of the pane until the pane needs to
be rendered. This means that the pane object itself is always instantiated and
available, but any nested child is not initialized until the pane is about to be rendered.
This property is enabled only if the Defer Rendering property is selected.

Grid Pane Properties Tab

Property Description

Visible Rows Specify the maximum number of visible rows.

Support Add
Operation

Check box to render a button in the record pane that can add a new record to the end
of the list being managed by the record pane. The default label is New, but can be
overridden by providing a new value in the Label input box.

Support Delete
Operation

Check box to render a button in the record pane that can delete the currently viewed
record. The default label is Delete, but can be overridden by providing a new value in
the Label input box.

Buttons
enabled in read
only pane

Check box to render the buttons as enabled even if the grid pane is read-only.

Add/Delete
Button Position

A radio control to define the position of the Add and Delete buttons. The supported
values are Top and Bottom.

Movable
Columns

Check box to enable movable columns. This feature is not supported in GWT runtime.

Sortable Check box to enable sorting of the data in the grid pane.

Always render
controls

Check box to render a grid pane such that the child controls are directly rendered in
edit mode. It eliminates the additional click action required to activate edit mode of
grid pane. This property is related to Always Render property for controls. Refer to 
Properties Tab for further details.

Static
Rendering

Check box to enable static rendering for a pane. The information is displayed in a
read-only mode within a static pane, and you cannot modify the data. This property
can be set only at design-time. It is not possible to convert a pane to static at runtime.

Text Only Check box to render a static pane as plain text, without any control widgets.This
property is enabled only if the Static Rendering property is selected.

Defer
Rendering

Check box to defer the rendering of a pane until it is made visible. If the pane is
visible at the time of loading, then it is rendered once the form is completely
initialized and the Form Open event is fired. This property can be set only at design-
time and it cannot be updated using bindings or using the API.

155

TIBCO Business Studio™ Forms User's Guide



Property Description

Defer
Initialization

Check box to defer the initialization of the children of the pane until the pane is
rendered. This means that the pane object itself is always instantiated and available,
but any nested child is not initialized until the pane is about to be rendered. This
property is enabled only if the Defer Rendering property is selected.

Selection Model Radio control used to specify the selection model. The supported values are single
and multiple.

Selection Selection of a binding endpoint for a grid pane or master-detail pane. Click the
Binding button to open the Edit Binding dialog, which allows you to choose an item
and specify the update behavior invoked for that item when an instance is selected in
the grid pane or master pane.

Row Label Used to specify the row label template resource and type. The available options are:

● External Reference: to pick the row label from an external resource. You need to
define the row labels in the <row_labels>.properties file. The resource key for
the row label must follow the naming convention <component-
name>[.property].<featureName>, and end with .rowLabel or _rowLabel.

For example, pane.grid.property.rowLabel=Attr1 {0}.

Resources that do not follow these conventions are not displayed in the Resource
Picker.

● Custom: to specify a user-defined row label

By default, the value of the first column of the grid pane is used as the row label.

This property is available only at accessible runtime.

Default Sort
Column

Used to specify the column on which to sort by default.

Default Sort
Order

Used to specify the default sort order - ascending or descending.

Modal Dialog Pane Properties Tab

Property Description

Render Close
button on the
title bar

Check box to render a Close (X) button on the title bar of the modal dialog. Clicking
this button fires the cancel event on the modal dialog.

Render Close
button on the
pane

Check box to render an explicit Close button on the modal dialog. The default label is
Close, but you can change the label by providing a new value in the Label field. The
Close button closes the modal dialog, and fires the close event. You need to provide
the semantics of a close action, that is, make sure that any relevant changes, which
occurred in the modal dialog, are propagated to the main form model.

156

TIBCO Business Studio™ Forms User's Guide



Property Description

Render Cancel
button on the
pane

Check box to render an explicit Cancel button on the modal dialog. The default label
is Cancel, but you can change the label by providing a new value in the Label field.
Note that a Cancel button closes the modal dialog, and fires the cancel event. You
need to provide the semantics of a cancel action, that is, make sure that all the
changes which occurred in the modal dialog are reverted.

Support ESC
key to close

Check box to support the Escape key on the modal dialog. If enabled, the cancel event
is fired when the user presses the Escape key.

Dialog position Radio buttons to specify the position of the modal dialog.

● Center of the window: Renders the dialog at the center of the window.

● Center of the form: Renders the dialog at the center of the form irrespective of the
scrolling position.

● Relative to the focused element: Renders the dialog at the position specified
relative to the focused element. The top left position of the element is treated as
(0,0). You need to specify the X and Y coordinates accordingly. Positive values
move the pane downward and to the right by specified pixels.

● Absolute position: Renders the dialog at an absolute position irrespective of the
scrolling. The top left point in the view port is treated as (0,0). You need to specify
the X and Y coordinates accordingly. Positive values move the pane downward
and to the right by specified pixels.

Mappings Tab

The Properties view for panes contain a Mappings tab. This tab is used to view, edit, and create mappings
for the selected pane. You can refer to Mappings Tab section for further details.

Layout Tab

Same as for controls. See Layout Tab.

Font Tab

Same as for controls. See Font Tab.

Child Layout Tab

Fields in the Child Layout Tab

Property Description

Inherit from
System Defaults

Check box determines whether or not the values on this tab are inherited from the
system defaults.

Width Determines the width of child objects of this pane.

Height Determines the height of child objects of this pane.

157

TIBCO Business Studio™ Forms User's Guide



Property Description

Padding Sets the white-space gap between the outer edge of the child objects of this pane
and their inner content. Specified as one to four implied pixel values applied in
this order: top, right, bottom, and left. For example, 8 pixels of padding could be
specified as 8, or as four space-separated values: 8 8 8 8.

Margin Sets the gap between the border of the pane’s child objects and their parent or
sibling panes. Specified as one to four implied pixel values applied in this order:
top, right, bottom, and left. For example, 4 pixels for margins could be specified as
4, or as four space-separated values: 4 4 4 4.

BG Color Determines the background color of child objects of this pane.

Border Sets a border around child objects of the pane. Possible values are none and line.

Overflow Determines how child objects of the pane behave when their content exceeds their
dimensions. Possible values are expand, auto, and hidden.

Child Labels

The settings in this property tab pertain to the child controls and panes of this pane. They have no effect on
the label of the pane itself.

Fields in the Child Labels Tab

Property Description

Inherit From
Parent

Specifies whether the layout properties of the pane are inherited. If the Inherit
From Parent check box is selected, all fields are disabled for editing. Clearing the
Inherit From Parent field allows you to edit all fields on this tab.

Label Width Determines the width of the label in pixels.

Label Position Determines the label position inherited by child controls and panes. Label position
is with respect to the associated control or pane. Supported values are left and top.

Label Visible Determines the label visibility inherited by child controls and panes.

Font Name Determines the label font face name inherited by child controls and panes.

Font Size Determines the label font height (in points) inherited by child controls and panes.

Font Color Determines the label text color inherited by child controls and panes.

Font Weight Determines the label font style inherited by child controls and panes. Supported
styles are normal and bold.

Text Align Determines the label justification inherited by child controls and panes. Supported
values are left and right.

158

TIBCO Business Studio™ Forms User's Guide



Validations Tab

The Validations tab lists the validation scripts defined for the pane, and provides a mechanism to create
new validation for that pane.

Fields in the Validation Tab

Fields Description

Name The name of the validation.

Execute When When the validation is executed. The options are:

● On Form Submit

● On Value Change

Script The validation script.

Message Type The type of validation message. The options are:

● External Reference

● Custom

Message The validation message that is displayed in the message pane if your entry is invalid.
This is either a static message defined in the validation, or a reference to a resource
key, where the key begins with "validation_".

List Check box used to specify whether the validation is to be executed on the complete
list or for each value in the list for a multi-valued control. The functionality of the two
states is as follows:

true: The validation is invoked with the context.value set to the list value of a
multi-valued control.

false: The validation is invoked once for each value in the list, with context.value
set to a specific value each time.

Enabled Check box used to specify whether the validation is to be executed at runtime. The
functionality of the two states is as follows:

true: The validation is invoked at runtime.

false: The validation is not invoked at runtime.

This button opens the Define Validation dialog. The dialog contains two parts, a
Script area for writing the validation script, and a Message area for typing the
message that is displayed in a message pane if your entry is invalid.

The Define Validation dialog allows you to specify when the validation script runs.

This button deletes the selected validation.

159

TIBCO Business Studio™ Forms User's Guide



Rules Tab

Similar to the Properties tab, not all panes have a Rules tab on their Properties view, and for those that do,
the Rules tabs differ in their supported events.

The panes with a Rules tab include - Vertical Pane, Horizontal Pane, Record Pane, Grid Pane.

The panes without a Rules tab include - Tabbed Pane, Message Pane.

Fields in the Rules Tab

Property Description

Event Type Double-
click

Shows the rules to be triggered when a record in the pane is double-clicked.

Event Type Select Shows the rules to be triggered when a record in the pane is selected.

Event Type Update Shows the rules to be triggered when the value of the pane is updated.

For each pane, only the event types supported by that pane is listed in the tab.

Clicking the Add Rule button opens the New Rule wizard, with the corresponding event already added to
the new Rule. To add a new rule, see Setting Rules.

Mobile Tab

Fields in the Mobile Tab

Property Description

Short Label Used to specify a short label which is displayed instead of the ordinary label for the
mobile rendering of the form.

Toolbar Used to mark one pane as the toolbar pane in a form which is targeted for mobile
devices.

Properties View for Controls
The Properties view for a control contains eight tabs: General, Mappings, Properties, Layout, Font,
Validations, Rules, and Mobile. The Layout and Font tabs for controls are identical to those for panes.

General Tab

The Properties view for controls contains a General tab. This tab contains general properties for the object
currently selected in the Canvas

When panes and controls are marked as disabled or invisible, the data normally displayed by these
elements are still delivered to the browser. Therefore, making panes and controls disabled or invisible
should not be used as a mechanism to protect sensitive data.

.

160

TIBCO Business Studio™ Forms User's Guide



General Tab Fields

Property Description

Name Name of the control. Used in scripts to refer to the control.

The Rename button allows you to change the name using the Enter the Name dialog.
The Name field only appears when the Solutions Design mode is active.

Label Text that appears next to the control. The value of the label can be bound to an input
parameter so that the control can be dynamically labeled at runtime. Labels can be
localized.

This property is bindable. See Setting Bindings and Setting Rules for more details.

Control Type A drop-down list showing the type of the control. Allows you to select another type.
If the object is a Date control, for instance, this field can be used to change it to a Time
or DateTime control.

Style Class
Names

Specify a CSS class to be used for styling at the control level.

Hint Text that provides a hint to help you complete the form correctly. For controls, the
hint appears just beneath the control. Text for a hint can be mapped to the value of a
parameter. Hints can be localized.

This property is bindable. See Setting Bindings and Setting Rules for more details.

Value At runtime, it is the value with which a control is initialized. Value is not supported
for Hyperlink and Image controls.

This property is bindable. See Setting Bindings and Setting Rules for more details.

Label Visibility Whether the label for the control can be seen on the form. Values can be Inherit,
Visible, or not visible (neither check box selected).

Visible Determines whether the control is visible to you. This field can be bound to a
parameter value, or its value can be set at runtime by an Action script, based on an
event.

This property is bindable. See Setting Bindings and Setting Rules for more details.

Enabled Determines whether you can update the value of the control.

This property is bindable. See Setting Bindings and Setting Rules for more details.

Required Indicates whether you must provide a value for this control in order for the form to be
successfully validated. At runtime, required fields are preceded by an asterisk, to
indicate that the field is required. If you do not provide a value for a control that is
required, the form cannot be submitted. This property is bindable. See Setting
Bindings and Setting Rules for more details.

Tab Index Determines the position of the element in the tabbing order for the form. The tabbing
order determines the order in which elements on the form receive focus when the tab
key is used to navigate from one element to another. This attribute is valid for all
controls except Image and Label controls, where focus is irrelevant. See Tabbing
Navigation, page 287 , for more details.

161

TIBCO Business Studio™ Forms User's Guide



Tabbing Navigation
The Tab Index attribute can be used to determine the order in which elements receive focus as you
navigate from field to field through a form with the tab key. The tabbing navigation behavior for a form is
as follows:

1. Those elements on the form that support the Tab Index attribute, and assign a positive value to it, are
navigated first. Navigation proceeds from the element with the lowest Tab Index value to the element
with the highest value. Values need not be sequential, nor must they begin with any particular value.
Elements that have identical Tab Index values are navigated in the order in which they appear on the
form.

2. Those elements that do not support the Tab Index attribute, or support it and assign it a value of “0,” are
navigated next. These elements are navigated in the order in which they appear in the Outline view.

Mappings Tab

The Properties view for controls contain a Mappings tab. This tab is used to view, edit, and create mappings
for the selected control. You can refer to Mappings Tab section for further details.

Properties Tab

The Properties tab contains special fields that pertain specifically to the type of control being configured.
Thus, not all controls have a Properties tab on their Properties view, and for those that do, the Properties
tabs differ in their fields.

The controls with a Properties tab include - Button, Date, Time, Date-Time, Hyperlink, Image, Optionlist,
Passthrough, Radiogroup, Text, and Text Area.

The controls without a Properties tab include - Check box and Label.

The controls having an extra property on the Properties tab only if the control is a child of a grid pane
include - Date, Time, Date-Time, Optionlist, Radiogroup, Text, and Text Area.

Property for Child Controls of Grid Pane

Property Description

Always Render
in Grid Pane

Check box to render the grid pane child controls directly in edit mode. This property
is related to Always render controls property for grid pane. If the Always render
controls property is set to true, then all the controls on a grid pane are directly
rendered in edit mode. However, if the Always render controls property is set to
false, then the Always Render property setting on each control determines whether
or not the control is rendered in edit mode. Refer to Grid Pane Properties Tab for
further details.

This property is only supported in GWT runtime.

The details of the Properties tab for each control is described in the table Button Properties Tab.

Properties Tab for the Button Control:

162

TIBCO Business Studio™ Forms User's Guide



Button Properties Tab

Property Description

Button Type Radiogroup list that allows the Form Designer to configure the type of button.
Possible values are primary, peripheral, and associative. There are four kinds of
buttons on the palette: Button (generic), Cancel Button, Submit Button, and Close
Button.

The Properties tab is identical for each of them, except that the default value in the
Button Type list is primary for the Submit button, and peripheral for the other button
types. This means that a Submit button that is placed on a form from the palette, by
default, is invoked on a mouse click or when you press the Enter key. Buttons of the
other types are invoked only when they are clicked or otherwise selected.

Properties Tab for the Date Control:

Date Control Properties Tab

Property Description

Edit as List Check box to enable the Date control to represent multiple date values. It enables you
to add and delete items, or move them up and down.

Maximum
Visible Rows

Specify the maximum number of visible rows.

Start Year Specify the first year that should be displayed in the date picker in mobile forms. The
default value is -20.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

Start Year
Relative

Check box used to specify whether the value of Start Year is interpreted as being
relative to the current year or as an absolute year. The default value is true.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

End Year Specify the last year to be displayed in the date picker in mobile forms. The default
value is 20.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

End Year
Relative

Check box to specify whether the value of End Year is interpreted as being relative to
the current year or as an absolute year. The default value is true.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

Properties Tab for the Time Control:

163

TIBCO Business Studio™ Forms User's Guide



Time Control Properties Tab

Property Description

Edit as List Check box to enable the Time control to represent multiple time values. It enables you
to add and delete items, or move them up and down.

Maximum
Visible Rows

Specify the maximum number of visible rows.

Minute
Increment

Specify the increment to be used while displaying the choice of minutes in a time
control. The default value is 15 and the maximum value is 60.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

Properties Tab for the Date-Time Control:

Date Control Properties Tab

Property Description

Edit as List Check box to enable the Date-Time control to represent multiple date-time values. It
enables you to add and delete items, or move them up and down.

Maximum
Visible Rows

Specify the maximum number of visible rows.

Start Year Specify the first year that should be displayed in the date picker in mobile forms. The
default value is -20.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for further details.

Start Year
Relative

Check box used to specify whether the value of Start Year is interpreted as being
relative to the current year or as an absolute year. The default value is true.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

End Year Specify the last year to be displayed in the date picker in mobile forms. The default
value is 20.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

End Year
Relative

Check box to specify whether the value of End Year is interpreted as being relative to
the current year or as an absolute year. The default value is true.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

Minute
Increment

Specify the increment to be used while displaying the choice of minutes in the date-
time control. The default value is 15 and the maximum value is 60.

This is a mobile forms specific configuration. See Mobile Specific Configuration of
Controls and Panes for more details.

164

TIBCO Business Studio™ Forms User's Guide



Properties Tab for the Hyperlink Control:

Hyperlink Properties Tab

Property Description

URL The URL for this control.

Link Text The text for the hyperlink that appears on the form. This value can be set via script
actions, computation actions, or bindings.

Properties Tab for the Image Control:

Image Properties Tab

Property Description

URL URL pointing to the image file that is to appear on the form.

The URL can either be an absolute URL, or a special folder relative path to the form
resource. If the path is relative, then the image resource to which it points are
deployed automatically when the form resource is deployed.

This value can be updated via script at runtime or by using a binding. If the location
of the image is set dynamically to a relative path, then those resources are not be
automatically deployed with the form. You can add these images as references in the
form resources tab, so they are deployed when the form resource is deployed. See 
Configuration of Parameters for more details.

Properties Tab for the Optionlist Control:

Optionlist Properties Tab

Property Description

Allow Multiple
Selections

Allow users to choose multiple items from those listed, rather than being restricted
to a single choice.

Choices: Binding

Label Array Use the Add a Binding button to:

● Create a binding for this property

● Update this property using a Computation Action

Value Array Use the Add a Binding button to:

● Create a binding for this property

● Update this property using a Computation Action

Choices: External
Reference

Click the ellipsis (...) button to choose an external object with value pairs, such as
enumeration containing label values and name values.

165

TIBCO Business Studio™ Forms User's Guide



Property Description

Choices: Custom
Values

Use this table to add (+), delete (x), or reorder the choices in this list.

Properties Tab for the Pass-through Control:

Pass-through Control Properties Tab

Property Description

Markup Used to specify a block of HTML fragment. This markup is inserted directly into the
browser DOM at runtime.

Click the Binding button to set the markup via a binding or computation action.

Properties Tab for the Radiogroup Control:

Radiogroup Control Properties Tab

Property Description

Format Choose the format for this control: auto, columns, horizontal, or vertical

Columns Choose number of columns to display the radio buttons: 1, 2, or more

Choice Layout

Layout type Select one of the following:

● Auto

● Columns

● Horizontal

● Vertical

Columns Select number of columns.

Choices: Bindings

Label Array Use the Add a Binding button to:

● Create a binding for this property

● Update this property using a Computation Action

Value Array Use the Add a Binding button to:

● Create a binding for this property

● Update this property using a Computation Action

Choices: External Reference

166

TIBCO Business Studio™ Forms User's Guide



Property Description

Select object Click the ellipsis (...) button to choose an object, such as an Enumeration from a
business object model, that contains name-value or label-value pairs.

Choice: Custom Values

Manage the List Use this table to add (+), delete (x), or reorder the choices that are part of this list.

Properties Tab for the Text Control:

Text Properties Tab

Property Description

Edit as List Check box to enable the Text control to represent multiple text values. It enables you
to add and delete items, or move them up and down.

Maximum
Visible Rows

Specify the maximum number of visible rows.

Secret A control that visually masks what is input in order to prevent eavesdropping.
Typically used when you type a password.

Numeric A control with this option selected treats the contents of the text field as a number
with respect to how the decimal point is localized. This allows the control to work in
locales that use a different symbol (such as “,”) for the decimal point.

Format The Format options are enabled only if the Numeric property is selected. The
supported values are External Reference and Custom. See Numeric Controls for
more information.

Maximum
Length

Maximum length of the text field, in numbers of characters.

Display Length The length of the field that can be viewed at one time, in numbers of characters.

Properties Tab for the Text Area Control:

Text Area Properties Tab

Property Description

Edit as List Check box to enable the Text Area control to represent multiple text values. It
enables you to add and delete items, or move them up and down.

Maximum Visible
Rows

Specify the maximum number of visible rows.

Rows Determines the number of lines that can be typed in the textarea control.

Columns Determines the number of characters that can be typed in a single line of the
textarea control.

167

TIBCO Business Studio™ Forms User's Guide



Property Description

Maximum Length Maximum length of the text area, in numbers of characters.

The controls with an extra property on the Properties tab only if the control is a child of a grid pane include
- Date, Time, Date-Time, Optionlist, Radiogroup, Text, and Text Area.

Property for Child Controls of Grid Pane

Property Description

Always Render Check box to render the grid pane child controls directly in edit mode. This property
is linked to Always render controls property of grid pane. If the Always render
controls property is set to true, then all the controls on a grid pane are directly
rendered in edit mode. However, if the Always render controls property is set to
false, then the Always Render property setting on each control determines whether
or not the control is rendered in edit mode. Refer to Grid Pane Properties Tab for
further details.

This property is only supported in GWT runtime.

Layout Tab

All Properties views for controls contain a Layout tab, and all Layout tabs contain the same fields. The
fields listed in the table Layout Tab appear on the Layout tab for forms and for all panes and controls.

Layout Tab

Property Description

Inherit From
Parent

Specifies whether the layout properties of the control are inherited. If the Inherit
check box is selected, all fields are disabled for editing. Clearing the Inherit field
allows you to edit all fields on this tab.

Width Width of the pane or control. The width is that of the content area. For panes, this is
the area occupied by child panes and controls; for controls, it is the area occupied
by the control body, excluding label and hint areas.

Height Height of the pane or control. The height is that of the content area. For panes, this
is the area occupied by child panes and controls; for controls, it is the area
occupied by the control body, excluding label and hint areas.

BG Color Background color for the object being configured.

Padding Sets the white-space gap between the outer edge of the object and its inner content.
Specified as one to four implied pixel values applied in this order: top, right,
bottom, and left. For example, 8 pixels of padding could be specified as 8, or as
four space-separated values: 8 8 8 8.

Margin Sets the gap between the object’s border and its parent or sibling objects. Specified
as one to four implied pixel values applied in this order: top, right, bottom, and
left. For example, 4 pixels for margins could be specified as 4, or as four space-
separated values: 4 4 4 4.

168

TIBCO Business Studio™ Forms User's Guide



Property Description

Border Sets a border around the object. Possible values are none and line.

Overflow Determines how the control or pane behaves when its content exceeds its
dimensions. Possible values are expand, auto, and hidden. These terms are
described here:

● expand   The pane expands to show all of its contents. (Manual values for a
pane or control’s width or height that are less than the preferred width or
height are ignored when the overflow mode is expand.)

● auto   The pane uses scroll bars to show any content that cannot fit within the
fixed width and height.

● hidden   Any content that exceeds the prescribed width and height is not be
shown.

Font Tab

Font Tab for Controls

Property Description

Inherit from
Parent

If selected, the font settings are inherited from the parent pane. This check box is
selected by default for all controls and panes. Top level panes inherit their font
settings from the form itself. At the form level, the equivalent default setting is Inherit
from System Defaults. Clearing one of these Inherit check boxes makes the
remaining fields on the Font tab editable.

Font Name A selection of standard browser-supported font names.

Font Size The size of the font. Values can be chosen from the drop-down list or typed in.

Font Color The color of the font, chosen from a standard color picker.

Font Weight The weight of the font. Possible values are normal and bold.

Text Align Alignment of text. Possible values are left and right.

Validations Tab

Validations Tab for Controls

Property Description

Name The name of the validation.

Execute When When the validation is executed. The options are:

● On Form Submit

● On Value Change

169

TIBCO Business Studio™ Forms User's Guide



Property Description

Script The validation script.

Message Type The type of validation message. The options are:

● External Reference

● Custom

Message The error message that is displayed in the message pane if your entry is invalid.

List Check box used to specify whether the validation is to be executed on the complete
list or for each value in the list for a multi-valued control. The functionality of the two
states is as follows:

true : The validation is invoked when the context.value is set to the list value for a
multi-valued control.

false : The validation is executed once for each value in the list, with
context.value set to a specific value each time.

This button opens the Define Validation dialog. The dialog contains two parts, a
Script area for writing the validation script, and a Message area for typing the
message that is displayed in a message pane if your entry is invalid.

The Define Validation dialog allows you to specify when the validation script is run.

This button deletes the selected validation.

Rules Tab

The Rules tab lists the Rules triggered by each of the events supported by the Control, and provides a
mechanism to create new Rules for that control.

Fields in the Controls Rules tab

Property Description

Event Type Enter Shows the rules to be triggered when the control gains focus.

Event Type Exit Shows the rules to be triggered when the control looses focus.

Event Type Update Shows the rules to be triggered when the value of the control changes.

Event Type Select Shows the rules to be triggered when the control is selected, such as when a
button is clicked.

For each Control, only the event types supported by that control is listed in the tab.

Clicking the Add Rule button opens the New Rule wizard, with the corresponding event already added to
the new Rule. To add a new rule, see Setting Rules.

170

TIBCO Business Studio™ Forms User's Guide



Mobile Tab

The Mobile tab is used for mobile specific configuration.

Property Description

Short Label Specify a short label which is displayed instead of the Label for the mobile rendering
of the form.

Configuration of Parameters
To configure a parameter, you need to define a few fields, such as Name, Label, Type, and so on.

Define the following fields:

● Name
   This field is only seen if the Solution Design capability is enabled. The Rename button shows a
rename dialog.

● Label
  Business name of the parameter.

● Mode In
  The value is treated as read-only.

● Mode Out
  There is no value provided at form load, but the form may provide a value during submit.

● Mode In/Out
  The value may be read and written.

● Type
  One of the following:

— Text
  Supporting single-line and multiple-line strings

— Integer
   Supporting 32-bit integers

— Decimal
  Supporting 64-bit double precision floating point numbers

— Boolean
  .

— Date
   Supporting localized display

— Time
  Supporting localized display

171

TIBCO Business Studio™ Forms User's Guide



— DateTime
  Supporting localized display. Precision to number of seconds.

● Length
   Used only for Text, Integer and Decimal types

● Decimal Places
   Used only for the Decimal type

● Bindings
  Shows bindings and computation actions involving this parameter.

Context Menus
Context menus are available in the Outline view as well as in the Form Designer canvas.

Outline View Context Menu

You can use a context menu from the Outline view.

For more details, see Usage of the Outline View with Forms.

Form Designer Canvas Context Menu

You can also use a context menu from the canvas, by right-clicking the form icon or any form element in the
Outline view. On the context menu, options are displayed as per the selected element.

Manage Form Elements from the Outline View

Select Definition

Cut
(Ctrl+X)

Available for all elements except for fixed categories (Data, Shared Actions, Rules)

Copy
(Ctrl+C)

Available for all elements. After you copy an element to the clipboard, you can
paste it within this form or another form.

Paste
(Ctrl+V)

Available when content is available on clipboard

Delete Available for all elements except for fixed nodes (Data, Shared Actions, Rules) and
for the form itself

Rename Available for all elements except for fixed categories (Data, Shared Actions, Rules),
as well as for added actions and rules

Select All
(Ctrl+A)

Selects all root panes. Select All does not select parameters, shared actions, or rules.

Show Properties
view

Shows the Properties view, if not previously visible.

172

TIBCO Business Studio™ Forms User's Guide



Keyboard Shortcuts
The use of keyboard shortcuts increases efficiency. Many keyboard shortcuts are available for all types of
forms, including the ones rendered in accessible mode.

When a form is rendered, initially the focus is on the first component of the form.

Generic Keyboard Shortcuts

Press To Do

Tab Shifts the focus to the next component in the form.

Shift+Tab Shifts the focus back to the previous component in the form.

Grid Panes
This section summarizes the keyboard shortcuts you can use for grid panes.

Grid Panes in Display Mode

Grid panes can operate either in display mode or in edit mode. The edit widget does not pop up in display
mode when the focus is on the cell. When the focus first shifts to a grid pane, the pane is in display mode.

The keyboard shortcuts listed in the table Keyboard Shortcuts for Grid Panes in Display Mode are
applicable only to display mode.

Keyboard Shortcuts for Grid Panes in Display Mode

Press To Do

Enter, or F2, or
Click

Activates edit mode, and selects the row. The focus is set on the control in the current
cell. For non-editable grids, clicking or pressing Enter selects the row in a single-select
grid, or toggles the row selection in a multi-select grid.

Delete Deletes the selected row. The focus is set on the same cell of the next row.

Tab Shifts the focus to the navigation bar if the grid is paginated. If the grid is not
paginated and the command bar is visible, the focus shifts to the command bar. If
both, the navigation bar and the command bar are not visible, the focus shifts to the
next component in the form.

Shift+Tab Shifts the focus to the last column heading of the grid pane.

Up Arrow key Shifts the focus to the same cell in the previous row. If the focus is on the first visible
row of the table, and the paginated grid pane has a previous page, the focus shifts to
the same cell in the last row of the previous page. If the focus is already on the first
visible row of the first page, it remains on the same cell.

Down Arrow
key

Shifts the focus to the same cell in the next row. If the focus is on the last visible row
of the table, and the paginated grid pane has a next page, the focus shifts to the same
cell in the first row of the next page. If the focus is already on the last visible row of
the last page, it remains on the same cell.

173

TIBCO Business Studio™ Forms User's Guide



Press To Do

Left Arrow key Shifts the focus to the previous focusable cell in the same row. If none of the previous
cells in the same row is focusable, the focus shifts to the last focusable cell in the
previous row.

Right Arrow
key

Shifts the focus to the next focusable cell in the same row. If none of the next cells in
the same row is focusable, the focus shifts to the first focusable cell in the next row.

Page Up key Displays the previous page of rows when the grid pane is paginated. The focus stays
on the same cell on the displayed page of records.

Page Down key Displays the next page of rows when the grid pane is paginated. The focus stays on
the same cell on the displayed page of records.

Home key Shifts the focus to the first column of the first visible row.

End key Shifts the focus to the first column of the last visible row.

Ctrl+Home Shifts the focus to the first column of the first row in the entire record set.

Ctrl+End Shifts the focus to the first column of the last row in the entire record set.

Grid Panes in Edit Mode

When in edit mode, the controls in each cell are displayed as editable when the cell has the focus.

If a control is disabled or read-only, then it continues to display the text version of the control value. The
grid pane does not handle any of these keys if the active cell editor handles the keystroke. For example, the
textarea controls handle Up/Down Arrow keys. Pressing these keys affects the textarea and not the grid
pane.

The keyboard shortcuts listed in the table Keyboard Shortcuts for Grid Panes in Edit Mode are applicable
only to edit mode.

Keyboard Shortcuts for Grid Panes in Edit Mode

Press To Do

Enter, or
Escape, or Ctrl
+Enter

Activates display mode, and updates the value. Validations run, and the focus
remains on the recently edited cell, which is now in display mode.

The Enter key within a textarea or list control is not handled by the grid pane. For
such cases, use Ctrl+Enter to activate display mode.

Tab Shifts the focus to the next cell. The grid pane remains in edit mode, and the editor for
the next cell is activated. If the focus is currently on a cell in the last column, the focus
shifts to one of the following elements (in this order):

● the navigation bar if it is visible

● Add or Delete buttons if they are enabled

● the next component on the form

If the focus is on the last cell of the last visible row, the focus shifts to the grid
navigation bar, or the next component in the form if the grid pane is not paginated.

174

TIBCO Business Studio™ Forms User's Guide



Press To Do

Shift+Tab Shifts the focus to the previous cell. The grid pane remains in edit mode, and the
editor for the previous cell is enabled. If the focus is in the first cell of the first visible
row, it shifts to the grid column headers.

Up Arrow key,
or Ctrl+Up
Arrow key

Shifts the focus to the cell in the same column in the previous row.

Grid panes do not handle the Up Arrow key within a few controls, such as Textarea,
Optionlist, Radiogroup, or List control. For such cases, use Ctrl+Up Arrow key.

Down Arrow
key

Shifts the focus to the cell in the same column in the next row.

Grid panes do not handle the Up Arrow key within a few controls, such as Textarea,
Optionlist, Radiogroup, or List control. For such cases, use Ctrl+Down Arrow key.

Page Up key Displays the previous page of rows. The focus shifts to the upper-left cell of the new
page of records.

Page Down key Displays the next page of rows. The focus shifts to the upper-left cell of the new page
of records.

Grid Pane Column Headers

The heading for each column is rendered as an HTML anchor tag. As they are rendered as hyperlinks, each
column heading is a tab stop when traversing the form.

For sortable grids, pressing the Enter key activates the hyperlink, and sorts the rows on that column
between three possible states: unsorted (the default), sorted ascending, and sorted descending.

The keyboard shortcuts listed in the table Keyboard Shortcuts for Grid Pane Column Headers are
applicable only to the grid pane column headers.

Keyboard Shortcuts for Grid Pane Column Headers

Press To Do

Tab Shifts the focus to the next heading in the grid pane header row. If the focus is on the
heading of the last column, it shifts the focus to the first cell in the grid pane content.

Shift+Tab Shifts the focus to the previous heading in the grid pane header row. If the focus is on
the heading of the first column, it shifts to the previous component in the form.

Enter Changes the sorting state of the column to the next state. The states are ascending,
descending, or unsorted (original).

Grid Pane Navigation Bar

For grid panes with more rows than a single page can accommodate, a navigation bar appears at the
bottom of the grid pane. By using it, you can go to the first, previous, next, or last page of the pane.

If you press Tab when the focus is on the navigation bar, the focus shifts to the "First" or the "Next" arrows.
The "First" and "Previous" arrows are disabled when the first page of the grid pane is displayed. Similarly,
the "Next" and the "Last" arrows are disabled when the last page is displayed.

The keyboard shortcuts listed in the table Keyboard Shortcuts for Grid Pane Navigation Bar are applicable
only to the grid pane navigation bar.

175

TIBCO Business Studio™ Forms User's Guide



Keyboard Shortcuts for Grid Pane Navigation Bar

Press To Do

Tab Shifts the focus either to the next arrow on the navigation bar, or to the New and
Delete buttons if they are enabled. If there is no arrow or button available, the focus
shifts to the next component in the form after the grid pane.

Shift+Tab Shifts the focus to the previous arrow on the navigation bar. If there is no arrow
available, the focus shifts to the last cell in the last row of the grid pane.

Left Arrow, and
Right Arrow
keys

Shift the focus within the arrows on the navigation bar.

Enter Invokes the currently focused arrow on the navigation bar.

List Controls
This section summarizes the keyboard shortcuts you can use for list controls.

List Controls in Display Mode

Similar to grid panes, list controls are either in display mode or in edit mode. If you press Tab when the
focus is on a list control, the control is rendered in display mode, and the focus shifts to the first item in the
list.

The keyboard shortcuts listed in the table Keyboard Shortcuts for List Controls in Display Mode are
applicable only to list controls in display mode.

Keyboard Shortcuts for List Controls in Display Mode

Press To Do

Enter, or Click Activates edit mode, and maintains the focus on the current value.

Delete Deletes the selected item in the list. The focus shifts to the next item in the list, or to
the Add button.

Tab Shifts the focus to the list control command bar.

Shift+Tab Shifts the focus to the previous component in the form.

Up Arrow key Shifts the focus to the previous item in the list.

Down Arrow
key

Shifts the focus to the next item in the list.

Home Shifts the focus to the first item in the list.

End Shifts focus to the last item in the list.

List Controls in Edit Mode

The keyboard shortcuts listed in the table Keyboard Shortcuts for List Controls in Edit Mode are applicable
only to list controls in edit mode.

176

TIBCO Business Studio™ Forms User's Guide



Keyboard Shortcuts for List Controls in Edit Mode

Press To Do

Enter, or Escape Activates display mode, and maintains the focus on the current value.

Ctrl+Enter Activates display mode when editing a text area in the list.

Tab Shifts the focus to the next value in the list. If the focus is already on the last value, it
shifts to the list control command bar.

Shift+Tab Shifts the focus to the previous value in the list. If the focus is already on the first
value in the list, it shifts to the previous component in the form.

Up Arrow key Shifts the focus to the previous value in the list. If the focus is already on the first
value, it remains on that value.

Down Arrow
key

Shifts the focus to the next value in the list. If the focus is already on the last value, it
remains on that value.

List Control Command Bar

The keyboard shortcuts listed in the table Keyboard Shortcuts for List Control Command Bar are applicable
only to the list control command bar.

Keyboard Shortcuts for List Control Command Bar

Press To Do

Tab Shifts the focus to the next component in the form after the list control.

Shift+Tab Shifts the focus back to the content of the list control.

Left Arrow, and
Right Arrow
keys

Shift the focus within the control buttons (that is, add, delete, up, and down) in the
list control command bar.

Enter Invokes the currently focused control button.

Record Panes
This section summarizes the keyboard shortcuts you can use for record panes.

The keyboard navigation is just the same within a record pane. There are a few more keyboard shortcuts
listed in the next sub-sections.

Record Pane Body

The keyboard shortcuts listed in the table Keyboard Shortcuts for Record Pane Body are applicable only to
the record pane body.

177

TIBCO Business Studio™ Forms User's Guide



Keyboard Shortcuts for Record Pane Body

Press To Do

Page Up key Displays the previous record in the list without shifting the focus. If the displayed
record is the first one, there is no change.

Page Down key Displays the next record in the list without shifting the focus. If the displayed record
is the last one, there is no change.

Tab Shifts the focus to the next control within the record pane.

Shift+Tab If pressed when the first control has the focus, it shifts the focus to the central text
field in the navigation bar, which displays the current record number.

Record Pane Navigation Bar

If you press Tab when focus is on the component before a record pane, the focus shifts to the central text
field in the navigation bar, which displays the current record number.

The keyboard shortcuts listed in the table Keyboard Shortcuts for Record Pane Navigation Bar are
applicable only to the record pane navigation bar.

Keyboard Shortcuts for Record Pane Navigation Bar

Press To Do

Tab Shifts the focus to the first component in the record pane.

Shift+Tab Shifts the focus to the previous component in the form.

Left Arrow, and
Right Arrow
keys

Shift the focus within the control buttons (that is, first, previous, current, next, and
last) in the navigation bar.

Enter Invokes the currently focused control button.

Tabbed Panes
This section summarizes the keyboard shortcuts you can use for tabbed panes.

Keyboard Shortcuts for Tabbed Panes

Press To Do

Tab If you press Tab when the focus is on the component before a Tabbed Pane, the focus
shifts on the currently active tab. If you press Tab when the focus is on a tab in the tab
bar, the focus shifts to the first control in the body of the currently active tab pane.

Shift+Tab Shifts the focus back to the previous component in the form.

Left Arrow /
Right Arrow

Shift the focus within the tabs in the tabbed pane.

Space Makes the currently focused tab active.

178

TIBCO Business Studio™ Forms User's Guide



CSS Classes
TIBCO Business Studio Forms supports the use of Cascading Style Sheets (CSS) for customizing how a form
is rendered. This approach provides more flexibility and opportunities for reuse of style information than
manually setting properties at the form model level.

This section lists the built-in CSS classes you can use. For general information on how to use CSS in TIBCO
Business Studio Forms, see Cascading Style Sheets.

Built-in Static CSS Classes
When a form is rendered, there are a set of built-in CSS classes that are used at the Form, Pane, and Control
level. You can use these CSS classes in defining custom rendering for these types of objects. The classes
shown in this table are always rendered in the HTML DOM.

Built-in Static CSS Classes

CSS Class Description

TibcoForms Applied at the root node of the form, modal dialog pane, and
the edit popup dialog in a grid pane.

tf-uir-enabled When the enhanced user interface is enabled, applied at the root
node of the form, modal dialog pane, and the edit popup dialog
in a grid pane.

tf-uir-disabled When the enhanced user interface is disabled, applied at the
root node of the form, modal dialog pane, and the edit popup
dialog in a grid pane.

pane Applied at the root node of each pane.

pane-vertical Applied at the root node of each vertical pane, along with the
pane class.

pane-horizontal Applied at the root node of each horizontal pane, along with the
pane class.

pane-tabbed Applied at the root node of each tabbed pane, along with the
pane class.

pane-grid Applied at the root node of each grid pane, along with the pane
class.

pane-grid-content Applied to the underlying HTML table that contains the header
row and values of a grid pane.

pane-grid-content-header-row Applied to the row in the grid pane that contains column
headers.

pane-grid-sortable Applied to the header row of a grid pane whose columns are
sortable.

pane-grid-sort-asc Applied to the header label of a column that is currently sorted
in ascending order.

179

TIBCO Business Studio™ Forms User's Guide



CSS Class Description

pane-grid-sort-desc Applied to the header label of a column that is currently sorted
in descending order.

pane-grid-content-odd-row Applied to odd rows in a grid pane

pane-grid-content-even-row Applied to even rows in a grid pane

pane-messages Applied at the root node of each messages pane, along with the
pane class.

pane-record Applied at the root node of each record pane, along with the
pane class.

pane-label Applied at the node that contains the label of a pane. This is
nested within the node that has the pane class set.

pane-content Applied at a node that contains all the child controls and panes
of the parent pane.

pane-content-left When applied at the pane level, left-aligns the contents of a
pane.

component Applied at the root node of each control or pane. So each node
that has a class pane-content contains 0 or more nodes with a
class component.

label Applied at a node within a component that contains the label
for the control or pane.

container Deprecated. Use tf-container instead of container.

Applied at a node within a component that contains the content
of the control or pane.

tf-container Applied at a node within a component. Contains the content of
the control or pane.

control-widget Applied on the specific element used for the control, such as an
<input> element for text controls. This is a descendent of the
node that contains the tf-container class.

hint Applied to the node that contains a hint for a control. This is a
descendent of the node that contains the tf-container class.

control-textinput Applied at the same node as the component class for text
controls.

control-textarea Applied at the same node as the component class for textarea
controls.

control-date Applied at the same node as the component class for date
controls.

180

TIBCO Business Studio™ Forms User's Guide



CSS Class Description

control-time Applied at the same node as the component class for time
controls.

control-datetime Applied at the same node as the component class for datetime
controls.

control-checkbox Applied at the same node as the component class for checkbox
controls.

control-optionlist Applied at the same node as the component class for optionlist
controls.

control-radiogroup Applied at the same node as the component class for
radiogroup controls.

control-image Applied at the same node as the component class for image
controls.

control-label Applied at the same node as the component class for label
controls.

control-hyperlink Applied at the same node as the component class for hyperlink
controls.

control-duration Applied at the same node as the component class for duration
controls.

Built-in Dynamic CSS Classes
A set of CSS classes are used to define when controls and panes are in certain states such as required and
disabled. All of these classes are added to the same level as the component class when needed.

Built-in Dynamic CSS Classes

CSS Class Description

required Added when the control is required.

disabled Added when the control or pane is disabled.

invalid Added when the control has failed validation.

tf-form-loaded Added to the iframe element when the form is loaded in an iframe, and
indicates that a form is currently displayed in the iframe. The class
selector tf-form-not-loaded is removed from the iframe element.

tf-form-not-loaded Added to the iframe element if an iframe is used to load the form, but
currently the form is not displayed in the iframe. The class selector tf-
form-loaded is removed from the iframe element.

[custom] Custom classes defined in the form designer or set dynamically via the
setClass() API are added at the same level as the component class.

181

TIBCO Business Studio™ Forms User's Guide



Common Resource Keys
This section lists all the resource keys that are provided as a part of the common resources bundle. The keys
are grouped into their basic functional areas, and the default values in the base bundle are given for
reference.

For the details on how to override the default values or add new resource keys to the bundle, see Property
Resource Bundles.

Keys for Number Patterns
This section lists the resource keys for formatting values in number controls.

The number control shows resource keys that begin with "format_". You can override their values, and also
add new keys that begin with "format_".

For these resource keys, the number grouping separator is always represented as the comma meta-
character, and the decimal separator is always represented as the period meta-character. The actual
grouping and separator characters are translated separately, exactly once. It is not necessary to translate
these grouping and separator meta-characters at every place where they appear.

For more information on how to specify a number format, see Numeric Controls.

Number Patterns

Resource Key Reference Value Description

format_currency \u00A4#,##0.00;
(\u00A4#,##0.00)

Specifies a basic currency
format. The unicode character
\u00A4 represents a currency
symbol, which is substituted at
runtime.

For example: $123,344.89 for
positive numbers, ($34,121.00)
for negative numbers

format_integer #,##0 Basic grouped integer format.

For example: 123,456

format_integer_ungrouped 0 Basic ungrouped integer format.

For example: 123456

format_decimal #,##0.### Basic decimal format.

For example: 123,456.123

format_decimal_1 #,##0.0 Decimal format showing exactly
one decimal place.

For example: 123.1

format_decimal_2 #,##0.00 Decimal format showing exactly
2 decimal places.

For example: 123.10

182

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

format_decimal_3 #,##0.000 Decimal format showing exactly
3 decimal places.

For example: 123.100

format_decimal_4 #,##0.0000 Decimal format showing exactly
4 decimal places.

For example: 123.1000

format_decimal_ungrouped 0.### Basic ungrouped decimal
format.

For example: 123456.123

Keys for Basic Number and Currency Symbols
This section lists the resource keys for values that get substituted in the numeric formats.

For example, number_grouping substitutes the "," character in the numeric formats.

Basic Number and Currency Symbols

Resource Key Reference Value Description

number_decimal . The decimal point that is
substituted for the "." meta-
character.

number_grouping , The grouping separator that is
substituted for the "," meta-
character.

number_zero 0 The character to be used as the
leading zero in numeric formats.

currency_symbol $ Must be translated only for
specific countries. The currency
symbol that is substituted for
\u00A4.

currency_decimal . Used when the currency format
is used.

currency_grouping , Used when the currency format
is used.

currency_code USD The standard 3-letter currency
code.

Keys for Duration Control Labels
This section lists the resource keys for the labels of duration controls.

For example, duration_label_years substitutes "Years" in the text input field.

183

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

duration_label_years Years Labels the text input field as
"Years".

duration_label_months Months Labels the text input field as
"Months".

duration_label_days Days Labels the text input field as
"Days".

duration_label_hours Hours Labels the text input field as
"Hours".

duration_label_minutes Minutes Labels the text input field as
"Minutes".

duration_label_seconds Seconds Labels the text input field as
"Seconds".

duration_label_milliseconds Milliseconds Labels the text input field as
"Milliseconds".

format_duration_years {0} years Used for the text representation
of duration, where {0} is greater
than 1.

For example: "2 years"

format_duration_months {0} months Used for the text representation
of duration, where {0} is greater
than 1

format_duration_days {0} days Used for the text representation
of duration, where {0} is greater
than 1.

format_duration_hours {0} hours Used for the text representation
of duration, where {0} is greater
than 1.

format_duration_minutes {0} minutes Used for the text representation
of duration, where {0} is greater
than 1.

format_duration_seconds {0} seconds Used for the text representation
of duration, where {0} is greater
than 1.

format_duration_milliseconds {0} milliseconds Used for the text representation
of duration, where {0} is greater
than 1.

184

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

format_duration_years_singular {0} year Used for the text representation
of duration, where {0} is equal to
1.

format_duration_months_singular {0} month Used for the text representation
of duration, where {0} is equal to
1

format_duration_days_singular {0} day Used for the text representation
of duration, where {0} is equal to
1.

format_duration_hours_singular {0} hour Used for the text representation
of duration, where {0} is equal to
1.

format_duration_minutes_singular {0} minute Used for the text representation
of duration, where {0} is equal to
1.

format_duration_seconds_singular {0} second Used for the text representation
of duration, where {0} is equal to
1.

format_duration_

milliseconds_singular

{0} millisecond Used for the text representation
of duration, where {0} is equal to
1.

duration_separator , Separates the values in the text
representation of duration.

duration_order yMdHmsS The order in which the specific
duration units appear in the text
representation of duration,
where y = years, M = months, d =
days, H = hours, m = minutes, s =
seconds, S = milliseconds.

duration_items_display_sep \ /\ Separates the values in the text
representation of list items.

Note: All the other list controls
use "items_display_sep" as
defined in List Control Keys .
This new separator is necessary
to separate duration items in a
list, because the
"duration_separator" that
formats a duration value also
uses a "," in the base bundle.

Duration Control Labels

185

TIBCO Business Studio™ Forms User's Guide



Keys for Date-Time Patterns
This section lists the resource keys for date-time controls.

Supported Date Time Keys

Resource Key Reference Value Description

date_month_abbrev ['Jan','Feb','Mar','Apr',
'May','Jun','Jul','Aug','
Sep','Oct','Nov','Dec']

Used for the short names of the months in a
calendar control. Specified as a JavaScript
array.

date_month ['January','February','
March','April','May','J
une','July','August','Se
ptember','October','N
ovember','December']

Used for the long names of the months in a
calendar control. Specified as a JavaScript
array.

date_day_abbrev ['Sun','Mon','Tue','We
d','Thu','Fri','Sat']

Used for the short names of the days of the
week in a calendar control. Always begins
with Sunday. Specified as a JavaScript array.

time_ampm ['AM','PM'] Used for the Latin abbreviations for the 12-
hour clock convention.

datetime_date_label Date Labels the date portion of a date-time
control.

datetime_time_label Time Labels the time portion of a date-time
control.

accessible_date_label {0} (enter as {1}) Accessible Forms: Used to augment the
label for date, time, and date-time controls.
{0} is substituted with the original control
label, and {1} is substituted with the edit
format used for the control.

date_today Today Used in the Date Picker. Clicking this label
takes the date control to today's date.

date_format MMM dd, yyyy Used to display date values in a date-time
control. This is a standard Java date format
string.

date_time_format MMM dd, yyyy
hh:mm:ss a

Used to display date and time values in a
date-time control. This is a standard Java
date format string.

time_format hh:mm:ss a Used to display values in a time control.
This is a standard Java date format string.

186

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

date_edit_format MM/dd/yyyy Used when users are expected to edit a date
value directly in the text box. The format
must be kept simple. You can modify the
sequence of the year, month, and day; and
then change the separators.

date_time_edit_format MM/dd/yyyy
HH:mm:ssZ

Used when users are expected to edit a date-
time value directly in the text box. The
format must be kept simple. You can modify
the sequence of the year, month, day, hours,
minutes, and seconds; and then change the
separators.

time_edit_format HH:mm:ssZ Used when users are expected to edit a time
value directly in the text box. The format
must be kept simple. You can modify the
sequence of the hours, minutes, and
seconds; and then change the separators.

date_picker_ok_label OK Labels the OK button in the time and date-
time control pickers.

date_first_day_of_week 0 Used to indicate the first day of the week
when displaying a calendar. If 0 is specified,
the first day of a week is Sunday. If 1 is
specified, the first day of a week is Monday,
and so on.

date_hours_circle_basis 24 Used by the Date Picker to show the hours
in 24-hour or 12-hour clock.

Unsupported Date Time Keys

Resource Key Reference Value Description

date_month_narrow ['J','F','M','A','M','J','J','
A','S','O','N','D']

Used for narrow, one letter abbreviations of
the months in a calendar control. Specified
as a JavaScript array.

date_day ['Sunday','Monday','T
uesday','Wednesday','
Thursday','Friday','Sa
turday']

Used for the long names of the days of the
week in a calendar control. Always begins
with Sunday. Specified as a JavaScript array.

date_day_narrow ['S','M','T','W','T','F','S'
]

Used for the narrow, one-letter
abbreviations of the days of the week in a
calendar control. Always begins with
Sunday. Specified as a JavaScript array.

date_era_long ['Before Christ','Anno
Domini']

Used for the complete text of era names in
formatted dates. For example: Before Christ

187

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

date_era ['BC','AD'] Used for the short forms of era names in
formatted dates. For example: BC

time_24hour true Used to determine whether the time is to be
displayed in a 24-hour clock format.

Keys for Optionlist Controls
This section lists the resource key for drop-down list controls.

Optionlist Key

Resource Key Reference Value Description

option_select_label - Select - The value initially displayed in a drop-down list
before the user makes a selection.

Keys for Built-in Buttons
This section lists the resource keys for built-in buttons.

Resource Key Reference Value Description

form_cancel_label Cancel Labels the Cancel button that is
generated by default or is added
from the palette.

form_submit_label Submit Labels the Submit button that is
generated by default or is added
from the palette.

form_close_label Close Labels the Close button that is
generated by default or is added
from the palette.

spinner_done_label Done Mobile Forms: Indicates that the
user has picked a value.

spinner_cancel_label Cancel Mobile Forms: Indicates that the
user has cancelled the operation
of picking a value.

screen_back_label Back Mobile Forms: Returns to the
previously viewed screen.

screen_add_list_item_label + Mobile Forms: Label on the
button to add a new value or a
new record. Must be a single
character.

188

TIBCO Business Studio™ Forms User's Guide



Keys for Grid and Record Panes
This section lists the resource keys for grid panes and record panes.

Grid and Record Pane Keys

Resource Key Reference Value Description

pane_new_label New Used as the default label for
adding a new record to a
collection pane representing a
composition reference.

You can override it on specific
instances of grid or record
panes.

pane_delete_label Delete Used as the default label for
deleting an existing record from
a collection pane representing a
composition reference.

You can override it on specific
instances of grid or record
panes.

pane_add_label Add Used as the default label for
adding a reference to an existing
object to a collection pane
representing a non-aggregation
reference.

You can override it on specific
instances of grid or record
panes.

pane_remove_label Remove Used as the default label for
removing a reference to an
existing object from a collection
pane representing a non-
aggregation reference.

You can override it on specific
instances of grid or record
panes.

msgd_pane_confirm_delete_label Delete {0} selected
records?

Used as a confirmation message
when users delete multiple
records from a multi-select grid
pane.

ssgd_pane_confirm_delete_label Delete the selected
record?

Used as a confirmation message
when users delete a single
record from a grid pane.

189

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

grid_pane_page_info \ {0} - {1} of {2}\ Gives pagination information of
the grid pane navigation bar. It
shows the number of active
records and the total number of
records.

For example: 11-20 of 35

rp_confirm_delete_label Delete the current
record?

Used as a confirmation message
when users delete the displayed
record from a record pane.

nav_first_label First Used as the hover help for the
record and grid pane control
button that navigates users to
the first page of records in a
paginated grid pane, or to the
first record in a record pane.

nav_last_label Last Used as the hover help for the
record and grid pane control
button that navigates users to
the last page of records in a
paginated grid pane, or to the
last record in a record pane.

nav_next_label Next Used as the hover help for the
record and grid pane control
button that navigates users to
the next page of records in a
paginated grid pane, or to the
next record in a record pane.

nav_previous_label Previous Used as the hover help for the
record and grid pane control
button that navigates users to
the previous page of records in a
paginated grid pane, or to the
previous record in a record
pane.

record_record_label Record Used only in the record pane
navigation panel. Used in
combination with
record_record_of_label to
display "Record x of y" on the
User Interface, where x is a
drop-down list showing the
current record, and y is the total
number of records.

190

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

record_record_of_label of Used only in the record pane
navigation panel. Used in
combination with
record_record_label to
display "Record x of y" on the
User Interface, where x is a
drop-down list showing the
current record, and y is the total
number of records.

record_pane_record_info Record {0} of {1} Used only in the record pane
navigation panel. Appears in the
title of the record number field
in the navigation panel.

accessible_gd_pane_select_

row_label

Select row to edit or
delete

Accessible Forms: The label for
radiogroup/checkbox of the grid
pane selection cell in accessible
runtime. Rendered as offscreen
text.

accessible_gd_pane_select_

all_rows_label

Select all rows Accessible Forms: The label for
radiogroup/checkbox of the
multi-select grid pane selection
header in accessible runtime.
Rendered as offscreen text.

accessible_gd_pane_normal_

col_header_label

Click to sort in
ascending order

Accessible Forms: The label used
in the header of a grid pane in
accessible runtime when sorting
is not in effect.

accessible_gd_pane_asc_

ord_col_header_label

Sorted in ascending
order. Click to sort in
descending order.

Accessible Forms: The label used
in the header of a grid pane in
accessible runtime when the
column is sorted in ascending
order.

accessible_gd_pane_desc_

ord_col_header_label

Sorted in descending
order. Click to remove
sorting.

Accessible Forms: The label used
in the header of a grid pane in
accessible runtime when the
column is sorted in descending
order.

191

TIBCO Business Studio™ Forms User's Guide



Keys for Modal Dialog Panes
This section lists the resource keys for modal dialog panes.

Modal Dialog Pane Keys

Resource Key Reference Value Description

pane_close_label OK Used as the default label for the
explicit Close button that closes
the dialog.

You can override it on specific
instances of modal dialog panes.

pane_cancel_label Cancel Used as the default label for the
Cancel button that cancels the
modal dialog.

You can override it on specific
instances of modal dialog panes.

dialog_pane_close_button_tooltip Close Used as the tooltip message for
the Close (X) button on the title
bar of a modal dialog pane.

You can override it on specific
instances of a modal dialog
pane.

Keys for Built-in Validation Messages
This section lists the resource keys for built-in validation messages.

Built-in Validation Message Keys

Resource Key Reference Value Description

form_validation_error_message Error in script for
validation {0} of Control
{1} ({2})\: {3}

Used to display a message for a
script error while running a
validation. {0} is the name of the
validation. {1} is the name of the
control. {2} and {3} are
debugging messages.

form_action_error_message Error in script for action
{0} ({1})\: {2}

Used to display a message for a
script error while running an
action. {0} is the name of the
action. {1} and {2} are debugging
messages.

form_required_message {0} is a required field. Used to display a message when
a required value is missing. {0} is
the label of the control.

192

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

record_pane_error_label There are errors on
record(s) {0}.

Mobile Forms: Used to display a
message for errors on multiple
records. {0} is a comma
separated list of numbers.

nested_pane_error_label There are errors on this
screen.

Mobile Forms: Used to display a
message for validation failures
on one or more components on
the current pane.

Keys for List Controls
This section lists the resource keys for list controls.

List Control Keys

Resource Key Reference Value Description

list_add_label add Used as the hover help for the
Add button in list controls.

list_delete_label delete Used as the hover help for the
Delete button in list controls.

list_move_up_label up Used as the hover help for the
Up button in list controls.

list_move_down_label down Used as the hover help for the
Down button in list controls.

items_display_sep , Used as a separator when
displaying text representation of
items in a list.

static_items_display_sep | Used as a separator when
displaying text representation of
items in a list, where the items
already use the basic separator.

For example: 1 year, 2 months | 2
years, 5 months

Keys for Implicit Validation Messages
This section lists the resource keys for implicit validation messages.

These messages are used when validations are automatically generated based on the underlying BOM
specification of the value. In all these messages, the value {0} is substituted with the label of the control that
fails the validation.

193

TIBCO Business Studio™ Forms User's Guide



Implicit Validation Messages

Resource Key Reference Value Description

validation_date_format ''{0}'' is incompatible with
ISO format 'yyyy-MM-dd'

Used when the target value must be
a proper ISO 8601 formatted date.
See http://www.w3.org/TR/NOTE-
datetime .

validation_time_format ''{0}'' is incompatible with
ISO format 'HH:mm:ssZ'

Used when the target value must be
a proper ISO 8601 formatted time.
See http://www.w3.org/TR/NOTE-
datetime .

validation_datetime_format ''{0}'' is incompatible with
ISO format 'yyyy-MM-
dd'T'HH:mm:ssZ'

Used when the target value must be
a proper ISO 8601 date-time value.
See http://www.w3.org/TR/NOTE-
datetime .

validation_decimal_fixed_point ''{0}'' must be a fixed point
decimal number with no
more than {1} digits and
{2} decimal places

Used for BOM attributes and
process data fields that are
configured as fixed point decimal
numbers in the Resources tab of the
BOM editor.

validation_decimal_floating_point ''{0}'' must be a floating
point decimal number

Used for BOM attributes that are
configured as floating point decimal
numbers in the Resources tab of the
BOM editor.

validation_integer_length ''{0}'' must be an integer
with no more than {1}
digits

Used to specify a length constraint
on the number of digits of Integer
type BOM attributes and process
data fields.

validation_integer ''{0}'' must be an integer. Used for BOM attributes and
process data fields of the Integer
type.

validation_text_length ''{0}'' must be a value with
no more than {1}
characters

Used for BOM attributes of the Text
type that have a length constraint.

validation_lower_limit_inclusive ''{0}'' must be a number
greater than or equal to {1}

Used for numbers that have a lower
limit specified (including the limit
value).

validation_lower_limit ''{0}'' must be a number
greater than {1}

Used for numbers that have a lower
limit specified (excluding the limit
value).

validation_upper_limit_inclusive ''{0}'' must be a number
less than or equal to {1}

Used for numbers that have an
upper limit specified (including the
limit value).

194

TIBCO Business Studio™ Forms User's Guide

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime


Resource Key Reference Value Description

validation_upper_limit ''{0}'' must be a number
less than {1}

Used for numbers that have an
upper limit specified (excluding the
limit value).

validation_multiplicity_maximum ''{0}'' must contain at most
{1} values

Used when an upper limit is
specified for child multiplicity.

For example: 0..5

validation_multiplicity_exact ''{0}'' must contain exactly
{1} values

Used when an exact number is
specified for child multiplicity, and
the number is greater than 1.

For example: 3

validation_multiplicity_minimum ''{0}'' must contain at least
{1} value(s)

Used when only lower limit is
specified for child multiplicity,
without an upper limit.

For example: 1..* or 3..*

validation_multiplicity_range ''{0}'' must contain
between {1} and {2} values

Used when an exact multiplicity
range is specified with both a lower
and an upper limit. Both the
numbers must be non-zero and the
upper limit must be greater than the
lower limit.

For example: 1..5 or 2..4

validation_numeric ''{0}'' must be a number Used for BOM attributes and
process data fields of the Integer or
Decimal type.

validation_pattern ''{0}'' has the wrong format
for the ''{1}'' data type

Used for BOM attributes of the Text
type that specify a regular
expression constraint pattern.

validation_null_global_data_ref Error in server data: The
value for the parameter
''{0}'' contains an invalid
global data object
reference

Used when the initial data sent from
the server is invalid and cannot be
corrected within the form. This is
typically reported when there are
references to global data that have
been deleted.

Users can still submit or close the
form. The respective parameter
value cannot be modified in the
form. The bound components are
disabled and any attempt to update
them using the API causes an error.

195

TIBCO Business Studio™ Forms User's Guide



Keys for Enhanced User Interface
This section lists the common resource keys associated with the enhanced user interface.

For more information, see Enhanced User Interface.

Resource Keys for Enhanced User Interface

Resource Key Reference Value Description

form_class_defs Unused in the default
implementation. Defines the classes
to be applied at the form-level.

form_perf_ui_defs [{"selector": "", "classes":
"modal-content"}, \

{"selector": "div/table/
tbody/tr/td/div/div/div/
table", "classes": "table
table-condensed"}, \

{"selector": "div/table/
tbody/tr/td/div/div/div/
table/tbody/tr/td/div/div",
"classes": "nav-tabs-label"},
\

{"selector": "div/table/
tbody/tr/td/div/div/div/
div", "classes": "panel
panel-default"}, \

{"selector": "div/table/
tbody/tr/td/div/div/div/di
v/div/table", "classes":
"table table-striped table-
bordered table-
condensed"}, \

{"selector": "div/table/
tbody/tr/td/div/div/div/di
v/table", "classes": "table
table-striped table-
bordered table-
condensed"}, \

{"selector": "div/table/
tbody/tr/td[2]", "classes":
"modal-header"}, \

{"selector": "div/table/
tbody/tr/td[2]/div/table/
tbody/tr/td/label",
"classes": "label label-
visible"}]

Defines the set of classes to be
applied for performance metrics
user interface.

196

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

control_class_defs [{"selector": "div/div[2]",
"classes": "help-block"}, \

{"selector": "div/div[1]",
"classes": "form-group
has-feedback"}, \

{"selector": "div/div[1]",
"where": "in-grid",
"classes": "form-group-
sm"}, \

{"selector": "div/div/
span[tf_uir=feedback]",
"classes": "glyphicon form-
control-feedback"}, \

{"selector": "div/div[1]",
"when": "invalid",
"classes": "has-error"}, \

{"selector": "div/div/
span[tf_uir=feedback]",
"when": "invalid",
"classes": "glyphicon-
warning-sign"}, \

{"selector": "div/div[1]",
"when":"valid", "classes":
"has-success"}, \

{"selector" : "div/div/
span[tf_uir=feedback]",
"when": "valid", "classes":
"glyphicon-ok"}]

Defines the set of classes to be
applied at each element of a control
markup.

197

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

control_textinput_class_defs [{"selector": "//input",
"target": "widget",
"classes": "form-control"},
\

{"selector": "//div[tf-comp-
type=textinput numeric]/
div[class=tf-container]/
div[1]", "classes": "input-
group"}, \

{"selector": "//div[tf-comp-
type=textinput numeric]/
div[class=tf-container]/
div[1]/span[1]", "where":
"not-in-grid", "classes":
"input-group-addon"}, \

{"selector": "//div[tf-comp-
type=textinput numeric]/
div[class=tf-container]/
div[1]/span[1]/span[1]",
"where": "not-in-grid",
"classes": "fa fa-slack"}]

Defines the set of classes to be
applied at each element of a text
control markup.

control_textarea_class_defs [{"selector": "//textarea",
"target": "widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a textarea
control markup.

control_checkbox_class_defs [{"selector": "//div/
div[class=tf-container]/
div[1]", "where": "not-in-
grid", "classes": "input-
group"}, \

{"selector": "//span",
"target": "widget",
"classes": "form-control"},
\

{"selector": "//div/
div[class=tf-container]/
div[1]/span[1]", "where":
"not-in-grid", "classes":
"input-group-addon"}, \

{"selector": "//div/
div[class=tf-container]/
div[1]/span[1]/i", "where":
"not-in-grid", "classes":
"glyphicon glyphicon-
ok"}]

Defines the set of classes to be
applied at each element of a
checkbox markup.

198

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

control_duration_class_defs [{"selector": "//div/div/
div[1]", "target": "widget",
"classes": "help-block"}, \

{"selector": "//div/div/
input", "target": "widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a
duration markup.

control_duration_class_defs [{"selector": "//div",
"target": "widget",
"classes": "form-control tf-
label-control"}]

Defines the set of classes to be
applied at each element of a label
markup.

control_optionlist_class_defs [{"selector": "//select",
"target": "widget",
"classes": "form-control
control-lg tf-select-
fixer"},\

{"selector": "div[class=tf-
container]/div[1]",
"classes": "input-group"}]

Defines the set of classes to be
applied at each element of a single-
select optionlist markup.

control_radiogroup_class_defs [{"selector": "//div/div/div/
span", "target": "widget",
"classes": "radio-inline"}]

Defines the set of classes to be
applied at each element of a
radiogroup markup.

control_hyperlink_class_defs [{"selector": "//a", "target":
"widget", "classes": "btn-
link"}, \

{"selector": "//div/div[2]/
div[1]", "classes": "has-
feedback has-tibco-
feedback"}]

Defines the set of classes to be
applied at each element of a
hyperlink markup.

control_button_class_defs [{"selector": "//div[tf-
comp-type=button
primary]/div[2]/div[1]/
button", "classes": "btn
btn-primary"}, \

{"selector": "//div[tf-comp-
type=button peripheral]/
div[2]/div[1]/button",
"classes": "btn btn-
secondary"}, \

{"selector": "//div[tf-comp-
type=button associative]/
div[2]/div[1]/button",
"classes": "btn btn-link"}]

Defines the set of classes to be
applied at each element of a button
markup.

199

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

control_date_class_defs [{"selector": "//div/table/
tbody/tr[1]/td[1]/input",
"target": "widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a date
control markup.

control_datetime_class_defs [{"selector": "//div/table/
tbody/tr[1]/td[1]/input",
"target": "widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a date-
time control markup.

control_time_class_defs [{"selector": "//div/table/
tbody/tr[1]/td[1]/input",
"target": "widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a time
control markup.

pane_vertical_class_defs [{"selector": "", "classes":
"panel panel-default"}, \

{"selector":
"div[class=pane-label]",
"classes": "panel-
heading"}, \

{"selector": "div[class=tf-
container]", "classes":
"panel-body"}]

Defines the set of classes to be
applied at each element of a vertical
pane markup.

pane_horizontal_class_defs [{"selector": "", "classes":
"panel-default form-
inline"}, \

{"selector":
"div[class=pane-label]",
"classes": "panel-
heading"}, \

{"selector": "div[class=tf-
container]", "classes":
"panel-body"}]

Defines the set of classes to be
applied at each element of a
horizontal pane markup.

200

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

pane_grid_class_defs [{"selector": "", "classes":
"panel panel-default form-
inline"}, \

{"selector":
"div[class=pane-label]",
"classes": "panel-
heading"}, \

{"selector": "div[class=tf-
container]", "classes":
"panel-body"}, \

{"selector": "div[class=tf-
container]/div", "classes":
"form-horizontal"}, \

{"selector": "div[class=tf-
container]/div/table",
"classes": "table table-
striped grid-line-table"}, \

{"selector": "div[class=tf-
container]/div/button",
"classes": "btn btn-
secondary"}]

Defines the set of classes to be
applied at each element of a grid
pane markup.

pane_record_class_defs [{"selector": "", "classes":
"panel panel-default"}, \

{"selector":
"div[class=pane-label]",
"classes": "panel-
heading"}, \

{"selector": "div[class=tf-
container]", "classes":
"panel-body"}, \

{"selector": "div[class=tf-
container]/div[class=pane-
page-navigation]/
div[class=nav-input]/
input", "classes": "form-
control"}, \

{"selector": "div[class=tf-
container]/div/button",
"classes": "btn btn-
secondary"}]

Defines the set of classes to be
applied at each element of a record
pane markup.

201

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

pane_tabbed_class_defs [{"selector": "", "classes":
"panel panel-default"}, \

{"selector":
"div[class=pane-label]",
"classes": "panel-
heading"}, \

{"selector": "div[class=tf-
container]", "classes":
"panel-body"}, \

{"selector": "div[class=tf-
container]/table/
tbody/tr/td/div/
div[class=gwt-Label]",
"classes": "nav-tabs-
label"}]

Defines the set of classes to be
applied at each element of a tabbed
pane markup.

pane_modaldialog_class_defs [{"selector": "//div",
"classes": "modal-
content"}, \

{"selector": "div/table/
tbody/tr[1]/td[2]",
"classes": "modal-header"},
\

{"selector": "div/table/
tbody/tr[2]/td[2]/div/div/
div[2]/button[class=tf-
dialog-ok]", "classes": "btn
btn-primary"}, \

{"selector": "div/table/
tbody/tr[2]/td[2]/div/div/
div[2]/button[class=tf-
dialog-cancel]", "classes":
"btn btn-secondary"}]

Defines the set of classes to be
applied at each element of a modal
dialog pane markup.

pane_messages_class_defs [{"selector": "div/div",
"classes": "pane-message-
validation-error"}]

Defines the set of classes to be
applied at each element of a
message pane markup.

control_static_class_defs [{"selector": "div[class=tf-
container]/
div[class=hint]", "classes":
"help-block"}]

Defines the set of classes to be
applied at each element of a static
control markup.

202

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

control_textinput_static_class_defs [{"selector": "//input",
"target":"widget",
"classes": "form-control"},
\

{"selector": "//div[tf-comp-
type=textinput numeric]/
div[class=tf-container]/
div[1]", "where": "not-in-
grid", "classes": "input-
group"}, \

{"selector": "//div[tf-comp-
type=textinput numeric]/
div[class=tf-container]/
div[1]/span[1]", "where":
"not-in-grid", "classes":
"input-group-addon"}, \

{"selector": "//div[tf-comp-
type=textinput numeric]/
div[class=tf-container]/
div[1]/span[1]/span[1]",
"where": "not-in-grid",
"classes": "fa fa-slack"}]

Defines the set of classes to be
applied at each element of a text
control markup in a static pane.

control_date_static_class_defs [{"selector": "//input",
"target":"widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a date
control markup in a static pane.

control_datetime_static_class_defs [{"selector": "//input",
"target":"widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a date-
time control markup in a static
pane.

control_time_static_class_defs [{"selector": "//input",
"target":"widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a time
control markup in a static pane.

control_duration_static_class_defs [{"selector": "//input",
"target":"widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a
duration control markup in a static
pane.

control_optionlist_static_class_defs [{"selector": "//input",
"target":"widget",
"classes": "form-control"},
\

{"selector": "//select",
"target":"widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of an
optionlist markup in a static pane.

203

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

control_radiogroup_static_class_defs [{"selector": "div[class=tf-
container]/span", "classes":
"radio-inline"}]

Defines the set of classes to be
applied at each element of a
radiogroup markup in a static pane.

control_textarea_static_class_defs [{"selector": "//textarea",
"target": "widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a textarea
markup in a static pane.

control_label_static_class_defs [{"selector": "//div",
"target": "widget",
"classes": "form-control tf-
label-control"}]

Defines the set of classes to be
applied at each element of a label
markup in a static pane.

control_hyperlink_static_class_defs [{"selector": "div[class=tf-
container]/div[1]/span",
"classes": "glyphicon
glyphicon-link"}, \

{"selector": "//a", "target":
"widget", "classes": "btn-
link"}]

Defines the set of classes to be
applied at each element of a
hyperlink markup in a static pane.

control_button_static_class_defs [{"selector": "//button",
"target": "widget",
"classes": "btn-
secondary"}, \

{"selector": "div", "where":
"not-in-grid", "classes":
"help-block"}]

Defines the set of classes to be
applied at each element of a button
markup in a static pane.

pane_vertical_static_class_defs [{"selector": "", "classes":
"panel panel-default"}, \

{"selector": "div[1]",
"classes": "panel-
heading"}, {"selector":
"div[2]", "classes": "panel-
body"}]

Defines the set of classes to be
applied at each element of a vertical
pane markup in a static pane.

pane_horizontal_static_class_defs [{"selector": "", "classes":
"panel-default form-
inline"}, \

{"selector": "div[1]",
"classes": "panel-
heading"}, {"selector":
"div[2]", "classes": "panel-
body"}]

Defines the set of classes to be
applied at each element of a
horizontal pane markup in a static
pane.

204

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

control_list_class_defs [{"selector": "div[2]",
"target": "widget",
"classes": "btn btn-
tertiary"}, \

{"selector": "div[2]/span/a",
"target": "widget",
"classes": "btn-xs"}, \

{"selector": "div[2]/
span[1]/a/span", "target":
"widget", "classes":
"glyphicon glyphicon-
plus"}, \

{"selector": "div[2]/
span[2]/a/span", "target":
"widget", "classes":
"glyphicon glyphicon-
minus"}, \

{"selector": "div[2]/
span[3]/a/span", "target":
"widget", "classes":
"glyphicon glyphicon-
chevron-up"}, \

{"selector": "div[2]/
span[4]/a/span", "target":
"widget", "classes":
"glyphicon glyphicon-
chevron-down"}]

Defines the set of classes to be
applied at each element of a list
control markup.

control_textinput_list_class_defs [{"selector": "//input",
"target": "list-edit-widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a text list
control markup.

control_date_list_class_defs [{"selector": "//div/table/
tbody/tr[1]/td[1]/input",
"target": "list-edit-widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a date list
control markup.

control_datetime_list_class_defs [{"selector": "//div/table/
tbody/tr[1]/td[1]/input",
"target": "list-edit-widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a date-
time list control markup.

control_duration_list_class_defs [{"selector": "//div/div/
div", "target": "list-edit-
widget", "classes": "help-
block"}, \

{"selector": "//div/div/
input", "target": "list-edit-
widget", "classes": "form-
control"}]

Defines the set of classes to be
applied at each element of a
duration list control markup.

205

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

control_time_list_class_defs [{"selector": "//div/table/
tbody/tr[1]/td[1]/input",
"target": "list-edit-widget",
"classes": "form-control"}]

Defines the set of classes to be
applied at each element of a time
list control markup.

control_textarea_list_class_defs [{"selector":"//textarea",
"target":"list-edit-widget",
"classes":"form-control"}]

Defines the set of classes to be
applied at each element of a textarea
control markup.

control_custom_class_defs Optional key. It's not defined by
default, but you can use it to

write class definitions similar to the
ones that are provided for built-in
controls.

Miscellaneous Keys
This section lists miscellaneous resource keys.

Miscellaneous Resource Keys

Resource Key Reference Value Description

data_preview_empty There is no data to
display.

Used as a data preview message
for empty data.

forms_compact_mode [1], [2], [3], [1,2], [1,2,3],
[2,3], [1,3], or empty to
disable the key

The key applies to all controls
and panes on a form to make the
form smaller in size. When the
value contains 1, the width of
the grid panes in the form is set
to a maximum of 600 pixels.
When the value contains 2, the
labels align to the top even if the
child labels are configured to be
aligned to the left. However, if
the pane has only controls in it,
the labels are not aligned to the
top. When the value contains 3,
it reduces the spacing between
controls along with the spacing
between labels and value fields
within a control.

The default value for the run
time is [3].

If you want to disable the
compact mode, specify an empty
value for it in the custom
property resource bundle.

206

TIBCO Business Studio™ Forms User's Guide



Resource Key Reference Value Description

align_toolbar_left true, false Unused by default. Aligns the
contents of the toolbar pane to
the left when set to true.

The toolbar buttons, such as
Submit, Close, and Cancel are
aligned to the right by default.
For large forms that need
horizontal scrolling, you can
align the buttons to the left using
this key.

Design-time Constraints
You can configure the rules that the Validation Builder applies to all form models.

The Validation Builder applies the following categories of rules:

● Core

● General

● Resources

● JavaScript

● Forms Synchronization

● Components

● GWT/Mobile

You can change the configuration of these issues from the Errors/Warnings page in the Form Designer on
the Preferences dialog. For more information, see Form Builders and Form Validation.

Client-side Validations
At runtime, a component is validated depending on how you configure them at design time - on value
change, or on form submission.

To understand how the validations occur, see the Table: Runtime Constraints.

Runtime Constraints

Runtime Constraints On Value Change On Form Close On Form Submit

BOM Constraint

User-defined

(On Value Change)

User-defined

(On Form Submit)

Required

207

TIBCO Business Studio™ Forms User's Guide



If you configure a validation on form submission, it occurs when the user submits the form, or when the
validate(true) API is called on the component, or parent pane, or the form.

If a validation configured on form submission fails for a component, the runtime invokes all the validations
of that component on its value change until all the validations pass again. In such a case, it does not
consider if the validation is configured on form submission or on value change. The validation messages
displayed for controls as the result of a failed form submission disappear after the user provides a valid
value.

Scripting
You can enhance the functionality of your forms by writing JavaScript code snippets on certain tabs in the
Properties view.

There are two contexts where scripts may be added:

● Actions
 Actions may contain script, and are invoked as a part of one or more rules in response to a triggering
event.

To learn more, see Actions and Setting Rules.

● Validations
 Validations are scripts that determine you have specified a valid value for a control. When you specify
a validation script, you configure it to run either when the form is submitted, or when the value for the
control changes.

To learn more, see Form Builders and Form Validation and Data Validation in a Form.

Business Analysis Capability versus Solution Design Capability
 To create or modify scripts as shown in this section, you must ensure that the Solution
Design capability is enabled. You can change modes by clicking the Capability button on the
TIBCO Business Studio toolbar to open the drop-down list, if you are not already in the
desired mode:

Forms Scripting Scope of Variables
These tables cover the various places with the form model that scripting is allowed, and describe the default
script variables that are in scope in those places.

When setting a control value via the "f" array, the changes are not realized until the whole action script
ends. This means that any bindings or rules that are tied to the updating of that control is not triggered
until the whole script finishes. Use the setValue() method for the control whose value you are modifying.

The "f" array and "p" array functionality is deprecated. You can use control.<control-
name>.getValue() instead of using "f" array and use p.get<parameter-name> instead of using the "p"
array. See the table Action for details.

Action

208

TIBCO Business Studio™ Forms User's Guide



Variable  Description

context read-only.
This is a data structure that provides access to the context under which the action
is invoked. There are 6 fields available within this variable:

● context.control:
The control object that was the source of the event that triggered the rule. If
the source was not a control, then this field is null.

● context.form:
The form object where the event originated.

● context.oldValue:
Provides the old value if this is a control or parameter update event.

● context.newValue:
Provides the new value if this is a control or parameter update event.

● context.pane
: The pane object that was the source of the event that triggered the rule. If the
source was not a pane, then this field is null.

● context.record:
This field is provided within the computation actions where the destination
control or pane is under a collection pane (grid or record pane). The record
corresponds to the object in the destination control's (or pane's) parent pane
value. For example, when you are computing the value of a control at the 6th
row of a grid pane, the record points to the complex object at index 5 of the
grid pane value. This field can also be used within validations.

control Use control.<control-name> to access any control defined within the form.

data Use data.get<param-name> to access the values of form parameters or data fields.
This method returns either a primitive value for simple types such as Text and
Boolean, or instances of objects when the type is defined in a BOM. For primitive
types, data.set<param-name> is also available.

factory Use factory.<package-name> to access factories based on packages defined within
the business object models available to the form. These factories allow you to create
new instances of classes defined in that package.

pane Use pane.<pane-name> to access any pane defined within the form.

pkg Use pkg.<package-name> to access package objects based on packages defined
within the business object models available to the form. The package object allows
you access definitions of Enumerations defined within the package.

209

TIBCO Business Studio™ Forms User's Guide



Variable  Description

resource Use resource.<external-resource-name>.<property-name> to access the
localized values from property files. A property file can be added to the
Presentation Resources folder and it can be referenced from a form by creating an
External Resource in the form. For example: when a property file in the Presentation
Resources folder is added as an External Resource in the form with the name
resource1, all the properties in that file can be accessed in a user-defined form
action script from the object returned by resource.resource1. Thus if the property
file contains a property with name name1, the value of this property can be retrieved
in a user-defined script as: resource.resource1.name1.

If a localized bundle is provided and a value exists for the property in that bundle,
the value from that bundle is returned. If the property is missing in the localized
bundle, the value from the base bundle is returned.

Use resource.mappings.<parameter-name> to access the values in the data
mappings file of the form. These keys represent the properties to which all the
controls or panes in the form are bound. The Form Designer automatically
generates the data mappings file in the Presentation Resources folder, and it can be
referenced from a form as an External Resource. For more information, see Data
Mappings File .

f read-only. Field value array that accesses the current values of controls in the form.
Field values can be accessed using f.controlName. Field values can be updated by
assigning a new value to them. Example: f.foo=’newValue’;

Deprecated. Use control.cn.setValue(cv) instead of f.cn = cv;        and
var cv = control.cn.getValue(); instead of var cv = f.cn;

p read-only. Parameter value array that accesses the inbound values of parameters. p
can replace a pane and control. Parameter values can be accessed using
p.paramName.

Deprecated. Use data.setPn(pv); instead of p.pn = pv; and var pv =
data.getPn(); instead of var pv = p.pn;

this read-write. For actions that are initiated from a control event, this refers to the
control object from which the event is initiated. From this, access the form object
and other controls and make updates to the state of the form model.

Deprecated. Use the new context variable that is available within the script.

Validation

Variable  Description

f read-only. Field value array that accesses the current values of controls in the form.
Field values can be accessed using f.<control-name>.

Deprecated. Use var cv = control.cn.getValue(); instead of var cv = f.cn;.

this read-only. Refers to the control object upon which the validation is configured.
From this, access the form object and other controls, although no updates to the
form model are allowed within a form validation script.

Deprecated. Use context.value to get the value of the control being validated.

210

TIBCO Business Studio™ Forms User's Guide



Variable  Description

context read-only. Within the scope of a validation script, the context variable supports only
the following field:

context.value: This is equal to the value of the control being validated. If the
control is multi-valued, such as a text control with the list setting enabled, then the
validation is run once for each value in the list.

resource User-defined validation scripts can retrieve localized values from property files
using the resource variable. The resource details provided in the table Action are
also applicable for validation scripts.

Forms Scripting Order of Script Execution
The scripts specified in the form model are executed in a certain order during the different form life-cycle
events.

Errors in user-provided scripts are caught and logged at the error level at runtime and shown in the
preview page logging area in the Form Designer.

The order of script execution is as follows:

When the Form is opened

● Form Open event is published.

When the Submit button is clicked

● Control validation scripts are executed.

● Form Submit event is published.

● Form Close event is published.

When the Close button is clicked

● Form Close event is published.

When the Cancel button is clicked

● Form Cancel event is published.

● Form Close event is published.

When You Update a Control Value and Navigate out of the Control

● Control Validation scripts are executed.

● Control Exit event is published.

● Control Update event is published.

For the events where the validation scripts are executed, no further steps proceed if any of the validations
fail.

211

TIBCO Business Studio™ Forms User's Guide



API for Scripting
You can access the form model at runtime by using API methods in your JavaScript scripts.

The API described here can be used for writing validations as well as actions. Updating form fields or their
properties using set methods is allowed only in the context of actions. Validation scripts cannot modify the
fields or their properties.

Methods for Form Class
The table lists the methods for the Form class.

Form Class

Method
Return
Value Description

getClassName() String Returns custom CSS classnames set on the form. The value may
be null, a single CSS classname, or a space-separated list of CSS
classnames that are applied to the root level of the form.

getControl(String 
controlName)

Control Returns the control with the given name.

getLocale() String Returns the string representation of the locale currently being
used to render the form.

getPane(String 
paneName)

Pane Returns the pane with the given name.

getPanes() Pane[] Returns an array of root panes of this form.

getParameterValue( S
tring paramName)

Object

List

Array

Returns the value of the parameter or data field with the given
name. This is either a list, an array, or a duration object, BOM
JavaScript wrapper object or native JavaScript Boolean, Date,
Number or String object, depending on the type of parameter.

invokeAction(
String actionName, 
Object control), 
Context context

Invokes the shared or default action specified by the
actionName parameter. The object passed as the control
parameter is used as the this variable inside the script of the
invoked action. The third argument is used as the context
variable in the invoked script. If the third argument is null,
then a default context is used in the invoked script. Example
usage:
context.form.invokeAction(’submit’, this, context);

Either a shared action defined for the form or one of the pre-
defined actions can be used with the invokeAction method. The
pre-defined actions are: submit, apply, close, cancel, validate,
and reset.

isNumber(Object 
value, Integer 
length)

Boolean Validates whether the value passed is a number or not. It
returns true if the parameter value is a number, and false
otherwise. The method also has an optional length : Integer
parameter. (To be deprecated, use Util.checkNumeric() and
Util.checkNumberConstraints() instead.)

212

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

maxLength(
Object value, 
Integer length)

Boolean Validates whether the value passed is less than the length
specified. Used to validate the length of parameters like strings
and numbers. It returns true if the value passed is less than
length specified, false otherwise.

numberFormat(
Object value,  
Integer totalLength, 
Integer 
decimalLength)

Boolean Validates whether the number represented by the value
parameter is less than totalLength parameter and number of
decimal digits is less than decimalLength specified. It returns
true if the value passed is less than length specified in terms of
both total length and length of the decimal digits, false
otherwise.

setClassName(
String className)

Void Sets the custom CSS classnames on the form. The value may be
null, a single CSS classname, or a space-separated list of CSS
classnames that are applied to the root level of the form. The
value replaces any previously set classname whether that was
set in the model or by a previous call to setClassName().

setLocale(String 
locale)

Sets the value of locale used to render the form. It represents the
locale, for example, "en" or "en_US".

setParameterValue( S
tring paramName, 
Object paramValue)

Void Sets the value of the parameter with the given name. The value
should be either a Duration object, BOM JavaScript wrapper
object or native JavaScript Boolean, Date, Number or String
object, depending on the type of parameter.

validate(Boolean 
updateMessagePane)

Boolean Forces validation to run on the form and all child panes and
controls. Returns true if all validations return true. If
updateMessagePane is true, then validation messages are
displayed in the messages pane for any validation that failed. If
updateMessagePane is not specified, it is treated as false.

Methods for Control Class
The table lists the methods for the Control class.

Control Class

Method
Return
Value Description

getBackgroundColor() String Returns the background color for an element.

The color may be either a hexadecimal value of the form
#RRGGBB, or one of the standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

This method will return the property value previously set via
the corresponding set method. This will not return the
original value set in the designer, which is only available in
the form CSS.

213

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

getClassName() String Returns custom CSS classnames set on the control. The value
may be null, a single CSS classname, or a space-separated list
of CSS classnames that are applied to the root level of the
form.

getControlType() String Returns the control type of this control (for example,
com.tibco.forms.controls.textbox).

getCustomComponentNam
e()

String Returns the fully-qualified control type name as defined in the
component library for the given control. If the control is not a
custom control, the method returns null.

getEnabled() Boolean Retrieves the enabled flag for this control.

getFontColor() String Retrieves the font color for this control. The font color may be
either a hexadecimal value of the form #RRGGBB, or one of the
standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

This method will return the property value previously set via
the corresponding set method. This will not return the
original value set in the designer, which is only available in
the form CSS.

getFontName() String Returns the name of the font for an element.

This method will return the property value previously set via
the corresponding set method. This will not return the
original value set in the designer, which is only available in
the form CSS.

getFontSize() Number Returns the size of the font for the element.

This method will return the property value previously set via
the corresponding set method. This will not return the
original value set in the designer, which is only available in
the form CSS.

getFontWeight() String Returns the weight of the font for an element. The return
value can be either "normal", or "bold".

This method will return the property value previously set via
the corresponding set method. This will not return the
original value set in the designer, which is only available in
the form CSS.

getForm() Form Returns the form to which this control belongs.

getHint() String Retrieves the hint for this control.

getLabel() String Retrieves the label for this control.

getLink() String Returns the URL used by a hyperlink control.

214

TIBCO Business Studio™ Forms User's Guide

http://www.w3.org/TR/CSS1/#color-units


Method
Return
Value Description

getLinkText() String Returns the visible text rendered by a hyperlink control.

getOptionLabels() String[] Returns an array of choice labels displayed by a radiogroup or
optionlist control.

getOptionValues() String[] Returns an array of choice values offered by a radiogroup or
optionlist control.

getShortLabel() String Retrieves the short label associated with this control.

The short label property is supported only for mobile forms.

getName() String Returns the name of this control.

getParent() Pane Returns the parent pane object to which this control belongs.

getReadOnly() Boolean Returns the read-only state of this control.

getRequired() Boolean Retrieves or sets the required flag for this control.

getTabIndex() Integer Returns the tab index setting configured on the control, or 0 if
it is not set. This is useful for custom controls that support the
setting of the tab index in their HTML markup.

getUrl() String Returns the URL used by an image control.

getValue() Object Retrieves the value of this control. Equivalent to
f.controlname (deprecated).

This is either a Duration object or a native JavaScript Boolean,
Date, String or Number value depending on the control type.
Controls configured for list editing or multi-select drop-down
lists return an array of the underlying control value type.
Date, Time, and DateTime controls return a Date object.
Checkbox controls return a Boolean. Duration controls return
a Duration object. Numeric text input controls return a
Number. All others return String.

getVisible() Boolean Retrieves the visible flag for this control.

getVisualProperty()

(deprecated in 2.0)
String Retrieves visual properties on the control.

The only property supported in versions prior to 2.x was
bgColor. The value for bgColor is hexadecimal, and is the
same format as for font color.

isReallyEnabled() Boolean The enabled setting of a control is controlled both by its own
enabled property, and the enabled properties of any of its
ancestors. If the parent pane of a control is disabled, then
isReallyEnabled() returns false for that control. The
method returns true only if it's own enabled property is true
and all of its ancestor's enabled properties are set to true.

215

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

isReallyReadOnly() Boolean Returns the read-only state of this control.

isReallyVisible() Boolean The visibility of a control is controlled both by its own
visibility property, and the visibility properties of any of its
ancestors. If the parent pane of a control is not visible, then
isReallyVisible() returns false for that control. The
method returns true only if it's own visibility property is
true and all of its ancestor's visibility properties are set to
true.

setBackgroundColor
(String color)

Void Sets the background color for the element.

The color may be either a hexadecimal value of the form
#RRGGBB, or one of the standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

setClassName(
String className)

Void Sets the custom CSS classnames on the control. The value may
be null, a single CSS classname, or a space-separated list of
CSS classnames that are applied to the component level of the
control. The value replaces any previously set classname
whether that was set in the model or by a previous call to
setClassName().

setEnabled(Boolean 
enabledFlag)

Void Sets the enabled flag for this control.

setFocus() Void Sets focus on this control.

setFocus(Integer) Void Sets focus on this control. The API has following optional
parameter:

● index: Use this parameter for controls within a grid or
record pane. Sets the focus on a control instance in the row
specified by the given index. If the specified row is not
visible, scrolls the grid control to the specified row and
page. If the specified row does not exist, logs a warning
message and does not shift the focus. This parameter is
ignored if the control is in a singleton pane (for instance
vertical pane, horizontal pane, and so on). The default
value is 0.

216

TIBCO Business Studio™ Forms User's Guide

http://www.w3.org/TR/CSS1/#color-units


Method
Return
Value Description

setFocus(Integer 
index, Integer item)

Void Sets focus on the control. The API has following two optional
parameters:

● index: Use this parameter for controls within a grid or
record pane. Sets the focus on a control instance in the row
specified by the given index. If the specified row is not
visible, scrolls the grid control to the specified row and
page. If the specified row does not exist, logs a warning
message and does not shift the focus. This parameter is
ignored if the control is in a singleton pane (for instance
vertical pane, horizontal pane, and so on). The default
value is 0.

● item: Is used for list controls and specifies the item within
the list that is to receive the focus. If the specified item
does not exist, logs a warning message and does not shift
the focus. This parameter is ignored if the control is not a
list control. The default value is 0.

The optional parameters need not be specified for controls
that are in a singleton pane (for instance vertical pane,
horizontal pane, and so on).

For a tabbed pane, you need to activate the particular tab
(See setActiveTab() API on pane) before calling this API
on a control within the corresponding child pane.

setFontColor(String 
color)

Void Sets the font color for this control. The font color may be either
a hexadecimal value of the form #RRGGBB, or one of the
standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

setFontName(String 
fontName)

Void Sets the name of the font for an element.

The fontName parameter is provided as a string to specify the
name of the font.

setFontSize(Integer 
size)

Void Sets the size of the font for an element.

The size parameter is provided as an integer to specify the
font size in points.

setFontWeight(String 
weight)

Void Sets the weight of the font for an element.

The weight parameter is provided as a string to specify the
weight of the font. It can be either "normal", or "bold".

setHint(String hint) Void Sets the hint for this control.

setLabel(String 
label)

Void Sets the label for this control.

217

TIBCO Business Studio™ Forms User's Guide

http://www.w3.org/TR/CSS1/#color-units


Method
Return
Value Description

setOptions(String[] 
values, String[] 
labels)

Void Sets the choice values and labels used by a radiogroup or
optionlist control. The values and labels arrays must have the
same length. The values array must not contain any null
elements.

setShortLabel(String 
shortLabel)

Void Sets the short label to be used for this control.

The short label property is supported only for mobile forms.

setRequired
(Boolean 
requiredFlag)

Void Sets the required flag for this control.

setValue(Object 
value)

Void Sets the value rendered by this control.

Date, Time, and DateTime controls expects a Date object.
Multi-select drop-down lists expect an array of Strings.
Checkboxes expects a Boolean. Duration controls expects a
Duration object. Numeric Text Input controls expects a
Number. All other controls expect a String value. If the control
is configured as a list control, then it expects an array of the
underlying type.

setVisible(Boolean 
visibleFlag)

Void Sets the visible flag for this control. If used from an action
script for a control in a grid pane, this controls the visibility of
the entire column represented by this control. If you update
the visibility property of a control in a grid pane using a
computation action, the setting applies to each cell in the
column, but does not affect the visibility of the column itself.

setVisualProperty( St
ring propName, 
String propValue)

(deprecated in 2.0)

Void Sets visual properties on the control.

The only property supported in versions prior to 2.x was
bgColor. The value for bgColor is hexadecimal, and is the
same format as for font color.

setLink(String url) Void Sets the URL used by a hyperlink control.

setLinkText(String 
text)

Void Sets the visible text rendered by a hyperlink control.

setReadOnly(Boolean 
readOnly)

Void Sets the read-only state of the control. This differs from setting
the control to disabled as the user can still copy the value
within the control.

This is only supported for text, textarea, date, datetime,
time, and duration controls.

setUrl(String url) Void Sets the URL used by an image control.

218

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

validate(Boolean 
updateMessagePane)

Boolean Forces validation to run on the control. Returns true if all
validations for the control return true. If updateMessagePane
is true, then validation messages are displayed in the
messages pane for any validation that failed. If the control is
not visible, the validation runs, but updateMessagePane is
ignored. If updateMessagePane is not specified, it is treated as
false.

Methods for Pane Class
The table below lists the methods for the Pane class.

These methods cannot be used to control panes that are inside of record or grid panes. Record and grid
panes contain a list of values for the panes and controls that are inside of them, but the pane methods do
not contain indexes to specify which pane or control to act upon. For example, the following cannot be used
to control the visibility of a tabbed pane in a record pane:
pane.Accounts_correspondence.setVisible(false);

However, a computation action can be used as a workaround. For the example shown above, create a
computation action on the "Visible" property of the "correspondence" pane for the "Accounts" update event,
and compute the value using the context.record property. For example:
var correspVisible = true;
if (context.record != null) {
var genInfo = context.record.getGeneralInformation();
if (genInfo != null)
{ correspVisible = "PROXYHOLDER" != genInfo.getSelectType(); }

}
correspVisible;

This will make the "correspondence" tab invisible when "PROXYHOLDER" is selected. The
context.record will point to that record in the record pane relative to the instance where the value is
computed.

219

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

addMessage(String 
message, String 
cssClasses, 
Control or Pane 
target, Integer 
row)

String Adds a message at the end of the message pane and returns a
message identifier, which can be used to remove the message. The
parameters are:

● message: is the message string that is added at the end of the
message pane

● cssClasses: is the space-separated list of CSS classes to allow
custom styling of the message. You need to add the
cssClasses string to the element containing the message.

● target: is either a control or a pane to which the message is
targeted. If specified, renders a message as a link, to allow users
to navigate directly to the target of the message. If null, then
the message is not rendered as a link.

● row: is the row of the list control or the control in a grid pane, to
which the message is targeted. This is used only if a control is
specified in the target parameter, and it is a list control or the
control is in a grid pane. This is an optional parameter. If null,
then the first element in the list control or grid pane column is
targeted with a clickable message. If the target is a list control
within a grid pane, then an array of length two needs to be
specified. The first number in the array indicates the row of the
control. The second value indicates the index of the value
within the list control that receives the focus.

cancel() Void Cancels the modal dialog and triggers a cancel event.

clearMessages() Void Clears all messages added to the message pane using the
addMessage() API.

close() Void Closes the modal dialog and triggers a close event.

getActiveTab() Pane Returns the active child pane for a tabbed pane.

getBackgroundColor(
)

String Returns the background color for an element.

The color may be either a hexadecimal value of the form
#RRGGBB, or one of the standard W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

This method will return the property value previously set via the
corresponding set method. This will not return the original value
set in the designer, which is only available in the form CSS.

getControls() Contro
l[]

Returns an array of controls that are direct children of this pane.

getEnabled() Boolean Retrieves the enabled flag for this pane.

220

TIBCO Business Studio™ Forms User's Guide

http://www.w3.org/TR/CSS1/#color-units


Method
Return
Value Description

getFontColor() String Retrieves the font color for this pane. The font color may be either a
hexadecimal value of the form #RRGGBB, or one of the standard
W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

This method will return the property value previously set via the
corresponding set method. This will not return the original value
set in the designer, which is only available in the form CSS.

getFontName() String Returns the name of the font for an element.

This method will return the property value previously set via the
corresponding set method. This will not return the original value
set in the designer, which is only available in the form CSS.

getFontSize() Numbe
r

Returns the size of the font for the element.

This method will return the property value previously set via the
corresponding set method. This will not return the original value
set in the designer, which is only available in the form CSS.

getFontWeight() String Returns the weight of the font for an element. The return value can
be either "normal", or "bold".

This method will return the property value previously set via the
corresponding set method. This will not return the original value
set in the designer, which is only available in the form CSS.

getForm() Form Returns the form object to which this pane belongs.

getLabel() String Retrieves the label for this pane.

getName() String Returns the name of the pane.

getPanes() Pane[] Returns an array of panes that are direct children of this pane.

getPaneType() String Returns the pane type of this pane (for example,
"com.tibco.forms.panes.vertical").

getParent() Pane or
Form

Returns the parent pane or form object to which this pane belongs.

getReadOnly() Boolean Returns the read-only state of this pane.

getSelection() List or
Object

Returns the object currently selected in the grid or record pane. If
the grid supports multiple selections, then this is a list that
contains the selected records.

getValue() List or
Object

For grid and record panes returns a list. Returns null or a
complex object value for other pane types.

getVisible() Boolean Retrieves the visible flag for this pane.

221

TIBCO Business Studio™ Forms User's Guide

http://www.w3.org/TR/CSS1/#color-units


Method
Return
Value Description

getVisualProperty()

(deprecated in 2.0)
String
(Hexad
ecimal)

Retrieves visual properties on the pane.

The only property supported in versions prior to 2.x was bgColor.
The value for bgColor is hexadecimal, and is the same format as
for font color.

isOpen() Boolean Returns True if the modal dialog is open.

isReallyEnabled() Boolean The enabled setting of a pane is controlled both by its own enabled
property, and the enabled properties of any of its ancestors. If the
parent pane of a pane is disabled, then isReallyEnabled()
returns false for that control. The method returns true only if its
own enabled property is true and all of its ancestor's enabled
properties are set to true.

isReallyReadOnly() Boolean Returns the read-only state of this pane.

isReallyVisible() Boolean The visibility of a pane is controlled both by its own visibility
property, and the visibility properties of any of its ancestors. If the
parent pane of a pane is not visible, then isReallyVisible()
returns false for that control. The method returns true only if it's
own visibility property is true and all of its ancestor's visibility
properties are set to true.

open() Void Opens the modal dialog and triggers an open event. Throws an
exception if the same or another modal dialog is already open on
the form.

removeMessage(Strin
g messageId)

Void Removes a message previously added to the message pane using
the addMessage()API. You may only remove the messages added
using the addMessage() API. The messageId is an identifier used
to specify which message needs to be removed.

setActiveTab(Pane 
childPane)

Void Sets the active child pane for a tabbed pane. The tab to be set as
active tab is passed as childPane parameter to the method. The
childPane parameter must be a direct child pane of the tabbed
pane.

setBackgroundColor 
(String color)

Void Sets the background color for the element.

The color parameter is provided as a String in the form #RRGGBB,
where RR, GG, and BB are hexadecimal numbers representing the
red, blue, and green components respectively.

setEnabled(Boolean 
enabledFlag)

Void Sets the enabled flag for this pane.

setFontColor(String
 color)

Void Sets the font color for this pane. The font color may be either a
hexadecimal value of the form #RRGGBB, or one of the standard
W3C colors as listed at:

http://www.w3.org/TR/CSS1/#color-units

222

TIBCO Business Studio™ Forms User's Guide

http://www.w3.org/TR/CSS1/#color-units


Method
Return
Value Description

setFontName(String 
fontName)

Void Sets the name of the font for an element.

The fontName parameter is provided as a string to specify the
name of the font.

setFontSize(Integer
 size)

Void Sets the size of the font for an element.

The size parameter is provided as an integer to specify the font
size in points.

setFontWeight(Strin
g weight)

Void Sets the weight of the font for an element.

The weight parameter is provided as a string to specify the
weight of the font. It can be either "normal", or "bold."

setLabel(String 
label)

Void Sets the label for this pane.

setReadOnly() Boolean Sets the read-only state of this pane.

setSelection(
List selection |
Object selection)

Void Valid only for grid and record panes. Sets the selected row or
record of the pane to the object passed into the method. Passing
null or an empty list clears the selection. If the selection is not
present in the list managed by the pane, then this has no effect.

setValue(
List value |
Object value)

Void Sets the value bound to the pane. For grid panes and record panes,
this is a list of objects that represents either the rows or records
represented by the panes. Other pane types pass a single value.

setVisible(Boolean 
visibleFlag)

Void Sets the visible flag for this pane.

setVisualProperty( 
String propName, 
String propValue)

(deprecated in 2.0)

Void Sets visual properties on the pane.

The only property supported in versions prior to 2.x was bgColor.
The value for bgColor is hexadecimal, and is the same format as
for font color.

validate(Boolean 
updateMessagePane)

Boolean Forces validation to run on the pane and all child panes and
controls. Returns true if all validations return true. If
updateMessagePane is true, then validation messages are
displayed in the messages pane for any validation that failed. If
updateMessagePane is not specified, it is treated as false

Methods for List Class
The table lists the methods for the List class.

List Class

223

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

add(Object element) Boolean Adds the specified element to the end of the list. If the
element already exists on the list, an exception is thrown.

add(Integer Index, 
Object element)

Void Inserts the element at the specified index. If the element
already exists on the list or if the index is out of range, an
exception is thrown.

addAll(List additions) Void Appends all the elements in the specified list to the end of the
list.

clear() Void Removes all the elements from the list.

contains(Object 
element)

Boolean Returns true if the specified element is part of the list, and
false otherwise.

get(Integer index) Object Returns the element at the given index.

isEmpty() Boolean Returns true if there are no elements in the list, and false
otherwise.

iterator() Iterator Returns an iterator over the elements in the list in proper
sequence. This can be used to iterate over the items of the
given list. The API methods supported by the Iterator class
are listed in the table Logger Class .

remove(Integer index) Boolean Removes the element at the specified index from the list. If
the index is out of range, an exception is thrown.

remove(Object element) Boolean Removes the first occurrence of the specified element from
the list, if it is present.

set(Integer index, 
Object element)

Object Replaces the element at the specified index in the list with the
new specified element. If the index is out of range, an
exception is thrown.

size() Integer Returns the number of elements in the list.

subList(Integer 
fromIndex,Integer 
toIndex)

List Returns a list over a subset (between the specified
fromIndex, inclusive, and toIndex, exclusive) of items from
the original list. The sublist is backed by the original list, so
changes to the sublist is reflected in the original list and vice-
versa until the original list is structurally modified.

Methods for Iterator Class
The table lists the methods for the Iterator class.

Iterator Class

224

TIBCO Business Studio™ Forms User's Guide



Method

Return

Value Description

add(Object element) Void Inserts the specified element into the list immediately

before the element that would be returned by next(), if

any, and after the element that would be returned by

previous(), if any. If the element already exists on the

list, an exception is thrown.

hasNext() Boolean Returns true if the list iterator has more elements when

traversing the list in the forward direction.

hasPrevious() Boolean Returns true if the list iterator has more elements when

traversing the list in the reverse direction.

next() Object Returns the next element in the list. Returns null if the

iteration does not have a next element.

nextIndex() Integer Returns the index of the element that would be returned

by a subsequent call to next(). Returns list size if the

iterator is at the end of the list.

previous() Object Returns the previous element in the list. Returns null if

the iteration does not have a previous element.

previousIndex() Integer Returns the index of the element that would be returned

by a subsequent call to previous() or -1 if iterator is at

beginning of list.

remove() Void Removes from the list the last element that was returned

by next() or previous(). This method can be called only

if either next() or previous() have been called and there

were no calls to add() or remove() after the last call to

next() or previous().

set(Object element) Void Replaces the last element returned by next() or

previous() with the specified element. This method can

be called only if either next() or previous() have been

called and there were no calls to add() or remove() after

the last call to next() or previous().

225

TIBCO Business Studio™ Forms User's Guide



Methods for Logger Class
The table lists the methods for the Logger class.

Logger Class

Method
Return
Value Description

fatal(String message) Void Logs the given messages at the fatal logging level.

error(String message) Void Logs the given messages at the error logging level.

warn(String message) Void Logs the given messages at the warn logging level.

info(String message) Void Logs the given messages at the info logging level.

debug(String message) Void Logs the given messages at the debug logging level.

trace(String message) Void Logs the given messages at the trace logging level.

isFatalEnabled() Boolean Checks whether the Fatal logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

isErrorEnabled() Boolean Checks whether the Error logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

isWarnEnabled() Boolean Checks whether the Warn logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

isInfoEnabled() Boolean Checks whether the Info logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

isDebugEnabled() Boolean Checks whether the Debug logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

isTraceEnabled() Boolean Checks whether the Trace logging level is enabled. It
returns true if the logging level is enabled, and false
otherwise.

Complex Data
The classes defined in the business object model (BOM) are represented in the runtime JavaScript API.

Parameters can be defined as external references to classes defined in a BOM, either in the same project as
the form or in dependent projects. Each attribute defined in a class results in corresponding
get<attribute-name>() and set<attribute-name>(value) methods, where <attribute-name> is the
BOM attribute name with its first character forced to uppercase. For example, a BOM class Customer that
had a firstName attribute would generate a Customer class with the methods:
String getFirstName();
void setFirstName(String firstName);

226

TIBCO Business Studio™ Forms User's Guide



Factories
For each package defined in the business object model in the project, or in any projects upon which the
project depends, there is an instance of a factory available in the form script editors. These are accessed via
the available factory variable in each script.

New instances of complex types are created via the use of these factories. Each factory has a set of static
methods that can be used to create instances of the classes defined within that package.

The factory for each package is referenced via an instance variable of the form: factory.<business-
object-model-name>, where <business-object-model-name> is the fully qualified BOM package name,
with "." replaced by an underscore "_" and its first character forced to uppercase.

A create method for each class is provided with the signature:
<class-name> create<class-name>([json | object])
<class-name> listCreate<class-name>([json | object])

For example, suppose the package com.example.customer contains classes for Customer and Address. We
would create instances of each of these objects using the following:
var address = factory.com_example_customer.createAddress();
var customer = factory.com_example_customer.createCustomer();

A factory is only available for packages that directly contain class definitions. For example, there would not
be a factory for the com.example package if there were no classes defined directly in that package.

The content assist in any script editor displays the available factories after typing factory. Only factories
for packages in the current project or referenced projects is displayed.

Method
Return
Value Description

create<bom-class-
name>([json | object])

An
instance
of the
given
class

If no argument is provided to the method, a new object of
the given type is returned.

You can provide an optional argument that provides either
a JSON string representation of an object of the given type,
or a JavaScript object containing the same data. If you
provide a wrong type of JSON or an array, the method
throws a runtime exception.

listCreate<bom-class-
name>([json | object])

A List
instance
that
contains
objects of
the given
class

If no argument is provided to the method, an empty list is
returned. If you provide a JSON specification for a single
object, the method returns that object wrapped in a list.

You can provide an optional argument that provides
either:

● a JSON String representation of an object of the given
type

● a JavaScript object containing the same data

● a JSON String representation of an array of objects of
the given type

● a JavaScript array of objects representing the JSON data

If you provide a wrong type of JSON, the method throws a
runtime exception.

227

TIBCO Business Studio™ Forms User's Guide



In the above methods, <bom-class-name> is the fully-qualified, dot-separated name of the BOM class to be
instantiated. For example, to instantiate a class MyClass in the BOM package com.example.test, you need
a "$type":"com.example.test.MyClass" attribute in the JSON, along with the values of any attributes
defined for class MyClass.

Packages
There is also a corresponding package instance available in the pkg variable.

The naming of the instance of this package follows the same rule as for factories.

Enumerations defined in the package can be retrieved as read-only arrays using a method with the pattern
get[enumName](). So, for example, if the com.example.customer package contains an enumeration
named ServiceLevel that contains the Enum Literals GOLD, SILVER, BRONZE, then you could access an
array containing these three values using:
pkg.com_example_customer.getServiceLevel()

DateTimeUtil Factory
There is a built-in factory named DateTimeUtil. This factory provides access to methods used in creating
Duration objects.

Method
Return
Value Description

createDuration(Boolean 
isPositive, Integer 
years, Integer months, 
Integer days, Integer 
hours, Integer 
minutes, Integer 
seconds)

Duration Creates a Duration object that can then be used to set as
a value on duration controls, the value on parameters or
data fields of type Duration, or as attributes of complex
objects with type Duration.

Example usage:
var duration = 
factory.DateTimeUtil.createDuration(true,1,3,12
,12,32,20);

Duration Class
The value expected by the setValue of the duration control is an object of type Duration. The table lists the
methods for the Duration class.

Method
Return
Value Description

getYears() Integer Returns the number of years set in duration.

setYears(Integer years) Void Sets number of years in duration.

getMonths() Integer Returns number of months set in duration.

setMonths(Integer months) Void Sets number of months in duration.

getDays() Integer Returns number of days set in duration.

setDays(Integer days) Void Sets number of days in duration.

getHours() Integer Returns number of hours set in duration.

228

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

setHours(Integer hours) Void Sets number of hours in duration.

getMinutes() Integer Returns number of minutes set in duration.

setMinutes(Integer 
minutes)

Void Sets number of minutes in duration.

getSeconds() Integer Returns number of seconds set in duration.

setSeconds(Integer 
seconds)

Void Sets number of seconds in duration.

getMilliseconds() Integer Returns number of milliseconds set in duration.

setMilliseconds(Integer 
milliseconds)

Void Sets number of milliseconds in duration.

isNegative() Boolean Returns true if this duration is a negative duration.

setIsNegative(Boolean 
isNegative)

Void Sets whether this duration should be treated as a
negative duration.

convert(Boolean years, 
Boolean months, Boolean 
days, Boolean hours, 
Boolean minutes, Boolean 
seconds)

Void Converts the internal state of the Duration object to use
only the intervals specified as true.

equals(Duration duration) Boolean Returns true if the duration passed in is equal to this
duration.

compareTo(Duration 
duration)

Integer Returns a negative integer, zero, or a positive integer
depending on whether this object is less than, equal to,
or greater than the specified duration.

add(Date originalDate) Date Returns a new date that is the result of adding the
duration to originalDate.

toString() String Returns the duration in an ISO-8601 string.

Utility Methods
The table lists the methods for the Util class.

Util Class

229

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

tibco.forms.Util.checkDateFormat 
(String value) 

● value: string containing the date value

Boolean Checks whether the date passed as a
string is in the forms date edit format
(that is, ISO-8601 date format) or not.

It returns true if the date is in the
required edit format, and false
otherwise.

tibco.forms.Util.checkDateTimeFormat 
(String value)

● value: is a string date-time value

Boolean Checks whether the date-time passed
as a string is in the forms date-time
edit format (that is, ISO-8601 date-time
format) or not.

Returns true if the date-time is in the
required edit format, and false
otherwise.

tibco.forms.Util.checkInteger(String 
value)

● value: is a string value to be checked

Boolean Checks whether the specified value is a
valid integer or not.

Returns true if the value is a valid
integer.

tibco.forms.Util.checkLowerLimit 
(String value, String lowerLimit, 
Boolean lowerLimitInclusive)

● value: is a string value to be checked

● lowerLimit: is a string value specifying the
lower limit

● lowerLimitInclusive: is a boolean value. If
true, the lowerLimit is inclusive.

Boolean Checks whether the value is
numerically greater than lowerLimit,
or if lowerLimitInclusive is true,
greater than or equal to lowerLimit.

Returns true if the value satisfies the
lower limit constraint.

tibco.forms.Util.checkMultiplicity 
(Object value, Integer lowerBound, 
Integer upperBound)

● value: is an object (array or list) to be checked

● lowerBound:is an integer value specifying
the lower bound

● upperBound: is an integer value specifying
the upper bound. Set upperBound to -1 to
signify an unbounded object.

Boolean Checks whether a multi-valued object
(array or list) has at least lowerBound
and at most upperBound elements.

Returns true if the constraints are
satisfied.

230

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

tibco.forms.Util.checkNumberConstraint 
(Object value, Integer totalLength, 
Integer decimalLength)

● value: is an object to be validated

● totalLength: is an integer value specifying
the maximum number of digits

● decimalLength: is an integer value specifying
the maximum number of digits following the
decimal place

Boolean Validates whether the value parameter
has no more than totalLength digits
and at most decimalLength digits
following the decimal place.

Returns true if the value conforms to
both totalLength and
decimalLength constraints.

tibco.forms.Util.checkNumeric(String 
value)

● value: is a string value to be checked

Boolean Checks whether the specified value is a
valid number or not.

Returns true if the value is a valid
number.

tibco.forms.Util.checkRegExp(String 
value, RegExp regExp)

● value: is a string value to be tested against
regExp

● regExp: JavaScript RegExp object with which
the value is to be tested

Boolean Validates a value against a regular
expression.

Returns true if the value matches
regExp.

tibco.forms.Util.checkTextLength 
(String value, Integer length)

● value: is a string value to be validated for
length

● length: is an integer value specifying the
maximum length

Boolean Checks whether the specified value
conforms to the given length
constraint.

Returns true if the length of the
specified value is less than or equal to
the given length.

tibco.forms.Util.checkTimeFormat 
(String value)

● value: string containing the time value

Boolean Checks whether the time passed as a
string is in the forms time edit format
(that is, ISO-8601 time format) or not.

Returns true if the time is in the
required edit format, and false
otherwise.

tibco.forms.Util.checkUpperLimit 
(String value, String upperLimit, 
Boolean upperLimitInclusive)

● value: is a string value to be checked

● upperLimit: is a string specifying the upper
limit

● upperLimitInclusive: is a boolean value. If
true, the upperLimit is inclusive.

Boolean Checks whether the value is
numerically less than upperLimit, or
if upperLimitInclusive is true, less
than or equal to upperLimit.

Returns true if the value satisfies the
upper limit constraint.

231

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

tibco.forms.Util.compare(String value1, 
String value2)

● value1: first value to compare

● value2: second value to compare

Integer Compares two strings
lexicographically and returns an
integer that represents the comparison
between the values:

● returns < 0: value1 less than
value2.

● returns 0: value1 equal to value2.

● returns > 0: value1 greater than
value2.

This method is for use by the
custom control wrappers only and
is not supported in JavaScript
Editor.

tibco.forms.Util.copy(Object arg)

● arg: the BOM object you want to copy

copied
object

Creates and returns a deep copy of the
BOM object

tibco.forms.Util.copyAll(List list)

● list: the list of BOM objects you want to
copy

copied list Creates and returns a new list
containing deep copies of the BOM
objects in the original list

tibco.forms.Util.escapeHtml(String text)

● text: text to be escaped

String Escapes HTML markup in the given
text value so it can safely be embedded
in the browser without the content
being interpreted as HTML. Returns
the escaped text value as a string.

This method is for use by the custom
control wrappers only and is not
supported in JavaScript Editor.

tibco.forms.Util.formatDate (String 
formatString, Object|String date)

● formatString: a format string that conforms
to the Java date format syntax, as used in the
Forms framework

● date: either a Date object or a string that
conforms to the ISO-8601 date format

String Formats a date value according to the
input format. Returns a formatted date
value as a string.

This method is for use by the custom
control wrappers only and is not
supported in JavaScript Editor.

232

TIBCO Business Studio™ Forms User's Guide



Method
Return
Value Description

tibco.forms.Util.formatNumber (String 
formatString, Number|String number)

● formatString: a format string that conforms
to the Java number format syntax, as used in
the Forms framework

● number: a JavaScript number or a string
containing a numeric value

String Formats a number object according to
the input value. Returns a formatted
number as a string.

This method is for use by the custom
control wrappers only and is not
supported in JavaScript Editor.

tibco.forms.Util.loadCSS()

● url: URL to the CSS resource. Relative URLs
are resolved relative to the formsclient
module.

URL Loads the Bootstrap.

tibco.forms.Util.substitute (String 
template, Object args)

● template: containing substitution variables
of the form {0}, {1}, .. {n}

● args: string array containing values to
substitute into the template. The first value in
the array replaces {0} in the template, the
second replaces {1}, and so on.

String Substitutes arguments into a string
template. This is useful when
generating markup for controls that
need an initial DOM structure before
being instantiated. This is common
with libraries such as jQuery or YUI.

Returns a string with values
substituted in the template.

This method is for use by the custom
control wrappers only and is not
supported in JavaScript Editor.

233

TIBCO Business Studio™ Forms User's Guide



Tips and Tricks

This chapter contains tips for working with TIBCO Forms.

Recommendations for Forms Modeling
A few good practices generally give the best results when modeling large and complex forms.

● During the early stages of form modeling, work with the labels, but don’t resize panes or controls
(excepting tabbed panes). Accept the default sizes until they are positioned correctly relative to each
other.

Better advice is to leave the panes to size themselves automatically. Only set an explicit size if there is a
compelling reason to do so.

● Assign meaningful pane, control, parameter, action, and rule names before creating bindings and other
scripts.

Grouping Related Controls Together in Vertical Panes
When a form is first generated, it contains one large pane with all the controls for the selected user task
parameters.

In addition, the form contains a message pane (for error messages) and a navigation pane (for the Cancel,
Close, and Submit buttons). These objects are created with default settings that do not normally need to be
modified.

Begin by organizing large areas. Don’t worry initially about configuring individual panes and controls.
Concentrate on putting controls into panes with other, related controls. The positioning of the panes can
best be done after this step is accomplished.

Procedure

1. Create a vertical pane for each group of related controls. Do not nest this pane inside another pane.
Don’t worry about multiple columns initially.

2. Give each pane a label, based on the function of the controls it will contain.

3. Drag the controls into the pane.

4. Repeat this procedure as needed for each group of related controls.

5. Modify the labels of the controls on each pane.

The Visibility Property to Simplify User Experience
If you expect to have a number of controls that are irrelevant to certain users or not applicable in certain
situations, group these fields together in a vertical pane.

You can set the visibility property of this pane to false conditionally. The condition could be determined by
another control. For example, a pane containing a set of controls for previous order information could be
made visible or invisible depending on the runtime value of a radio control.

If “Ongoing Customer” is selected, the pane labeled Previous Orders, and all of its controls, would be
visible, but that pane would be invisible if “New Customer” were selected.

Configuration of the Pane Type Property (optional)
If desired, change vertical panes to horizontal or tabbed panes by configuring the Pane Type property on
the General tab of the pane’s Properties View.

234

TIBCO Business Studio™ Forms User's Guide



Modifying Excessively Long Forms
An extremely long form requires unwanted scrolling to be viewed or filled in and adversely affects the
user’s experience.

Procedure

1. Create multiple columns.
a) Place groups of controls into two or more separate vertical panes, each representing a separate

column. Drag the second pane to a position next to the first pane, so that you see a dotted line
appear. The dotted line means that a horizontal pane will be created to contain the two vertical
panes.

b) If you want more than two vertical columns, drag additional panes, one at a time, next to the right-
most vertical pane within the new horizontal parent pane.

c) If you want to have other groups of fields in the second column, rather than adding another column
next to the existing columns, you will probably want to first create an additional horizontal pane to
hold them. Then place new vertical panes within this horizontal parent pane, and add the additional
controls to the vertical panes. This ensures that the added controls are aligned vertically and
horizontally.

You can create, for instance, two columns out of four modules by first creating two horizontal panes,
one above the other, and placing two vertical panes inside each of them. Your controls would be
place within the four vertical panes.

In this way, the default tab sequence will be left-to-right, and then top-to-bottom, the way you read a
book, which is the tabbing behavior expected by most users.

2. Use tabbed panes in place of vertical panes. See the section, Creation of Tabbed Panes.

Expansion of Narrow Panes to Avoid Wrong Placement at Run Time
When there are two or more narrow root-level panes with a combined fixed width that is less than the
available space into they are rendered, at runtime such panes may be rendered next to each other instead of
on top of each other.

To avoid improper pane placement in this case, you can do one of the following:

● Increase the width of these panes so that there is not enough room left for them to be rendered side by
side

● Set the overflow attribute for the panes to expand, so that the panes expand and fill the available space.

Creation of Tabbed Panes
Use tabbed panes only when there is information that is seldom used. Because they are partially hidden
and can be hard to find, user interface specialists often recommend that they be avoided or used cautiously.

235

TIBCO Business Studio™ Forms User's Guide



Addition of a Tab to an Existing Tabbed Pane

If you want to add a tab to an existing tabbed pane, click the button for adding a new child pane. This
button is circled in the figure New Child Pane Button:

New Child Pane Button

Vertical and horizontal panes are automatically resized so that the panes or controls they contain fit
properly.

FAQs on TIBCO Business Studio Forms
You may benefit from the answers to a few frequently asked questions, which can go a long way in
enhancing your forms.

How can I create a Form that is not associated with any business process?

Right-click Forms in the Project Explorer, click New, and click Form. Alternatively, on the File menu, click
New > Other to open the New dialog box. Expand TIBCO Forms by clicking the plus icon, and click Form.

How can I create multiple columns of controls on a Form?

Create a horizontal pane, and place two or more vertical panes inside of it. Then add controls to the vertical
(child) panes. Each vertical pane will contain a column of controls.

How can I align the labels between different panes, for example, when there are several panes that
are direct children of a root pane?

To align the label width for all panes to achieve a uniform and consistent appearance, set an explicit child
label width for all panes whose labels should be aligned.

How can I create option lists or radio buttons using array type parameters?

In the properties tab of the option list or radio button Properties View, create Label Array and Value Array
Choice Bindings. If different parameters are selected for Values and Labels, you must ensure that the
number of items in both the arrays are equal.

How can I reuse similar behavior between different controls?

Do not reference the control by name in your shared action scripts, but rather use the context.control object
that represents the source control of the fired event.

How can I use part of the parameter value as a value for a control?

While capturing input values for items like social security numbers, different controls can be used to
capture different parts of the same value.

236

TIBCO Business Studio™ Forms User's Guide



For example a value of parameter ssn, say, 888-78-9898, can be captured in three text fields. First, a text
control named ssn_part1 takes input for the first part, 888.

Second, a text control called ssn_part2 takes input for the second part, 7. Finally, a text control called
ssn_part3 takes input for the last part 9898.

This can be achieved by providing a scriptlet that returns different parts of the parameter value. In this
example the three expressions would be p.ssn.substring(0,3), p.ssn.substring(5,7),
p.ssn.substring(8,12). Each of these scripts would be provided in their own computation actions within
a rule that fires when the underlying parameter is updated.

Similarly, a scriptlet that assembles the values of 3 controls can be used as an expression for a parameter.

In this example this expression would be:
   f.ssn_part1 + "-" + f.ssn_part2 + "-" + f.ssn_part3;

Tips for Using TIBCO Business Studio Forms
You may benefit from a few tips.

If possible, reproduce problems in Forms Preview

It is much quicker to track down problems if an issue can be reproduced within the Forms preview. Alter
the logging level in the preview from Window > Preferences > Form Designer > Preview.

Determine source of data integrity issues

For any issues with the initial data being displayed in a form, you can use the runtime logging to see the
data being received by the form and the data being submitted. To see this, enable INFO level logging by
adding the query parameter log_level=INFO to the Openspace or Workspace URL. For example, http://
<host>:<port>/openspace/openspace.html?log_level=INFO.

You can see the logging messages that show the data provided to the form on Openspace, and the data
submitted back to the server side. This helps in tracking down issues where you see unexpected results in
subsequent steps. If the data coming into and out of a form is correct, then there may be some issues in
other tasks in the process or in the page-flow.

Make use of sample data in TIBCO Business Studio to reproduce problems at runtime

You can use the INFO logging to capture actual runtime input data in order to reproduce problems within
Forms preview.

You can follow these steps:

1. From the logging window, copy the incoming data from the log message. For example, {items:
[ . . . . . . . . ]}

2. In TIBCO Business Studio, create a file in the same folder as the form, giving it a .data.json extension.
For example, myCustomData.data.json

3. On the Preview Data property sheet of the form, select Custom, and select the newly created file from
the drop-down list.

Now when you preview the form, this data is used as the initial data for the form. With this setting, you can
reproduce and troubleshoot data-specific issues within TIBCO Business Studio without having to re-deploy
the projects.

Use logging within form actions

You can access an instance of a logger class using context.form.logger. There are methods for logging at
TRACE, DEBUG, INFO, WARN, and ERROR levels. For example, logger.debug("My debug message").

237

TIBCO Business Studio™ Forms User's Guide



Temporarily disable actions and rules

If you suspect a problem in your action script, you can disable the rules and actions using the TIBCO
Business Studio UI. It can help in tracking down the problem action.

Check for null objects and values

Problems often arise in scripts that are accessing values before they have been initialized.

Make sure the Form parameter interface is in sync with the User Task

Sometimes the reference from the form to the user task is lost, in which case the validation framework may
not report a synchronization issue. This can happen if you are using the same form for multiple user tasks
(not generally recommended), or have refactored or moved resources within or between projects.

238

TIBCO Business Studio™ Forms User's Guide



TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly in
HTML and PDF formats.
The website is updated frequently and is more current than any other documentation included with the
product.

Product-Specific Documentation

The following documentation for TIBCO Business Studio is available on the TIBCO Business Studio
Product Documentation page:

● TIBCO Business Studio™ Release Notes

● TIBCO Business Studio™ Concepts

● TIBCO Business Studio™ Modeling User's Guide

● TIBCO Business Studio™ - Analyst Edition User's Guide

● TIBCO Business Studio™ - BPM Implementation

● TIBCO Business Studio™ Forms User's Guide

● TIBCO Business Studio™ Simulation User's Guide

● TIBCO Business Studio™ Customization

● TIBCO Business Studio™ - Analyst Edition Installation

● TIBCO Business Studio™ - BPM Edition Installation

● TIBCO Business Studio™ iProcess to BPM Conversion

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

● For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support website.

● For creating a Support case, you must have a valid maintenance or support contract with TIBCO. You
also need a user name and password to log in to TIBCO Support website. If you do not have a user
name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to 
TIBCO Community.

239

TIBCO Business Studio™ Forms User's Guide

https://docs.tibco.com/
https://docs.tibco.com/products/tibco-business-studio-bpm-edition-4-3-2
https://docs.tibco.com/products/tibco-business-studio-bpm-edition-4-3-2
https://www.tibco.com/services/support
https://support.tibco.com/
https://support.tibco.com/
https://ideas.tibco.com/
https://community.tibco.com


Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, Enterprise Message Service, Business Studio, and ActiveMatrix
are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other
countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system platforms
for a specific software version are released at the same time. See the readme.txt file for the availability of
this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.

240

TIBCO Business Studio™ Forms User's Guide

https://www.tibco.com/patents

	Contents
	Figures
	Concepts
	The Modeling Environment for Forms
	The Form and Form Elements
	Form Builders and Form Validation
	Viewing the Build Configuration of a Project
	Data Mappings File
	Structure of the Data Mappings File
	Data Binding
	Enabling the Generation of the Data Mappings File


	Bindings
	Direction of Bindings
	Assigning Binding Both Ways


	Actions
	Actions Summary Table

	Rules
	Rules Summary Table

	The Design Tab and Preview Tabs
	Configuring Presentation Channels
	Port Settings for Preview
	Copy Form Preview URL
	Logging
	Locale
	Logging Level
	Reload
	Performance Metrics
	Instrumentation Level

	View Datastore Data
	Visibility in the Preview Tab

	Outline View
	Forms Compact Mode
	Thumbnail Mode
	Tree Mode
	Usage of the Outline View with Forms
	Data
	Parameters
	Data Fields

	Shared Actions
	Rules
	Managing Form Elements From the Outline View
	Use Business Labels in Outline View

	Business Object Model
	The Objects in a Business Object Model
	Multiplicity of Relationships


	Live Development of Forms
	Viewing Forms in BPM Live Development
	Setting Preferences for BPM Live Dev
	Setting Preferences from the Properties View
	Setting Preferences from the Preferences Dialog


	Cross-Resource References
	Breakage Mechanisms
	Quick Fixes

	Mobile Forms
	Modified Functionality
	Enabling Mobile Forms
	Mobile Forms Preview
	Mobile Specific Configuration of Controls and Panes
	Rendering of Mobile Forms

	Problem Markers

	Tasks
	Creation of a New Form
	Drag and Drop Gesture to Customize a Form
	Setting Bindings
	Adding a Binding from the General Properties Tab for a Control
	Adding a Binding from the Parameter Dialog
	Adding a Binding from the Mappings Tab
	Removing a Binding

	Setting Actions
	Adding a Script Action Using the Outline View
	Adding a Computation Action Using the Outline View
	Editing an Action

	Setting Rules
	Adding a Rule Using the Outline View
	Picking an Existing Action
	Creating a New Action

	Adding a Rule Using the Rule Wizard

	Enhanced User Interface
	Enhanced User Interface on Custom Clients
	CSS Best Practice
	Cascading Style Sheets

	Data Validation in a Form
	Validation Messages and Usability
	Validation Script
	Implementing Validations
	Adding a Validation
	Editing a Validation

	Examples of Validation Messages
	Example 1 Setting a Custom Validation Message
	Example 2 Custom Validation Message with Substitution Variables
	Example 3 Validation Message Referenced from External Resource


	Calling External JavaScript Functions
	Specialized Layouts
	Nesting Panes
	Creating Columns with Nested Panes
	Positioning Controls into a Multi-Column Layout

	Resequencing Tabbed Panes
	Resizing a Tabbed Pane
	Positioning a Modal Dialog Pane
	Setting Visibility of Pane and Control Borders

	Embedded Forms
	Working with Embedded Forms
	Creating an Embeddable Form
	Embedding a Form by Using the Embedded Form Icon
	Embedding a Form from the Project Explorer
	Adding a BOM Class or Form Parameter to a Form

	Embedded Form Parameters
	Setting Bindings from the Mappings Tab
	Rendering of Embedded Forms
	Editing Embedded Forms

	Mappings Tab
	Coloration Feedback
	Setting Bindings
	Adding Computation Actions
	Editing Computation Action Using the Script Editor Section
	Editing Mappings

	Property Resource Bundles
	The Merging Process
	Customizing Property Resource Bundles
	Validations Related to Custom Common Resources

	Customizing the Form’s Preview Data
	Editing the File form-name .data.json
	Configuring the Setting in the Properties View

	Form Data Fields
	Configuring a Form Data Field

	Numeric Controls
	Inserting a Numeric Control
	Inserting External Reference Format
	Creating a Custom Format
	Adding the Properties File in the Resource List
	Inserting a Custom Format

	Editing a Numeric Control

	Localization of Forms
	Creating a Locale-specific Properties File
	Language-specific and Country-specific Properties Files
	Locale-specific Version of a Form at Runtime
	Defining Localization Properties Outside the Form
	Example Using a Localization Properties File Defined Outside the Form


	Business Analysis and Solution Design Modes
	Migration from Previous Versions of TIBCO Business Studio Forms

	Advanced Tasks
	Using CSS to Customize the Rendering of a Form Control
	Using Editable List Controls
	Changing a Control’s Background Color Based on its Value

	Performance Improvements
	Static Rendering
	Constraints on Model Validations
	Restrictions on Runtime Functionality

	Deferred Rendering and Deferred Initialization
	Constraints on Model Validations
	Restrictions on Runtime Functionality


	Custom Controls
	Working with the Component Library File
	Working with the ControlWrapper
	Usage of Custom Controls
	Runtime Life Cycle of Custom Controls
	Runtime Life Cycle of Custom Control Used within Grid Pane

	Component Library Model
	Library
	Palette Drawer
	Event Type
	External Resource
	Control Type
	Capabilities
	Property


	Control Wrapper Implementation
	initialize()
	refresh()
	destroy()
	getValue()
	getFormattedValue()
	isReady()
	setFocus()
	compare()
	renderStatic()

	Component Interface
	generateId()
	getControl()
	getFactory()
	getForm()
	getHintId()
	getLabelId()
	getLocale()
	getParentNode()
	getPresentationURL()
	getResources()
	getValidationMessageIds()
	raiseEvent()

	BOM JavaScript API for Custom Controls
	Factory Methods
	BOM Class Methods
	BOM Class Instance Methods

	Utility Methods

	Reference
	The Workbench
	The Palette for the Form Designer
	Panes
	Types of Panes
	Setting Pane Properties with Bindings and Rules

	Controls
	Edit as List with a Control
	Control or Component Labels

	Properties View Tabs
	Properties View for Forms
	General Tab
	Mappings Tab
	Font Tab
	Child Layout Tab
	Child Labels Tab
	Rules Tab
	Resources Tab
	Preview Data Tab

	Properties View for Panes
	General Tab
	Properties Tab
	Mappings Tab
	Layout Tab
	Font Tab
	Child Layout Tab
	Child Labels
	Validations Tab
	Rules Tab
	Mobile Tab

	Properties View for Controls
	General Tab
	Mappings Tab
	Properties Tab
	Layout Tab
	Font Tab
	Validations Tab
	Rules Tab
	Mobile Tab


	Configuration of Parameters
	Context Menus
	Keyboard Shortcuts
	Grid Panes
	Grid Panes in Display Mode
	Grid Panes in Edit Mode
	Grid Pane Column Headers
	Grid Pane Navigation Bar

	List Controls
	List Controls in Display Mode
	List Controls in Edit Mode
	List Control Command Bar

	Record Panes
	Record Pane Body
	Record Pane Navigation Bar

	Tabbed Panes

	CSS Classes
	Built-in Static CSS Classes
	Built-in Dynamic CSS Classes

	Common Resource Keys
	Keys for Number Patterns
	Keys for Basic Number and Currency Symbols
	Keys for Duration Control Labels
	Keys for Date-Time Patterns
	Keys for Optionlist Controls
	Keys for Built-in Buttons
	Keys for Grid and Record Panes
	Keys for Modal Dialog Panes
	Keys for Built-in Validation Messages
	Keys for List Controls
	Keys for Implicit Validation Messages
	Keys for Enhanced User Interface
	Miscellaneous Keys

	Design-time Constraints
	Client-side Validations
	Scripting
	Forms Scripting Scope of Variables
	Forms Scripting Order of Script Execution

	API for Scripting
	Methods for Form Class
	Methods for Control Class
	Methods for Pane Class
	Methods for List Class
	Methods for Iterator Class
	Methods for Logger Class
	Complex Data
	Factories
	Packages
	DateTimeUtil Factory
	Duration Class
	Utility Methods


	Tips and Tricks
	Recommendations for Forms Modeling
	Grouping Related Controls Together in Vertical Panes
	The Visibility Property to Simplify User Experience
	Configuration of the Pane Type Property (optional)
	Modifying Excessively Long Forms
	Expansion of Narrow Panes to Avoid Wrong Placement at Run Time
	Creation of Tabbed Panes
	Addition of a Tab to an Existing Tabbed Pane

	FAQs on TIBCO Business Studio Forms
	Tips for Using TIBCO Business Studio Forms

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

