
TIBCO Business Studio™

BPM Implementation Guide
Version 4.3.2

May 2022

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.

Contents

Figures .8

Using Projects and Processes . 9

Projects Assets and Project Organization . 9

Distribution of Assets across Multiple Projects .10

TIBCO Business Studio Workspace Folder .10

Setting BPM as the Destination Environment . 10

Creating or Obtaining a Project for BPM . 11

Creating a Project Using the BPM Developer Project Wizard . 11

Adding New Assets to an Existing Project . 13

Referencing Other Projects . 14

Deployment of a Project .14

Using Live Development . 14

Pageflow Processes and Business Services . 16

Create a Pageflow Process . 16

Generate a Business Service . 18

Trigger an Incoming Message Activity from a Business Service . 19

Managing Work Using Organization Models .20

Using Organization Models in a Process .20

Creating or Obtaining an Organization Model . 20

Organization Model Entities as Process Participants . 21

Using Capabilities and Privileges in Allocating Work to Process Participants . 21

Using System Actions for Processing Work . 22

Deploying an Organization Model . 23

Mapping Resources to the Organization Model . 23

About Participants . 23

Assigning Participants to a User Task . 24

Using a Performer Data Field or Parameter to Dynamically Define a Participant . 24

Dynamic Organization Identifier Mapping . 26

Using a Participant Expression to Define a Participant . 26

Using Organization Entities in Performer Data Field or Parameter . 27

Defining How Work Will be Assigned to Users . 27

Offering and Allocating Work .27

Distributing Work Within the Target Pool .29

Allocating a Work Item to a Member of an Offer Set . 30

Using Resource Patterns to Control How Work is Assigned .31

Chained Execution .31

2

TIBCO Business Studio™ BPM Implementation Guide

Separation of Duties . 32

Retain Familiar .32

Piling . 32

Using Forms with User Tasks .33

Creating a New Form . 33

Creating a New Form for an Existing User Task . 33

Creating a New Form Manually from the Project Explorer .34

Creating a Free-standing Form . 34

Switching Back to the Default Form . 35

Updating Forms with the Synchronization Wizard . 36

Using Data Fields and Parameters with Process User Tasks . 39

The Mode Property of User Task Parameters .40

Using Data Fields and Parameters . 40

Data Types for Data Fields and Process Parameters . 40

Using Presentation Channels to Display Tasks to Users . 44

Identifying an Appropriate Presentation Channel .44

Viewing the Available Presentation Channels .45

Adding a Channel Type to the Default Channel . 45

Adding a Presentation Channel . 46

Editing Email Attributes . 46

Editing Email Attributes at Workspace Level .46

Editing Email Attributes at Project Level . 48

Sending an Email Message from a Process . 49

Configuring Service Tasks to Send Email Messages from a Process . 49

Defining an E-Mail Service Type from a Service Task . 49

Setting up Dynamic Data Inputs to an Email Message . 53

Example of Setting up Dynamic Data Inputs to an Email Message . 54

Calling a Database From a Process . 56

Defining and Using a Database Connection Profile . 56

Creating a Database Connection Profile . 57

Creating and Using a Local Copy of the Database Connection Profile .57

Working Online or Offline To Connect to the Database or to the Local Copy . 58

Using a System Participant to Identify the Target Database . 58

Creating a System Participant and Mapping it to a Target Database . 58

Assigning the System Participant to the Database Service Task . 58

Configuring a Service Task to Call a Database .59

Creating a SQL Query . 59

Using SQL Query Builder .60

Changing the SQL Statement . 61

3

TIBCO Business Studio™ BPM Implementation Guide

Building a Query - A Simple Example .62

Testing the SQL Statement .63

Selecting a Stored Procedure . 64

Manually Entering a Stored Procedure Name . 64

Selecting a Stored Procedure From the Database . 64

Updating a Stored Procedure Used in a Database Task Activity .64

Mapping Data Between the Process and the Database . 65

Mapping Data Parameters . 65

Mapping an Externally Referenced Class Attribute to a Database Parameter .66

Automatically Creating a Business Object Model to Store Returned Data . 67

Mapping the Result Set .69

JDBC Driver Connection Details .69

Using Web Services .71

Web Service Definition Language (WSDL) Documents .71

WSDL Document Requirements .71

XSD Constructs . 73

Using Service Registries . 73

Importing a WSDL Document Into a Project . 75

Calling a Web Service . 76

How to Call a Web Service . 76

Calling a Service on a Virtualization Binding (Contract First) . 77

Calling a Service on a SOAP Binding (Contract First) .78

Calling a Service on a Virtualization Binding (Contract Last) . 79

Calling a Service on a SOAP Binding (Contract Last) .79

Configuring a Task or Event to Call a Web Service .80

Invoking a One-Way Operation on a web service . 80

Invoking a Request-Response Operation on a web service . 81

Selecting the Web Service Operation to Invoke . 81

Selecting an Operation From a WSDL That Exists in the Workspace .82

Importing a WSDL and Selecting an Operation from the WSDL .83

Generating a WSDL and Creating an Operation from your Process Data .84

Updating a Generated WSDL File . 85

Using a System Participant to Identify the Web Service Endpoint . 85

Configuring Security on an Outgoing Service Call .85

Defining Input and Output Data .86

Defining Input and Output Mappings .87

Creating a Mapping . 87

Points to Note About Mappings . 88

Using A Script to Define a Mapping .88

4

TIBCO Business Studio™ BPM Implementation Guide

Automapping . 88

Catching WSDL Fault Messages on a Request-Response Operation . 90

Using a Catch Intermediate Error Event to Catch a Fault Message .90

Handling SOAP/JMS Message Timeouts on a Request-Response Operation .91

Deploying a Process That Calls a Web Service . 92

Exposing a Web Service .94

Exposing a Service . 95

Exposing a Service (Contract First) . 95

Exposing a Service (Contract Last) . 96

Configuring a Task or Event to Expose a Web Service . 96

Exposing a One-Way Operation .97

Exposing a Request-Response Operation .97

Using the Default Generated Web Service Operation . 98

Updating the Default Web Service Operation . 99

Exposing Multiple Default Web Service Operations . 99

Selecting an Alternative Web Service Operation to Expose . 99

Selecting an Operation From a WSDL That Exists in the Workspace .101

Importing a WSDL and Selecting an Operation .101

Using a System Participant to Define the Endpoint Provided by the Web Service . 102

Setting a Common Context Root for Web Service Endpoint URIs . 103

Exposing the Web Service Operation as a REST Service .104

Defining Input and Output Data . 105

Defining Input and Output Mappings . 106

Creating a Mapping . 106

Points to Note About Mappings . 107

Using A Script to Define a Mapping . 107

Throwing WSDL Fault Messages on a Request-Response Operation . 108

Using an End Error Event to Throw a Fault Message . 108

Deploying a Process That Exposes a Web Service . 110

Arbitrary Length Tasks and Request-Response Operations . 110

Handling a Process that Includes Arbitrary Length Tasks . 111

Using a Process as a Service Provider and as a Service Consumer . 113

Authenticating Access to an Exposed Service . 114

Calling the Service from a SOA Application . 115

Example 1 - Single Sign-on Using a Virtualization Binding . 116

Example 2 - Single Sign-on Using a SOAP Binding . 117

Example 3 - Impersonation Using a SOAP Binding . 118

Calling a REST Service .119

Defining the Interface to an External REST Service .119

5

TIBCO Business Studio™ BPM Implementation Guide

Creating JSON Schemas .122

Creating JSON Schemas From a JSON Sample . 123

Configuring the Process Project from Which you Want to Call the REST Service . 124

Defining Input and Output Mappings . 124

Creating a Mapping . 125

Configuring Security .125

Custom Policy Set . 126

Fault Handling and Propagation . 127

REST and Authentication .127

WSDL Change Considerations for Application Upgrade . 128

Application Upgrade . 128

Reverting to the Original Version of an Upgraded Application . 128

Making Changes to the Service Interface .129

Changes that Do Not Change the Service Interface . 129

What Changes the Interface Using the Contract Last Approach .130

Changes That Apply to Both Contract First and Contract Last Approaches .133

Development vs. Production . 133

Using Scripts .134

Implementing Script Tasks . 135

Unsupported Script Types . 136

Scripts on Other Tasks .137

Supported Script Types .137

Sample Scripts .138

Adding an Action Script to a Task . 138

Associating a Script with a Conditional Flow . 139

Associating a Script with a Loop . 140

Timer Event Scripts .141

Task Scripts on Events . 142

Editing Scripts . 142

Assistance for Action Scripts . 144

Using Process Data as Script Variables .144

Using Structured Data Types .144

Dynamically Created Factory Methods .145

JavaScript Exclusions .146

Customizing JavaScript Presentation Preferences . 146

Customizing XPath Presentation Preferences . 148

Scripts at Runtime . 150

Data Mapping . 152

Array Mapping Strategies . 152

6

TIBCO Business Studio™ BPM Implementation Guide

Like Mapping . 154

Mapping Contents in Data Mapper . 155

Mapping Process and Work Manager JavaScript Class Attributes . 157

Executing Java Classes from a Process . 158

Complete the Parameter Mapping .159

Web Service Definition Language (WSDL) Documents .161

Abstract and Concrete WSDL Documents . 161

WSDL Document Structure . 161

Abstract WSDL Documents .161

Concrete WSDL Documents .162

Web Service Configuration Properties .164

Web Service Implementation Properties .164

System Participant Shared Resource Properties .166

SOAP over HTTP Binding Details (Provider) . 166

Endpoint Address Construction . 167

SOAP over JMS Binding Details (Provider) .168

SOAP Over HTTP Binding Details (Consumer) .171

SOAP Over JMS Binding Details (Consumer) . 172

Generating a DAA from the Command Line using an Ant Task . 177

Using External Tools to run an Ant task within TIBCO Business Studio . 178

Resource Query Language . 180

RQL Expression Evaluation . 180

Best Practices When Using Resource Query Language (RQL) .181

RQL Structure . 182

Keywords . 182

Operators . 183

Organization Entities . 183

Navigating the Organization Model with RQL Queries . 185

Using the . Operator . 186

Using only children and all . 187

Combining Expressions . 187

RQL Cleanup Configuration .188

TIBCO Documentation and Support Services . 190

Legal and Third-Party Notices . 191

7

TIBCO Business Studio™ BPM Implementation Guide

Figures

Allocating a work item to a single user from the pool . 28

Offering a work item to every user in the pool .28

Problem Marker: Form out of sync .36

Problem Marker in the Project Explorer View . 37

Problem Marker in the Outline View . 37

Synchronization Quick Fixes . 37

First Page of Synchronization Wizard . 38

Preferences for TIBCO Forms Process Support . 39

Data Fields at the Process Level . 42

Data Fields at the Process Package Level . 43

Using two one-way operations to handle the problem of arbitrary length tasks . 112

Using correlation data to connect separate one-way operations .113

A Process Providing and Consuming Web Services . 114

8

TIBCO Business Studio™ BPM Implementation Guide

Using Projects and Processes

This section describes what you need to know to enable projects for use with BPM.

Projects Assets and Project Organization
A project is a container for all the assets that may be required when deploying an application to BPM.
Projects help to facilitate the sharing and organization of resources. Before modeling your business process
or defining your organization model, you must create a project to contain your assets.

A project can contain the following assets:

● Business Assets. There are the following categories of project-related business assets in TIBCO Business
Studio:

— Quality process. Business cases, project plans, and so on.

— Ad-hoc assets. Supporting documents, spreadsheets, and so on that are not part of the quality
process.

● Processes. A process models the business process.

● Forms. You can define forms to collect user input in a user task within a business process.

● Business Object Model. A business object model is a set of business terms and relationships specific to
your corporate environment (for example, in a financial environment, broker, counterparty, and so on).

● Emulations. You can add emulation files to emulate a process and add test data at certain activities, thus
enabling you to check the data flow at various activities in a process.

● Organization models. An organization model defines the organizational structure of your enterprise and
the relationships between the different components (for example, organization units and positions)
within your organization.

● Workforce management. Workforce management stores your library of tasks. Having a library of tasks
enables you to reuse tasks in different processes.

● Service descriptors. Service assets include the WDSL files for any web services that you import into your
project.

● TIBCO SOA platform. If you want to deploy an application to the TIBCO SOA Platform, you must create
special folders to contain the SOA assets. Refer to the appropriate BPM Composite Development Guide
for more information about developing applications for use with the TIBCO SOA platform.

When creating a project for use with BPM, you must do the following:

● Decide what assets you want and how they should be distributed across projects. See Distribution of
Assets Across Multiple Projects.

● Create or obtain a project. See Creating or Obtaining a Project for BPM.

● Create and develop the assets that the project must contain.

● Deploy the project to BPM for use at runtime. See Deployment of a Project, and refer to TIBCO
ActiveMatrix BPM Deployment Guide.

When creating projects and deciding what to put into a project remember that one project is
the deployment package and you cannot deploy a subset of it. If you have a main process and
dependent sub-processes (which are not used from other main processes as well) you can put
them into the same project, but it is recommended that you put them into different xpdls so
users can work on it in parallel. If you have processes which you want to deploy separately,
you need to have them in different projects.

9

TIBCO Business Studio™ BPM Implementation Guide

Distribution of Assets across Multiple Projects
When creating a project for use with BPM, you may want to include some or all of the assets, depending on
your requirements. The assets can be all in one project or split amongst multiple projects.

For information about assets, see Projects Assets and Project Organization.

For example, if you are going to have several applications executing against one organization model, you
should create one project for your organization model and spread your business processes across multiple
projects.

This is because it makes the organization model and business processes easier to maintain. For example,
you may have amendments to the organization model that only affects one business process. If the assets
are all in separate projects, you need only make amendments and redeploy the projects that contain the
organization model and the affected business process.

When creating an organization model in a separate project:

● Versioning is used to control the interaction of different organization models across multiple projects.
See Setting BPM as the Destination Environment.

● The projects that contain business processes that use the organization model must reference the project
that contains the organization model. See Referencing Other Projects.

TIBCO Business Studio Workspace Folder
TIBCO Business Studio stores your projects in a folder called workspace. When you start TIBCO Business
Studio, the Workspace Launcher is displayed, asking you to specify a location for your workspace.

When you install hotfixes or upgrade TIBCO Business Studio, you should specify a new workspace location
and migrate your existing projects from your old workspace to your new workspace, using File > Import.
See TIBCO Business Studio Modeling User’s Guide for more information about migrating projects.

This is because your workspace points to the target platform specific to your installation. This target
platform is used when building applications, and if it's defined incorrectly, it results in validation and build
errors. For example, Problem with DAA generation for project test: The feature com.example.test cannot
be fully resolved.

Setting BPM as the Destination Environment
When creating a project for use with BPM you must select BPM as the destination environment. Selecting
BPM as the destination environment enables TIBCO Business Studio to utilize special features.

For example, for processes, TIBCO Business Studio performs validation according to the selected
destination environments. Other artifacts (for example, organization models) are not affected by project
destination settings.

If you select BPM as a destination, the following validation is performed:

● The processes are validated for BPMN.
● The processes are validated against BPM.

Procedure

1. When creating a new project, select BPM in the Project part of the wizard (see Creating or Obtaining a
Project for BPM)

2. For an existing project, do the following:
a) Enable the Solution Design capability from the toolbar.
b) In Project Explorer, select the process.
c) On the Destinations tab of the Properties view, select BPM as the destination environment for this

process.

10

TIBCO Business Studio™ BPM Implementation Guide

Creating or Obtaining a Project for BPM
You can create a project for use with BPM, either creating a new project, or importing an existing project.

● To create a new project, see Creating a Project Using the BPM Developer Project Wizard.

● To import an existing project, see TIBCO Business Studio Modeling User’s Guide.

You can select several default projects when creating a new project. When creating a project for use with
BPM, TIBCO recommend that you select either an Analysis or BPM Developer project. The Analysis and
BPM Developer projects are each created with different combinations of assets. However, you can add new
assets to an existing project whenever required, see Adding New Assets to an Existing Project. The
following table describes the Analysis and BPM Developer projects:

Project Default Assets Description

Analysis The following assets are created by
default:

● Business Assets

● Business Processes

● Forms

● Business Object Model

● Organization Model

● Task Libraries

Select this project if you want to describe the
business and its process, or an aspect of them,
using business terminology. This may be
useful if, for example, you want to create a
project that contains plain English indications
of what a script is intended to achieve, rather
than JavaScript. See the TIBCO Business Studio
Modeling User’s Guide for a description of
using an analysis project to model a business.

BPM Developer The following assets are created by
default:

● Business Processes

● Forms

Select this project if you want to create a new
project from the start without using an explicit
analysis stage. See Creating a Project Using
the BPM Developer Project Wizard for details
of creating a BPM Developer project.

You can create a new project from the File > New menu option.

Creating a Project Using the BPM Developer Project Wizard

Procedure

1. Select File > New > BPM Developer Project .

2. The Project dialog of the wizard is displayed.

11

TIBCO Business Studio™ BPM Implementation Guide

The information that you enter in this dialog, and the subsequent dialogs of this wizard, is mostly the
same as for the Analysis Project wizard. See TIBCO Business Studio Modeling User’s Guide for a
description.

Note that:

● The Id field specifies a unique Id for the project. This defaults to com.example.projectname, with
projectname being a lower-case version of the name you entered in the Project name field. You can
either accept the default Id or enter a new one. However, project Ids must be unique in Workspace
at runtime. If you copy a project, the Id is also copied and a validation error is generated in TIBCO
Business Studio. See the TIBCO Business Studio Modeling Guide for information on how to fix this.

● The Version field specifies the version of the project. Either accept the default version
(1.0.0.qualifier) or enter a version for the project in the standard Eclipse format:

major.minor.micro

If you enter a qualifier it is ignored, as the qualifier is a date and time stamp that gets
created when the project is deployed.

The specified version becomes the default for project artifacts such as process packages and
organization models, and can be used to track revisions to the project. The version can be changed
later. See Setting BPM as the Destination Environment for more information about versioning.

3. Set BPM as the destination environment.

12

TIBCO Business Studio™ BPM Implementation Guide

4. The Asset Type Selection dialog displays the types of assets that you can include in your project.

The illustration shows which assets are selected by default. The assets that you select determine which
dialogs are displayed subsequently. Select the types of assets you want to include in your project and
click Finish when you are done, or Next to specify more options.

5. Complete the dialogs relating to your selected assets as required.

The newly-created package, process, and project are displayed in the Project Explorer.

Adding New Assets to an Existing Project
After you have created a project, you can add new assets to the project whenever required. Assets are
stored in special folders. Storing assets in special folders means that you can utilize special features of the
Project Explorer.

See TIBCO Business Studio Modeling User’s Guide for a list of all the special folders.

Procedure

1. In the project where you want to add the new asset, create a new folder for the asset.

2. Right-click the new folder and select Special Folders > Use as > asset > Folder where asset is the asset
you want to store in the folder.

3. Select the special folder you have just created. Select File > New and create the new asset that you want
to add.

13

TIBCO Business Studio™ BPM Implementation Guide

Referencing Other Projects
Projects can refer to other projects. You can invoke a process or use an organization model or BOM in
another project.

For example, if you have an organization model that is used by processes in several different projects, you
should create a separate project to contain the organization model and reference that project from the
process projects that use it.

See TIBCO Business Studio Modeling Guide to find out how to create project references.

When you reference one project from another, it is important that their major version numbers match. See
Setting BPM as the Destination Environment.

Deployment of a Project
After you have developed a BPM application, its constituent elements must be deployed to the BPM
runtime so that the application can be run.

Refer to TIBCO ActiveMatrix BPM Deployment Guide for detailed information on deployment.

The following elements must be deployed:

● The process (or processes, including both business processes and pageflow processes)

● Any organization model used by the process

● Any forms used by the process

● Any structured data used by the process

Using Live Development
Use Live Development when you want to make quick changes to elements of your project, and test the
results immediately without having to redeploy an entire project.

This is especially relevant to Forms development, where small changes require a rapid turnaround for
retesting.

Modifications to assets like process, BOM, and organization model are not supported in BPM Live Dev
mode. If you change them, the project needs to be redeployed. If you change the Forms data interface, the
project must be redeployed or the form will not open.

Procedure

1. Deploy the entire BPM application in the default BPM Modeling (or Modeling) perspective (if not
already deployed).

2. Switch to the BPM Live Dev perspective (select Open Perspective > BPM Live Dev in the top right of
the pane).

3. Log in to Openspace (in the embedded view, or open an external browser).
Any BPM server can be used, not just the Local Development Server. (For more information about the
Local Development Server, see TIBCO Business Studio BPM Implementation.)
You can edit the information in Openspace View Connection for Openspace/Client Base URL and then
refresh the view for the development server.
The Openspace view provides a Copy openspace url button that copies the openspace url, which can be
pasted into an external browser to login to openspace in Live Dev mode.

4. Start a process and proceed until the required work item arrives (or start a business service and
progress to the appropriate form).

14

TIBCO Business Studio™ BPM Implementation Guide

5. Access a form on opening a work item/business service. The form from your design-time workspace is
used instead of the deployed one.

6. Iteratively:

● Test the form.

● Edit the form in the local workspace and click Save.

● Either use the Refresh button provided on the form which reloads the form with the latest changes
without the need to re-open it or restart the pageflow for instance, or close the work item or
business service in Openspace or browser. A Cancel button is also provided on the form in cases
where Form loading fails. The Cancel button cancels the form if the form fails to load.

● Reopen the work item / business service in Openspace or browser.

The process flow works as normal and you can complete/edit data in the same way as in normal
Openspace.

15

TIBCO Business Studio™ BPM Implementation Guide

Pageflow Processes and Business Services

Pageflow processes and business services are short-lived processes designed to display user interface pages
to desktop and mobile users.

It is only possible to publish a business service, not a pageflow process. A business service can start a
business process. A pageflow process requires a trigger from a task within a business process. TIBCO
Business Studio includes a Publish option for business services to set the Target Device to either Desktop
or Mobile.

TIBCO Mobilespace is an app that is available from the Apple App Store, and Google Play Store. Mobile
users who use Mobilespace can access business services that have the Target Device set to Mobile.

Create a Pageflow Process
All tasks that are available in a business process are available within a pageflow process with the exception
of a business process user task. Pageflow processes have a special variant of a business process user task that
does not have participants (because the participant is implied by the person who opens the work item), and
does not generate work items. These are referred to as pageflow user tasks.

A pageflow process is stored under the Processes branch of the Project Explorer alongside business
processes.

To create a Process and its containing package and Project in one operation, see "Projects, Packages, and
Processes" in TIBCO Business Studio Modeling User’s Guide.

To convert a business process to a pageflow process, right-click the business process in Project Explorer,
and then click Convert To Pageflow Process. Alternatively, a pageflow process can be converted to a
business process in a similar way (Convert To Business Process).

Procedure

1. In the Project Explorer, under Process Packages, select the package you created, or Processes within an
existing package, right-click and select New > Pageflow Process .

2. The New Pageflow Process wizard is displayed.

If you start this wizard from the File > New menu, the first dialog is Project and Package,
where you must specify a valid project and package. This dialog is not displayed if you right-
click at the package level to start the dialog; however, you can click Back to display it if
necessary.

3. Enter the Label of the process. If you want to use a template to create the process, select the template
and click Next.

In addition to the process templates, you can select a process interface as the basis for your new
pageflow process. This creates a process with the necessary events and parameters that are specified in
the process interface.

16

TIBCO Business Studio™ BPM Implementation Guide

4. In the Description dialog, add optional text that describes the process, an optional URL that links to
documentation about the process, and click Next.

The Documentation Url field is intended for design-time collaboration; it is not displayed in
the runtime environment.

5. In the Destinations dialog, select the Destination Environment (optional). This controls the validation
that TIBCO Business Studio performs when you save the process:

● The exact destination environments that are displayed depend on the edition of TIBCO
Business Studio that you have installed. Select BPM for deployment to BPM.

● The specific destination components that make up a destination environment can be
viewed by selecting Window > Preferences, and selecting Destinations.

If you do not select a destination environment, basic BPMN validation will be performed.

To avoid error messages and warnings associated with modeling constructs that cannot be
executed in the runtime environment, set the appropriate destination environment on the
process.

You can change or select the destination environment after the Process has been completed on the
Destinations tab of the Process Properties.

6. Click Finish.

7. The process that you created is displayed in the Process Editor:

When you first start the Process Editor, the palette (on the right side of the diagram) might be collapsed;
if so, expand it. You can expand this window to fill your screen by double-clicking the title bar. A
pageflow process has a different default color scheme from a business process.

17

TIBCO Business Studio™ BPM Implementation Guide

Pageflows do not contain pools or lanes because they are short lived and do not span different
parts of the organization.

Generate a Business Service
A business service can call a business process. A business service provides input data to the business
process with parameters. A Send Task in the business service sends the parameters to a Start Event in a
business process.

Prerequisites

● A business process with a Start Event, and any required tasks.

● The business process should have at least one input parameter.

● The Start Event must have a Trigger Type set to None or Message.

The generated business service will finish with a Task that calls the business process, and matches the
Trigger Type for the Start Event:

● A Call Sub-Process matches a Trigger Type set to None.

● A Send Task matches a Trigger Type set to Message.

Decide which Target Device the published business service will have. Mobile users who use ActiveMatrix
Mobilespace can only access business services for a Mobile Target Device.

Refer to the How to Design a Simple WelcomeUsers Business Service tutorial for a worked example of this
process.

Procedure

1. Right-click the Start Event, and select Generate > Business Service.

A new business service opens, with a default Label similar to ProcessPackage-Process.

The business service consists of a Start Event, a User Task, and a final Task.

2. Rename the business service with a more descriptive name, so that users can easily identify it from the
list of available business services.

3. Add any additional User Tasks, as required.

4. From the General tab, use Select the privileges required to use this service to specify all of the
organization model privileges that a resource must have to be able to use this business service.

If there are no required privileges for the business service, then all resources use the business
service.

5. Choose the Target Device:

● Desktop
● Mobile

Publish as Business Service is already checked, and the default is Desktop.

18

TIBCO Business Studio™ BPM Implementation Guide

6. Press CTRL + S to save the changes.

Trigger an Incoming Message Activity from a Business Service
You can trigger any incoming message activity in a business process (that is, In-flow Receive Task and
Intermediate Catch Message event, and Message Event handler).

The purpose of this business service is to collect the data needed to trigger the incoming message activity or
event handler, and send the data to the business process.

Procedure

1. Right-click on the incoming message activity and select Business Service > Generate.

2. A new Business Service process is generated, using a default name similar to ProcessPackage-Process.
You should rename this to a more descriptive name, to allow you to identify it easily in the list of
Business Services, when you have deployed.

The business service process consists of a start event, a user task and a send task.

● The User Task will contain a datafield generated with the same name as the formal parameter
defined in the business process.

● The Send Task calls the business process from which it is generated.

A system participant is automatically created for the send task that calls the business
process. This participant has the name:
 ProcessName_consumer

where: ProcessName is the name of the business process being called.

See System Participant Shared Resource Properties for more information about the
configuration of this system participant.

3. Add additional user tasks to meet your requirements.

By the time that the Send Task is invoked, all parameters to the business process must have
been collected. In the generated case, all are mandatory. On the user task, more realistically
you might have several user tasks that all collect a proportion of the data.

4. A business service is generated.

When you deploy this process it will be presented as a business service in a list of business services. See
"Business Services" in the TIBCO Openspace User’s Guide or TIBCO Workspace User’s Guide for more
information.

19

TIBCO Business Studio™ BPM Implementation Guide

Managing Work Using Organization Models

An organization is a collection of people, grouped and related to each other in different ways according to
the needs of the enterprise. An organization model formalizes and defines the different elements of the
enterprise organization (the organization’s entities, their attributes and the relationships between them) that
are available for use by a process.

These elements comprise:

● structural elements - organizations, organization units and positions.

● groups, which define the specification for a job of work to be performed, providing a functional view of
the organization.

● descriptive elements - capabilities, privileges and locations, which provide additional information about
other organizational elements, or about the resources (users) that belong to them.

● resources, which can represent items such as people, equipment or buildings.

Resources in the Organization Model are organization model entities that represent real users.
To execute a process successfully, you must map real users to organization model entities
using the Organization Browser. Once resources have been mapped, when a process is executed,
BPM can translate a user task participant into the real user or users who should receive the
corresponding work item, see Mapping Resources to the Organization Model.

There are two Organization Browsers, one that is used if you are using the Openspace client,
and another that is used if you are using a Workspace client (or custom WCC client). See the
appropriate TIBCO Organization Browser User's Guide for your client.

See the TIBCO Business Studio Modeling User’s Guide for more detailed information about
organization model elements.

Using Organization Models in a Process
You can use organization model entities in a process: either as user task participants (at runtime, these
entities will be converted into one or more real users who will receive the work items resulting from user
tasks) or to make decisions about how to route work.

Procedure

1. Create or obtain an organization model. See Creating or Obtaining an Organization Model.

2. Create process participants and map them to organization model entities. See Using Organization
Model Entities as Process Participants.

3. Deploy the organization model. See Deploying an Organization Model.

4. Map resources (users) to the organization model. (This is not, however, a design-time activity.) See
Mapping Resources to the Organization Model.

5. Deploy the process. See "Deploying BPM Applications" in the TIBCO ActiveMatrix BPM Deployment
Guide.

6. Run the process. See the TIBCO Workspace User’s Guide for more information.

Creating or Obtaining an Organization Model
You can create or obtain an organization model to use with a process by creating it from scratch using the
Organization Modeler or by refactoring a process that already uses Basic Type participants or by importing
an existing organization model.

See the TIBCO Business Studio Modeling User’s Guide.

20

TIBCO Business Studio™ BPM Implementation Guide

● Creating an organization model from process data is useful for rapid development and prototyping of
an application. However, for any significant work, TIBCO recommend that you create an external
organization model from scratch.

● You can only use refactoring to create a new organization model. You cannot refactor to update an
existing organization model (whether created by refactoring or not).

An organization model can exist in the same project as a process that uses it, or it can reside in a different
project. In the latter case, the project containing the organization model should be selected as a Project
Reference (see Referencing Other Projects).

An organization model can only be placed in a special folder marked as an Organization Models Folder.

Organization Models folders are marked in Project Explorer with this icon .

See the TIBCO Business Studio Modeling User’s Guide for information about how to create the special folder.

Once the organization model has been created or imported, it can be used to define participants in the
process. See Assigning Participants to a User Task.

Importing an Existing Organization Model

You can either:

● import a complete project that contains an organization model, or
● import an organization model (.om) file into an Organization Models special folder in a project.

This folder must be a special folder defined as an Organization Models folder. If the folder is
not already properly configured, right-click it and select Special Folders > Use as
Organization Models Folder .

See the TIBCO Business Studio Modeling User’s Guide for more information.

Organization Model Entities as Process Participants
Every user task in a process that is to be executed on BPM must have at least one participant. The
participant can be defined in various ways.

The participant can be defined as the following:

● as a particular organizational entity in an organization model used by the project. See Assigning
Participants to a User Task for more details.

● as an organization model query, a statement which uses Resource Query Language to create an
expression that locates the required participant within the organization. See Using a Participant
Expression to Define a Participant for details of how to do this.

To be available for use by a process, an organization model must be defined either in the same project as the
process, or in a referenced project (see Referencing Other Projects).

Using Capabilities and Privileges in Allocating Work to Process Participants
Using capabilities and privileges allows you to allocate work at runtime.

For example,

● allocate a user task to an accountant if the value to be signed off is less than $5000, but allocate it to an
Accounts Manager if the value is $5000 or more.

● allocate a user task to a single loss adjuster who holds at least level 2 motor insurance certification and is
based in the Chicago office.

To allocate work to process participants using capabilities and privileges, you need to use an organization
query. This allows you to enter a query using a script or expression. This is evaluated when a referenced

21

TIBCO Business Studio™ BPM Implementation Guide

task is executed at runtime, so the actual participant is resolved and the activity dispatched and offered to
the participant. A query could resolve to:

● a participant in the package/process. For example, you could define a capability called French speaker
and then create a query that resolves a user task to any user who possesses the French speaker
capability.

● an entity in the organizational model. For example, you could define a query that resolves a user task to
Accounts Managers who can sign off values of $5000 or more.

See Assigning Participants to a User Task for more information.

Using System Actions for Processing Work
System actions are actions that a user may wish to perform at runtime but that need to be authorized, or
need to be restricted to users with a certain level of authority. These actions might include, for example, re-
allocating work-items, skipping work-items, viewing another user’s work list, or administering resources.

This authorization is implemented by associating system actions with privileges within Organization
Modeler.

● Privileges can be assigned to any system action at the organization model level.

● Privileges can also be assigned to some system actions at the level of the organization unit, position or
group.

For example, in the following diagram the "View work list" system action has been associated with three
different privileges, "X", "Y" and "Z", at three different levels - the organization model, organization unit A,
and position 2.

This means that a user must hold privilege "X", "Y" or "Z" to view the work list of a user who holds Position
2.

If a user wants to view the work list of a user who holds Position 1, they must hold privilege "X" or "Y". This
is because no privilege has been associated with Position 1, so any privileges associated with the parent
entity are used instead. If privilege "Y" had not been associated with Organization Unit A, the user would
instead need privilege "X", defined in the parent Organization Model.

The Organization Admin system action allows users to see organization models other than the one they are
part of, and allows them to view process instances started by members of these organizations.

As well as assigning different privileges at different levels, as shown above, qualifiers on the same privilege
can be used to refine how access to a particular system action is controlled. (When comparing a required
privilege to a held privilege, if either side is not qualified the comparison is positive. If both sides are
qualified, the qualifications must match for the comparison to be positive.)

22

TIBCO Business Studio™ BPM Implementation Guide

Controlling access to system actions by the application of (user-defined) privileges within the organization
model provides an organization with a powerful and completely flexible way to customize and tailor users’
access to system functions.

For more information:

● See the appropriate BPM Concepts Guide for an introduction to system actions.

● See the TIBCO Business Studio Modeling User Guide for a list of system actions that can be associated with
privileges and how to assign them.

Deploying an Organization Model
To enable it to be used by a process at runtime or by Workspace to map users, an organization model must
be deployed to BPM. You deploy an organization model by deploying the project that contains that
organization model. A project may contain the organization model alone, or may also contain business
objects and/or business processes.

When creating an organization model in a separate project, then:

● Versioning is used to control the interaction of different organization models across multiple projects.
See Setting BPM as the Destination Environment for more information.

● The projects that contain business processes that use the organization model must reference the project
that contains the organization model. See Referencing Other Projects .

For instructions on deploying a project, see "Deploying BPM Application" in TIBCO ActiveMatrix BPM
Deployment.

Mapping Resources to the Organization Model
Once you have deployed an organization model, you can then map resources - real users - to the model’s
groups and positions. You must do this before attempting to run any process that uses this organization
model. Once resources have been mapped, when a process is executed, BPM can translate a user task
participant into the real user or users who should receive the corresponding work item.

You map resources to the organization model using the Organization Browser. There are two Organization
Browsers, one that is used if you are using the Openspace client, and another that is used if you are using a
Workspace client (or custom WCC client). See the appropriate TIBCO Organization Browser User's Guide for
your client.

About Participants
Participants are the entities assigned to carry out the tasks in a process.

BPM uses two types of participant:

● user task participants represent the users who perform the work defined in user tasks. These participants
must be defined as external references in an organization model used by the process, not as basic types.

If you do not already have an organization model you can instead create participants as basic
types and then refactor the process. This creates a simple organization model and converts the
basic participants to external references in that organization model. See Creating or Obtaining
an Organization Model for more information about this method.

● system participants are used to identify a task that is performed by the system.

When using participants as part of a process, you can:

● create a participant, see the TIBCO Business Studio Modeling User's Guide.

● define who will receive the work, by assigning one or more participants to a user task, see Assigning
Participants to a User Task.

23

TIBCO Business Studio™ BPM Implementation Guide

● define how to distribute work to users, see Defining How Work Will be Assigned to Users.
● delete a participant, see the TIBCO Business Studio Modeling User’s Guide.

Assigning Participants to a User Task
Participants define who will receive work items generated from a user task.

A user task must have at least one participant, and can have as many as are required by the process. (A
validation error is flagged on a user task that does not have at least one participant defined.)

Participants can only be assigned to a user task if they are defined in the process package (at process or
package level) and are valid entities in an organizational model used by the process - see About
Participants.

You can use a combination of the following methods to define a participant for a user task:

● selecting a named participant. See the TIBCO Business Studio Modeling User’s Guide.
● using a performer data field or parameter. See Using a Performer Data Field or Parameter to

Dynamically Define a Participant
● using a participant expression. See Using a Participant Expression to Define a Participant.
● using organization entities in performer data fields/parameters to allow you to deliver work

dynamically to an organizational entity

Using a Performer Data Field or Parameter to Dynamically Define a Participant

A performer data field/parameter is a special type of data field/parameter that you can select as a
participant for a user task. By assigning a value to the performer data field/parameter earlier in the process,
you can dynamically define a participant for a user task. You can populate a performer data field/parameter
with one or more organization entity GUIDs, or a single valid non-array RQL expression.

A parameter can only be defined at the process
level.

Using a performer field, you can deliver work dynamically to an organizational entity, so that the work
items appear in managed work lists. For example:

● Dynamically deliver to a group by name (e.g. using an organization entity GUID:
Process.getOrgModel().groupByName('MyGroup'))

● Dynamically deliver to a position within an organization unit by name (for example:
orgunit(name='KEYTeam').position(name='AdditionalStaff') union

orgunit(name='Agency').position(name='Contractor'))

You can also use non-RQL scripting to identify dynamic performers. For example:
performer=Process.getOrgModel().getGroupByName('MyGroup').

If you use the presentation channel settings (push destinations) to deliver notification of work items via
email, on the Work Resource tab for the user task, you must set the Distribution Strategy to Allocate to One
rather than Offer to All. For example, if you have a performer field set to: resource(name='tibco-
admin'), tibco-admin will receive an email notification of a work item only if the Distribution Strategy is
Allocate to One.

Procedure

1. Add the performer data field/parameter as a participant to the user task (using the method described in
"Using Properties View to associate a participant with an activity" in the TIBCO Business Studio Modeling
Guide).

2. Make sure that the process logic assigns a suitable value to the parameter before the user task is
executed - for example, by using a script.

24

TIBCO Business Studio™ BPM Implementation Guide

You can assign a script as described in "Creating Scripts" in the TIBCO Business Studio Modeling Guide.

You can populate a performer field with one of the following:

● an organization entity GUID
● multiple organization entity GUIDs (using a performer array field that contains multiple GUIDs -

each of the performer fields in the array contains an organization entity GUID)
● a single valid non-array RQL expression (that resolves to one or more organization entities). See

Resource Query Language.
● a resource GUID. For example:

performer = Process.getOrgModel().resourceByName('JohnSmith').getGuid();

Using an organization entity GUID or multiple organization entity GUIDs means that
dynamic performers allow references to specific organizational entities, so that they will
appear in the relevant managed work lists. You should only need to use RQL if you want to
offer work based on capabilities, privileges or intersections of organization entities. In most
cases, writing a script to identify the organization entity GUIDs you need and populating the
performer fields with these will be much more efficient than using RQL.

For example, the annotated process extract below shows part of a purchasing process that contains a
user task to approve a requisition. The process requires that if the requisition value is less than $50000,
this task can be performed by an Accountant. If it is more than or equal to $50000, it must be performed
by the Finance Manager.

The Select Requisition Approver script task assigns a value to the Req_approver performer data field,
based on the value of the requisition which is held in Req_value (and which we assume to have been
defined earlier in the process).

The Approve Requisition task assigns the work item to the Req_approver performer data field - the
value of which will be either "Accountant" or "Finance_Manager" (both of which are also defined as
participants for the process).

What to do next

Using a performer field, you can deliver work dynamically to an organizational entity, so that the work
items appear in managed work lists.

25

TIBCO Business Studio™ BPM Implementation Guide

Dynamic Organization Identifier Mapping

When a Dynamic Organization Participant is assigned to a task you need to identify the correct instance of
the Dynamic Organization to use to resolve this participant at runtime. This is done using Dynamic
Organization Identifiers which are mapped to process data.

The mappings are between the process data and the Dynamic Organization Identifiers of the referenced
Dynamic Organization (not the Dynamic Organization).

Procedure

1. In the business process, select the Work Resource tab, and expand Dynamic Organization Identifer
Mappings... .

2. Map your process data (data fields and parameters) to a Dynamic Organization Identifier (which you
set up when you created the Dynamic Organization Model). See "Dynamic Organizations" in TIBCO
Business Studio Concepts and "Creating a Dynamic Organization" in TIBCO Business Studio Modeling
User's Guide .

What to do next

A Dynamic Organization declares its Identifier Fields. These are arbitrary fields that are used to uniquely
identify a generated instance of the Dynamic Organization at runtime.

When a Dynamic Organization is assigned to an Extension Point, those Identifier Fields must be mapped/
assigned to named LDAP Attributes. This is done after deployment.

A generated instance of a Dynamic Organization takes its Identifier values from those named Attributes; of
the LDAP Entry from which it originates.

A Dynamic Organization Participant carries values for the Dynamic Organization Identifiers. These values
are derived from process data (data fields and parameters) mapped to those Dynamic Organization
Identifiers. With this information the User Task can identify the instance of the Dynamic Organization in
which the Participant can be found.

Using a Participant Expression to Define a Participant

You can use the Organization Model Query option to create an expression to define a participant. The
expression sets out a definition that the participant in question must meet. This defines the participant in
terms of organization model entities.

For example, this enables you to:

● allocate a work item to the manager of the person who carried out a particular named task.

● allocate a work item to one named position if the value of the data field x is >2000, and allocate it to a
different named position otherwise.

Participant expressions enable dynamic definitions of participants, since the participant who fits the criteria
on one occasion may not be the same on another occasion.

Expressions can be used to describe concepts such as the following:

● The manager of a given organization unit

26

TIBCO Business Studio™ BPM Implementation Guide

● A member of a given organization unit

● A given group

● The manager approving a given task

A push destination assigned to an organization entity (group, position, organization unit, etc.) will only
work when the organization entity is explicitly identified as the participant, and not when it is defined as
part of a participant reference.

These expressions can be made up of references to organization model entities:

● Lists of all members of a given organization unit

● Lists of all members in a named position in a given organization unit

● Lists of all members of a given named group

● List of all resources in a named position

● A specific named resource

For instance you can select a group named "HealthSafety" this way:
group(name="HealthSafety")

See the TIBCO Business Studio Modeling User’s Guide to find out how to assign expressions to participants.

Using Organization Entities in Performer Data Field or Parameter

You can use organization entities in performer data fields or parameters to allow you to deliver work
dynamically to an organizational entity, so that the work items appear in managed worklists.

You can do this by populating a performer field with one of the following:

● an organization entity GUID

● multiple organization entity GUIDs (using a performer array field that contains multiple GUIDs)

A Process Task can reference multiple Participants. However, if any of those Participants are
Dynamic Organisation Participants, then all references to Dynamic Organisation Participants
by that Process Task must refer to entities within the same Organisation Model Template.

● a valid DRQL expression that resolves to one or more organization entities. See Best Practices when
using Dynamic Resource Query Language (DRQL)

Procedure

● Add the performer data field/parameter as a participant to the user task (using the method described in
the TIBCO Business Studio Modeling User’s Guide).

Defining How Work Will be Assigned to Users
TIBCO Business Studio offers a number of design-time mechanisms to refine and control how work items
generated from user tasks will be assigned to users.

Offering and Allocating Work
The participants assigned to a user task define the pool of users who are eligible to receive work items
generated by that user task. You must also define whether a work item generated from a user task will be
allocated to or offered to the pool of eligible users:

● Allocated work is only sent to a single user, selected from the pool.

27

TIBCO Business Studio™ BPM Implementation Guide

● Offered work is sent to every user in the pool.

The following diagrams show the difference between these methods.

Allocating a work item to a single user from the pool

Offering a work item to every user in the pool

Procedure

1. Select the user task.

2. Select the Resources tab of the Properties view.

28

TIBCO Business Studio™ BPM Implementation Guide

3. In the Distribution Strategy area, click:

● Offer To All, to offer a work item generated by this user task to all users in the pool of designated
participants. This is the default option.

● Offer To One, to offer a work item generated by this user task to a single user in the pool of
designated participants. This option is not currently supported. Do not use it. A validation error
is displayed if this option is selected.

● Allocate To One, to allocate a work item generated by this user task to a single user in the pool of
designated participants.

Distributing Work Within the Target Pool
Once you have identified the participants who are eligible to receive work items generated by a user task,
BPM must identify the users within the target pool to send the work item to.

If the user task’s specified distribution method is:

● Offer. BPM offers the work item to all users who are members of the specified organizational entity (or
entities).

● Allocate. BPM allocates the work item to the pool of users that the participant definition resolves to. It
determines which user to use by selecting an allocation method. These are:

— Round-robin. Work items are allocated to members in strict rotational order.

— Random. Work items are allocated to members in random order.

Assign the allocation method from the General tab of the Properties view of the requisite organizational
entity. BPM uses the allocation method you have assigned. If that entity does not have an allocation
method, the allocation method defaults to Random.

29

TIBCO Business Studio™ BPM Implementation Guide

Work items can be assigned to an organizational entity (such as a position) using an RQL statement. RQL is
dynamic, which means that if the items referred to by the RQL changes in some way (for example if the
resources mapped to an organizational position are changed) then this will be reflected in the set of
resources associated with the work item.

The work items assigned using an RQL statement do not appear in the Supervised Work List for the
organizational entity (because the work items are offered to individual resources, not to the group being
listed in the Supervised Work List). For example, if you define a Customer Services Representative position
using resource query language, the work item is offered to each resource in the Customer Service
Representative position but does not appear in the supervised work list.

If work items are offered to organization entities that contain no resources, the work item is scheduled, but
will not appear in any worklists until a resource is mapped/added to the organization entity that the work
item was offered to.

If work items are offered to organization entities that do not exist, the work item is scheduled to the
undelivered group.

If you undeploy an organizational entity that is referenced by RQL and if work items are scheduled to that
entity (or if work items are offered to organization entities which are deleted due to an organization model
upgrade) then the work items transition to the pending state. To correct this the organizational entity must
be redeployed. In this scenario an error will be logged and audited.

Allocating a Work Item to a Member of an Offer Set
Use the Allocate to offer-set member distribution strategy to specify both an offer set for a work item, and a
specific user to whom that work item should be allocated. When the work item is scheduled, if that user is
not a valid member of the offer set, the work item is instead offered to the remaining members of the offer
set, as if the Offer to all distribution strategy had been used instead.
The Allocate to offer-set member strategy allows you to support, for example, a case handler/account
manager pattern, so that although the work item is originally allocated to a member of a team, the team
manager can still:

● see all items that were originally offered to the team.

● re-allocate the work item to another member if required - for example, if the user who started the case is
off work due to sickness.

● report on work from a team perspective.

The Allocate to offer-set member distribution strategy cannot be used with the Chained Execution,
Separation of Duties or Retain Familiar workflow patterns.

Procedure

1. Define a Performer field that will be used to identify the user to whom the work item should be
allocated.

The Performer field must not be an array field and must not contain an initial value defined as an RQL
expression. In either case, an error marker will be displayed against the field.

2. On the Properties tab of the User task, click Work Resource > Distribution Strategy > Allocate To
Offer-set Member.

3. In the Member Identifier field, enter the name of the Performer field you defined earlier.

4. Modify the process so that it populates the Performer field with a suitable value before the user task is
executed.
The performer field must, at runtime, contain the GUID of a single resource who is a valid member of
the work item's offer set, as defined by the user task's participant.

30

TIBCO Business Studio™ BPM Implementation Guide

You can use scripting methods and attributes to obtain the resource's GUID. See "Process
Manager and Work Manager Scripting" in the TIBCO ActiveMatrix® BPM Business Data Services
Guide for more information.

The performer field must not be populated by an RQL expression. (This will result in a runtime error.)

Result

At runtime, the work item will be allocated to the user identified by the GUID value in the performer field.
If the performer field returns an invalid value:

● The work item will instead be offered to all members of the offer set.

● One or more of the following error messages will be returned (in the BPM log file and in relevant event
or audit views).

Message ID of Error Possible Causes

BRM_RESOURCE_INVALID_DESCRIBE_ENTITY The provided GUID belongs to an organizational
entity that is not a resource.

The performer field has been populated using an
RQL expression (for example,
resource(name="Leon"), so does not contain a
GUID.

BRM_WORKITEM_SCHEDULE_MEMBER_INVA
LID

The provided GUID belongs to an invalid
resource.

BRM_WORKITEM_SCHEDULE_NOT_A_MEMBE
R

The provided GUID belongs to a resource who is
not a member of the offer set.

Using Resource Patterns to Control How Work is Assigned
You can use the following resource patterns in your process to further control how work is assigned to
users. Resource patterns are formal representations of the various ways in which resources are represented
and utilized in workflows, as identified by the Workflow Patterns initiative.

● Chained Execution

● Separation of Duties

● Retain Familiar

● Piling

Chained Execution

Chained Execution allows you to specify that a user will automatically start the next work item in the same
process instance as soon as the previous one has completed.

To set up a chained execution pattern, you refactor the required user tasks as an embedded sub-process,
and mark the sub-process to use chained execution.

User tasks that are to be chained together must meet the following requirements:

● They can be assigned to different Participants, but they will still be offered to the same user if that user
qualifies under the participant definitions for each task. For example, if one task is assigned to a position
and the second to a group, a user who both holds that position and belongs to that group can be given
both tasks. If the user is not a member of the group, the second task will be offered to each of the group
members.

31

TIBCO Business Studio™ BPM Implementation Guide

● They must have Offer to All as their Distribution Strategy (see Offering and Allocating Work).

For instructions on chained execution, see the information in the tutorial How to Ensure that a Sequence of
Tasks is Performed by the Same User and the TIBCO Business Studio Modeling User’s Guide.

For information on the properties that influence how a chained execution pattern operates at runtime, see
the WPProperties.properties file in the "BPM Properties Files" section of the TIBCO ActiveMatrix BPM -
BPM Administration guide.

Separation of Duties

Separation of Duties allows you to specify that particular user tasks must be performed by different users,
even though the tasks are assigned to the same participant.

For instructions on implementing this pattern in a process, see the information in the tutorial How to Ensure
Specific Tasks in a Process are Performed by Different Users and the TIBCO Business Studio Modeling User’s Guide

Retain Familiar

Retain Familiar stipulates that you want a specific task to be executed by the same resource that executed a
previous task in the same process instance. For example, the resource that handles the initial customer
contact is the same one that handles the follow-up call.

For instructions on implementing this pattern in a process, see the TIBCO Business Studio Modeling User’s
Guide.

Piling

Piling allows you to specify that a particular participant completes work items that relate to a specific task,
sequentially. The work items may be in different processes. Once the work item is completed, if another
work item that corresponds to the same task is present in the user’s work list, it is immediately started. The
benefit of this is that the same work is given to a specific resource who then gains experience in processing
this particular task.

For instructions on implementing this pattern in a process, see the TIBCO Business Studio Modeling User’s
Guide.

32

TIBCO Business Studio™ BPM Implementation Guide

Using Forms with User Tasks

This section explains how to work with forms associated with user tasks and page flows within the TIBCO
BPM environment. It provides information that is specific to using forms within a BPM environment.

Refer to the TIBCO Forms User’s Guide for general information about designing forms.

This information is for users responsible for designing and implementing business processes that include
user interfaces for presenting and capturing information from users. The forms and business processes you
design can be deployed to a BPM node and can be accessed via Openspace, Workspace, or a custom client
application.

Creating a New Form
When you create a BPM project, a default form is created for each user task defined in the business process.
You can use the default form or if required edit the default form.

You can also use any of the methods listed below to create a new form for a user task:

● Creating a New Form for an Existing User Task
● Creating a New Form Manually from the Project Explorer
● Creating a Free-standing Form
● If required, Switching Back to the Default Form

Creating a New Form for an Existing User Task
For forms that are used by a business process, editing the default form for an existing user task is the most
efficient way to create a form

This is efficient for the following reasons:

● From the beginning, the default form exists in the context of the user task with which it will be
associated in the business process. This means that the Form field for the user task (on the General tab
of the user task’s Properties view) will be automatically filled in with the URL of the new form.

● If there are existing parameters associated with the user task, the new form will include user interface
components, bound to the corresponding form parameters.

You can create a new form for any user task in TIBCO Business Studio in one of the following ways:

● Go to the context menu of a user task in a business process and click Form > Open .
● On the General tab of a user task’s Properties view, select the Form... radio button.
In both of these cases, the existing default form is set on the user task as the custom form. You are prompted
with a warning message informing you that "the customized form will no longer be automatically kept in
sync with the activity interface."

At this point, you will be using the automatically created default form as a starting point for further
modifications. If there are any changes to the user task interface, those will need to be synchronized with

33

TIBCO Business Studio™ BPM Implementation Guide

the form. The form will display error-level problem markers when the parameters defined for the form are
out of sync with the activity interface from which it was created.

Form Generator Preferences

TIBCO Business Studio provides two Form Generator Preferences settings that can be accessed from
Window > Preference > Form Designer > Generator .

● Generate text area for a string exceeding this length: Used to specify the text length threshold value
above which the form generator will generate a text area rather than a text input. The default value is
100.

● Generate text area for an XSD string with no length restriction: Used to generate a text area for a BOM
primitive type or property that was originally defined in an XML schema as base type xsd:string with no
length restriction.

— Checked: A text area is generated.

— Unchecked: A text input is generated.

You can set the Form Generator Preference both globally at the workspace level and override it locally at
the project level. Local preference overrides must be applied to the project in which the form is generated,
not the project containing the BOM.

Creating a New Form Manually from the Project Explorer
A form may be created manually from the Project Explorer within any Forms special folder.

Procedure

1. Go to the context menu of the Forms special folder, or any child folder under the Forms special folder in
the Project Explorer and click New > Form . This will trigger the opening of the New Form dialog.

2. Specify the Form type on the New Form dialog. The type of form that is selected here determines the
components that are initially part of the form model. The form types are as follows:

● Process task: This creates a form that is the same as one created from a User Task in a process
definition. It will contain a root pane, a toolbar with Cancel, Close, and Submit buttons, and a
messages pane for displaying error messages.

● Pageflow task: This creates a form that is the same as one created from a User Task in a Pageflow
Process. The only difference to a Process task form is that the toolbar contains only Cancel and
Submit buttons. The Close operation is not supported in pageflows since there is no way to re-
open a step in a pageflow once it has been closed.

● Embeddable: This creates a form that is suitable for embedding within another form. This will only
contain a single root pane. This is because the parent form would typically contain the toolbar and
messages pane, so these components are not needed in an embeddable form. Refer to the TIBCO
Forms User’s Guide for more information about Embeddable Forms.

Creating a Free-standing Form
Although it is convenient to generate new forms from existing user tasks, there are situations where a forms
designer prefers to create a free-standing form before the corresponding user task is available.

There is no impediment to doing this. A form can be created by either of the methods listed below, and
linked to a user task later.

● Go to the context menu of the Forms special folder, or any folder under the Forms special folder in the
Project Explorer and click New > Form .

34

TIBCO Business Studio™ BPM Implementation Guide

● On the File menu, click New > Other > TIBCO Forms > Form .

Procedure

1. Go to the context menu of the user task and click Form > Use Existing .

The Select Form dialog opens.

2. Select an existing form from the Project Explorer folder structure and click OK.

Note that you must choose a form within the same project as the user task.

3. Synchronize the user task parameters with the form by going to the context menu of the user task and
clicking Form > Synchronize... This establishes a permanent link from the form to the user task. This
also enables the form synchronization validator to check that the form remains in sync with the user
task’s data interface and for the form synchronization wizard to modify the form as necessary to
preserve consistency.

The bidirectional linkage between the user task and form means that any given form may only
be used by a single user task. The pairing of a user task to a form can be subject to automatic
synchronization validation. If you share a form between multiple user tasks, you need to
manually synchronize the form with the different user tasks. By doing this, the
synchronization validation link to the previously associated user task is broken. Hence the
second approach is not recommended. A better way to share forms is by embedding the
reusable parts.

Forms must be created only under a Forms special folder, or within folders under a Forms
special folder. If you choose a location other than the default location, be sure that the folder
you select meets this requirement.

Switching Back to the Default Form
After creating an auto-generated form using the Form > Open context menu action or the user task General
Properties tab Form... radio button and manually customizing it, there can be a situation where you would
like to start over again with a default form.

Procedure

1. Go to the context menu of the user task and click Form > Use Default . This option is enabled only if the
Form... radio button is selected on the user task General Properties tab.

You can also select the No Form URL radio button in the user task General properties tab as
shown below.

2. The Confirm Delete dialog appears.

35

TIBCO Business Studio™ BPM Implementation Guide

● Choose the Delete option if you need to delete the existing customized form. The customized form
in the Forms folder in the Project Explorer is deleted.

● Choose the Keep option if you need to retain the customized form. You would select this option if
the Form were still to be used by other user tasks.

3. After providing the delete options, you need to generate the new form. Go to the context menu of the
user task and click Form > Open . You can also click the 'Form...' radio button in the user task General
Properties tab.

4. If you previously specified the Delete option on the Confirm Delete dialog, a default auto-generated
form is created.

5. If you previously specified the Keep option on the Confirm Delete dialog, the Overwrite Form dialog
appears. Choose the Overwrite option if you need to overwrite the existing customized form with a
default form or choose the Reuse option to continue using the existing customized form.

6. The system remembers your responses; the next occasion on which it presents either of these dialogs
your previous choice becomes the 'default action' (the one executed if you press the Enter key). If you
select the Do not ask this question again check-box, the dialog will not be displayed on subsequent
occasions and the system will automatically take the action that you choose on this occasion. These
settings may be changed using Window > Preferences > Form Designer > Process .

Updating Forms with the Synchronization Wizard
If the set of task parameters changes after a form has already been created, you can use the Synchronize
Form wizard to update the set of form parameters, controls, and bindings in the linked form. Likewise, if a
change is made in the business object model that impacts the form (for instance, if an attribute is added to a
class that defines a type on the form), the synchronization wizard will update the form appropriately.

When a form needs to be synchronized, a problem marker appears on the form in the Form Designer,
usually near the element that is out of sync, as well as in the Properties and Content Outline views. Mouse
over the problem marker on the form to see a tool tip containing a description of the problem and a link to
launch the synchronizer, as shown in Problem Marker: Form out of sync.

Problem Marker: Form out of sync

You can also use the button available in the Project Explorer view, Outline view, and Properties view.
When the problem markers are in scope for the active view’s input, this action is visible and can be clicked
to inspect the markers and execute quick fixes.

36

TIBCO Business Studio™ BPM Implementation Guide

Problem Marker in the Project Explorer View

On clicking the button, two hyperlinks are available:

● The marker link (opens the offending resource in its appropriate editor)

● The quick fix link (opens the Quick Fix wizard)

Problem Marker in the Outline View

If there are multiple markers, the tooltip window displays left and right arrow buttons to navigate the
markers. If a marker issue has multiple quick fixes, they are all listed in the lower section.

Options for Synchronization

If multiple problem markers are associated with selected element on the form, the tool tip includes left and
right arrows for navigating through them. Also, in the case of multiple synchronization problems, the tool
tip can present different quick fixes for handling the problems.

The first two quick fixes are: choose to synchronize the entire form, or synchronize just the component
whose problem marker was used to launch the wizard. In the latter case, although fixes for all out-of-sync
components will be displayed, only the component whose problem marker you "moused over" will have the
checkboxes checked for its available synchronization actions, that is, selected for updating by the wizard.

There is a third option when multiple components are out of sync. You can choose to override the sync
default value, that is, to leave the form as it is (perhaps because the problem is minor or because you intend
to fix the user task parameter, instead, to bring the user task and the form into sync). This option will cause
the wizard to ignore the suggested fix or fixes and remove the problem marker for the component whose
marker was used to launch the wizard.

If the wizard is subsequently launched with the Synchronize component option using the problem marker
of another component, fixes for the component for which the override was done will still be displayed, but
will be grayed out and unselected to indicate the override. Nonetheless, the grayed-out fixes can be
selected, undoing the earlier override. In this case, the wizard displays a warning message to the effect that
user overrides will be overwritten with generator defaults.

Synchronization Quick Fixes shows an example of three possible synchronization quick fixes presented by
the tool tip: synchronize form, synchronize component, and override sync default value.

Synchronization Quick Fixes

Click the desired link in the tool tip to launch the Synchronize Form wizard.

37

TIBCO Business Studio™ BPM Implementation Guide

To launch the wizard directly, without using a tool tip, right-click the user task, and click Form >
Synchronize . The menu for launching the wizard is shown in #GUID-F42DD98A-A17F-4D9F-9E19-
B52F7E369F04/ID-149-0000055C.

The first screen of the wizard, shown in First Page of Synchronization Wizard, presents a list of all the
possible conditions on which the wizard can check and report, and, in each case, the severity associated
with the item being out of sync. Normally, all of the checkboxes can be left checked.

First Page of Synchronization Wizard

If you check the Remember these setting checkbox, the synchronization options wizard will not start on
page one in the future, Synchronization Options, but will take you straight to page two, Synchronization
Actions. From page two, you can still reach page one by clicking the Back button.

Click Next to advance to the Synchronization Summary page, which displays the changes that can be
made, such as parameters to be added, modified, or removed from the form. Clicking the Expand All (+) or
Collapse All (-) button on this page will expand or collapse the list of actions displayed. The checkboxes
enable you to select the actions the wizard will perform when you click the Finish button.

Actions performed by the wizard will respond to the Undo and Redo commands invoked on the Edit
menu. Note that if a synchronization fix is undone, recreating the out-of-sync condition, the problem
marker may not be displayed again until the synchronization wizard is invoked again.

Synchronization Wizard Preferences

The list of conditions that are checked by the wizard (shown on the wizard’s first page), and the severity
level indicated by the problem marker icon (and displayed in the tool tip) for each item, can be modified by
editing the Synchronization Options. In the menu bar, click Window > Preferences > Form Designer >
Process to view and edit the synchronization settings. You can also click Window > Preferences > Form
Designer > Process to open the dialog and check or uncheck the checkboxes to remove or add an item to
the list of items that will be checked when the wizard is run. Click the severity for an item to display an
option list for selecting a different severity. In most cases, the default severity choices are suitable.

38

TIBCO Business Studio™ BPM Implementation Guide

You can also click Window > Preferences > Form Designer > Errors/Warnings > Process Synchronization
to view descriptions of the items that can be synchronized by the wizard, and view or edit the setting for
the severity associated with an out-of-sync condition for each item.

The presence of an Error marker will prevent deployment of the form, while Warning and Info markers
will not. If the marker’s severity for an item is changed from Error to Warning or Info, the form will be
deployable, but doing so is strongly discouraged, since the severity level of Error indicates a likelihood of
severe problems with the form at runtime if the condition is not addressed. For this reason, the severity
levels should normally be left unchanged.

There are additional preferences affecting synchronization that can be edited in the Process dialog
(Window > Preferences > Form Designer > Process), shown in Preferences for TIBCO Forms Process
Support.

Preferences for TIBCO Forms Process Support

Most of the settings here are self-explanatory. The Summary sync marker threshold setting deserves
mention, however. This is the number of sync markers on the form above which individual problem
markers are not shown. By default, the threshold is 4. Change this setting by typing the desired number in
the text field. If the number of sync markers on the form are above the Summary sync marker threshold
value, only one summary marker reading "Form <form name> is out of sync," will be displayed.

If you check the Remember synchronization wizard options checkbox, the wizard will not start on page
one in the future, Synchronization Options, but will take you straight to page two, Synchronization
Actions. From page two, you can still reach page one by clicking the Back button.

Using Data Fields and Parameters with Process User Tasks
Data fields and process parameters represent data that can be used as input to, or output from, steps in a
business process. When mapped to a user task, process parameters represent the inputs and outputs of the

39

TIBCO Business Studio™ BPM Implementation Guide

user task. The parameters of a user task, in turn, can be mapped to controls on the form associated with that
user task.

While XPDL defines two types of parameters: FormalParameter and ActualParameter, the term parameter is
used in TIBCO Business Studio as follows:

Formal Parameters
 Parameters created at the process level of a process package represent interfaces for other processes that
want to provide input to, or receive output from, the process that contains these parameters. They can be
used, in turn, as input to, or output from, any user task in the business process by being added to the user
task’s interface. Formal parameters are described in the TIBCO Business Studio Modeling User's Guide.

User Task Parameters
 User task parameters are properties of a specific user task within a business process, and they are
mapped to data fields or process parameters using the Interface tab of the user task’s Properties View.

The Mode Property of User Task Parameters
The Mode property of a user task parameter refers to whether it is an In, Out, or In/Out parameter. The
Mode is set differently depending on whether the parameter is derived from a process parameter or a data
field:

● Process Parameters
 Mode value set on the parameter’s Properties view.

● Process Relevant Data
 Mode value set on the user task’s Interface Properties view.

Using Data Fields and Parameters
Incoming data can populate form controls with initial values or dynamically set runtime values for certain
control properties, such as the text of a control’s label, or whether it is initially visible on the form. Outgoing
data are submitted when the user clicks the Submit button. These data can be used in various ways in
subsequent phases of the business process, sent to an external process, or written to a persistent store.

Relationship Between User Task Parameters and Form Parameters

A user task and a form have their own separate models for the input and output parameters for the task or
form. When a form is created from a user task, the form parameters are automatically set to match those in
the user task.

The Synchronize Formoperation on the user task will again update the form parameters to match those in
the user task if there have been any changes since the form was originally generated.

Data Types for Data Fields and Process Parameters
Data fields and process parameters must either have one of the predefined primitive data types supported
by XPDL or an existing complex type to be mapped to a form parameter.

Primitive Data Types

The following simple data types can be used for a data field or process parameter that will be mapped to a
form parameter:

String
 A set of alphanumeric characters, with a specified maximum length.

Decimal Number
 A decimal number with a specified maximum length and specified number of decimal places.

40

TIBCO Business Studio™ BPM Implementation Guide

Integer Number
 An integer value, with a specified maximum length.

Boolean
 True or false.

Date Time
 A combination of date/time.

Time
Time only

Date
 Date only

Complex Data Types

Complex data types must first be created in a business object model to be available as types for data fields
and parameters. All existing complex data types available to the business process appear in the Select Type
dialog that opens when External Reference is chosen as the type for the parameter or field, and the browse
button is clicked:

Icons for Data Types

In the case of data fields, an icon appears next to each data field in the Project Explorer to identify the data
type of the field.

Data Types

Icon Data Type

Text

Decimal Number

41

TIBCO Business Studio™ BPM Implementation Guide

Icon Data Type

Integer Number

Boolean

Date Time

Time

Date

External Reference

Data Field Levels

A data field can be created at either of two different levels of the project hierarchy in the Project Explorer,
the process level or the package level. The level determines the scope of the data field, as explained below.

Data Fields at the Process Level

Data fields created at the process level appear under a business process in the Project Explorer. The fields
are available to any form associated with a user task within that process, but not to forms in other business
processes in the package.

Data fields created at this level appear beneath the business process in the Package Explorer.

Data Fields at the Process Level

Data Fields at the Process Package Level

Data fields created at the package level appear under a process package in the Project Explorer, and are
available to any form in any business process within the process package. In other respects, data fields at
the package level are identical to those at the process level.

Data fields created at this level appear beneath the process package in the Package Explorer.

42

TIBCO Business Studio™ BPM Implementation Guide

Data Fields at the Process Package Level

43

TIBCO Business Studio™ BPM Implementation Guide

Using Presentation Channels to Display Tasks to Users

Tasks can be displayed to users in a variety of ways after deployment, depending on how you configure
their Presentation Channels.

Example: Displaying Tasks to Users using Email

You can send a notification of a task to a user by email, and they can then click the hyperlink in the email to
open the work item in a browser.

When you choose to deliver work by email (by pushing an email notification to a user for a work item), you
need to set up your server to deliver work notifications by email. To do this you need to set up Push
destinations using the Organization Browser. See the TIBCO Organization Browser User’s Guide for more
information.

A set of email attributes which you can edit allows you to tailor the delivery of the information. To do this
select Window > Preferences > Presentation Channels, expand Default Channel and select Openspace
Email. Then select the Attributes tab.

For more information, including how to create your own email template, see "Creating your Email template
files" in TIBCO Business Studio Modeling User’s Guide.

The email will be delivered using the presentation channel, Openspace Email.

Identifying an Appropriate Presentation Channel
The following channel types are provided as Default Channel types: Workspace Google Web Toolkit,
Openspace Google Web Toolkit , Openspace Email.

Support for TIBCO General Interface (GI) channel types, which had been deprecated in favor of GWT-based
alternatives, has now been discontinued at design time.

If you have existing applications that were designed to use a GI presentation channel, you can replace the
channel by opening the project in TIBCO Business Studio. An error message is displayed, with a quick fix
that replaces the GI channel with a GWT equivalent. You can then redeploy the application.

Alternatively see "Deployment of Applications that Use Unsupported GI Presentation Channels" in the
TIBCO ActiveMatrix BPM - BPM Administration guide for information on deploying and running such
applications.

You can also add the following channel types:

● Openspace Mobile. You can add this to the Default Channel (see Adding a Channel Type to the Default
Channel). Creating an additional presentation channel is not advisable for the Openspace Mobile
channel type.

● Workspace Email. This channel type has been deprecated and may be removed in a future release.

You cannot add Workspace Email in the default channel and a channel having Workspace Email in it
cannot be set as the default. If you add Workspace Email in an additional presentation channel, a
warning message is generated indicating that the channel type is deprecated. A quick fix is available
that allows you to replace it with a supported channel type.

These behave as described below at runtime:

Channel Type Behavior at runtime

Workspace Email Work items are delivered to the user using an email with a link to a Workspace
form.

44

TIBCO Business Studio™ BPM Implementation Guide

Channel Type Behavior at runtime

Workspace
Google Web
Toolkit

Work items are displayed using a link when the user opens their worklist in
Workspace.

Openspace
Google Web
Toolkit

Work items are displayed using a link when the user opens their worklist in
Openspace.

Openspace Mobile Work items are displayed using a link when the user opens their worklist in
Openspace Mobile.

Openspace Email Work items are delivered to the user using an email with a link to an Openspace
form.

Viewing the Available Presentation Channels
Presentation channels are defined for the BPM project, which means that all work in the application created
from this project will be presented in the specified channels.

Procedure

1. Select Project > Properties > Presentation Channels to see channels configured for the project.

2. Expand Default Channel (Default) to view the default presentation channels available.

3. If the project should be using shared workspace settings (that is, settings which apply to the entire
workspace, so all projects inherit these settings), uncheck Enable project specific settings and click
Configure Workspace Settings... to view or edit the current workspace channel configuration.

Adding a Channel Type to the Default Channel

Procedure

1. Double-click on Default Channel, or click the edit sign on the right of the Presentation Channels dialog.
You see a list of the available Channel Types to add (the channel types which are already part of the
Default Channel are ticked):

2. Add the Channel Type/s you require, and click Finish.

● You cannot have two channel types in the Default Channel with the same target.

● Workspace Email cannot be added in the default channel.

45

TIBCO Business Studio™ BPM Implementation Guide

Adding a Presentation Channel
It is only meaningful to add one extra presentation channel, which you can then use to override the default
presentation channel when you require.

Procedure

1. Click the plus sign on the right of the Presentation Channels dialog, and you see a list of the available
channel types to add:

2. Choose a label for your channel, and select any channel types you want to add to that presentation
channel from those available.

Do not to create a new Presentation channel called "Default Channel".

3. Click Finish. The additional presentation channel you selected will be displayed.

You can press the Restore Defaults button from the Presentation Channels dialog at any time
to go back to the original settings.

Editing Email Attributes
You can edit the attributes for an email channel type to tailor how emails are presented to the user at
runtime when a process is deployed.

See the section in TIBCO Business Studio Modeling User’s Guide for information on how to create your own
email template.

Editing Email Attributes at Workspace Level
You can edit the attributes for the Openspace Email presentation channel for the workspace.

Procedure

1. In the Presentation Channels dialog, click Openspace Email to view its attributes. The attributes are as
follows:

46

TIBCO Business Studio™ BPM Implementation Guide

mailTemplateLocation This attribute allows you to specify a custom email template that you
can tailor to meet your own requirements. It contains a picker to allow
you to select an alternative email template.

See the section in TIBCO Business Studio Modeling User’s Guide for
information on how to create your own email template.

mailSubject A brief summary of the contents of the message.

mailPriority An entry is required here. The default setting is 3. Settings can range
from 5-1, with 1 being the highest priority and 3 being what is
considered normal.

fromAddress Address where the message originated from, including an optional
name, for example, Jane Smith jsmith@anycompany.com. This is a
mandatory field.

This needs to be a valid address, depending on your SMTP server
settings. Refer to your SMTP server documentation for more
information.

Note that this does not support multibyte characters. The character
repertoire is limited to ASCII as specified in the RFC 822 standard.

ccAddress An additional, comma-delimited list of recipients. This is an optional
field.

Note that this does not support multibyte characters. The character
repertoire is limited to ASCII as specified in RFC 822 (standard) .

mailHeaders List of custom headers, of the format Header Name:Header Value,
delimited with commas. This is an optional field.

Note that this does not support multibyte characters. The character
repertoire is limited to ASCII as specified in RFC 822 (standard) .

attachments Reserved for future use.

presentationChannelId Identifies which presentation channel the user will open the work item
with when they click the HTML link in the pushed email message.

openspaceGWTPull_DefaultChannel - opens the work item in
Openspace. This is the default setting.

This is a mandatory field. The value is filled in automatically when you
create a new channel.

2. You can insert the following "tokens" into appropriate email attributes:

● %%token.workItemUrl%% - The work item URL.

● %%token.workItemId%% - The id of the work item.

● %%token.entityName%% - The entity name who requires push notifications as defined in the
Organizational Model.

● %%token.mailDate%% - The date and time the pushed mail message was sent.

● %%token.mailFrom%% - The name of the sender of the pushed mail message.

● %%token.mailSubject%% - The subject line for the pushed mail message.

47

TIBCO Business Studio™ BPM Implementation Guide

● %%token.mailTo%% - The user/s who the pushed mail message is sent to.

● %%token.mailCc%% - The user/s who the pushed mail message is copied to.

● %%token.mailBcc%% - The user/s who the pushed mail message is blind-copied to.

● %%token.hostIPAddress%% - The IP address of the host.

● %%token.hostMachineName%% - The host machine name.

● %%token.baseurl%% - The base URL.

You can add a token by typing the string directly into an attribute value. For example, for mailSubject
you could enter: PUSH DEMO - Pushing Work Item Id %%token.workItemId%%.

Then at runtime, the token will be replaced by the actual value:

 PUSH DEMO - Pushing Work Item Id 1

3. Click Apply. The attribute changes are applied next time you deploy your project.

You can click the Restore Defaults button from the Presentation Channels dialog at any time
to go back to the original settings.

The Extended Attributes tab is also available for custom use.

The Properties tab shows the properties set for the presentation channel. The example below shows the
properties for Openspace Email.

Editing Email Attributes at Project Level
You can edit the attributes for the Openspace Email presentation channel for a specific project.

Procedure

1. From Project Explorer, right-click on the project and select Properties > Presentation Channels . Check
the checkbox Enable project specific settings.

Alternatively select Window > Preferences > Presentation Channels and click on Configure
Project Specific Settings...Select the project you want to configure and press OK.

2. Expand Default Channel (Default)to view the presentation channels available.

3. Check the Enable project specific settingscheckbox.

4. Edit the presentation channels available. You can add using the plus sign, when you will be shown a list
of available channel types to add. You can also delete channel types other than the default ones.

You can edit attributes as described in Editing Email Attributes.

5. Click Apply. The attribute changes are applied next time you deploy your project.

You can click the Restore Defaults button from the Presentation Channels dialog at any time
to go back to the original settings.

The Extended Attributes tab is also available for custom use.

The Properties tab shows the properties set for this presentation channel.

48

TIBCO Business Studio™ BPM Implementation Guide

Sending an Email Message from a Process

You can send email messages from a process by configuring the service task. These messages could be
internal notifications giving information about the progress of the process, or external messages such as
automatic order confirmations sent to customers.

To set up your server to deliver email you need to do the following:

● An SMTP resource instance must exist in the BPM runtime before you can deploy an application that
uses a service task to send an email. This resource instance defines the connection information used by
BPM to contact the SMTP mail server.

To define a resource instance, you must use TIBCO Administrator to:

— create a resource template. A resource template specifies configuration properties for resource
instances.

— create a resource instance based on the resource template. A resource instance represents a resource
shared between applications.

— install the resource instance on a host. The resource instance is then available to applications
running on that node.

● There are several different types of resource instance. An SMTP resource instance must be used to
provide a connection to an SMTP mail server.

● You use TIBCO Administrator to define an SMTP resource instance.

● You will bind to the resource instance when you deploy the process.

See the How to Send an Email from a Process tutorial for more information.

Configuring Service Tasks to Send Email Messages from a Process
A service task that is configured as an email task:

● Defines the email addresses which the message is to be sent from, and to which replies are to be sent, as
well as the address of the recipient of the message. Addresses can be specified explicitly or taken from
available data fields; you can include fields in the message and the contents of the fields will be used at
runtime.

● Defines the body of the text. This can also be typed in explicitly or taken from available data fields.

● Defines any files or field contents that are to be sent as attachments to the email message.

As well as configuring the service task, you need to:

● Create a system participant (of type email),

● Assign that participant to the email service task.

● At deployment, bind the participant to the appropriate SMTP resource instance (which must already
exist).

See the How to Send an Email from a Process tutorial for more information.

Defining an E-Mail Service Type from a Service Task

Procedure

1. Select the service task. On the General tab of the Properties view for the service task, select the E-Mail
option from the Service Type drop-down list.

49

TIBCO Business Studio™ BPM Implementation Guide

2. Enter an email address for the recipient in the To: field, a subject, and the body text for the message. You
can enter actual email addresses and plain text, or you can specify data fields, delimited by percent
signs. For example, if you specify:

%ManagerID%

in the To field, this will be replaced by the contents of the ManagerID data field. (See Setting up
Dynamic Data Inputs to an Email Message for more information.)

This is the minimum configuration necessary to send an email message. For further options, click More
Details (which will take you to the E-Mail tab) or the E-Mail tab and continue to specify further
parameters.

3. On the E-Mail tab, you can specify further parameters for the Definition of the email message.

50

TIBCO Business Studio™ BPM Implementation Guide

All of the parameters on the E-Mail tab can be specified using a data field or a parameter. Click

the button to display the Select Data Field or Formal Parameter dialog and choose the
required data field or parameter. You can also mix text with data field values, as shown in the
Subject field of the example illustration.

● From: Use Custom Configuration to choose a data field or parameter which will specify a different
From: address for this email.

● To: Specify the recipient of the email, either as an explicit email address or by selecting a data field
or parameter. This is a mandatory field and you will receive an error if it is not present.

● Cc: Specify any recipients to whom you want to send a copy of the email either as explicit email
addresses or by selecting a data field or parameter. Their email address is visible to other recipients
of the email.

● Bcc: Specify any recipients to whom you want to send a blind copy of the email either as explicit
email addresses or by selecting a data field or parameter. Their email address is not visible to other
recipients of the email.

● Reply To: Use this parameter to specify a different email address to which recipients of a message
can reply. Alternatively, select a data field or parameter.

● Headers: Message headers provide a list of technical details, such as who sent the mail message,
the software used to compose it and the email servers it passed through to get to the recipient. Use
this parameter to specify additional information in the header of the email.

● Priority: Select a priority from the drop-down list (Low, Normal, or High) or select a data field or
parameter.

● Subject: Type the Subject line for the email message or select a data field or parameter.

4. Click Body to specify the main text of the message. Click in the main part of the field to enter text. You
can enter either plain text or HTML. If you enter HTML, then when you use the preview option below,
you will see what the output of the HTML will be.You can also specify the contents of data fields or files
to be inserted.

At the bottom of the text area are the following buttons:

● Click on the button to view the source of the body text of the email.

51

TIBCO Business Studio™ BPM Implementation Guide

● Click on the button to display a preview of how the body text will look to the recipient.

● Click on the button to open the Select Data Field or Formal Parameter dialog, which you can
use to select a field and specify that the contents of the field should be inserted in the email. This
button is only available when you are viewing the source of the body text, not when you have
selected a preview.

● Click on the button to open the Open dialog, which you can use to select a file and specify that
the contents of the file should be inserted in the email.

You can alternate between viewing the source of the body text and previewing how it will look to
the recipient, as in the example of HTML for ’Hello World’ below.

5. Click Attachments to specify a document to be attached to the message:

● Field Contents:
At run time, the resulting e-mail message produced by this task has an attachment named
field.txt, where field is the name of the attached data field.

● Files:
 Use this option to browse the file system and attach one or more files to the email message.

52

TIBCO Business Studio™ BPM Implementation Guide

To be successful, file attachments must use a consistent directory structure and file
name at design time and runtime. So for example, if you are attaching a file C:\temp
\readme.txt at design time, then that same file, in the same directory, needs to be
available to the runtime.

This also means that in a distributed environment, this needs to be available on any
host running a BPM Server node. it would be good practice to have a mapped drive
available to all hosts where the attachment is available.

Setting up Dynamic Data Inputs to an Email Message
Data fields available to the process can be used to dynamically set parts of the email at runtime, using either
%FieldName% notation or the Select Data Field or Formal Parameter dialog.

See Defining an E-Mail Service Type from a Service Task.

However, a process formal parameter, or a package-level or process-level data field that is defined as an
external reference to an attribute of a class defined in a business object model (that is, as structured data),
cannot be used in this way.

Procedure

1. Create an activity-level data field on the Data Fields tab of the email service task. The data field:

● must be defined as a simple type that matches the type of the attribute you want to reference.

● must not have the same name as an existing formal parameter, or package-level or process-level
data field.

2. On the Scripts tab, define an Initiate Script (of type JavaScript) to assign the value defined in the
desired attribute to the data field.

The attribute must have been populated earlier in the process - for example:

● by passing the data into the process from an external source, using a message start event, a
receive task or a catch message intermediate event. See Exposing a Web Service .

● by collecting the data on a form. See "Associating Process Data with Events and Tasks" in
TIBCO Business Studio Modeling Guide.

● in a script, using a dynamically created factory method to create a new data object from the
attribute’s parent class. See Dynamically Created Factory Methods .

3. On the General or E-Mail tab, enter the local data field name at the appropriate place, using either
%FieldName% notation or the Select Data Field or Formal Parameter dialog (as described in Defining an
E-Mail Service Type from a Service Task).

53

TIBCO Business Studio™ BPM Implementation Guide

Example of Setting up Dynamic Data Inputs to an Email Message

A project contains a process that uses an email service task to send a delivery confirmation email to a
customer.

The process is triggered by an external application that sends in the customer’s email address, name and
title.

The Start Event collects this data via a formal parameter, customer, which is defined as an external
reference to a business object model that defines a Customer class.

The Input to Process tab of the Start Event defines the mapping of the received data to the customer formal
parameter.

The Send confirmation email service task will use the email address, name and title to dynamically build
the email message. However, the service task cannot use the customer formal parameter to obtain this data.

Instead, to access the Customer attributes name, title and emailId on the service task, you must perform
the following steps:

Procedure

1. Define the following activity-level data fields on the Data Fields tab of the Send confirmation email
service task.

54

TIBCO Business Studio™ BPM Implementation Guide

2. On the Scripts tab, define the following Initiate Script to assign the values defined in the Customer
object to these data fields.

3. On the General tab, enter the field names as shown below.

Result

At runtime, the email message:

● will be sent to the email address defined in the emailId attribute of Customer.

● will contain the title and name defined by those Customer attributes.

55

TIBCO Business Studio™ BPM Implementation Guide

Calling a Database From a Process

This section explains how to use a service task to establish a Java Database Connectivity (JDBC) connection
to an external database and execute either a stored procedure or an ad-hoc SQL query.

You can use a service task to establish a JDBC connection to an external database and execute a database
operation - either a stored procedure, or a SQL query (a SELECT, INSERT, UPDATE or DELETE statement).

See the BPM Installation guide for details of supported database types.

Step Task description For more information, see...

1 (Optional) Define a database connection profile.

Do this if you want to be able to introspect the
database at design-time to help you define a SQL
query, or automatically generate a business object
model class to hold the return value from your
database call.

Defining and Using a Database
Connection Profile

2 Configure a system participant to identify the target
database.

Using a System Participant to Identify
the Target Database

3 Configure a service task to i) call the target database
and ii) execute either a SQL query or a stored
procedure.

Configuring a Service Task to Call a
Database

4 Map the input and output parameters defined in your
database call to corresponding data fields or
parameters in the process.

Mapping Data Between the Process
and the Database

5 When you deploy the project, bind the system
participant to a resource instance that identifies the
target run-time database.

Defining and Using a Database Connection Profile
A database connection profile defines a connection to a design-time target database for the database service
call.

Using a database connection profile is entirely optional. Doing so can make it easier to define the database
service task by enabling you to introspect the database to:

● use the SQL Query Editor to interactively build up and test a SQL query.

● automatically populate the database parameters on the Database tab.

● automatically generate a business object model class to hold the return value from your database call.

The design-time target database referenced by a database connection profile does not need to
be the same as the runtime target database - you only select the runtime target database when
you deploy your project. Indeed, security and/or access considerations may mean that you
cannot use a database connection profile to connect to your runtime target database.

However, if you do use a separate design-time target database - for example, one set up
explicitly for development and/or testing purposes, it must use the same schema as the
runtime target database

56

TIBCO Business Studio™ BPM Implementation Guide

Creating a Database Connection Profile

Procedure

1. Click the Data Source Explorer view.

2. Right-click Database Connections and select New. The New Connection Profile wizard is displayed.

3. Select the type of database connection you want to create - either Oracle, SQL > Server or DB2 for
Linux, UNIX and Windows.

4. Enter a Name and, optionally, a Description (optional), then click Next. The Specify a Driver and
Connection Details page is displayed.

5. Select an appropriate driver from the Drivers drop-down list. If one does not exist, you must define a
new driver. To do this:
a) Download and install the appropriate JDBC drivers for the type of database you want to use.

b) Click . The New Driver Definition dialog is displayed.
c) On the Name/Type tab, select one of the available driver definition templates. This populates the

Driver name and Driver type fields.
d) Click the Jar List tab.
e) Select any .jar files that are listed and click Remove JAR/Zip to delete them.
f) Click Add JAR/ZIP. A file selection dialog is displayed.
g) Browse to the location of your JDBC drivers. Select the appropriate .jar files and click Open. The

selected .jar files are displayed on the Jar List tab.
h) Click OK to return to the New Connection Profile wizard.

6. The Properties section displays default connection details for the selected driver. Edit these as required
with the appropriate information for the database you want to connect to. See Mapping the Result Set.

7. Click Test Connection to verify that you can connect to the database using the details you entered.

8. Optionally, select Save password to avoid having to enter the database password each time you
connect.

9. Click Finish.

10. The new connection profile is added to the list of Databases in the Data Source Explorer view.

Creating and Using a Local Copy of the Database Connection Profile
You can use a database connection profile to either connect directly to the database, or to create and use a
local copy of the database schema.

Procedure

1. Expand the list of Databases in the Data Source Explorer view.

2. Right-click the database connection profile you want to copy and select Connect (if you are not already
connected).

3. Right-click the database connection profile and select Save Offline.

If you choose to use a local copy of the databases schema, you must manually keep the local
copy synchronized with the master database. If you believe the master schema has changed,
use the same procedure to recreate your local copy.

57

TIBCO Business Studio™ BPM Implementation Guide

Working Online or Offline To Connect to the Database or to the Local Copy

Procedure

1. Expand the list of Databases in the Data Source Explorer view.

2. Right-click the database connection profile you want to use and select:

● Connect if you want to connect to and use the database.

● Work Offline, if you want to use your local copy of the database schema.

Using a System Participant to Identify the Target Database
A system participant is a logical identifier for a connection to an external system - in this case, a database. A
database service task must use a system participant that identifies the database that it is to connect to.

A system participant can be mapped to different databases as required:

● At design-time, the system participant can (optionally) be mapped to a database connection profile,
allowing you to introspect the design-time target database while you are defining your database call.

● During deployment, the system participant must be mapped to a JDBC resource instance that defines
the connection to the runtime target database. (See for more information.)

If you are using a database connection profile, TIBCO Business Studio can automatically create and
configure the system participant for you when you configure the service task. See Configuring a Service
Task to Call a Database.

Otherwise, you should perform the following tasks manually before you configure the service task.

Creating a System Participant and Mapping it to a Target Database

Procedure

1. Create a system participant. (See "Creating Participants" in the TIBCO Business Studio Modeling User’s
Guide for more information about how to do this.)

2. In Project Explorer, select the system participant.

3. On the General tab of the Properties view, expand Shared Resource and select JDBC.

4. Use one of the following fields to identify the database connection represented by this system
participant:

● Instance Name: Enter the name of a JDBC resource instance that identifies a connection to a
runtime target database. (The connection will only be actually defined when you deploy the
project.)

● Jdbc Profile Name: Enter the name of a database connection profile that defines a connection to a
design-time target database. (You must do this if you want to be able to introspect the design-time
target database while you are defining your database call.)

Assigning the System Participant to the Database Service Task

Procedure

1. Select the service task that you want to use to call the database.

2. Click the General tab of the Properties view.

58

TIBCO Business Studio™ BPM Implementation Guide

3. Click the picker to the right of the Participants field. The Select Participants dialog is displayed.

4. Select the appropriate system participant, then click Add to add it to the Selection list.

5. Click OK. The selected participant is displayed in the Participants field.

Result

Alternatively, you can drag and drop a system participant from Project Explorer onto the database service
task. If the task already has participants, a context menu is displayed - select Set Task Participant(s) to
replace the existing participant list with the new participant.

If a process contains multiple database service tasks that each connect to the same database, they can all use
the same system participant.

Configuring a Service Task to Call a Database

Procedure

1. Select the service task that you want to use to call the database.

2. On the General tab of the Properties view, set Service Type to Database.

3. If you have already defined the system participant that you want to use, drag it from Project Explorer
and drop it in the Participants field. See Using a System Participant to Identify the Target Database.

4. Select the Operation that you want to execute on the database, either:

● SQL, to execute a SQL query.

● Stored Procedure, to execute a stored procedure.

5. Define your SQL query or select the stored procedure that you want to execute on the database. See
Creating a SQL Query or Selecting a Stored Procedure.

6. Define the input and/or output parameters required for the query or stored procedure. See Mapping
Data Between the Process and the Database.

Creating a SQL Query
You can create your SQL query in two ways, by manually entering a query or accessing SQL Query Builder
(if you have defined a database connection profile, you can use the Eclipse Data Tools Platform (DTP) SQL
Query Builder to interactively define and, optionally, test the SQL query against the design-time target
database).

Use of Multiple Statements

If you are using Oracle PL/SQL to define a query you can use multiple INSERT, DELETE and UPDATE
statements in a clause. For example:
BEGIN
delete from BPMUSER.ORDERDETAILS;
delete from BPMUSER.CUSTOMERDETAILS;
delete from BPMUSER.MUSICCATALOGUE;
END;

The use of multiple SELECT statements in this way is not supported.

Procedure

1. Select the service task that you want to use to call the database.

2. On the General tab of the Properties view, type the required SQL code directly in the SQL area in the
right-hand pane.

59

TIBCO Business Studio™ BPM Implementation Guide

3. Select the service task that you want to use to call the database.

4. On the General tab of the Properties view, click the picker in the right-hand pane.

● If a system participant is already assigned to the database service task, and the system participant
is mapped to a database connection profile, SQL Query Builder opens, using that database
connection.

● If the assigned system participant is not mapped to a database connection profile, or if no system
participant is assigned to the database service task, the Connection Profile Selection dialog is
displayed.

Select the database connection profile that you want to use, then click OK. SQL Query Builder
opens, using the selected database connection.

A system participant is also automatically created or updated and assigned to the database service
task, as shown in the following table.

If... Then...

No system participant was
assigned to the database service
task.

1. A system participant is created at the process level,
with the same name as the selected database
connection profile.

2. The participant’s Shared Resource property values are
automatically set:

● Name is set to the same name as the selected
database connection profile.

● Type is set to Database.

3. The system participant is assigned to the database
service task.

A system participant was already
assigned to the database service
task, but was not mapped to a
database connection profile

The Name value of the system participant’s Shared
Resource property is changed to the same name as the
selected database connection profile.

Using SQL Query Builder
SQL Query Builder provides a graphical interface that provides access to your database schema and objects
so that you can quickly create or edit SQL statements without actually typing any SQL code.

This section provides only a brief overview of the Query Builder. See the Data Tools Platform Guide for more
detailed information about its features and how to use it. You can find this guide in the Supplemental Eclipse
Help section of the TIBCO Business Studio Help system.

The Query Builder contains three panes:

60

TIBCO Business Studio™ BPM Implementation Guide

● The Outline Pane

() The Outline pane contains the SQL statement. You can either edit this directly in this pane or use
the Table and Detail panes to automatically build it up.

● The Table Pane

() The Table pane displays the tables and columns to use in the SQL statement. To add a table,
right-click anywhere in the Table pane and select Add Table.

● The Detail Pane

() The Detail pane contains information appropriate to the SQL statement and tables in the first
two panes. For example, you can use it to define conditions in the statement, or to define the sort order
and type of selected table columns.

Changing the SQL Statement

The default statement is SELECT * FROM.

Procedure

1. Right-click anywhere in the Outline pane and select Change Statement Type. The Change SQL
Statement Type dialog is displayed.

2. Select the statement you want - either SELECT, INSERT, UPDATE or DELETE.

3. Click OK.

61

TIBCO Business Studio™ BPM Implementation Guide

Result

The current contents of all three panes are cleared and the appropriate SQL syntax for the new statement is
displayed in the Outline pane.

Building a Query - A Simple Example

The following example briefly demonstrates how to build a simple query against a database that contains
employee information. The query selects an employee’s first and last names and their job title, based on
their employee number (which will be passed into the query from the service task).

Procedure

1. Right-click anywhere in the Table pane and select Add Table. The Add Table dialog is displayed.
2. Browse and select a table - in this case, EMPLOYEES, then click OK. The table is displayed in the Table

pane, showing the columns contained in the table.

3. Click the fields that you want the query to return in the order that you want them returned - in this case,
FIRSTNAME, LASTNAME and JOBTITLE.

Note that the Outline pane now displays:

4. Add a condition to input an employee number to the query:
a) Click Condition in the Details pane.
b) Click the first row under Column and select EMPLOYEENUMBER from the drop-down list.
c) Enter = as the Operator (or select it from the drop-down list).
d) Enter ? as the Value. This indicates that the value will be passed to the query from the database

service task.

62

TIBCO Business Studio™ BPM Implementation Guide

5. Enter CTRL + S to save the query.

Testing the SQL Statement

Procedure

1. Right-click anywhere in the Outline pane and select Run SQL.

2. If your query defines any input variables (conditions defined in the ’?’), the Host Variable Values dialog
is displayed, in which you can enter values for each variable.

Result

The SQL Results view is displayed. This contains two panes:

● The left-hand pane shows the status of each SQL statement that you have run in this session.

● The right-hand pane shows the status and results (in separate tabs) of the query that is currently
selected in the left-hand pane.

.

If you want the right-hand pane to display just the results, on a single tab, click

63

TIBCO Business Studio™ BPM Implementation Guide

Selecting a Stored Procedure
You can select a stored procedure in two ways: you can manually enter the stored procedure name, or if
you have defined a database connection profile, you can select the stored procedure from the design-time
target database.

Manually Entering a Stored Procedure Name
Stored procedures names can be manually entered.

Procedure

1. Select the service task that you want to use to call the database.

2. On the General tab of the Properties view, type the stored procedure name directly in the Name field in
the right-hand pane, using the following format:
[owner.]stored_procedure_name
where owner is the name of the database user that owns the stored_procedure_name stored procedure.

Selecting a Stored Procedure From the Database
You can select a stored procedure from the database.

Procedure

1. Select the service task that you want to use to call the database.

2. On the General tab of the Properties view, click the picker next to the Name field in the right-hand
pane.

● If a system participant is already assigned to the database service task, and that system participant
is mapped to a database connection profile:

TIBCO Business Studio opens the database connection and displays the Pick Stored Procedure
dialog.

Expand the database through the Catalogs and Schemas until you find the stored procedure you
want, select it and click OK. The selected stored procedure is displayed in the Name field.

● If a system participant is already assigned to the database service task but is not mapped to a
database connection profile, or if no system participant is assigned to the database service task:

The Connection Profile Selection dialog is displayed.

1. Select the database connection profile that you want to use, then click OK. TIBCO Business
Studio opens that database connection and displays the Pick Stored Procedure dialog.

2. Expand the database through the Catalogs and Schemas until you find the stored procedure
you want, select it and click OK. The selected stored procedure is displayed in the Namefield.

A system participant is also automatically created or updated and assigned to the database service
task.

Updating a Stored Procedure Used in a Database Task Activity
The Database Task Activity holds a cache of metadata for stored procedures for performance reasons. It
checks for any changes in the database activity that uses the stored procedure (for example, changes in the
number of input and output parameters, type changes) before using the one from cache. If there is a change,
the initial cache entry is invalidated and the metadata for the stored procedure is retrieved.

If you decide to update the stored procedure, you must do so in the following order.

64

TIBCO Business Studio™ BPM Implementation Guide

If it is not done in this order, the cache entry will reflect that of the previous stored procedure.

Procedure

1. Update the stored procedure in the database.

2. Update and deploy the process using the stored procedure.

Mapping Data Between the Process and the Database
Each input and output parameter defined in the SQL query or stored procedure must be mapped to a
corresponding data field or parameter in the process.

Depending on the type of the database parameter, the process data field or parameter can be:

● a simple data field or parameter

● an existing business object model object

● (for values returned to the process from the database) a new business object model object. See
Automatically Creating a Business Object Model to Store Returned Data.

Mapping Data Parameters for each parameter required by the SQL query or stored procedure

Mapping Data Parameters
You must map parameters for each parameter required by the SQL query or stored procedure

Procedure

1. Select the service task that you are using to call the database, then click the Database tab of the
Properties view.

2. If you have selected the stored procedure from the database, the Parameter and Type fields are
automatically populated from the stored procedure. Otherwise, click the plus sign to add a new
mapping.

3. In the Parameter field, enter a suitable name to identify the database parameter that this mapping refers
to.

Parameters must be listed in the same order that they appear in the query or are used in the
stored procedure. You can use the Move Up and Move Down buttons to alter the order of
listed mappings.

4. In the Type field, select:

● IN, if the mapping defines an input parameter from the process to the database.

● OUT, if this mapping defines an output parameter from the database to the process.

If you are using a stored procedure, the Parameter name used for a mapping must be the
same as the name of the parameter declared in the stored procedure.

● INOUT, if this mapping defines an input/output parameter to/from the database.

5. In the Data Field field, click the picker. The Select Data Field or Formal Parameter dialog is displayed.

6. Select the process data field or formal parameter that you want to map to this database parameter and
click OK.

65

TIBCO Business Studio™ BPM Implementation Guide

● The data type of the data field or parameter must match the data type of the database
parameter it is being mapped to. TIBCO Business Studio does not validate this.

● You cannot use a data field or parameter that is defined as an external reference to a
business object model for a mapping of type IN. If you select such a data field or
parameter, a validation error is displayed against the database service task.

The following screenshot shows example mappings for a query that takes a single input parameter and
returns three output parameters.

Mapping an Externally Referenced Class Attribute to a Database Parameter
A process formal parameter, or a package-level or process-level data field, cannot be mapped to a database
parameter if the parameter or data field is defined as an external reference to an attribute of a class defined
in a business object model (that is, as structured data).

Procedure

1. Create an activity-level data field on the Data Fields tab of the database service task. The data field:

● must be defined as a simple type that matches the type of the attribute you want to reference.
● must not have the same name as an existing formal parameter, or package-level or process-level

data field.

2. On the Scripts tab, define an Initiate Script (of type JavaScript) to assign the value defined in the
desired attribute to the data field.

The attribute must have been populated earlier in the process - for example, by:

● passing the data into the process from an external source, using a message start event, a
receive task or a catch message intermediate event. See Exposing a Web Service .

● collecting the data on a form. See "Associating Process Data with Events and Tasks" in
TIBCO Business Studio Modeling User’s Guide.

● in a script, using a dynamically created factory method to create a new data object from the
attribute’s parent class. See Dynamically Created Factory Methods .

3. On the Database tab, map the local data field name to the database parameter (as described in Mapping
Data Parameters for each parameter required by the SQL query or stored procedure).

66

TIBCO Business Studio™ BPM Implementation Guide

Automatically Creating a Business Object Model to Store Returned Data
You can automatically create a business object model to store data returned by the SQL query or stored
procedure.

Procedure

1. On the Database tab, select a database Parameter defined as OUT or INOUT:

2. In the Data Field field, click . The Select Data Field or Formal Parameter dialog is displayed.

3. Select Create new return parameter, then click OK. A data field called ResultSet and a corresponding
business object model are automatically created. For example:

If this is not the first data field created in this way, a unique number is appended to the name -
ResultSet1, ResultSet2 and so on.

You can open the business object model directly by clicking .

Result

A ResultSet data field and a ResultSet business object model are created as follows:

● The ResultSet data field is automatically created in the process’ Data Fields folder.

The data field is defined as an External Reference to a business object model. The business object model
is also automatically created, with a name formed by concatenating the database service task’s name
with the data field’s name - in this example, DBCall3ResultSet.)

The data field is defined as an External Reference to a business object model. The business object model
is also automatically created, with a name formed by concatenating the database service task’s name
with the data field’s name - in this example, DBCall3ResultSet.)

67

TIBCO Business Studio™ BPM Implementation Guide

● The ResultSet business object model is created in the project’s Business Objects folder.

The business object model contains a single class (with the same name as the business object model),
which is automatically populated with attributes whose names and types match the data returned by
the database.

TIBCO Business Studio can only populate the business object model attributes if you are using
a database connection profile to provide a connection to a design-time target database and you
are defining an ad-hoc SQL query.

If you do not have a database connection, or if you do but you are defining a stored procedure,
the business object model class will be empty and you will need to manually add the required
attributes and ensure that their names and types match those being returned by the database.

68

TIBCO Business Studio™ BPM Implementation Guide

Mapping the Result Set
TIBCO Business Studio automatically populates the Database tab with the return parameters from the
stored procedure.

● Despite being similar in appearance, the return parameters from the stored procedure are not created as
parameters of the process. For this reason, they are visible only on the Database tab, and not in the
Project Explorer.

● You should also check any stored procedure parameters created on the Database tab to see that they
have been created correctly.

Each input and output parameter defined in the stored procedure must be mapped to a corresponding data
field or parameter in the process.

The process data field or parameter can be:

● a basic type data field or parameter

● an existing business object model object

● (for values returned to the process from the stored procedure) a new business object model object.)

You must ensure that the data type of your selected data field or formal parameter matches the data type of
the database parameter it is being mapped to. TIBCO Business Studio does not validate this.

You map parameters using the Database tab of the Properties view.

JDBC Driver Connection Details
The following sections define the connection information required when defining a new JDBC driver for a
database connection profile.

For complete information, refer to the documentation accompanying a specific driver.

SQL Server

Field Description

Database The name of the database that you want to connect to.

Host The IP address or host name where the database is located.

Port number The port used to access the database.

Use integrated
authentication

Whether the database uses Windows authentication or SQL Server
authentication.

If this checkbox is selected the User name, Password and Save
password fields are disabled.

User name The SQL Server login used by the connection.

Password The password for the SQL Server login used by the connection.

Save password Whether the password is saved. If not, the password must be entered on
every connection attempt.

69

TIBCO Business Studio™ BPM Implementation Guide

Field Description

Connection URL The connection URL. This is built up automatically from the connection
information entered in the other fields.

Oracle

Field Description

SID The SID of the database that you want to connect to.

Host The IP address or host name where the database is located.

Port number The port used to access the database.

User name The Oracle user name used by the connection.

Password The password for the Oracle user name used by the connection.

Save password Whether the password is saved. If not, the password must be entered on
every connection attempt.

Connection URL The connection URL. This is built up automatically from the connection
information entered in the other fields.

Catalog The name of the catalog containing the database that you want to
connect to.

DB2

Field Description

Database The name of the database that you want to connect to.

Host The IP address or host name where the database is located.

Port number The port used to access the database.

Use client authentication Whether the database uses client authentication or server authentication.

If this checkbox is selected the User name, Password and Save
password fields are disabled.

User name The DB2 user name used by the connection.

Password The password for the DB2 user name used by the connection.

Save password Whether the password is saved. If not, the password must be entered on
every connection attempt.

Connection URL The connection URL. This is built up automatically from the connection
information entered in the other fields.

70

TIBCO Business Studio™ BPM Implementation Guide

Using Web Services

This section provides general information about using web services with a process.

Subsequent topics provide more specific information about how to call or expose a web service from a
process - see:

● Calling a Web Service.

● Exposing a Web Service.

BPM application architecture is based on SOA principles: applications are composed of services that
interact by exchanging messages.

Using BPM, you can call web services from a process and expose a process as a web service.

Web Service Definition Language (WSDL) Documents
Web services are described in documents expressed in WSDL. When interacting with a web service, a
process will adopt one of two roles - supplier or consumer.

A service provider publishes a WSDL document that describes the services it offers.

A service consumer uses the published WSDL document to determine the services offered by the supplier
and the messages required to access those services.

Abstract and Concrete WSDL Documents

WSDL documents are described as either abstract or concrete:

● An abstract WSDL document describes what the web service does, but not how it does it or how to
contact it. An abstract WSDL document defines:

— the operations provided by the web service.

— the input, output and fault messages used by each operation to communicate with the web service,
and their format.

● A concrete WSDL document adds the information about how the web service communicates and where
you can reach it. A concrete WSDL document contains the abstract WSDL definitions, and also defines:

— the communication protocols and data encodings used by the web service.

— the port address that must be used to contact the web service.

WSDL Document Requirements
If a process is to be deployed to the BPM runtime, any WSDL document used by that process must adhere
to the requirements in the following sections. This applies whether the process is acting as a service
consumer or as a service provider, and whether the WSDL is manually created, imported, or generated
from a business object model.

See Web Service Definition Language (WSDL) Documents for more information about the content and
structure of WSDL documents.

WSDL Version

TIBCO Business Studio and BPM support WSDL Version 1.1.

WSDL Version 2.0 is not supported.

71

TIBCO Business Studio™ BPM Implementation Guide

Message Exchange Patterns

TIBCO Business Studio and BPM support the Message Exchange Patterns (MEP) shown in the table below.
A web service operation must use one of these Message Exchange Patterns.

Supported WSDL Operation Message Exchange Patterns

MEP Description
Required WSDL Operation
Message sequence

One-way
(In-only)

A client (service consumer) sends a message to
the web service (service provider) but expects no
response.

Input

Request-response
(In-Out)

A client (service consumer) sends a request
message to the web service (service provider).

The web service (service provider) returns a
response message to the client (service
consumer).

The web service may optionally return a fault
message in the event of an error.

Input
Output
[Fault]

Message Parameter Mappings

WSDL operation messages can be mapped to the following types of process data parameter:

● Simple data types

● Arrays of simple data types

● Structured data types (including structured data types that contain further structured data types). These
can only be used with JavaScript script grammar. The use of XPath script grammar with structured data
types is not supported.

● Arrays of structured data types

An array can be mapped to an array, but an array element cannot be mapped to an array element.

This applies whether the array contains simple data types or structured data types.

Data Transport Mechanism

The only supported data transport mechanisms are:

● Simple Object Access Protocol (SOAP) requests over Hypertext Transfer Protocol (HTTP) - (SOAP/
HTTP).

● Simple Object Access Protocol (SOAP) requests over Java Message Service (JMS) - (SOAP/JMS).

● Virtualized service bindings.

SOAP versions

SOAP 1.1 and SOAP 1.2 bindings are supported when calling or exposing a service.

SOAP Binding Style

The only supported SOAP bindings are:

72

TIBCO Business Studio™ BPM Implementation Guide

● Document/literal

● RPC/literal

Calling an ActiveMatrix BPM invocation fails due to a mismatch of binding and operation style if you use a
WSDL from an ActiveMatrix BPM project (instead of one imported from ActiveMatrix Administrator), and
then configure it using SOAP/HTTP binding.

Resolution:

● For SOAP Binding import the correct WSDL from ActiveMatrix Administrator.

● Check the configuration of the ActiveMatrix service for a mismatch of port types.

WSDL Documents and Schema Files

Schema type definitions can be embedded, included or imported in a WSDL document.

XSD Constructs
A number of XSD constructs are not supported by the BPM runtime. A process that will be deployed to the
BPM runtime cannot use a WSDL that contains or references one of these constructs. An attempt to import a
WSDL containing one of these constructs into TIBCO Business Studio may fail or display validation errors,
depending on the particular construct used and the context in which it is used.

WSDL documents and XSD schema files, when used in TIBCO Business Studio, are mapped to and from
business object models. For example:

● You can create a business object model and then export it as a WSDL document.

● When you import a WSDL document into the Service Descriptors folder, a corresponding business
object model is automatically created in the Generated Business Objects folder.

For more detailed information about how WSDL documents and XSD schema files are mapped to and
from business object models, and how particular XSD and WSDL constructs are represented in a
business object model, see the TIBCO Business Studio Modeling User’s Guide.

Unsupported Elements

● xsd:key

● xsd:keyref

● xsd:list

● xsd:redefine

● xsd:unique

Unsupported Built-in Datatypes

● xsd:NOTATION

Using Service Registries
If you plan to add a WSDL document to your project from a service registry, you can create a new service
registry entry either before importing the WSDL document, or as part of the import process.

When you deploy a process that exposes a service operation to the BPM runtime, it is automatically
published to the BPM runtime service registry. If you want to call the process from another process, you can
therefore access its WSDL using this registry.

This section describes how to add a UDDI registry before importing the WSDL document.

To create a registry do the following steps.

73

TIBCO Business Studio™ BPM Implementation Guide

Procedure

1. Select New > Other .

2. Expand Services, select Service Registry from the list of wizards and click Next.

3. Enter the details of the Web Service registry:

● Name - enter the name that you want to be displayed for the registry in the Service Explorer.

● Query Manager (Inquiry) URL - the URL used to retrieve information about the services and
businesses of the registry.

● Lifecycle Manager (Publish) URL - the URL used for publishing services and businesses to the
registry.

4. Click Finish.
To view a registry do the following steps:

5. Select Window > Show View > Other .

6. Expand Web Service Registries and select Registries.

7. The Registries view opens and you should see any UDDI Registries that you have added.
To create a registry search do the following steps:

8. Click the Add Search button () or right-click the Registry and select Add Search

9. Select the type of search you want to perform (either for a business or for a service) and click Next.

10. Enter the service search criteria:

● Name
 This is the name you want displayed in the Registries view for your search.

● Search Criteria
 You can use a percent sign (%) as a wildcard to specify search criteria. For example, specifying c
% would return all businesses or services that start with the character c.

11. Click Finish.

If the search is successful, the results are displayed in the Registries view. If the search is not successful,
a message is displayed and you should check the error log for more details.

When you expand the search in the Registries view, the results are displayed.

Search results are preserved for subsequent browsing, but may be refreshed.

To change the properties of a registry or search do the following steps.

12. Do one of the following:

● Double-click the Registry or Search.

● Right-click the Registry or Search and select Properties.

● Select the Registry or Search and select File > Properties.

13. From the resulting Properties dialog, change the settings as necessary, then:

● Click Apply to effect any changes you have made.

● Click OK to exit the dialog.

● Click Cancel to exit the dialog without applying your changes.

74

TIBCO Business Studio™ BPM Implementation Guide

Importing a WSDL Document Into a Project

Procedure

1. Right-click the Service Descriptors folder into which you want to import the WSDL document and
select Import > Service Import Wizard .

2. Select one of the following import methods:

● Import from a File Use this method to browse the file system for the WSDL document.

● Import from a URL Use this method to specify a URL that resolves to the location of the WSDL
document.

● Import from a UDDI Registry Use this method to select a WSDL document from a UDDI registry.

The Descriptor for XML over JMS option is not supported by the BPM runtime. Do not
use it.

3. Click Next. If you chose:

● Import from a File, browse to specify the Location of the WSDL document.

● Import from a URL, enter the URL for the WSDL document.

● Import from a UDDI Registry, the dialog lists any existing UDDI registries that you have added
(see Creating a Registry on page 5). Expand a registry and select a WSDL.

To add a new registry, right-click in the blank area of the dialog and select Add Registry.
You can also add registry searches in this dialog using the right-click menus.

4. Click Next.

5. Browse to select the Project > Location (the folder in your project where you want to store the WSDL
document), and if necessary change the name of the WSDL document. Select the Overwrite existing
resources checkbox if you want to replace any existing WSDL documents with the same name.

6. Click Finish.

75

TIBCO Business Studio™ BPM Implementation Guide

Calling a Web Service

This section describes some general points that you need to be aware of when implementing a call to a web
service from a process, and how to call a web service from a process.

Using Web Services provides general information about using web services with processes.

See also the following tutorials:

● How to Call an External Web Service From a Process

● How to Call a Secured External Web Service From a Process

● How to Call a Virtualized Service from a Process

● Using Credential Mapping to Associate a Specific Identity with a Process Instance

A process can invoke web service operations provided by other processes or applications. In this case, the
process acts as the service consumer in the conversation.

Service Types

A process can call two types of service:

● an internal service, provided by an application hosted in the BPM runtime. The application being called
can itself be another BPM process that is exposing one or more service operations.

● an external (web) service provided by an external application (that is, an application that is not hosted in
the BPM runtime).

Service Bindings and WSDLs

A process can call a service whose endpoint is exposed on the following types of binding:

● a virtualization binding. A virtualization binding can be provided only by an internal service (one hosted
in the BPM runtime).

You must use an abstract WSDL to call a service exposed on a virtualization binding.

● a SOAP binding. A SOAP binding can be provided either by an external service or by an internal service.

You must use a concrete WSDL to call a service exposed on a SOAP binding.

If you need to enforce a security policy when calling an internal service, you must use a
concrete WSDL to call the service on its SOAP binding. See Configuring Security on an
Outgoing Service Call .)

Service Development - Contract First or Contract Last

TIBCO Business Studio allows you to use either a contract first or contract last approach to developing the
service call, depending on which suits your requirements:

● Contract first (or top-down): You obtain the WSDL that defines the service contract from the service
provider, then configure the process to send and receive the appropriate data.

● Contract last (or bottom-up): You first define the process data that you want to send and receive, then
generate a WSDL that defines the service contract. The service provider must then implement the
service to send and request that data.

How to Call a Web Service
The procedure you need to use to call a web service depends upon two things:

76

TIBCO Business Studio™ BPM Implementation Guide

● whether you are using a contract first or contract last approach to developing the service call. (See
Service Development - Contract First or Contract Last.)

● whether you need to call the service on a virtualization binding or on a SOAP binding. (See Service
Bindings and WSDLs.)

Use the following table to choose the correct procedure to follow.

Service
Development Service Binding Procedure

Contract first Virtualization See Calling a Service on a Virtualization Binding
(Contract First) .

SOAP See Calling a Service on a SOAP Binding (Contract First) .

Contract last Virtualization See Calling a Service on a Virtualization Binding
(Contract Last) .

SOAP See Calling a Service on a SOAP Binding (Contract Last) .

Calling a Service on a Virtualization Binding (Contract First)
Use the following procedure when you want to call an internal service that is exposed on a virtualization
binding, and obtain the WSDL that defines the service contract from the service provider, then configure
the process to send and receive the appropriate data.

Step Task description For more information, see...

1. Configure an activity to call the web service. Configuring a Task or Event to Call a
Web Service

2. Select or import an abstract WSDL supplied by the
service provider, then select the web service operation
that you want to invoke.

Selecting the Web Service Operation
to Invoke

3. Define the process data that you want to send to and
receive from the web service.

Defining Input and Output Data

4. Map the input/output parameters required by the web
service operation to corresponding data fields or
parameters in the process.

Defining Input and Output Mappings

5. (Optionally) Modify the process to catch and handle
any fault messages returned by the web service.

Catching WSDL Fault Messages on a
Request-Response Operation

77

TIBCO Business Studio™ BPM Implementation Guide

Step Task description For more information, see...

6. Deploy the project to the BPM runtime. Deploying a Process That Calls a Web
Service

Calling a Service on a SOAP Binding (Contract First)
Use the following procedure when you want to call a service (internal or external) that is exposed on a
SOAP binding, and obtain the WSDL that defines the service contract from the service provider, then
configure the process to send and receive the appropriate data.

Step Task description For more information, see...

1. Configure an activity to call the web service. Configuring a Task or Event to Call a
Web Service

2. Select or import a concrete WSDL supplied by the
service provider, then select the web service operation
that you want to invoke.

Selecting the Web Service Operation
to Invoke

3. (If required) Configure the system participant to apply
security policies to the outgoing service call.

Using a System Participant to Identify
the Web Service Endpoint

4. Define the process data that you want to send to and
receive from the web service.

Defining Input and Output Data

5. Map the input/output parameters required by the web
service operation to corresponding data fields or
parameters in the process.

Defining Input and Output Mappings

6. (Optionally) Modify the process to catch and handle
any fault messages returned by the web service.

Catching WSDL Fault Messages on a
Request-Response Operation

7. Deploy the project to the BPM runtime. Deploying a Process That Calls a Web
Service

78

TIBCO Business Studio™ BPM Implementation Guide

Calling a Service on a Virtualization Binding (Contract Last)
Use the following procedure when you want to call an internal service that is exposed on a virtualization
binding, and define the process data that you want to send and receive, then generate a WSDL that defines
the service contract.

Step Task description For more information, see...

1. Define the process data that you want to send to and
receive from the web service.

Defining Input and Output Data

2. Configure an activity to call the web service. Configuring a Task or Event to Call a
Web Service

3. Generate an abstract WSDL, then select the web
service operation that you want to invoke.

Selecting the Web Service Operation
to Invoke

4. Map the input/output parameters required by the web
service operation to corresponding data fields or
parameters in the process.

Defining Input and Output Mappings

5. (Optionally) Modify the process to catch and handle
any fault messages returned by the web service.

Catching WSDL Fault Messages on a
Request-Response Operation

6. Deploy the project to the BPM runtime. Deploying a Process That Calls a Web
Service

7. Make the generated abstract WSDL available to the
service provider.

Calling a Service on a SOAP Binding (Contract Last)
Use the following procedure when you want to call a service (internal or external) that is exposed on a
SOAP binding, and define the process data that you want to send and receive, then generate a WSDL that
defines the service contract.

79

TIBCO Business Studio™ BPM Implementation Guide

Step Task description For more information, see...

1. Define the process data that you want to send to and
receive from the web service.

Defining Input and Output Data

2. Configure an activity to call the web service. Configuring a Task or Event to Call a
Web Service

3. Generate a concrete WSDL, then select the web service
operation that you want to invoke.

Selecting the Web Service Operation
to Invoke

4. (If required) Configure the system participant to apply
security policies to the outgoing service call.

Using a System Participant to Identify
the Web Service Endpoint

5. Map the input/output parameters required by the web
service operation to corresponding data fields or
parameters in the process.

Defining Input and Output Mappings

6. (Optionally) Modify the process to catch and handle
any fault messages returned by the web service.

Catching WSDL Fault Messages on a
Request-Response Operation

7. Deploy the project to the BPM runtime. Deploying a Process That Calls a Web
Service

8. Make the generated concrete WSDL available to the
service provider.

Configuring a Task or Event to Call a Web Service
A process can invoke two types of operation - one-way and request-response.

Invoking a One-Way Operation on a web service
A process can invoke a one-way operation to send a message to the web service, without receiving a
response.

Procedure

1. Select the task or event that you intend to use to send a message to the web service. This must be one of
the following types:

● a send task

● a throw intermediate message event

80

TIBCO Business Studio™ BPM Implementation Guide

● a message end event

2. On the General tab of the Properties view:
a) Click Send One Way Request.
b) Set Service Type (for a send task) or Implementation (for a message event) to Web Service.

Invoking a Request-Response Operation on a web service
A process can invoke a request-response operation to send a request message to the web service and
receive a response message back from it. (The response my be a fault message.).

Procedure

1. Select the service task that you intend to use to send a message to and receive a response back from the
web service.

2. On the General tab of the Properties view, set Service Type to Web Service.

Selecting the Web Service Operation to Invoke

Procedure

1. Select the task or event that you will use to call the web service. On the General tab of the Properties
view, the following buttons are shown against the Operation field.

2. Click one of these buttons, depending on what you want to do. The following table describes each
available option.

81

TIBCO Business Studio™ BPM Implementation Guide

Button Usage

Select Choose an operation from a WSDL that already exists in your workspace.

See Selecting an Operation From a WSDL That Exists in the Workspace .

Import WSDL Import a WSDL from an external source (a file, URL or service registry), then
choose an operation from the imported WSDL.

See Importing a WSDL and Selecting an Operation from the WSDL .

Generate Automatically create an abstract WSDL, an operation and the required data
mappings from the data fields and types defined on the Interface tab.

See Generating a WSDL and Creating an Operation from your Process Data .

Clear Clear the current selections in the Operation and Endpoint resolution
sections.

Selecting an Operation From a WSDL That Exists in the Workspace

Procedure

1. Select the task or event that you will use to call the web service.

2. On the General tab of the Properties view, click Select. The Operation Picker dialog is displayed:

● The dialog lists every web service operation that is available in a WSDL file (in either a Service
Descriptors or Generated Services folder) in any project in your workspace.

● The status line in the dialog shows the project location and filename of the WSDL that contains the
currently selected operation.

3. Select the operation that you want to invoke and click OK.

Result

TIBCO Business Studio now automatically performs the following tasks:

● It creates a system participant to identify the web service endpoint to be called. See Using a System
Participant to Identify the Web Service Endpoint.

● It populates the Operation and Endpoint resolution sections of the selected activity with the relevant
service details from the WSDL. (See Web Service Implementation Properties.)

82

TIBCO Business Studio™ BPM Implementation Guide

As a shortcut, when you have the WSDL in your workspace you can create a task or event to
call an operation using the following method:

● Expand the WSDL in Project Explorer and select the operation you want to invoke.

● Drag the operation to the point in your process flow where you want to invoke the web
service operation. A context-sensitive menu is displayed, listing the tasks and events you
can use to invoke the selected operation. For example:

● Select the appropriate option from the menu. The corresponding task or event is created
and configured. The Operation and Endpoint resolution sections are populated with the
relevant service details from the WSDL.

Importing a WSDL and Selecting an Operation from the WSDL

Procedure

1. Select the task or event that you will use to call the web service. On the General tab of the Properties
view, click Import WSDL. The WSDL Import Wizard is displayed.

2. Select one of the following import methods:

● Import from a File - to browse the file system for the WSDL document.
● Import from a URL - to specify a URL that resolves to the location of the WSDL document.
● Import from a UDDI Registry - to select a WSDL document from a UDDI registry.

The Descriptor for XML over JMS option is not supported by the BPM runtime. Do not
use it.

3. Click Next. If you chose:

● Import from a File, browse to specify the Location of the WSDL document.
● Import from a URL, enter the URL for the WSDL document.
● Import from a UDDI Registry, select the WSDL document from the list of registries and registry

searches. (See Using Service Registries .)

4. Click Next. The Destination Selection page is displayed.

5. Browse to select the Project > Location (the project folder where you want to store the WSDL
document), and if necessary change the name of the WSDL document. Select the Overwrite existing
resources checkbox if you want to replace any existing WSDL document with the same name.

6. Click Next. The Operation Picker page is displayed. This shows the WSDL files available in the selected
destination project.

7. Select the operation you want to invoke and click OK.

Result

TIBCO Business Studio now automatically performs the following tasks:

83

TIBCO Business Studio™ BPM Implementation Guide

● It creates a system participant to identify the web service endpoint. See Using a System Participant to
Identify the Web Service Endpoint.

● It populates the Operation and Endpoint resolution sections of the selected activity with the relevant
service details from the WSDL. (See Web Service Implementation Properties.)

Generating a WSDL and Creating an Operation from your Process Data

Before you generate a WSDL, use the Interface tab to define the data fields (and types) that you want to use
to exchange data with the web service - see Defining Input and Output Data .

Procedure

1. Select the task or event that you will use to initiate the call to the web service. (This must be either a
service task, or a throw intermediate message event, end message event or send task that is configured
as a one-way operation.)

2. On the General tab of the Properties view, click Generate. The Create WSDL for Activity dialog is
displayed:
a) Select the project folder where you want to store the generated WSDL file. The default option is

Service Descriptors. (If your process contains multiple service tasks that use generated WSDLs, each
task uses its own WSDL.)

b) Enter a name for the WSDL file. (The default name is ProcessName-TaskName.)
c) Click Next.
d) If desired, edit the Target namespace.
e) Select the WSDL Binding Style that you want to use - either Document Literal (the default option)

or RPC Literal.
f) Select the WSDL Type that you want to generate - either Abstract (the default option) or Concrete.
g) If you selected Concrete, change the SOAP Address to the URI that will be used to contact the

service at runtime, in the format protocol://host:port/path.

You can use any values for the protocol, host and port components of the address, as
these values will be ignored at runtime.

At runtime, the protocol, host and port components of the address will be supplied from
the configuration of the HTTP Client resource template that is referenced by the system
participant’s HTTP Client Instance property.

h) Click Finish.

Result

TIBCO Business Studio now automatically performs the following tasks:

● It creates the WSDL file.

● It creates a system participant to identify the web service endpoint. See Using a System Participant to
Identify the Web Service Endpoint.

● It populates the Operation and Endpoint resolution sections of the selected activity with the relevant
service details from the WSDL. (See Web Service Implementation Properties.)

The Operation Name and Port Type are named, respectively, after the name of the service task
and the process.

● It creates input and output mappings based on the data defined on the Interface tab of the selected
activity. See Defining Input and Output Mappings.

84

TIBCO Business Studio™ BPM Implementation Guide

Updating a Generated WSDL File

If you change the data on the Interface tab after you have generated the WSDL file, you can click Generate
again to update the WSDL file at any time.

This will also automatically regenerate the input and output mappings. (However, if you have made any
manual alterations to these mappings, these will be lost and you will need to redo them.)

Using a System Participant to Identify the Web Service Endpoint
A system participant is a logical identifier for a connection to an external system - in this case, a web service
endpoint. An endpoint defines the URL that will be used to contact the web service.

A task or event that calls a web service must use a system participant that identifies the endpoint of the web
service that is to be invoked. This information is used at runtime to map the call to the web service.

When you select or import a concrete WSDL operation binding (), or select, import or generate an
abstract WSDL operation (), a system participant is automatically created and assigned to the calling task
or event’s Endpoint Name. (The system participant’s name is taken from the portType of the chosen
operation.)

See System Participant Shared Resource Properties for more information about the configuration of this
system participant.

Configuring Security on an Outgoing Service Call
If you need to apply a security policy on the outgoing service call, you do so by assigning a policy to the
system participant that identifies the service endpoint.

You may need to do this, for example:

● to invoke a secured external web service. See the How to Call a Secured External Web Service From a Process
tutorial for more information.

● to enforce credential mapping to ensure that a process instance always runs using fixed credentials. See
the Using Credential Mapping to Associate a Specific Identity with a Process Instance tutorial for more
information.

The security policy will then be applied to the outgoing message sent by the task or event, allowing it to be
authenticated by the called service.

The service must be invoked using a SOAP binding (with a concrete WSDL). You cannot apply a security
policy if you are calling the service on its virtualization binding (using an abstract WSDL).

To assign a security policy to the system participant:

Procedure

1. In Project Explorer, select the system participant that identifies the service endpoint.
2. On the General tab of the Properties view, expand Shared Resource. The endpoint’s configuration

details are displayed.

3. In the Policy Type field, select the type of security policy required to invoke the service from the drop-
down menu - one of:

85

TIBCO Business Studio™ BPM Implementation Guide

● Username Token, X509 Token or SAML Token, to authenticate the outgoing SOAP request using a
Web Services Security (WSS) token of the indicated type.

● Custom Policy, to apply a custom security policy to the outgoing SOAP request and, if required, to
the incoming SOAP response.

You must use a Custom Policy if the SOAP response message returned by the service
contains a security header. The Username Token, X509 Token or SAML Token policies
do not handle an incoming SOAP response that contains a security header.

See SOAP over JMS Binding Details (Provider) or SOAP Over JMS Binding Details
(Consumer) for more information about these policy types.

4. If you selected Username Token, X509 Token or SAML Token, a Governance App. Name field is
displayed. Enter the name of the identity provider application from which the BPM runtime will obtain
the authentication information needed to contact the service.

5. If you selected Custom, a Custom Policy Set field is displayed:
a) Click the Browse button. The Select Policy Set dialog is displayed, listing all external policy sets that

are available in the current workspace.

The external policy set file that defines the policy to be used must be available in the same
workspace. (It does not have to be in the same project.)

If the required policy set file is not already available, click Cancel, import the file to the
workspace and try again.

b) Select the policy set that the BPM runtime will apply to the outgoing SOAP request (and, if
appropriate, to the incoming SOAP response).

c) Click OK.

Defining Input and Output Data
You use the Interface tab to define the subset of data fields and/or formal parameters defined in the process
that are available to the task or event being used to invoke the web service operation.

The selected fields will appear on the Input to Service, Output from Service or Output from Process tabs,
where they can be mapped to corresponding service input/output parameters - see Defining Input and
Output Mappings.

If the task or event is using an existing WSDL (either selected or imported), the fields/parameters selected
on the Interface tab define the fields that are available for mapping on the Input to Service and Output
from Service mapping tabs.

If the task or event is using a WSDL generated from the process, the fields/parameters selected on the
Interface tab act as a filter to control the parts that are created in the WSDL operation.

By default, all fields/parameters defined in the process are available.

To delete all the fields/parameters from the list of those available, use the checkbox No interface
association required.

Click to add new fields. The Select Data Field or Formal Parameter dialog is displayed, listing the
available data fields and formal parameters that are defined in the process and/or package.

Procedure

1. Select the data fields or parameters you need, click Add, then click OK. The selected fields are displayed
on the Interface tab.

2. For each field, click in the Mode cell and select the appropriate value from the drop-down list:

86

TIBCO Business Studio™ BPM Implementation Guide

● In - defines a field whose value will be sent to the web service.

● Out - defines a field that will be used to stored a value returned from the web service.

● In/Out - defines a field whose value will be sent to the web service, and then updated with a value
returned from the web service.

Defining Input and Output Mappings
When you are invoking a web service operation, you must map the appropriate input/output parameters
provided by the web service operation to the appropriate parameters and/or data fields in the process.

On the Properties view for the relevant task or event, the Input to Service, Output from Service or Output
from Process tab (as appropriate) provides a Mapper tool that allows you to easily perform the required
mappings.

If you have generated a WSDL and operation (see Generating a WSDL and Creating an Operation from
your Process Data), service input/output parameters and mappings are automatically created (based on the
data defined on the Interface tab). You do not have to manually create them.

Creating a Mapping
The Mapper automatically populates the left-hand and right-hand sides of the tab with the appropriate
data.

On the Input to Service or Output from Process tab:

● The left-hand side displays the parameters and data fields available to this task or event, as defined on
the Interface tab.

● The right-hand side displays the service input or output parameters defined for the selected operation
(in the WSDL document) that is being called.

On the Output from Service tab (which is only displayed for a service task invoking a request-response
operation):

● The left-hand side displays the service input or output parameters defined for the selected operation (in
the WSDL document) that is being called.

● The right-hand side displays the parameters and data fields available to this service task, as defined on
the Interface tab

To perform a mapping, simply drag and drop the parameter or data field that you want to map from one
side onto the appropriate service input or output parameter on the other side. A mapping is created
between the two entities.

The following example shows the Output From Service tab for a service task. The claimApproved
parameter, which is the only output parameter defined for the selected operation in the associated WSDL
document, is mapped to the process parameter ClaimStatus. This field will therefore store the
claimApproved value returned by the web service.

87

TIBCO Business Studio™ BPM Implementation Guide

Points to Note About Mappings
TIBCO Business Studio validates the mappings as you create them, and displays error markers to indicate
any problems.

For example:

● Every mandatory service parameter defined in the WSDL must be mapped to a process data field or
formal parameter.

● All mappings must be from and to equivalent data types - you cannot, for example, map a data field
defined as an integer to a service input parameter defined as a date.

See Message Parameter Mappings for more information about the different types of data mappings that are
supported.

If the available process data fields do not provide the necessary data for a particular mapping, you can use
the Script Editor create a script that manipulates the data fields, and map the script to the service
parameter.

Using A Script to Define a Mapping

You can use the Script Editor to modify mappings from process data to service input/output parameters or
fault messages.

For simple transfer of data between different process data, it may be easier to create scripts with Data
Mapper instead of writing them in JavaScript. See Data Mapping and Mapping Contents in Data Mapper.

Procedure

1. Select the Script Grammar that you wish to use, either:

● JavaScript, to enter a JavaScript script.

● XPath, to enter an XML Path Language expression.

2. Click New Script in the appropriate mapping tab.

3. Enter your script in the Script Editor.

Scripts are validated as you enter them. Validation markers are displayed if any errors occur.

You can also use content assist in the script Editor by pressing Ctrl + Space.

4. When you have finished, click outside of the Script Editor. A script called Scriptn is displayed in the
tab. (You can rename it by right-clicking the script name, and selecting Rename Script.)

5. Map the script by dragging it from the left side of the mapper to the appropriate entity on the right-
hand side.

Automapping

Automapping is a feature that attempts to map parameters based on their name and type. When you select
automapping, mappings between items are performed automatically.

There is a button available above the mapping on the Input To Service, Output From Service, Input To
Process, Output From Process, Map To Sub-Process, Map From Sub-Process, Map From Error and Map
From Signal tabs to allow you to select automapping.

88

TIBCO Business Studio™ BPM Implementation Guide

To delete all the mappings, click the Delete button. This is irrelevant if they were drawn using the auto-map
tool or in some other cases.

Automapping rules can be tailored so that you can choose whether you need automapping from different
providers by selecting Window > Preferences > Process Modeler > Automap Rules .

The providers are grammar specific and are responsible for matching the source and target of the mapping
ends:

● There is one Java Service Name Matcher Provider.

● For XPath, there are two providers: one for name matching in the input to the WSDL and other for name
matching on the output to the WSDL.

● For Javascript, there are two providers: one default BPMN provider which does name matching and the
other from the BPM destination which does name and type matching.

You can deselect a rule, and then when you use Automapping, it will not be used.

89

TIBCO Business Studio™ BPM Implementation Guide

Catching WSDL Fault Messages on a Request-Response Operation
If you are using a service task to invoke a request-response operation, you can use catch intermediate error
events to catch any fault messages that are returned by the web service.

You cannot catch fault messages:

● if you are using a service task with an automatically generated WSDL (see Generating a WSDL and
Creating an Operation from your Process Data), unless you have manually added a fault message to the
WSDL after you have generated it.

● when you invoke a one-way operation using an end task, a throw intermediate message event or a
message end event. Fault messages are not supported by this MEP (see Message Exchange Patterns).

Using a Catch Intermediate Error Event to Catch a Fault Message

Procedure

1. Add a catch intermediate error event to the boundary of the service task that is invoking the web service
operation.

2. Select the catch intermediate event.

3. On the General tab of the Properties view:
a) Enter a suitable Label for the event.
b) Click Select Error (to the right of the Catch Error Code field). The Select Error to Catch dialog is

displayed. This lists the fault messages which can be returned by the operation being invoked. For
example:

c) Select the fault message you want to catch, then click OK. The Catch Error Code and Thrown By
fields contain the details of the fault message.

4. On the Map From Error tab:

● The left-hand side displays the fault message parameters defined for the selected fault message,
which will contain the data returned about the error.

● The right-hand side displays the formal parameters and data fields available to this service task, as
defined on the Interface tab.

Drag and drop the fault message parameter(s) onto the appropriate formal parameters or data
fields.

90

TIBCO Business Studio™ BPM Implementation Guide

Catching Errors Example

The following process illustrates one way to catch the errors.

Service Task invokes the request-response operation provided by the process described in An
Example. That operation includes three separate fault messages, Fault1, Fault2 and Fault3.

Three catch intermediate error events - Catch Fault1, Catch Fault2 and Catch Fault3 - are added to
Service Task to catch each fault.

Each event:

● is configured to catch the appropriate error - Fault1, Fault2 or Fault3 - in the Catch Error Code
field.

● maps the data from the fault message parameter to appropriate process data fields on the
Output Fault From Process tab.

The process then provides whatever exception handling logic is required to process these errors.

An alternative approach would be to use a single catch intermediate error event, set to
Catch All instead of catching each specific error. See "Throw and Catch Error Events" in the
TIBCO Business Studio Modeling User’s Guide for more information about how to throw and
catch errors.

Handling SOAP/JMS Message Timeouts on a Request-Response Operation
If you are using a service task to invoke a request-response operation over SOAP/JMS, you can configure
JMS message timeouts to prevent the service task from hanging if the called web service does not respond
in a timely fashion. These timeouts can also prevent duplicate messages from being submitted if the
receiver was not able to receive and process the initial message(s) - for example, when communication to a
mainframe system is intermittent.

You can configure SOAP/JMS message timeout behavior by using the following properties of the service
task's endpoint:

● Request-Response Timeout (default 6 seconds): defines the time period after which a web service call
will time out if a response message has not been received from the web service. If this occurs, a Timeout
exception error is thrown by the web service task.

● Request Expiration Timeout (default 3 seconds): defines the time period within which the called web
service must pull the request message from the JMS message queue. If this timeout expires, the JMS
server will be instructed to purge the request message from the JMS message queue. (This ensures that if
the web service call is retried, the JMS message queue does not contain duplicate copies of the same

91

TIBCO Business Studio™ BPM Implementation Guide

request message for the web service to consume.) The web service call itself does not timeout when this
timer expires, so no Timeout exception error is thrown.

If you migrate a pre-4.0 version of a process to this version, default values are not automatically set for these
properties. You must set them manually.

Procedure

1. In Project Explorer, select the Participant used by the web service task to invoke the SOAP/JMS web
service operation.

2. On the General tab of the Properties view, in the Message Configuration section:
a) Set the Request-Response Timeout to an appropriate value (in seconds) for the web service that you

are calling.
You can delete this property or set it to 0, so that the web service call will wait indefinitely until the
response message is received from the called web service. This is not recommended, because if the
called web service is slow to respond or does not respond at all, the process instance will be stuck. A
validation warning is displayed if you do this.

b) Set the Request Expiration Timeout to an appropriate value (in seconds) for the web service that
you are calling. This value must be less than the value of the Request-Response Timeout.

3. Optionally:
a) Add a catch intermediate error event to the boundary of the web service task and configure it to

catch the Timeout exception error thrown if the Request-Response Timeout expires.
See Using a Catch Intermediate Error Event to Catch a Fault Message.

b) Add appropriate error handling to your process flow to deal with the timeout error.
If you do not use a catch intermediate error event, the web service task will fail with TimeoutException
error. The Process Instance will halt or fail based on process implementation. Using the Force special
action on halted process instance(s) from Openspace Process Views, you can progress halted processes.
However, you cannot progress process instances that are in a failed state. For more information about
progressing halted process instances, see "Progressing Halted Processes" in TIBCO ActiveMatrix® BPM
Openspace User's Guide.

Deploying a Process That Calls a Web Service
When you deploy a project that calls a web service, the method you must use depends on the type of web
service call you are making.

Calling a Service on a Virtualization Binding

If your process calls the service on a virtualization binding, the promoted reference in the composite
application (representing the service call) must be wired to the appropriate service virtualization binding of
the application that provides the service.

You can perform this wiring by using the Wiring Configuration page of the DAA Deployment Wizard
wizard. For more information see Using Pageflow Processes and Business Services.

Alternatively, you can export the project to a Distributed Application Archive (DAA), then use the
Administrator interface in the BPM runtime to perform the wiring and deploy the application. See the
Administrator interface documentation for your BPM runtime environment for more information.

Calling a Service on a SOAP Binding

If your process calls the service on a SOAP binding, when you deploy the project, you must bind the system
participant to the appropriate resource instance(s) in the BPM runtime:

● The system participant logically identifies the web service to be called.

● Resource instances define the actual runtime connection to the target web service.

92

TIBCO Business Studio™ BPM Implementation Guide

You can perform this binding using the Property Configuration page of the DAA Deployment Wizard
wizard. For more information see the following references:

● SOAP over JMS Binding Details (Provider)

A binding is made for each system participant, so if multiple tasks or events use the same
system participant to call the same web service, they will all use the same service endpoint.

● SOAP Over JMS Binding Details (Consumer)

Alternatively, you can export the project to a Distributed Application Archive (DAA), then use the
Administrator interface in the BPM runtime to perform the binding and deploy the application. See the
Administrator interface documentation for your BPM runtime environment for more information.

93

TIBCO Business Studio™ BPM Implementation Guide

Exposing a Web Service

This section describes some general considerations to be aware of when exposing a web service.

It follows on from Using Web Services, which provides general information about using web services with
processes.

See also the How to Expose a Web Service From a Process tutorial.

A process can expose a web service operation that other processes or applications can invoke. In this case,
the process acts as the service provider in the conversation.

Service Bindings and WSDLs

A process can expose a service using the following types of binding on the service endpoint:

● a virtualization binding. A virtualization binding can only be accessed by an internal client application
(one hosted in the BPM runtime). A virtualization binding is exposed whether you use an abstract
WSDL or a concrete one.

● a SOAP binding. A SOAP binding can be accessed either by an external client (an application that is not
hosted in the BPM runtime) or, if required, by an internal client. You must use a concrete WSDL to
expose a service on a SOAP binding.

SOAP binding can be exposed over HTTP or JMS.

● You can use the TIBCO BPM Binding Preferences page (Window > Preferences > TIBCO BPM Binding
Preferences) to set the default binding preferences for a service as a process provider participant. The
default is SOAP over HTTP using SOAP version 1.1.

This applies to a generated WSDL, and to an imported abstract WSDL. If you import a concrete WSDL
then this will be ignored and the binding will be the one defined in the WSDL.

Service Development - Contract First or Contract Last

TIBCO Business Studio allows you to use either a contract first or contract last approach when exposing a
service, depending on which suits your requirements:

● Contract first (or top-down): You first obtain the WSDL that defines the service contract from the service
consumer, then configure the process to receive and return the appropriate data.

● Contract last (or bottom-up): You first define the data that the process will receive and return, then
generate a WSDL that defines the service contract. The client application must then conform to that
contract when it calls the service.

Application Upgrade

When a process exposes a web service operation, a WSDL defines the service interface to that operation.
The WSDL can be either imported or automatically generated by TIBCO Business Studio.

94

TIBCO Business Studio™ BPM Implementation Guide

Once the application containing the process has been deployed to the BPM runtime, it can only be
subsequently upgraded if its service interface (defined by the WSDLs used to expose its services) has not
changed. (See "Upgrading a Deployed Application" in the TIBCO ActiveMatrix BPM Deployment Guide.)

If a process uses a generated WSDL, making changes to the project may result in changes to the generated
WSDL, meaning that the application cannot be upgraded. See Making Changes to the Service Interface for
more information about interface changes and about best practice in making and managing them.

Exposing the Web Service operation as a REST Service

You can expose a business process as a REST service for use via the REST API. See Exposing the Web
Service Operation as a REST Service for more information.

Exposing a Service
The procedure you need to use to expose a web service depends on the approach you are taking to develop
the service call: contract first or contract last.

See Exposing a Service (Contract First)

See Exposing a Service (Contract Last)

Exposing a Service (Contract First)
Using contract first to expose a service involves obtaining the WSDL that defines the service contract from
the service consumer, then configuring the process to receive and send the appropriate data.

Step Task description For more information, see...

1. Configure an activity to expose the web service. Configuring a Task or Event to
Expose a Web Service

2. Select or import an abstract or concrete WSDL
supplied by the service consumer, then select the web
service operation that you want to expose.

Selecting an Alternative Web Service
Operation to Expose

3. Define the process data that you want to receive from
and return to the service consumer.

Defining Input and Output Data

4. Map the input/output parameters required by the web
service operation to corresponding data fields or
parameters in the process.

Defining Input and Output Mappings

5. Deploy the project to the BPM runtime. Deploying a Process That Exposes a
Web Service

95

TIBCO Business Studio™ BPM Implementation Guide

Exposing a Service (Contract Last)
Using contract last to expose a service involves defining the process data that you want to receive and send,
then generating a WSDL that defines the service contract.

Step Task description For more information, see...

1. Define the process data that you want to receive from
and return to the service consumer.

Defining Input and Output Data

2. Configure an activity to expose the web service. Configuring a Task or Event to
Expose a Web Service

3. Generate an abstract WSDL, then select the web
service operation that you want to expose.

Using the Default Generated Web
Service Operation

4. Map the input/output parameters required by the web
service operation to corresponding data fields or
parameters in the process.

Defining Input and Output Mappings

5. (If required) Review the configuration of the SOAP
binding and endpoint.

System Participant Shared Resource
Properties

6. Deploy the project to the BPM runtime. Deploying a Process That Exposes a
Web Service

7. (If required) Generate the concrete WSDL that will be
used to expose the service on its SOAP binding.

Administrator interface
documentation for your BPM runtime
environment

8. Make the appropriate generated WSDL (abstract or
concrete) available to the service consumer.

Calling a Service on a Virtualization
Binding (Contract First)

or

Calling a Service on a SOAP Binding
(Contract First)

Configuring a Task or Event to Expose a Web Service
A process can expose two types of operation: one-way and request-response.

96

TIBCO Business Studio™ BPM Implementation Guide

Exposing a One-Way Operation
A process can expose a one-way operation to receive a message from a client application. For example, it
may do this to allow a client application to start an instance of the process, to inject a piece of data or to
trigger an event.

Procedure

1. Add or select the task or event that you intend to use to expose the web service operation. This must be
one of the following types:

● a receive task

● a message start event

● a catch message intermediate event

2. On the General tab of the Properties view, Service Type (for a receive task) or Implementation (for a
message event) is automatically set to Web Service.

Result

TIBCO Business Studio automatically generates a default service.

A task or event that is to be exposed as a one-way web service operation cannot have a Response activity
(such as a message end event) associated with it. Also, the Mode of all its formal parameters must be In.

Exposing a Request-Response Operation
A process can expose a request-response operation to receive a message from, then return a response to, a
client application.

● a message start event, receive task or catch message intermediate event, which defines the request
(Input) message. This task or event must be paired with:

● a downstream send task, throw intermediate message event or message end event, which defines the
response (Output) message, and is configured as the reply to the request.

The calling application or process pauses its activity when it sends the request and waits for the response
from the process before continuing. Because of this, you should only use a request-response operation
when there are no arbitrary length tasks between the tasks or events being used to expose the request and
response messages. See Arbitrary Length Tasks and Request-Response Operations .

Procedure

1. Add or select the task or event that you intend to use to expose the request part of the web service
operation. This must be one of the following types:

● a receive task

● a message start event

● a catch message intermediate event

On the General tab of the Properties view, Service Type (for a receive task) or Implementation (for
a message event) is automatically set to Web Service.

2. Select the task or event that you intend to use to expose the response part of the web service operation.
This must be one of the following types:

● a send task

97

TIBCO Business Studio™ BPM Implementation Guide

● a throw intermediate message event
● a message end event

3. On the General tab of the Properties view:
a) Click Reply to Upstream Incoming Request.
b) In the Request Activity field, enter the name of the task or event that you selected earlier to expose

the web service operation. Content Assist is available to help you complete this field.

Using the Default Generated Web Service Operation
When you configure a task or event to expose either a one-way operation or the request part of a request-
response web service operation, TIBCO Business Studio automatically creates a default web service
operation for the task or event.

See Configuring a Task or Event to Expose a Web Service.

TIBCO Business Studio automatically creates a default web service operation for the task or event by
performing the following actions:

● It creates a WSDL file in the project’s Generated Services folder. The WSDL filename is
PackageName.wsdl. The WSDL file contains:

— a portType with the same name as the process.
— an operation with the same name as the task or event that is exposing the operation.
— input and output messages and parameters that match the formal parameters and their modes

defined in the process.

The Generated Services folder and WSDL file are not created until you save the project. A
problem marker, stating that "The web service operation has not been generated", is
displayed against the task or event until you do this.

● It populates the Operation and Endpoint resolution sections with the relevant service details from the
WSDL. (See Web Service Implementation Properties for more information about these fields.)

On a Message Start Event, the Reply Immediately With Process Id checkbox can be used to configure a
business process to respond to an incoming web-service message request immediately with the id of the
new process instance. When this is configured an Output Process Id mapping property tab is shown
where you can can map a single process-id value back into the output message.

98

TIBCO Business Studio™ BPM Implementation Guide

The purpose of doing this is to get an immediate reply without some of the delay while waiting for
process-engine threads to become available to process the start request. The process-id can be used to
identify the process from the calling application later (for instance, by using it for correlation in a
downstream incoming message activity).

The Port Type and Operation Name are named, respectively, after the name of the process and the task/
event name being used to expose the web service operation. The "(Default Generated Service)" label
against the Operation Name also indicates that the default web service operation is being used.

● It creates a service input parameter for each formal parameter (of type In or In/Out) associated with the
task/event (implicitly or explicitly via the Interface tab), and maps each formal parameter to its
corresponding service input parameter.

● It creates a system participant (at the package level) and assigns that system participant to the task or
event’s Endpoint Name. The system participant defines the endpoint provided by the web service. Its:

— Name is ProjectPackageName_ProcessName. This is shown against the task or event’s Endpoint Name.
— Label is ProcessName. This is shown against the participant in Project Explorer.
— Transport (HTTP or JMS) will be as defined in the BPM Bindings Preference dialog. See Service

Bindings and WSDLs on page 146.
● If the task or event is exposing the request part of a request-response web service operation, TIBCO

Business Studio also updates the corresponding task that provides the response part. It creates a service
output parameter for each formal parameter (of type Out or In/Out) associated with the task/event
(implicitly or explicitly via the Interface tab), and maps each formal parameter to its corresponding
service output parameter.

If the default web service operation meets your requirements you can use it without further modification. If
not, you can modify either:

● the system participant used (see Using a System Participant to Define the Endpoint Provided by the
Web Service) and/or

● the input and/or output data used (see Defining Input and Output Data).

Alternatively, you can use a web service operation from a different WSDL instead - see Selecting an
Alternative Web Service Operation to Expose.

Updating the Default Web Service Operation
TIBCO Business Studio automatically updates the default WSDL file (and associated settings) whenever
you make a change that affects it (provided you have the Project > Build Automatically flag set).

For example, if you change the formal parameters and/or their modes on the Interface tab, TIBCO Business
Studio automatically updates the WSDL file and the associated data mappings.

Exposing Multiple Default Web Service Operations
Generated default services are maintained in a single WSDL file:

● If you expose further service operations from the same process, new operations are added to the
portType representing that process.

● If you add additional processes to the package, and those processes expose service operations, new
portTypes and operations are added to the WSDL file.

Additional operations also use the same system participant.

Selecting an Alternative Web Service Operation to Expose
If you do not want to use the default web service operation , you can select a different one to expose.

See Using the Default Generated Web Service Operation.

99

TIBCO Business Studio™ BPM Implementation Guide

Procedure

1. Select the task or event that you will use to expose the web service. On the General tab of the Properties
view, the following buttons are shown against the Operation field.

2. Click one of these buttons, depending on what you want to do. The following table describes each
available option.

Button Usage

Select Choose an operation from a WSDL that already exists in your workspace.

See Selecting an Operation From a WSDL That Exists in the Workspace .

Import WSDL Import a WSDL from an external source (a file, URL or service registry), then
choose an operation from the imported WSDL.

See Importing a WSDL and Selecting an Operation .

Set Default Reset the task or event to use the default web service operation.

See Using the Default Generated Web Service Operation .

This option is not available if the default WSDL is already selected.

Clear Clear the current selections in the Operation and Endpoint resolution
sections.

When you configure a task or event to expose the response part of a request-response web
service operation, it will automatically use the web service operation configured for the
request activity. The Select, Clear, Import WSDL and Set Default buttons are not available,
and you cannot select a different web service operation.

100

TIBCO Business Studio™ BPM Implementation Guide

Selecting an Operation From a WSDL That Exists in the Workspace
You can select an operation from a WSDL that already exists in your workspace:

Procedure

1. Click Select. The Operation Picker dialog is displayed:

● The dialog lists every web service operation that is available in a WSDL file (in either a Service
Descriptors or Generated Services folder) in any project in your workspace.

● The status line in the dialog shows the project location and filename of the WSDL that contains the
currently selected operation.

2. Select the operation that you want to expose and click OK.

Result

TIBCO Business Studio now automatically performs the following tasks:

● It creates a system participant to identify the web service endpoint to be provided. See Using a System
Participant to Define the Endpoint Provided by the Web Service.

● It populates the Operation and Endpoint resolution sections of the selected activity with the relevant
service details from the WSDL. (See Web Service Implementation Properties for more information about
these fields.)

As a shortcut, when you have the WSDL in your workspace you can create a task or event to
expose an operation using the following method:

● Expand the WSDL in Project Explorer and select the operation you want to expose.

● Drag the operation to the point in your process flow where you want to expose the web
service operation. A context-sensitive menu is displayed, listing the tasks and events you
can use to expose the selected operation. For example:

● Select the appropriate option from the menu. The corresponding task or event is created
and configured. The Operation and Endpoint resolution sections are populated with the
relevant service details from the WSDL

Importing a WSDL and Selecting an Operation
You can import a WSDL to your workspace and then select an operation from that WSDL.

Procedure

1. Click Import WSDL. The WSDL Import Wizard is displayed.

2. Select one of the following import methods:

● Import from a File - to browse the file system for the WSDL document.

101

TIBCO Business Studio™ BPM Implementation Guide

● Import from a URL - to specify a URL that resolves to the location of the WSDL document.

● Import from a UDDI Registry - to select a WSDL document from a UDDI registry.

The Descriptor for XML over JMS option is not supported by BPM. Do not use it.

3. Click Next. If you chose:

● Import from a File, browse to specify the Location of the WSDL document.

● Import from a URL, enter the URL for the WSDL document.

● Import from a UDDI Registry, select the WSDL document from the list of registries and registry
searches. (See Using Service Registries.)

4. Click Next. The Destination Selection page is displayed.

5. Browse to select the Project > Location (the project folder where you want to store the WSDL
document), and if necessary change the name of the WSDL document. Select the Overwrite existing
resources checkbox if you want to replace any existing WSDL document with the same name.

6. Click Next. The Operation Picker page is displayed. This shows the WSDL files available in the selected
destination project.

7. Select the operation you want to expose and click OK.

Result

TIBCO Business Studio now automatically performs the following tasks:

● It creates a system participant to identify the web service endpoint to be provided. See Using a System
Participant to Define the Endpoint Provided by the Web Service.

● It populates the Operation and Endpoint resolution sections of the selected activity with the relevant
service details from the WSDL. (See Web Service Implementation Properties for more information about
these fields.)

Using a System Participant to Define the Endpoint Provided by the Web Service
A system participant is a logical identifier for a connection to an external system - in this case, a web service
endpoint. An endpoint defines the URL that will be used to contact the web service.

A task or event that exposes a web service operation must use a system participant that defines the
endpoint of the web service that is to be provided. This information is used at runtime to map the call from
the client application to the web service operation provided by the process.

When you select or import a concrete WSDL operation binding () or an abstract WSDL operation (), or
if you use the default generated web service operation, a system participant is automatically created and
assigned to the exposing task or event’s Endpoint Name. (The system participant’s name is taken from the
portType of the chosen operation.)

When you configure a task or event to expose the response part of a request-response web service
operation, it will automatically use the system participant configured for the request activity. You cannot
select a different system participant.

If you want to view the properties of the system participant:

Procedure

1. In Project Explorer, select the system participant.

2. On the General tab of the Properties view, expand Shared Resource and select Web Service Provider.

3. A column is displayed showing the binding types that will be used to expose the service:

102

TIBCO Business Studio™ BPM Implementation Guide

● Virtualization. There are no further properties for this binding type.

● SOAP over HTTP. Select this binding type to view the binding details - see SOAP over HTTP
Binding Details (Provider) for more information

● SOAP over JMS. Select this binding type to view the binding details - see SOAP over JMS Binding
Details (Provider) for more information

The binding types used to expose the service are fixed.

Setting a Common Context Root for Web Service Endpoint URIs

You can define a common context root that will be used as a prefix to the URI generated for any system
participant. The URI is displayed in the Endpoint URI Path field for a SOAP over HTTP binding - see
SOAP over HTTP Binding Details (Provider).

You can define a common context root for the entire workspace and/or on a per-project basis. By default, no
common context root is defined.

If a common context root is not used, each application will, when deployed, run as a separate web
application, increasing the application’s usage of system resource and memory. On small systems, with few
applications deployed, this is unlikely to be an issue. However, on larger systems, if significant numbers of
applications are deployed, this could potentially impact system performance.

Whether or not to use a common context root, and what that root should be, should therefore be an
architectural decision based on how application services are to be grouped and presented within the overall
SOA environment.

You can define a context root on a workspace and/or on a per-project basis. If you set:

● a workspace-level context root, it will be automatically applied to the endpoint URI whenever a system
participant is generated in the workspace.

● a project-level context root, it will be automatically applied to the endpoint URI whenever a system
participant is generated in the project. (A project-level context root overrides any workspace-level root
that exists.)

To set a workspace-level context root:

● Click Window > Preferences . The Preferences dialog is displayed.

● Click User Profile.
● In the Endpoint URI field, enter the string that you want to use as the context root - for example,

EasyAs or /EasyAs/BPM.

To set a project-level context root:

● Right-click the project in Project Explorer, then choose Properties. The Properties dialog is displayed.

● Click User Profile.
● Click Enable project specific settings.
● In the Endpoint URI field, enter the string that you want to use as the context root - for example,

EasyAs or /EasyAs/BPM.

103

TIBCO Business Studio™ BPM Implementation Guide

Once a context root has been defined for a project (either directly or at Workspace level), any existing
system participant in that project whose URI does not begin with that context root displays the following
warning on the Problems tab:

Process Manager 1.x : System participant shared resource endpoint uri does not start with the same
prefix as configured in the preference page

You can either ignore this warning or manually edit the system participant’s Endpoint Uri Path field to
include the context root.

Exposing the Web Service Operation as a REST Service
You can publish a process as a REST (Representational State Transfer) service. This is achieved by creating
a catch-message (start or intermediate) event or receive-task and then configuring it to be published as a
REST service. A client application can then use the BPM REST API to invoke the published REST service.

See "Developing a Client Application Using the REST API" in the TIBCO ActiveMatrix BPM - BPM
Developer's Guide for more information about how to use the BPM REST service.

Procedure

1. Open your business process in TIBCO Business Studio. You can set REST Service Details on one of the
following incoming web service request activities:

● Start None Event
● Start Message Event
● Intermediate Catch Message Event
● Receive Task

2. When the implementation type for the activity is set to web service, you can select the checkbox
"Publish as REST Service" from the General tab of the Properties view.
This exposes the REST interface for the business process, and the service and module name fields are
populated with the values required for invoking the REST service at runtime.

You also see the following information on any input and output parameters that are defined for that
activity:

104

TIBCO Business Studio™ BPM Implementation Guide

The following table describes the input parameters:

Parameter Name Name of parameter to use:

● For a user defined WSDL this is the original message partname prefixed
with “In” (to avoid confusion between same named input/output parts that
are of different types).

● For an auto-generated WSDL, the name matches the business process
parameter name.

Parameter Type: The XSD type of the element and its namespace in the format:

TypeName (namespace)

The following table describes the output parameters. Note that the output parameters are only shown
for request-reply services when there are output parameters associated with the activity or the activity
has 'Reply Immediately With Process Id' option selected.

Parameter Name Name of parameter to use:

● For a user defined WSDL this is the original message partname prefixed
with “Out” (to avoid confusion between same named input/output parts
that are of different types).

● For an auto-generated WSDL, the name matches the business process
parameter name..

Parameter Type: The XSD type of the element and its namespace in the format:

TypeName (namespace)

Defining Input and Output Data
You use the Interface tab to define the subset of formal parameters defined in the process that are available
to the task or event being used to expose the web service operation.

The selected fields will appear on the Input to Process or Output from Process tabs, where they can be
mapped to corresponding service input/output parameters - see Defining Input and Output Mappings.

If the task or event uses an existing WSDL (either selected or imported), the fields/parameters selected on
the Interface tab define the fields that are available on the Input to Process or Output from Process tabs.

If the task or event uses the default generated WSDL, the fields/parameters selected on the Interface tab act
as a filter to control the parts that are created in the WSDL operation. (Note that the generated WSDL is
automatically synchronized with the process if changes are made.)

By default, all fields/parameters defined in the process are available.

To define the available fields:

Click to add new fields. The Select Data Field or Formal Parameter dialog is displayed, listing the
available formal parameters that are defined in the process.

105

TIBCO Business Studio™ BPM Implementation Guide

If the task or event is configured as a Reply to Upstream Incoming Request, and the request activity uses
the default web service operation, you cannot add, delete or edit any parameters on this tab. The input and
output parameters are declared in the request activity instead. If you wish to edit them, you must do so
there.

Procedure

1. Select the data fields or parameters you need, click Add, then click OK. The selected parameters are
displayed on the Interface tab.

2. For each parameter, click in the Mode cell and select the appropriate value from the drop-down list:

● In - defines a parameter whose value will be sent to the web service.

● Out - defines a parameter that will be used to stored a value r.eturned from the web service.

● In/Out - defines a parameter whose value will be sent to the web service, and then updated with a
value returned from the web service.

Defining Input and Output Mappings
When you are exposing a web service operation, you must map the appropriate input/output parameters
provided by the web service operation to the appropriate parameters and/or data fields in the process.

On the Properties view for the relevant task or event, the Input to Process or Output from Process tab (as
appropriate) provides a Mapper tool that allows you to easily perform the required mappings.

You can choose to use automapping to map automatically. To do this, use the automap button above the
mappings. See "Automapping" in Calling a Web Service for more information.

If the task or event uses the default web service operation, service input/output parameters and mappings
are automatically created (based on the data defined on the Interface tab). You cannot modify them.

See Using the Default Generated Web Service Operation .

You can, however, still map service input parameters to correlation data fields.

Creating a Mapping
The Mapper automatically populates the left-hand and right-hand sides of the tab with the appropriate
data.

On the Input to Process tab:

● The left-hand side displays the service input and output parameters defined for the selected operation
(in the WSDL document) that is being exposed.

● The right-hand side displays the formal parameters and correlation data fields available to this task or
event, as defined on the Interface tab

On the Output from Process tab:

● The left-hand side displays the formal parameters available to this task or event, as defined on the
Interface tab.

● The right-hand side displays the service input or output parameters defined for the selected operation
(in the WSDL document) that is being exposed.

To perform a mapping, simply drag and drop the parameter(s) or data field(s) that you want to map from
one side onto the appropriate service input or output parameter on the other side. A mapping is created
between the two entities.

The following example shows the Input to Process tab for a message start event that uses the default web
service operation. The OrderRef parameter, which is the only input parameter defined for the selected
operation in the associated WSDL document:

106

TIBCO Business Studio™ BPM Implementation Guide

● has been automatically mapped to the OrderRef process parameter, which will be used to store the
OrderRef value sent to the web service by the client application.

● has been manually mapped to the OrderRefID correlation data field, which will be used to identify the
process instance that the incoming call relates to.

Points to Note About Mappings
TIBCO Business Studio validates the mappings as you create them, and displays error markers to indicate
any problems.

For example:

● Every mandatory service parameter defined in the WSDL must be mapped to a process formal
parameter.

● All mappings must be from and to equivalent data types - you cannot, for example, map a data field
defined as an integer to a service input parameter defined as a date.

See Message Parameter Mappings for more information about the different types of data mappings that are
supported.

If the available process data fields do not provide the necessary data for a particular mapping, you can use
the Script Editor to create a script that manipulates the process parameters, and map the script to the
service parameter.

Using A Script to Define a Mapping
You can use the Script Editor to modify mappings from process data to service input/output parameters or
fault messages.

For simple transfer of data between different process data, it may be easier to create scripts with Data
Mapper instead of writing them in JavaScript. See Data Mapping and Mapping Contents in Data Mapper.

Procedure

1. Select the Script Grammar that you wish to use, either:

● JavaScript, to enter a JavaScript script.

● XPath, to enter an XML Path Language expression.

2. Click New Script in the appropriate mapping tab.

3. Enter your script in the Script Editor.

Scripts are validated as you enter them. Validation markers are displayed if any errors occur.

You can also use content assist in the script Editor by pressing Ctrl+Space.

4. When you have finished, click outside of the Script Editor. A script called Scriptn is displayed in the
tab. (You can rename it by right-clicking the script name, and selecting Rename Script.)

5. Map the script by dragging it from the left side of the mapper to the appropriate entity on the right-
hand side.

107

TIBCO Business Studio™ BPM Implementation Guide

Throwing WSDL Fault Messages on a Request-Response Operation
If you are using a pair of tasks/events to expose a request-response operation, you can use error end events
to throw one or more fault messages as part of the operation.

You cannot throw fault messages when you expose a one-way operation. Fault messages are not supported
by this MEP (see Message Exchange Patterns).

You should define whatever end error events are needed to throw the fault messages defined in the WSDL
operation.

If you are using the automatically generated default web service operation, TIBCO Business Studio adds
fault messages to the WSDL as required by the end error events you create. It will also automatically
configure as much of the end event as possible when you create it, depending on the context.

Using an End Error Event to Throw a Fault Message
You can create an end error event to throw a fault message.

Procedure

1. Add an error end event at an appropriate point in the process.

2. Select the error event.

3. On the General tab of the Properties view:
a) Enter a suitable Label for the error.
b) Click Throw Incoming Message Request Fault.
c) In the Request Activity field, use context assist to select the task or event that you want this error to

be associated with. This should be the message start event, receive task or catch message
intermediate event that defines the request part of the appropriate request-response operation.

d) In the Enter Fault Name field, use content assist to select the appropriate fault message that you
want to use to throw this error. (Content assist lists each fault message that is defined in the WSDL
associated with the selected task or event.)

For example:

4. On the Output Fault From Process tab:

● The left-hand side displays the formal parameters available to this task or event, as defined on the
Interface tab.

● The right-hand side displays the fault message parameters defined for the selected fault message
(in the WSDL document).

Drag and drop the parameter(s) containing the relevant data about the error onto the appropriate
fault message parameter(s).

108

TIBCO Business Studio™ BPM Implementation Guide

Using an End Error Event Example

The following process illustrates one way to throw multiple fault messages for a single request-
response operation.

Start Event and End Event are paired to provide a request-response operation, using the following
WSDL operation.

The WSDL operation provides three separate fault messages, Fault1, Fault2 and Fault3.

The process uses three end error events - Throw Fault1, Throw Fault2 and Throw Fault3 - to throw
these fault messages at appropriate points in the process logic.

Each end error event:

● is associated with the Start Event activity in the Request Activity field.

● is configured to throw the appropriate error - Fault1, Fault2 or Fault3 - in the Enter Fault Name
field.

● maps the appropriate process data for the error (using formal parameters) to the appropriate
fault message parameter - OUTData2, faultparam1 or fault1 - on the Output Fault From
Process tab.

When the operation is invoked by a client application, the process will either:

● return the output message provided by the End Event, if the process completes successfully.

● throw fault message Fault1, Fault2 or Fault3, if one of these errors occurs.

It is the client application’s responsibility to catch and handle the thrown fault messages. See
Catching WSDL Fault Messages on a Request-Response Operation for more information about how
to do this from a process.

109

TIBCO Business Studio™ BPM Implementation Guide

Deploying a Process That Exposes a Web Service
When you deploy the project, you must bind the system participant to the appropriate HTTP Connector
resource instance in the BPM runtime.

● The system participant defines the web service endpoint.

● The HTTP Connector resource instance is used by BPM to provide external client applications with a
runtime connection to the web service.

You can perform this binding using the Property Configuration page of the DAA Deployment Wizard
wizard. For more information see the following references:

● SOAP over HTTP Binding Details (Provider)

● SOAP over JMS Binding Details (Provider)

Alternatively, you can export the project to a Distributed Application Archive (DAA), then use the
Administrator interface in the BPM runtime to perform the binding and deploy the application. See the
Administrator interface documentation for your BPM runtime environment for more information.

A client application (which can be another process) hosted in the BPM runtime can now call the exposed
web service operation on its virtualization binding or, if necessary, on its SOAP binding.

An external client application will need to access the exposed web service on its SOAP binding, using a
concrete WSDL.

You can generate a concrete WSDL for the application from the Administrator interface in the BPM
runtime.

Arbitrary Length Tasks and Request-Response Operations
When a process exposes a request-response operation, a client application pauses its activity when it sends
the request and waits for the response from the process before continuing. If the result is not returned
within a predefined time period, the request-response operation may timeout and fail.

An arbitrary length task is one that takes an indefinite period of time to complete, and so cannot be
guaranteed to complete within this predefined time period:

● User tasks and manual tasks should always be regarded as arbitrary length tasks.

● Other tasks may or may not be regarded as arbitrary length tasks depending on the context in which
they are used - for example, is a particular database call expected to complete in milliseconds, seconds
or minutes (under normal circumstances)?

You should only use a request-response operation when there are no arbitrary length tasks between the
tasks or events being used to expose the request and response messages.

If arbitrary length tasks mean that you cannot use a request-response operation, you should use separate
one-way operations instead - see Handling a Process that Includes Arbitrary Length Tasks for more
information.

For example, the following screenshot shows a (partial) process which is intended to provide a balance
enquiry web service. On receiving a balance request from an external application (or another process), the
process obtains some further customer details, makes a database call to obtain the balance, and then returns
the customer’s balance to the caller.

In this case the web service should not be implemented using a request-response operation, because the
inclusion of a user task may cause the operation to time out.

110

TIBCO Business Studio™ BPM Implementation Guide

The next screenshot shows an alternative version of the process, where the additional customer details are
obtained using a database task rather than a user task. In this case, whether the web service should be
implemented using a request-response operation will be a design decision, based on the characteristics of
the script and database calls involved, and whether or not they are regarded as arbitrary length tasks.

Handling a Process that Includes Arbitrary Length Tasks
The inclusion of arbitrary-length tasks can preclude the use of a request-response operation to expose a web
service from a process.

See Arbitrary Length Tasks and Request-Response Operations.

In this situation, the process (service provider) and the client application (service consumer) must instead
co-operate to construct a conversation that uses two one-way operations - one to allow the process to receive a
message from the client application, one to allow the process to return a response to the client application.

111

TIBCO Business Studio™ BPM Implementation Guide

The process and the client application swap their roles of service provider and service consumer for the
"request" and "return" legs of the conversation.

Using two one-way operations to handle the problem of arbitrary length tasks illustrates this.

Using two one-way operations to handle the problem of arbitrary length tasks

(1) The process (acting as a service provider) exposes a one-way operation to receive a message from a
client application (acting as a service consumer). The application can itself be another process.

(2) Both the process and the application continue with their work.

(3) When it is ready to send its response, the process (now acting as a service consumer) invokes a separate
one-way operation to send a message to the application (now acting as the service provider).

(4) The application is responsible for connecting the separate one-way operations as a single conversation. If
the application is another process, correlation data can be used to do this - see Correlating Separate Request
and Response Messages - an Example on page 32.

Correlating Separate Request and Response Messages - an Example

The OrderEnquiry process handles customer enquiries about orders, and uses a piece of data - the Order
Reference number - which can be used to uniquely identify each process instance. As part of its work, the
OrderEnquiry process calls a separate process, CheckOrderStatus, to check the status of an order.

The example assumes that the "Check order status" part of the CheckOrderStatus process contains
arbitrary length tasks, which means that the "Get order enquiry" - "Return order status" pairing cannot be
exposed a a request-response operation.

Using correlation data to connect separate one-way operations illustrates how the processes co-operate:

112

TIBCO Business Studio™ BPM Implementation Guide

Using correlation data to connect separate one-way operations

(1) The OrderEnquiry process assigns a value for the queried Order Reference to the OrderRef correlation
data field as part of the Get Order Ref task (which is a user task in this example).

(2) The OrderEnquiry process uses the Query order status send message task to invoke the Get order
enquiry operation provided by the CheckOrderStatus process. The Order Reference value is required as a
service input parameter by this operation.

The Order Reference value does not necessarily have to be defined explicitly as a service input parameter. It
could simply be part of another data object that is passed as a service input parameter.

(3) Both processes continue with their work.

(4) When it has completed its "Check order status" work, the CheckOrderStatus process uses the Return
order status event to invoke the Receive order status operation provided by the OrderEnquiry process.
The Order Reference value is again required as a service input parameter by this operation.

(5) On the Receive order status task, the Order Reference value is mapped to

● The OrderRef correlation data field is defined as a correlation data item on the Interface tab, with Mode
"Correlate".

● The Order Reference value is mapped to the OrderRef correlation data field.
The OrderEnquiry process can then determine which process instance the incoming message relates to,
based on the value of the OrderRef correlation data field.

Using a Process as a Service Provider and as a Service Consumer
A process is not limited to acting just as a service provider or service consumer. You can combine any of
these operations within a process to achieve whatever results you need from the process logic. Thus, a
process may be at one point a service consumer, at the next a service provider, and at a third may be both
supplier and consumer.

A Process Providing and Consuming Web Services shows an example in which a process provides a loan
application service to an external application, and makes use of an external web service to obtain the
decision on the application.

113

TIBCO Business Studio™ BPM Implementation Guide

A Process Providing and Consuming Web Services

The process does the following:

● receives the request from the external application ().

● initiates a user task to perform some initial processing of the application.

● calls an external loan application processing web service to obtain a decision on whether the loan is

approved or refused ().

● initiates a user task to perform some processing of the response.

● sends the response back to the external application ().

Note that:

● Because the user tasks between points and are arbitrary length tasks, the process uses separate
one-way operations to provide the service to the external application.

● As part of the conversation formed by the one-way operations, the process uses a request-response
operation to obtain the decision on the application from the loan application processing web service.

● The process acts as:

1. a service provider when it receives the request from the external application,

2. a service consumer when it obtains the decision from the loan application processing web service.

3. a service consumer when it returns the response to the external application.

In each case, it is the service provider who provides the WSDL document that defines the messages
that are exchanged in each operation.

Authenticating Access to an Exposed Service
At runtime, security policies are automatically enforced on the endpoint of an exposed service to ensure
that access is restricted to authenticated users. Every call to the service must be made using the identity of a

114

TIBCO Business Studio™ BPM Implementation Guide

user who is registered in the BPM organization model. A call that does not meet this requirement will be
rejected.

The following table summarizes the authentication requirements, according to the type of client that is
attempting to access the service.

Service is called by... Authentication Requirements

External client application Every API call to the service must be authenticated. The following
authentication methods are available:

● Direct authentication - This method requires the calling
application to provide valid TIBCO ActiveMatrix BPM login
credentials when calling a TIBCO ActiveMatrix BPM service.

For more information, see "Direct Authentication" in the TIBCO
ActiveMatrix BPM Developer's Guide.

● Single sign-on - When using this method, a user who already
has a login session with the client application does not need to
provide their login credentials again when calling a TIBCO
ActiveMatrix BPM service.

For more information, see the TIBCO ActiveMatrix BPM Single
Sign-On guide.

Another BPM application in the
BPM runtime

None. The login credentials used to access the calling process are
propagated automatically to the endpoint of the exposed service.

SOA application (for example,
Mediation)

An appropriate security policy set and intent must be added to the
calling SOA application, to ensure that the correct security context
can be propagated to the endpoint of the exposed service. See
Calling the Service from a SOA Application.

Calling the Service from a SOA Application
The security requirements of a particular scenario will determine:

● the policy sets and intents that need to be added to the calling SOA application to enforce
authentication.

● how and where those policy sets and intents should be configured.

● whether the SOA application invokes the service exposed by the BPM process using a virtualization
binding or a SOAP binding.

The following sections provide three high-level examples of how authentication can be enforced:

Example 1 - Single Sign-on Using a Virtualization Binding

Example 2 - Single Sign-on Using a SOAP Binding

Example 3 - Impersonation Using a SOAP Binding.:

For detailed information about how to configure an application to use intents, policy sets and
policies, see the Composite Development guide.

115

TIBCO Business Studio™ BPM Implementation Guide

Example 1 - Single Sign-on Using a Virtualization Binding

In this example, a client application supplies a user’s credentials (username and password) when it calls the
Mediation application.

The Mediation application::

● authenticates these credentials using a policy that is used by the BPM runtime.

● propagates these credentials to the service exposed by the BPM process across a virtualization binding.

To ensure that the supplied credentials are valid for both the Mediation application and the BPM process,
you must force the Mediation application to authenticate using a specific policy that is used by the BPM
runtime.

Procedure

1. Find the WRMPolicySetsResource.policysets file in the location where you installed TIBCO Business
Studio (for example, STUDIO_HOME\studio\3.n\samples).

2. Import the WRMPolicySetsResource.policysets file to the project containing your Mediation
application.

3. On the Mediation application, select the promoted service that external clients will use to access the
Mediation application.

4. On the Policies tab of the Properties view:
a) Add the WRMPolicySetsResource_authentication.usernameToken policy set to the service.
b) Add the Username Token Client Authentication intent to the service.

Result

A SOA application can only use a virtualization binding to invoke the service exposed by the BPM process
if both applications are running on the same runtime node. (This is because the
WRMPolicySetsResource_authentication.usernameToken policy set has a dependency on the BPM
product application.)

If the SOA application is on a different node it must use a SOAP binding to invoke the service exposed by
the BPM process - see the following examples.

116

TIBCO Business Studio™ BPM Implementation Guide

Example 2 - Single Sign-on Using a SOAP Binding

In this example, a client application supplies a user’s credentials (username and password) when it calls the
Mediation application.

The Mediation application authenticates these credentials, which are automatically propagated to the
service exposed by the BPM process across a SOAP binding. If the propagated credentials are also valid for
the BPM process, access to the BPM service will be granted.

Note the following points about this scenario:

● The Mediation application must validate the user’s login credentials against the same LDAP server(s)
used by the BPM runtime.

● The credentials used to login to the Mediation application must belong to a valid BPM user. If they do
not, authentication against the BPM runtime will fail (even if the credentials were successfully validated
against the LDAP server by the Mediation application).

To enforce authentication in this way, configure the Mediation application as follows:

Procedure

1. Add an appropriate client authentication policy to the promoted service. The policy will be applied at
runtime, forcing the Mediation application to authenticate the client’s identity against the referenced
LDAP server.

2. Add an appropriate credential mapping policy to the promoted reference. The policy will be applied at
runtime, forcing the reference to propagate the client’s previously authenticated identity to the endpoint
of the exposed service. This identity will then be authenticated by the BPM runtime.

117

TIBCO Business Studio™ BPM Implementation Guide

Example 3 - Impersonation Using a SOAP Binding

In this example, the Mediation application accesses the BPM service using a fixed (impersonated) identity,
no matter what credentials are used to access the Mediation application itself. (The Mediation application
may even allow anonymous access.)

An identity provider application must be created to provide the valid identity that will be used to access the
BPM service.

To enforce authentication using impersonation:

Procedure

1. In the SOA runtime, create and configure an identity provider application that will be used to inject the
appropriate credentials into the call to the BPM service.

2. Add an appropriate credential mapping policy to the promoted reference. The policy will be applied at
runtime, forcing the reference to propagate the identity defined in the referenced keystore to the
endpoint of the exposed service.

118

TIBCO Business Studio™ BPM Implementation Guide

Calling a REST Service

Before making a call to the REST service from a process, ensure that you install any relevant runtime
hotfixes. See the TIBCO ActiveMatrix® BPM Release Notes.

The REST Binding Type does not need to be explicitly installed; it is embedded in TIBCO ActiveMatrix
Platform.

Defining the Interface to an External REST Service
To call a REST Service you need to create a REST Service Descriptor (RSD) file (located in a separate REST
Service project). The REST method from the RSD file can then be referenced from REST Service invocation
activities.

The purpose of the REST Service Descriptor (RSD) is to define the end-point URL relative resource path
(optionally including query and header parameters), the available methods for the resource and the
request-response data details for those methods.

You should not use URL encoding (for instance %20 for spaces) in the Context Path of the Resource path
definition in the REST Service Descriptor. Also, you should not encode values in Path Parameters (that is,
the value of data fields mapped to those parameters). This is because the path and parameter values are
automatically encoded at runtime. If there is a use case where the path may require URL delimiter
characters (such as /, @ , ? etc) that need to be encoded then simply use a path parameter in the required
location and then provide the required unencoded values in the data mapped to the parameter.

Procedure

1. Create a REST Services project (New > Other > REST Services Project).

REST Service Descriptor (RSD) projects do not need to be deployed.

2. A REST Service Descriptor is created automatically.
To create an additional REST Service Descriptor, select New > New REST Service Descriptor.
The service descriptor can be used by multiple REST service activities.

3. Add the Context Path for the REST service, which will be used in the URL for the service at runtime.
Context Path is a common path prefix that will be used for all resources' URLs in this service. For
example, /rest/api/2. The context path is applied to the beginning of all resource paths.

119

TIBCO Business Studio™ BPM Implementation Guide

4. Configure resources (including a Path Template and Path Parameters which will be used in the URL for
the method). Path Template may contain path parameter references. Parameter reference is constructed
using the name of the parameter enclosed between { and } characters.

Path parameters are variable parts of the path URL that are replaced with process data at runtime (by
mapping process data to the parameters in the REST service invocation task).

5. The URL for the REST invocation method is built up from the following: <baseurl> + context path +
template path).
For example: http://localhost:8080/rest/api/2/issue/{issueId} (where <baseurl> is http://
localhost:8080, context path is /rest/api/2, template path is /issue/{issueId}.
The <baseurl> is provided by the HTTP Client shared resource associated with the REST service task
participant during project deployment.

6. Add HTTP method/s for each resource, and select the HTTP Method type from GET, PUT, POST or
DELETE.
The GET method is already added by default for each resource.

The Request Overview provides an idea of what the final URL for the REST invocation method will be.

120

TIBCO Business Studio™ BPM Implementation Guide

7. Create request and response information using the method in the Request and Response tabs. On each
method, you can define Query Parameters/Header Parameters and Payload (which must be a JSON
schema type). See Creating JSON Schemas.
The PUT and POST methods have the Request Payload specification.

● Query Parameters: for example, http://localhost:8080/?param1={param1} where{param1} is a
query parameter added using the Request tab.

● Payload Type: Select from existing JSON objects.

If you cannot create the exact JSON object using the REST service task mapper (or the
payload is not in JSON format), you can configure the REST method definition request
payload type to be Unprocessed Text. In the REST Service task process create a text field
whose value is the required JSON string and map that to the request payload.

● Content Type: needs to be set to that defined by the service.

● Header Parameters: some services require header parameters to be passed, also a service can return
header parameters. These can be mapped from and to process data in an invocation task.

Use the Faults tab on the method in the REST Service project to define faults for specific error status
codes.

If you declare an error you can also declare a JSON type for the information coming back and map it to
local data.

HTTP response status codes 300 and above are automatically treated as errors at runtime. You
can catch any such error with a 'Catch All' task boundary error event or you can define faults
for specific status codes that can be caught individually.

121

TIBCO Business Studio™ BPM Implementation Guide

Creating JSON Schemas
You can create JSON schemas using this procedure.

Alternatively, you can create a JSON schema by deriving it from a JSON string sample (often made
available by the documentation for the REST service).See Creating JSON schema from a JSON sample.

A JSON schema declares the types and properties of the complex types used for request / response payload
data when invoking REST service methods.

Each JSON schema contains a single root complex type (as displayed on the left hand side tree of the
editor). Child properties can be added to this type (on left hand side or right hand side). New child complex
types can be added to the right hand side tree.

Procedure

1. Select New > New JSON Schema from a REST services project.

2. Add Properties to the root JSON object (in the left or right hand side tree control).

3. Create and use child types for properties of a complex type in right hand side tree.

4. On the General tab on the Properties view for a JSON Object Type, edit the property types (which are
'Text' by default). Alternatively you can drag-drop types onto properties in the main editor. You can also
move properties around using drag drop or the controls provided.
For services that require or return arrays, check Array.

The result will look similar to the following example.

122

TIBCO Business Studio™ BPM Implementation Guide

You can also create schemas by importing IETF JSON Schema files (as defined at http://json-
schema.org/).

Creating JSON Schemas From a JSON Sample
You can use the Import JSON Schema wizard to import and save various formats of JSON schema
definitions.

Procedure

1. Select Import > Import JSON Schema from a REST services project.

2. You can choose to do one of the following:

● Import from JSON Schema: you can import an existing JSON schema.

● Import from JSON Sample: this allows you to import a sample of JSON data, and TIBCO Business
Studio creates a schema that describes the data structure.

● Paste from JSON Sample: this allows you to paste a sample of JSON text directly into the wizard
and TIBCO Business Studio creates a schema that describes the data structure.

3. You can now view and edit the JSON schema you imported or pasted in the JSON schema editor.

If you import a sample that is an array, then you need to import it as a single instance type and
specify that it is an array on a specific method call in the REST Service Descriptor file. See
Creating JSON Schemas.

123

TIBCO Business Studio™ BPM Implementation Guide

http://json-schema.org/
http://json-schema.org/

Configuring the Process Project from Which you Want to Call the REST
Service

You can configure a task (Service Task, Send Task, Throw Message Event, Message End Event) in a process
to call a REST Service.

Procedure

1. Add a Service Task to your process, and configure it with a Service Type of REST Service.
You can also configure the following to call a REST Service:

● Send Task

● Service Task

● Message End Event

● Send Task and Throw Message Event: you need to select Send One Way Request to activate the
Implementation option "REST Service".

2. Select Operation: Select to select the REST service method. See Defining the Interface to an External
REST Service.

3. Define any data fields needed for the call.

4. Map process data to / from the method parameters (see Defining Input and Output Mappings for more
information).

Defining Input and Output Mappings
When you are invoking a REST service operation, you must map the appropriate input/output parameters
provided by the REST service operation to the appropriate parameters and/or data fields in the process.

On the Properties view for the relevant task or event, the Input to Service and Output from Service tabs
provide a Mapper tool that allows you to easily perform the required mappings.

Data mappings are defined as follows:

● on the call request (the Input To Service tab), from process fields/parameters to path/query/header/
payload parameters exposed by the selected Method.

● on the call response (the Output From Service tab), from the payload or header parameters exposed by
the selected Method to process fields/parameters.

The request / response payload (optional) will be JSON (or 'Unprocessed Text' type). The path and query
parameters are used to map into variable parts of the request URL from process data values. The header
parameters allow mapping process data to/from request/response header.

Some services will not need a payload, but may still need mappings for headers, path and query
parameters.

124

TIBCO Business Studio™ BPM Implementation Guide

Creating a Mapping
The Mapper automatically populates the left-hand and right-hand sides of the tab with the appropriate
data.

On the Input to Service tab:

● The left-hand side displays the parameters and data fields available to this task or event, as defined on
the Interface tab.

● The right-hand side displays the path/query/header/payload parameters exposed by the called Method.

On the Output from Service tab (which is only displayed for a service task):

● The left-hand side displays the payload or header parameters exposed by the called Method.

● The right-hand side displays the parameters and data fields available to this service task, as defined on
the Interface tab.

To perform a mapping, simply drag and drop the parameter or data field that you want to map from one
side onto the appropriate Method parameter on the other side. A mapping is created between the two
entities.

See Data Mapping.

Configuring Security
If you need to apply a security policy on the outgoing REST service call, you do so by assigning a policy to
the system participant that identifies the service endpoint.

In order to invoke a REST service, the invocation task/event requires a process package system participant.
On deployment, this participant will be associated with an HTTP shared resource instance in the target
ActiveMatrix BPM runtime. This shared resource instance (and therefore a single system participant)
signifies the base endpoint URL to be used to invoke the REST service.

A REST Service only supports authentication policies of Basic Authentication or Custom Policy.

Procedure

1. In Project Explorer, select the system participant that identifies the service endpoint defined on the
REST service call.

125

TIBCO Business Studio™ BPM Implementation Guide

2. On the General tab of the Properties view, expand Shared Resource. The endpoint’s configuration
details are displayed.

3. In the Policy Type field, select the type of security policy required to invoke the service from the drop-
down menu:

● None
● Basic Authentication enables you to require credentials, in the form of a username and password,

to make a transaction.

● Custom Policy, to apply a custom security policy to the outgoing REST request and, if required, to
the incoming REST response.

You must use a Custom Policy if the REST response message returned by the service
contains a security header. The Basic Authentication policy does not handle an incoming
REST response that contains a security header.

4. If you selected Basic Authentication, a Governance App. Name field is displayed. Enter the name of
the identity provider application from which the BPM runtime will obtain the authentication
information needed to contact the service.

5. If you selected Custom, a Custom Policy Set field is displayed.
a) Click Browse. The Select Policy Set dialog is displayed, listing all external policy sets that are

available in the current workspace.

Generally, you should copy the custom policy set file into the process package folder of the
BPM project where the REST service is configured.

The external policy set file that defines the policy to be used must be available in the same
workspace. (It does not have to be in the same project.)

If the required policy set file is not already available, click Cancel, import the file to a
project in the workspace and try again. See Custom Policy Set.

b) Select the policy set that the BPM runtime will apply to the outgoing REST request (and, if
appropriate, to the incoming REST response).

c) Click OK.

Custom Policy Set

The custom policy set defines the name of an external policy set that the BPM runtime will apply to the
outgoing REST request (and if appropriate, to the incoming REST response).

The external policy set:

● must contain the security information required to construct the outgoing REST request and, if
appropriate, to also handle the resultant incoming response.

● must be defined in an XML file (with the extension .policysets) that is available in the same workspace.

TIBCO Business Studio does not validate whether the external policy set is applicable to and correct for the
target service. Using an incorrect policy type or a wrongly configured policy will result in an error, either
during DAA configuration or at runtime.

For more information on how to set up the username/password identity provider see the tutorial How to
Call a Secured External Web Service From a Process.

The BPM runtime supports a wide range of policies and policy sets that can be used to address different
security requirements and scenarios. For more information about external policy sets and how to create
them, see the following topics:

● "Policy Management", in Composite Development.

126

TIBCO Business Studio™ BPM Implementation Guide

● "Security Resource Templates", in SOA Administration. (This guide is not included in the TIBCO Business
Studio documentation set. You can access it either from the BPM runtime documentation set, or from the
Help in the Administrator interface in the BPM runtime.)

Fault Handling and Propagation
Attach an error event to task boundary and select Catch-all or a Fault code specified for the method in the
RSD.

REST and Authentication
You may have issues using authentication with REST at runtime if you do not install the relevant products
correctly.

You must follow the installation instructions carefully, in particular you must stop the server during
installation when instructed. If you do not, then when you are using REST, an invocation can fail with an
authentication error.

TIBCO ActiveMatrix BPM

● You need to install the Server and then the Hotfix as described in the README.

● When you install the Hotfix, the Server must be stopped (make sure it is stopped, even if it is running in
the background).

Configure Basic Authentication using the Governance App

● Manually generate the 'Keystore' containing the security credentials (username/password to call BPM
REST API's).

● Once the keystore is generated, create the identity provider which uses the generated keystore to supply
identity. (Directly provide the identity provider name as a Governance App name in the REST
participant.)

For detailed steps, see the topic "Creating a Keystore Containing the Security Credentials to Run the
Business Process" in the Accessing External Data and Services tutorial.

127

TIBCO Business Studio™ BPM Implementation Guide

WSDL Change Considerations for Application Upgrade

This section explains the effects that changes made to a project's WSDL can have on the ability of that
project to be upgraded, and suggests design considerations to minimize upgrade problems.

Application Upgrade
One consideration to make when changing a BPM project prior to attempting an application upgrade is the
consistency of the application's 'service API' and the data used within those API's.

The service API consists of the web-services that the BPM application exposes to other applications (via
processes with incoming message activities) and input/output data used by those services.

In order for the application to be upgradeable, first it must continue to provide any existing web-service
operations unchanged (including the data classes referenced from the input/output data of each service).

Secondly, the application must ensure that any data referenced by service input/output data is consistent
with data expected to be received by any existing process instances (that have not been migrated to the
latest application version).

This is because there is only a single web-service end-point for a service exposed by a process for all
versions of that process. Therefore incoming message activities in old-version process instances will be
invoked using the data associated with the latest version of the WSDL service interface. The old-version
process instances will use old-version BOM data models, and therefore would fail if the new-version data
model had changed in an inconsistent way.

When process incoming message activities are configured to generate a WSDL, the WSDL service interface
is derived from those activities and the set of data types referenced via formal-parameters associated with
the activities. Therefore changes to those activities and data types will affect the application's web-service
interface.

When process incoming message activities reference pre-defined WSDLs, the application's web-service
interface is based on operations and schema data types defined in the WSDL.

Making changes to the project may result in changes to the generated WSDL, meaning that the application
cannot be upgraded. See Making Changes to the Service Interface for more information about interface
changes and about best practice in making and managing them.

You can add a new operation - a Receive Task/event handler - to an existing operation and would be able to
upgrade from an existing application.

Reverting to the Original Version of an Upgraded Application
If you encounter a problem during deployment or operation of the upgraded application, you may
subsequently want to revert to the original version of the application (by force undeploying the new version
from ActiveMatrix Administrator).

However, a WSDL validation error will occur when you try to do this if changes made to the WSDL, though
valid for upgrade, are detected as a change to the service interface when attempting to downgrade.
(ActiveMatrix Administrator does not distinguish at this level between upgrade and downgrade, so this
problem can occur even though the version of the WSDL being downgraded may never have been used,
and even though the version being downgraded to will be perfectly compatible with the version of the
application that will be active.)

For example, if you add a new operation this is valid when upgrading - but when downgrading you will be
removing that operation. This will be detected as a change to the service interface and so is not permitted.

If this happens, you can force ActiveMatrix Administrator to skip WSDL validation and so allow you to
revert this application to the original version. See "Troubleshooting > Applications > Unable to revert to
older version of an application" in TIBCO ActiveMatrix BPM SOA Administration for more information about
how to do this.

128

TIBCO Business Studio™ BPM Implementation Guide

Making Changes to the Service Interface
When a process exposes a web service operation, a WSDL defines the service interface to that operation.
Once the application containing the process has been deployed to the BPM runtime, it can only be
subsequently upgraded if its service interface (defined by the WSDLs used to expose its services) has not
changed.

See "Upgrading a Deployed Application" in the TIBCO ActiveMatrix BPM Deployment Guide for information
on how to upgrade an application.

The WSDL validation tool for upgrade only checks the data involved in an interface previously exposed via
WSDL operations. It does not include data types referenced via process data that is not involved in the
process API.

Process As A Service (PAAS) interfaces can be defined in one of two ways:

● Using a customer-supplied WSDL and mapping from the WSDL to the process. This is known as the
Contract First approach.

● Generating a WSDL from the process definition. This is known as Contract Last approach.

For both approaches, see Exposing a Service.

Best practice for SOA and software development states that Interface should be separated from
Implementation. Given the current functionality of TIBCO Business Studio and of the ActiveMatrix BPM
runtime, the Contract First approach better engenders the separation of Interface from Implementation.
Currently the generated WSDL (the Contract Last approach) can more tightly bind the Interface and
Implementation unless the process developer is thinking about how the WSDL is generated from the
process.

Changes that Do Not Change the Service Interface
You can make any changes that do not affect the service interface without having any effect on application
upgrade.

Such changes include:

● Adding a new operation - a Receive Task/event handler - to an existing operation.

● Adding or removing any tasks except incoming message activities.

● Changing the flow of logic within the process.

● Changing the place of incoming message activities within the process - provided no incoming message
activities are added or removed, they can be moved around without affecting the interface.

● Changing the fields or layout of forms.

● Changing scripts.

● Making changes to the schema (BOM) that have no bearing on the WSDL.

● Changes in the way that an XSD type is expressed that do not change its meaning.

● The sequence of root (top-level) element definitions within an XSD.

● Changes in annotations.

● (In a concrete WSDL) Changing the SOAP version used by a binding.

This is a list of possible changes to the elements:

WSDL: Definitions

● Target namespace has to match (but not the prefix).

129

TIBCO Business Studio™ BPM Implementation Guide

● PortTypes can appear in any order.

● You can add a new PortType. For generated WSDLs, a port type is synonymous with the source process.

WSDL: PortType

● Operations can appear in any order.

● You can add a new Operation for WSDLs generated from processes, Operation is synonymous with
incoming-message-activity.

WSDL: Operation

● Input/Output for WSDLs generated from processes input/output/fault data is synonymous with the
formal parameters associated with incoming message activities and throw error events.

— Can appear in any order within the Operation.

— Faults, if present, have to match and their corresponding messages have to be identical (can appear
in any order).

WSDL: Message

● Target namespace has to match (but not the prefix).

● Parts have to be identical and in the same order.

XSD: Element

● Target namespace has to match (but not the prefix).

XSD: ComplexType

● ComplexType name has to match if directly referenced from a message part.

● Target namespace needs to match, but not the prefix.

XSD: SimpleType

● SimpleType name does not have to match.

● Target namespace and prefix does not have to match (provided that the underlying type and restrictions
are identical).

What Changes the Interface Using the Contract Last Approach
If a process uses a generated WSDL, making any of the changes described in this topic will result in
changes to the generated WSDL, meaning that the application cannot be upgraded.

Any Contract Last process that contains a task or a service that can expose a web service can be affected by
changes in its interface. Projects containing the following tasks or events can be affected:

Receive tasks

Start Message events

130

TIBCO Business Studio™ BPM Implementation Guide

Intermediate Catch Message events

Error End events

Even though throw message events (intermediate and end) may be used as a
reply to an incoming message activity, when it is used as such no
configuration is made on the send task that affects the interface (it is wholly
derived from the incoming message activity is is associated with).

For throw error events, the associated parameters form the content of the
fault message.

If your Contract Last Process As A Service (PAAS) project contains any of these objects, it will include one
or more generated WSDLs. It is only if your project has a generated WSDL (not an imported WSDL) that
any changes that you make to the project are at risk of automatically altering the service interface. If so, the
folder Generated Services will exist in Project Explorer, under the relevant project.

In this folder are one or more generated WSDLs - in this illustration, ProcessPackage.wsdl. You can open this
WSDL in order to see its contents.

You can upgrade the application as long as the WSDL, or WSDLs, do not change.

The following process changes can trigger a change in a generated WSDL:

Changing Tasks or Events

If any of the incoming message activities or message events listed in What Changes the Interface Using the
Contract Last Approach? change, the service interface changes. Changes that have that effect include:

● Removing such a task or event.
● Changing the name of a task or event.

Changing the label without changing the name is permitted because the label is for users’ convenience
and is not used by the code, it does not affect the interface).

These items and their names are used to automatically generate the operations within the WSDL and
therefore will trigger a WSDL change if they are changed.

You can add other kinds of tasks or events to the process without the interface being affected, and will still
be able to upgrade the application.

131

TIBCO Business Studio™ BPM Implementation Guide

Best Practice

If you expect these items to change then use the Contract First approach to define the service, including the
operations and map from the supplied WSDL to the process definition.

Changing the Name of the Process

If you change the name of an application or of a process, its service interface changes. The port type it
represents will no longer be available.

Retaining Previous WSDL Versions

It is recommended that all previous deployed generated WSDL versions are source controlled along with
the process artifacts, so that you can subsequently compare them with the latest WSDL version being
deployed.

Changing Parameters

If you change any of the parameters used by a Message Start event, Message Error End event, Intermediate
Catch event, or a Receive task, used to expose a web service operation, the change will change the WSDL
and the interface that it defines. This applies if you:

● Add a parameter,
● Delete a parameter,
● Rename a parameter,
● Change the name of a type referenced by a parameter,
● Change the type of a parameter

When the BOM data type is used, then the referenced BOM data type and any other BOM data
types that it references, directly or indirectly, must remain unchanged. This check is restricted
to only this set of BOM types and other BOM types defined in the same BOM packages that
are not referenced via incoming message activity parameters can be changed.

● Change the length of a parameter.

Best Practice

Changing an interface is changing a contract and therefore will prevent application uprade. Due attention
should be paid to ensuring that the interface design takes account of the foreseeable future design
requirements of the interface. The Contract First approach will naturally drive towards taking this into
account.

There are a number of data-related changes which one might normally want to make to an interface which
are compatible with the existing deployed clients using this interface. However, this is not allowable for
application upgrade because in that circumstance there is only a single end-point for the service but
incoming requests may be directed towards existing process instances from older versions of the
application that are developed with the old data models and service operations. Such changes would
therefore be incompatible with the existing process instances that would be using the new interface.

These include (but are not necessarily limited to):

● Lengthening of a parameter, for example changing a string(10) to string(20), int to bigint, and so
on.

● Addition of optional parameters.
Depending upon your use case, you may be able to use Mediation to wrap the different interface
implementations that need to be active at the same time.

Adding a new operation to existing port type that uses a Contract First approach: Recommended approach

132

TIBCO Business Studio™ BPM Implementation Guide

The following procedure applies when it is necessary to add a new operation to existing port type that uses
a Contract First approach.

Take all these actions in the context of the Best Practice guidelines given in Changing Parameters.

1. Add operation to the WSDL.

2. Add an incoming message activity to the process for a new operation (using the existing participant).

Changes That Apply to Both Contract First and Contract Last Approaches
The following changes can trigger an interface change whether you use the Contract First or the Contract
Last approach.

Changing the Binding Style

The service interface changes if you change the binding Style/Use for the generated WSDL — for example,
from Document/literal to RPC/literal. You can do this when defining the details of the endpoint system
participant for the task or the event.

Best Practice

Changing the binding style is changing a contract and therefore is not something that should be undertaken
lightly.

If you want to change the binding style for a PAAS interface while there are still deployed process
templates that have executing process instances, then you will need to define a new endpoint.

Development vs. Production
When in development of a complete new application (before first production deployment) it is highly likely
that a PAAS interface will change between iterative deployments. In this case it is recommended that
previous application versions be completely undeployed and removed from the development system in
order to prevent any failed deployments due to interface changes. This will require any in-progress work
items and process instances to be cancelled first. In this case there are no application upgrade
considerations and therefore any changes could be made to the application interfaces.

133

TIBCO Business Studio™ BPM Implementation Guide

Using Scripts

This section describes how to use scripts.

The JavaScript and Data Mapper script grammars are only available when both the Solution Design
capability is selected and the BPM destination environment is specified for the current project.

You can specify scripts in TIBCO Business Studio for use with BPM projects in several ways:

● As part of a script task. See Implementing Script Tasks.

● As an action script on a task, particularly a user task. Action scripts can reference information about
individual work items as well as using the parameters and fields defined for your process in TIBCO
Business Studio. See Scripts on Other Tasks.

● Attached to a conditional flow, for determining the flow of processing. See Associating a Script with a
Conditional Flow.

● Attached to a processing loop applied to a task, to determine how often that task should be performed.
See Associating a Script with a Loop.

● On an event. See Timer Event Scripts and also the event activity types in the table below.

Another form of scripting is the use of expressions to define a participant in a task. See Using a Participant
Expression to Define a Participant for details of participant expressions.

Scripts may be entered in TIBCO Business Studio as:

● Plain text. When a business analyst creates a process, they may include a plain text description of the
desired behavior of any scripts that form part of the process. These plain text entries are not intended to
be executable.

● JavaScript. Executable scripts are written in JavaScript. If an analyst has entered a plain text description,
it is then part of the solution designer’s role, with the Solution Design capability switched on, to enter
JavaScript in order to implement the script.

TIBCO Business Studio supports a subset of standard JavaScript:

— Those standard JavaScript facilities that are not supported in TIBCO Business Studio scripts are
described in JavaScript Exclusions.

— Some additional facilities are available. These are described in Editing Scripts and ’Script Functions’
in the Business Data Services Guide.

● Data Mapper. For simple transfer of data between different process data, it may be easier to create
scripts with Data Mapper instead of writing them in JavaScript. With Data Mapper, you can graphically
map data across datafields and parameters to create complex BOM objects from a combination of
process data fields and parameters. This script grammar is available for Script Tasks, Task scripts, Web
Services, Call Sub-Processes, and Catch error events. For more information, see Data Mapping and
Mapping Contents in Data Mapper.

Different script types can be used as shown in the table below. For each activity type, there are script types
that are:

● Supported.

● Available in the user interface but not supported.

134

TIBCO Business Studio™ BPM Implementation Guide

Action scripts supported by different activity types

Activity Type Script Types

User Task Supported: Open, Close, Submit, Schedule, Reschedule, Initiate, Complete, Timeout,
Cancel

Manual Task

Service Task

Send Task

Receive Task

Reference Task

Call Sub-
process
Activity

Embedded
Sub-process
Activity

Supported: Initiate, Complete, Timeout, Cancel

Script Task Supported: Initiate, Complete, Timeout

In user interface but not supported: Cancel

Pageflow User
Task

Supported: Initiate, Complete

In user interface but not supported: Open, Close, Submit, Schedule

Multi-instance
Task - Multi-
instance Loop

Supported: Loop Expression, Complex Exit Expression, Additional Instances
Expression

Multi-instance
Task - Standard
Loop

Supported: Loop Condition

Start Event Supported: Complete

End Event Supported: Initiate

Intermediate
Event

Supported: Initiate, Complete, Cancel

Implementing Script Tasks
You can create a script task in a process using the Script Task icon on the TIBCO Business Studio palette.

See the TIBCO Business Studio Modeling User's Guide for information on how to create tasks.

When a business analyst creates a process, they may include in the script task a plain text description of the
desired behavior of the script. It is then part of the solution designer’s task, with the Solution Design
capability switched on, to enter JavaScript in order to implement the script task.

In the Properties view for a Script Task, you can select from the available script grammars, and enter a
script that will be executed at runtime. Which script grammars are displayed depends on the Destination

135

TIBCO Business Studio™ BPM Implementation Guide

Environment and the Eclipse capability you have selected. For example, for the BPM Destination
Environment with the Solution Design capability selected, you can enter JavaScript:

● Clicking Hide Implementation Details switches off the Solution Design capability and displays the
view which the business analyst would have.

● On the General tab, there may already be a text description of the required script. This description will
be preserved as it is (and will usually contain a number of error markers) if you select JavaScript from
the Script Defined As list. If you select Unspecified from the Script Defined As list, the description is
lost. You can however recover the description by pressing Ctrl + Z.

Enter the script itself in the Describe Task Script: area. This area supports text editing assistance, as
described in Editing Scripts.

In addition to the main script for the task, which you enter in the Describe Task Script: area of the General
tab as described above, you can create further scripts in the same way as described for other types of task in
Scripts on Other Tasks. You enter these on the Scripts tab from the Process Manager Scripts selection. For a
Script task, you can enter the following types of additional script:

● Initiate
● Complete
● Timeout

Unsupported Script Types
BPM does not support Cancel scripts on a Script task.

The Cancel script type is shown as available on the Scripts tab of the Properties view for the Script task,
even though it is not supported by BPM.

However, if a process has BPM set as a destination environment, any script task that has a Cancel script
defined will show a warning message:

To remove this warning, you can right-click the validation error in the Problems view and select Quick Fix.
This will remove the unsupported script.

136

TIBCO Business Studio™ BPM Implementation Guide

Scripts on Other Tasks
As well as Script tasks, tasks of other types may have scripts attached to them. While running a script is not
the main purpose of these tasks, you may still wish to have a script run when the task completes, for
example, or if it is cancelled. These are called action scripts.

Some action script types use Work Manager Scripting which references information about individual work
items, and about entities in the organization model. Other action script types use Process Manager
Scripting, which references parameters and fields defined for your process in TIBCO Business Studio, and
can also be used to access information about the organization model. See the table in Supported Script
Types for information about what type of scripting is supported for each Action Script Type.

Supported Script Types
You can create a number of different types of script for User tasks (which are listed in the order in which
they are executed):

Action Script
Type Description

Work Manager
executed

Process
Manager
executed

Initiate Executed when the activity initiates. Y

Schedule Executed when the process schedules a
work item.

Y

Reschedule Executes when a work item is updated
via a non-cancelling signal event on task
boundary.

Y

Open Executed when the user opens the work
item.

Y

Close Executed when the user closes the work
item (returning it to their Inbox).

Y

Submit Executed when the user submits the
work item.

Y

Complete Executed when the activity completes. Y

Timeout Executed when the activity times out. Y

Cancel Runs when the activity is cancelled. Y

In addition, you can create the following types of script for all other task types, including Pageflow User
tasks, Service tasks and Manual tasks:

● Initiate
● Complete
● Timeout
● Cancel

137

TIBCO Business Studio™ BPM Implementation Guide

Sample Scripts
This section contains samples of work manager scripting and process manager scripting.

Example of Work Manager Scripting:

The JavaScript below is defined on the 'Schedule' Script meaning that when this work item is scheduled this
script will execute. The script is using the WorkManagerFactory.getWorkitem().getWorkItemOffers()
method to return the list of resources to which the work item is offered.

WorkManagerFactory methods are defined in ’Work Manager Scripting’ in the TIBCO ActiveMatrix BPM
Business Data Services guide.
var theOfferSet = WorkManagerFactory.getWorkItem().getWorkItemOffers();
var i = 0;
DFOfferSet.clear();
while (i<theOfferSet.size()){
//loop through resources in offer set
 var resourcesFromOfferSet = theOfferSet.get(i).getName();
 DFOfferSet.add(resourcesFromOfferSet);
//add resource to OfferSet array field
 i++;
}

Where 'DFOfferSet' is a data field defined in the process and added as an interface to the user task.

The WorkManagerFactory.getOrganizationModel method can be used to navigate around the
organization model to identify a particular organizational entity, or aresource mapped to such an entity. For
example:
var useResource =
WorkManagerFactory.getOrganizationModel().getAssociatedResources(E
asyAs.ClaimsDept.Manager)

Resources can be located using RQL queries, using the getOrganizationModel().getResourcesByQuery
method. See "Resource Query Language" in TIBCO Business Studio BPM Implementation Guide for more
information.

Examples of Process Manager Scripting:

The JavaScript below is defined on the 'Initiate' Script meaning that when this user activity in initiated, this
script will execute. The script is using the Process.getActivityLoopIndex() method to return the loop index
for a multiple instance user task.
var myActivityLoopIndex = Process.getActivityLoopIndex();
if (myActivityLoopIndex != null)
{
 UTActivityLoopIndex = myActivityLoopIndex;
}

Where 'UTActivityLoopIndex' is a data field defined in the process and added as an interface to the user
task.

The following example shows extracts from a Process Manager script being used to get information about
the organization model:
var orgModel = Process.getOrgModel();
var unit1 = orgModel.ouByGuid("_xI4ikMpPEd64gM7QE8RwxA");
var position1 = orgModel.positionByName("clerk");

Adding an Action Script to a Task
You can add an action script to a task.

Procedure

1. Click the task to which you want to add a script.

138

TIBCO Business Studio™ BPM Implementation Guide

2. In the Properties view for the task, click the Scripts tab.

3. Select from Process Manager Scripts and Work Manager Scripts to display the different sets of scripts
available. If either of those sets of scripts is not available for the task you have selected, the selection will
be grayed out (so in the example below, Work Manager Scripts is grayed out).

4. Click the tab for the type of script that you want to add. See Supported Script Types for a list of
supported types.

If a script is already defined under a tab, then this is shown by the script icon before the tab name. So in
the example above, a script is defined under Initiate Script. If no script is defined, the tab name will be
preceded by an empty script icon.

5. Depending on the destination environment and capability selected, there are several script types in the
Script Defined As list. Select one of the available script types and enter your script in the area provided.
You can press Ctrl + Space for Content Assist.

6. Once you have created the desired scripts, save the Package that contains the process.

Result

Content assist is available for action scripts in the same way as for script tasks. See Editing Scripts for
details. However action scripts can also reference information about individual work items.

Associating a Script with a Conditional Flow
Scripts are associated with a Conditional Sequence Flow by entering the script in the Properties view for
that Sequence Flow object. You can use a script to define the conditions that determine whether a
conditional sequence flow is followed. At runtime, this causes the Sequence Flow to be followed only if the
condition is met.

Procedure

1. Create the Conditional Sequence Flow object. On the General tab of the Properties view, note that the
Conditional button is selected.

2. In the Script Defined As list, select JavaScript.

3. Enter the script in the Describe Sequence Flow Condition area. The script can be a multi-line script and
the result of the last statement of the script should be of boolean type and that determines the result of
the script. This is an example of a simple script:

139

TIBCO Business Studio™ BPM Implementation Guide

This is an example of a more complex script:

The Describe Sequence Flow Condition area supports the usual text editing assistance such as color
syntax highlighting, content assist and error markers (see Implementing Script Tasks for more
information).

On the General tab, there may already be a text description of the required script. This
description will be converted to comments if you select JavaScript from the Script Defined As
list. If you select Unspecified from the Script Defined As list, the description is lost. You can
however recover the description by pressing Ctrl + Z.

Associating a Script with a Loop
Scripts can be associated with processing loops in the Properties view for the task to which a loop has been
applied.

Procedure

1. On the General tab of the Properties view for the task, select either Standard Loop or Multi-instance
Loop.

When using a multi-instance loop, you should set an additional instance expression which
must evaluate to 0. When the loop has finished it looks to see if this exists. If you do not set
this to 0, then your multi-instance loop will not be able to end.

2. When either of these is selected the Loops tab becomes available. This tab specifies the scripts you can
enter for each type of loop. Select JavaScript from the Script Defined As: field and enter the script itself
in the area provided.

Result

See the TIBCO Business Studio Modeling User’s Guide for a full description of how to create a loop and the
significance of the different types of script you can assign to it.

140

TIBCO Business Studio™ BPM Implementation Guide

Timer Event Scripts
Scripts can be added to Start events or Catch Intermediate events in the Properties view, if the event is
defined as triggered by a timer.

There are several script types available from the Script Defined As list:

● Free Text - the Business Analyst or person who created the process can use this field to enter text that
describes the desired behavior for the script.

On the General tab, there may already be text comments describing the required script. These
comments will be lost if you change the select JavaScript from the Script Defined As list. If
you need to save these comments, copy them before changing the script type.

● Constant Period - this allows you to specify the timeout period after the event is initiated using the
following time units.

● At runtime the timeout period is calculated using the calcDeadline API operation
described in "BusinessDeadlineService" in the TIBCO ActiveMatrix BPM Developer’s Guide.
Note that if you specify a date without a time element (no hours or smaller units) then the
period is assumed to be in working days.

● The calendarLookAhead property in the dac.properties file specifies how far ahead the
algorithm should look when calculating the timeout. If there is not enough working time
available to complete the task in the period defined by calendarLookAhead, an error is
returned. The property defaults to a value of one month, but you should ensure that it is set
to a large enough value to give correct results for your calculations.

See "Configuring TIBCO ActiveMatrix Calendar Properties" in TIBCO ActiveMatrix BPM
Administration for more details of this property.

● JavaScript - this script type allows you to enter JavaScript statements in the space provided. The script
should return a datetime or datetimetz type for an absolute datetime deadline, or a duration if the in-
scope calendar is to be used. The script can be as long as you like, but the result of the script must be one
of those types. For example:

In this example, the DateTime is specified using one of the DateTimeUtil factory methods described
in ’Script Functions’ in the Business Data Services Guide. The event will be fired at the date and time
specified.

If only a Date were present, the event would fire immediately when the deadline is created (in the runtime
environment) on the Date specified. If only a Time were specified, the event would fire at the specified time
on the current date.

141

TIBCO Business Studio™ BPM Implementation Guide

Task Scripts on Events
Any event whether timer triggered or not can have a task script assigned to it.

The possible scripts are as follows:

Event Type Allowed Script Types

Start Event Complete script

Intermediate Event Initiate script

Complete script

Cancel script

End Event Initiate script

You define task scripts for events on the Scripts tab of the Properties view for the event, in the same way
that you define the corresponding scripts for tasks. See Adding an Action Script to a Task for information
on how to do this.

Editing Scripts
All the areas in which you can enter scripts support the usual text editing assistance such as color syntax
highlighting, content assist and error markers. For example, if you want to specify a data field called Field,
enter the character "F", then press Ctrl + Space. All matching data fields are displayed:

● Content assist is case-sensitive. For example, it would differentiate between the class Date and a variable
called date.

●

● For arrays and multiple-valued items, content assist displays only the item name; it does not prompt for
any indication of the multiple values.

You can then select the desired data field from the list and continue entering JavaScript:

In this case there is an error marker next to the line. This is because validation has reported an error in the
Problems view. TIBCO Business Studio provides validation for the JavaScript syntax.

You can position the cursor over the error marker to display the reason for the error:

142

TIBCO Business Studio™ BPM Implementation Guide

When these errors are corrected, the error marker and the corresponding entries in the Problems view are
removed.

Content assist also provides templates for common JavaScript constructs. For example, if you enter if, then
press Ctrl + Space, you can use the following template to construct an if else construct:

When using the colon character in a JavaScript conditional expression, ensure that you insert spaces before
and after the colon. For example, the following expression is not valid:

 FIELD2==4?PARAM1:PARAM2;

The corrected expression is:
 FIELD2 == 4 ? PARAM1 : PARAM2;

Content assist similarly provides prompting for the properties of common data types and for data type
conversions, as in the following example where the user has selected content assist after typing Number.

(See ’Script Functions’ in the Business Data Services Guide for details on data type transformations
supported.)

Additional Functions

Some additional methods compatible with standard JavaScript are provided with BPM and can be used in
the scripts that you write within TIBCO Business Studio. These are described in ’Script Functions’ in the
Business Data Services Guide.

143

TIBCO Business Studio™ BPM Implementation Guide

Assistance for Action Scripts
Some action scripts can use data associated with individual work items.

See Scripts on Other Tasks.

For these scripts, content assist provides prompting for certain common constructs involving the work item,
as shown in the following illustration.

Using Process Data as Script Variables
You can use the following business process data in scripts: Parameters (whether they are defined at Package
or Process level) and Data fields.

Any of these that are added to the script can be used by the script both in the TIBCO Business Studio
interface and at runtime once the process containing the script has been deployed to BPM.

By default, all of a process’s data fields are available in a script. If an interface is used then this will restrict
the fields to just those available in the interface.

Using Structured Data Types
A range of factory methods are supplied for creating instances of structured data types within scripts. You
use these methods for creating objects and performing operations on objects of specific types in scripts.

These methods are listed in ’ScriptUtil’ in ’Script Functions’ in the Business Data Services Guide.

The version of JavaScript used by BPM scripting does not support the new keyword; instead, you must
create new objects using these factory methods.

For example, the following line could be used to initialize a datetime field called dtYearEnd, using one of
the methods described in ’Script Functions’ in the Business Data Services Guide:

dtYearEnd = DateTimeUtil.createDatetime("2010-12-31T23:59:59");

The normal JavaScript arithmetic operators (such as +, -, *, /) are not supported for use with variables
containing objects of these types. Instead, you must use the method listed in ScriptUtil in ’Script Functions’
in the Business Data Services Guide for the underlying Java type of the object.

Fields of the types listed in the table below, such as Intger(subtype:Fixed) and Decimal(subtype:Fixed)
types have to be manipulated in this way; but the basic Integer(subtype:Signed) and
Decimal(subtype:Floating Point) fields can be manipulated using the standard arithmetic operators.

The following table gives a summary of the types affected, with the factory methods used and the
underlying Java types:

144

TIBCO Business Studio™ BPM Implementation Guide

BPM Object Type
BPM Sub-
type Factory Method to Create Underlying Java Type

Date DateTimeUtil.createDate XMLGregorianCalendar

Time DateTimeUtil.createTime XMLGregorianCalendar

Datetime DateTimeUtil.createDatetime XMLGregorianCalendar

Datetimetz DateTimeUtil.createDatetimetz XMLGregorianCalendar

Duration DateTimeUtil.createDuration Duration

Integer Fixed ScriptUtil.createBigInteger BigInteger

Decimal Fixed ScriptUtil.createBigDecimal BigDecimal

For example if you wanted to assign another variable, dtNextYearStart, to be one second later than the
dtYearEnd field that was assigned in the example above, you could add one second to the previous field,
like this:

dtNextYearStart = ScriptUtil.copy(dtYearEnd);

dtNextYearStart.add(DateTimeUtil.createDuration("PT1S"));

or

dtNextYearStart = DateTimeUtil.createDatetime(dtYearEnd);

dtNextYearStart.add(DateTimeUtil.createDuration("PT1S"));

Care must be taken as the add() method on the XMLGregorianCalendar updates the object, and does not
return a value.

Dynamically Created Factory Methods
In addition, BPM scripting supports the use of dynamically created factory methods to create new Business
Object Model objects.

This enables you to populate a data field with an instance of a Class defined in a Business Object Model that
is referenced (directly or indirectly) from the business process. You can do this if the first use of that data
field is in a Script task; it is not necessary if the field has already been initialized, for example in a form. You
can call:

field=BOM_name_Factory.createClass();

where:

● field is the name of the data field to be populated, and must correspond to a process field defined as an
External Reference to class in the Business Object Model,

● BOM_name is the Business Object Model name, with any dots replaced by underscores (so
com.example.BOM would become com_example_BOM),

Note that this is the Name of the model, not the Label.

● Class is the name of the Business Object Model Class object,

For example, assume that there is a Business Object Model called com.myorg.customermodel, and that it
contains a Class called Customer. To use a script to create an instance of this Class in the field cust, you
would call the corresponding factory method as follows:

cust = com_myorg_customermodel_Factory.createCustomer();

145

TIBCO Business Studio™ BPM Implementation Guide

As noted above this only needs to be done if the cust field has not already been initialized. You could check
to see whether it has been created before invoking this line of the script, for example:

if (cust == null)

{

cust = com_myorg_customermodel_Factory.createCustomer();

}

The Business Object Model object needs to have been created before any attributes defined in the Business
Object Model can be assigned.

See the TIBCO Business Studio Concepts Guide and TIBCO Business Studio Modeling User’s Guide for more
details on business object models.

JavaScript Exclusions
Certain facilities of standard JavaScript are not supported in TIBCO Business Studio.

These are:

● The JavaScript new operator is not supported for creating new objects. The factory methods described in
Using Structured Data Types and listed in the Business Data Services Guide are used instead.

● The JavaScript arithmetical operators are not supported for use with the new data types described in
Using Structured Data Types. Instead, use the methods listed in the Business Data Services Guide for the
appropriate underlying data type.

● You cannot define functions in scripts: that is, the JavaScript function() method is not supported. An
error saying Local method definition is not allowed is generated.

It is not regarded as good practice within TIBCO Business Studio for scripts to be too large or to provide
behavior which would be better and more clearly provided by the diagrammed business process. Scripts
should provide only the necessary connections between the process, the services it uses, and work items.

● The switch(){case: default:} statement is not supported.

● JavaScript regular expressions are not supported.

● The valueOf() method is not supported.

You can achieve the same results by using toString() instead.

● The Try/Catch statement is not supported.

● The === operator is not supported

● "in" is a reserved keyword in JavaScript and is not supported.

Note that braces, {..}, are required in an if statement and in for and while loops by the TIBCO
Business Studio script editor, although they are only optional in JavaScript.

Although braces are not compulsory in JavaScript if, for and while statements their use is in
any case good practice.

Customizing JavaScript Presentation Preferences
You can customize some of the settings for formatting, content assist, and the templates that are used by
JavaScript.

Procedure

1. Select Window > Preferences .

2. Select TIBCO JavaScript. The following dialog is displayed:

146

TIBCO Business Studio™ BPM Implementation Guide

Make any desired changes to the Formatting or Content Assist sections, then click Apply.

3. To customize JavaScript styles, expand TIBCO JavaScript and select JavaScript Styles. The following
dialog is displayed:

From the Content type drop-down list, select the type of text whose behavior you want to modify. Make
the desired changes and click Apply.

4. To change the installed templates, expand TIBCO JavaScript and select JavaScript > Templates . The
following dialog is displayed:

147

TIBCO Business Studio™ BPM Implementation Guide

You can edit, modify, create, or import templates using the controls provided. When you have finished
making changes, click Apply.

Customizing XPath Presentation Preferences
You can customize some of the settings for formatting, content assist, syntax highlighting, and the templates
that are used by XPath scripts.

Procedure

1. Select Window > Preferences .

2. Select TIBCO XPath. The following dialog is displayed:

Make any desired changes to the Formatting or Content Assist sections, then click Apply.

3. To customize XPath styles, expand TIBCO > XPath and select XPath > Styles . The following dialog is
displayed:

148

TIBCO Business Studio™ BPM Implementation Guide

From the Content type drop-down list, select the type of text whose behavior you want to modify. Make
the desired changes and click Apply.

4. To change the installed templates, expand TIBCO XPath and select XPath > Templates . The following
dialog is displayed:

149

TIBCO Business Studio™ BPM Implementation Guide

You can edit, modify, create, or import templates using the controls provided. When you have finished
making changes, click Apply.

Scripts at Runtime
When an application runs under BPM, it produces work items. Each instance of the process that you have
designed in TIBCO Business Studio starts with the initial task described in your process and follows the
flow of processing that you have defined. The first work item that the process instance presents to the user,
therefore, may correspond to the first user task defined in your process. Subsequent forms may be
presented to the same user or to someone else.

The work items are assigned to users as described in Managing Work Using Organization Models. Each
work item appears in the work list of the user to whom it is assigned. When the user opens that work item,
they are presented with a form, or with the first of a series of forms, that enables them to process that user
item.

Except in the very simplest of processes, the sequence of forms that the user is presented with, and the
outcome of the work item, will depend on the conditional processing written into the application. That
conditionality is governed by scripts. For example, a script could take information from fields completed in
one work item and pass it to another, depending on the value of those fields.

150

TIBCO Business Studio™ BPM Implementation Guide

In addition, scripts can include operations to create, update or delete data objects. Examples would include
creating or updating a customer record, or a new insurance claim.

There are two categories of action scripts, one that has access to Work Manager data, and the other that has
access to the Process Manager scripting object (see Scripts on Other Tasks). Action scripts can act directly on
work items at run time and can use attributes of those work items as parameters.

The following types of action script are supported:

Types of Action Script Description

Open Work Item When a user opens a work item in a work list, any Open script defined
for the event will run. If necessary this script can force a cancellation
of the work item open and keep the work item in the work list.

Close Work Item When a user closes a work item in a work list (i.e. saves the state of the
work item rather than completing it), any Close script defined for the
event will run.

Submit Work Item When the work item is submitted, after all standard validations have
run but before the task completion message is returned, any Submit
script defined for the event will run. If necessary this script can force a
cancellation of the work item submit and keep the work item open
and with the end user.

Schedule Work Item When the work item is scheduled from an initiated activity, after all
standard validations have run but before the task completion message
is returned, any Schedule script defined for the event will run. If
necessary this script can force a cancellation of the work item schedule
and keep the work item open and with the end user.

Initiate Activity Initiates the user activity within the process that generated the work
item.

Complete Activity Completes the user activity within the process that generated the
work item.

Timeout Activity Executes when the user activity within the process that generated the
work item times out.

Cancel Activity Executes when the user activity within the process that generated the
work item is cancelled.

151

TIBCO Business Studio™ BPM Implementation Guide

Data Mapping

Data Mapper is a script grammar available for script tasks, task scripts, web-services, sub-processes, and
global signals. With Data Mapper, you can graphically map data across datafields and parameters to create
complex BOM objects from a combination of process data fields and parameters.

For data mapper, the script created employs a create-or-merge strategy at runtime. If the parent-tree for the
target element does not exist, TIBCO Business Studio creates it prior to assigning the mapped element. If
there is any invalid mapping in the process data, an appropriate validation error is displayed in the
Problems tab.

The process data can include data fields, parameters, user-defined scripts, process information, and work
item information. The left hand side of the data mapper shows the source list, and the right hand side
shows the target list. The mappings defined using the process data mapper are applied to the target
datafields and parameters at runtime.

● Data Mapper is available on Script Tasks as an option in the Script Defined As: list on the General tab
of the Properties view.

● For a Task script, Data Mapper is available as an option in the Script Defined As: list in the process
manager and work manager scripts in the Script tab of the Properties view.

● For a Web Service, Data Mapper is available using the Input To Service and Output From Service tabs
in the Properties view.

● For a Call Sub-Process, Data Mapper is available using the Map To Sub-Process and Map From Sub-
Process tabs in the Properties view.

● For a Catch error event (including Web Service fault catch event, catch-all error events), Data Mapper is
available using the Map From Error tab in the Properties view.

If you change the script grammar from Data Mapper to JavaScript, TIBCO Business Studio generates a new
JavaScript with the data you have already defined in the Data Mapper. In complex mapping scenarios, you
can draw the main assignments easily and then modify the result to perform more complex actions.
However, changing the grammar from JavaScript to Data Mapper results in loss of the script.

The overall strategy for handling mappings into the children of complex type target data is to create the
target element if it does not exist prior to performing assignment to the child element. If the target parent
element already exists then the assignment is made to the child of the existing element.

Existing (created before TIBCO Business Studio version 4.1) catch-all error events continue to use the
JavaScript mapping selection. New catch-all error events use DataMapper. You can switch between these
using the Script Grammar dropdown.

Array Mapping Strategies
Specific array handling strategies can be selected for mappings to multi-instance target data.

Overwrite, append, and merge are the three mapping strategies that are applicable for array types. By
default, the target list is overwritten with the source list.

Each mapping strategy affects the target list differently:

Overwrite

When mapping directly between arrays, clears the target array and copies the elements from the source
array.

When mapping between children of arrays, clears the target array and creates a new target element for
each element in the source array. The assignments implied by the child mappings are then applied to
parent elements in the same location in the source and target array.

152

TIBCO Business Studio™ BPM Implementation Guide

Append

When mapping directly between arrays, copies elements in the source array to the end of the target array.

When mapping between children of arrays, creates a new element for each element in the source array
and appends to the target array. The assignments implied by the child mappings are then applied to new
target elements from the source elements.

Merge

When mapping directly between arrays, overwrites each element in the target array for which there is an
element at the same location in the source array by a copy of the source element. If there are further
elements in the source array then they are appended to the target array.

When mapping between children of arrays, each element in the target array for which there is an element
at the same location in the source array will have the assignments implied by the child mappings applied
from that source element.

If there are further elements in the source array then new target elements are created and appended to the
target array, and the assignments will be applied to the children of these new elements.

Nested Array Handling

In the case where it is desired to map to an array nested within another array, either directly or mapping
into the child content, then you must do it from equivalently nested source arrays.

For example, if your target content is an Orders array, with a child array of OrderLines then in order to
map into Orders[]->OrderLines[]->LineId then the mapping must be from an element within a second
level nesting source array (MyConfirmations[]->ConfirmationLine[]->LineConfirmId).

153

TIBCO Business Studio™ BPM Implementation Guide

Like Mapping
Like mapping is useful in automatically mapping complex elements that are of different types but contain
equivalent content.

For instance, a BPM application may have two different types VisitorDetails and PatientDetails that share
some commonly named children. Performing a like mapping between these two objects is the equivalent of
manually mapping all the same named simple type content from the source list to the target list.

It is possible to perform like mapping between arrays of complex types. In this case the equivalently-named
child content mappings implied by the like mapping are applied to each element in the array according the
the chosen array mapping strategy. If there are nested child arrays that would be like-mapped then the
array mapping strategy is selected separately for each.

A like mapping scans the target element tree looking for the same named content in the source tree.
Initially, all equivalently-named child objects get mapped regardless of their type. If the objects are of
different types, the mapping shows an error decoration. You can fix the problem in the BOM definition by
excluding certain target child elements from the mapping (as described in the step to exclude child
elements). The overall strategy for handling mappings into the children of complex type target data is to
create the target element if it does not exist prior to performing assignment to the child element. If the
target parent element already exists then the assignment is made to the child of the existing element. For
mappings from children of source items, the assignment is only performed if the parent itself has a value. If
the parent element is not assigned, then the target element remains unchanged.

154

TIBCO Business Studio™ BPM Implementation Guide

Like mapping is case-insensitive for the names of child objects.

Like mappings are fully recursive, mapping similarly named composite objects that are within a particular
target being mapped. However, only the child objects that are at the same level are included in the like
mapping.

If there are nested child arrays that would be like-mapped then the array mapping strategy is selected
separately for each array.

Mapping Contents in Data Mapper
The Data Mapper shows Process and Work Item JavaScript Factory classes as top-level elements on both the
sides with the available information to be used for mapping.
For more information, see Data Mapping.

Procedure

1. Select Data Mapper in the Script Defined As: list, that lists the script grammars.

● For the Script Task, the list is available on the General tab of the Properties view. Clicking the link
Show in Separate Property Tab… displays the Data Mapper tab in the Properties view.

● For a Task script, the Data Mapper grammar is available in the process manager and work manager
scripts in the Script tab of the Properties view.

● For a Web Service, Data Mapper is available using the Input To Service and Output From Service
tabs in the Properties view.

● For a Call Sub-Process, Data Mapper is available using the Map To Sub-Process and Map From
Sub-Process tabs in the Properties view.

● For a Catch error event (including Web service fault catch event, catch-all error events), Data
Mapper is available using the Map From Error tab in the Properties view.

2. Drag an element from the source list or LHS and drop it on a corresponding element in the target list or
RHS.
A mapping is established between the two elements. If the data types of the two elements being
mapped are incompatible, an error decoration is displayed on the mapping.

3. Right-click the mapping and select Map Like-Named Child Content from the context menu.
The child elements with the same name and object type are automatically mapped.

155

TIBCO Business Studio™ BPM Implementation Guide

4. If you do not want a few child elements mapped with like-named child elements, right-click the
mapping at the parent level, and select Open Like-Mapping Exclusion List.
Manage Like-Mapping Exclusion List dialog opens, which lists all the like-mapped elements.

156

TIBCO Business Studio™ BPM Implementation Guide

5. Select the elements you do not want mapped, and click OK.

6. Define one of the following mapping strategies by right-clicking the target tree array items:

● Overwrite Target List
● Append to Target List
● Merge List Element Content

For more information on these three options, see Mapping Strategies.

Mapping Process and Work Manager JavaScript Class Attributes
Attributes from the JavaScript classes, Process and WorkManagerFactory (user task only) are made
available for mapping to and from process data in the process manager content.

157

TIBCO Business Studio™ BPM Implementation Guide

Executing Java Classes from a Process

This section describes how to call Java classes from a TIBCO Business Studio process by using a service
task.

1. Create an Eclipse plugin in your workspace that contains code that you want to call as well as any
dependencies.

For more information about creating or importing Java projects, see the Java Development User
Guide in the Eclipse documentation.

When you use a third party library for your Java projects (which in turn is called from the BPM
process) then you should ensure that those third party library/jars are not mentioned on the
project classpath (project/runtime/classpath) but they should be mentioned on the manifest
file.

2. Select the Service Task, then on the General tab of the Properties view for the Service Task, select the
Java option from the Service Type drop-down list:

3. Click Select Class. The Select Class dialog is displayed:

An alternative to selecting the Class is to select a factory to create the Class. To do this, click
Select Factory. If a factory is available, selecting it populates the Class and Method fields (if
the method is a static method with no arguments).

Select the appropriate class that you want to use. If you begin typing, the matching classes are
displayed. In the previous example, the character s was entered, and all classes starting with s are
displayed.

158

TIBCO Business Studio™ BPM Implementation Guide

4. Select from the drop-down list the Method that you want to use. For example:

5. Click the Scripts tab and add any audit scripts you require Only Initiate scripts are supported.

● You must use a factory static method to instantiate the Plain Old Java Objects (POJO).

● JavaBeans and arrays are treated as pass by reference. They must also be "true" JavaBeans
in terms of public getters and setters.

Java Deployment

A POJO service is embedded in the DAA generated for the TIBCO Business Studio project.

Complete the Parameter Mapping
This topic covers input and output mapping, and things you should consider when mapping.

You should click the Input To Service and Output From Service tabs to complete the input and output
mapping between any parameters or data fields in your process and the Java code.

You can choose to use automapping to map automatically. To do this, use the automap button above the
mappings. See "Automapping" in Calling a Web Service for more information.

Mapper Restrictions and Notes

● If you attempt to map data fields or parameters to parameters of a different type (for example, mapping
a String to an Integer), an error is generated in the Problems view.

● If numbers are being mapped, you must perform a one to one mapping.
● Floats and doubles are limited in precision and TIBCO Business Studio validates the mapping of these

data types as follows:

Data Type Process to Java Java to Process

Float 6 maximum 6 minimum

Double 15 maximum 15 minimum

From process to Java, errors are generated if these limits are exceeded. From Java to process, warnings
are generated if these minimum values are not adhered to.

● Use of system exit is prohibited.
● Mapping of process Decimal numbers to Java Integer numbers can lead to a loss of precision (there is a

validation rule for this).
● Mapping of Java Decimal numbers to process Integer numbers can lead to a loss of precision (there is a

validation rule for this).

159

TIBCO Business Studio™ BPM Implementation Guide

● There is a validation rule that checks that all the input parameters for the POJO service have been
mapped.

160

TIBCO Business Studio™ BPM Implementation Guide

Web Service Definition Language (WSDL) Documents

This section describes the content and structure of WSDL documents.Web services are described in
documents expressed in WSDL.

When interacting with a web service, a process will adopt one of two roles - supplier or consumer:

● A service supplier publishes a WSDL document that describes the services it offers.

● A service consumer uses the published WSDL document to determine the services offered by the supplier
and the messages required to access those services.

Abstract and Concrete WSDL Documents
WSDL documents are described as either abstract or concrete:

● An abstract WSDL document describes what the web service does, but not how it does it or how to
contact it. An abstract WSDL document defines:

— the operations provided by the web service.

— the input, output and fault messages used by each operation to communicate with the web service,
and their format.

● A concrete WSDL document adds the information about how the web service communicates and where
you can reach it. A concrete WSDL document contains the abstract WSDL definitions, and also defines:

— the communication protocols and data encodings used by the web service.

— the port address that must be used to contact the web service.

WSDL Document Structure
There are two types of WSDL documents: abstract and concrete:

● An abstract WSDL document defines an abstract messaging model without reference to protocols or
encodings.

● A concrete WSDL document contains the abstract definitions and the communication protocols and data
formats by which the operations defined in the abstract WSDL document can be invoked.

Abstract WSDL Documents
An abstract WSDL document contains the following elements: Defniitions, Types, Messages, Parts,
Operations and Port types.

● Definitions
is the root element. It enumerates the namespaces referenced in the WSDL document and contains all
other elements.

● Types
 describe the data types of the objects that may be passed in messages.

● Messages
 consist of one or more logical parts. Each part is associated with a type from a type system using a
message-typing attribute.

● Parts
 a mechanism for describing the logical abstract content of a message.

161

TIBCO Business Studio™ BPM Implementation Guide

● Operations
 are composed of sequences of messages. The direction of the messages (input or output) is from the
perspective of the service provider.

● Port types
 (also referred to as interfaces) are collections of operations.

The following WSDL document fragment contains the abstract WSDL elements for a stock quote service.
<definitions name="StockQuote"
 targetNamespace="http://ns.tibco.com/StockQuote"
 xmlns:tns="http://ns.tibco.com/StockQuote"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xs:schema targetNamespace="http://ns.tibco.com/StockQuote/">
 <xs:element name="QuoteRequest" type="xs:string"/>
 <xs:element name="QuoteResponse" type="xs:float"/>
 </xs:schema>
 </types>
 <message name="QuoteInput">
 <part name="symbol" element="tns:QuoteRequest"/>
 </message>
 <message name="QuoteOutput">
 <part name="quote" element="tns:QuoteResponse"/>
 </message>
 <portType name="StockQuotePortType">
 <operation name="getQuote">
 <input message="tns:QuoteInput"/>
 <output message="tns:QuoteOutput"/>
 </operation>
 </portType>
 ...
</definitions>

Concrete WSDL Documents
The concrete WSDL document adds the following elements to the abstract WSDL document: Bindings,
Ports and Services.

● Bindings
 connect a port type to a protocol and data format

● Ports
 (also referred to as endpoints) are comprised of a binding and a network address

● Services
 are collections of ports

The following WSDL document fragment contains the concrete WSDL elements of the stock quote service
(for SOAP over HTTP).
<binding name="StockQuoteSoapBinding"
 type="tns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getQuote">
 <soap:operation soapAction="http://ns.tibco.com/getQuote"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>

162

TIBCO Business Studio™ BPM Implementation Guide

</binding>
<service name="StockQuoteService">
 <port name="StockQuotePort"
 binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://ns.tibco.com/stockquote"/>
 </port>
</service>

A similar WSDL document fragment for SOAP/JMS is as follows:
<wsdl:binding name="SOAPService_Binding1"
 type="tns:helloWorld">
 <soap:binding style="document" transport="http://www.tibco.com/namespaces/ws/2004/
soap/binding/JMS" />
 <jms:binding messageFormat="text" />
 <wsdl:operation name="Hello">
 <wsdl:documentation />
 <soap:operation soapAction="Hello" style="document" />
 <wsdl:input>
 <soap:body parts="parameters" use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body parts="parameters" use="literal" />
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>
<wsdl:service name="NewComponent_1.0.0.201205021319_service_NewService_NewService">
 <wsdl:port binding="tns:SOAPService_Binding1"name="SOAPService_Binding1">
 <soap:address location="" />
 <jndi:context>
 <jndi:property
name="java.naming.factory.initial" type="java.lang.String">com.tibco.tibjms.naming.Tibj
msInitialContextFactory</jndi:property>
 <jndi:property
name="java.naming.provider.url" type="java.lang.String">tibjmsnaming://uk-n2-
base:7222</jndi:property>
 </jndi:context>
 <jms:connectionFactory>QueueConnectionFactory</jms:connectionFactory>
<jms:targetAddress destination="queue">queue.sample</jms:targetAddress>
 </wsdl:port>
 </wsdl:service>

163

TIBCO Business Studio™ BPM Implementation Guide

Web Service Configuration Properties

This section describes configuration properties for tasks or events that invoke or expose web service
operations, and the associated system participants that define or identify web service endpoints.

Web Service Implementation Properties
The following table describes the fields that appear on the Properties page when one of the following tasks
or events is defined with a Service Type (or, for a message event, Implementation) of web service: message
event (start, catch/throw intermediate or end), service task or send/receive task.

Property Description

Service Type Must be Web Service.

Operation This section defines the operation that is to be invoked or exposed by the task or event.

Click:

● Select to choose an operation from a WSDL document that already exists in the
current workspace.

● Clear to clear all the currently selected fields in the Operation and Endpoint
Resolution sections.

● Import WSDL to import a WSDL document from an external source (a file,
URL or service registry), then choose an operation from the imported WSDL
document.

● Generate WSDL to automatically create a WSDL document (abstract or
concrete), an operation and the required data mappings from the data fields
and types defined on the Interface tab.

This option is only available on a service task.

● Set Default to reset the task or event to use the default web service operation.

This option is only available if the task or event is exposing a web service, and if the
default WSDL document is not already selected.

Port Type The port type (set of operations) that contains the Operation Name operation, as
defined by the name attribute of the portType definition in the WSDL document.

The portType definition is part of the abstract WSDL document.

Operation Name The operation that the process wishes to call or expose, as defined by the name
attribute of the operation definition in the WSDL document.

The operation definition is part of the abstract WSDL document.

Port Name The port that defines the binding (protocol and data format) and network address
used by the Service Name service, as defined by the name attribute of the port
definition in the WSDL document.

The port definition is part of the concrete WSDL document. (It is therefore not
shown for an operation selected from an abstract WSDL document.)

164

TIBCO Business Studio™ BPM Implementation Guide

Property Description

Service Name The service that contains the Port Name port, as defined by the name attribute of
the service definition in the WSDL document.

The service definition is part of the concrete WSDL document. (It is therefore not
shown for an operation selected from an abstract WSDL document.)

Transport The transport mechanism used by the Service Name service.

The available transport options are Service Virtualization, SOAP over HTTP,
SOAP over JMS.

Endpoint
Resolution

This section defines how the location of the web service will be resolved at runtime.

WSDL Defines whether a local or remote WSDL will be used. For BPM, the Use remote
option is automatically set when the WSDL document is selected.

The Use local option is not supported by BPM.

Location Defines the location of the WSDL document that defines the specified Operation.

The field displays the string "This is taken from the Alias URL at Run-time". This
indicates that the soap:address location element specified in the WSDL file
will not be used at runtime.

The runtime connection to the web service is defined by BPM.

Endpoint Name The name of the system participant that is used to either:

● define the web service endpoint to be provided by the task or event, or

● identify the web service endpoint to be called by the task or event.

See System Participant Shared Resource Properties for more information about the
configuration of this system participant.

Security Profile This option is currently not used by BPM.

See Web Service Definition Language (WSDL) Documents for more information about the content and
structure of WSDL documents.

165

TIBCO Business Studio™ BPM Implementation Guide

System Participant Shared Resource Properties
The following table describes the fields that appear on the Shared Resource section on the Properties page
for a system participant that is assigned to a task or event that calls or exposes a web service.

Acting As Description

Provider Displays the different binding types that will be used to expose the service to a
client application. These are:

● Virtualization - There are no further properties for this binding type.

● SOAP over HTTP - When this option is selected, the binding details are
displayed - see SOAP over HTTP Binding Details (Provider) .

● SOAP over JMS - When this option is selected, the binding details are
displayed - see SOAP over JMS Binding Details (Provider) .

Consumer Displays an Invoke Using section, which displays the binding type that will be
used to call the service. These are:

● Virtualization - There are no further properties for this binding type.

● SOAP over HTTP - When this option is selected, the binding details are
displayed - see SOAP Over HTTP Binding Details (Consumer) .

● SOAP over JMS - When this option is selected, the binding details are
displayed - see SOAP Over JMS Binding Details (Consumer) .

SOAP over HTTP Binding Details (Provider)
The following table describes the binding details that are displayed for the selected SOAP over HTTP
binding, where the shared resource is acting as a provider.

Property Description

Binding Name Defines the name used to identify this binding. The default value is
SoapOverHttp.

Style/Use Defines the style/use used by the SOAP binding. One of:

● RPC/literal

● Document/literal

If a concrete WSDL document is being used to expose the service, the
style/use used here should match the style/use defined in the WSDL
document. If the two differ, at runtime the style/use defined in the
WSDL document takes precedence and the style/use defined here will
be ignored.

SOAP Version Defines the SOAP version used by this binding. SOAP versions 1.1 and 1.2 are
supported.

The default value is 1.1.

166

TIBCO Business Studio™ BPM Implementation Guide

Property Description

Endpoint URI Path Defines the URI path component of the endpoint address that will be used to
expose the service. The full endpoint address is defined as:

 protocol://host:port/path

The construction of the endpoint address depends upon whether a concrete or
an abstract WSDL document is being used to expose the web service - see SOAP
over JMS Binding Details (Provider) .

If you use multiple bindings to expose the same service (for example, one for
SOAP 1.1 and one for SOAP 1.2, each binding must have a unique Endpoint URI
path.

HTTP Connector
Instance

Logical name to identify the HTTP Connector resource instance in the BPM
runtime that will be used to expose the service to client applications.

The default value is httpConnector, which is the name of the default resource
instance used by the BPM runtime to expose any services to clients over an
HTTP connection.

If you wish to use a different HTTP Connector resource instance, you can do so
using either of the following methods:

● Early binding: Replace the name here with the name of a suitable HTTP
Connector resource instance that already exists on the BPM runtime. (The
mapping to the HTTP Connector resource instance will then be done
automatically when you deploy the application to the BPM runtime.)

● Late binding: Change or create the HTTP Connector resource instance to be
used when you deploy the application to the BPM runtime. You do this by
changing the value assigned to the HttpInboundConnectionConfig
property on the Property Configuration page of the DAA Deployment
Wizard. See Using Pageflow Processes and Business Services for more
information about how to do this.

If you instead export the project to a Distributed Application Archive for
subsequent upload to the BPM runtime, a BPM administrator will need to
configure the HTTP Connector resource instance to be used. See the
Administrator interface documentation for your BPM runtime environment
for more information about this.

Endpoint Address Construction

The construction of the endpoint address depends upon the type of WSDL document being used to expose
the web service.

Generated (Abstract) WSDL Document

The URI path has the following format:
 ContextRoot/PackageName/ProcessName

where:

● ContextRoot is an (optional) project-specific or workspace-specific prefix. See Setting a Common
Context Root for Web Service Endpoint URIs for more information.

● PackageName is the name (not the label) of the parent package that exposes the web service.

● ProcessName is the name (not the label) of the parent process that exposes the web service.

167

TIBCO Business Studio™ BPM Implementation Guide

The following example shows the URI path generated for a process called ClaimsProcess in a package
called ProcessPackage, in a project which has a context root defined as /EasyAs/BPM (either at the project
or workspace level):

/EasyAs/BPM/ProcessPackage/ClaimsProcess

The protocol, host and port components of the endpoint address are taken from the runtime
configuration of the HTTP Connector resource template that is referenced by the HTTP Connector Instance
property.

A Different Abstract WSDL Document

The URI path has the following format:
 WSDLfileName/portType

where:

● WSDLfileName is the name of the WSDL file.

● portType is the name of the selected operation’s parent portType.

Concrete WSDL Document

The URI path is taken from the soap:address location element in the WSDL document.

The protocol, host and port components in the soap:address location element in the WSDL
document address are taken from the runtime configuration of the HTTP Connector resource template that
is referenced by the property.

SOAP over JMS Binding Details (Provider)
The following table describes the binding details that are displayed for the selected SOAP over JMS
binding, where the shared resource is acting as a provider.

Topic destinations are not supported for SOAP/JMS bindings.

Property Description

Binding Name Defines the name used to identify this binding. The default value is
SoapOverJms.

Style/Use Defines the style/use used by the SOAP binding. One of:

● RPC/literal

● Document/literal

If a concrete WSDL document is being used to expose the service, the
style/use used here should match the style/use defined in the WSDL
document. If the two differ, at runtime the style/use defined in the
WSDL document takes precedence and the style/use defined here will
be ignored.

SOAP Version Defines the SOAP version used by this binding. SOAP versions 1.1 and 1.2 are
supported.

The default value is 1.1.

168

TIBCO Business Studio™ BPM Implementation Guide

Property Description

Inbound: Connection
Factory
Configuration

Logical name to identify a JMS Connection Factory Configuration resource
instance in the BPM runtime. It creates an inbound connection to a JMS server to
enable inbound receipt of JMS messages.

The default value is amx.bpm.userapp.jmsConnFactoryConf.

You can bind this logical name to the appropriate JMS Connection Factory
Configuration resource instance using either of the following methods:

● Early binding: Replace the name here with the name of a suitable JMS
Connection Factory Configuration resource instance that already exists on
the BPM runtime. (The mapping to the JMS Connection Factory
Configuration resource instance will then be done automatically when you
deploy the application to the BPM runtime.)

● Late binding: Change or create the JMS Connection Factory Configuration
resource instance to be used when you deploy the application to the BPM
runtime. You do this by changing the value assigned to the
JmsInboundConnectionFactory property on the Property Configuration
page of the DAA Deployment Wizard. See Using Pageflow Processes and
Business Services for more information about how to do this.

If you instead export the project to a Distributed Application Archive for
subsequent upload to the BPM runtime, a BPM administrator will need to
configure the JMS Connection Factory Configuration resource instance to be
used. See the Administrator interface documentation for your BPM runtime
environment for more information about this.

Inbound: Destination
Configuration

Logical name to identify a JMS Destination Configuration resource instance in
the BPM runtime. It specifies what queue to listen to for inbound messages.

The default value is amx.bpm.userapp.jms.request.conf.

You can bind this logical name to the appropriate JMS Destination
Configuration resource instance using either of the following methods:

● Early binding: Replace the name here with the name of a suitable JMS
Destination Configuration resource instance that already exists on the BPM
runtime. (The mapping to the JMS Destination Configuration resource
instance will then be done automatically when you deploy the application to
the BPM runtime.)

● Late binding: Change or create the JMS Destination Configuration resource
instance to be used when you deploy the application to the BPM runtime.
You do this by changing the value assigned to the JmsInboundDestination
property on the Property Configuration page of the DAA Deployment
Wizard. See Using Pageflow Processes and Business Services for more
information about how to do this.

If you instead export the project to a Distributed Application Archive for
subsequent upload to the BPM runtime, a BPM administrator will need to
configure the JMS Destination Configuration resource instance to be used.
See the Administrator interface documentation for your BPM runtime
environment for more information about this.

169

TIBCO Business Studio™ BPM Implementation Guide

Property Description

Outbound:
Connection Factory

Logical name to identify a JMS Connection Factory resource instance in the BPM
runtime. It is used to create an outbound connection to a JMS server.

The default value is amx.bpm.userapp.jmsConnFactory.

You can bind this logical name to the appropriate JMS Connection Factory
resource instance using either of the following methods:

● Early binding: Replace the name here with the name of a suitable JMS
Connection Factory resource instance that already exists on the BPM
runtime. (The mapping to the JMS Connection Factory resource instance will
then be done automatically when you deploy the application to the BPM
runtime.)

● Late binding: Change or create the JMS Connection Factory resource
instance to be used when you deploy the application to the BPM runtime.
You do this by changing the value assigned to the
JmsOutboundConnectionFactory property on the Property Configuration
page of the DAA Deployment Wizard. See Using Pageflow Processes and
Business Services for more information about how to do this.

If you instead export the project to a Distributed Application Archive for
subsequent upload to the BPM runtime, a BPM administrator will need to
configure the JMS Connection Factory resource instance to be used. See the
Administrator interface documentation for your BPM runtime environment
for more information about this.

170

TIBCO Business Studio™ BPM Implementation Guide

SOAP Over HTTP Binding Details (Consumer)
The following table describes the binding details that are displayed for the selected SOAP over HTTP
binding, where the shared resource is acting as a consumer.

Property Description

HTTP Client Instance Logical name to identify the HTTP Client resource instance in the BPM
runtime that will be used to call the web service.

The default value is the name of the system participant.

You can bind this logical name to the appropriate HTTP Client resource
instance using either of the following methods:

● Early binding: Replace the name here with the name of a suitable HTTP
Client resource instance that already exists on the BPM runtime. (The
mapping to the HTTP Client resource instance will then be done
automatically when you deploy the application to the BPM runtime.)

● Late binding: Change or create the HTTP Client resource instance to be
used when you deploy the application to the BPM runtime. You do this
by changing the value assigned to the HttpOutboundConnectionConfig
property on the Property Configuration page of the DAA Deployment
Wizard. See Using Pageflow Processes and Business Services for more
information about how to do this.

If you instead export the project to a Distributed Application Archive for
subsequent upload to the BPM runtime, a BPM administrator will need
to configure the HTTP Client resource instance to be used. See the
Administrator interface documentation for your BPM runtime
environment for more information about this.

Security Configuration: This section defines the security configuration to be applied to the binding.
You should obtain the required information for the following fields from the
web service provider and/or the administrator of your BPM runtime. See
Configuring Security on an Outgoing Service Call for more information.

Policy Type Defines the type of security policy required to invoke the service - one of the
following values:

● None - to invoke an unsecured service. (This is the default value.)

● Username Token, X509 Token or SAML Token - to authenticate the
outgoing SOAP request using a Web Services Security (WSS) token of the
indicated type.

● Custom Policy - to apply a custom security policy to the outgoing SOAP
request and, if required, to the incoming SOAP response.

You must use a Custom Policy if the SOAP response message
returned by the service contains a security header. The Username
Token, X509 Token or SAML Token policies do not handle an
incoming SOAP response that contains a security header.

171

TIBCO Business Studio™ BPM Implementation Guide

Property Description

Governance App. Name Defines the name of the identity provider application from which the BPM
runtime will obtain the authentication information needed to contact the
service.

The BPM runtime will use this information to construct the WSS token (of
the specified type) that will be used to authenticate the outgoing SOAP
request.

This field must be completed (and is only displayed) if Policy Type is set to
Username Token, X509 Token or SAML Token.

Custom Policy Set Defines the name of an external policy set that the BPM runtime will apply to
the outgoing SOAP request (and, if appropriate, to the incoming SOAP
response).

This field must be completed (and is only displayed if) Policy Type is set to
Custom Policy.

The external policy set:

● must contain the security information required to construct the outgoing
SOAP request and, if appropriate, to also handle the resultant incoming
SOAP response.

● must be defined in an XML file (with the extension .policysets) that is
available in the same workspace.

Note: TIBCO Business Studio does not validate whether the external policy
set is applicable to and correct for the target service. Using an incorrect
policy type or a wrongly configured policy will result in an error, either
during DAA configuration or at runtime.

The BPM runtime supports a wide range of policies and policy sets that can
be used to address different security requirements and scenarios. For more
information about external policy sets and how to create them, see the
following topics:

● "Policy Management", in Composite Development

● "Security Resource Templates", in SOA Administration. (This guide is not
included in the TIBCO Business Studio documentation set. You can
access it either from the BPM runtime documentation set, or from the
Help in the Administrator interface in the BPM runtime.)

SOAP Over JMS Binding Details (Consumer)
The following table describes the binding details that are displayed for the selected SOAP over JMS
binding, where the shared resource is acting as a consumer.

Topic destinations are not supported for SOAP/JMS bindings.

The binding details define the JMS Destination and JNDI Connection resource instances that will be used to
contact the web service. For more information about these resource instances and how to create them, see
the following topics:

● Resource Templates > JMS Resource Templates, in the SOA Administration guide (supplied as part of
the BPM runtime documentation set)

● Bindings > JMS Bindings, in the Composite Development guide

172

TIBCO Business Studio™ BPM Implementation Guide

Property Description

Inbound Destination (Optional) Logical name to identify a JMS Destination resource instance in
the BPM runtime. This resource instance identifies the JMS queue that is
used to obtain the output data from the web service.

The default value is amx.bpm.userapp.jmsDestOutbound.

You can bind this logical name to the appropriate JMS Destination resource
instance using either of the following methods:

● Early binding: Replace the name here with the name of a suitable JMS
Destination resource instance that already exists on the BPM runtime.
(The mapping to the JMS Destination resource instance is then done
automatically when you deploy the application to the BPM runtime.)

● Late binding: Change or create the JMS Destination resource instance to
be used when you deploy the application to the BPM runtime. You do
this by changing the value assigned to the JmsInboundDestination
property on the Property Configuration page of the DAA Deployment
Wizard. See Using Pageflow Processes and Business Services for more
information about how to do this.

If you instead export the project to a Distributed Application Archive for
subsequent upload to the BPM runtime, a BPM administrator must
configure the JMS Destination resource instance to be used. See the
Administrator interface documentation for your BPM runtime
environment for more information about this.

If an Inbound Destination name is not specified, the service provider must
send the response using an internal queue.

Outbound Connection
Factory

Logical name to identify a JNDI Connection resource instance in the BPM
runtime. This resource instance provides the connection details for the JMS
server that hosts the inbound and outbound destinations.

The default value is amx.bpm.userapp.jmsDest.

You can bind this logical name to the appropriate JNDI Connection resource
instance using either of the following methods:

● Early binding: Replace the name here with the name of a suitable JNDI
Connection resource instance that already exists on the BPM runtime.
(The mapping to the JNDI Connection resource instance will then be
done automatically when you deploy the application to the BPM
runtime.)

● Late binding: Change or create the JNDI Connection resource instance
to be used when you deploy the application to the BPM runtime. You do
this by changing the value assigned to the
JmsOutboundConnectionFactory property on the Property
Configuration page of the DAA Deployment Wizard. See Using
Pageflow Processes and Business Services for more information about
how to do this.

If you instead export the project to a Distributed Application Archive for
subsequent upload to the BPM runtime, a BPM administrator must
configure the JNDI Connection resource instance to be used. See the
Administrator interface documentation for your BPM runtime
environment for more information about this.

173

TIBCO Business Studio™ BPM Implementation Guide

Property Description

Outbound Destination Logical name to identify a JMS Destination resource instance in the BPM
runtime. This resource instance identifies the JMS queue that will be used to
send the input data to the web service.

The default value is amx.bpm.userapp.jmsDest.

The name specified here must match the one specified for the provider in
the Inbound Destination Configuration. See SOAP over JMS Binding Details
(Provider).

You can bind this logical name to the appropriate JMS Destination resource
instance using either of the following methods:

● Early binding: Replace the name here with the name of a suitable JMS
Destination resource instance that already exists on the BPM runtime.
(The mapping to the JMS Destination resource instance will then be done
automatically when you deploy the application to the BPM runtime.)

● Late binding: Change or create the JMS Destination resource instance to
be used when you deploy the application to the BPM runtime. You do
this by changing the value assigned to the JmsOuboundDestination
property on the Property Configuration page of the DAA Deployment
Wizard. See Using Pageflow Processes and Business Services for more
information about how to do this.

If you instead export the project to a Distributed Application Archive for
subsequent upload to the BPM runtime, a BPM administrator will need
to configure the JMS Destination resource instance to be used. See the
Administrator interface documentation for your BPM runtime
environment for more information about this.

Security Configuration: This section defines the security configuration to be applied to the binding. You
should obtain the required information for the following fields from the web service
provider and/or the administrator of your BPM runtime. See Configuring
Security on an Outgoing Service Call for more information.

Policy Type Defines the type of security policy required to invoke the service - one of the
following values:

● None - to invoke an unsecured service. (This is the default value.)

● Username Token, X509 Token or SAML Token - to authenticate the
outgoing SOAP request using a Web Services Security (WSS) token of the
indicated type.

● Custom Policy - to apply a custom security policy to the outgoing SOAP
request and, if required, to the incoming SOAP response.

Note: You must use a Custom Policy if the SOAP response message
returned by the service contains a security header. The Username Token,
X509 Token or SAML Token policies do not handle an incoming SOAP
response that contains a security header.

174

TIBCO Business Studio™ BPM Implementation Guide

Property Description

Governance App. Name Defines the name of the identity provider application from which the BPM
runtime will obtain the authentication information needed to contact the
service.

The BPM runtime will use this information to construct the WSS token (of
the specified type) that will be used to authenticate the outgoing SOAP
request.

This field must be completed (and is only displayed) if Policy Type is set to
Username Token, X509 Token or SAML Token.

Custom Policy Set Defines the name of an external policy set that the BPM runtime will apply to
the outgoing SOAP request (and, if appropriate, to the incoming SOAP
response).

This field must be completed (and is only displayed if) Policy Type is set to
Custom Policy.

The external policy set:

● must contain the security information required to construct the outgoing
SOAP request and, if appropriate, to also handle the resultant incoming
SOAP response.

● must be defined in an XML file (with the extension .policysets) that is
available in the same workspace.

Note: TIBCO Business Studio does not validate whether the external policy
set is applicable to and correct for the target service. Using an incorrect
policy type or a wrongly configured policy will result in an error, either
during DAA configuration or at runtime.

The BPM runtime supports a wide range of policies and policy sets that can
be used to address different security requirements and scenarios. For more
information about external policy sets and how to create them, see the
following topics:

● "Policy Management", in Composite Development

● "Security Resource Templates", in SOA Administration. (This guide is not
included in the TIBCO Business Studio documentation set. You can
access it either from the BPM runtime documentation set, or from the
Help in the Administrator interface in the BPM runtime.)

Message Configuration: This section defines the message configuration to be applied to the binding - see
Configuring SOAP/JMS Message Timeouts on a Request-Response
Operation for more information about the use of the timeouts.

If you migrate a pre-4.0 version of a process to this version,
default values are not automatically set for these properties. You
must set them manually.

Request-Response
Timeout

Time (in seconds) after which a web service call will time out if a response
message has not been received from the web service. If this occurs, a
Timeout exception error is thrown by the web service task.

Default value: 6

175

TIBCO Business Studio™ BPM Implementation Guide

Property Description

Request Expiration
Timeout

Time (in seconds) within which the called web service must pull the request
message from the JMS message queue. If this timeout expires, the JMS
server will be instructed to purge the request message from the JMS
message queue. (This ensures that if the web service call is retried, the JMS
message queue does not contain duplicate copies of the same request
message for the web service to consume.) The web service call itself does not
timeout when this timer expires, so no Timeout exception error is thrown.

Default value: 3

Delivery Mode Delivery mode of the message. One of the following values:

● Persistent: Messages are stored and forwarded.

● Non-persistent: Messages are not stored and could be lost due to
failures in transmission.

Default value: Persistent

Priority Priority of the message, in the range 0 (lowest) to 9 (highest).

Default value: 4 (Normal)

176

TIBCO Business Studio™ BPM Implementation Guide

Generating a DAA from the Command Line using an Ant
Task

Procedure

1. In TIBCO Business Studio, create any type of project, for example File > New Project > General >
Project .

2. Inside the project, create a file called build.xml (New > File > build.xml)

3. Open this file and type your script, similar to the following:

Press Ctrl + Space in an empty editor and choose Buildfile template to give you an initial and
buildfile template.

● You can use all standard Ant tasks and TIBCO Business Studio specific tasks, starting with tbs.,
sds. or bpm.

Type in tbs., sds. or bpm. and press Ctrl + Space for content assist.

bpm.generateDAA is used to create DAAs from BPM projects and sds.createDAA is
used to create DAAs from SOA composite applications.

You can use the Buildbeforegenerating flag, set to true, to perform a clean build of the
Workspace before generating the DAA’s Workspace to make sure everything has already
been built. For example:
bpm.generateDAA buildbeforegenerating="true" projectname="Utilities"
daalocation="${env.PROJECTLOC}"/>

However, this will slow down the generation and is not a required process since an
incremental build is performed while importing the processes.

177

TIBCO Business Studio™ BPM Implementation Guide

We recommend that you use tbs.importProjects rather than sds.importProject for BPM
projects, as it provides far more stable post import migration and building.

sds.importProject is included for backward compatibility and tbs.importProjects is
recommended for new scripts.

If you use tbs, the following options are available:

● dir - The root directory to use for simple format folder structure imports.

● file - The archive file to use for simple format archive imports (including zip, tar,
tar.gz)

(dir and file are mutually exclusive)

● copyProjects - (defaults to true) Ensures a copy of any imported project is made to the
workspace. Applicable only to folder structure imports.

● useArchives - (defaults to false) Ensures archive import is attempted when using
nested element format.

When a simple format archive import, using the file attribute, is used the useArchives
attribute is not required - it is implicitly set to true.

● skipPostImportTask - (defaults to false) Post import tasks are skipped when set to
true.

● The example above uses 2 tasks: the first is used for importing a project from a specified location
(projectloc) into the workspace and the second is used to generate DAA/s from the workspace
project/s into a specified location (daalocation).

● The above script imports a single project, but you could also import a number of projects by
specifying the parent folder in the script. For example:
<target name="default" description="Test to generate DAA for all projects under
projectloc">
<tbs.importProjects dir="C:/workspace-3.5.0"/>
<bpm.generateDAA daalocation="C:/daaOut"/>
</target>

● By default the generateDAA task will generate DAA/s for all relevant projects in the workspace.

Command line generation does not overwrite the workspace, therefore every time the
command is run, you must ensure that you provide an empty project workspace.

Also note that before importing any projects please ensure that they have been migrated
first using the user interface, as command line generation does not auto migrate.

Using External Tools to run an Ant task within TIBCO Business Studio
You can run an Ant script from the command line or as an automated process.

From the command line

You can run the Ant script from the command line. You have to do this by using amx_eclipse_ant.exe
which is located in the installation directory /studio/3.7/eclipse directory (which is in the same directory
as the TIBCO Business Studio .exe).

For example:
D:\apps\TIBCO\studio-bpm-3.5-V24\studio\3.5\eclipse>amx_eclipse_ant.exe -f C:\Users
\Tester\workspace-3.5.0-V24\TestProject\build.xml -data c:\tempws

This starts Eclipse and executes the Ant script in that environment (this may take some time). It creates
a .daa in the output directory (in this example this is called daaOut).

You need to specify your Ant script location after -f and the location of your workspace after -data (This
will be a temporary workspace used during this execution. It does not have to exist previously.).

178

TIBCO Business Studio™ BPM Implementation Guide

As an automated process

You can use Eclipse External Tools to run the Ant script from within TIBCO Business Studio.

Go to Run > External Tools > External Tools Configurations... and create new Program

The example shows the values to enter to run an equivalent of the above command line example:

179

TIBCO Business Studio™ BPM Implementation Guide

Resource Query Language

The Resource Query Language (RQL) is used to identify resources within the BPM destination environment
that meet a defined set of criteria. A RQL query returns a set of resources that match the criteria expressed
in the query. Work can then either be allocated to one of those resources, or offered to multiple individual
resources.

RQL is dynamic, and is evaluated when the work item is created and whenever it changes. This means that
if the items referred to by the RQL change in some way (for example if the resources mapped to an
organizational position are changed) this will be reflected in the set of resources associated with the work
item.

See Assigning Participants to a User Task and the TIBCO Business Studio Modeling User’s Guide for details of
how RQL is used.

You may want to consider whether to use Resource Query Language or Dynamic Organization Participants.
See "Dynamic Organization Participants" in the TIBCO Business Studio Concepts Guide.

RQL Expression Evaluation
You can specify the way in which RQL expressions are evaluated, which can have a significant impact on
the amount of time it takes to evaluate the expressions. This is done by specifying the version of the RQL
expression algorithm to use.

The RQL expression algorithm is available in two versions:

● 1 - This is the original algorithm in which RQL expressions are resolved in memory, retrieving resources
as the algorithm traverses the elements in the expression.

This version of the algorithm can result in expressions taking a long time to execute. Use this version if
you are using a small number of RQL expressions, against a small number of resources.

● 2 - (Default) In this version, the RQL is translated to SQL. Resources are retrieved based on the final SQL
statement.

This version of the algorithm results in much faster processing.

Specifying the RQL Expression Algorithm Version

The RQL expression algorithm version is specified using the ResourceQueryVersion property in the
de.properties file.

If you change the RQL expression algorithm from version 1 to version 2, you must then thoroughly test
your application to ensure that the RQL-to-SQL algorithm returns the same result set as the previous
algorithm. If you find that the result set is different, you may want to revert to version 1 of the algorithm
(see below).

If you have performed a new installation of ActiveMatrix BPM version 4.3 or later, the
ResourceQueryVersion property is included in the de.properties file with a default value of 2. However,
if you have upgraded ActiveMatrix BPM from a pre-4.3 version, the property is not included in the
de.properties file by default (and algorithm version 1 is used in this situation). In the upgrade scenario,
to use version 2 of the algorithm, you must add the ResourceQueryVersion property to de.properties
and set the value to 2.

Reverting to Version 1 of the RQL Expression Algorithm

If you decide to revert to version 1 of the RQL expression algorithm, you must reset the RQL queries.

The RQL expression algorithm is used to evaluate all RQL queries, that is, queries that originate from
Dynamic Process Participants, Performer Fields, as well as queries submitted via the ActiveMatrix BPM
public API (using the executeQuery operation in the ResourceQueryService). When RQL queries
originate from Dynamic Process Participants or Performer Fields, those queries are registered in the

180

TIBCO Business Studio™ BPM Implementation Guide

database. As those expressions are in the BPM database, they must be "reset" if you change from version 2
to version 1 of the algorithm.

Resetting the queries in the database is accomplished using the resetQueries operation in the
ResourceQueryService. ActiveMatrix BPM does not provide a user interface to perform this operation.
Therefore, you will need to use the ActiveMatrix BPM public API to reset the queries when changing from
version 2 to version 1 of the algorithm.

For information about the resetQueries operation, see the TIBCO ActiveMatrix BPM Developer's Guide.

The amount of time it takes to reset the queries in the database depends on the complexity of the
expressions, and the size of the result set -- but it could be hours. While that processing is taking place, RQL
result sets are based on the previous expression evaluation.

Best Practices When Using Resource Query Language (RQL)
When using Resource Query Language (RQL) there are a number of issues you should bear in mind to
ensure that your processes operate most efficiently when deployed. Planning when designing your process
and RQL can save problems later on.

● Make a determination about which version of the RQL expression algorithm you should be using. For
more information, see RQL Expression Evaluation.

● All RQL is dynamic, so there are design implications because of that. You should be aware that changes
to the deployed organization model will be reflected in the RQL results set after a period of time.

● Model your system as relevant to the application - this will almost certainly not be the same as the
durable organization you may see in an organization chart. If you do you will not need to use RQL in
most cases.

● RQL is more complex than using basic participants. Where possible use basic participants - and only use
RQL for special cases.

● In both new and existing projects, consider whether you need to use RQL at all, or whether it can be
replaced more efficiently with Dynamic Organization Participants. Dynamic Organization Participants
allow you to do many actions without the overhead of RQL and are quicker. Dynamic Participants only
allow valid actions, and at runtime they perform better than RQL because you are explicitly specifying
an internal identifier for an organization entity (GUID). So there is instant lookup, with no parsing.
Using Dynamic Organization Participants is the preferred way of dynamically assigning work. See
"Dynamic Organization Participants" in the TIBCO Business Studio Concepts Guide.

● Work items allocated using RQL do not appear in any managed work lists as they are not directly
associated with specific organizational entities. You should use dynamic performer fields to get the
association of work items to organizational entities functionality. See Using a Performer Data Field or
Parameter to Dynamically Define a Participant.

● Use RQL when you want to reference LDAP attributes or reference capabilities.
● When you deploy an organization model it is cached in memory. Actions using this in memory cache

are quick (for example, RQL using references to an orgunit in the model). However, RQL that references
resources will make calls to the database takes time.

● If you are looking at all LDAP attributes on a resource, looking them up in LDAP is time-consuming. If
combined with operators such as OR, then it will be even slower.

● You need to use RQL for more complicated queries - those involving union, intersect, and qualifying
LDAP attributes for example.

● You could produce valid RQL which does not identify any actual resources. You will not receive any
warning that this will happen, so need to be careful to understand the results of the RQL you are
providing.

● RQL cannot refer to Dynamic Organization Units (as these are replaced with dynamic instances at
runtime).

Examples of Usage of RQL

181

TIBCO Business Studio™ BPM Implementation Guide

When deciding what RQL queries to make, you should plan to minimise the number of calls they make to
the database to make them efficient. For information on what options are available, see Organization
Entities.

orgunit(name='KEYTeam').position(name='AdditionalStaff') union

orgunit(name='Agency').position(name='Contractor')

This example queries the organization unit called KEYTeam and for positions called "AdditionalStaff". It
then joins the result of this to a query of the organization unit called Agency, and the results who have the
position Contractor.

orgunit(name='KEYTeam').position(name='Director' or name='Management').capability

(name='Language' qualifier='French')

This example queries the organization unit called KEYTeam, and for positions named either Director or
Management where the resource in the position has a capability of French language.

orgunit(name='KEYTeam').position(name='AdditionalStaff') intersect resource(attribute.Area='DACH')

This example will find all the resources which have an LDAP attribute of AREA that is equal to DACH.
This will take some time because of the querying of LDAP for all resources defined in BPM.

(orgunit(name='KEYTeam').all() intersect not

orgunit(name='Management').position(name='*')) union orgunit(name='Vice

Presidents*').position(name='Permanent')

This is an example of a complex RQL statement that takes excessive time, as it makes multiple calls on the
database to resolve resource queries.

RQL Structure
RQL expressions are made up of the following components: Keywords, Operators, Organization Entities
and Combinators:

See

● Keywords

● Operators

● Organization Entities

● Combinators. See Combining Expressions.

Keywords
The keywords described in this topic are permitted.

● name. The name of an entity. For example:

name="javaDeveloper"

● type. The type of the entity within the organization model schema, if it has a type. See the TIBCO
Business Studio Modeling Guide for information about types and the schema. For example:

type="JavaProgrammer"

● attribute. An attribute of a resource that has been extracted from the LDAP source. This has the form
attribute.attributeName. For example:

attribute.phone = "+44(0)1793441300"

The values associated with keywords can be qualified by combining them with other keywords, for
example:

(name="javaDeveloper" or type="JavaEngineer")

182

TIBCO Business Studio™ BPM Implementation Guide

● qualifier. The qualifier for a Capability or a Privilege. For example:

qualifier=" > 1000"

The qualifier keyword is used by combining it with the name of a Capability or a Privilege, for example:

capability(name="Language" qualifier=Arabic)

The '*' and '?' wildcard characters can be used:

name="uk-*"

Operators
The operators listed in this topic are permitted

The operators are permitted in the following order of precedence:

● (,)

● =, <>, <, <=, >, >=

● not

● and

● or

Organization Entities
The organization entities listed can be referred to. One of these must be used as the starting point of every
query.

● Organization

● Orgunit (organization unit)

● Position

● Location

● Capability

● Privilege

● Group

● Resource

A Push Destination assigned to an organization entity (Group, Position, Organization Unit, etc.) will only
work when the organization entity is explicitly identified as the participant, and not when it is defined by
the Resource Query Language.

The significance of specifying each of these organizational elements is set out in the following sections.

Organization

For example:

organization(name="EasyAs")

This expression returns all the resources allocated to any Position which is allocated to any Organization
Unit within the Organization named EasyAs.

Orgunit (organization unit)

For example:

orgunit(name="Support-SWI")

183

TIBCO Business Studio™ BPM Implementation Guide

This expression returns all the resources allocated to all the Positions within the organization unit named
Support-SWI.

By default Organization Units are not treated recursively. That is, an expression specifying an organization
unit does not return positions in a sub-unit of that organization unit. See Navigating the Organization
Model with RQL Queries for more details.

Position

For example:

position(name="Manager")

This expression would return all the resources in a Position named Manager.

You can also locate resources based on their type in the organization model schema, for example:

position(type="UnitManager" or name="Manager")

This expression would return all the resources in an position which is an instance of the position type
named UnitManager, or is a Position called Manager.

Location

For example:

location(name="NewYork")

This expression returns all the resources that:

● Have a location of NewYork, or

● Are allocated to a Position that:

— is located in NewYork, or

— is allocated to an Organization Unit that:

— is located in NewYork, or

— is allocated to an Organization that is located in NewYork.

Capability

For example:

capability(name="JavaProgrammer")

This expression includes all the resources that:

● Have the capability named JavaProgrammer

RQL only makes use of capabilities that are assigned to Resources.

Capabilities may be assigned to Positions and Groups in the organization model. These
represent "entry criteria" - that is, only resources with that capability should be assigned to
that group or position. However, this is not enforced. Capabilities assigned to Resources
indicate that the person represented by that Resource does actually have the capability in
question.

Capabilities may be further refined by using a qualifier, as described for Privilege .

Privilege

For example:

privilege(name="signoff" qualifier>10000)

184

TIBCO Business Studio™ BPM Implementation Guide

All the resources allocated to a Position with:

● the privilege signoff with a qualifier value greater than 10000, or

● belonging to an Organization Unit with the privilege signoff with qualifier value greater than 10000.

An expression can also specify the privilege without specifying a qualifier. For example:

privilege(name="signoff")

This would return all the resources allocated to a Position or an Organization Unit with the privilege
signoff, regardless of any qualifier.

Group

For example:

group(name="Health&Safety")

This expression returns all the resources in a group named Health&Safety.

Groups can operate recursively - that is, groups can contain groups. So this expression would also include
all resources belonging to all sub-groups. This can be overridden - see Navigating the Organization Model
with RQL Queries.

Resource

For example:

resource(name="Clint Hill")

This expression returns all the resources with the name Clint Hill.

Unlike the other entities listed, Resources refer directly to actual users as defined in LDAP. When selecting
resources you can start with a particular resource by referencing its name, for example:

resource(name="Clint Hill").position(name="abc").orgunit(type="efg").privilege(name="signoff" qualifier >
10000)

This expression returns all Resources that belong to an OrgUnit of type "efg" in which Clint Hill holds the
position named "abc", and in which he holds the "signoff" privilege, qualified for a value of greater than
10000.

You can also query attributes from the LDAP database that have been passed to BPM, for example:

resource(attribute.phone="+44(0)1793*" and attribute.language="*Spanish*")

This returns the resources with a Swindon dialing code (+44 (0)1793) on their phone attribute and whose
language attribute includes the text Spanish.

Navigating the Organization Model with RQL Queries
RQL expressions, starting with one of the elements listed in Organization Entities, locate resources by
following the paths indicated by arrows in the diagram below. For example, an expression that specifies a
capability will find all the positions, resources and groups with that capability; and then these will cascade
down to find the resources in the positions and groups.

The following diagram shows how resources can be located from each of these starting points.

185

TIBCO Business Studio™ BPM Implementation Guide

Using the . Operator

You can restrict the results returned by an expression by using the dot operator ("."). This can be used in
two ways.

Using the dot operator to qualify organization entities

You can use the dot operator to specify a qualification of an organizational entity. For example:

orgunit(type="Sales").privilege(name='signoff' qualifier>10000)

This expression returns resources in those Organization Units of type Sales that have the privilege qualified
by a value of greater than 10000.

This is not a simple "and" operator; the expression does not return resources that are in organization units
of type Sales and that have the required privilege; it returns resources where the organization unit itself has
that privilege.

The dot operator is not commutative: in other words, changing the order of the expression changes its
meaning.

So, for example:

position(name='abc').orgunit(type='Sales')

Expressed in natural language, this example means:

All Resources, in all Positions of Org-Unit of type "Sales", in which the Position named "abc" .

Another example is:

orgunit(type="Sales").position(name="abc")

Expressed in natural language, this example means:

All Resources in the Position named "abc" of Org-Unit of type "Sales".

Using the dot operator in hierarchical relationships

The dot operator works differently when used to express hierarchical relationships between two
organizational entities. For example:

orgunit(type="area office").position(type="manager")

returns Positions of type manager that are in organization units of type area office.

186

TIBCO Business Studio™ BPM Implementation Guide

You can only use the dot operator to link organizational entities that are directly connected by arrows in the
diagram in Navigating the Organization Model with RQL Queries . For example:

organization(type="public company").position(type="manager")

would not be valid, because organization and position are not directly linked.

Using only children and all

In organization models, both Organization Units and Groups can be linked to other elements of the same
type in a hierarchy.

See the TIBCO Business Studio Modeling User’s Guide for more details about this. However RQL expressions
do not by default navigate this hierarchy.

For example the expressions:

orgunit(name="AreaNorth")

group(name="HomeInsurance")

would return only resources assigned directly to the named organization unit or group, not to other
organization units or groups in a hierarchical relationship below it.

To override this default behavior, you can use one of the following modifiers:

● only() . For example

group(name="HomeInsurance").only()

This returns only resources assigned to the named element. (This is the default behavior both for
Organization Units and for groups.)

● children(). For example

group(name="HomeInsurance").children()

This returns resources assigned to the named element and to any first level child elements, but not to
elements any further below in a hierarchy.

● all(). For example

orgunit(name="AreaNorth").all()

This returns resources assigned to the named element and to any subordinate elements.

Combining Expressions
All expressions in RQL return the set of resources that correspond to that expression. You can combine
expressions to produce more sophisticated queries using the following set operators:

● union. Returns resources that are in either expression. For example:

orgunit(name="Drivers").position(name="Developer") union
orgunit(name="OsakaDev").position(name="JavaDeveloper")

returns any resource who is either a Developer in the Drivers organization unit or a Java Developer in
the OsakaDev organization unit.

● intersect. Returns resources that are in both expressions. For example:

orgunit(name="Drivers").position(name="Developer") intersect group(name="JavaDevelopers")

returns any resource who is both a Developer in the Drivers organization unit and a member of the Java
Developers Group.

Use an intersect to specify multiple qualifier values for a capability or a privilege. (If the data type of the
qualifier is EnumSet it is possible for the capability or privilege to have multiple qualifier values.) For
example:

187

TIBCO Business Studio™ BPM Implementation Guide

capability(name='Language' qualifier='French') intersect capability(name='Language'
qualifier='Spanish')

● subtract. Returns resources that are in the first expression but not the second. For example

orgunit(name="Drivers").position(name="Developer") subtract group(name="Managers")

returns any resource who is a Developer in the Drivers organization unit but is not a member of the
Managers Group.

● not. Returns resources that are in the first expression but not the second. For example

orgunit(name="Drivers").position(name="Developer") intersect not group(name="Managers")

returns any resource who is a Developer in the Drivers organization unit but is not a member of the
Managers Group.

While similar in the resources they return, subtract will return the relative complement and should be used
when performance is a consideration.

Another example might be:

(

orgunit(type="Support").position(type="SupportEngineer")

intersect

not group(name="Backdesk")

)

union

orgunit(name="Support).position(name="Manager")

This selects support engineers in the Support department who are not part of the back desk group, together
with the support department's managers.

Combining expressions in this way can sometimes mean that a resource is included in the results for more
than one reason. If this happens, the resource will only be included in the result set once; that is, there is no
duplication of results.

RQL Cleanup Configuration
When resource queries are no longer referenced, they should be deleted from the system.

The de.properties file contains the following resource query cleanup properties that can be used to
configure when and how often resource queries are evaluated to determine which can be deleted:

● ResourceQueryCleanerEnable - Enables, or disables, the evaluation of resource queries to identify
those that are no longer referenced. If this is disabled (false), automatic deletion of un-referenced
resource queries does not take place.

● ResourceQueryCleanerStart - The time of day at which resource queries, that are no longer being
used, are scheduled for deletion.

Cleanup of unused resource queries is invoked at this time each day that cleanup is scheduled
according to the value of ResourceQueryCleanerInterval.

● ResourceQueryCleanerInterval - The interval between evaluations of resource queries to identify
those that are no longer referenced, and can be deleted. This defaults to once per day (at the time
specified in ResourceQueryCleanerStart).

● ResourceQueryCleanerEnd - The time of day at which the last resource query evaluation of the queries
that can be deleted will be accepted.

● ResourceQueryCleanerLimit - The number of resource queries checked for deletion in a single
database transaction.

188

TIBCO Business Studio™ BPM Implementation Guide

● ResourceQueryCleanerPause - The number of seconds between deleting batches of resource queries.

For additional information about these properties, see "Configuration of the TIBCO ActiveMatrix BPM
Directory Engine" in the TIBCO ActiveMatrix BPM Administration.

189

TIBCO Business Studio™ BPM Implementation Guide

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly in
HTML and PDF formats.
The website is updated frequently and is more current than any other documentation included with the
product.

Product-Specific Documentation

The following documentation for TIBCO Business Studio is available on the TIBCO Business Studio
Product Documentation page:

● TIBCO Business Studio™ Release Notes

● TIBCO Business Studio™ Concepts

● TIBCO Business Studio™ Modeling User's Guide

● TIBCO Business Studio™ - Analyst Edition User's Guide

● TIBCO Business Studio™ - BPM Implementation

● TIBCO Business Studio™ Forms User's Guide

● TIBCO Business Studio™ Simulation User's Guide

● TIBCO Business Studio™ Customization

● TIBCO Business Studio™ - Analyst Edition Installation

● TIBCO Business Studio™ - BPM Edition Installation

● TIBCO Business Studio™ iProcess to BPM Conversion

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

● For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support website.

● For creating a Support case, you must have a valid maintenance or support contract with TIBCO. You
also need a user name and password to log in to TIBCO Support website. If you do not have a user
name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

190

TIBCO Business Studio™ BPM Implementation Guide

https://docs.tibco.com/
https://docs.tibco.com/products/tibco-business-studio-bpm-edition-4-3-2
https://docs.tibco.com/products/tibco-business-studio-bpm-edition-4-3-2
https://www.tibco.com/services/support
https://support.tibco.com/
https://support.tibco.com/
https://ideas.tibco.com/
https://community.tibco.com

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, Enterprise Message Service, Business Studio, and ActiveMatrix
are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other
countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system platforms
for a specific software version are released at the same time. See the readme.txt file for the availability of
this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.

191

TIBCO Business Studio™ BPM Implementation Guide

https://www.tibco.com/patents

	Contents
	Figures
	Using Projects and Processes
	Projects Assets and Project Organization
	Distribution of Assets across Multiple Projects
	TIBCO Business Studio Workspace Folder

	Setting BPM as the Destination Environment
	Creating or Obtaining a Project for BPM
	Creating a Project Using the BPM Developer Project Wizard
	Adding New Assets to an Existing Project
	Referencing Other Projects

	Deployment of a Project
	Using Live Development

	Pageflow Processes and Business Services
	Create a Pageflow Process
	Generate a Business Service
	Trigger an Incoming Message Activity from a Business Service

	Managing Work Using Organization Models
	Using Organization Models in a Process
	Creating or Obtaining an Organization Model
	Organization Model Entities as Process Participants
	Using Capabilities and Privileges in Allocating Work to Process Participants
	Using System Actions for Processing Work

	Deploying an Organization Model
	Mapping Resources to the Organization Model
	About Participants
	Assigning Participants to a User Task
	Using a Performer Data Field or Parameter to Dynamically Define a Participant
	Dynamic Organization Identifier Mapping
	Using a Participant Expression to Define a Participant
	Using Organization Entities in Performer Data Field or Parameter

	Defining How Work Will be Assigned to Users
	Offering and Allocating Work
	Distributing Work Within the Target Pool
	Allocating a Work Item to a Member of an Offer Set
	Using Resource Patterns to Control How Work is Assigned
	Chained Execution
	Separation of Duties
	Retain Familiar
	Piling

	Using Forms with User Tasks
	Creating a New Form
	Creating a New Form for an Existing User Task
	Creating a New Form Manually from the Project Explorer
	Creating a Free-standing Form
	Switching Back to the Default Form

	Updating Forms with the Synchronization Wizard
	Using Data Fields and Parameters with Process User Tasks
	The Mode Property of User Task Parameters
	Using Data Fields and Parameters
	Data Types for Data Fields and Process Parameters

	Using Presentation Channels to Display Tasks to Users
	Identifying an Appropriate Presentation Channel
	Viewing the Available Presentation Channels
	Adding a Channel Type to the Default Channel
	Adding a Presentation Channel

	Editing Email Attributes
	Editing Email Attributes at Workspace Level
	Editing Email Attributes at Project Level

	Sending an Email Message from a Process
	Configuring Service Tasks to Send Email Messages from a Process
	Defining an E-Mail Service Type from a Service Task
	Setting up Dynamic Data Inputs to an Email Message
	Example of Setting up Dynamic Data Inputs to an Email Message

	Calling a Database From a Process
	Defining and Using a Database Connection Profile
	Creating a Database Connection Profile
	Creating and Using a Local Copy of the Database Connection Profile
	Working Online or Offline To Connect to the Database or to the Local Copy

	Using a System Participant to Identify the Target Database
	Creating a System Participant and Mapping it to a Target Database
	Assigning the System Participant to the Database Service Task

	Configuring a Service Task to Call a Database
	Creating a SQL Query
	Using SQL Query Builder
	Changing the SQL Statement
	Building a Query - A Simple Example
	Testing the SQL Statement

	Selecting a Stored Procedure
	Manually Entering a Stored Procedure Name
	Selecting a Stored Procedure From the Database
	Updating a Stored Procedure Used in a Database Task Activity

	Mapping Data Between the Process and the Database
	Mapping Data Parameters
	Mapping an Externally Referenced Class Attribute to a Database Parameter
	Automatically Creating a Business Object Model to Store Returned Data
	Mapping the Result Set

	JDBC Driver Connection Details

	Using Web Services
	Web Service Definition Language (WSDL) Documents
	WSDL Document Requirements
	XSD Constructs

	Using Service Registries
	Importing a WSDL Document Into a Project

	Calling a Web Service
	How to Call a Web Service
	Calling a Service on a Virtualization Binding (Contract First)
	Calling a Service on a SOAP Binding (Contract First)
	Calling a Service on a Virtualization Binding (Contract Last)
	Calling a Service on a SOAP Binding (Contract Last)

	Configuring a Task or Event to Call a Web Service
	Invoking a One-Way Operation on a web service
	Invoking a Request-Response Operation on a web service

	Selecting the Web Service Operation to Invoke
	Selecting an Operation From a WSDL That Exists in the Workspace
	Importing a WSDL and Selecting an Operation from the WSDL
	Generating a WSDL and Creating an Operation from your Process Data
	Updating a Generated WSDL File

	Using a System Participant to Identify the Web Service Endpoint

	Configuring Security on an Outgoing Service Call
	Defining Input and Output Data
	Defining Input and Output Mappings
	Creating a Mapping
	Points to Note About Mappings
	Using A Script to Define a Mapping
	Automapping

	Catching WSDL Fault Messages on a Request-Response Operation
	Using a Catch Intermediate Error Event to Catch a Fault Message

	Handling SOAP/JMS Message Timeouts on a Request-Response Operation
	Deploying a Process That Calls a Web Service

	Exposing a Web Service
	Exposing a Service
	Exposing a Service (Contract First)
	Exposing a Service (Contract Last)

	Configuring a Task or Event to Expose a Web Service
	Exposing a One-Way Operation
	Exposing a Request-Response Operation

	Using the Default Generated Web Service Operation
	Updating the Default Web Service Operation
	Exposing Multiple Default Web Service Operations

	Selecting an Alternative Web Service Operation to Expose
	Selecting an Operation From a WSDL That Exists in the Workspace
	Importing a WSDL and Selecting an Operation
	Using a System Participant to Define the Endpoint Provided by the Web Service
	Setting a Common Context Root for Web Service Endpoint URIs

	Exposing the Web Service Operation as a REST Service
	Defining Input and Output Data
	Defining Input and Output Mappings
	Creating a Mapping
	Points to Note About Mappings
	Using A Script to Define a Mapping

	Throwing WSDL Fault Messages on a Request-Response Operation
	Using an End Error Event to Throw a Fault Message

	Deploying a Process That Exposes a Web Service
	Arbitrary Length Tasks and Request-Response Operations
	Handling a Process that Includes Arbitrary Length Tasks

	Using a Process as a Service Provider and as a Service Consumer
	Authenticating Access to an Exposed Service
	Calling the Service from a SOA Application
	Example 1 - Single Sign-on Using a Virtualization Binding
	Example 2 - Single Sign-on Using a SOAP Binding
	Example 3 - Impersonation Using a SOAP Binding

	Calling a REST Service
	Defining the Interface to an External REST Service
	Creating JSON Schemas
	Creating JSON Schemas From a JSON Sample

	Configuring the Process Project from Which you Want to Call the REST Service
	Defining Input and Output Mappings
	Creating a Mapping
	Configuring Security
	Custom Policy Set

	Fault Handling and Propagation
	REST and Authentication

	WSDL Change Considerations for Application Upgrade
	Application Upgrade
	Reverting to the Original Version of an Upgraded Application

	Making Changes to the Service Interface
	Changes that Do Not Change the Service Interface
	What Changes the Interface Using the Contract Last Approach
	Changes That Apply to Both Contract First and Contract Last Approaches
	Development vs. Production

	Using Scripts
	Implementing Script Tasks
	Unsupported Script Types

	Scripts on Other Tasks
	Supported Script Types
	Sample Scripts
	Adding an Action Script to a Task

	Associating a Script with a Conditional Flow
	Associating a Script with a Loop
	Timer Event Scripts
	Task Scripts on Events

	Editing Scripts
	Assistance for Action Scripts
	Using Process Data as Script Variables

	Using Structured Data Types
	Dynamically Created Factory Methods

	JavaScript Exclusions
	Customizing JavaScript Presentation Preferences
	Customizing XPath Presentation Preferences
	Scripts at Runtime

	Data Mapping
	Array Mapping Strategies
	Like Mapping
	Mapping Contents in Data Mapper
	Mapping Process and Work Manager JavaScript Class Attributes

	Executing Java Classes from a Process
	Complete the Parameter Mapping

	Web Service Definition Language (WSDL) Documents
	Abstract and Concrete WSDL Documents
	WSDL Document Structure
	Abstract WSDL Documents
	Concrete WSDL Documents

	Web Service Configuration Properties
	Web Service Implementation Properties
	System Participant Shared Resource Properties
	SOAP over HTTP Binding Details (Provider)
	Endpoint Address Construction

	SOAP over JMS Binding Details (Provider)
	SOAP Over HTTP Binding Details (Consumer)
	SOAP Over JMS Binding Details (Consumer)

	Generating a DAA from the Command Line using an Ant Task
	Using External Tools to run an Ant task within TIBCO Business Studio

	Resource Query Language
	RQL Expression Evaluation
	Best Practices When Using Resource Query Language (RQL)
	RQL Structure
	Keywords
	Operators
	Organization Entities
	Navigating the Organization Model with RQL Queries
	Using the . Operator
	Using only children and all

	Combining Expressions

	RQL Cleanup Configuration

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

