
TIBCO BusinessEvents® Enterprise
Edition
Data Modeling Developer's Guide
Version 6.2.2
June 2022

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

2 | Contents

Contents
Contents 2

Database Concepts Overview 5
Table Constraints and Concept Relationships 6

Prerequisites for Importing Database Tables or Views 8

Importing Database Tables or Views With the DB Import Utility 9

Importing Selected Database Tables 13

Importing Domain Model Information from a Database Concept 14

Configuring Database Concepts 16
Configuring Database Concepts Metadata Properties 16

Metadata Properties Reference 17

Configuring the Database Connection 19

Database Connection Configuration Reference 20

Setting the Object Management Mode of a Database Concept 25

Enabling or Disabling Database Concepts in a Processing Unit 26

RDBMS Catalog Functions 27
The setCurrentConnection and unsetConnection Functions 28

Transactions 28

Insert Operations 29
Using Generated Unique Primary Keys for Inserts 30

Update and Delete Operations 32
update() 33

delete() 33

Query Operations 34
queryUsingConceptProps() 34

queryUsingPreparedStmt() 35

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

3 | Contents

queryUsingPrimaryKeys() 36

queryUsingSQL() 37

Database Concept Assertion After Database Query 38

Prepared Statements 38

Database Cursor Functions 39
createQuery() 40

getNextPage() and getPreviousPage() 42

getNextPageFromOffset() and getPreviousPageFromOffset() 44

closeQuery() 46

Oracle Catalog Functions 48

State Modeler 50
State Modeler Functions 51

State Models and Concepts 51

State Models and Rules 52

State Machines at Runtime 53

Types of States 54

Adding Regions in a Concurrent State 55

Transitions 56

Call State Machine Resource 58

State Model Timeouts and State Timeouts 60
The Timeout Period 61

State Timeout Scheduler Controls 61

Runtime Behavior 62

Multiple Pending Timeouts 62

State Timeout - Next State Choices 63

Locking (and Loading) in Timeouts 64

Working with State Modeler 66
Adding State Models 66

Removing and Changing State Model Ownership 68

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

4 | Contents

Removing a State Model from Ownership of a Concept 68

Reassigning a State Model to a Different Concept 68

Outlining a State Model 69

Guidelines for Adding Transitions 71

State Model Preferences 72

Configuring Nodes 74
Configuring a State 75

Configuring a Call State Model Node 75

Configuring Transitions 76

Defining Timeouts 77
Defining Timeout for a State Model 77

Defining Timeout for a State 78

Controlling the Start of a State Machine 79

Searching State Model Entities 79

State Model Resource Reference 80
General Tab 81

Timeout Expression Tab 81

Timeout Action Tab 82

State Resource Reference 82
General Tab 82

Entry Action and Exit Action Tabs 83

Timeout Tab 83

Timeout Expression Tab 84

Timeout Action Tab 84

Call State Model Resource Reference 85

TIBCO Documentation and Support Services 86

Legal and Third-Party Notices 89

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

5 | Database Concepts Overview

Database Concepts Overview
Database concepts are TIBCO BusinessEvents concepts that you create by mapping tables
or views from a database to TIBCO BusinessEvents concepts.

One table or view maps to one TIBCO BusinessEvents database concept definition. A row in
the table or view maps to one database concept instance. A column in a table or view gets
mapped to a concept property.

Database concepts are created using the Database Import utility. This utility introspects the
specified database schema and generates TIBCO BusinessEvents concepts. You can choose
which tables or views to import.

When you import from a database, you can optionally generate relationships between
database concepts based on database constraints. The utility imports any additional
database entities that were not in the original selection but that must be imported because
they have a relationship to the selected subset of entities.

A separate utility enables you to import domain models for database concepts from a
source database column. You can then associate the domain model with the appropriate
database concept.

Note: The database concepts are applicable only for JDBC stores.

Differences from Ordinary Concepts

The following are the differences between the database concepts and ordinary concepts:

 l Assertion into Rete Network: Database concept instances returned by database query
functions are not asserted into the Rete network automatically. You must assert them
explicitly. To do so, use the RDBMS function Database.assertDBInstance().

 l History: Database concept properties do not support history tracking.

Minimum Permissions Required

Metadata access rights are required, because concepts and events are created using table
metadata.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

6 | Database Concepts Overview

See Also
 l TIBCO BusinessEvents Architect’s Guide, for understanding of database concepts and

concept relationships.

 l TIBCO BusinessEvents Developer’s Guide, for basic concept procedures and reference,
and use of diagrams.

 l TIBCO BusinessEvents Configuration Guide, for CDD configurations.

 l TIBCO BusinessEvents Administration for deploy-time configuration.

Handling of Null Value Properties

To work with external databases, concept instances are serialized to XML. By default, when
concept instance objects are serialized to XML, properties with null values are excluded.
You can control handling of null properties in the XML representation of serialized
concepts. Note that for numeric datatypes, some special handling may be required for
interoperability. See the section Handling Null Properties in TIBCO BusinessEvents
Developer’s Guide for details.

Table Constraints and Concept Relationships
When you import tables, optionally, you can import database constraints, that is,
relationships between tables.

In the TIBCO BusinessEvents project the table relationships become relationships between
concepts (see Concept Relationships in TIBCO BusinessEvents Architect’s Guide.) Database
constraints are interpreted as contained or referenced concept relationships .

Note: The properties are always displayed as Concept Reference irrespective of
containment or reference relationship. However, the actual relationship is stored
in the REL_TYPE metadata property (which is a concept property level metadata
property).

Tables Imported with Containment Relationships

After importing from tables, concept A contains concept B, if the following is true:

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

7 | Database Concepts Overview

 l Table A’s primary key is table B’s foreign key.

 l And table A’s primary key is table B’s primary key in full or in part.

For example, cars contain tires:

 l Table A is Car: Primary key is carID

 l Table B is Tire: Primary key is (carID, tireID). Foreign key is carID.

After importing the Car and Tire tables to database concepts of the same names, the Car
concept contains the Tire concept. Car has a ContainedConcept property called Tire,
which points to Tire. (The REL_TYPE metadata property shows the type of relationship, as
explained in the note.)

Tables Imported with Reference Relationships

After importing from tables, concept A references concept B if the following is true:

 l Table A’s foreign key is Table B’s primary key.

 l And table A’s primary key is not part of Table B’s primary key.

For example, orders reference sales representatives:

 l Table A is Order: Foreign key is repID.

 l Table B is SalesRep: Primary key is repID.

After importing the tables to database concepts of the same names, the Order concept
references the SalesRep concept. Order has a ConceptReference property called SalesRep
which points to SalesRep.

Note: The data types of the database source are imported to supported data
types in TIBCO BusinessEvents. For example, an Oracle CLOB field is imported as
a string property. You cannot use queryUsingConceptProps by specifying a value
in the property that maps to a CLOB column.

You can also allow users to import tables selectively. For further information, see Importing
Selected Database Tables.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

8 | Database Concepts Overview

Note: While importing from the IBM I/Series databases, you need to quote
various strings internally. To do that, set the following property in the BE_
HOME/studio/eclipse/configuration/studio.tra file:

be.dbconcepts.dbimport.use.quotes=true

Prerequisites for Importing Database Tables or
Views
Setup the environment and resources before using the database import utility.

Configure the Environment

Copy the appropriate JDBC drivers file to BE_HOME/lib/ext/tpcl. You must restart TIBCO
BusinessEvents Studio Explorer after copying the drivers file.

Note: The driver must be in the above location for the design-time Test
Connection feature to work.

To use the debugger feature, you must also add build path information to pass to engines
running inside TIBCO BusinessEvents Studio. See TIBCO BusinessEvents Developer’s Guide
for details.

Create Destinations (as Needed)

If you use the option to create an event for each database concept, it’s a good idea to
create a destination that you will specify as the default destination for the events. You can
also create and configure the destinations later.

Set Up the JDBC Connection Resource

Add a JDBC Connection resource to the project and configure it for the database whose
tables or views you want to import. To import concepts into the project from multiple data

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

9 | Database Concepts Overview

sources, set up a connection for each one. For details about adding a JDBC connection
resource, see the TIBCO BusinessEvents Developer’s Guide.

You may also want to configure the connection using tuning settings in the Cluster
Definition Descriptor (CDD). For more details, see Configuring the Database Connection.

Importing Database Tables or Views With the
DB Import Utility
The DB Import utility allows you to connect to a database and import schemas.

You select the tables and views to import and the utility adds corresponding TIBCO
BusinessEvents database concept definitions to the project. By default the utility names
the database concepts using the table or view name. You can, however, provide different
names as desired.

The utility provides an option to create one event for each table or view. The generated
event’s payload corresponds to the schema of the concept created for that table or view.
These events can then be used when you perform database operations using provided
functions, such as queryUsingPrimaryKeys().

See Table Constraints and Concept Relationships to understand how table constraints
affect concept relationships.

Note: Add the be.dbconcepts.dburi.query.reuserefs property, under the
processing unit property group of the project CDD, to avoid duplicate Database
concepts when two parents links to same row. When property is set to the value
"true", and a query is made, then TIBCO BusinessEvents checks if the queried
concept is already in cache. If the concept is already present in the cache, then
that concept is used instead of creating a new concept.

Before you begin
Refer to Prerequisites for Importing Database Tables or Views for details configuration or
setup required before importing the database tables or views.

Procedure

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

10 | Database Concepts Overview

 1. Go to File > Import > TIBCO BusinessEvents > Database Concepts.

The DB Import wizard displays, showing the Specify Database Connection dialog box.

 2. In the JDBC Resource URI field, click the Browse button and select the JDBC
Resource URI for the database connection you added.

The database connection details from the JDBC resource display.

 3. In the User SQL Query field, type a query that returns the schema name and the
table name that you want to import.

Note: The User SQL Query field appears only if dbimport.use.sql is set
to true in studio.tra. For more details, see Importing Selected Database
Tables .

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

11 | Database Concepts Overview

 4. If needed, you can override the database connection details. Click Next.

You see the Project Resource Location dialog box.

 5. In the Concept Folder field, browse to and select the project folder that will contain
the folder of database concepts.

Note:
The same folder name is used for concepts and for events. For example, if
you are using a schema called HR, then HR is used as the project folder
name containing the database concepts—and it is also the folder name
used for their corresponding events.

If you specify the same parent folder for the database concepts and for the
corresponding events, then the event and concept definitions are stored in
the same folder.

 6. (Optional) Check the Generate Events check box to create a simple event for each
imported concept. When you check the Generate Events check box, additional fields
appear for you to specify details for the events.

 l In the Events Folder field, browse to and select or create the project folder for
the events.

 l In the Event Destination URI field, click the Browse button and select the
default destination for the events.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

12 | Database Concepts Overview

 7. Click Next.

You see the Select Database Entities dialog box.

 8. Select the database entities (tables or views) from which you want to create database
concepts (and events if you selected that option).

 9. Select the Generate Concept Relationships check box to create relationships
between concepts based on database constraints. See Table Constraints and Concept
Relationships for more details about relationships.

The utility imports any additional database entities that were not in the original
selection but that must be imported because they have a relationship to the selected
subset of entities.

If this is the case, the message "N other related entities would be imported in
addition to selected entities" displays.

 10. Click OK to import the selected entities along with their related entities, and click
Next.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

13 | Database Concepts Overview

 11. At the Concept Name For Database Entity dialog box, database schema names are
provided as default names of the TIBCO BusinessEvents concepts.

 12. Edit the TIBCO BusinessEvents concept names as desired, then click Finish.

Result
The utility creates the concepts (and events if you chose that option). Browse your project
tree to verify that the expected concepts and events have been created.

See Importing Domain Model Information from a Database Concept to import domain
model entries for a property in the database concept.

Importing Selected Database Tables
By default, the DB Import utility imports all the schemas along with the tables within the
schemas. Alternatively you can choose which tables to import.

Procedure
 1. In BE_HOME/studio/eclipse/configuration/studio.tra, set the following

property:

 be.dbconcepts.dbimport.use.sql=true

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

14 | Database Concepts Overview

 2. Restart TIBCO BusinessEvents Studio for the change to take effect.

Setting this property to true adds an additional field, User SQL Query, to the DB
Import dialog.

Specifying Tables to Import
 3. In the User SQL Query field, enter a query that returns the schema name and the

table name that you are interested in importing. You can use the WHERE clause
appropriately in the query to selectively import database tables.

Note:
While specifying the tables to be imported, you must specify the schema
name first and then the table name. When you use User SQL Query, the
Owner Name field has no effect.

For example, when using Oracle 11g database, specify the following query to import
the tables whose names start with ’TABLE_’:

select schema_name, table_name from user_tables where table_name
like 'TABLE_%’

Below is an example of User SQL Query for IBM Z/ series database:

Select creator, name from sysibm.systables where creator=’username’
and name like ‘TABLE_%’

Below is an example of User SQL Query for IBM I/ series database:

select TABLE_SCHEMA,TABLE_NAME from sysibm.TABLES where TABLE_
SCHEMA='schemaname' and TABLE_NAME like 'TABLE_%'

Importing Domain Model Information from a
Database Concept
You can create a domain model by importing values from the database column that
corresponds to a database concept property.

Domain models make data entry more reliable. See TIBCO BusinessEvents Developer’s Guide
for details.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

15 | Database Concepts Overview

You can also import domain model information from a Microsoft Excel spreadsheet or from
a database. Oracle Database is supported. You can also manually enter domain model
information.

After you create the domain model, you associate it with the property you want to use it
with. To do this you can right-click an entity property in TIBCO BusinessEvents Studio
Explorer and select Associate Domains. Alternatively you can display the entity properties
in the entity editor, and in the Domain field of a property, browse to the domain model you
want to use.

Procedure
 1. In TIBCO BusinessEvents Studio Explorer, do one of the following:

 l Right-click the folder where you want to create the domain model and select
Import > TIBCO BusinessEvents > Domain Model.

 l In TIBCO BusinessEvents Studio Explorer, select any item in the project entity
and select File > Import > TIBCO BusinessEvents > Domain Model.

 2. Click Next.

If you invoked the import wizard by right-clicking a folder, that folder is selected as
the parent folder. You can choose a different one as desired.

You see the Import Domain Model Wizard.

 3. In the Domain Import Source field, select DBCONCEPT.

 4. In the File Name field, enter a name for the domain model resource. Optionally enter
a description.

 5. In the Data Type field, select the appropriate data type for the domain model and
click Next.

 6. In the Select DB Concept to Use field, browse and select a database concept.

 7. From the Properties drop-down list, select the property whose values you want to
use as the domain model values.

 8. Click Finish.

You see a message, "Domain Import Successful."

 9. Click OK.

You see the Domain Model editor. The column values appear as domain entries. You
can add, edit, duplicate, and remove entries as appropriate.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

16 | Configuring Database Concepts

Configuring Database Concepts
You can configure database concept metadata properties, set in the concept editor. Also,
you can configure options in the Cluster Deployment Descriptor (CDD) file, for example, to
enable or disable database concepts in a processing unit.

For details on the concept editor, see TIBCO BusinessEvents Developer’s Guide and for
configuring the CDD, see TIBCO BusinessEvents Configuration Guide.

Note: Database concepts cannot be enabled for inclusion in a backing store. Any
backing store settings are ignored.

Configuring Database Concepts Metadata
Properties
Database concepts and their properties have metadata properties. You may need to
change the metadata properties in some cases.

For example, when the underlying column name in the database is changed later on, you
need to change the property name or column name mapping.

The metadata properties for a concept are available on the Metadata Properties section of
the concept resource. The metadata properties for a property are available on the shortcut
menu of that property.

See Metadata Properties Reference for details on properties.

Tip: Metadata properties are disabled for concepts other than database
concepts. If you want to use an existing concept as a database concept, you can
enable the metadata properties so that you can manually configure them as
needed. In the title bar, click the Enable Metadata Configuration () button
to enable metadata properties for editing.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

17 | Configuring Database Concepts

Procedure
 1. In TIBCO BusinessEvents Studio, open the database concept for editing.

 2. Expand the Metadata properties section to see the settings, and set the following
guidelines in Metadata Properties Reference.

 3. To configure metadata properties for a property, in the Properties section, right-click
in the row of the property whose metadata properties you want to display and select
Metadata Properties.

You see the Metadata Properties dialog, showing the property’s metadata properties.
Set the values following guidelines in Metadata Properties Reference.

 4. Save the resource.

Metadata Properties Reference
Metadata Properties enable you to configure metadata information for the database
concepts and their properties.

Metadata Properties for a Database Concept

Property
Name

Global
Variables
supported?

Description

OBJECT_
NAME

Yes Name of the database table or view.

PRIMARY_
KEY_PROPS

No Displays a comma-separated list of names of database
concept properties that are derived from primary key columns
in the database, enclosed in square brackets, for example,
[ORDER_ID, ITEM_ID]. The values are generated at import
time. If there are no primary key columns, the square brackets
are empty.

The value of PRIMARY_KEY_PROPS is used to generate the
extId (external ID) for a database concept instance. The value
is overridden by the value of EXTID_PROPS.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

18 | Configuring Database Concepts

Property
Name

Global
Variables
supported?

Description

Primary key information from PRIMARY_KEY_PROPS is also used
in some RDBMS catalog functions. (The value is not
overridden by EXTID_PROPS for this purpose.)

EXTID_
PROPS

No Not created by the import utility. Add as needed. If none of
the columns imported for a database concept are primary
keys (and so PRIMARY_KEY_PROPS has no value), or if you want
to override the value of PRIMARY_KEY_PROPS, use the EXTID_
PROPS metadata property to define an extId value. The value
of these property names at runtime should uniquely identify a
database concept instance.

Set the value to a comma-separated list of database concept
property names. The value is case sensitive. Unlike PRIMARY_
KEY_PROPS, square brackets are not required.

The value of EXTID_PROPS overrides the value of PRIMARY_
KEY_PROPS.

JDBC_
RESOURCE

No A JDBC URI to which this database concept maps.

OBJECT_
TYPE

Yes l T for table

 l V for view

SCHEMA_
NAME

Yes Name of the database schema from where this concept
originates.

Metadata Properties for a Database Concept Property

Property
Name

Description

Primitive Properties

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

19 | Configuring Database Concepts

Property
Name

Description

COLUMN_NAME Name of the column in the database.

DATA_TYPE Data type as specified in the database.

LENGTH Length as defined in the database.

PRECISION Precision as defined in the database.

Relationship Properties

REL_TYPE C - If the concept held in this property is a contained concept.

R - If it is a reference.

Note: All relationships are modeled as references, even those defined as
contained concepts.

REL_KEYS A table containing join keys mapping source and target concepts.

The Name and Value fields show the column names from the database tables
that either form a Containment or Reference relationship. Name is the
property name of the concept, and Value is the property name of the related
concept.

Configuring the Database Connection
You can configure and tune the database connection or connections required for use of
database concepts using various settings.

See Prerequisites for Importing Database Tables or Views for more database-related
details.

Procedure
 1. In TIBCO BusinessEvents Studio, open the project’s Cluster Definition Descriptor and

select the Cluster tab > Database Concepts.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

20 | Configuring Database Concepts

 2. In the Database URIs field, add all JDBC shared resources used for creating database
concepts. Click the plus sign (+) to add a new row as needed, and add the project
path to the resource.

 3. As required, complete other configuration settings to tune performance, following
guidelines in Database Connection Configuration Reference.

 4. Save the resource.

Database Connection Configuration Reference
Configure the database connection for database concepts using the CDD file.

Note: The database concept settings and properties are applicable only for
JDBC stores.

Studio Settings

Add the project paths to all JDBC resources used for database concepts, and configure
other properties as desired. See Configuring the Database Connection for the procedure.

Property Default
Value

Description

Check Interval 60 The time interval (in seconds) between two consecutive
checks of database connection status.

Inactivity Timeout 0 The time period (in seconds) after which the database
connection in the pool closes unused connections.

Initial Size 5 The initial pool size in number of connections.

Max Size 5 Maximum number of connections allowed.

Min Size 5 Minimum number of connections to retain.

Property Check 900 After this interval (in seconds), all connections which are

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

21 | Configuring Database Concepts

Property Default
Value

Description

Interval already marked as inactive are flushed to the pool.

Retry Count -1 Specifies behavior for reconnecting to the database.

 l If set to 0, the engine does not attempt to
reconnect.

 l If set to -1, the engine retries with no limit.

 l If set to an integer greater than 0, the engine tries
to connect for the specified number of times.

When a connection is lost or stale, it cannot be recovered,
and engine restart would be required.

Wait Timeout 1 The maximum time (in seconds) to wait to retrieve a
connection from the connection pool.

Database URIs Required. Add the project path of all JDBC shared
resources used for database concepts in the project. For
example:
/SharedResources/DBConceptsConnection.sharedjdbc

Properties

These configuration properties can be added in the CDD file. For more details on the CDD
configuration see TIBCO BusinessEvents Configuration Guide.

Property Default
Value

Description

be.dbconcepts.connections.checkall false Specifies whether TIBCO
BusinessEvents checks all
connections for validity in
DBConcepts. The values
are:

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

22 | Configuring Database Concepts

Property Default
Value

Description

 l true - All
connections are
checked in
DBConcepts and if
any connection
fails then the
connection pool is
refreshed.

 l false - All
connections are
not checked in
DBConcepts, and
only if the test
connection fails
then the
connection pool is
refreshed.

be.dbconcepts.connections.logall Specifies whether DBPool
check operations are
logged when logLevel is
set to debug

be.dbconcepts.connection.check.interval Specifies the intervals in
which the TIBCO
BusinessEvents agent
checks connections in the
DB connection pool of
DBConcepts. The agent
only checks the
connections that not in
use currently.

be.dbconcepts.connections.checkratio Specify the number of
connections that the

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

23 | Configuring Database Concepts

Property Default
Value

Description

TIBCO BusinessEvents
agent checks in each
interval. Specify a
number such that the
following equation gives
you the percentage of
connections to check:

percent
connections to
check =
(1/number)*100

For example, to check all
connections on each
interval set the property
to 1. To check 25% of the
connections set it to 4.

Default value: 5

be.dbconcepts.oracle.pool.v12 false Specifies whether you
can use the Oracle 12
driver for the new pool.
Set this property to true
to use the Oracle 12
driver.

Note: For JDBC, copy
ojdbc7.jar and ucp.jar+
to the BE_
HOME\lib\ext\tpcl.

be.dbconcepts.templates.jdbc.resultset.maxRows 0 Specifies the maximum
number of records (result
set) that can be returned
by an SQL query of

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

24 | Configuring Database Concepts

Property Default
Value

Description

database concepts.

The default value is 0
which means there is no
limit to the number of
records that can be
returned by an SQL query
of database concepts.

be.dbconcepts.query.sqltimeout 0 Specifies the timeout
value for database
queries in seconds.

The default value is 0.

be.dbconcepts.cursor.closeQuery.closeConnection true Specifies whether the
database transactions are
auto committed when
Database.closeQuery()
function is executed. Set
this property to false to
prevent autocommit.

be.dbconcepts.quote.column.names true Specifies whether a case-
sensitive search is
enabled for names of
entities like columns,
tables, and schemas. The
default value is true.

be.dbconcepts.sqlquery.delimiters "" Specifies the delimiter for
searching entities like
columns, tables, and
schemas for a case-
sensitive search.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

25 | Configuring Database Concepts

Setting the Object Management Mode of a
Database Concept
The term mode refers to cache object management behavior. If a cache is enabled for the
project, you can set objects (either globally or individually) to use one of three modes:
Cache Only, Cache + Memory, or Memory Only.

The default mode for a cache cluster is Cache Only. However the default mode of a
database concept is Memory Only. See TIBCO BusinessEvents Developer’s Guide for more
details about modes.

Procedure
 1. In TIBCO BusinessEvents Studio, open the project CDD file for editing.

 2. In the Cluster tab, expand Domain Objects > Overrides.

 3. Click Add. Select the database concept you want to override and click OK.

 4. In the tree on the left, select the /uri entry for the database concept and select
Cache Only or Cache+Memory.

Note: Cache+Memory is recommended only for constants or concepts
whose values change infrequently. It is not generally appropriate for
database concepts. If you select Cache+Memory, additional configuration
is required. See TIBCO BusinessEvents Developer’s Guide for details.

 5. Save the resource.

Note: Most other override properties relate to backing store. Database
concepts cannot be enabled for inclusion in a backing store. Any backing
store settings are ignored.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

26 | Configuring Database Concepts

Enabling or Disabling Database Concepts in a
Processing Unit
Configure the CDD file to enable or disable database concepts for individual processing
units.

Procedure
 1. In TIBCO BusinessEvents Studio, open the project’s CDD.

 2. Select the Processing Units tab (at the bottom of the window). Select each
processing unit in turn and do one of the following:

 l To enable database concepts, select the Enable Database Concepts check box.

 l To disable database concepts, clear the check box.

 3. Save the resource.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

27 | RDBMS Catalog Functions

RDBMS Catalog Functions
The RDBMS functions are used in TIBCO BusinessEvents rules and rule functions to connect
to a database to perform database operations.

The database concepts feature has an object-to-relational mapping feature that enables
you to act on the concepts, and delegate the persistence of these objects to the RDBMS
catalog functions.

These functions allow you to perform basic Create, Retrieve, Update and Delete (CRUD)
operations on database tables using database concepts, and perform related tasks. In this
way, you can keep the database concepts synchronized with their database equivalents.

The RDBMS catalog has one category called Database, which contains the following
functions:

 l getConnectionStatus()

 l setCurrentConnection()

 l unsetConnection()

 l beginTransaction()

 l commit()

 l rollback()

 l insert()

 l update()

 l delete()

 l queryUsingConceptProps()

 l queryUsingPreparedStmt()

 l queryUsingPrimaryKeys()

 l queryUsingSQL()

 l assertDBInstance()

 l executePreparedStmt()

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

28 | RDBMS Catalog Functions

 l executeSQL()

 l createQuery()

 l closeQuery()

 l getNextPage()

 l getNextPageFromOffset()

 l getPreviousPage()

 l getPreviousPageFromOffset()

These operations include inserting, updating or deleting database operations, or keeping
the TIBCO BusinessEvents concepts and their database source synchronized.

The setCurrentConnection and
unsetConnection Functions
Use setCurrentConnection() once before performing any database operation. Use
unsetConnection() once after all database operations are performed.

In your rule or rule function, you must first connect to the database.

Database.setCurrentConnection ("/MyDbConnection");
Operations
 Database.unsetConnection();

You must call unsetConnection() even in case of a failure within the rule function. If you
do not unset the connection, the connection is not returned to the database connection
pool.

Use of setCurrentConnection() may result in an exception if the underlying database is
disconnected. You can first use getConnectionStatus() to determine if the database
(specified by a JDBC connection resource URI) is connected.

Transactions
To commit multiple statements, group them using transactions.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

29 | RDBMS Catalog Functions

By default, all database statements are individually committed. For example, if an insert
call results in multiple insert statements, then each one gets committed individually. You
can, however, use transactions. To group statements inside a transaction, call the
beginTransaction() function before the statements, and call commit() after all the
statements. Use rollback() to roll back the entire transaction in the event of an
exception.

Example

try
 {
 Database.setCurrentConnection ("/MyDbConnection");
 Database.beginTransaction ();
 Concept instance=Instance.createInstance("/someconcept");
 Database.insert(instance)
 Database.commit();
 }
 catch (Exception e)
 {
 Database.rollback();
 }
 finally
 {
 Database.unsetConnection();
 }

Insert Operations
The insert function Database.insert() inserts an object and its concept properties (if any)
recursively into the database.

You can insert all related objects at once instead of performing individual inserts. The join
keys are internally managed.

In the case of concept references, foreign keys in the referencing concept are updated with
primary keys in the referenced concept.

In the case of contained concept properties, foreign keys in the contained concept are
updated with primary keys in the container concept.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

30 | RDBMS Catalog Functions

If columns in the database are modified by the database during inserts, these changes are
also made in the concept instances. This is usually the case when primary keys are
automatically generated or when columns have default values.

Using Generated Unique Primary Keys for Inserts
Many database products provide a mechanism for generating unique primary keys.

For each database concept that requires a primary key value to be provided in this way,
you configure the mechanism provided by your database and provide it to TIBCO
BusinessEvents in a stored procedure that you reference in an XML file. You can also
reference an Oracle sequence in the same way. When a record is inserted into the
database, the unique value generated for the specified primary key property is used. The
database concept also uses the generated primary key value.

Procedure

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

31 | RDBMS Catalog Functions

 1. Create an XML file with the extension .sequences.xml .

Configure the XML file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <unique_identifiers>
 <unique_identifier entity="ConceptURI"
 property="PropertyName"
 unique_identifier="SequenceName"
 stored_proc="StoredProcStatement"/>
 </unique_identifiers>

Where, add a unique_identifier element for each database concept that will
acquire a primary key value using this mechanism. Following are the parameters that
you can define:

Parameter Description

entity The URI of the concept whose specified property
will use the sequence or stored procedure.

property Name of the property that holds the primary
key.

unique_identifier Name of the sequence (if you are using a
sequence). Used for Oracle DBMS only.

If both unique_identifier and stored_proc are
present, stored_proc is used.

stored_proc Name of the stored procedure (if you are using a
stored procedure). The value must be a callable
JDBC statement. The called stored procedure
must take only one OUT type parameter.

Note

The syntax of the value for this attribute
depends on the JDBC driver you are using for

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

32 | RDBMS Catalog Functions

Parameter Description

the database concept.

For Oracle thin Driver use this syntax:

stored_proc="CALL YourStoredProc (?)"

For SQL Server use this syntax:

stored_proc="EXEC YourStoredProc ?"

 2. Add the XML file to the project as follows:

 a. Select File > New.

 b. Select Other > XML > XML.

 c. Click Next, type a name for the file, and click Finish.

 3. You can also import an existing XML file. To do that, perform the following:

 a. Select File > Import > File System.

 b. Specify the file you want to import, and click Finish.

Update and Delete Operations
Perform the update or delete operations on row using their primary key.

Each instance of a database concept maps to one row in a database table. In order for the
database to perform updates or deletes on the TIBCO BusinessEvents objects, or for TIBCO
BusinessEvents to perform updates or deletes on the database tables, the software must
be able to uniquely identify the row. Therefore, you can only perform delete and update
operations if the table has at least one primary key. If you attempt to perform an update
for a row that has no primary key, an exception is thrown.

To find out whether a table has primary keys or not, open the project in TIBCO Designer,
and check the PRIMARY_KEY_PROPS metadata property, which is on the Metadata Properties
tab for the concept. If this property has no value, no primary keys exist and you cannot
perform update or delete operations.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

33 | RDBMS Catalog Functions

update()
The Database.update() function updates the database with values contained in the
concept.

Tip: XMLType In order to update an Oracle Database table column of datatype
XMLType with a string value greater than 4,000 characters, you must add the
following Oracle JAR files to BE_HOME/lib/ext:

 l ORACLE_HOME/rdbms/jlib/xdb.jar

 l ORACLE_HOME/lib/xmlparserv2.jar

Example

try
 {
 Database.setCurrentConnection ("/MyDbConnection");
 Database.beginTranscation ();
 /*the instance passed to update operation is an instance of the
 dbconcept*/
 Database.update(instance)
 Database.commit();
 }
 catch (Exception e)
 {
 Database.rollback();
 }
 finally
 {
 Database.unsetConnection();
 }

delete()
The Database.delete() function deletes a record corresponding to the concept instance in
the database.

If cascade is set to true, it deletes all database records corresponding to the contained
concept property references and nulls out foreign key references in database records

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

34 | RDBMS Catalog Functions

corresponding to the concepts that refer to the concept being deleted.

Example

try
 {
 Database.setCurrentConnection ("/MyDbConnection");
 Database.beginTransaction ();
 /*the instance passed to delete operation is an instance of the
 dbconcept*/
 Database.delete(instance, false)
 Database.commit();
 }
 catch (Exception e)
 {
 Database.rollback();
 }
 finally
 {
 Database.unsetConnection();
 }

Query Operations
You can perform query operations on a database, to return cocepts matching those
queries.

queryUsingConceptProps()
The queryUsingConceptProps() queries database using the property values in a concept
instance.

Note: You cannot use queryUsingConceptProps() by specifying a value in the
property that maps to a CLOB column.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

35 | RDBMS Catalog Functions

Syntax

Concept[] queryUsingConceptProps(Concept qConcept, boolean
queryChildren)

In this example, qConcept indicates that the concept database is queried for matching
values from this concept. If queryChildren boolean is set to true, concept properties are
recursively queried. The function returns an array of concepts.

Example

Database.setCurrentConnection
("/SharedResources/MySQLConnection.sharedjdbc");
 Database.beginTransaction();
 Concepts.test.test.test testConcept=Instance.createInstance("xslt://
{{/Concepts/test/test/test}}<?xml version=\"1.0\" encoding=\"UTF-
8\"?>\n<xsl:stylesheet xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"
xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\" version=\"1.0\"
exclude-result-prefixes=\"xsl xsd\">\n <xsl:output method=\"xml\"/>\n
 <xsl:template match=\"/\">\n <createObject>\n
<object>\n <col_1>\n <xsl:value-of
select=\"1\"/>\n </col_1>\n <col_2>\n
 <xsl:value-of select=\""Hi"\"/>\n
</col_2>\n </object>\n </createObject>\n
</xsl:template>\n</xsl:stylesheet>");
 Concepts.test.test.test[] result=Database.queryUsingConceptProps
(testConcept,true);
 for (int i=0;i<result@length;i++)
 {
 System.debugOut("properties from DB are " + result[i].col_1 + " ," +
result[i].col_2);
 }
 Database.unsetConnection();

queryUsingPreparedStmt()
Use queryUsingPreparedStmt() to query the database using prepared statements.

Syntax

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

36 | RDBMS Catalog Functions

Concept[] queryUsingPreparedStmt(String conceptURI, String preparedStmt,
Object[] args,boolean queryChildren)

Here, conceptURI is the URI of the result concept type, preparedStmt is the prepared
statement to be executed, and args Object[] are the positional values to be used for
binding to the prepared statement. If queryChildren boolean is set to true, the concept
properties are recursively queried. The function returns an array of concepts matching the
query.

Example

Database.setCurrentConnection("/SharedResources/Mainframe");
 Database.beginTransaction();
 String stm="delete from ACME1.TABLE_BETA where ID1=?";
 Object []o3 ={3};
 int cnt_prepare_delete=Database.executePreparedStmt(stm,o3);
 System.debugOut("output of function executePreparedStmt(delete) is " +
cnt_prepare_delete);
 Database.commit();
 Database.unsetConnection()

queryUsingPrimaryKeys()
Use the queryUsingPrimaryKeys() function to query the database using primary keys.

Syntax

Concept[] queryUsingPrimaryKeys(String conceptURI, SimpleEvent
pKeyEvent, boolean queryChildren)

Here conceptURI is the URI of the concept type, pKeyEvent is a simple event that contains
primary key values to be used. Properties must match primary key properties in the result
concept. If queryChildren boolean is set to true, concept properties are recursively
queried. The function returns an array of result concepts.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

37 | RDBMS Catalog Functions

Example

Database.setCurrentConnection("/SharedResources/ibmi");
 Database.beginTransaction();
 EventsNew.ADBTEST1.TABLE_REFRING event = Event.createEvent("xslt://
{{/EventsNew/ADBTEST1/TABLE_REFRING}}<?xml version=\"1.0\"
encoding=\"UTF-8\"?>\n<xsl:stylesheet
xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"
xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\" version=\"1.0\"
exclude-result-prefixes=\"xsl xsd\">\n <xsl:output method=\"xml\"/>\n
 <xsl:template match=\"/\">\n <createEvent>\n
<event>\n <ID2>\n <xsl:value-of
select=\"10\"/>\n </ID2>\n </event>\n
</createEvent>\n </xsl:template>\n</xsl:stylesheet>");
 Concepts.ADBTEST1.TABLE_REFRING [] parent =
Database.queryUsingPrimaryKeys("/Concepts/ADBTEST1/TABLE_
REFRING",event,true);
 for(int k = 0 ; k < parent@length ; k++) {
 System.debugOut(Instance.serializeUsingDefaults(parent[k]));
 }
 Database.unsetConnection();

queryUsingSQL()
Use the queryUsingSQL() function to query the database using SQL statements.

Syntax

Concept[] queryUsingSQL(String conceptURI, String sql, boolean
queryChildren)

Where, conceptURI is the URI of the result concept type, and sql is the SQL statement to
be executed. If queryChildren boolean is set to true, concept properties are recursively
queried. The function returns an array of result concepts.

Example

Database.setCurrentConnection("/SharedResources/Mainframe");
 Database.beginTransaction();
 Concepts.BEUSER.CAR_TABLE []ct = Database.queryUsingSQL
("/Concepts/BEUSER/CAR_TABLE","select * from BEUSER.CAR_TABLE",true);

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

38 | RDBMS Catalog Functions

 for(int i=0;i<ct@length;i=i+1) {
 System.debugOut(""+ct[i].CAR_ID+ct[i].TIRE_TABLE[0].CAR_ID+ct
[i].TIRE_TABLE[0].TIRE_ID);
 }
 Database.unsetConnection();

Database Concept Assertion After Database
Query
Several RDBMS catalog functions enable you to query the database. Concepts returned by
a database query are not automatically asserted. They must be explicitly asserted.

To assert the database concept, use the following function:

Database.assertDBInstance(concept, deep)

This function returns void.

When a database concept is asserted with the deep parameter set to true, all the
referenced and contained concepts are also asserted (concept properties are asserted
recursively).

For example:

void assertDBInstance(Concept MyDBConcept, boolean deep)

Where, MyDBConcept is the instance of the concept to be asserted to working memory.

Prepared Statements
A prepared statement is an SQL statement whose values are determined at runtime. You
can use prepared statements in the queryUsingPreparedStmt() and executePreparedStmt
() functions.

When you use executePreparedStmt(), prepare the statement, for example:

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

39 | RDBMS Catalog Functions

String QueryCON="Insert into HR.COUNTRIES Values (?,?,?)"

Then associate the actual values at execution time, as shown in the following code snippet.
It demonstrates use of executePreparedStmt() and queryUsingPreparedStmt().

Database.setCurrentConnection("/JDBC Connection");
 Database.beginTransaction();
 String InsQuery="INSERT into HR.COUNTRIES Values (?,?,?)";
 Object []InsObj={e.rate, e.CID,e.rank};
 int insertCON=Database.executePreparedStmt(InsQuery,InsObj);
 String UpdateQuery="UPDATE HR.COUNTRIES SET COUNTRY_ID=? WHERE COUNTRY_
ID=?"
 Object [] update={Use.Updates,Use.UpdateV};
 int updat=Database.executePreparedStmt(UpdateQuery,update);
 String DeleteQuery="DELETE FROM HR.COUNTRIES WHERE COUNTRY_ID=?"
 Object []DelObj={e.CID};
 int deleteCON=Database.executePreparedStmt(DeleteQuery,DelObj);
 String SelectQuery="Select * from HR.COUNTRIES where
HR.COUNTRIES.COUNTRY_ID>?"
 Object []SelObj={e.CID};
 Concept []SelectCON=Database.queryUsingPreparedStmt(
 "/Concepts/hr/HR/COUNTRIES",SelectQuery,SelObj,true);
 Database.commit();
 Database.unsetConnection();

Database Cursor Functions
Database cursor functions are useful when you want to process few records at a time in a
large result set of queries. They help you to get database records, insert database records,
and delete database records.

The following database functions are available in the catalog functions under RDBMS:

 l createQuery()

 l getNextPage()

 l getPreviousPage()

 l getNextPageFromOffset()

 l getPreviousPageFromOffset()

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

40 | RDBMS Catalog Functions

 l closeQuery()

Example of Database Cursor Functions

debugOut("Database Cursor Demo Starts");
 Database.setCurrentConnection("/SharedResources/HR_DB_Conn.sharedjdbc");
 String cursorName=Database.createQuery("/SharedResources/HR_DB_
Conn.sharedjdbc", "EmpCursor", "/Concepts/HR/EMPLOYEES", "select * from
employees", 10, null);
 debugOut("Opened Cursor: " + cursorName);
 try{
 Concept[] empCepts=Database.getNextPage(cursorName, 10);
 debugOut("Database.getNextPage() fetched " + empCepts@length + " rows");
 while(empCepts !=null && empCepts@length > 0){
 empCepts=Database.getNextPage(cursorName, 10);
 debugOut(" Database.getNextPage() fetched " + empCepts@length + "
rows");
 for(int i; i < empCepts@length ; i=i+1){
 debugOut(" "+empCepts[i]);
 }
 }
 debugOut("@ end");
 } finally {
 if(cursorName !=null){
 Database.closeQuery(cursorName);
 }
 }

createQuery()
You can open a database cursor for an SQL query by using the Database.createQuery()
function. Once the cursor is open, you can retrieve large result sets from the database in
pages.

Syntax

String createQuery(String jdbcURI, String cursorName, String
resultTypeURI, String sql, int pageSize, Object requestObj);

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

41 | RDBMS Catalog Functions

Parameters

Parameter Type Description

jdbcURI String The JDBC URI of the resource to be
used for getting the connection.

cursorName String The name of the cursor to be opened.

resultTypeURI String The URI of the result type, which will
be returned by the query. Possible
values are Concept URI, Map, or Null.
If it is of "Map" type, then each result
set row is a Map object. In this case,
you can retrieve the column values by
specifying column names as the key.
If Null, an Object[] is returned.

sql String The SQL query string. It can be a
prepared statement query or a simple
statement query.

pageSize Integer The number of concepts or records to
be fetched from the database for each
page.

requestObj Object If the SQL query specified is a
prepared statement query, then the
requestObject can be specified as a
concept or an array of arguments.

returns String The name of the opened cursor.

Example

Database.setCurrentConnection("/SharedResources/Oracle.sharedjdbc");
 String jdbcURI="/SharedResources/HR_DB_Conn.sharedjdbc";
 String cursorName="EmpCursor";
 String resultTypeURI="/Concepts/HR/EMPLOYEES";

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

42 | RDBMS Catalog Functions

 String sql="select * from employees";
 int pageSize=10;
 Object requestObj=null;
 String cursorName=Database.createQuery
(jdbcURI,cursorName,resultTypeURI,sql,pageSize,requestObj);
 System.debugOut(" Opened Cursor: " + cursorName);

getNextPage() and getPreviousPage()
You can use the Database.getNextPage() and Database.getPreviousPage() functions to
access next or previous pages respectively from the database cursor.

The getPreviousPage()function fetches records in the forward direction. That is, if the
cursor is on the 11th record and you call this function, it returns records from 1 to 10, and
not from 10 to 1.

The getNextPage() function returns an empty array when it reaches the end of the result
set. Similarly, the getPreviousPage() function returns an empty array when it reaches the
beginning of the result set.

Syntax

Object [] getNextPage(String cursorName, int pageSize)
 Object [] getPreviousPage(String cursorName, int pageSize)

Parameters

Parameter Type Description

cursorName String The name of the database cursor.

pageSize Integer The number of concepts or records to
be fetched from the database for each
page.

If the pageSize is -1, then the default
page size given for the cursor is used.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

43 | RDBMS Catalog Functions

Parameter Type Description

The default is 500.

return Object
[]

Object[] The array of the returned resultset
data.

If resultConceptURI is specified, the
array is of resultConceptType. Else, it
is in the form of n-tuple object array,
where each tuple is an array of the
values of the returned resultset data.

Example for getNextPage

Database.setCurrentConnection("/SharedResources/Oracle.sharedjdbc");
 String jdbcURI="/SharedResources/HR_DB_Conn.sharedjdbc";
 String cursorName="EmpCursor";
 String resultTypeURI="/Concepts/HR/EMPLOYEES";
 String sql="select * from employees";
 int pageSize=10 ;
 Object requestObj=null;
 String cursorName=Database.createQuery
(jdbcURI,cursorName,resultTypeURI,sql,pageSize,requestObj);
 System.debugOut(" Opened Cursor: " + cursorName);
 Concept[] empCepts={};
 empCepts=Database.getNextPage(cursorName, 10);
 System.debugOut(" Database.getNextPage() fetched " + empCepts@length
+ " rows");

Example for getPreviousPage

Database.setCurrentConnection("/SharedResources/Oracle.sharedjdbc");
 String jdbcURI="/SharedResources/HR_DB_Conn.sharedjdbc";
 String cursorName="EmpCursor";
 String resultTypeURI="/Concepts/HR/EMPLOYEES";
 String sql="select * from employees";
 int pageSize=10 ;
 Object requestObj=null;
 String cursorName=Database.createQuery
(jdbcURI,cursorName,resultTypeURI,sql,pageSize,requestObj);

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

44 | RDBMS Catalog Functions

 System.debugOut(" Opened Cursor: " + cursorName);
 Concept[] empCepts={};
 empCepts=Database. getPreviousPage (cursorName, 10);
 System.debugOut(" Database. getPreviousPage () fetched " +
empCepts@length + " rows");

getNextPageFromOffset() and
getPreviousPageFromOffset()
While paging a result set, you can skip a number of rows or records. This set of records to
be skipped is called an Offset. Use the Database.getNextPageFromOffset() and
Database.getPreviousPageFromOffset() functions to get the next or previous pages
respectively of the database cursor, starting from an offset.

Syntax

Object [] getNextPageFromOffset(String cursorName, int startOffset, int
pageSize)
 Object [] getPreviousPageFromOffset (String cursorName, int startOffset,
int pageSize)

Parameters

Parameter Type Description

cursorName String The name of the database cursor.

startOffset Integer The start offset for the page.

pageSize Integer The number of concepts or records to
be fetched from the database for each
page.

If the pageSize is -1, then the default
page size given for the cursor is used.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

45 | RDBMS Catalog Functions

Parameter Type Description

The default is 500.

return Object
[]

Object[] The array of the returned resultset
data.

If resultConceptURI is specified, the
array is of resultConceptType. Else, it
is in the form of n-tuple object array,
where each tuple is an array of the
values of the returned resultset data.

Example for getNextPageFromOffset

Database.setCurrentConnection("/SharedResources/Oracle.sharedjdbc");
 String jdbcURI="/SharedResources/HR_DB_Conn.sharedjdbc";
 String cursorName="EmpCursor";
 String resultTypeURI="/Concepts/HR/EMPLOYEES";
 String sql="select * from employees";
 int pageSize=10 ;
 Object requestObj=null;
 String cursorName=Database.createQuery
(jdbcURI,cursorName,resultTypeURI,sql,pageSize,requestObj);
 System.debugOut(" Opened Cursor: " + cursorName);
 Concept[] empCepts={};
 empCepts=Database.getNextPageFromOffset(cursorName,2,10);
 System.debugOut(" Database. getPreviousPage () fetched " +
empCepts@length + " rows");

Example for getPreviousPageFromOffset

Database.setCurrentConnection("/SharedResources/Oracle.sharedjdbc");
 String jdbcURI="/SharedResources/HR_DB_Conn.sharedjdbc";
 String cursorName="EmpCursor";
 String resultTypeURI="/Concepts/HR/EMPLOYEES";
 String sql="select * from employees";
 int pageSize=10 ;
 Object requestObj=null;
 String cursorName=Database.createQuery
(jdbcURI,cursorName,resultTypeURI,sql,pageSize,requestObj);

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

46 | RDBMS Catalog Functions

 System.debugOut(" Opened Cursor: " + cursorName);
 Concept[] empCepts={};
 empCepts=Database.getPreviousPageFromOffset(cursorName,5,10);
 System.debugOut(" Database. getPreviousPage () fetched " +
empCepts@length + " rows");

closeQuery()
You must close an open database cursor for an SQL query by using the
Database.closeQuery() function.

If you do not close the cursor, it results in database level exception as an open cursor is a
limited resource at database level. Even if there is no exception, you must close all open
cursors.

Syntax

void closeQuery(String cursorName);

Parameters

Parameter Type Description

cursorName String The name of the cursor to be closed.

Example

Database.setCurrentConnection("/SharedResources/Oracle.sharedjdbc");
 String jdbcURI="/SharedResources/HR_DB_Conn.sharedjdbc";
 String cursorName="EmpCursor";
 String resultTypeURI="/Concepts/HR/EMPLOYEES";
 String sql="select * from employees";
 int pageSize=10 ;
 Object requestObj=null;
 String cursorName=Database.createQuery
(jdbcURI,cursorName,resultTypeURI,sql,pageSize,requestObj);

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

47 | RDBMS Catalog Functions

 System.debugOut(" Opened Cursor: " + cursorName);
 Database.closeQuery(cursorName);

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

48 | Oracle Catalog Functions

Oracle Catalog Functions
Oracle catalog functions are extended functions that can be used to perform database
operations in rules and rule functions.

Add the following property in the studio.tra file to use the Oracle catalog functions.

TIBCO.BE.function.catalog.Oracle=true

Default value of the property is false. In the Built-in Functions Oracle catalog, this
property enables/disables the following functions:

 l closeResultSet

 l commit

 l executeQuery

 l getColumnValueByIndex

 l getColumnValueByName

 l getConnection

 l getConnectionWithTimeout

 l next

 l registerConnection

 l releaseConnection

 l rollback

The Oracle catalog function executeQuery is used only to select queries and not to perform
the insert, update, and delete operations. Use the RDBMS catalog function to perform the
insert, update, and delete operations, see Insert Operations and Update and Delete
Operations.

The registerConnection function creates a pool of database connections and registers
with the specified key. The syntax of the registerConnection function is:

void registerConnection(String key,String uri,int poolSize)

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

49 | Oracle Catalog Functions

In the registerConnection function, the poolsize parameter defines the required number
of database connections in the pool. The settings of the parameter depends on your
project requirements, such as, using more connections improves the runtime performance
when the registered connection is used in multiple rules.

Example

The following code shows the example usage of the Oracle catalog functions:

String connection ="/SharedResources/JDBCConnection.sharedjdbc";
 Oracle.registerConnection("sstConnection",connection, 10);
 Object cnx = Oracle.getConnection("sstConnection");
 String sRequest = "select to_char(count(*)) as NB from d_account";
 String nextResponse ;
 Object[] args = {};
 Object res = Oracle.executeQuery(cnx, sRequest, args);
 if (res!= null){
 while(Oracle.next(res)) {
 nextResponse = String.trim(Oracle.getColumnValueByName
(res,"NB"));
 }
 }
 Oracle.closeResultSet(res);
 Oracle.releaseConnection(cnx);

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

50 | State Modeler

State Modeler
State Modeler is based on the UML-standard definition for state models. A state model is a
directed graph. States are represented by nodes and state transitions are represented by
connectors.

A state model allows you to model the life cycle of a concept instance — that is, for each
instance of a given concept, you can define what states the instance passes through and
how it will transition from state to state.

For example, consider an order process. It is modeled using a state model that is
associated with an Order concept.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

51 | State Modeler

In the above example, when a customer places an order, TIBCO BusinessEvents receives a
simple event and creates a new instance of the Order concept. Through the life of the
Order instance, it passes through a credit-check state, an inventory-check state, a
fulfillment state, and so on until the customer has received and paid for the order.

As these order activities take place, TIBCO BusinessEvents receives new events, correlates
the events to the existing instance, modifies one or more property values within the
instance, and changes the state of the instance.

TIBCO BusinessEvents ships with a simple state model example, which you can open and
examine. It also includes a document with instructions for creating the example yourself.
This will help to familiarize you with the TIBCO BusinessEvents State Modeler. This and
other examples are stored in the BE_HOME/examples directory.

State Modeler Functions
The State Modeler includes its own set of functions, which are located in the Standard
function registry view, under Instance > StateMachine.

Only one is commonly used: Instance.startStateMachine. It is used only when auto start
of state machines is disabled (see Controlling the Start of a State Machine).

State Models and Concepts
Each state model is owned by a concept. One concept can own multiple state models, but
has only one main state model. The main state model can call the other state models.

Each state model begins with one start state and ends with one or more end states.
Between the start and end states you can add simple, composite, and concurrent states as
needed, connected by transitions. You can also add a Call State Model node to call another
state model from within a state model.

Main State Model Inheritance

Each concept is allowed at most one main state model. However, a concept can inherit its
main state model. At runtime, TIBCO BusinessEvents searches for a main state machine,
starting with the concept instance. If it does not find one, it moves up the inheritance chain

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

52 | State Modeler

until it finds a main state machine. It creates an instance of the first main state machine it
locates.

At runtime, if TIBCO BusinessEvents cannot locate a main state machine for the concept
instance or for any concepts higher in the inheritance chain, it does not create an instance
of any state machine for the concept instance.

A concept’s state machines can call any state machine that belongs to an ancestor of the
concept. The state machine of a concept cannot call the state machine of a concept that is
lower in the inheritance chain.

Call State Model

State model inheritance is used when you call another state model from within a state
model: you can specify whether the call is an implicit or explicit call. See Call State
Machine Resource.

State Models and Rules
State models define behaviors relating to a concept during its lifecycle. The TIBCO
BusinessEvents rule language is used to define many of these behaviors.

Transitions are containers for rules, which control how each instance changes states and
property values.

Entry Actions and Exit Actions

As a concept instance enters a state, it executes the associated entry action. While it is
within a state, the state’s transition rules determine if, when, and how it will exit the state.
As it exits a state, it executes the associated exit action.

Transition Rules

Transition rules determine when, or if, the transition is taken. If you define a rule for the
transition, the transition does not occur until the rule executes successfully. See
Transitions.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

53 | State Modeler

Timeout Expressions and Actions

States and the overall state model can have timeout expressions and actions. The rule
language is used to define timeout expressions and timeout actions as explained in State
Model Timeouts and State Timeouts.

State Machines at Runtime
At runtime a state model executes as a state machine, which begins in the start state.

By default a state machine starts when its concept instance is asserted. When a concept is
asserted so are its contained concepts, if any, so all its contained concept state machines
are also started.

However you can change this default behavior and instead use a function in your rules to
start the state model, at some point after the concept is asserted. The function has a
parameter that controls whether contained concept state models are also started.me

The state machine begins in the start state. If the transition to the next state has a rule,
then the state stays at start until the rule’s conditions are met. When they are met the
following occurs:

 l The start state’s exit action executes (if one exists)

 l The transition rule actions execute (if any exist)

 l If the transition to the next state crosses more than one composite or concurrent
state boundary before ending at its target, all entry actions associated with those
boundaries execute.

 l The next state’s entry action executes (if it exists).

The same general process repeats as the machine moves from state to state, with the
addition that there could be multiple exit actions, if the transition crosses any enclosing
boundaries on its way to its target.

When a state machine exits an enclosing state, it exits all the enclosed states too.

If a state or state machine times out, then other actions occur as explained in State Model
Timeouts and State Timeouts

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

54 | State Modeler

Types of States
There are different types of states a concept instance passes through in the state model.

Note:
 l Except for the concurrent state, all state types allow only exclusive-or (XOR)

transitions, which go to one state only. To allow a state to go from one
state to multiple states, use a concurrent state.

 l You can set timeout expressions and timeout actions on all types of states
except start and end states, and Call State Model nodes.

Start and End States

Each state model begins with a start state and ends with one or more end states. A start
state has an exit action, but no entry action. An end state has an entry action but no
exit action.

Composite and concurrent states also contain start and end states. You can delete the
end state in a composite state, as it is optional. However, you cannot delete the end
states in a concurrent state as they are mandatory.

Simple States

A simple state can include an entry action and an exit action.

Composite States

Composite states are like nested folders: they contain other states.

Composite states can contain simple states, other composite states, and concurrent
states.

By default a composite state has a start and end state. However you can delete the end
state if it is not needed.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

55 | State Modeler

Use a composite state to treat a group of states as a unit. For example, consider a state
model for an order instance. The order instance may need to travel through complex
credit check and fulfillment processes. You can group the complex credit-check process
in one composite state and the order-fulfillment process in another composite state.

For information about composite state transition rules, see Transitions.

Concurrent State

A concurrent state allows multiple state flows to operate at the same time. By default, a
concurrent state has two processing lanes, called regions. A region can contain simple
states, other concurrent states, and composite states. You can add multiple regions to a
concurrent state.

A state machine instance cannot exit a concurrent state until all its regions have finished
processing, unless a timeout occurs.

For information about concurrent state transition rules, see Transitions.

Adding Regions in a Concurrent State
By default, a concurrent state has two regions, but more can be added to it.

Procedure
 1. Open a state machine with a concurrent state.

 2. Click to select the concurrent state to which you want to add regions.

 3. In the Palette view, click Region.

 4. Click inside the concurrent state.

A new region appears.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

56 | State Modeler

Transitions
The states in a state model are connected by transitions.

Transition Rules

A transition can optionally be triggered by a rule. If a transition has no rule (a lambda
transition) then as soon as the prior state’s exit action (if any) has occurred, the state
model moves to the next state (or to its entry action if it has one).

As with any rule, you can add advisory events, simple events, time events, concepts, and
scorecards to the declaration section of a transition rule.

If you define a rule for the transition, the transition does not occur until the rule executes
successfully.

Transition Rules Execute Once

In one respect, transition rules work like other TIBCO BusinessEvents rules: they participate
in run-to-completion cycles. However, unlike regular rules, a transition rule executes at
most only once.

For example, suppose a regular TIBCO BusinessEvents Studio rule has two entities in its
scope (declaration) and has no condition. Such a rule might execute multiple times, for all
matching tuples in the Rete network. However a transition rule executes only once, for the
first matching tuple.

To understand more about rule behavior at runtime, such as the priority setting, the rule
scope (declaration) and rule conditions, see TIBCO BusinessEvents Architect’s Guide. Rule
configuration is documented in TIBCO BusinessEvents Developer’s Guide.

Self Transitions

Typically, transitions take an instance from one state to another state. Self transitions,
however, connect a state to itself. Each time the instance loops back to the state, it triggers
the entry action, and each time it leaves the state, it triggers the exit action.

Start and end states cannot have self transitions.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

57 | State Modeler

Loopbacks

Loopbacks are allowed between any types of states except between start and end states.

State Transitions

You can use state transitions (as opposed to Boundary transitions) for simple and for
composite states. State transitions are not available for concurrent states.

For example:

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

58 | State Modeler

Transitions that Cross Multiple Boundaries

When a transition crosses the boundary of one or more nested states, the entry or exit
actions of those states are executed.

Boundary Transitions

Composite states can use boundary transitions and Concurrent states must use them.
Boundary transitions trigger entry and exit actions of the state whose boundary they are
attached to.

Below is an example of boundary transitions used for a concurrent state.

Call State Machine Resource
To call a state machine from another state machine, at design time you add a Call State
Model node. You insert the node like any other state in a state model and link it to other
states using transitions.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

59 | State Modeler

When configuring a Call State Model node, you can specify any state model that is owned
by the same concept as the main state model, or that is owned by any concept higher in
that concept’s inheritance chain (but not lower in the chain).

Note: At runtime, the state machine of a concept cannot call the state machine
of a concept that is lower in the inheritance chain, and you cannot call a state
machine recursively. That is, you cannot call a state machine from within itself
either directly or indirectly.

The concepts in an inheritance chain can own state models that have the same name. You
can define the call as an explicit or virtual call. The Call Explicitly check box determines
which of these same-named state models TIBCO BusinessEvents calls at runtime.

 l Explicit Call: (Call Explicitly box checked.) TIBCO BusinessEvents makes an explicit
call—it calls the state model specified (and at the level of the hierarchy specified.

 l Virtual Call: (Call Explicitly box unchecked.) TIBCO BusinessEvents makes a virtual
call—it calls the state model specified at the level of the asserted concept instance. If
none is found at that level, then TIBCO BusinessEvents searches upwards in the
concept hierarchy until it finds a state model of the specified name and it runs the
first one it finds. This call is similar to the behavior of a Java or C++ virtual function.

You can use a Call State Model node even if you do not have concept inheritance
relationship. In case of single concept, it does not matter if you check or uncheck the Call
Explicitly check box.

Example of Explicit Call

In the following figure, Concept AB represents a concept instance that has been asserted at
runtime. It inherits from Concept A. Concept ABC is another concept, lower in the
inheritance chain than concept AB.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

60 | State Modeler

Concept A defines Thelma, a main state model and Louise, a state model that is explicitly
called from the Thelma main state machine.

Note that Concept AB has no main state machine. It inherits the main state machine of
Concept A.

At runtime, TIBCO BusinessEvents starts the Thelma main state machine for Concept AB.
The Thelma state machine explicitly calls the Louise state machine defined for Concept A,
and so TIBCO BusinessEvents starts the Louise state machine that is defined for Concept A.

If the call to Louise had not been defined as an explicit call, TIBCO BusinessEvents would
have started the Louise state machine that was defined for Concept AB, because Concept
AB is the concept that was asserted, and because it has a state machine of the same name
as the one specified in the Thelma state machine.

Under no circumstances, however, would TIBCO BusinessEvents create an instance of
ABC.Louise because it is below the concept instance in the inheritance chain.

State Model Timeouts and State Timeouts
You can define timeouts at the state model level and for each of its states, except for the
start, end, and Call State Model nodes.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

61 | State Modeler

For the state machine, the timeout value specifies how long the state machine should wait
before it completes. A timeout has an expression and an action. Both the expression and
the action are defined using the TIBCO BusinessEvents rules language. See Defining
Timeouts for complete details.

Note: TIBCO BusinessEvents supports only positive integers or zero as timeout
values. It does not support negative numbers or decimal values.

The Timeout Period
A timeout expression specifies how long the state machine (or state) waits before it
completes.

The timeout expression must evaluate to a number of time units (the units are defined in
the timeout settings). If the time elapses before the state machine leaves the state, the
state times out and TIBCO BusinessEvents executes the timeout action.

You can define the timeout period using different units in each state in a state model.

State Timeout Scheduler Controls
The refreshAhead and pollInterval properties controls the internal scheduler that
manages state and state model timeouts.

The default value of the properties is 10000 ms. If you do not use default values, provide
the same value for both properties. If they are set to different values, TIBCO
BusinessEvents uses the higher value.

be.engine.cluster.smtimeout.refreshAhead

Time in milliseconds (into the future) used to pre-load the scheduled items from the
backing store.

be.engine.cluster.smtimeout.pollInterval

TIBCO BusinessEvents checks the scheduler cache every pollInterval milliseconds, for
scheduler work items whose timeout period expires in the current interval.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

62 | State Modeler

Runtime Behavior
At runtime, a state machine timeout timer starts when the state machine starts. The timer
is cancelled when the state machine completes.

The state machine times out irrespective of its state at run-time when the state machine
does not complete within the timeout period.

Similarly, a state timeout timer starts when the state machine enters the state. The timer is
canceled when the state machine leaves the state, using any transition, including a self
transition (in which the state machine exits and then re-enters the state).

The state times out when the state machine does not leave the state within the state
timeout period.

Note: A timeout expression that evaluates to zero (For example: return 0;)
means that the state model or state never times out.

Multiple Pending Timeouts
A state machine can have multiple pending timeouts. When the state machine exits an
enclosing state, it exits all the enclosed states too. So if the result of a composite state
timeout is to exit the state, then the state machine cancels all the enclosed timeouts (if
any).

The Timeout Action

If a state model or state times out, TIBCO BusinessEvents executes the timeout action,
defined using the TIBCO BusinessEvents rule language.

Once the state times out after the timeout expression, its timeout action gets executed,
and then the timeout choices get executed. These choices are current, all, or specified,
and are defined at design-time.

For the specified choice, you must also define what state to go to next in the event of a
timeout. These additional options are explained in State Model Timeouts and State
Timeouts.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

63 | State Modeler

State Timeout - Next State Choices
You can configure the Timeout Action setting for a state, which determines what state to
go to next in the event of a state timeout.

The choices for the next state are:

 l Current: Remain in the current state. The timeout action executes. The timeout
recurs. Entry and exit actions are ignored. However, the timeout period resets and it
is possible for the state keep timing out.

 l Specified: Go to the state specified in the Timeout State field. You can specify any
top-level end state and any state that has the same parent as the state you are
configuring.

 l All: If the state has multiple possible next states, you can select this option to have
TIBCO BusinessEvents prepare to go to any of the possible next states, that is, any
state that has an incoming transition from the current state. (Note that one possible
next state is the same state, if the original state transitions to itself.) See Timeout
State Choice for States with Multiple Next States for details.

Timeout State Choice for States with Multiple Next States

When you choose the All timeout state choice, the state machine places the concept in a
“pseudo state” consisting of all the possible next states, to indicate that it is not in the
original state. However, the state machine does not execute any entry actions for these
next states.

The next state is determined when something happens to determine which of the possible
next states should execute.

For example, suppose a state 1 times out to "All." Its possible next states are 1A and 1B. 1A
transitions to 1Aa and 1B transitions to 1Bb. The state machine waits until an outgoing
transition from either 1A or 1B is triggered. Suppose the outgoing transition from 1B is
triggered, then the state changes to 1Bb.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

64 | State Modeler

Note that in this case, none of the transition rules for the original state that timed out
execute. Instead only the transition from 1B to 1Bb executes. In effect the state machine
skips a state.

Locking (and Loading) in Timeouts
When TIBCO BusinessEvents uses Cache OM in a multi-agent or concurrent RTC application,
locking must be used to ensure data integrity. When cache-only cache mode is used, you
must also load concepts as needed.

For state transitions, locking and loading is handled in the normal way: the event that
triggers a transition has an event preprocessor, where the locking is set to protect the
concept from being modified by another action.

In multi-agent application, one inference agent at a time processes the timeout event of
state machines. Once the current agent is stopped, next agent in the cluster resumes the
processing.

To validate/confirm if an agent handles the state timeouts, enable JMX using the CDD
property be.engine.jmx.connector.port in the ProcessUnit tab, open JVisualVM or
JConsole and connect to the agent. Check for entry schedulers in the MBean com.tibco.be.
The entry is available only for the InferenceAgent which handles the StateTimeouts.

Timeouts, however, are essentially time events, and time events do not go through an
event preprocessor.

For this special case, therefore, you must implement locking (and loading as required) in a
different way. Use the function Cluster.registerStateMachineTimeoutCallback() to
register a rule function that acts as a preprocessor for state machine (and state) timeouts.
You would typically call Cluster.registerStateMachineTimeoutCallback() in a startup
function.

The signature is as follows:

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

65 | State Modeler

registerStateMachineTimeoutCallback(String entityURI, String
ruleFunctionURI)

Where the entityURI is the URI of the state machine concept, and the ruleFunctionURI is
the URI of the rule function that acts as a preprocessor.

See TIBCO BusinessEvents Architect’s Guide for details on this topic.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

66 | Working with State Modeler

Working with State Modeler
A state model consists of nodes (states and Call State Model nodes) and transitions.

You can search for nodes or transitions using a specialized search feature. See Searching
State Model Entities.

Nodes

A state model begins with one start state and ends with one or more end states.
Between the start and end states you can add any number of other nodes: simple,
composite, and concurrent states. Each state can have optional entry and exit actions.

Transitions

You connect the nodes with transitions, which can optionally depend on rules. You can
define a transition that has no rule. This is called a lambda transition. If you configure a
rule for a transition, the transition does not occur until the rule executes successfully.

Functions

The State Modeler includes its own set of functions, which are located in the Standard
function registry under Instance > StateMachine. See Functions in TIBCO BusinessEvents
Architect’s Guide and TIBCO BusinessEvents Developer’s Guide (and tooltips provided in
TIBCO BusinessEvents Studio).

Note: Like all concepts, concepts with state machines aren't automatically
deleted when their main state machines reach the end state. You must explicitly
delete concept instances in your rules, using Instance.deleteInstance().

Adding State Models
You can add complex states that allow you to nest nodes and transitions within them. You
can also add Call State Model nodes, which allow you to call other state models.

For a guide to the settings see State Model Resource Reference.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

67 | Working with State Modeler

Procedure
 1. Do one of the following:

 l Right-click the folder where you want to store the state model and select New >
 State Model. You see the New State Model Wizard. In the Owner Concept field,
specify the concept for this state model.

 l Right-click the concept that is to be the owner of this state model. You see the
New State Model Wizard. The Owner Concept field contains the path to the
concept you right-clicked.

You can change the owner of a state model after it is created.

 2. In the File Name field, type a name for the state model. In the Description field, type
a description (optional).

Note: You cannot change a new resource name in the editor after you click
Finish. However, you can change the description. You can use a refactor
operation to change the name later. (Right-click on the name in the
explorer panel, and select Refactor > Rename.)

 3. Click Finish. You see the state model editor, a diagram showing a start and an end
state.

 4. In the Owner Concept field, you can optionally change the owner concept for this
state model. Click Browse to select a concept.

 5. Check the Main check box if this is a main state model. Clear the Main check box if
this is not a main state model.

Result
What you do next depends on the nature of the state model you want to define, how you
prefer to work, and other actions you may want to do relating to the state model. See
Outlining a State Model for suggestions.

The Studio Explorer view shows the state model in the folder where you add it. Note that,
as a helpful reminder, the state model also appears as a child of the concept that owns it,
but shortcut menu options do not appear here.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

68 | Working with State Modeler

Removing and Changing State Model
Ownership
A state model must be owned by a concept in order to execute. Depending on your
ontology and rule logic, it may be possible to change the owner of a state model to
another concept.

Removing a State Model from Ownership of a
Concept
When you remove a state model from a concept, it becomes an orphan. You have the
option to delete it entirely.

Procedure
 1. Open the owning concept’s editor.

 2. In the Properties view, select the state model from the State Models list and click
Remove.

 3. Click Save.

Reassigning a State Model to a Different Concept
Assign a orphan state model to a different concept owner, if you want to execute the state
model.

Procedure
 1. Open the state model’s editor.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

69 | Working with State Modeler

 2. In the Properties view, under the General tab, and in the Owner Concept field,
browse to and select the desired concept.

If the text in the Owner Concept field is red, this indicates that the ownership is not
established, for example because the state model was removed from the concept, or
because the concept was deleted.

All occurrences of the previous owner concept in the Declaration field are replaced
by the new owner concept. Entries in the State Models lists of the two respective
concepts are adjusted automatically.

 3. Edit the state model rules as needed, to ensure that they will work correctly with the
new owner concept.

Outlining a State Model
Build a outline for the state model by adding the nodes you need and connecting them
with transitions. Then you can fill in the details by configuring each node and transition.

Procedure
 1. In TIBCO BusinessEvents Studio Explorer, double-click the state model name to open

it.

For instructions on adding a state model, see Adding State Models.

Add Nodes

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

70 | Working with State Modeler

 2. In the state modeler palette, select a type of state you want to add. Click in the
canvas one or more times as needed to drop instances of the state onto the canvas
or onto other states.

Note: The selected type of state in the palette remains only if the
preference for reset tool is unchecked.

You can drop simple states, composite states, concurrent states and Call State Model
nodes as follows:

 l Onto the canvas

 l Into a composite state

 l Into a region of a concurrent state

You can drop regions only into concurrent states. (If you drop a region outside
of a concurrent state, a blank virtual node appears. Delete this node.)

Connect Nodes with Transitions
 3. In the state modeler palette, select the transition icon and connect the states and

state boundaries as needed to define the desired flow.

 l To add a transition from a state or boundary to a state or boundary, click the
"from" state or boundary first, then the "to" state or boundary.

 l To add a self-transition, click the state or boundary, then click in an empty
canvas area, then click the state or boundary again.

See Guidelines for Adding Transitions for details about what you can and cannot
connect.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

71 | Working with State Modeler

 4. As needed, cut, copy and delete states and transitions to complete the outline. In
order to Cut, Copy, or Delete a node or transition perform the following steps:

 a. Right-click the node or transition and choose Cut, Copy, or Delete from the
options menu.

 b. Right-click again and select Paste to paste a node or transition you cut or
copied.

Note: Restrictions

A concurrent state must contain a minimum of two regions. You cannot
cut or delete a region from a concurrent state with only two regions.

You cannot cut, copy, or delete a start state.

You cannot copy a state from one state model to a different state model.

Configure the Details
 5. When you are finished adding nodes and connecting them with transitions, click the

Select arrow icon in the toolbar (or right-click in an empty part of the canvas). Select
each node and transition in turn and configure them. See the following for details:

 l Configuring Nodes

 l Configuring Transitions

Refine the Layout
 6. Use the diagram options as desired to lay out the state model diagram as desired for

viewing and sharing. See State Model Preferences.

Guidelines for Adding Transitions
You can connect one state to more than one other state, and you can connect to one state
from more than one other state.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

72 | Working with State Modeler

Note:
 l When connecting from one state to multiple other states, only one

transition will be taken when exiting from the state. (Use a concurrent
state if you want concurrent behavior).

 l TIBCO BusinessEvents Data Modeling does not allow transition between
any state and its parent state.

You can connect to or from the following:

 l Simple states

 l Called state models (Call State Model nodes)

 l Boundaries of concurrent states (but not to states or boundaries within them)

 l Boundaries of composite states

 l States and boundaries that lie within composite states (except states that are in a
nested concurrent state)

Note: A link can cross boundaries to connect nested states. When a link
crosses a boundary, the entry or exit actions for that boundary execute.

When you cross one or more boundaries to connect to or from a nested
state or boundary, all entry or exit actions belonging to all crossed
boundaries execute.

State Model Preferences
The State Model preferences are available from Windows > Preferences > TIBCO
BusinessEvents > Diagram > State Model.

Option Description

Fix node and edge
labels

If enabled, displays the lables for nodes and edges at fixed positions.
The users cannot move them manually.

Default: Enabled.

Reference to State Model Preferences

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

73 | Working with State Modeler

Option Description

Link Types Shows the links as straight lines or curved lines.

Default: Curved.

Grid Displays the grid as lines or points, or does not display grid at all.

Default: Lines.

Snap to grid If you move nodes in a diagram and the grid is shown, the nodes
snap to the grid lines if Snap to grid is enabled.

Default: Disabled.

Layout Quality Displays the layout in Draft, Medium or Proof quality.

Default: Draft.

Layout Style Defines if the layout will be Orthogonal or Hierarchical.

Default: Orthogonal.

Orientation Defines the general direction of the layout.

Options are: Top to Bottom, Bottom to Top, Left to Right, and Right
to Left.

Default: Top to Bottom

Orthogonal Fix Node
Sizes

This setting affects orientation behavior for the hierarchical layout
option only.

If enabled, node sizes do not change when you use the orientation
feature.

If disabled, orientation changes node sizes as needed for clarity.

Default: Disabled.

Undirected Layout Sets no orientation for the diagram.

Default: Disabled.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

74 | Working with State Modeler

Option Description

Link Routing: Fix
Node Sizes

This setting affects link routing behavior for all layout options except
hierarchical layouts.

If enabled, node sizes do not change when you use the link routing
feature.

If disabled, link routing changes node sizes as needed for clarity.

Default: Disabled.

Link Routing: Fix
Node Positions

This setting affects link routing behavior for all layout options.

If enabled, node positions do not change when you use the link
routing feature.

If disabled, link routing changes node positions as needed for clarity.

Default: Disabled.

Orthogonal or
Polyline

Defines if the routing will be orthogonal or polyline (normal)

Link
Routing:Orthogonal
Fix Node Sizes

This setting affects link routing behavior for the hierarchical layout
option only.

If enabled, node sizes do not change when you use the link routing
feature.

If disabled, link routing changes node sizes as needed for clarity.

Default: Disabled.

Configuring Nodes
Configure the state model and individual state properties to define action for each state or
call for the state model.

It is assumed that nodes and transitions are laid out on the canvas as explained in
Outlining a State Model.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

75 | Working with State Modeler

Configuring a State
All state configurations are done using tabs in the Properties view for the state.

Procedure
 1. In the diagram, select the state you want to configure.

 2. In the Properties view, under the General tab, add a name and description as
desired.

 3. Depending on the type of state also configure the following:

 l Start states and simple states can have an exit action; end states and simple
states can have an entry action. In the Entry Action or Exit Action tab, as
appropriate, use the TIBCO BusinessEvents rule language to define any actions
that will be performed when the state machine enters or leaves the state.

 l All states except start, end, and Call State Model nodes can have a timeout. See
Defining Timeouts for background details about timeouts for state models and
individual states.

See State Resource Reference for details on all state configuration options.

 4. In the Properties View, under the Extended tab, add (or remove) properties or
groups of properties.

 5. Click Save.

Configuring a Call State Model Node
The Call State Model resource allows you to call any state machine that is at the same level
or higher in the inheritance chain.

See Call State Model Resource Reference for more details.

Procedure
 1. In the diagram, select the state you want to configure.

 2. In the Properties view, under the General tab, add a name and description as
desired.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

76 | Working with State Modeler

 3. Select the Call Explicitly check box to make an explicit call. Clear the check box to
make a virtual call. See Call State Model Resource Reference for an explanation of
this setting.

 4. In the State Model Name field, browse to and select the state model that is called at
runtime.

Configuring Transitions
All transition configuration is done using tabs in the Properties view for the transition.

It assumes that nodes and transitions are laid out on the canvas as explained in Outlining a
State Model.

Tip: A red arrow indicates a transition with a rule that has errors.

Procedure
 1. In the diagram, select the transition you want to configure.

 2. In the Properties view select the General tab, add a name and description as
desired.

 3. Do one of the following:

 l If the transition occurs automatically, select the No Condition check box.
Configuration of this transition is complete.

 l If the transition occurs only when its associated rule executes, clear the No
Condition check box and continue to the next step.

 4. (If you did not check the No Condition check box.) Set a rule priority as desired.

At runtime, when this transition rule is added to the rule agenda for a conflict
resolution cycle, the priority determines its place in the order of execution.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

77 | Working with State Modeler

 5. Select the Rule tab and define the rule for this transition. Do any of the following as
appropriate:

 l If the rule requires multiple entities to be present in working memory before it
executes, add the entity or entities to the declaration section.

 l Define the conditions (if any) in the Conditions section.

 l In the Actions section define the actions (if any) that will occur when the rule
executes.

Defining Timeouts
You can define timeouts for the overall state model and each of its states.

See State Model Timeouts and State Timeouts for an explanation of timeouts.

Defining Timeout for a State Model
Define a simple number of time units or more complex expression as timeout for the State
Model in the Properties view.

Procedure
 1. In the TIBCO BusinessEvents Studio Explorer, double-click the state model you want

to work with.

 2. In the General tab Units field, specify the time units for the state model timeout
settings used in the timeout expression.

 3. In the Timeout Expression tab, use the rule editor to enter an expression that
defines the timeout period. The expression must resolve to a number of time units.

 l The default expression (return 0;) specifies that there is no timeout.

 l To define a specific timeout period, enter a positive value in the return
statement, instead of 0.

 l You can enter a more complex expression as needed, using the TIBCO
BusinessEvents rule language.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

78 | Working with State Modeler

 4. In the Timeout Action tab, use the rule editor to specify what is to happen if a
timeout occurs, again using the rule language. For example, an event may go out to
notify an employee of a problem, or to restock inventory and so on.

Defining Timeout for a State
Define the resulting state of a timeout and the actual timeout period using regular or
complex expressions.

Procedure
 1. In the TIBCO BusinessEvents Studio Explorer, double-click the state model you want

to work with and in the diagram, click the state whose timeout you want to
configure.

 2. Select the Timeout tab and select the units to use: Milliseconds, Seconds, Minutes,
Hours, Days, Weekdays, Weeks, Months. (This means you do not have to define units
in the timeout expression.)

 3. Select a Timeout State Choice value, to determine what state the machine goes to in
the event of a timeout:

 l Current: Stays in the same state. The timeout action executes. Entry and exit
actions are ignored. However, the timeout period resets and it is possible for the
state keep timing out.

 l All: for states with multiple next states only, you can select this option to have
TIBCO BusinessEvents prepare to go to any of the possible next states. For more
details on this option, see State Model Timeouts and State Timeouts.

 l Specified: In the Timeout State field, select the state to go to in the event of a
timeout.

Note: When you choose All or Current, the value of the Timeout State
field is grayed-out and is ignored. That field is used only for the
Specified option.

 4. In the Timeout Expression tab, enter an expression that evaluates to a number (that
is, a number of the time units you chose in the General tab).

 5. In the Timeout Action tab, use the TIBCO BusinessEvents rule language to add any
actions that will be performed when the state times out.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

79 | Working with State Modeler

Controlling the Start of a State Machine
By default, main state machines start when their associated concept instance is asserted.
You can also configure TIBCO BusinessEvents not to start a concept's main state machine
immediately after the concept is asserted.

Choose this mode by unchecking the concept’s Auto Start State Model checkbox. Note that
this setting applies to concepts, not state machines, even ones that are inherited.

See TIBCO BusinessEvents Developer’s Guide for more information on concept and rule
configuration settings.

Procedure
 1. Open the editor for the state model’s owner concept.

 2. In the Configuration section, clear the Auto Start State Model check box.

 3. Open the rule editor for all appropriate rules and rule functions, depending on your
project design, and add the following standard function:

 Instance.startStateMachine()

This function takes two parameters: the concept name (specified using its project
folder path), and a Boolean. The effect of the Boolean is as follows:

 l If set to true, then contained concepts’ main state machines are also started, if
not already started (or if the contained concepts’ main state machines also have
the Auto Start State Machine checkbox checked).

 l If set to false, then only the main state machine of the concept passed to the
function is started.

Searching State Model Entities
State models can become quite complex. You can search for specific states or transitions
using the State Modeler Search Entity feature. It enables you to search either state nodes
or transition edges in any one search.

Procedure

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

80 | Working with State Modeler

 1. Open the state model in the editor. In the toolbar, click the drop-down list beside the
Search Diagram Entities button, and select Search State Entity:

You see the following search dialog:

 2. Type a search string.

Search text persists in the drop-down list until you dismiss the dialog.

 3. Select how and where to search as desired:

 l To make the search case sensitive, select the Case Sensitive check box.

 l To search for a state, click the State button.

 l To search for a state transition, click the Transition button and then click the
Label or Name button to select whether to search by label or by name.

 4. Click Search.

If a match is found, the matching state or transition is selected and the diagram
centers on it.

State Model Resource Reference
State model resources are used to model the life cycle of a concept instance. Within a state
model resource you configure states and transitions and calls to other state models.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

81 | Working with State Modeler

General Tab
The General tab provides the generic information about the resource, such as, name,
description, and so on.

Field Global
Var?

Description

Name No The name to appear as the label for the
resource. Names follow Java variable naming
restrictions. Do not use any reserved words.
Names must be unique within a folder.

Description No Short description of the resource.

Owner
Concept

No The concept that owns this state model. Only
one concept can own a state model. The
owner concept can be changed as desired.

See Removing and Changing State Model
Ownership

Main No Select the check box if this is the main state
model for the owner concept.

The owner concept has a corresponding field,
Main State Model. To associate this concept
with a state machine, browse to and select the
main state machine.

Units No Time units to use for the timeout expression.

Possible values are: Milliseconds, Seconds,
Minutes, Hours, Days, Weekdays, Weeks,
Months.

Timeout Expression Tab
The Timeout Expression tab has a declaration section which references the owner concept.
You cannot add anything to the declaration. The concept alias cannot be changed.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

82 | Working with State Modeler

In the Timeout Expression tab Actions section, define the length of the timeout by entering
an expression that evaluates to a number (that is, a number of the time units you chose in
the General tab).

Timeout Action Tab
The Timeout Action tab has a declaration section which references the owner concept. You
cannot add anything to the declaration.

In the Timeout Action tab, use the TIBCO BusinessEvents rule language to add any actions
that will be performed when the state machine times out.

State Resource Reference
Simple, composite, and concurrent states, as well as regions within concurrent states have
the full set of tabs. Start and end states, and Call State Model resources have a subset as
noted.

See Types of States for a general description of each type of state: start and end, simple,
composite, concurrent.

General Tab
All types of states have a General tab which provides a name and short description about
the resource.

Field Global
Var?

Description

Name No The name to appear as the label for the
resource. Names follow Java variable naming
restrictions. Do not use any reserved words.
Names must be unique within a folder.

Description No Short description of the resource.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

83 | Working with State Modeler

Entry Action and Exit Action Tabs
Simple states, composite states, concurrent states, and regions within a concurrent state,
can each have an entry and exit action.

A start state can have an exit action. An end state can have an entry action. A state’s entry
action executes when the state model transitions into that state; its exit action executes
when the state model transitions out of the state.

Entry and exit actions execute even in the case of self transitions. Entry and exit actions
have a declaration section which references the owner concept. You cannot add anything
to the declaration. Entry and exit actions also have an Actions section, in which you use the
TIBCO BusinessEvents rule language to define the action.

Timeout Tab
Simple states, composite states, concurrent states, and regions within a concurrent state,
can each have a timeout, timeout expression and timeout action.

The Timeout tab has the following fields.

Field Global
Var?

Description

Units No The time unit used in the Timeout Expression
tab.

Possible values are: Milliseconds, Seconds,
Minutes, Hours, Days, Weekdays, Weeks,
Months.

Timeout
State Choice

No In the event of a timeout, this setting
determines the next state:

 l Current: Stays in the same state. The
timeout action executes. Entry and exit
actions are ignored. However, the
timeout period resets and it is possible
for the state keep timing out.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

84 | Working with State Modeler

Field Global
Var?

Description

 l All: for states with multiple next states
only, you can select this option to have
TIBCO BusinessEvents prepare to go to
any of the possible next states. For more
details on this option, see State Model
Timeouts and State Timeouts.

 l Specified: In the Timeout State field,
select the state to go to in the event of a
timeout.

Timeout
State

No If the Timeout State Choice is Specified, then
select the state to transition to in this field. In
the event of a timeout, the state machine
transitions to the specified state.

Timeout Expression Tab
Simple states, composite states, concurrent states, and regions within a concurrent state,
can each have a timeout, timeout expression and timeout action.

The Timeout Expression tab has a declaration section which references the owner concept.
You cannot add anything to the declaration.

In the Timeout Expression tab Actions section, you define the length of the timeout by
entering an expression that evaluates to a number (that is, a number of the time units you
chose in the Timeout tab).

Timeout Action Tab
The Timeout Action tab has a declaration section which references the owner concept. You
cannot add anything to the declaration.

In the Timeout Action tab, use the TIBCO BusinessEvents rule language to add any actions
that will be performed when the state times out.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

85 | Working with State Modeler

Call State Model Resource Reference
The Call State Model resource allows you to call any state machine that is at the same level
or higher in the inheritance chain.

Note: The state machine of a concept cannot call the state machine of a
concept that is lower in the inheritance chain, and you cannot call a state
machine recursively. That is, you cannot call a state machine from within itself
either directly or indirectly.

Field Global
Var?

Description

Name No The name to appear as the label for the
resource. Names follow Java variable naming
restrictions. Do not use any reserved words.
Names must be unique within a folder.

Description No Short description of the resource.

Call Explicitly No If checked, the call is an explicit call.

If unchecked, the call is a virtual call.

At design time, you may have concepts in the
same inheritance chain that include same-
named state machines. The Call Explicitly
check box allows you to select the state
machine you need.

With the Call Explicitly check box unchecked,
the call is similar to a Java or C++ virtual
function call.

See Call State Machine Resource for a more
detailed explanation.

State Model
Name

 The name of the state model that is called at
runtime.

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

86 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than
any other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO BusinessEvents®
Enterprise Edition Product Documentation page:

 l TIBCO BusinessEvents® Release Notes

 l TIBCO BusinessEvents® Installation

 l TIBCO BusinessEvents® Getting Started

 l TIBCO BusinessEvents® Architect's Guide

 l TIBCO BusinessEvents® Administration

 l TIBCO BusinessEvents® Developer's Guide

 l TIBCO BusinessEvents® Configuration Guide

 l TIBCO BusinessEvents® Migration Guide

 l TIBCO BusinessEvents® Data Modeling Developer's Guide

 l TIBCO BusinessEvents® Decision Manager User's Guide

 l TIBCO BusinessEvents® WebStudio User's Guide

 l TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

 l TIBCO BusinessEvents® Event Stream Processing Query Developer's Guide

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-businessevents-enterprise-edition
https://docs.tibco.com/products/tibco-businessevents-enterprise-edition

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

87 | TIBCO Documentation and Support Services

 l TIBCO BusinessEvents® Security Guide

 l Online References:

 o TIBCO BusinessEvents® Java API Reference

 o TIBCO BusinessEvents® Functions Reference

To directly access documentation for this product, double-click the file at the following
location:

TIBCO_HOME/release_notes/TIB_businessevents-enterprise_6.2.2_docinfo.html

where TIBCO_HOME is the top-level directory in which TIBCO products are installed. On
Windows, the default TIBCO_HOME is C:\tibco. On UNIX systems, the default TIBCO_HOME
is /opt/tibco.

Other TIBCO Product Documentation

When working with TIBCO BusinessEvents Enterprise Edition, you may find it useful to read
the documentation of the following TIBCO products:

 l TIBCO ActiveSpaces®: It is used as the cluster, cache, or store provider for the
TIBCO BusinessEvents Enterprise Edition project.

 l TIBCO FTL®: It is used as the cluster provider for the TIBCO BusinessEvents Enterprise
Edition project.

 l TIBCO Streaming®: It is used as the metrics store provider for the
TIBCO BusinessEvents Enterprise Edition project.

How to Access Related Third-Party Documentation

When working with TIBCO BusinessEvents® Enterprise Edition, you may find it useful to
read the documentation of the following third-party products:

 l Apache Ignite

 l Apache Cassandra

 l Grafana

 l InfluxDB

 l OpenTelemetry

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

88 | TIBCO Documentation and Support Services

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

 l For accessing the Support Knowledge Base and getting personalized content about
products you are interested in, visit the TIBCO Support website.

 l For creating a Support case, you must have a valid maintenance or support contract
with TIBCO. You also need a user name and password to log in to TIBCO Support
website. If you do not have a user name, you can request one by clicking Register on
the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

http://www.tibco.com/services/support
http://www.tibco.com/services/support
http://www.tibco.com/services/support
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

89 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT,
OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT
WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR
CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF
THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE
SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix, ActiveMatrix BusinessWorks, ActiveSpaces,
TIBCO Administrator, TIBCO BusinessEvents, TIBCO Designer, Enterprise Message Service, TERR,
TIBCO FTL, Hawk, TIBCO LiveView, TIBCO Runtime Agent, Rendezvous, Statistica, and StreamBase are
either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other
countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.

https://scripts.sil.org/OFL

TIBCO BusinessEvents® Enterprise Edition Data Modeling Developer's Guide

90 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY
TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Database Concepts Overview
	Table Constraints and Concept Relationships
	Prerequisites for Importing Database Tables or Views
	Importing Database Tables or Views With the DB Import Utility
	Importing Selected Database Tables
	Importing Domain Model Information from a Database Concept

	Configuring Database Concepts
	Configuring Database Concepts Metadata Properties
	Metadata Properties Reference
	Configuring the Database Connection
	Database Connection Configuration Reference
	Setting the Object Management Mode of a Database Concept
	Enabling or Disabling Database Concepts in a Processing Unit

	RDBMS Catalog Functions
	The setCurrentConnection and unsetConnection Functions
	Transactions
	Insert Operations
	Using Generated Unique Primary Keys for Inserts

	Update and Delete Operations
	update()
	delete()

	Query Operations
	queryUsingConceptProps()
	queryUsingPreparedStmt()
	queryUsingPrimaryKeys()
	queryUsingSQL()

	Database Concept Assertion After Database Query
	Prepared Statements
	Database Cursor Functions
	createQuery()
	getNextPage() and getPreviousPage()
	getNextPageFromOffset() and getPreviousPageFromOffset()
	closeQuery()

	Oracle Catalog Functions
	State Modeler
	State Modeler Functions
	State Models and Concepts
	State Models and Rules
	State Machines at Runtime
	Types of States
	Adding Regions in a Concurrent State
	Transitions
	Call State Machine Resource
	State Model Timeouts and State Timeouts
	The Timeout Period
	State Timeout Scheduler Controls
	Runtime Behavior
	Multiple Pending Timeouts
	State Timeout - Next State Choices
	Locking (and Loading) in Timeouts

	Working with State Modeler
	Adding State Models
	Removing and Changing State Model Ownership
	Removing a State Model from Ownership of a Concept
	Reassigning a State Model to a Different Concept

	Outlining a State Model
	Guidelines for Adding Transitions
	State Model Preferences
	Configuring Nodes
	Configuring a State
	Configuring a Call State Model Node

	Configuring Transitions
	Defining Timeouts
	Defining Timeout for a State Model
	Defining Timeout for a State

	Controlling the Start of a State Machine
	Searching State Model Entities
	State Model Resource Reference
	General Tab
	Timeout Expression Tab
	Timeout Action Tab

	State Resource Reference
	General Tab
	Entry Action and Exit Action Tabs
	Timeout Tab
	Timeout Expression Tab
	Timeout Action Tab

	Call State Model Resource Reference

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

