
TIBCO BusinessEvents® Enterprise
Edition
Event Stream Processing Pattern
Matching Developers Guide
Version 6.2.2
June 2022

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

2 | Contents

Contents
Contents 2

Pattern Matcher Feature Overview 3
Comparison of Pattern Matcher and Other Components 4

Pattern Matching Functions in a Project 6

Success and Failure Listeners (Callback Functions) 10
Function Documentation 11

Advanced Listeners 11

Listener Required Signature 11

Pattern Matching Examples 13

Pattern Matcher Grammar 15
Define Pattern Clause 18

Using Clause 18

With Clause 19

Correlation or Subscription Value 19

With Clause and the Correlation Property 20

Correlation and Exact Match 21

Starts With Clause 23

Clauses for Explicit Temporal Constructs 26

TIBCO Documentation and Support Services 27

Legal and Third-Party Notices 30

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

3 | Pattern Matcher Feature Overview

Pattern Matcher Feature Overview
The Pattern Matcher add-on provide pattern-matching functionality, complementing TIBCO
BusinessEvents rule processing and query processing features. Pattern Matcher consists of
an easy-to-use language and a service that runs in a TIBCO BusinessEvents agent.

It addresses some of the simpler and more commonly occurring problems in complex
event processing such as:

 l Patterns in event streams

 l Correlation across event streams

 l Temporal (time-based) event sequence recognition

 l Duplicate event suppression

 l Implementation of "Store and Forward" scenarios

Unlike rules or continuous queries, Pattern Matcher helps you to specify and identify the
temporal order of event arrival.

The Pattern Matcher functionality can be used with any object management type. Its
functionality is not dependent on or related to the object management layer.

The Pattern Matcher component listens to events that are explicitly sent to the service. It
does not discover new patterns; given the patterns you define, it identifies those patterns
in the event stream, returning valuable information you can make use of in your TIBCO
BusinessEvents projects.

The pattern matcher service is not cluster aware. It operates within the scope of an agent.
Keep this in mind when designing patterns. For example, in a multi-engine deployment, do
not attempt to correlate events that may be received from a queue by different instances
of an agent.

Components of Pattern Matcher

Pattern Matcher has two parts:

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

4 | Pattern Matcher Feature Overview

Pattern Description Language

The pattern description language is a straight-forward English-like language with
similarities to SQL and regular expression languages. Within a simple syntax, however,
you can specify complex patterns using nesting and various temporal constructs. You
can also templatize patterns using bind variables. See Pattern Matcher Grammar for
details.

Catalog Functions

Catalog functions for design time and deploy time enable you to dynamically deploy
and undeploy patterns, specify values for bind variables, and specify success and failure
listeners (callback functions) to take follow-on action. You can also start and stop the
pattern matcher service, though typically it is started and stopped when the TIBCO
BusinessEvents engine itself starts and stops. See Pattern Matching Functions in a
Project for details.

Comparison of Pattern Matcher and Other
Components
Each component of Pattern Matcher has different use for different situation.

The following table shows some of the key features provided by Pattern Matcher, rules and
state machines, and continuous queries. It enables you to decide which component to use
for a given situation.

Pattern Matcher Rules, State Machines Continuous Queries

Specify and identify event
arrival sequence and
temporal order

Recognize patterns Drive business logic Continuous computation
over one or more streams of
events

Correlate across streams Specify join conditions Query join

Comparison of Pattern Matcher and Other Components

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

5 | Pattern Matcher Feature Overview

Pattern Matcher Rules, State Machines Continuous Queries

Dynamic deployment

Templatized patterns

Complex patterns with sub-
patterns

Nested states

 High availability and fault
tolerance

Like primitive state
machines

State transitions offer rich
and powerful syntax

 Windowing constructs

 Incremental aggregates,
sorting, and joins

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

6 | Pattern Matching Functions in a Project

Pattern Matching Functions in a Project
Patterns can be deployed and undeployed dynamically in any agent that receives events
such as a query agent or inference agent.

In a startup rule function you can start the service. You can also create, register,
instantiate, configure, and deploy a pattern. In a shutdown rule function you can undeploy
a pattern (which also unregisters the pattern). However you can perform these operations
in different parts of your code, depending on the need.

See the online function reference in the HTML documentation for a list of functions.

Note: Each agent has a separate instance of the pattern service. The patterns
are not distributed. They are not cluster-aware.

Start the Pattern Matcher Service

In a startup rule function, start the pattern service, so it’s running when the engine starts:

Pattern.Service.start();

You can start the Pattern Matcher service at any time after the processing unit starts. You
can stop it any time before the processing unit stops. However it is generally advisable to
start it in a startup rule function and stop the service in a shutdown rule function.

Send Events to the Service

You must send events to the service explicitly, for example in a rule that executes when the
event is asserted. The actions (then block) would contain the following:

Pattern.IO.toPattern(MyEvent);

The pattern service automatically routes events of the specified type to all subscribing
patterns that have been deployed in the agent.

You can invoke this call anywhere in the context of an agent, for example in a rule.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

7 | Pattern Matching Functions in a Project

This call returns immediately because the actual work of routing to the pattern instances
and the processing is done by other threads.

Create the Pattern String

The name of this String (MyPatternString) in the example) must be unique within the
service. For example:

String MyPatternString = "define pattern /My/Pattern/URI \n" +
 " using /Ontology/EventA as a \n" +
 " and /Ontology/EventB as b \n" +
 " and /Ontology/EventC as c \n" +
 " with a.name and b.name and c.text = $ParamName \n" +
 " starts with a then b then c";

The value for bind variable $ParamName is provided in the
Pattern.Manager.SetParameterString() function (see Instantiate the Pattern Instance).

Register the Pattern

Register the pattern string and get the pattern URI, which must be unique:

String MyPatternURI = Pattern.Manager.register(MyPatternString);

The pattern URI is any unique string. You can use slashes or dashes or simple text
depending on how you want to organize the patterns using meaningful names. If the URI
contains spaces, wrap the whole URI in double quotes ("my name")

The pattern URI is also used to unregister the pattern.

Instantiate the Pattern Instance

Instantiate the pattern instance and set any bind variable values. You can instantiate a
registered pattern multiple times, using a different instance name in each case and, as
needed, different values for the pattern variables.

Object MyPatternInstance = Pattern.Manager.instantiate(MyPatternURI);
 Pattern.Manager.setParameterString(MyPatternInstance, "ParamName",
"ParamValue");

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

8 | Pattern Matching Functions in a Project

Set the Closure

The closure distinguishes one pattern instance from another:

 Pattern.Manager.setClosure(MyPatternInstance, "This is
MyPatternInstance");

The closure for a pattern is used by listeners (callback functions), to distinguish one
instantiated pattern instance from another.

Set the Listeners

Set the completion (success) listener and failure listener. See Success and Failure Listeners
(Callback Functions) for more on these callback functions.

 Pattern.Manager.setCompletionListener(MyPatternInstance,
 "/RuleFunctions/MyPatternSuccess");
 Pattern.Manager.setFailureListener(MyPatternInstance,
 "/RuleFunctions/PatternSc2Failure");

Deploy the Pattern Instance

Pattern.Manager.deploy(MyPatternInstance,
"DeployedPatternInstanceName");

The instance name is used to undeploy the instance.

Undeploy and Unregister a Pattern

Before shutting down the service undeploy and unregister the patterns.

Pattern.Manager.undeploy("MyPatternInstance");
 Pattern.Manager.unregister("MyPatternURI");

Stop the Pattern Service

You can stop the Pattern Matcher service at any time before the processing unit stops (and
you can also start it again) depending on need. It is generally advisable to stop the service
in a shutdown rule function so that the service stops before the processing unit itself stops.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

9 | Pattern Matching Functions in a Project

Pattern.Service.stop();

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

10 | Success and Failure Listeners (Callback Functions)

Success and Failure Listeners (Callback
Functions)
For each instantiated and deployed pattern instance, you configure two callback rule
functions. One acts as a success listener and the other as a failure listener.

Note: Do not perform time-consuming operations in a listener. A listener should
return control quickly to ensure efficient functioning of the pattern service.

The listeners execute every time a pattern succeeds or fails.

On successful completion of a pattern the service invokes the success listener. If the
pattern fails because of a timeout or elements of the pattern arriving out of order, then it
invokes the failure listener.

Success and failure listeners have the same arguments. Advanced listeners have an
additional argument.

Functions that Cannot be Used in Listeners

Functions that read, modify, or delete concepts and events, such as
Instance.deleteInstance(), cannot be used in the callback functions that you use as
listeners. These functions must execute in the context of a run to completion cycle (RTC).
They cannot be used in success or failure listeners, which run in a different thread. (See the
functions documentation for details on thread pool management functions such as the
Pattern.Manager.Advanced.setPoolSize() function.)

In order to use functions that execute in the context of an RTC, create a rule that executes
the functions, and create an event with all the necessary information. Send the event using
Pattern.IO.toDestination(), preferably on a local channel. The event is asserted in an
RTC and triggers the rule, which executes the desired functions.

Tip: TIBCO BusinessEventsFunctions that are valid in the query engine are also
valid in the pattern engine.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

11 | Success and Failure Listeners (Callback Functions)

Function Documentation
For all function documentation, see the tooltips in the function catalog view in TIBCO
BusinessEvents Studio. Tooltip text is also available in the online references available in
the HTML documentation. Expand to CEP Pattern > Pattern in the function catalog.

Advanced Listeners
Advanced listeners (callback functions) can provide some insight into the events that
triggered the pattern. Advanced listeners have an opaque object but otherwise the
signature is the same as the simple listener.

The opaque object contains information about the events in the pattern set. Various
provided functions enable you to get information from the object, for example,
Pattern.Advanced.getEventIds(opaque).

Listener Required Signature
Simple listeners (callback functions) must have a signature with the parameter types
except the opaque parameter. The advanced listener also uses the opaque parameter.

See Pattern Matching Functions in a Project to understand how these parameter values are
created.

Parameter Notes

String patternDefURI Identifies the URI of the registered pattern definition.

String
patternInstanceName

The name of the instantiated pattern instance.

This name enables you to identify data belonging to different
instantiations of the registered pattern definitions.

Object correlationId This ID is derived from the first correlation property for each
pattern set. The success or failure rule function is executed
once for each set.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

12 | Success and Failure Listeners (Callback Functions)

Parameter Notes

Object closure Closure object provided when executing the
Pattern.Manager.setClosure() function.

The closure for a pattern is used to distinguish one
instantiated pattern instance from another, generally used in
completion and failure listeners.

Object opaque Provides some insight into the events that triggered the
pattern, using provided catalog functions.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

13 | Pattern Matching Examples

Pattern Matching Examples
Some pattern matching example helps to understand pattern matching better.

Simple Correlation

Collects Order and Fulfillment events based on their Customer IDs.

define pattern /OrderTracker
 using /Order as order and /Fulfillment as fulfillment
 with order.customerId and fulfillment.customerId
 starts with order then fulfillment

Simple Temporal Correlation

Collects Order and Fulfillment events based on their Customer IDs such that Fulfillment
occurs within 10 minutes of placing the order.

define pattern /OrderFullfilmentSLA
 using /Order as order and /Fulfillment as fulfillment
 with order.customerId and fulfillment.customerId
 starts with order then within 10 minutes fulfillment

A pattern instance is created when the Order event arrives. If a corresponding Fulfillment
event does not follow within 10 minutes of the Order event, then the Failure listener is
triggered. If the event does arrive on time, then the Success listener is invoked.

Duplicate Suppression – Store and Forward

Collects related events of the same type that share the same correlation ID.

define pattern /ShipmentAggregator
 using /Shipment as shipment
 with shipment.destinationState
 starts with shipment
 then within 2 hours repeat 0 to 49 times shipment

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

14 | Pattern Matching Examples

This pattern aggregates at most 50 Shipment events within a span of two hours. it uses the
event's destinationState as the correlation property. When the first shipment event
arrives, the pattern instance is created. Then the timer starts and the pattern instance
waits for two hours, accumulating a maximum of 49 more shipment events.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

15 | Pattern Matcher Grammar

Pattern Matcher Grammar
A pattern string has four main clauses: define pattern, using, with, and starts with clause.
These clauses define the patterns that need to be identified with specified streams.

The following figure displays the process flow of the four different clauses:

Syntax Example

The following is a simple example to illustrate the four clauses of a pattern. This example
checks for an incorrect order of events in an order fulfillment and shipping flow.

define pattern /OrderTracker
 using /Order as order and /Fulfillment as fulfillment and /Shipment as
shipment
 with
 order.customerId
 and fulfillment.customerId
 and shipment.customerId
 starts with order
 then fulfillment
 then shipment

The example demonstrates how Pattern Matcher correlates events across three different
event streams. The pattern listens to all three streams (Order, Fulfillment and Shipment).

A pattern listens only to events that are sent to the Pattern Matcher service. See Send
Events to the Service.

Syntax Diagrams

The syntax diagrams show the structure of a pattern and of each clause in a pattern.

Read the syntax diagrams from left to right. Items above or below a main line are optional.
Items that can repeat are shown by lines that loop back from the end to the beginning of
the repeating section, along with the separator character or word if one is required.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

16 | Pattern Matcher Grammar

alias Alias for an event in the pattern.

identifier A string that represents the name of a pattern or the URI of an entity.
Identifiers

time unit Allowable time units are as follows:

milliseconds, seconds, minutes, hours, days

Miscellaneous Terms Used in Pattern Matcher Syntax Diagrams

Names
 l Pattern names (URIs) and event name can be any character inside double quotes,

except double quote itself. Pattern URI needs quotes only if there is a space in the
URI.

 l Field and property names must be valid Java identifiers.

 l Each alias must be globally unique in the whole pattern.

 l To escape a keyword, use the pound sign (# — also known as a hash sign) before the
keyword, for example, #define.

 l Alias name, field name, property name, subscription field and bind variables can be
use any of the following:

 o alphanumeric

 o digit

 o underscore ('_')

 o slash ('/')

 o Escaped keywords.

Bind Variables

Variables begin with the dollar sign ($). The value is provided at deploy time. See Create
the Pattern String.

You cannot use bind variables with the datetime() or date() functions. For example, it is
not possible to use this type of call:

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

17 | Pattern Matcher Grammar

$datetime($year,$day,$month,....)

You can, however, use bind variables using the following function:

Pattern.Manager.setParameterDateTime()

For example:

Pattern.Manager.setParameterDateTime(patternSc14, "javaUtilDate", date);

Not (Negation) Scenarios

Although the language has no explicit operator for Negation or Not, negative scenarios can
be implemented in other ways such as:

 l Subscribe to the event type on which is not expected to occur.

 l Do not describe it in the pattern.

So, when the undesired event does occur due to the subscription, the pattern instance will
fail. The following pattern example demonstrates a negation scenario:

define pattern OrderFullfilment
 using Order as order and Fulfillment as fulfillment and Cancellation as
cancellation
 where
 order.customerId
 and fulfillment.customerId
 and cancellation.customerId
 starts with order
 then within 10 minutes fulfillment
 then after 5 minutes

This pattern subscribes to Cancellation events but does not use them in the pattern. After
the Order and the Fulfillment events arrive within the times specified, the pattern waits for
another five minutes, during which it does not expect any input. If during this or any other
time the Cancellation event occurs, then the pattern fails.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

18 | Pattern Matcher Grammar

Define Pattern Clause
The Define Pattern clause specifies a unique URI for the pattern.

The URI is used as a parameter in various catalog functions provided with the component.

Examples

You can use any format that is useful to you in helping to identify the pattern. If you use
spaces, use double-quotation marks around the URI:

define pattern /Patterns/PatternA
 define pattern "/My Ontology/My Patterns/PatternA"

Using Clause
The using clause specifies one or more event types to subscribe to in the pattern, and an
alias for each. One says that the pattern subscribes to these events.

Use and to separate each event type.

Examples

using /Ontology/EventA as a and /Ontology/EventB as b
 using "/My Ontology/My Patterns/EventA" as a
 and "/My Ontology/My Patterns/EventB" as b

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

19 | Pattern Matcher Grammar

With Clause
In the with clause of a pattern, you specify a property for each event in the using clause.
You cannot use the event payload. Each event type can have one such property defined.
The property or properties are used for correlations and subscriptions.

Optionally you can specify an exact match with a property value on the second or
subsequent events listed in this clause. The specified property value must not match the
value of any other property value in the pattern. Use and to separate each property.

The match is successful only if each event instance that arrives in the Pattern Matcher
service occurs in the order specified in the starts with clause.

The first term in the with clause must use correlation. For details on this topic, see With
Clause and the Correlation Property for details.

Examples

with a.id and b.id
 with a.id and b.id = "some string"

Correlation or Subscription Value
The subscriptionvar item specifies the correlation or subscription value.

The value can be one of the following:

 l datevar

 l datetimevar

 l stringvar

 l booleanvar

 l longvar

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

20 | Pattern Matcher Grammar

 l floatvar

 l doublevar

 l bindvar

The syntax for datevar and datetimevar are as follows:

$date(year,month,day,[,GMT offset])
 $datetime(year,month,day,hour,minute,second,millisecond[,GMT offset])

Note that the $date() and $datetime() functions have an optional GMT timezone offset.
This timezone offset is expressed as a plus sign (+) or a negative sign (-) followed by four
digits, within double quotes. For example, to specify GMT minus eight hours and 30
minutes, use "-0830" As another example, use "+0200" to specify GMT plus 2 hours.

With Clause and the Correlation Property
The first term in a with clause must be a correlation property. It is also sometimes referred
to as the subscription property.

Specify a property that will uniquely identify the event or related events. Instances of all
the event types in the pattern that are being correlated must have the same property value
for the correlation to succeed. For example if the correlation is a.name and b.name then
the correlation succeeds if the value of name is Joe in both cases.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

21 | Pattern Matcher Grammar

Note: Fields that can have null values cannot be used as correlation properties.
Such fields are ignored.

Each instance of a pattern has an ID which is derived from this correlation property's value.
If multiple pattern instances exist simultaneously, the property values must be unique per
pattern instance.

For example:

with order.customerId and shipment.customerId

In the above example, order and shipment events that share the same customerId will be
correlated.

Here is an example of simple correlation:

with a.id and b.id

In the above case, the pattern succeeds when the following occurs:

 l The value of the id property in an instance of event type b matches the value of the
id property in an instance of event type a.

 l And the order in which these two events arrives matches the order specified in the
starts with... then... clauses.

You can use correlation with one event type. In this case the starts with... then...
clauses specify the temporal conditions that instances of that event must meet.

Correlation and Exact Match
You can use one or more exact matches in your pattern. To use an exact match, specify a
property and an exact value for that property.

In the following example, only the order event with the specified customerId property
value will be processed.

order.customerId = "123-ABC-456"

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

22 | Pattern Matcher Grammar

A pattern cannot begin with an exact match; a correlation is required as the first element in
the clause.

Note: If the first item in the then subclause of the starts with clause is one of
the following:

then any one
 then all

Then all events in that sequence must use correlation.

Example

To illustrate how exact matches are used, consider the following simple example. Orders
are placed and processed for shipment, then they sit on the loading bay, waiting for the
next delivery truck. If the truck does not pick up the orders within two hours, customer
service is alerted.

define pattern /OrderShipper
 using /Order as order and /orderProcessed as processed and /deliveryvan
as van
 with
 order.customerId
 and processed.customerId
 and van.pickupStatus=Ready
 starts with order
 then processed
 then within 2 hours van

The pattern is deployed and the Pattern Matcher service starts listening to the events that
are sent to it. It puts sets of events that satisfy all the aspects of the pattern into "buckets."
At a certain point in time, it has the following "buckets":

 l order.customerId=123, processed.customerId=123

 l order.customerId=456, processed.customerId=456

 l order.customerId=789

Then a truck arrives and the loading bay staff enters its status. A deliveryvan event is sent
with status=ready.

The Pattern Matcher updates all of its "buckets" for this pattern accordingly:

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

23 | Pattern Matcher Grammar

 l order.customerId=123, processed.customerId=123, van.pickupStatus=ready

 l order.customerId=456, processed.customerId=456, van.pickupStatus=ready

The above pattern instances succeed and the success rule function executes for each of the
instances.

The bucket that contained only order.customerId=789 fails, and the failure rule function
pattern executes.

You might feel that the incomplete "bucket" with order.customerId=789 should just wait
for its corresponding event, processed.customerId=789 and be delivered on a later truck.
If that is the case you must write a different pattern. This simple example only illustrates
how the Pattern Matcher service processes a pattern that contains a correlation and an
exact match.

You can specify an exact match in many ways, such as the following:

a.id = "some string"
 a.id = 10
 a.id = 10.0
 a.id = 0.1d
 a.id = 333333L
 a.id = 333333l
 a.id = false
 a.id = False
 a.id = $param1
 a.id = $date(2009, 12, 25)
 a.id = $dateTime(2009, 12, 25, 9, 48, 37, 0)
 a.id = $javaUtilDate

Parameter values are provided at deploy-time.

Starts With Clause
A pattern describes a sequence of events, beginning with the starts with event, followed
by each then event, in the order specified. The starts with clause is where the actual
event sequence or pattern is described. For the pattern to succeed, all the events must be
received according to the specified order (and any additional time constraints).

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

24 | Pattern Matcher Grammar

Only events listed in the using clause can be used. You specify the event sequence or
pattern using the event aliases, to indicate the absence or occurrence of events in the
sequence. Use then as the conjunction, for example:

starts with a then b then c

In the simplest case, the order in which the events must occur is signified by the order in
which they are specified in the clause. However you can specify the ordering in a variety of
ways. You can create sub-clauses and sub-patterns to describe constraints such as the
number of event occurrences and the interval between them. To indicate a sub-pattern,
wrap the event sequence in parentheses: (sub-pattern).

Bind variables begin with the dollar sign ($). The value is provided at deploy time. See
Create the Pattern String.

Items Syntax

Then Syntax

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

25 | Pattern Matcher Grammar

Alias List Syntax

Sub-pattern Syntax

Starts With Sub-clause Examples

starts with a
 starts with a then b
 starts with a then any one (a, b) then all (a, b)
 starts with a then ((a then b))
 starts with a then within 10 milliseconds | seconds | minutes | hours |
days b
 starts with a then repeat 10 to 20 times a
 starts with a then repeat $intParam2 to $intParam3 times b
 starts with a then after $longParam minutes
 starts with a then all ((a then b), b)

Then Sub-clause Examples

then any one (a, b)
 then all (a, b)
 then within 10 milliseconds
 then repeat 10 to 20 times a
 then repeat $intParam2 to $intParam3 times b
 then after $longParam minutes
 then all ((a then b), b)

As shown in the example, a nested sub-pattern is surrounded by parentheses.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

26 | Pattern Matcher Grammar

Clauses for Explicit Temporal Constructs
The pattern grammar implicitly describes a sequence of events: there is an implicit time
component in each pattern. In addition three constructs enforce explicit time-based
restrictions on a sequence: within, during, and after. You can use these constructs to
enforce stricter time-based constraints on a sequence:

Within

The within construct ensures that all the events described inside the within clause occur
within the time span specified. The timer starts as soon as the event preceding this sub-
pattern arrives.

As soon as all the events in the sub-pattern occur in the correct sequence, the pattern
instance moves to the next step after the within clause.

During

Like within, the during construct ensures that all the events described inside the during
clause occur within the time span specified. The timer starts as soon as the event
preceding this sub-pattern arrives.

The pattern remains in the during sub-pattern until the timer has expired, even if all the
events in the sub-pattern occur in the correct sequence before that time. (This behavior is
the difference between occurs within and occurs during.)

After

The after construct simply specifies a time period to wait before accepting the next event.
It does not accept any event or sub-pattern. The timer starts as soon as the event
preceding this sub-pattern arrives.

Use this construct to model event sequences where there is no activity for certain fixed
periods of time.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

27 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than
any other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO BusinessEvents®
Enterprise Edition Product Documentation page:

 l TIBCO BusinessEvents® Release Notes

 l TIBCO BusinessEvents® Installation

 l TIBCO BusinessEvents® Getting Started

 l TIBCO BusinessEvents® Architect's Guide

 l TIBCO BusinessEvents® Administration

 l TIBCO BusinessEvents® Developer's Guide

 l TIBCO BusinessEvents® Configuration Guide

 l TIBCO BusinessEvents® Migration Guide

 l TIBCO BusinessEvents® Data Modeling Developer's Guide

 l TIBCO BusinessEvents® Decision Manager User's Guide

 l TIBCO BusinessEvents® WebStudio User's Guide

 l TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

 l TIBCO BusinessEvents® Event Stream Processing Query Developer's Guide

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-businessevents-enterprise-edition
https://docs.tibco.com/products/tibco-businessevents-enterprise-edition

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

28 | TIBCO Documentation and Support Services

 l TIBCO BusinessEvents® Security Guide

 l Online References:

 o TIBCO BusinessEvents® Java API Reference

 o TIBCO BusinessEvents® Functions Reference

To directly access documentation for this product, double-click the file at the following
location:

TIBCO_HOME/release_notes/TIB_businessevents-enterprise_6.2.2_docinfo.html

where TIBCO_HOME is the top-level directory in which TIBCO products are installed. On
Windows, the default TIBCO_HOME is C:\tibco. On UNIX systems, the default TIBCO_HOME
is /opt/tibco.

Other TIBCO Product Documentation

When working with TIBCO BusinessEvents Enterprise Edition, you may find it useful to read
the documentation of the following TIBCO products:

 l TIBCO ActiveSpaces®: It is used as the cluster, cache, or store provider for the
TIBCO BusinessEvents Enterprise Edition project.

 l TIBCO FTL®: It is used as the cluster provider for the TIBCO BusinessEvents Enterprise
Edition project.

 l TIBCO Streaming®: It is used as the metrics store provider for the
TIBCO BusinessEvents Enterprise Edition project.

How to Access Related Third-Party Documentation

When working with TIBCO BusinessEvents® Enterprise Edition, you may find it useful to
read the documentation of the following third-party products:

 l Apache Ignite

 l Apache Cassandra

 l Grafana

 l InfluxDB

 l OpenTelemetry

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

29 | TIBCO Documentation and Support Services

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

 l For accessing the Support Knowledge Base and getting personalized content about
products you are interested in, visit the TIBCO Support website.

 l For creating a Support case, you must have a valid maintenance or support contract
with TIBCO. You also need a user name and password to log in to TIBCO Support
website. If you do not have a user name, you can request one by clicking Register on
the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

http://www.tibco.com/services/support
http://www.tibco.com/services/support
http://www.tibco.com/services/support
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

30 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT,
OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT
WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR
CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF
THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE
SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix, ActiveMatrix BusinessWorks, ActiveSpaces,
TIBCO Administrator, TIBCO BusinessEvents, TIBCO Designer, Enterprise Message Service, TERR,
TIBCO FTL, Hawk, TIBCO LiveView, TIBCO Runtime Agent, Rendezvous, Statistica, and StreamBase are
either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other
countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.

https://scripts.sil.org/OFL

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Pattern Matching Developers Guide

31 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY
TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Pattern Matcher Feature Overview
	Comparison of Pattern Matcher and Other Components

	Pattern Matching Functions in a Project
	Success and Failure Listeners (Callback Functions)
	Function Documentation
	Advanced Listeners
	Listener Required Signature

	Pattern Matching Examples
	Pattern Matcher Grammar
	Define Pattern Clause
	Using Clause
	With Clause
	Correlation or Subscription Value
	With Clause and the Correlation Property
	Correlation and Exact Match
	Starts With Clause
	Clauses for Explicit Temporal Constructs

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

