
Copyright © 2004-2025. Cloud Software Group, Inc. All Rights Reserved.

TIBCO BusinessEvents® Enterprise
Edition
Event Stream Processing Query Developer Guide
Version 6.4.0 | December 2025

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

2 | Contents

Contents
Contents 2

Query Features Overview 6
Two Types of Queries—Snapshot and Continuous 7

Summary of Functions Used to Create and Execute Queries 8

Query From a Rule (in an Inference Agent) 9

Query as a Pre-filter 10

Query Language Components 11
Select Clause 11

Delete Clause 12

From Clause 13

Where Clause 14

Group by Clause 15

Order by Clause 17

Limit Clause 18

Stream Clause 19

Stream Policy 20

The Query Language Usage 22
Queries Construction and Query Results Usage 22

Query Function Catalog 22

Functions within Queries 23

Bind Variables Usage 24

Lifecycle of a Query—Use of Query Functions 24
Query Definition Creation 24

Query Statement Opening 25

Bind Variables Value Setting (if Used) 25

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

3 | Contents

Query Statement Execution 26

Statement Closing and Query Definition Deletion 29

Result Set Data Usage (Snapshot Queries) 29
Move the Cursor to the Next Row 30

Count of Records in Certain Result Sets 30

Callback Rule Function Data Usage 31
Execute with Callback Function 31

Execute with Batch Callback Function 31

The Callback Rule Function Required Signature 32

The Delete Query 33

Simple Snapshot Query Example 34

Simple Continuous Query Example 35

Example Showing Batching of Return Values (Continuous Queries) 37

Bind Variables in Query Text 39
Datatype Assignment to a Bind Variable 40

Collocated Inference Agents and Dynamic Query Agent Sessions 40
Collocated Query and Inference Agents 41

Dynamic Query Agent Sessions 41

Design Optimization 43
Reuse Existing Queries and Statements Whenever Possible 43

Improve Performance by Pre-fetching Objects (Cache Queries) 44

Optimize WHERE Clause Expressions 44

Use Indexing for More Efficient Cache Queries 45

Use Filtering for Efficient Joins (Cache Queries) 46

Effect of the Cache on Continuous Queries 47

Effect of Time on Cache Queries 47

Continuous Queries 49
Overview of Continuous Queries 49

Query Windows 50

Business Query Language (BQL) Continuous Query 51
Type of Windows 51

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

4 | Contents

Working With Implicit Windows 52

Working With Sliding Tumbling and Time Windows 53

Sliding Window Examples (Cache Queries) 56

Tumbling Window Examples (Cache Queries) 58

Time Window Examples (Cache Queries) 59

Ignite Native Continuous Query 60
Window Types and Semantics 61

EMIT Options 66

Common Errors 66

Strict Column Validation 67

Limitations of an Ignite Native Continuous Query 68

Troubleshooting 68

Event Stream Processing (ESP) Queries 70
Event Stream Processing Queries Overview 70

Example ESP Query Strings 70

Event Assertion in a Query Agent 71

Events Asserted Locally Feed Second-Level Queries 71

Some ESP Query Use Cases 72
Map and Reduce 72

ETL (Extract Transform Load) Pattern 73

Standalone ESP Project Configuration 73

Query Language Reference 75
Miscellaneous Terms Used in Syntax Diagrams 75

Syntax Diagrams 75

Operators for Unary Expressions 81

Operators for Binary Expressions 82

Operators for Other Expressions 84

Wildcards Datatypes Literals Identifiers and Keywords 85

TIBCO Documentation and Support Services 90

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

5 | Contents

Legal and Third-Party Notices 92

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

6 | Query Features Overview

Query Features Overview
The query language enables you to make queries using an SQL-like language. Queries are
executed in query agents. You can query cache content (requires Cache OM), and you can
also query events (event stream processing).

Note: Configuration of query agents is explained in TIBCO BusinessEvents
Developer Guide.

Query Agents

Queries can only be executed by specialized agents called query agents. One engine (node)
can have multiple query agents, or a mixture of inference agents and query agents.

Query agents have channels and destinations. They can execute rule functions, but not
rules. Query agents have no Rete network for inferencing.

Querying the Cache

When a query agent is deployed as part of a TIBCO BusinessEvents application that uses
cache object management, you can query data in the cache.

Query features provide view-only access into the cache. You cannot use query language to
do any updates to data in the cache.

It’s important to understand basic cache configuration and the part query agents play in a
cache cluster. See chapters on Cache OM in TIBCO BusinessEvents Developer Guide.

Tip: You can load objects into the cache so you can then query them. To load
objects into the cache, use the DataGrid.CacheLoad*() functions. For details on
these functions, see their tooltips, and also see TIBCO BusinessEvents Developer
Guide.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

7 | Query Features Overview

Querying the Event Stream

Query agents can listen to an event stream. The event stream can consist of messages sent
out on a Rendezvous subject, or a JMS topic or queue, or other source that a TIBCO
BusinessEvents destination can listen to. Events can also be generated internally and piped
straight to a query.

Event stream processing in the query agent is highly performant and can handle very large
numbers of incoming messages. The query agent runs continuous (or snapshot) queries
against the events.

Continuous queries against the event stream make comparisons across event streams, as if
they were tables. Thus, event stream processing can be termed channel-centric computing.
This approach is ideal when you need to operate on sets of events (such as for
aggregations). This is traditionally associated with financial data feeds, although it might
also be used in detecting patterns in streams for smart grid meter feeds, website
monitoring feeds, and so on.

Distilling Data

The query agent can assert events, such that another query (or a locally deployed inference
agent) can listen to them. These internally generated events enable you to build several
tiers of queries, each aggregating and abstracting the data into ever more interesting
information. The distilled data can be sent out through a channel to a TIBCO
BusinessEvents application or external application as needed.

See Event Stream Processing (ESP) Queries for details.

Note: You cannot use hot deployment for query-related resources.

Two Types of Queries—Snapshot and
Continuous
Two types of queries are available, snapshot queries and continuous queries.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

8 | Query Features Overview

Snapshot Queries

Snapshot queries return data from the cache as it exists at a moment in time. A snapshot
query returns a single, finite collection of entities that exist in the cache.

See The Query Language Usage and in particular, see Simple Snapshot Query Example for
better understanding.

Continuous Queries

Continuous queries collect data as objects are added, deleted, or modified in the cache.
That is, continuous queries work on data streaming through the query. Continuous queries
continue to gather and return data when notified of changes, until you stop the query.
Continuous queries use windows (explicit or implicit) to process data (snapshot queries do
not). Snapshot queries are not used for event stream processing.

See Continuous Queries for more details.

Summary of Functions Used to Create and
Execute Queries
All queries are created and executed using a set of query functions. The query functions are
called from rule functions in the query agent.

Three functions are mandatory, and additional functions are available for different
purposes.

Create the Query

First a Query.create() function creates the query definition which contains the query text
and a name for the definition.

Create the Query Statement

Then the Query.Statement.open() function is used to create a query statement, which is a
named instance of the query definition.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

9 | Query Features Overview

Execute an Instance of the Query Statement and Obtain Results

Choose one of these ways to execute a query instance:

l For snapshot queries, you can use either the Query.Statement.execute() function or
a Query.Statement.executeWithCallback() function.

l For continuous queries you must use the Query.Statement.executeWithCallback()
function or Query.Statement.executeWithBatchCallback() function, with the
IsContinuous parameter set to true.

These functions are generally placed in an event preprocessor rule function.

Use Results

To use results returned by a query, you can create events to send information between
query and inference agents. You could also send results out to some other system. The use
to which results are put depends on the business need.

See The Query Language Usage for more details.

Query From a Rule (in an Inference Agent)
Queries can only run in a query agent. Rules can only run in an inference agent. In order for
a rule to trigger a query to execute, the rule must send an event to the query agent. In
order for the query results to be used in a rule, the query agent must send them in an
event to an inference agent.

A rule in the inference agent sends an event to destination D1, including any necessary
query parameters.

The query agent listens for messages on destination D1.

When event E1 arrives, an event preprocessor executes a query statement.

A query function collects results into event, E2 and sends it to destination D2.

The inference agent listens on destination D2.

When event E2 arrives, a rule in the inference agent collects the results from the event and
processes them as needed.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

10 | Query Features Overview

Query as a Pre-filter
Query agents can act as pre-filters and routers. Suppose you want to check for the
existence of a concept in the cache, using properties of an event. If the concept does not
exist, you want to create it.

You can achieve this result as follows:

The query agent listens for messages on a destination D1.

On receiving a message (event A) at D1, the query agent executes the query statement to
determine if the corresponding concept exists in cache.

l If the query finds an existing concept, nothing happens.

l If the query does not find an existing concept the agent sends event A to destination
D2.

The inference agent listens for events (messages) on destination D2.

On receiving an event at D2, a rule in the inference agent creates the concept.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

11 | Query Language Components

Query Language Components
The text of a query uses a structure similar to the structure of a SELECT statement in SQL,
and it has parallels with the structure of a TIBCO BusinessEvents rule, too. The query text is
provided as an argument to the Query.create() function.

The syntax diagrams shows the structure of a query and of each clause in a query. Read
them from left to right. Items above or below the main line are optional. Items that can
repeat are shown by lines that loop back from the end to the beginning of the repeating
section, along with the separator character.

Select Clause
In the select clause, you specify columns that will appear in the query results.

In the example, a select clause projects two columns, address and name, properties of the
concept /customer. The alias for the customer concept is the letter c:

select c.name, c.address from /customer c

You can also give each projection an alias, for example:

select c.name as name

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

12 | Query Language Components

You can check for NULL values using equality [=] operator:

Select * from /concepts/test as cp where cp.value = null;

The use of the optional "as" makes the code more readable.

In the select clause you can use the following:

l Literal values

l Catalog functions and rule functions

l Entities that are declared in the from clause, unless you are using a group by clause
(see Group by Clause)

You can use an optional limit clause to specify the maximum number of rows to return,
and you can use an offset to ignore the first n rows.

You can use an optional distinct clause to prevent the query from returning duplicate
rows.

Examples of Select Clauses

These examples show only the select clause. A complete query requires a select and a
from clause. (# is the escape character. See Keywords and Other Reserved Words.)

select A.*
select {limit: first 10} A.name
select /#DateTime/now() as C
select /RuleFunctions/GetState() as D
select /#String/concat(B.customerId,”ABC”) as E
select B.*, A.custId id, B@extId as extId

Delete Clause
The delete clause is used only in a delete query. Delete queries are used in a specific
situation only.

See The Delete Query for more details.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

13 | Query Language Components

In the delete clause, you cannot specify columns. The concept specified in the from clause
is deleted.

Examples of Delete Clause

These examples show only the delete clause. A complete query requires a delete and a
from clause. The from clause can specify only one concept type.

delete *
delete

From Clause
Just as a rule declaration specifies the scope of the rule, the from clause specifies the
scope of the query. The items in the from clause must exist in the project ontology.

Using Strings (Instead of Variables) in From Clauses

Bind variables cannot be used in the from clause—you cannot use select * from
$someConcept. However, to achieve a similar result you can use a new string to construct
the query as shown in the following examples:

String conceptName1 = "/Concepts/Concept1";
Query.create("newQuery1", "select * from " + conceptName1);
String conceptName2 = "/Concepts/Concept2";
Query.create("newQuery2", "select * from " + conceptName2);

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

14 | Query Language Components

Continuous Queries

The from clause in a continuous query can specify window policies. See Overview of
Continuous Queries for more information.

Examples

The select and from clauses are required for all queries.

select * from /Concepts/Address as A
select * from /Concepts/Customer B
select * from /EntityA as A
select * from /EntityB B
select * from /EntityX, /EntityY, /EntityZ

Where Clause
The optional where clause is analogous to a rule’s conditions. The expression in the where
clause can be simple or complex.

In the where clause you can use following:

l Literal values

l Catalog functions and rule functions

l Entities that are declared in the from clause

Examples

Following checks for NULL values using equality [=] operator:

Select * from /concepts/test as cp where cp.value = null;

Pound or hash (#) is the escape character. See Keywords and Other Reserved Words.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

15 | Query Language Components

where A.customerId = B.customerId
where A.id = B@extid // Entity attributes
and (B@parent.name = 'ABCD' or C.name = "EFGH")
and A.tokens[5] = 50 // array property
and (A.containedConceptE.price > 100
or B.startTime > /#DateTime/addMinute(/#DateTime/now(),5))
and B.value between 2 and 5

Tip: The pound sign (#) is used to escape reserved (key) words. See Keywords
and Other Reserved Words for a complete listing.

Group by Clause
The optional group by clause allows you to group entities that share one or more criteria
into a single row. Each group is represented by one row.

This allows you to use any of the standard group functions that are applicable, such as
those used to calculate minimum, maximum, count, sum, average.

Aggregation functions operate on all entities (and their attributes and properties) that
make up a given group. For example, you could find out how many customers are in each
zip code as follows:

select c.zipcode from customer c group by c.zipcode;

Note that, although the group by clause reduces the result set to a list—in this example to
a list of zip codes—additional information from the query is internally available to the
aggregation functions.

Group By Usage

The select clause can use only the group by criteria and aggregation functions.

For example, the following example is valid:

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

16 | Query Language Components

select s.deptName, count(*)
 from /Student s
 group by s.deptName

However, the following example is invalid:

INVALID select s.deptName, s.deptNo, count(*)
 from /Student s
 group by s.deptName

In the second example, s.deptNo does not appear in the group by clause and therefore it
cannot be used in the select clause.

Using a Dummy Group Expression for Aggregation

Suppose you want to get a count of all entities in the from clause. In this case you must
use a group by clause that creates a dummy group. In this case, all the rows are in the
same group. As an example:

select count(*)
 from /Student s
 group by 1

The group by clause restricts the columns that can be used in the select clause. So, as an
example, this usage is invalid:

INVALID select s.deptName, count(*)
 from /Student s
 group by 1

Dummy groups are created when you specify a constant in the group by clause. For
example, you can specify a dummy group in any of the following ways:

group by ""
group by 1
group by 2
group by "hello"

Any constant can be used.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

17 | Query Language Components

Optional having Clause

The optional having clause allows you to apply conditions after entities are grouped. For
example this query returns the number of customers in each zip code, except for those zip
codes where there are three or fewer customers:

select c.zipcode, count(*) as count_zipcode
from /customer c
group by c.zipcode
having count_zipcode > 3;

Note that the having clause accepts aliases declared in the select clause.

You can also use aggregation functions in the having clause in order to apply conditions on
the whole group.

Order by Clause
The optional order by clause enables you to sort the results in ascending or descending
order.

In a continuous query, each set of ordered results in a window constitutes one batch of
results. For an example, see Example Showing Batching of Return Values (Continuous
Queries).

See also Limit Clause.

Examples

Pound or hash (#) is the escape character. See Keywords and Other Reserved Words.

In the following example, each row in the result shows the ID of a customer who has
placed three or more orders each of which contained 5 or more lines.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

18 | Query Language Components

order by A.State, C, D, E
order by A@extId, B.name {limit : first 10}
select o.customerId as cid
from /Concepts/#Order o
where o.lines@length >= 5
group by o.customerId
having count(*) >= 3
order by cid desc;

Limit Clause
You can use an optional limit clause in a select or an order by clause.

When used in a select clause, it limits the maximum number of rows to return. The limit
clause is applied last after the all the clauses are executed on the result set.

You can also use an optional offset to ignore the first n rows.

When used in an ordered by clause, the limit applies to each of the items in the ordered list
(after the ordering is executed). See Working With Implicit Windows.

Example Showing Use in Select Clause

select {limit: first 10 offset 20} c.name from /Customer c

Without the limit clause, this query would return all customers. With the limit, it returns 10
customers, with an offset of 20. That is, it returns customers 20-30.

Example Showing Use in Order By Clause

The following query keeps count of the number of students per department. Every time a
student enrolls or leaves, the count changes and the query produces the entire list sorted
on the count, sorted in descending order, and limited to the first two.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

19 | Query Language Components

select s.deptName, count(*)
 from /Student s
 group by s.deptName
 order by count(*) desc {limit: first 2};

The limit clause specifies that only the first two of the ordered lists of departments are
returned by the query: the list of departments with the largest number of students, and the
list of departments with the second largest number of students.

Stream Clause
The stream clause is used for continuous queries only. It is used within a from clause.

See Stream Policy for details on how a window is defined.

Use of Accept:New and Accept:All

Events and concepts (entities) can be deleted by rules. By default (accept:all), if a
continuous query has already seen an entity before, then it will expect a delete or modify
notification from the cache cluster. Therefore the query must keep track of such things.

However, if you specify the accept:new clause, then the continuous query does not have to
track such things, and the memory footprint of the query is reduced.

The accept:new clause is required for event stream processing (ESP) queries. See Event
Stream Processing (ESP) Queries.

Use of Emit: New and Emit: Dead

The emit keyword determines whether the query is evaluated when an entity enters the
window (emit : new) or when an entity leaves the window (emit : dead).

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

20 | Query Language Components

The default value is emit:new.

Note: Do not use emit clauses with aggregations.

For examples showing usage, see the following:

l Using Emit New to Create a Counter

l Delaying Output with an Emit Dead Clause

Stream Policy
The stream policy (also known as a window policy) is used for continuous queries only. It
determines what kind of window is used: a time window, sliding window, or tumbling
window.

See Working With Sliding Tumbling and Time Windows and examples following: Sliding
Window Examples (Cache Queries), Tumbling Window Examples (Cache Queries), and Time
Window Examples (Cache Queries).

Note that continuous queries that use an implicit window do not have a stream policy. See
Working With Implicit Windows.

The value of long literal specifies the size of the window. When used for a time window,
the value refers to a time unit specified by time unit. The time unit can be specified in
milliseconds, seconds, minutes, hours or days. For example: maintain last 5 minutes
defines a time window of five minutes.

For sliding and tumbling windows, the number refers to a number of entities.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

21 | Query Language Components

Using Clause

When the query specifies time units, you can specify a start time by including a using
clause. The expression could refer to a timestamp property in the entity, for example. If the
using clause is absent, the start time is the moment the entity enters the window.

Where Clause

The optional where clause is used as a pre-filter (a filter on results that enter the window).
It eliminates entities that are not useful for the query, optimizing performance.

By Clause

Maintaining a single window (like a sliding window) over all the events in the window may
not be what you need for a query. The (optional) by clause allows you to do aggregations
within the window. In this regard, the by clause is similar to the group by clause.

For example, instead of a single window of size 50 that contains all the entities, you can
maintain a window of size 50 for each combination of values for the fields in the by
section:

select car.id, car.color from "CarEvent" {policy: maintain last 50
sliding where type = "Sedan" by country, state, city} car;

See Explicit Window Example (Cache Query) for a detailed discussion of an example that
uses a stream policy. See Time Window Examples (Cache Queries) for more examples.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

22 | The Query Language Usage

The Query Language Usage
The query language can be used to create and execute queries, and use results returned by
a query.

Queries Construction and Query Results Usage
To implement queries, you put query text (SQL-like statements) as arguments to an
appropriate function from the CEP Query function catalog and place the query functions in
one or more rule functions. You can also use bind variables in many clauses to create
prepared statements.

When you deploy an agent to query cache data, you can query concepts and simple events
in the cache. You cannot query scorecards or time events because they do not exist in the
cache. You cannot query the objects in the Rete network itself, or those in the backing
store, just those in the cache.

When you deploy an agent to query an incoming event stream, you can query events.

Note: You can use arrays within expressions in a query, but returning arrays in
the results of the query is not supported in this release.

Query Function Catalog
A catalog of functions called CEP Query is provided for use in writing and managing
queries.

The following categories and functions are provided in the catalog:

l Query category: create(), delete(), exists()

l Callback category: delete(), exists()

l ResultSet category: close(), get(), isBatchEnd(), isOpen(), next()

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

23 | The Query Language Usage

l Statement category: clearSnapshotRequired(), clearVars(), close(), execute(),
executeWithCallback(), executeWithBatchCallback(), getSnapshotRequired(),
getVar(), isOpen(), open(), setSnapshotRequired(), setVar()

Each category also has a Metadata subcategory, which contains functions such as
findColumn(), getColumnCount(), getColumnName(), getColumnType(), getQueryName(),
and getStatementName().

Tooltips associated with all these functions show the function signatures and other helpful
text. The tooltips are available in TIBCO BusinessEvents Studio and you can also refer
TIBCO BusinessEvents Functions Reference for more information about the catalog
functions.

For general information on using the functions provided with TIBCO BusinessEvents, see
TIBCO BusinessEvents Developer Guide.

Functions within Queries
Many of the available catalog functions as well as custom functions can be used in a query
agent. You can also use rule functions from the same project.

Functions that Can Be Used in a Query Agent

Functions that can be used in a query agent are marked with a blue q. (They may have
more decorations if they are usable in other areas such as Decision Manager).

Functions that Cannot be Used in a Query Agent

The following functions cannot be used in a query agent:

l Rule functions with a Validity attribute that is set to anything other than "Action,
Condition, Query."

l Ontology functions.

l All catalog functions that assert, modify or delete objects in the cache or in working
memory. Queries cannot change the cache.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

24 | The Query Language Usage

Bind Variables Usage
You can place bind variables in the query text argument of the query definition. The values
of the variables can be set when a query statement is opened, enabling a single query
definition to be reused.

See Bind Variables in Query Text for details.

Lifecycle of a Query—Use of Query Functions
Lifecycle of a query involves creation, execution, and gathering of results. Functions can be
used to create and execute queries, and to gather query results.

Also see Result Set Data Usage (Snapshot Queries) and Callback Rule Function Data Usage
for details on how to get and use query results.

Query Definition Creation
A query definition is a Java runtime object (similar to a factory class).

Creating a query definition is a separate step from opening and executing a query
statement. Creating a query definition is the most expensive step in the process of making
the query available for execution. Therefore it is often best done at engine startup. The
syntax of the function is:

Query.create(String QueryDefinitionName, String QueryText, boolean
isNativeQueryRawResults);

The QueryDefinitionName is used in other functions to identify the query definition. The
query text contains the select statement.

For example,

Query.create("report","select zipcode, total_sales, agent_name from
/Concepts/Sales where total_sales > $min");

Where $min is a bind variable whose value is provided at runtime.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

25 | The Query Language Usage

If a query statement based on this definition is executed and returns a result set, the result
set columns would be, zipcode, total_sales, and agent_name, with rows of entity values
that match the condition specified at the time the query was executed.

Query Statement Opening
A query statement is an object that represents one instance of the query. You can create
multiple statements that can run in parallel.

Use the open() function to open a query statement.

The syntax of the function is:

Query.Statement.open(String QueryDefinitionName, String StatementName);

The QueryDefinitionName references the query definition that contains the query text. The
statement name defined here is used in other functions to identify this query statement.

For example,

Query.Statement.open("report", S_Id);

Where S_Id is a string variable that contains the statement name. Names can be
constructed in various ways, as shown in Simple Snapshot Query Example.

Bind Variables Value Setting (if Used)
For the named query statement, set values for bind variables (if any are used in the query
definition) before executing them. This sequence is required.

The functions need not be executed right after each other, however. For example, the
Query.Statement.open() function could be in a startup rule function and the
Query.Statement.setvar() function could be in a rule function called on assertion of an
event, followed by the Query.Statement.execute() function.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

26 | The Query Language Usage

Note: Open a named query statement for each set of variable values that are
used at execution time. For example, if you set the variable values two different
ways, you would provide two open query statements, each with its own name,
to keep the configured queries and their returned information separate from
each other

The syntax of the function is:

Query.Statement.setVar(String StatementName, String BindVariableName, Object
Value);

For example,

Query.Statement.setVar(S_Id, "min", evt.min_total_sales);

See Bind Variables in Query Text for more details.

Query Statement Execution
To execute a query and specify how a query returns values, you can use either of the
execute functions.

The following are the available execute functions:

l Query.Statement.execute() provides results using a result set. This function is used
for snapshot queries only.

l Query.Statement.executeWithCallback() provides results using a callback rule
function, which is called once for each matching result. This function can be used
with snapshot or continuous queries.

l Query.Statement.executeWithBatchCallback() provides results using a callback
rule function, which is called once at the end of each batch of results. This function
can be used only with continuous queries.

Obtain Results Using a Result Set
The Query.Statement.execute() function returns values in a result set.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

27 | The Query Language Usage

The result set is a tabular form (with rows and columns) on which you can perform
operations to return data. It is used for snapshot queries only. Execution is synchronous.

Query.Statement.execute(String StatementName, String resultsetName);

For example:

Query.Statement.execute(S_Id, evt@extId);

In the example, S_Id is a string variable providing the name that was given in the
Query.Statement.open() function. The example shows use of the external ID of event evt
(evt@extId) as the result set name, as a way to ensure that each result set has a unique
name.

See Result Set Data Usage (Snapshot Queries) for more information.

Close the Result Set after Collection

After you have collected the data you need, close the result set. You can close the result
set directly, or close it indirectly by closing a higher-level item such as the statement or the
query definition. To close the result set use the following function:

Query.ResultSet.close(String ResultsetName);

For example:

Query.ResultSet.close("rset");

Obtain Results Using a Callback Rule Function
You can pass query results to a callback rule function.

Two functions are available for this purpose:

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

28 | The Query Language Usage

l Query.Statement.executeWithCallback() calls the rule function once for each row
of results, as well as at the end of a batch (if ordering is used) and at the end of the
execution. Results are sent to the callback rule function as individual rows of data.
(See Example Showing Batching of Return Values (Continuous Queries) for an
example.)

l Query.Statement.executeWithBatchCallback() calls the rule function at the end of
a batch and at the end of the execution. The results are sent to the callback rule
function as an array of rows of data, at batch end. It is generally used for queries that
contain an order by clause, which results in useful batches of data. It is useful, for
example, when you want to send an outbound message containing all the results of a
batch.

Only Query.Statement.executeWithCallback() can be used for snapshot queries. When
used with snapshot queries, the query looks at the current state of the cache and calls the
rule function once for each matching row, in quick succession. Batching is not used with
snapshot queries.

Both functions are used for continuous queries. You set the IsContinuous argument to
true so that the query runs as a continuous query. When used in continuous queries, the
query listens for changes to the cache, or listens to events if the query is listening to
events, and calls the rule function as matches occur over the lifetime of the query.

Note: Use Query.Statement.executeWithCallback() only when batches of
results will be small.

The format of the Query.Statement.executeWithCallback() function is shown in
following sample. The format of the Query.Statement.executeWithBatch Callback()
function is the same (but the way it sends results to the callback function is a little
different).

Query.Statement.executeWithCallback(
String statementName,
String listenerName,
String callbackUri,
boolean isContinuous,
Object closure)

The listenerName parameter keeps results from different executions separate from each
other.

The callbackUri parameter value provides the project path to the callback rule function.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

29 | The Query Language Usage

The isContinuous parameter defines if the query is a snapshot or continuous query.

The closure parameter is stored during the execution of the query, and provided as a
parameter to the callback function every time that function is called.

For example:

String execID = evt@extId;
Query.Statement.executeWithCallback(
MyStmt, MyexecID, "/MyRuleFunction", false, evt);

See Callback Rule Function Data Usage for details.

Statement Closing and Query Definition Deletion
You can close or delete at different levels. You can delete a query definition to make room
for new query definitions. You can also delete (close) the statement that is running, without
deleting the query definition itself.

Use the following functions as needed for your situation:

Query.Statement.close(String StatementName);
Query.delete(String QueryDefinitionName);

When you delete a query or a statement, all their subordinate artifacts are deleted as well,
including result sets.

You can also close just the result set. See Close the Result Set after Collection.

Result Set Data Usage (Snapshot Queries)
Use the Query.Statement.execute() function to returns values in a result set.

See Obtain Results Using a Result Set for details about obtaining results.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

30 | The Query Language Usage

Move the Cursor to the Next Row
The result set maintains a cursor (that is, a reference) on the current row, initially
positioned just before the first row so that you can perform operations on the table. The
only way to do operations on the table is through the cursor.

You can move the cursor to the next row, using the following function:

boolean Query.ResultSet.next(String ResultsetName)

The function returns false when the cursor moves after the last row (or when there is no
row).

To get the value of a column in the row referenced by the cursor, pass the index of that
column to the following function:

Object Query.ResultSet.get(String ResultsetName, int ZeroBasedColumnIndex)

The following example shows how you can get the value of column 1 in each row of the
result set and simply display it on the console:

while(Query.ResultSet.next("rset")) {
 System.debugOut(Query.ResultSet.get("rset",1));
}

Where "rset" is the name of the result set.

Count of Records in Certain Result Sets
You can use the getRowCountIfPossible() function to get the count of records in a result
set when using Query Functions.

Query.ResultSet.getRowCountIfPossible()

This function can be used only with snapshot queries that use joins and aggregations
(order by and group by clauses). Only in such cases is the result set known. In other cases
the query begins filtering and feeding results to the result set without knowing when the
query will end.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

31 | The Query Language Usage

Callback Rule Function Data Usage
The data provided to the callback rule function depends on which callback function you
are using.

Execute with Callback Function
When you use the Query.Statement.executeWithCallback() function, the agent calls the
specified callback rule function once for each row of data generated. The row of data is
provided as an array of columns.

The callback rule function is called in the following circumstances:

l Once for each row of data generated by the query.

l At the end of a batch of rows (continuous queries only). A blank row with the
isBatchEnd flag is sent.

l Once, when there are no more results, indicating the end of the results (snapshot
queries) or that the statement was closed or the query deleted (continuous queries).
See Statement Closing and Query Definition Deletion.

You can provide a closure object when executing the statement. The closure object is
provided to each rule function call. It can contain anything useful in the execution context.
For example, you can use an object array to accumulate each row of results returned in
each callback rule function call.

Execute with Batch Callback Function
When you use the Query.Statement.executeWithBatchCallback() function, the agent
calls the specified callback rule function once at the end of each batch of results. The data
is provided as an array of all the rows in that batch.

The callback rule function is called in the following circumstances:

l At the end of a batch of rows generated by the query.

l Once, when there are no more results, indicating that the statement was closed or
the query deleted. See Statement Closing and Query Definition Deletion.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

32 | The Query Language Usage

As with the Query.Statement.executeWithCallback() function, you can provide a closure
object when executing the statement.

The Callback Rule Function Required Signature
The callback function must have a signature with the parameter types provided in a
specific order.

The following table lists the parameter types in the order of their usage:

Parameter Notes

String id Identifies the current execution. Uses the value of listenerName, which was
provided when calling the Query.Statement.executeWithCallback()
function. The ID enables you to identify rows of data belonging to different
executions of the same query (or different queries).

boolean
isBatchEnd

Used in the case of continuous queries only, and is useful only when the
query text contains an order by clause (see Order by Clause).

Only true at the end of a batch of rows of data generated by the query.

In the case of continuous queries where no sorting is used, each row of data
is a batch.

See Example Showing Batching of Return Values (Continuous Queries).

boolean
hasEnded

When true, signals the end of the execution.

Object row

OR
Object rows

For Query.Statement.executeWithCallback(): An array of columns
representing one row of data generated by the query. Each column
corresponds to an item in the projection (see Select Clause).

For Query.Statement.executeWithBatchCallback(): an array of rows
comprising one batch of results.

Object
closure

Closure object provided when executing the
Query.Statement.executeWithCallback() function, or null.

The object provided depends on your needs. For example, it could be a

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

33 | The Query Language Usage

Parameter Notes

simple string, or it could be an array of objects used to add a row of data
from each callback rule function.

The Delete Query
The delete query is typically used to delete the temporary concepts, which are no longer
required.

Temporary concepts can be created in the query agent to hold rows of data returned by a
query. Such data can then be transformed into an XML string and sent out of the system
through a channel, or used to perform computations. When the temporary concepts are no
longer needed, use the delete query to delete them.

You can create one concept (to act as a container), with an array of contained concepts to
hold each row of results. In a rule function you can use the
Concept.serializeUsingDefaults() function to create an XML string with all the results
nested within the container. After you send the results out of the system, you can then use
a delete query to remove the temporary concepts, which are no longer needed.

See Delete Clause for reference details.

Delete Query Limitations

Because of its limited context of use, this query has various limitations, listed next.

l The delete query does not use locking. Use the delete query to delete concepts
created in the query agent only. The delete action does not go through an RTC. Do
not delete concepts that are used in inference agents; doing so may cause issues
such as data integrity issues and rule processing issues. Do not attempt to delete
concepts that could be accessed at the same time in any other agent as results could
be unpredictable.

l The delete query does not delete contained or referenced concepts. You must delete
each contained concept individually.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

34 | The Query Language Usage

l The delete query does not delete child concepts (inherited concepts). For example
deleting Customer does not delete RedCustomer and BlueCustomer.

l Each statement deletes instances of one specified concept type, which is specified in
the from clause. You cannot use more than one concept type in the from clause (that
is, joins are not supported).

l Only use the delete query with concepts that use cache only mode. The delete query
deletes concepts from the cache only. (Not from Rete network or backing store).

l Use the delete query only with write behind database write strategy (not cache-
aside).

l The delete clause can be used only in snapshot queries.

Simple Snapshot Query Example
The snapshot query example code could be placed in a preprocessor rule function that
receives an event called requestEvent. The example code includes all steps from creating
to closing the query.

The example is simplified for clarity. In a real-world use case, the creation step could be
performed in a startup rule function, and the output could be sent in an event to an
inference agent or other destination.

Query.create("report853", "select agent_name, total_sales, zipcode from
/Concepts/Sales");
String id = requestEvent@extId;
String stmt = "S" + id;
String rset = "R" + id;
Query.Statement.open("report853", stmt);
Query.Statement.execute(stmt, rset);
while(Query.ResultSet.next(rset)) {
 String agent = Query.ResultSet.get(rset, 0);
 double sales = Query.ResultSet.get(rset, 1);
 String zip = Query.ResultSet.get(rset, 2);
 System.debugOut(rset + ": Agent " + agent
 + " sold $" + sales
 + " in " + zip
 + ".");
}
System.debugOut(rset + ": ========");
Query.ResultSet.close(rset);

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

35 | The Query Language Usage

Query.Statement.close(stmt);
Query.Close("report853");

The last three lines are provided for completeness. However, if the Query.Close() function
is used, you would not need to include the Query.ResultSet.close() or
Query.Statement.close() functions. See Statement Closing and Query Definition Deletion
for details about these hierarchical relationships.

Sample Output

R123: Agent Mary Smith sold $15063.28 in 94304.
R123: Agent Robert Jones sold $14983.05 in 94304.
R123: ========

Simple Continuous Query Example
The continuous query example shows how a callback rule function is used to gather results
generated by the query.

An example callback rule function is as follows:

MyRF(ID, isBatchEnd, hasEnded, row, closure)
if (hasEnded) {
 System.debugOut(ID + ": ========");
} else if (isBatchEnd) {
 System.debugOut(ID + ": --------");
} else {
 Object[] columns = row;
 String agent = columns[0];
 double sales = columns[1];
 String zip = columns[2];
 System.debugOut(id
 + ": Agent " + agent
 + " sold $" + sales
 + " in " + zip
 + ". " + closure);
}

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

36 | The Query Language Usage

Create the Query

Query.create("report853", "select agent_name, total_sales, zipcode from
/Concepts/Sales");

Open and Execute the Query Statement

String id = requestEvent@extId;
String stmt = "S" + id;
String clbk = "C" + id;
Query.Statement.open("report853", stmt);
Query.Statement.executeWithCallback(
stmt, clbk, "/MyRF", true, "@@@@");

Where requestEvent is an event, and "/MyRF" is the path to the rule function shown at the
beginning of the section. The true parameter indicates that this is a continuous query.

Sample Output

In the following sample output , each row of data (generated when a relevant change
occurs in the cache) is one batch, because the query does not involve ordering or
aggregation. The last line in the sample indicates that the query has ended. For example,
someone closed the statement (not shown in the code sample).

C123: Agent Mary Smith sold $15063.28 in 94304. @@@@
C123: --------
Time passes…
C123: Agent Robert Ng sold $14983.05 in 94304. @@@@
C123: --------
Time passes…
C123: Agent Jose Ortiz sold $16244.78 in 94304. @@@@
C123: --------
C123: ========

Function Calls

The following example shows the parameter values for each function call.

As a reminder: the first Boolean indicates whether the batch has ended or not; the second
Boolean indicates whether the execution has ended or not.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

37 | The Query Language Usage

l Mary Smith makes a sale.

MyRF(clbk, false, false, ["Mary Smith", 15063.28, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")

l Time passes… Robert Ng makes a sale.

MyRF(clbk, false, false, ["Robert Ng", 14983.05, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")

l Time passes… Jose Ortiz makes a sale.

MyRF(clbk, false, false, ["Jose Ortiz", 16244.78, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")
MyRF(clbk, true, true, null, "@@@@")

Example Showing Batching of Return Values
(Continuous Queries)
The example is the same as the simple continuous query example, with the addition of an
order by clause in the query text, to show batching behavior. Only the output and function
calls differ.

Create the Query

Query.create("report853", "select agent_name, total_sales, zipcode from
/Concepts/Sales order by agent_name");

Sample Output
l Mary Smith makes a sale.

C123: Agent Mary Smith sold $15063.28 in 94304. @@@@
C123: --------

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

38 | The Query Language Usage

l Time passes… Robert Ng makes a sale.

C123: Agent Mary Smith sold $15063.28 in 94304. @@@@
C123: Agent Robert Ng sold $14983.05 in 94304. @@@@
C123: --------

l Time passes… Jose Ortiz makes a sale.

C123: Agent Jose Ortiz sold $16244.78 in 94304. @@@@
C123: Agent Mary Smith sold $15063.28 in 94304. @@@@
C123: Agent Robert Ng sold $14983.05 in 94304. @@@@
C123: --------
C123: ========

Function Calls

The following example shows the parameter values for each function call.

As a reminder: the first Boolean indicates whether the batch has ended or not; the second
Boolean indicates whether the execution has ended or not.

Mary Smith makes a sale.
MyRF(clbk, false, false, ["Mary Smith", 15063.28, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")
Time passes… Robert Ng makes a sale.
MyRF(clbk, false, false, ["Mary Smith", 15063.28, 94304], "@@@@")
MyRF(clbk, false, false, ["Robert Ng", 14983.05, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")
Time passes… Jose Ortiz makes a sale.
MyRF(clbk, false, false, ["Jose Ortiz", 16244.78, 94304], "@@@@")
MyRF(clbk, false, false, ["Mary Smith", 15063.28, 94304], "@@@@")
MyRF(clbk, false, false, ["Robert Ng", 14983.05, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")
MyRF(clbk, true, true, null, "@@@@")

Note: The Query.Statement.executeWithBatch Callback() function works in a
similar way, except that the callback rule function is called once for each batch,
and the results are sent as an array of rows.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

39 | The Query Language Usage

Bind Variables in Query Text
Query definitions can use literal values for entity attributes in query text, or they can use
bind variables whose values are provided at runtime.

In the Query.create() function, use a dollar sign ($) to indicate a bind variable in the
query text. (See $min in the following example.)

The values for all bind variables must be supplied to a statement when it executes. Set the
value of a bind variable, using the Query.Statement.setVar() function, from the CEP
Query Functions catalog, as shown next.

Query.Statement.setVar(String StatementName, String BindVariableName, Object
value);

When you use the Query.Statement.setVar() function, functions must be called in the
following order:

l Query.Statement.open()

l Query.Statement.setVar()

l Query.Statement.execute() OR Query.Statement.executeWithCallback() OR
Query.Statement.executeWithBatchCallback()

All functions must reference the same query statement name.

Note: Bind variables cannot be used with the like operator.

Bind variables cannot be used with the from clause. However see Using Strings
(Instead of Variables) in From Clauses for an alternative.

The following example shows how a bind variable in a query definition is set as the value
of an event property by the Query.Statement.setVar() function. The value could be
defined as a literal value as desired, or in some other way, depending on context and need.

For example:

Query.create("report927", "select agent_name, total_sales, zipcode from
/Concepts/Sales where total_sales >= $min");
Query.Statement.open("report927", S_Id);
Query.Statement.setVar(S_Id, "min", evt.min_total_sales);
Query.Statement.execute(S_Id, "rset");

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

40 | The Query Language Usage

Where evt.min_total_sales is an event property of a numeric type.

Clearing Bind Variables

You can use Query.Statement.clearVars() to clear all bind variable values associated
with the named statement.

Datatype Assignment to a Bind Variable
In queries, the type of a bind variable is enforced by its surrounding expression. In the
query, use the specific expressions to assign the desired type to the bind variable.

Datatype Expression

int long (+ 0)

double (+ .0)

String (||)

Boolean (or false)

DateTime Note

: DateTime is not supported so use the following instead.

Pass a long instead of a DateTime and use: /#Datetime/parseLong()

Pound or hash (#) is the escape character. See Keywords and Other
Reserved Words.

Collocated Inference Agents and Dynamic
Query Agent Sessions
Depending on the need, it can be useful to deploy an inference agent in the same
processing unit (node) as the query agent. Another way to integrate query and inference

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

41 | The Query Language Usage

functionality is to dynamically start a collocated query agent session from an inference
agent.

Query agent and inference agent functionality is complementary. You can work with these
two agent types in different ways.

Collocated Query and Inference Agents
The inference agent can process and enrich the event data, create concepts, modify
concepts, and so on. The query agent can send events to the inference agent using a local
channel.

Inference agent rules can process the data and send an event to the query agent (where
another query is listening for that event), or send the event out of the node.

Tip: Modifying concepts retrieved from a query agent

The inference agent can modify concepts retrieved from a query agent using
the following functions. Use the appropriate function for the type of cluster.

As with all actions that modify concepts, ensure that correct locking is used
before executing the query.

The rule ExecuteSelectInQueryAgent, in the following example project
demonstrates this technique:

BE_HOME/examples/event_stream_
processing/CollocatedInferenceAndQuery

The collocated inference agent can use Cache OM or In Memory OM. Performance of In
Memory OM systems is very high. However, the processing potential of Cache OM is greater
because the inference agent has access to all the cache data as well as the data in
memory. Choose the option that fits your needs.

Dynamic Query Agent Sessions
You can dynamically start a collocated query agent session from an inference agent and
make queries, using startup and preprocessor rule functions.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

42 | The Query Language Usage

executeInDynamicQuerySession

The following function is used in the inference agent's preprocessor. It enables you to
execute a query in the dynamic query agent session (without the need for collocated query
agent),, and use the results:

Query.Util.executeInDynamicQuerySession(String sqlString, Object
mapOfParameters, boolean reuse, long timeout, boolean isNativeQueryRawResults);

The is an example showing how you might use this rule function:

void rulefunction Inference.RuleFunctions.MyPreProcessor {
attribute {

 validity = ACTION;
}
scope {
 Events.AccountOperations request;
}
body {
 String queryString = "select acc" +
 " from /Concepts/Account as acc" +
 " where acc.Status = \"Normal\"";
 Object resultList = Query.Util.executeInDynamicQuerySession
(queryString, null, true);
 int size = Query.Util.sizeOfList(resultList);
 System.debugOut("Result list has " + size + " items");

 for(int i = 0; i < size; i = i + 1){
 Object row = Query.Util.removeFromList(resultList, 0);
 Concepts.Account acc = row;
 System.debugOut(" Result row: " + acc);
 }
 }
}

executeInQuerySession

The following rule functions executes the SQL string synchronously in the collocated query
and returns the results:

Query.Util.executeInQuerySession(String querySessionName, String sqlString,
Object mapOfParameters, boolean reuse, long timeout, boolean isNativeQueryRawResults)

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

43 | The Query Language Usage

invokeFunctionInQuerySession

The following rule function invokes a rule function in another query session/agent and
needs a collocated query agent. The name of the query session/agent, which is deployed in
the same processing unit, is provided as a parameter:

Query.Util.invokeFunctionInQuerySession(String querySessionName, String
queryRuleFunctionUri, Object[] parameters)

Design Optimization
You can implement few basic strategies for optimizing the design when working with
queries.

Reuse Existing Queries and Statements Whenever
Possible
Creating a new query is an "expensive" operation. If possible, create the queries ahead of
time (in a startup function), then keep reusing those existing query definitions in new
statements.

(See Lifecycle of a Query—Use of Query Functions for more details)

For example, you could create a query in a startup function. That query may use bind
variables, for more flexibility (see Bind Variables in Query Text. Then, in a preprocessor rule
function, you could create a new statement using that query, set values in the statement
for all the bind variables of the query using the data in the event, and execute the
statement. As a result, the query would be customized and executed for each event
reaching the preprocessor.

Depending on your situation, it might be possible to create a single statement, and keep
reusing that same statement, executing it multiple times.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

44 | The Query Language Usage

Note: The function that creates a new query requires that you provide a globally
unique name. You can later refer to that query using its name. The function that
opens a new statement requires you to provide an existing query name, and a
new globally unique statement name. You can later refer to that statement using
its name.

Improve Performance by Pre-fetching Objects
(Cache Queries)
When a query executes, objects are fetched from the cache as needed for query processing.
Objects are placed in the local query cache for use by the query. You can improve
performance by prefetching the objects from the backing store. See TIBCO BusinessEvents
Developer Guide for more information.

Optimize WHERE Clause Expressions
In the where clause, ensure that the most selective operators appear first.

For example, suppose you have a query like this:

select * from /Customer c where c.location = "CA" and c.age > 95

If the number of customers in the dataset whose age is greater than 95 is very small
compared to the number of people living in California, then age > 95 is a more selective
operator than location = "CA".

Rewrite the query as follows:

select * from /Customer c where c.age > 95 and c.location = "CA"

The more selective operator now appears first, so the query is more efficient.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

45 | The Query Language Usage

Use Indexing for More Efficient Cache Queries
You can index concept and event properties to make searches faster. Use of indexing
avoids the need to deserialize the entire object before running the filter—indexing is of
greatest value with large objects that have many properties.

You can index more than one of an entity type’s properties. When indexing is used,
memory use will also increase.

The efficiency of a filter is increased when you index the properties that are used in the
most selective operators (see Optimize WHERE Clause Expressions for details).

The cache provider, however, may or may not use the index, depending on how complex
the filter is. Complex where clauses containing function calls and joins will not be
optimized. Only simple filters, such as age > 60, or name in (“a”, “b”, “c”), are re-
written to use indexes.

For example, indexing the age property for the Customer concept would make the
following search more efficient:

select * from /Customer c where c.age > 95

However, indexing would not work for a more complex expression such as the following:

select * from /Customer c where /MyFunctions/roundup(c.age) > 95

You can create the indexes using index catalog function or domain object override.

To Enable Query Optimization

Only query agents enabled for query optimization use this feature. In the project CDD file,
add the following property to the query agent properties:

be.agent.query.enable.filter.optimizer=true

Only agents with this property set to true will attempt to use indexing that you define.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

46 | The Query Language Usage

Creating an Index Using a Domain Object Override
Setting
You can create an unordered index in the project’s Cluster Deployment Descriptor (CDD)
using a domain object setting.

Procedure
1. Open the project CDD in TIBCO BusinessEvents Studio and go to Cluster tab >

Object Management > Domain Objects > Overrides.

2. Edit or create an override entry as needed for the desired entity or entities

3. In the override entry’s Properties Metadata section, select the Present in Index
checkbox for the property you want to index.

4. Save the CDD.

Use Filtering for Efficient Joins (Cache Queries)
When performing a join between two or more entities in a query, put the most selective
operators before the actual join expression. This makes the join more efficient.

See Optimize WHERE Clause Expressions for more information.

Joins that test for equality (equivalent joins), that is, joins between two entities that use
the equals operator (=), perform better than joins that test for inequality (non-equivalent
joins), that is, joins using operators such as greater than, less than, and so on. Comparison
operators supported for filtering are as follows:

>, >=, <, <=, ==, !=, In, Between, And, Or, Not, Like

Example

In the following example, the two entities Trade and StockTick are joined by matching
their respective securityId and symbol. But the query also places the restriction that only
TIBX trades and stock ticks are of interest, and only if the trade's settlement status is
FULLY_SETTLED. These filters appear before the actual join expression, which is more
efficient than if they were placed after the join (t.securityId = tick.symbol).

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

47 | The Query Language Usage

select tick.symbol,
 sum(tick.price) * 1000 / count(*),
 avg(tick.volume),
 count(*),
 t.counterpartyId
from /Trade t, /StockTick {policy: maintain last 1 sliding where symbol
= "TIBX"} tick
where t.securityId = "TIBX"
 and t.settlestatus = "FULLY_SETTLED"
 and t.securityId = tick.symbol
group by tick.symbol, t.counterpartyId
having count(*) > 2;

Effect of the Cache on Continuous Queries
Cache queries are run against the object cache, not against the contents of working
memory. Ensure that the objects you want to query are in the cache when the query is run,
and are not, for example, removed from the cache before the query executes.

For example, while a continuous query is running, multiple batches of results may be
received. At the time it is first received, a batch of continuous query results contains items
that are in the cache. If you wait for another batch, some (or all) of the objects in the old
results may have been evicted from the cache.

Effect of Time on Cache Queries
While running continuous queries, errors can occur if entity creation and deletion happen
in rapid succession.

Example

Consider a continuous query that is monitoring entities of type /OrderEvents. Suppose
that OrderEvents entities are created, asserted, and consumed, at a fast rate. When an
OrderEvent entity is asserted, it is also added to the cache. When it is consumed, an
OrderEvent entity is deleted from the cache. The continuous query receives the creation
notification and the deletion notification one after the other.

If there is a long enough delay between the creation and deletion actions and the moment
a query agent attempts to process the related notifications, the agent will try to retrieve

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

48 | The Query Language Usage

OrderEvent entities that have already been removed from the cache, resulting in runtime
errors.

This situation may occur when, for example, a very quick succession of notifications is sent,
or the network traffic suffers delays, and so on.

Query Agent Local Cache

The query agent retains the most recently processed entities in a local cache to avoid
frequent network lookups. But in the earlier example, the OrderEvent is deleted from the
cache even before the create-notification is processed by the query, so the Orderevent
cannot be copied into the query agent's private cache.

Keep such situations in mind as you design your queries.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

49 | Continuous Queries

Continuous Queries
A continuous query returns results throughout its lifetime, as changes occur. When nothing
changes, the query waits.

Overview of Continuous Queries
Continuous queries, when used in a query agent deployed in a TIBCO BusinessEvents®
cluster, listen to and process the data stream of notifications sent from the cache.
Notifications are sent when entities are added to, modified, or deleted from the cache.

Unlike snapshot queries, continuous queries do not examine the cached entities
themselves. Entities that were created before a query start are not visible to it—unless they
are modified while the query is running.

When used in a query agent deployed stand-alone to perform event stream processing,
continuous queries listen to and process the data stream for a specified event.

Enabling Continuous Query

Only query agents enabled for continuous query use a continuous query. In the project
CDD file, add the following property to the query agent properties:

be.agent.query.continuous.allow=true

By default this property is set to false. Only agents with this property set to true attempts
to use continuous query.

Tip: A continuous query must be run using the
Query.Statement.executeWithCallback() function. Snapshot queries can also
use this function. However, when you set the argument IsContinuous to true,
the query runs as a continuous query. See Overview of Continuous Queries for
more details.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

50 | Continuous Queries

Optimizing Continuous Query

To optimize continuous queries containing aggregate functions, such as sum(), add the
property to the project CDD file to the query agent properties:

be.engine.query.optimize.aggregate=true

The default value is false.

Setting this property to true maintains a single value in aggregate functions instead of
accumulating all the previous values and thus optimizes memory consumption.

Note: The property is applicable only to BQL continuous queries.

Running a Continuous Query

For continuous queries, use the Query.Statement.executeWithCallback() function (and a
variant of this function called Query.Statement.executeWithBatchCallback()) with the
IsContinuous argument set to true.

See Callback Rule Function Data Usage and See Two Types of Queries—Snapshot and
Continuous for more information.

Ending a Continuous Query

A continuous query only ends when one of the following occurs:

l You explicitly stop it.

l Its query statement is closed.

l Its query definition is deleted.

l The query agent engine stops.

Query Windows
Continuous queries use windows. A window is a boundary for analyzing data streams. It is a
container in which events and concepts are held and processed by the query. The events

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

51 | Continuous Queries

or entities enter and leave the window as determined by the window type and how it is
configured.

One query can contain multiple windows, and the contents of these windows can be
analyzed and compared.

Windows can be divided into two basic types, explicit and implicit.

Explicit windows (sliding, tumbling, and time windows) define the window boundary, that
is, a condition that limits the lifecycle of the entities in the window.

With implicit windows, the lifetime of the entities themselves control the lifecycle of the
entities in the implicit window. Implicit windows process changes, additions, and deletions
affecting the specified entities until the query ends.

TIBCO BusinessEvents supports the following two types of Continuous Queries:

l Business Query Language (BQL) Continuous Query

l Ignite Native Continuous Query

Business Query Language (BQL) Continuous
Query
A Business Query Language (BQL) continuous query operates persistently over live event
streams. It maintains its state instead of returning a one-time result. It emits incremental
updates as events arrive, change, or expire within the stream.

You use continuous queries for real-time analytics, event correlation, and alerting within
BusinessEvents environments. This capability allows for immediate responses to evolving
data conditions. You use continuous queries for real-time analytics, event correlation, and
alerting within BusinessEvents environments. This capability allows for immediate
responses to evolving data conditions.

Type of Windows
See Working With Sliding Tumbling and Time Windows for content that applies to all these
types of explicit windows.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

52 | Continuous Queries

Implicit Window

Has no policy clause. Instead a group by clause in the select statement of a continuous
query determines that the query is using an implicit window. See Working With Implicit
Windows.

Sliding Window

The policy clause specifies a queue size, into which entities flow. When the queue is full
and a new entity arrives, the oldest entity in the queue is removed from the window
(FIFO). See Sliding Window Examples (Cache Queries).

Tumbling Window

The policy clause specifies a queue size as a certain number of entities, and empties
each time the maximum size is exceeded. Emptying the window completes one cycle.
The lifetime of an entity in the window, therefore, is one cycle. See Tumbling Window
Examples (Cache Queries)

Time Window

The policy clause specifies a time period during which entities remain in the window.
See Time Window Examples (Cache Queries).

Working With Implicit Windows
Implicit windows are created when the continuous query does not have an explicit policy
(window) clause.

The lifecycle of an entity within an implicit window is affected by the life cycle of that
entity in the cache:

l When an entity in the scope of the query is added to the cache or is updated in the
cache, it is automatically added to the window.

l When an entity is deleted from the cache, it automatically exits the window.

Deletion of entities may cause an update of the query output, depending on the query text.

Example 1

select count(*) from /EventA evt group by 1;

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

53 | Continuous Queries

This example uses a dummy group, required because aggregate functions, count(*) in this
case, require a group by clause to work on all the rows. See Using a Dummy Group
Expression for Aggregation for more details.

Suppose that for the first 10 minutes after the query statement is executed, 100 events are
created in quick succession. Every time the query receives a new event notification, the
count goes up progressively until it stabilizes at 100.

Suppose that thirty minutes later, 50 of those 100 events are consumed by a rule or expire
because of their time to live (TTL) settings. The events are deleted from the cache. The
query receives deletion notifications and the query output, count(*), changes until it drops
and stabilizes at 50.

Example 2

The following query joins Department and Student entities using the department name. It
then keeps a count and an average of age of students per department.

select d.name, count(*), avg(s.age)
 from /Department d, /Student s
 where d.name = s.deptName
 group by d.name;

The following query keeps count of the number of students per department. Every time a
student enrolls or leaves, the count changes and the query produces the entire list sorted
on the count.

select s.deptName, count(*)
 from /Student s
 group by s.deptName
 order by count(*);

Working With Sliding Tumbling and Time Windows
Sliding, tumbling, and time windows are explicit windows. In an explicit window, the
lifecycle of an entity in a window is determined either by a specified duration of the entity
in the window, or by setting a maximum number of entities that can be in the window at
any time.

The stream policy (also known as a window policy) determines what kind of lifecycle and
what kind of window to use: a time window, sliding window, or tumbling window.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

54 | Continuous Queries

You can filter entities entering the query using a where in the stream policy. You can also
do aggregations within the window using a by clause. See Stream Policy.

Use Explicit Windows for Events and not Concepts

Concepts are mutable. Events are immutable after they are asserted. The mutability of
concepts makes them generally unsuitable for cache queries that use sliding, tumbling, or
time windows, as explained next.

Entities enter a sliding, tumbling, or time window when they are added to the cache and
they remain in the window according to criteria such as duration in the window or number
of items in the window. This characteristic enables you to gather statistical information
such as how many transactions were processed in an hour.

Deleting an entity from the cache does not cause it to be removed from such a window.
(This behavior is different from the behavior of implicit windows.)

When a concept is modified, internal actions delete the old value from the cache and add
the new one. Sliding, tumbling, and time windows ignore the deletion, but recognize the
addition. Therefore the old and the new value both appear in the window, leading to
unexpected results.

Events are immutable (after assertion), so this issue does not arise in the case of events.

Note: If you know that in your environment concepts will not be modified, then
you can safely use concepts in sliding, tumbling, and time windows.

Explicit Window Example (Cache Query)
In SQL, the order in which the clauses are presented in a query string is not the order in
which they are processed.

For example, following is a fairly complex example formatted to make each clause clear:

select
 tick.symbol, trade.counterpartyId, avg(tick.volume), count(*),
from
 /Trade trade,
 /StockTick

{policy: maintain last 5 sliding
 where symbol = "TIBX" or symbol = "GOOG"

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

55 | Continuous Queries

 by symbol}
 tick
where
 trade.settlestatus = "FULLY_SETTLED"
 and
 trade.securityId = tick.symbol
group by
 tick.symbol,
 trade.counterpartyId
having
 count(*) > 2;

In fact, the clauses are processed in the following order, as shown in How a Query String is
Processed:

from (including stream clause)

where

group by (including having)

select

Of special interest is how the where clause in the stream policy operates with the main
where clause; and how the stream policy can create multiple windows.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

56 | Continuous Queries

Figure 1: How a Query String is Processed

Sliding Window Examples (Cache Queries)
A sliding window policy maintains a queue of a specified size, into which entities flow.
When the queue is full and a new entity arrives, the oldest entity in the queue is removed
from the window (FIFO).

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

57 | Continuous Queries

The following query has a sliding window over Car events. It retains the last 5 car events
that have passed through the query. Every time a new event arrives, the query produces
output that matches the latest event that arrived.

select car from /CarEvent {policy: maintain last 5 sliding} car;

The following query is similar to the previous one except for the emit clause. The query
maintains a sliding window over the last 5 events. However, instead of echoing the event
that just arrived, it emits the oldest event in the window that got displaced when the new
event arrived. The query starts producing output only after the window has filled up and
reached its full size.

select car from /CarEvent {policy: maintain last 5 sliding; emit: dead}
car;

The following query maintains a count of the number of events in the sliding window.
Every time an event arrives or drops out of the window (or both), the query produces
output. Note that when the query starts and events start arriving, the count progresses
towards the maximum window size (25). Once it reaches 25, the number stops changing,
because the window will always have a count of 25 from then on.

select count(*) from /CarEvent {policy: maintain last 25 sliding} car
group by 1;

The following query performs a rolling average and a count over a sliding window of size
30. The window has a pre-filter clause that only consumes StockTick events whose
symbols match "ABCD" or "WXYZ." All other symbol types are dropped and prevented from
entering the window. Also, the by clause indicates that a sliding window must be
maintained per symbol. The group by clause matches the by clause because both of them
specify grouping on symbol. As result, the query correctly maintains a rolling average and
count over the last 30 events, per symbol.

select stock.symbol, avg(stock.price), count(*)
 from /StockTick {policy: maintain last 30 sliding
 where symbol = "ABCD" or symbol = "WXYZ"
 by symbol} stock
 group by stock.symbol;

The by and group by clauses in the following query are used differently here from the way
they are used in the prior example. This query maintains a sliding window of size 30 based
on price. However, the group by clause is on the symbol. So, the windowing based on
price is of little use here.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

58 | Continuous Queries

select stock.symbol, avg(stock.price), count(*)
 from /StockTick {policy: maintain last 30 sliding
 where symbol = "ABCD" or symbol = "WXYZ"
 by price} stock
 group by stock.symbol;

Tumbling Window Examples (Cache Queries)
A tumbling window a specified queue size, specified as a certain number of entities, and
empties each time the maximum size is exceeded. Emptying the window completes one
cycle. The lifetime of an entity in the window, therefore, is one cycle.

The following query maintains a count over a tumbling window of events. Every time
events arrive, the query picks up a maximum of 500 events, passes them through the query
processing stages, in this case a counter, and produces the count as the result. Because
this is a tumbling window, all those 500 or less events expire immediately and so the query
runs once again and flushes all the events from the window. Now, the count drops to 0 and
the query produces "0" as the count.

Tip: The following example uses a constant (in this case group by "") to create
a dummy group. The next example uses a different constant. See Using a
Dummy Group Expression for Aggregation for more details.

select count(*) from /BurgerSoldEvent {policy: maintain last 500
tumbling} burger group by "";

The following query is not very useful because it forgets how many events have been
processed every time the window "tumbles." One way to solve this problem is to store all
the events in a very large window, forever—but this is impractical. Another way is shown
next.

select count(*) from /BurgerSoldEvent {policy: maintain last 500
tumbling; emit: new} burger group by 1;

Using Emit New to Create a Counter

You can define a tumbling window which retains events for just one cycle and then keep a
counter that remains pinned even if the window appears to disappear after it empties

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

59 | Continuous Queries

itself.

To create such a counter, use the emit: new clause. This clause indicates to the query that
it should only record events entering the window and not those exiting it. So, in this case
the count keeps increasing as new events arrive and it never decreases.

Time Window Examples (Cache Queries)
Time windows use a stream policy that specifies how long an entity remains in the
window.

For information, see Stream Policy.

The expiry time is calculated from a start time. You can use an event or concept's
timestamp property to define the start time. Otherwise, the time the event or concept
entered the window is used as the default start time.

Note: Events whose expiry time is exceeded when they arrive in the
window

A query that uses a time window processes events that have already expired
when they enter the window. The expired events appear in the window for
one cycle and then leave the window in the next cycle.

The following query holds PizzaOrderEvents for 45 minutes after the OrderTime in a time
window.

select coldpizza from /PizzaOrderEvent {policy: maintain last 45 minutes
using coldpizza.OrderTime; emit: dead} coldpizza;

When the using clause is omitted, the window uses the default timestamp that is
associated with the event when it enters the query.

Delaying Output with an Emit Dead Clause

Without an emit: dead clause, the query would produce the event as its output as soon as
it arrives. But because of the emit: dead clause, it is delayed for the amount of time
specified in the window.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

60 | Continuous Queries

The following query maintains the count on a 2-minute time window over network ping
events. Whenever the number of pings in the last two minutes goes above 120, it produces
output that can be treated as an attack.

select count(*) from /NetworkPing {policy: maintain last 2 minutes}
dosattack group by 1 having count(*) > 120;

Ignite Native Continuous Query
Ignite Native Continuous Query provides a low-latency, window-aware streaming events
directly from the Ignite data grid. This section describes the window semantics and EMIT
behavior model for Native Continuous Queries in the Query module. It also provides
examples and troubleshooting information.

To enable the Native Continuous Query execution, see the following table.

Property Type Description

be.ignite.cluster.continuous.query.enabled Boolean Set this property
to true to enable
the Native
Continuous Query
execution.

The default value
is true.

Best Practices
l Always specify an ordered time column for windowed queries.

l Prefer explicit column selection over wildcards.

l Use DISTINCT sparingly in high-throughput environments.

l Choose Tumbling Windows for batch processing workflows.

l Close the statements when no longer needed to release memory.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

61 | Continuous Queries

Window Types and Semantics
Native continuous queries support the following four window types:

l Sliding Window

l Tumbling Window

l Time Window

l Implicit Window

For an Explicit Query, the following are window semantics:

WINDOW <Type>(<duration|count>, <slideDuration|slideCount>) WHERE <Window
expression> [ON <column>] [EMIT: NEW | EMIT: DEAD]

l WINDOW <Type>(<duration|count>, <slideDuration|slideCount>):

This defines the time or count-based window and the sliding mechanism (duration or
count).

o <Type>: The type of window (example, TUMBLING, SLIDING, or TIME).

o <duration|count>: The duration or count for the window.

o <slideDuration|slideCount>: The sliding duration or count for the window. It
is applicable for Window Type=SLIDING (Optional).

l WHERE <Window expression> (Optional): This is an optional condition for filtering
events inside the window based on the window expression.

l ON <column> (Optional): This specifies the column on which the windowing operation
is applied.

l [EMIT: NEW | EMIT: DEAD] (Optional):
EMIT: NEW: Emits new events as they arrive or after they fall into the window.
EMIT: DEAD: Emits events that have expired or are no longer in the window.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

62 | Continuous Queries

Note:
l Query having date type properties supports ISO-8601 UTC-based standard

formats. For example,

o 2025-12-12T10:15:30Z

o 2025-12-12T10:15:30+02:00

o 2025-12-12T10:15:30-05:00

l The window time unit supports the following values:

o s for second

o m for minute

o h for hour

l Implicit window does not support DateTime values in epoch.

Sliding Window
A sliding window continuously advances, retaining the last N events or N time units (or at a
configured slide interval).

Syntax

WINDOW SLIDING(<duration|count>,<slideDuration|slideCount>) ON <column>
[EMIT:NEW|EMIT:DEAD]

Characteristics
l Supports overlapping windows.

l Slide interval defaults to window size, if omitted.

l Time-based or count-based depending on units.

l Window size and window slide should be of the same unit type.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

63 | Continuous Queries

Use Cases
l Rolling averages (moving KPIs)

l Frequent refresh of anomaly detection metrics

EMIT Behavior
l EMIT:NEW publishes entries entering the window.

l EMIT:DEAD publishes entries leaving the window.

Example

native-query: SELECT deviceId, AVG(temp) FROM SensorEvent WINDOW SLIDING
(15m,2m) ON eventTime EMIT:NEW GROUP BY deviceId;

Tumbling Window
A tumbling window is a non-overlapping, fixed-size window, where each event belongs to
exactly one window.

Syntax

WINDOW TUMBLING(<duration|count>) ON <column> [EMIT:NEW|EMIT:DEAD]

Use Cases
l Periodic summarization

l Batch Processing

l Roll-up Statistics

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

64 | Continuous Queries

Example

native-query: SELECT COUNT(*) FROM TradeEvent WINDOW TUMBLING(1m) ON
tradeTime EMIT:DEAD;

Time Window
A time window is a time-range window whose definition is based exclusively on its
duration.

Syntax

WINDOW TIME(<duration>) ON <column> [EMIT:NEW|EMIT:DEAD]

Use Cases
l Monitoring the most recent time horizon.

l Threshold or alert detection.

Example

native-query: SELECT symbol, SUM(volume) FROM TradeEvent WINDOW TIME
(30m) ON tradeTime EMIT:NEW GROUP BY symbol;

Implicit Window
An implicit window applies no explicit window definition. The stream passes through
without accumulation. The native query must be provided in the standard TIBCO
BusinessEvents (BE) native SQL query format, similar to non-continuous queries.

Syntax

<Standard native query>

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

65 | Continuous Queries

Use Cases
l Simple filtering.

l Fast projection of incoming rows.

Example

native-query: SELECT id, status FROM AlertEvent

Extended Properties

Configuration Property Type Description

be.ignite.query.dedupe.emitOnChange Boolean This setting controls
whether deduplication is
enabled for implicit
continuous queries, which
affects when tuple
signatures are emitted.

When set to true,
Deduplication is enabled.
Only new or changed tuple
signatures are emitted.

When set to false,
Deduplication is disabled.
All tuples are emitted,
regardless of duplication.

The default value is true.

be.ignite.query.dedupe.maxEntries Integer This property sets the
maximum number of tuple
signatures held in the Least
Recently Used (LRU) cache.
This limit detects and
prevents the re-emission of

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

66 | Continuous Queries

Configuration Property Type Description

duplicate tuples and also
prevents the unbounded
memory consumption.

Default value is 20000.

Larger Value: It tracks more
history, leading to higher
deduplication accuracy.

Smaller Value: It
remembers fewer
signatures. Duplicates may
be re-emitted once their
older signatures are evicted
from the cache.

EMIT Options
EMIT options control whether entering or exiting tuples are published. You have to define
two queries to model entry behavior and exit behavior separately.

EMIT Behavior
l EMIT:NEW publishes rows that are entering the window or being updated.

l EMIT:DEAD publishes rows that are leaving or expiring from the window.

Common Errors
For an Ignite Native Continuous Query, the following are the common errors:

l Already started: The execute method is called more than once on the same
statement.

l Invalid policy: Native Continuous Queries does not support a snapshot-only policy.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

67 | Continuous Queries

l Missing rule function: Invalid callback URI.

l Unknown alias: Snapshot configuration error.

l Out-of-memory risk: Large batch window with large datasets.

Strict Column Validation
The system property for strict column validation dictates whether the parser enforces strict
validation of column references in Continuous Native Queries. Column validation is
performed during metadata analysis, after query parsing but prior to registration or
execution.

Property Type Description

be.native.query.strictColumnValidation Boolean Set this property to
true to enforce strict
column validation of
column references in
a native continuous
query.

The default value is
false.

When strict column validation is enabled:

l All column references appearing in the query must match the known schema
properties for the target cache.

l Strict mode reports a fatal error if the set of schema property names is empty (for
example, when schema resolution fails).

l The parser raises a QueryException for unknown column references.

l The system columns, including normalized forms, such as _id, _extid, _typeid are
excluded from unknown-column checks.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

68 | Continuous Queries

Limitations of an Ignite Native Continuous Query
The Native Continuous Query engine has a defined set of functional constraints to ensure
deterministic behavior, predictable window processing semantics, and consistent
integration with the underlying EventStream.

All implicit and explicit Native Continuous Queries have the following limitations:

l Subqueries Not Supported

Subqueries are not supported in the current Native Continuous Query
implementation.

Unsupported patterns include, scalar subqueries, inline subqueries in FROM, nested
SELECT statements, IN (SELECT ...) constructs, and correlated subqueries.

l Join Support Limited to Self-Joins

Continuous queries support only self-joins on the same stream or table.

l Explicit Queries Applicable Only to Event Streams

Explicit continuous queries using: WINDOW SLIDING(...), WINDOW TUMBLING(...),
WINDOW TIME(...) are suitable only with run over event types and not with concept
types. No error is encountered but results might be inconsistent.

l Additional Windowing and Query Restrictions

All Continuous Query Window definitions have the following limitations:

o Only one window clause is allowed per query.

o Mixing window types (for example, sliding + tumbling) is not supported.

o The window column must be a valid, monotonic field. Calculated fields are not
allowed.

Troubleshooting
In this section, problems encountered, causes, and their resolution are listed in the
following table.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

69 | Continuous Queries

Problem Reason Resolution

No Output Wrong EMIT type. Switch to EMIT:NEW or correct
window.

High memory use Large batch accumulation. Use smaller windows or non-
batch.

Snapshot ignored Snapshot flag set too late. Set the snapshot before
execute.

Expensive computation Large window + tiny slide. Increase the slide or reduce
the window size.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

70 | Event Stream Processing (ESP) Queries

Event Stream Processing (ESP) Queries
You can configure a query agent to process events arriving through a channel, using
continuous queries.

Event Stream Processing Queries Overview
Event stream processing (ESP) queries respond directly to events from the channel, as they
happen. Instances of events specified in a query statement are piped directly to the query.
ESP uses continuous queries only.

ESP queries are very performant because the data does not go through the inference
engine and then cache and then finally to the query, as with cache queries. Instead the
query engine listens to events directly, reducing latency.

It is more efficient to process very large numbers of events in a query agent than in an
inference agent. Using ESP queries you can reduce and enrich the data before sending it to
an inference agent. For example, using a sliding 10-minute window, a query could process
all the router status messages that arrive in that time period and its callback rule function
is executed for each event (that enter and leaves the time window) and can send out
summary information for that event.

A query agent can perform both ESP queries and cache queries, when deployed in a TIBCO
BusinessEvents application that uses cache OM. You can also configure standalone nodes
that perform only ESP queries and do not use any cache functionality. An inference agent
using In Memory OM could also be deployed in the same node.

Example ESP Query Strings
ESP uses continuous queries only, and the query string must include accept: new in the
stream policy clause.

See Stream Clause. For example:

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

71 | Event Stream Processing (ESP) Queries

select count(*) as theCount from /InferenceOntology/DirectToQueryEvent
{policy: maintain last 10 seconds; accept: new} as dtq\n group by 1;
select sum(currentCount) as theSum from /QueryOntology/Level2QueryEvent
{policy: maintain last 25 seconds; accept: new} as l2q\n group by 1;

An example project demonstrating ESP queries is provided in the directory BE_
HOME/Examples/event_stream_processing/QueryESP.

Event Assertion in a Query Agent
In a query agent, a channel executes an automatic Event.assertEvent(e) when its
destination receives a message and converts it to the destination’s default event type.

However, query agents do not have a Rete network for rule inferencing, so the event is not
asserted in the same way that it is asserted in an inference agent. Also, events asserted in a
query agent are not persisted in the cache. Asserted events cannot be modified or explicitly
deleted.

You can assert events in a callback rule function and they are asserted locally, within the
query agent.

Note: There is no need to associate a locally asserted event with a destination.
You only have to associate the event with a destination if you want to send the
event out of the agent.

Events Asserted Locally Feed Second-Level Queries
Asserting events locally in the ESP query agent enables the output of one query to used by
another query for processing and condensation.

The process can be repeated as many times as required, each query asserting an event that
another query listens to. The end result is generally a smaller set of events with condensed,
high-value information which can be sent to a TIBCO BusinessEvents application or other
external application.

The following methods of asserting events locally are available within an ESP query agent:

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

72 | Event Stream Processing (ESP) Queries

l The callback rule function executes an Event.assertEvent(e) after creating an event
using data from the query.

l The callback rule function executes a Query.Statement.assertEvent
(statementName, e) after creating an event using data from the query. This function
pipes the named event to registered instances of the named query statement.

Some ESP Query Use Cases
The use cases can be elaborated and can be applied as per your needs.

Map and Reduce
ESP queries can be used to implement a kind of "map and reduce" data processing
pattern.

A message arrives at a destination that transforms it into an event of a certain type.

A query configured to listen for events of that type (as specified in the query’s from clause)
then executes:

In the callback rule function for the following query, you would perform some kind of
mapping operation. You would create event instances and then assert them using the
following function:

Query.Statement.assertEvent("myStatement", myEvent);

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

73 | Event Stream Processing (ESP) Queries

The function sends the named event directly to all query instances registered under the
given statement name. You can use the function one or more times in the callback rule
function, according to your needs.

The callback rule function for each of the second-level queries could perform some kind of
"reduce" operation, and then create and assert an event locally using the function
Event.assertEvent(e). The event is piped to any query that is listening for it.

The callback rule function for the final level of query would create and send out an event
containing the reduced, higher-value information, for example to a TIBCO BusinessEvents
application.

ETL (Extract Transform Load) Pattern
Another pattern you can implement is ETL.

Using the following function you can implement dedicated queries that are strung together
like beads on a thread, each listening for the output of the one before:

Query.Statement.assertEvent(statementName, e)

As a result you can process multiple streams of events in parallel.

Standalone ESP Project Configuration
No special configuration is required if you want to use ESP queries in a query agent
deployed in a cache cluster.

Agent configuration is documented in the TIBCO BusinessEvents Developer Guide.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

74 | Event Stream Processing (ESP) Queries

However, if you are running a standalone node for ESP queries only (and not cache
queries), configure it as follows, in the project CDD file:

l Use Cache object management. (Cache OM is required only for the query agent to
function.)

l Configure events and concepts to use Memory Only mode. (In the Cluster tab, expand
Domain Objects > Default and set Mode to Memory Only.)

If you deploy an inference agent in the same node, configure it to use In Memory OM.

Note that the query agent’s local cache is used only if the agent is getting objects from a
cache cluster. It is not used for events arriving from a channel.

Tip: Performance Tuning—Garbage Collection Settings for Sun JDK

The following are some tips for tuning the JVM.

Suggested settings are as follows: Replace n with the number of CPUs in a
multi-CPU machine.

-Xms2g –Xmx2g -XX:+AggressiveOpts -XX:+UseParallelOldGC -
XX:+UseParallelGC -XX:ParallelGCThreads=n

It is recommended that you use a 2GB heap or larger for high volume
applications.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

75 | Query Language Reference

Query Language Reference
The syntax diagrams show the structure of a query and of each clause in a query.
Operators and other items are also used in the syntax diagrams to add more clarity to the
clauses.

Miscellaneous Terms Used in Syntax Diagrams
Some miscellaneous terms are used in the syntax diagrams that do not fall into categories
documented in other tables.

Terms Descriptions

alias Each alias must be globally unique in the whole query (this includes
aliases defined in the projection—that is, aliases used in the select clause
and in the from clause.

entity Use the fully qualified ontology name of an entity, with its project path.

From /concepts/customer data

Remember that names are case sensitive

time unit Allowable time units are as follows:

milliseconds, seconds, minutes, hours, days

Miscellaneous Terms Used in Query Syntax Diagrams

Syntax Diagrams
The syntax diagrams show the structure of a query and of each clause in a query.

Read them from left to right. Items above or below the main line are optional. Items that
can repeat are shown by lines that loop back from the end to the beginning of the

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

76 | Query Language Reference

repeating section, along with the separator character.

Expression

Boolean Expression

Between Expression

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

77 | Query Language Reference

Comparison Expression

In Expression

Logical Expression

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

78 | Query Language Reference

DateTime Expression

Entity Expression

Number Expression

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

79 | Query Language Reference

Int Expression

Long Expression

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

80 | Query Language Reference

Double Expression

String Expression

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

81 | Query Language Reference

Identifier-Dependent Expression

Operators for Unary Expressions
Few operators can be used to work on single operand.

Operator Description and
Examples

Datatypes Result type

not Negation

not x

x must be a
Boolean

Boolean

abs absolute value

abs x

x must be a
number

The type of the
operand

+ unary plus

+ x

x must be a
number

The type of the
operand

- unary minus

-x

x must be a
number

The type of the
operand

() Group (that is,
parentheses)

(a+b)

Any The type of the
operand

Operators for Unary Expressions in Queries

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

82 | Query Language Reference

Operators for Binary Expressions
Various logical, mathematical and string operators are provided to created queries using
binary expressions.

Operator Description and Examples Datatypes Result type

Relational Expression Operators

= equality

x = y

x and y can be
any type

Boolean

!=

<>

inequality

x != y

x <> y

x and y can be
any type.

Boolean

>

<

>=

<=

Greater than

Less than

Greater than or equal to

Less than or equal to

x > y (and so on)

Generically known as
comparison operators

x and y must
both be number
types, or both be
Datetime types.

Boolean

Logical Operators

and or Logical (Boolean) and, or.

x and y

x or y

x and y must be
Boolean

Boolean

Mathematical Operators

Also used in the projection (select clause)

Operators for Binary Expressions in Queries (Sheet of)

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

83 | Query Language Reference

Operator Description and Examples Datatypes Result type

* Multiplication

x * y

x and y must
both be numbers.

Either the type of x
or y, whichever has
the larger capacity.

\ Division

x \ y

x and y must
both be numbers.

double

mod Remainder

x mod y

x and y must
both be numbers.

Either the type of x
or y, whichever has
the larger capacity.

+ Addition

x + y

x and y must
both be numbers.

Either the type of x
or y, whichever has
the larger capacity.

- Subtraction

x - y

x and y must
both be numbers.

Either the type of x
or y, whichever has
the larger capacity.

Postfix Operators

[] Array dereferencing, to
access an array element.

x[y]

x must be an
array and y must
be an int.

Type of the array
element.

. For object graph traversal, to
access a property

x.y

x must be an
entity and y must
be a property.

Type of y.

@ For object graph traversal, to
access an attribute

customer@extId

x must be an
entity and y must
be a attribute.

Type of y.

String Operator

|| String concatenation x and y must be String

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

84 | Query Language Reference

Operator Description and Examples Datatypes Result type

x || y String

like The like operator matches all
strings that match the
regular expression provided
in double quotes.

With the TIBCO cache
provider, you can use "*.*"
syntax, for example:

select symbol from
/ConceptModel/StockTick
where symbol like ".*T.*"

Results: TIBX, MSFT,

where symbol like ".*T"

Results: MSFT

where symbol like "TIBX"

Results: TIBX

where symbol like "TIB."

Results: TIBX

where symbol like ".*"

Results: JNJ, VMW, TIBX,
HPQ, MSFT, HPQ

String Boolean

Operators for Other Expressions
Event Stream Processing also provide few operators for queries other than unary and
binary expressions.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

85 | Query Language Reference

Operator Description and
Examples

Datatypes Result type

between and Between operator for
range expressions. Range
is inclusive.

x between y and z

x and y must all
be number types,
or all be Datetime
types.

Boolean

in() Inclusion operator. Checks
if an expression is in a
group of items.

x in (y1, y2, ..., yn)

Any Boolean

$ Bind variable prefix.

$name

name has no type.
It is just a label.

The type of $name is
determined by its
surrounding
expression. For
example, in the
expression:

($minimum +
14.58)

$minimum is a bind
variable of type
double.

Operators for Other Expressions in Queries

Wildcards Datatypes Literals Identifiers and
Keywords
Event Stream Processing supports various wildcards, datatypes and keyword which can
help in creating the queries.

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

86 | Query Language Reference

Wildcard Characters
l The asterisk (*) is a wildcard character, meaning "all"

l The single quote (’) is a single character wildcard

Datatypes

All types supported by TIBCO BusinessEvents.

Literals

Literal values can be of any of the following data types as well as those mentioned in the
following table:

l hex

l octal

l char

Note: Octal Values

To specify an octal number, begin the number with a zero (0), for example,
01223 is treated as an octal number.

Do not start decimal numbers with a leading zero. To specify a decimal zero
use zero and a decimal point (0.). Do not use 0.0.

Types and Literals

Type Syntax of Literals Example

int A signed integer expressed using only digits
and an optional sign prefix. It has a minimum
value of -2,147,483,648 and a maximum value
of 2,147,483,647 (inclusive).

1234567

long A signed integer expressed using only digits digits

Query Language Types and Literals

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

87 | Query Language Reference

Type Syntax of Literals Example

and an optional sign prefix. It has a minimum
value of -9,223,372,036,854,775,808 and a
maximum value of 9,223,372,036,854,775,807
(inclusive).

1234567

double A double-precision 64-bit IEEE 754 floating
point.

12345.67

1.234e+56

String String literals are surrounded by double
quotes.

To escape double quote and backslash
characters, prefix them with a backslash.

"hello"
"She says:
\"Hello.\""
"c:\\temp\\myfile"

boolean The boolean data type has only two possible
values: true and false. Use for simple flags
that track true and false conditions.

true
false

DateTime
yyyy-MM-dd'T'HH:mm:ss.SSSZ

where

yyyy: four digit year

MM: two digit month

dd: two digit day of month

HH: two digit hour of day in 24-hour format

mm: two digit minutes in hour

ss: two digit seconds in minute

SSS: three digit milliseconds in second

’T’: the letter T

Z: timezone expressed as defined in RFC 822.

2008-04-
23T13:30:25.123-0700

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

88 | Query Language Reference

Type Syntax of Literals Example

Entity type "entity-project-path"

Entity project path begins with a forward
slash and folders are separated with a
forward slash.

"/a/b/MyConcept"

Entity No literal is used for entity instances. (Not applicable)

Identifiers

The first character of an identifier must be alphabetical (upper or lower case) or the
underscore character. Other characters can be alphabetical or numeric or the underscore
character.

Keywords and Other Reserved Words

The complete list of keywords and reserved words used by TIBCO BusinessEvents and its
add-on products is provided in the section Keywords and Other Reserved Words in TIBCO
BusinessEvents Developer Guide.

In TIBCO BusinessEvents Event Stream Processing, the restriction is not case sensitive. For
example, last, Last and LAST are all reserved.

Escaping the Keywords

If you want to use keywords as identifiers, resource names, or folder names in your query
string, prefix them with the # escape character.

Examples:

select id from /PO/#Order o
select /#DateTime/format(birthDate, "yyyy-MM-dd") from /Person
select e.sender as #from from /Email e

Where the following are the types items that use keywords:

#Order is a concept name

#DateTime is a function catalog category whose name happens to be a keyword (only
category names that are keywords need to be escaped)

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

89 | Query Language Reference

#from is an alias

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

90 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO BusinessEvents® Enterprise
Edition Documentation page.

Other TIBCO Product Documentation

When working with TIBCO BusinessEvents Enterprise Edition, you may find it useful to read
the documentation of the following TIBCO products:

l TIBCO ActiveSpaces®: It is used as the store provider for the TIBCO BusinessEvents
Enterprise Edition project.

l TIBCO FTL®: It is used as the cluster provider for the TIBCO BusinessEvents Enterprise
Edition project.

How to Access Related Third-Party Documentation

When working with TIBCO BusinessEvents® Enterprise Edition, you may find it useful to
read the documentation of the following third-party products:

l Apache Ignite

l Apache Kafka

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-businessevents-enterprise-edition-6-3-1
https://docs.tibco.com/products/tibco-businessevents-enterprise-edition-6-3-1

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

91 | TIBCO Documentation and Support Services

l Confluent Kafka Schema Registry

l TIBCO Messaging - Schema Repository for Apache Kafka

l Apache Pulsar

l GridGain

l Apache Cassandra

l Grafana

l InfluxDB

l OpenTelemetry

l OTel Collector

l Apache Maven

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. For a free registration, go to TIBCO Community.

https://support.tibco.com/
https://support.tibco.com/
https://community.tibco.com/

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

92 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, TIBCO BusinessEvents, ActiveMatrix, ActiveMatrix
BusinessWorks, ActiveSpaces, TIBCO Administrator, TIBCO Designer, Enterprise Message Service,
TIBCO FTL, Hawk, and TIBCO Runtime Agent are either registered trademarks or trademarks of Cloud
Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO BusinessEvents® Enterprise Edition Event Stream Processing Query Developer Guide

93 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2004-2025. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	Query Features Overview
	Two Types of Queries—Snapshot and Continuous
	Summary of Functions Used to Create and Execute Queries
	Query From a Rule (in an Inference Agent)
	Query as a Pre-filter

	Query Language Components
	Select Clause
	Delete Clause
	From Clause
	Where Clause
	Group by Clause
	Order by Clause
	Limit Clause
	Stream Clause
	Stream Policy

	The Query Language Usage
	Queries Construction and Query Results Usage
	Query Function Catalog
	Functions within Queries
	Bind Variables Usage

	Lifecycle of a Query—Use of Query Functions
	Query Definition Creation
	Query Statement Opening
	Bind Variables Value Setting (if Used)
	Query Statement Execution
	Obtain Results Using a Result Set
	Obtain Results Using a Callback Rule Function

	Statement Closing and Query Definition Deletion

	Result Set Data Usage (Snapshot Queries)
	Move the Cursor to the Next Row
	Count of Records in Certain Result Sets

	Callback Rule Function Data Usage
	Execute with Callback Function
	Execute with Batch Callback Function
	The Callback Rule Function Required Signature

	The Delete Query
	Simple Snapshot Query Example
	Simple Continuous Query Example
	Example Showing Batching of Return Values (Continuous Queries)
	Bind Variables in Query Text
	Datatype Assignment to a Bind Variable

	Collocated Inference Agents and Dynamic Query Agent Sessions
	Collocated Query and Inference Agents
	Dynamic Query Agent Sessions

	Design Optimization
	Reuse Existing Queries and Statements Whenever Possible
	Improve Performance by Pre-fetching Objects (Cache Queries)
	Optimize WHERE Clause Expressions
	Use Indexing for More Efficient Cache Queries
	Creating an Index Using a Domain Object Override Setting

	Use Filtering for Efficient Joins (Cache Queries)
	Effect of the Cache on Continuous Queries
	Effect of Time on Cache Queries

	Continuous Queries
	Overview of Continuous Queries
	Query Windows
	Business Query Language (BQL) Continuous Query
	Type of Windows
	Working With Implicit Windows
	Working With Sliding Tumbling and Time Windows
	Explicit Window Example (Cache Query)

	Sliding Window Examples (Cache Queries)
	Tumbling Window Examples (Cache Queries)
	Time Window Examples (Cache Queries)

	Ignite Native Continuous Query
	Window Types and Semantics
	Sliding Window
	Tumbling Window
	Time Window
	Implicit Window

	EMIT Options
	Common Errors
	Strict Column Validation
	Limitations of an Ignite Native Continuous Query
	Troubleshooting

	Event Stream Processing (ESP) Queries
	Event Stream Processing Queries Overview
	Example ESP Query Strings
	Event Assertion in a Query Agent
	Events Asserted Locally Feed Second-Level Queries

	Some ESP Query Use Cases
	Map and Reduce
	ETL (Extract Transform Load) Pattern

	Standalone ESP Project Configuration

	Query Language Reference
	Miscellaneous Terms Used in Syntax Diagrams
	Syntax Diagrams
	Operators for Unary Expressions
	Operators for Binary Expressions
	Operators for Other Expressions
	Wildcards Datatypes Literals Identifiers and Keywords

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

