
TIBCO BusinessEvents®

Cloud Deployment Guide
Software Release 5.6
August 2019

Document Updated: September 2019

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

ANY SOFTWARE ITEM IDENTIFIED AS THIRD PARTY LIBRARY IS AVAILABLE UNDER
SEPARATE SOFTWARE LICENSE TERMS AND IS NOT PART OF A TIBCO PRODUCT. AS SUCH,
THESE SOFTWARE ITEMS ARE NOT COVERED BY THE TERMS OF YOUR AGREEMENT WITH
TIBCO, INCLUDING ANY TERMS CONCERNING SUPPORT, MAINTENANCE, WARRANTIES,
AND INDEMNITIES. DOWNLOAD AND USE OF THESE ITEMS IS SOLELY AT YOUR OWN
DISCRETION AND SUBJECT TO THE LICENSE TERMS APPLICABLE TO THEM. BY PROCEEDING
TO DOWNLOAD, INSTALL OR USE ANY OF THESE ITEMS, YOU ACKNOWLEDGE THE
FOREGOING DISTINCTIONS BETWEEN THESE ITEMS AND TIBCO PRODUCTS.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix, ActiveMatrix BusinessWorks, ActiveSpaces,
TIBCO Administrator, TIBCO BusinessEvents, TIBCO Designer, Enterprise Message Service, TERR,
TIBCO FTL, Hawk, TIBCO LiveView, TIBCO Runtime Agent, Rendezvous, and StreamBase are either
registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other
countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. Please see the readme.txt file for
the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

2

TIBCO BusinessEvents® Cloud Deployment Guide

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2004-2019. TIBCO Software Inc. All Rights Reserved.

3

TIBCO BusinessEvents® Cloud Deployment Guide

https://www.tibco.com/patents

Contents

Figures . 6

TIBCO Documentation and Support Services .7

Before You Begin .9

Dockerize TIBCO BusinessEvents .10

Dockerfile for TIBCO BusinessEvents . 10

Containerizing TIBCO BusinessEvents Application in Docker . 13

Building TIBCO BusinessEvents Application Docker Image . 14

Running a TIBCO BusinessEvents Application in Docker .16

Containerizing RMS by Using Docker . 16

Building RMS Docker Image . 16

Running RMS in Docker .18

Docker Run Command Reference . 19

Building TIBCO BusinessEvents Enterprise Administrator Agent Docker Image . 21

Setting Up BusinessEvents Multihost Clustering on Amazon EC2 Instances Using Docker . 23

Setting Up Standalone Amazon EC2 Instances . 23

Configuring Amazon RDS for Shared All Persistence . 25

Configuring Amazon EFS for Shared Nothing Persistence . 26

Running TIBCO BusinessEvents Applications in Kubernetes .28

TIBCO BusinessEvents on OpenShift Container Platform Based Kubernetes . 29

Running an Application on OpenShift Based Kubernetes Cluster . 29

Setting Up the OpenShift CLI Environment . 30

Pushing Application Docker Image to OpenShift Container Registry . 31

Running the Application Without Backing Store on OpenShift Container Platform . 32

Running the Application with Shared Nothing Persistence on OpenShift Container Platform .33

Running the Application with Shared All Persistence on OpenShift Container Platform . 34

Monitoring TIBCO BusinessEvents Applications on OpenShift Container Platform .36

Running the RMS on OpenShift Container Platform . 37

TIBCO BusinessEvents on Microsoft Azure Based Kubernetes . 41

Running an Application on Microsoft Azure Based Kubernetes Cluster .41

Setting up the Microsoft Azure CLI Environment . 42

Setting Up an Azure Container Registry . 42

Setting Up a Kubernetes Cluster on AKS . 43

Running the Application Without Backing Store on Azure . 44

Running an Application with Shared Nothing Persistence on Azure .46

Running an Application with Shared All Persistence on Azure . 47

Monitoring TIBCO BusinessEvents Applications on Microsoft Azure . 49

4

TIBCO BusinessEvents® Cloud Deployment Guide

Running RMS on Azure Based Kubernetes . 50

TIBCO BusinessEvents on AWS Based Kubernetes .53

Running TIBCO BusinessEvents® on AWS Based Kubernetes Cluster .53

Setting up a Kubernetes Cluster on AWS . 54

Running the Application Without Backing Store on AWS . 54

Running an Application with Shared Nothing Persistence on AWS .55

Running an Application with Shared All Persistence on AWS . 57

Monitoring TIBCO BusinessEvents Applications on AWS . 58

Running RMS Applications in AWS Based Kubernetes . 59

TIBCO BusinessEvents on Amazon EKS Based Kubernetes .63

TIBCO BusinessEvents on Pivotal Based Kubernetes .64

Running an Application in Enterprise PKS Installed on GCP . 64

Setting Up a Kubernetes Cluster with Enterprise PKS .65

Setting up Google Container Registry . 66

Running an Application without Backing Store on Enterprise PKS . 67

Running an Application with Shared Nothing Persistence on Enterprise PKS . 68

Running an Application with Shared All Persistence on Enterprise PKS . 70

Monitoring TIBCO BusinessEvents Applications on Enterprise PKS .71

Running RMS on Enterprise PKS . 72

TIBCO BusinessEvents on Minikube Based Kubernetes . 75

Appendix: Sample YAML Files for Kubernetes Cluster . 76

Sample Kubernetes YAML Files for Applications without Backing Store . 76

Sample Kubernetes YAML Files for Applications with Shared Nothing Persistence . 78

Sample Kubernetes YAML Files for Applications with Shared All Persistence .80

Sample YAML Files for TIBCO BusinessEvents Enterprise Administrator Agent . 82

Sample Kubernetes YAML Files for RMS .83

5

TIBCO BusinessEvents® Cloud Deployment Guide

Figures

Kubernetes Cluster Diagram for an Application without Backing Store . 77

6

TIBCO BusinessEvents® Cloud Deployment Guide

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly
in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than any other
documentation included with the product. To access the latest documentation, visit https://
docs.tibco.com.

Product-Specific Documentation

Documentation for TIBCO products is not bundled with the software. Instead, it is available on the
TIBCO Documentation site. To directly access documentation for this product, double-click the
following file:

TIBCO_HOME/release_notes/TIB_businessevents-enterprise_5.6.0_docinfo.html where
TIBCO_HOME is the top-level directory in which TIBCO products are installed. On Windows, the
default TIBCO_HOME is C:\tibco. On UNIX systems, the default TIBCO_HOME is /opt/tibco.

The following documents for this product can be found in the TIBCO Documentation site:

● TIBCO BusinessEvents Release Notes
● TIBCO BusinessEvents Installation
● TIBCO BusinessEvents Getting Started
● TIBCO BusinessEvents Architect's Guide
● TIBCO BusinessEvents Administration
● TIBCO BusinessEvents Developer's Guide
● TIBCO BusinessEvents Cloud Deployment Guide
● TIBCO BusinessEvents Data Modeling Developer's Guide
● TIBCO BusinessEvents Event Stream Processing Pattern Matcher Developer's Guide
● TIBCO BusinessEvents Event Stream Processing Query Developer's Guide
● TIBCO BusinessEvents Configuration Guide
● TIBCO BusinessEvents WebStudio User's Guide
● TIBCO BusinessEvents Decision Manager User's Guide
● Online References:

— TIBCO BusinessEvents Java API Reference
— TIBCO BusinessEvents Functions Reference

How to Contact TIBCO Support

You can contact TIBCO Support in the following ways:

● For an overview of TIBCO Support, visit http://www.tibco.com/services/support.
● For accessing the Support Knowledge Base and getting personalized content about products you are

interested in, visit the TIBCO Support portal at https://support.tibco.com.
● For creating a Support case, you must have a valid maintenance or support contract with TIBCO.

You also need a user name and password to log in to https://support.tibco.com. If you do not have a
user name, you can request one by clicking Register on the website.

7

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.tibco.com
https://docs.tibco.com
http://www.tibco.com/services/support
https://support.tibco.com
https://support.tibco.com

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
https://community.tibco.com.

8

TIBCO BusinessEvents® Cloud Deployment Guide

https://ideas.tibco.com/
https://community.tibco.com

Before You Begin

You can containerize a TIBCO BusinessEvents application by using Docker. You can also run the
dockerized TIBCO BusinessEvents application in a Kubernetes cluster on the cloud platform of your
choice.

Supported Versions

Before you begin, see TIBCO BusinessEvents Readme for supported versions of Docker and cloud
platforms.

Concepts

Before you begin, you must be familiar with the following concepts and services:

● Docker concepts. See Docker Documentation.

● Kubernetes concepts. See Kubernetes Documentation.

● Administration knowledge of the cloud platform and the service that you want to use:

— Amazon Web Services (AWS)

— Microsoft Azure and Azure Kubernetes Service (AKS)

— Red Hat OpenShift Container Platform

— Google Cloud Platform (GCP) and Pivotal Container Service (PKS)

Preparing for TIBCO BusinessEvents Containerization

Ensure that you have the following infrastructure in place:

● A machine with the Docker installation and initial setup based on your operating system, to
generate Docker images. For complete information about Docker installation, see Docker
Documentation.

● TIBCO BusinessEvents installation and a TIBCO BusinessEvents project that you want to deploy
and run on the cloud. For installation instructions, see the TIBCO BusinessEvents Installation Guide.

● Installer ZIP files for the following software:

— TIBCO BusinessEvents

— TIBCO ActiveSpaces (for cache-based projects)

— TIBCO BusinessEvents add-ons (if your project uses it)

(macOS only) On the macOS platform, you can build only Linux containers. To build a
Docker image on macOS, you must store the TIBCO BusinessEvents Linux installer ZIP
file (TIB_businessevents-enterprise_<version>_linux26gl25_x86_64.zip) on your
computer instead of the macOS installer ZIP file. Similarly, if your application uses cache,
download Linux installers for TIBCO ActiveSpaces. Or if it uses TIBCO BusinessEvents
add-ons, download Linux installers for TIBCO BusinessEvents add-ons on your computer.

● (Optional) For monitoring TIBCO BusinessEvents applications, install TIBCO Enterprise
Administrator with the latest hotfix. For installation instructions, see TIBCO Enterprise
Administrator documentation.

● If you are running the application in a Kubernetes cluster on a cloud platform, ensure that you have
an active account on that cloud platform.

9

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.docker.com/
https://kubernetes.io/docs/home/
https://docs.aws.amazon.com/
https://docs.microsoft.com/en-us/azure/
https://docs.microsoft.com/en-us/azure/aks/
https://access.redhat.com/documentation/en-us/openshift_container_platform/
https://cloud.google.com/docs/
https://docs.pivotal.io/runtimes/pks
https://docs.docker.com/
https://docs.docker.com/
https://docs.tibco.com/products/tibco-enterprise-administrator
https://docs.tibco.com/products/tibco-enterprise-administrator

Dockerize TIBCO BusinessEvents

Using the scripts provided in the TIBCO BusinessEvents software, you can containerize and run a
TIBCO BusinessEvents application by using Docker.

Docker provides a way to run applications securely isolated in a container, packaged with all its
dependencies and libraries. Your application can run in any environment as all the dependencies are
already present in the image of the application. For details about Docker, see Docker Documentation.

A TIBCO BusinessEvents application comprises a common TIBCO BusinessEvents runtime and project
(application) specific TIBCO BusinessEvents code running inside the TIBCO BusinessEvents runtime.
Thus to containerize a TIBCO BusinessEvents application, TIBCO BusinessEvents software archive and
application archive are included in the Docker image.

Docker Scripts with BusinessEvents

TIBCO BusinessEvents provides the following scripts for building images of TIBCO BusinessEvents
application and its components at BE_HOME\cloud\docker\bin:

● build_app_image - Script to build the Docker image for your TIBCO BusinessEvents application.

● build_rms_image - Script to build the Docker image for RMS.

● build_teagent_image - Script to build the Docker image for TIBCO BusinessEvents Enterprise
Administrator Agent.

These scripts use the platform-specific Dockerfiles bundled with TIBCO BusinessEvents at BE_HOME
\cloud\docker\bin. For details about Dockerfiles provided with TIBCO BusinessEvents, see
Dockerfile for TIBCO BusinessEvents.

Containerizing TIBCO BusinessEvents Application and Components

To deploy and run different TIBCO BusinessEvents components in Docker, see the following topics:

● Containerizing TIBCO BusinessEvents Application in Docker

● Containerizing RMS by Using Docker

● Building TIBCO BusinessEvents Enterprise Administrator Agent Docker Image

Dockerfile for TIBCO BusinessEvents
TIBCO BusinessEvents provides the Dockerfiles for creating Docker image of the TIBCO
BusinessEvents application and components.

The Dockerfiles for different platforms and components provided with TIBCO BusinessEvents to build
Docker image by using either software installers or by using the existing TIBCO BusinessEvents
installation. The following table lists Dockerfiles provided with the TIBCO BusinessEvents installation,
along with the list of the script files that are using the Dockerfile and type of the container:

Files Location Dockerfile Platform

Used for Creating
the Docker Image
of

Associated
Script File

BE_HOME/cloud/

docker/bin

(For the Docker
image based on
software installers)

Dockerfile Ubuntu TIBCO
BusinessEvents
application

build_app_i
mage.sh

10

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.docker.com/

Files Location Dockerfile Platform

Used for Creating
the Docker Image
of

Associated
Script File

Dockerfile.rhel Red Hat
Enterprise
Linux

TIBCO
BusinessEvents
application

build_app_i
mage.sh

Dockerfile.win Microsoft
Windows

TIBCO
BusinessEvents
application

build_app_i
mage.bat

Dockerfile-rms Ubuntu Rule Management
Server (RMS)

build_rms_i
mage.sh

Dockerfile-rms.win Microsoft
Windows

Rule Management
Server (RMS)

build_rms_i
mage.bat

Dockerfile-teagent Ubuntu

Note: The
same
Dockerfile is
used on both
Linux and
Windows
platforms,
and creates a
Linux
container.

TIBCO
BusinessEvents
Enterprise
Administrator
Agent

build_teagen
t_image.sh

build_teagen
t_image.bat

BE_HOME/cloud/

docker/

frominstall

(For the Docker
image based on the
existing TIBCO
BusinessEvents
installation)

Dockerfile_fromtar Ubuntu TIBCO
BusinessEvents
application

build_app_i
mage.sh

Dockerfile_fromtar.wi

n

Microsoft
Windows

TIBCO
BusinessEvents
application

build_app_i
mage.bat

Dockerfile-

rms_fromtar

Ubuntu Rule Management
Server (RMS)

build_rms_i
mage.sh

Dockerfile-

rms_fromtar.win

Microsoft
Windows

Rule Management
Server (RMS)

build_rms_i
mage.bat

Dockerfile-

teagent_fromtar

Ubuntu TIBCO
BusinessEvents
Enterprise
Administrator
Agent

build_teagen
t_image.sh

When building the Red Hat Enterprise Linux based Docker image, update the dockerfile
(Dockerfile.rhel) with your subscribed Red Hat Docker image before running the Docker build
script. In the Dockerfile, replace the <RHEL_IMAGE> placeholder with the Red Hat Enterprise Linux
Docker image name.

11

TIBCO BusinessEvents® Cloud Deployment Guide

To use any other platform, update the Dockerfile with the platform details. For more information about
Dockerfile structure, see Docker Documentation.

The following sections identify key instructions to set up key configurations for the TIBCO
BusinessEvents Docker images.

Environment Variables (ENV)

The ENV instruction is used to set the environment variables. These variables consist of key-value pairs
which can be accessed from within the container by scripts and applications alike. The syntax for the
ENV instruction is:
ENV key value

The default TIBCO BusinessEvents Dockerfiles have the following common environment variables:

● CDD_FILE: Path of the TIBCO BusinessEvents application or RMS CDD file.

● EAR_FILE: Path of the TIBCO BusinessEvents application or RMS EAR file.

● PU: The name of the processing unit to run. The value is provided at the runtime by the user. The
default value is default.

● AS_DISCOVER_URL: Discovery URL of TIBCO ActiveSpaces.

● ENGINE_NAME: TIBCO BusinessEvents engine name. The default value is be-engine.

● LOG_LEVEL: Logging level for BusinessEvents. The default value is na.

BusinessEvents Environment Variables
ENV CDD_FILE no-default
ENV PU default
ENV EAR_FILE no-default
ENV ENGINE_NAME be-engine
ENV LOG_LEVEL na
ENV AS_DISCOVER_URL self

Data Volumes (VOLUME)

The VOLUME instruction is used to enable access from your container to a directory on the host machine.
The syntax for the VOLUME instruction is:
VOLUME /dir1, /dir2 ...

Using data volumes, you can persist the data across Docker runs. For example, in the default Dockerfile
ActiveSpaces Shared Nothing file stores, the log file locations and the Rule Management Server
directories are configured. The Docker volumes for them are created and all internal file paths are
rooted to the specified directories. These volumes are predefined in Dockerfiles provided with TIBCO
BusinessEvents. The following table lists the predefined (Linux) directory path for creating data
volume. Similar paths are also defined in the Windows Dockerfiles.

Volumes Dockerfiles Description

/mnt/tibco/be/logs Dockerfile

Dockerfile-rms

Directory where log files are stored.

/mnt/tibco/be/data-store Dockerfile

Dockerfile-rms

Directory where shared nothing
data is stored.

/opt/tibco/be/$

{BE_SHORT_VERSION}/rms/config/

security

Dockerfile-rms Directory which holds the RMS
application’s ACL (permission
configuration) and user.pwd files.

12

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.docker.com/engine/reference/builder/

Volumes Dockerfiles Description

/opt/tibco/be/$

{BE_SHORT_VERSION}/examples/

standard/WebStudio

Dockerfile-rms The repository directory for
BusinessEvents WebStudio where
all projects are stored.

/opt/tibco/be/$

{BE_SHORT_VERSION}/rms/config/

notify

Dockerfile-rms Directory where email notification
configuration files are stored.

/opt/tibco/be/$

{BE_SHORT_VERSION}/rms/shared

Dockerfile-rms Directory where RMS applications
exported files are stored.

/opt/tibco/be/$

{BE_SHORT_VERSION}/rms/locale

Dockerfile-rms Directory where the user locale
configuration is stored.

/mnt/tibco/be/ Dockerfile-

teagent

Directory where TIBCO
BusinessEvents is stored.

/opt/tibco/be/$

{BE_SHORT_VERSION}/teagent/logs/

Dockerfile-

teagent

Directory where TIBCO
BusinessEvents Enterprise
Administrator Agent logs are
stored.

Here, BE_SHORT_VERSION stands for the TIBCO BusinessEvents software version in the short form.
For example, for TIBCO BusinessEvents version 5.6.0, the BE_SHORT_VERSION is 5.6.

Ports (EXPOSE)

The EXPOSE instruction is used to associate a specified port to enable networking between the running
process inside the container and the external nodes (that is, the host). The syntax for the EXPOSE
instruction is:
EXPOSE port1 port2 ...

By default the following ports are exposed by the TIBCO BusinessEvents Dockerfiles:

● 50000 and 50001: These are the ports on which TIBCO ActiveSpaces listens. These are exposed by
the base image.

● 5555: This is the JMX port exposed by the base image.
● 8090 and 5000: These are the rule management server ports exposed by the base image.

These ports can be mapped during Docker run.

Containerizing TIBCO BusinessEvents Application in Docker
You can deploy and run a TIBCO BusinessEvents application in Docker by using the Docker image of
the TIBCO BusinessEvents application.

Prerequisites

See Preparing for TIBCO BusinessEvents Containerization

Procedure

1. Build the TIBCO BusinessEvents application Docker image using the script provided by TIBCO
BusinessEvents.

13

TIBCO BusinessEvents® Cloud Deployment Guide

See Building TIBCO BusinessEvents Application Docker Image.

2. (Linux containers only) Create a network bridge for internal communication among Docker images
by using the following command.
docker network create <BRIDGE_NAME>

For details about the command, see Docker Documentation.

3. Run the TIBCO BusinessEvents application image in Docker.
See Running a TIBCO BusinessEvents Application in Docker.

Building TIBCO BusinessEvents Application Docker Image
TIBCO BusinessEvents provides script files to build a Docker image of the TIBCO BusinessEvents
application by using bundled Dockerfiles.

You can build the Docker image either by using existing TIBCO BusinessEvents installation
(BE_HOME) from your computer or by using the software installers of TIBCO BusinessEvents and
other required products. The Docker image generated by using software installers is of smaller size in
comparison to the Docker image generated by using your TIBCO BusinessEvents installation.

For details about Dockerfiles provided with TIBCO BusinessEvents, see Dockerfile for TIBCO
BusinessEvents.

When building the Red Hat Enterprise Linux based Docker image, update the dockerfile
(Dockerfile.rhel) with your subscribed Red Hat Docker image before running the Docker build
script. In the Dockerfile, replace the <RHEL_IMAGE> placeholder with the Red Hat Enterprise Linux
Docker image name.

Prerequisites

See Preparing for TIBCO BusinessEvents Containerization

Procedure

● Application Docker Image by Using Software Installers

Go to the BE_HOME/cloud/docker/bin folder and run the build_app_image application Docker
image building script.

Syntax:
build_app_image -l <installers-directory> -a <apps-artifact-directory> -r <app-
image-name>:<app-image-version> [-d <Dockerfile>] [-h]

Example:
build_app_image -l /home/user/tibco/installers -a /home/user/tibco/be/5.6/
examples/standard/FraudDetection -r fdapp

● (Windows and Linux Only) Application Docker Image by Using Existing TIBCO BusinessEvents
Installation

Go to the BE_HOME/cloud/docker/frominstall folder and run the build_app_image application
Docker image building script.

Syntax:
build_app_image [-l <BE_HOME_location>] -a <apps-artifact-directory> -r <app-
image-name>:<app-image-version> [-d <Dockerfile>] [-h]

Example:
build_app_image -a /home/user/tibco/be/5.6/examples/standard/FraudDetection -r
fdapp

For the Windows platform, enclose all arguments in double quotes (").

14

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.docker.com/v17.12/engine/reference/commandline/network_create/

Application Docker Image Building Script Arguments

Argument
Required/
Optional Description

-l/--installers-

location

(For the Docker image
based on software
installers)

Required The location where installers for TIBCO BusinessEvents,
TIBCO ActiveSpaces (optional), and TIBCO
BusinessEvents add-ons (optional) are stored. This option
is available for scripts that are run from BE_HOME/cloud/
docker/bin.

-l/--be-home

(For the Docker image
based on the existing
TIBCO BusinessEvents
installation)

Optional Specify TIBCO BusinessEvents installation (BE_HOME)
location. This is optional if the script runs from its default
location (BE_HOME/cloud/docker/frominstall).

-a/-app-location Required The location where the application CDD file, enterprise
archive (EAR) file, and external JAR files are stored.

-r/-repo Required Name that you want to assign to application Docker
image.

Optionally, you can provide the version number for the
Docker image. Use the following naming convention for
the application Docker image:
<image-name>:[version-number]

For example, fdc:1.0.

-d/--dockerfile Optional The custom Dockerfile used for generating image. You
can use your own Dockerfile or you can edit and use the
Dockerfile provided with the TIBCO BusinessEvents
installation.

If you have placed the Dockerfile at a location other than
the default location, provide the path of the Dockerfile.

If not specified, the script uses the default bundled
Dockerfile. For the list of default Dockerfiles associated
with the scripts that are provided with TIBCO
BusinessEvents, see Dockerfile for TIBCO
BusinessEvents.

-h/--help Optional Displays help for the script file.

What to do next

Running a TIBCO BusinessEvents Application in Docker

15

TIBCO BusinessEvents® Cloud Deployment Guide

Running a TIBCO BusinessEvents Application in Docker
By using the TIBCO BusinessEvents application Docker image, you can run the TIBCO BusinessEvents
application in Docker.

Prerequisites

● Build the BusinessEvents application Docker image. See Building BusinessEvents Application
Docker Image.

● (Linux containers only) Ensure that a network bridge exists for internal communication between
Docker images. You can use the docker network create command to create the network bridge.
For details about the command, see Docker Documentation.

Procedure

● Execute the run command on the machine where you have created the application Docker image.
docker run --net=<BRIDGE_NETWORK> -p <CONTAINER_PORT>:<HOST_PORT> -v
<LOCAL_DIRECTORIES>:<CONTAINER_DIRECTORIES> -e <ENVIRONMENT_VARIABLES>
<APPLICATION_IMAGE_NAME>:<IMAGE_VERSION>

For details about the docker run command options, see Docker Run Command Reference.

Example

docker run -p 8110:8110 -e PU=default "HOSTNAME=localhost" httpapp

Containerizing RMS by Using Docker
The rule management server (RMS) is an integral part of BusinessEvents for using TIBCO
BusinessEvents WebStudio and Decision Manager. To run TIBCO BusinessEvents WebStudio in a
container, you must containerize RMS.

To run RMS in a container, you must build its Docker image and run it with Docker like a TIBCO
BusinessEvents application.

Prerequisites

See Preparing for TIBCO BusinessEvents Containerization

Procedure

1. Build the RMS Docker image using the script provided by TIBCO BusinessEvents.
See Building RMS Docker Image.

2. (Linux containers only) Create a network bridge for internal communication among Docker images
by using the following command.
docker network create <BRIDGE_NAME>

For details about the command, see Docker Documentation.
3. Run the RMS Docker image in Docker.

See Running RMS in Docker.

Building RMS Docker Image
TIBCO BusinessEvents provides a script file to build the RMS Docker image by using bundled
Dockerfiles.

You can build the Docker image either by using existing TIBCO BusinessEvents installation
(BE_HOME) from your computer or by using the software installer of TIBCO BusinessEvents and other

16

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.docker.com/v17.12/engine/reference/commandline/network_create/
https://docs.docker.com/v17.12/engine/reference/commandline/network_create/

required products. The Docker image generated by using software installers is of smaller size in
comparison to the Docker image generated by using your TIBCO BusinessEvents installation.

For details about Dockerfiles provided with TIBCO BusinessEvents, see Dockerfile for TIBCO
BusinessEvents.

Prerequisites

See Preparing for TIBCO BusinessEvents Containerization

Procedure

● RMS Docker Image by Using Software Installers

Go to the BE_HOME/cloud/docker/bin folder and run the RMS Docker image building script
build_rms_image.

Syntax:
build_rms_image -l <installers-directory> [-a <rms-artifact-directory>] [-r <rms-
image-name>:<rms-image-version>] [-d <Dockerfile>] [-h]

Example:
build_rms_image -l /home/user/tibco/installers

● (Windows and Linux Only) RMS Docker Image by Using Existing TIBCO BusinessEvents
Installation

Go to the BE_HOME/cloud/docker/frominstall folder and run the RMS Docker image building
script build_rms_image.

Syntax:
build_rms_image [-l <BE_HOME_location>] [-a <rms-artifact-directory>] [-r <rms-
image-name>:<rms-image-version>] [-d <Dockerfile>] [-h]

Example:
build_rms_image -r rms.server:1.0

For the Windows platform, enclose all arguments in double quotes (").

RMS Docker Image Script Arguments

Argument
Required/
Optional Description

-l/--installers-

location

(For the Docker image
based on software
installers)

Required The location where installers for TIBCO BusinessEvents,
TIBCO ActiveSpaces, and TIBCO BusinessEvents add-ons
(optional) are stored. This option is available for scripts
that are run from BE_HOME/cloud/docker/bin.

-l/--be-home

(For the Docker image
based on the existing
TIBCO BusinessEvents
installation)

Optional Specify TIBCO BusinessEvents installation (BE_HOME)
location. This is optional if the script runs from its default
location (BE_HOME/cloud/docker/frominstall).

17

TIBCO BusinessEvents® Cloud Deployment Guide

Argument
Required/
Optional Description

-a/--app-location Optional If you have modified the RMS project, specify the
location of the updated RMS.cdd and RMS.ear files.

If not specified, the script file takes the RMS.cdd and
RMS.ear files bundled with TIBCO BusinessEvents
installers.

-r/--repo Optional Name that you want to assign to the RMS Docker image.

Optionally, you can provide the version number for the
Docker image. Use the following naming convention of
the RMS Docker image:
<image-name>:[version-number]

For example, rms.server:latest.

The default value is rms:<BE_version>. For example, for
version 5.6.0 of TIBCO BusinessEvents, the default value
is rms:5.6.0.

-d/--dockerfile Optional The custom Dockerfile used for generating image. You
can use your own Dockerfile or you can edit and use the
Dockerfile provided with the TIBCO BusinessEvents
installation.

If you have placed the Dockerfile at a location other than
the default location, provide the path of the Dockerfile.

If not specified, the script uses the default bundled
Dockerfile. For the list of default Dockerfiles associated
with the scripts that are provided with TIBCO
BusinessEvents, see Dockerfile for TIBCO
BusinessEvents.

-h/--help Optional Provides help for the script file.

What to do next

Running RMS in Docker

Running RMS in Docker
By using the TIBCO BusinessEvents application Docker image, you can run the TIBCO BusinessEvents
application in Docker.

Prerequisites

● Build the RMS Docker image. See Building RMS Docker Image.

● (Linux containers only) Ensure that a network bridge exists for internal communication between
Docker images. You can use the docker network create command of Docker to create the
network bridge. For details about the command, see Docker Documentation .

18

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.docker.com/engine/reference/commandline/network_create/

Procedure

● Execute the run command on the machine where you have created the application Docker image.
docker run --net=<BRIDGE_NETWORK> -p <CONTAINER_PORT>:<HOST_PORT> -v
<LOCAL_DIRECTORIES>:<CONTAINER_DIRECTORIES> -e <ENVIRONMENT_VARIABLES>
<RMS_IMAGE_NAME>:<IMAGE_VERSION>

For details about the Docker run command options, see Docker Run Command Reference.

Example

docker run -p 8090:8090 -e PU=default "HOSTNAME=localhost" rms:5.6.0

Docker Run Command Reference
The docker run command is used for containerizing and running a TIBCO BusinessEvents application
by using its Docker image.

Syntax

docker run --net=<BRIDGE_NETWORK> -p <CONTAINER_PORT>:<HOST_PORT> -v
<LOCAL_DIRECTORIES> -e <ENVIRONMENT_VARIABLES>
<APPLICATION_IMAGE_NAME>:<IMAGE_VERSION>

Where:

● --net=<BRIDGE_NETWORK> - Specify the name of the network bridge that you have created. This
connects the container to the specified network.

● -p <CONTAINER_PORT>:<HOST_PORT> - (Optional) Specify the host port and container port that you
want to map.

● -v <LOCAL_DIRECTORIES>:<CONTAINER_DIRECTORIES> - (Optional) Specify the path of the local
directory that you want to mount to the container.

● <APPLICATION_IMAGE_NAME> - Specify the name of the BusinessEvents application Docker image. If
you want to use RMS, use the RMS Docker image name.

● <IMAGE_VERSION>- (Optional) Specify the version of the specified Docker image.

● -e <ENVIRONMENT_VARIABLES> - Use the -e option to set environment variables, as required, with
syntax VAR=Value. You can use the following environmental variables at the run time.

— AS_DISCOVER_URL: Specify the discover URL, which enables members to discover each other in
the network. For example:
docker run --net=simple-bridge --name=inference -e AS_DISCOVER_URL=tcp://
cache:50000 -e PU=default -p 8109:8109 fdcache:v01

Here the Docker name of the cache server "cacheagent" is used for the AS_DISCOVER_URL of the
inference agent. As all agents running on the same Docker host can resolve Docker names to
their IP addresses on the network, you can create clusters across instances on the same network.

— PU: Specify the processing unit that needs to be started. For example, running the application
with "cache" as processing unit:
docker run --net=be_network --name=cacheagent -e PU=cache fdcache:v01

— LOG_LEVEL: Specify the override value for the predefined log level. You can specify comma-
separated values for the log patterns required. If the LOG_LEVEL environment variable is not
specified, the log-config of the CDD file is used. The pattern configurations are the same as
the log-config of the CDD file. For example:
docker run --net=simple-bridge --name=cacheagent -e PU=cache –e
LOG_LEVEL=*:debug fdcache:v01

19

TIBCO BusinessEvents® Cloud Deployment Guide

— DOCKER_HOST: Specify the host where the docker run command is executed. This environment
variable is required for remote JMX connections to the running container. For example:
docker run --net=be_network --name=sample –p 5555:5555 -e PU=default –e
DOCKER_HOST=10.97.123.56 sample:v01

The default JMX port for engines running in Docker is 5555. You must map this
default port to the local port defined in the Dockerfile.

— AS_PROXY_NODE: Specifies whether the container run as a proxy node. Set the value to true, to
start the node in proxy mode. For example:
docker run ... –e AS_PROXY_NODE=true ...

The port 50001 is the default ActiveSpaces remote listen port which can be specified while
connecting to the proxy node. For example:
docker run ... -e AS_DISCOVER_URL=tcp://<container_name>:50001?
remote=true ...

— TRA properties: You can specify any of the BusinessEvents engine and JVM properties as an
environment variable.

To use the property, append tra. at the beginning of the property name. For example, to use
java.extended.properties, provide tra.java.extended.properties and its value as
environment variable. The value of the environment variable tra.java.extended.properties
overwrites the value of the java.extended.properties property in the be-engine.tra file.

You can also specify a few JVM properties, such as, -Xms, -Xmx, and -Xss as environment
variable individually. These individual JVM properties, when specified as environment
variable, take precedence over the JVM properties defined in the
tra.java.extended.properties environment variable. Other JVM properties, such as,
garbage collection properties still have to be defined under the
tra.java.extended.properties environment variable. The following table lists the
environment variables that you can use for these JVM property options.

Environment Variables for JVM Properties

Task JVM Property Option Environment Variable

Set initial Java heap size -Xms tra.java.heap.size.initial

Set maximum Java heap
size

-Xmx tra.java.heap.size.max

Set Java thread stack size -Xss tra.java.stack.size

For example:
docker run -e "tra.java.heap.size.initial=1024m" -e
"tra.java.heap.size.max=1024m" -e "tra.java.stack.size=2m" -
e="tra.java.extended.properties=-server -Xms512m -Xmx512m -javaagent:%BE_HOME
%/lib/cep-base.jar -XX:MaxMetaspaceSize=256m -XX:+UseParNewGC -
XX:+UseConcMarkSweepGC" com.tibco.be.fd:v016

In the previous example, tra.java.heap.size.initial=1024m and
tra.java.heap.size.max=1024m takes precedence over the -Xms512m and -Xmx512m options
of tra.java.extended.properties. Thus, the initial Java heap size and maximum Java heap
size is set to 1024M instead of 512M. Also, the tra.java.stack.size=2m environment variable
sets the -Xss option of java.extended.properties property in the be-engine.tra file to 2M.

— Global Variable: You can specify a global variable as an environment variable to override its
value. Provide the global variable name and its value as an environment variable. For example,
to specify value for the global variable HOSTNAME as localhost, run the following command:
docker run ... –e "DB_USERNAME=scott" ...

20

TIBCO BusinessEvents® Cloud Deployment Guide

In order to update global variables during runtime, ensure that global variables are
used in shared resources of the TIBCO BusinessEvents project. For example, to change
database details at runtime without regenerating application Docker image, ensure
that global variables are used in the JDBC shared resource.

For more details about the docker run command, see Docker Documentation.

Building TIBCO BusinessEvents Enterprise Administrator Agent Docker
Image

TIBCO BusinessEvents provides script files to build TIBCO BusinessEvents Enterprise Administrator
Agent Docker image by using bundled Dockerfiles.

You can build the Docker image either by using existing TIBCO BusinessEvents installation
(BE_HOME) from your computer or by using the software installer of TIBCO BusinessEvents and other
required products. The Docker image generated by using software installers is of smaller size in
comparison to the Docker image generated by using your TIBCO BusinessEvents installation.

Prerequisites

See Preparing for TIBCO BusinessEvents Containerization

Procedure

● Docker Image by Using Software Installers

Go to the BE_HOME/cloud/docker/bin folder and run the build_teagent_image TIBCO
BusinessEvents Enterprise Administrator Agent Docker image building script.

Syntax:
build_teagent_image -l <installers-directory> [-r <teagent-image-name>:<teagent-
image-version>] [-d <Dockerfile>] [-h]

Example:
build_teagent_image -l /home/user/tibco/installers

● (Linux Only) Docker Image by Using Existing TIBCO BusinessEvents Installation

Go to the BE_HOME/cloud/docker/bin/frominstall folder and run the build_teagent_image
TIBCO BusinessEvents Enterprise Administrator Agent Docker image building script.

Syntax:
build_teagent_image [-l <BE_HOME-location>] [-r <teagent-image-name>:<teagent-
image-version>] [-d <Dockerfile>] [-h]

Example:
build_teagent_image -r teagent-be:1.0

For the Windows platform, enclose all arguments in double quotes (").

21

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.docker.com/engine/reference/commandline/run/

TIBCO BusinessEvents Enterprise Administrator Agent Docker Image Script Arguments

Argument
Required/
Optional Description

-l/--installers-

location

(For the Docker image
based on software
installers)

Required The location where installers for TIBCO BusinessEvents,
TIBCO ActiveSpaces, and TIBCO BusinessEvents add-ons
(optional) are stored. This option is available for scripts
that are run from BE_HOME/cloud/docker/bin.

-l/--be-home

(For the Docker image
based on the existing
TIBCO BusinessEvents
installation)

Optional Specify TIBCO BusinessEvents installation (BE_HOME)
location. This is optional if the script runs from its default
location (BE_HOME/cloud/docker/frominstall).

-r/--repo Optional Name that you want to assign to the TIBCO
BusinessEvents Enterprise Administrator Agent Docker
image.

Optionally, you can provide the version number for the
Docker image. Use the following naming convention for
the TIBCO BusinessEvents Enterprise Administrator
Agent Docker image:

<image-name>:[version-number] For example,
teagent:1.0.

The default value is teagent:<BE_version>. For
example, for version 5.6.0 of TIBCO BusinessEvents, the
default value is teagent:5.6.0.

-d/--dockerfile Optional The custom Dockerfile to be used for generating image.
You can use your own Dockerfile or you can edit and use
the Dockerfile provided with the TIBCO BusinessEvents
installation.

If you have placed the Dockerfile at a location other than
the default location, provide the path of the Dockerfile.

If not specified, the script uses the default bundled
Dockerfile. For list of default Dockerfiles for the scripts
provided with TIBCO BusinessEvents, see Dockerfile for
TIBCO BusinessEvents.

-h/--help Optional Provides help for the script file.

What to do next

Run the TIBCO BusinessEvents Enterprise Administrator Agent Docker image in Kubernetes based on
your preferred cloud platform. For details, see:

● Monitoring TIBCO BusinessEvents Applications on OpenShift Container Platform

● Monitoring TIBCO BusinessEvents Applications on Microsoft Azure

● Monitoring TIBCO BusinessEvents Applications on AWS

22

TIBCO BusinessEvents® Cloud Deployment Guide

● Monitoring TIBCO BusinessEvents Applications on Enterprise PKS

Setting Up BusinessEvents Multihost Clustering on Amazon EC2 Instances
Using Docker

You can set up BusinessEvents multihost clustering on Amazon Elastic Compute Cloud (Amazon EC2)
instances using Docker and Weave Net.

Prerequisites

● An Amazon Web Services (AWS) account. Refer to the Amazon EC2 documentation at https://
aws.amazon.com/documentation/ec2/ to learn Amazon EC2 concepts and how to use the Amazon
EC2 console.

● TIBCO BusinessEvents application image. See Dockerize TIBCO BusinessEvents for more details on
running TIBCO BusinessEvents on Docker.

● (Optional) Docker Hub registry account or any other Docker registry account. Refer to the https://
docs.docker.com/ to learn more about Docker.

● Weave Net for multihost docker networking. Refer to the Weave Net documentation at https://
www.weave.works/docs/net/latest/features/ to learn on how to use Weave Net and how to integrate
with Docker.

● Amazon Elastic File System configuration (EFS) for shared nothing persistence. Refer to the Amazon
EFS documentation at https://aws.amazon.com/documentation/efs/ to learn about Amazon EFS
concepts and configurations.

● Relational Database Service configuration (RDS) for shared all persistence. Refer to the Amazon
RDS documentation at https://aws.amazon.com/documentation/rds/ to learn about Amazon RDS
concepts and configurations.

Setting Up Standalone Amazon EC2 Instances
For BusinessEvents multihost clustering, you must create Amazon Elastic Cloud Compute (Amazon
EC2) instances and configure Docker and Weave Net on each of them. This setup is common for shared
all and shared nothing persistence options.

Procedure

1. Log in to Amazon EC2 console with your credentials.
Refer to Amazon EC2 documentation at https://aws.amazon.com/documentation/ec2/ for more
details on setting Amazon EC2 account.

2. In the Amazon EC2 console, create a new security group with the following inbound rules.

Inbound Rules

Rule No. Type Protocol Port Source

1 SSH TCP 22 Anywhere

2 Custom TCP Rule TCP 6783 Anywhere

3 Custom UDP Rule UDP 6783 Anywhere

23

TIBCO BusinessEvents® Cloud Deployment Guide

https://aws.amazon.com/documentation/ec2/
https://aws.amazon.com/documentation/ec2/
https://docs.docker.com/
https://docs.docker.com/
https://www.weave.works/docs/net/latest/features/
https://www.weave.works/docs/net/latest/features/
https://aws.amazon.com/documentation/efs/
https://aws.amazon.com/documentation/rds/
https://aws.amazon.com/documentation/ec2/

Rule No. Type Protocol Port Source

4 Custom TCP Rule TCP <HTTP Port as per
BusinessEvents
project>

Anywhere

Port TCP/UDP 6783 is required for weave networking. You can configure source according
to your requirement.

Refer to Amazon EC2 documentation at http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
get-set-up-for-amazon-ec2.html for details on how to create security group.

3. On the Amazon EC2 console, create two or more Standalone Amazon EC2 instances of type Ubuntu
or CentOS or as per your requirement. Specify the configuration parameters according to your
requirement in the wizard.

● Select the default Virtual Private Cloud (VPC) for testing purpose or you can use an customized
one.

● Select the security group created earlier in Step 2.

● Generate a new key pair (.pem) per instance and save it.

Refer to the Amazon EC2 documentation at http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/LaunchingAndUsingInstances.html for more details on launching an instance.

4. In the Amazon EC2 console, on Review Instance Launch page, check the details of your instance,
and after the verification click Launch.

5. Ensure that all instances are in the "running" state and status checks are marked with no error.

6. Note down the public and private IP address/DNS of all instances, which can be later used for
connection.

7. Change the permission of PEM key.
> chmod 400 mykey.pem

8. Securely log in to Amazon EC2 instances using an SSH client.
> ssh -i /pathto/mykey.pem ec2-user@<public IP address of EC2 instance or public
DNS>

User name could be ec2-user or ubuntu as per the Amazon EC2 instance type.

9. Install Docker on all Amazon EC2 instances.
Refer to the installation instructions mentioned in the Docker Documentation at https://
docs.docker.com/engine/installation/.

10. Install Weave Net all EC2 instances.
> sudo curl -L git.io/weave -o /usr/local/bin/weave
> sudo chmod a+x /usr/local/bin/weave

Refer to the installation instructions in the Weave Net documentation at https://www.weave.works/
docs/net/latest/installing-weave/.

11. Start weave on each instance, and provide it other peers private IP addresses.
On Instance 1,
> weave launch

On Instance 2,
> weave launch <HostName/Private IP address of Instance 1>

12. Run the following command and check status of the peers connection.
> weave status

24

TIBCO BusinessEvents® Cloud Deployment Guide

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://www.weave.works/docs/net/latest/installing-weave/
https://www.weave.works/docs/net/latest/installing-weave/

If the connection is successful, the status displays the number of established connections. For
example,
Peers: 2 (with 2 established connections)

Configuring Amazon RDS for Shared All Persistence

In this approach BusinessEvents application image is built locally and the docker registry is used to
push or pull images. You can also build images directly on Amazon EC2 instances. If required, you can
also configure separate VPC and security group.

Prerequisites

Check Amazon Relational Database Service (RDS) prerequisites at http://docs.aws.amazon.com/
AmazonRDS/latest/UserGuide/CHAP_SettingUp.html.

Procedure

1. Create an Amazon RDS of type Oracle.
Refer to the Amazon RDS documentation at http://docs.aws.amazon.com/AmazonRDS/latest/
UserGuide/CHAP_GettingStarted.CreatingConnecting.Oracle.html for more details on how to do it.

2. Use default VPC, same used for Amazon EC2 instances. Also, in the same security group add one
more inbound rule for database port.

Inbound Rules

Type Protocol Port Source

Custom TCP Rule TCP 1501 Anywhere

Or if required, you can create a separate security group for the database instance

3. After the database instance is running and is in "available" state, you can establish a connection to it
using any SQL client.

4. Create a BusinessEvents specific user and run all BusinessEvents specific scripts that are required.

5. After the database setup is ready, use the same database setup in the JDBC shared resource. You can
use the database instance endpoint as Database URL in the JDBC shared resource. Use the Test
Connection feature to check if the connection is successful.

6. Create BusinessEvents application docker image locally on any machine and push it to docker
registry.
See Containerizing TIBCO BusinessEvents Application in Docker for more details on how to do it.

7. Pull this BusinessEvents application docker image on all Amazon EC2 instances.
After the BusinessEvents application image is available on all EC2 instances, you can run
BusinessEvents application containers.

8. Set the Weave environment on all Amazon EC2 instances for running BusinessEvents application
containers.
> eval $(weave env)

9. Start containers on all Amazon EC2 instances.
For example,
//Start cache 1 on instance 1
docker run -d --name=cache1SA -e PU=cache <username>/fdstore_sharedall:GA
//Start cache 2 on instance 2
docker run -d --name=cache2SA -e PU=cache -e AS_DISCOVER_URL=tcp://
cache1SA:50000 <username>/fdstore_sharedall:GA
//Start inference on instance 2

25

TIBCO BusinessEvents® Cloud Deployment Guide

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SettingUp.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SettingUp.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.Oracle.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.Oracle.html

docker run -d --name=InfSA -p 8209:8209 -e PU=default -e AS_DISCOVER_URL=tcp://
cache1SA:50000 <username>/fdstore_sharedall:GA

Ensure that all BusinessEvents application containers are connected to each other and inference is
processing events at port 8209.

10. For sending events using readme.html of the example application, replace localhost with the
public IP address of instance where the inference container is running.
As long as the RDS database instance is in running state, data is persisted.

11. To check the data recovery, stop all Amazon EC2 instances and start them again.

12. Restart all stopped containers and check that the data is recovered in cache containers.

Configuring Amazon EFS for Shared Nothing Persistence

Procedure

1. Create an Amazon Elastic File System (EFS) with the same Virtual Private Cloud (VPC) and security
group as of the Amazon EC2 instances.
Refer to the Amazon EFS documentation at http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/AmazonEFS.html for detailed steps on how to create an Amazon EFS file system.

2. Note down DNS name which is required while mounting EFS on Amazon EC2 instances.

3. Open an SSH client and connect to your Amazon EC2 instance.

4. Install the NFS client on all Amazon EC2 instances.
On an Amazon Linux, Red Hat Enterprise Linux, or SUSE Linux instance, run the following
command:
> sudo yum install -y nfs-utils

On an Ubuntu instance, run the following command:
> sudo apt-get install nfs-common

5. Create a new directory on all Amazon EC2 instances, such as "efs".
> sudo mkdir efs

6. Mount your file system by using the EFS DNS name.
> sudo mount -t nfs4 -o
nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2 fs-
cb8b5e62.efs.us-west-2.amazonaws.com:/ efs

If the connection was not successful, refer to Amazon EFS troubleshooting documentation at http://
docs.aws.amazon.com/efs/latest/ug/troubleshooting.html.

7. Run the following command to see the mount:
> df -T

8. Update BusinessEvents application CDD with shared nothing datastore path as /mnt/tibco/be/
data-store, which is declared as VOLUME in BusinessEvents base dockerfile.

9. Create BusinessEvents application docker image locally on any machine and push it to docker
registry.
See Containerizing TIBCO BusinessEvents Application in Docker for more details on how to do it.

10. Pull this BusinessEvents application docker image on all Amazon EC2 instances.
Once the BusinessEvents application image is available on all EC2 instances, you can run
BusinessEvents application containers.

11. Set the Weave environment on all Amazon EC2 instances for running BusinessEvents application
containers.
> eval $(weave env)

26

TIBCO BusinessEvents® Cloud Deployment Guide

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEFS.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEFS.html
http://docs.aws.amazon.com/efs/latest/ug/troubleshooting.html
http://docs.aws.amazon.com/efs/latest/ug/troubleshooting.html

12. Start containers on all Amazon EC2 instances.
For example,
//Start cache 1 on instance 1
docker run -d --name=cache1SN -v /home/ubuntu/efs:/mnt/tibco/be/data-store -e
PU=cache <username>/fdstore_sharednothing:GA
//Start cache 2 on instance 2
docker run -d --name=cache2SN -v /home/ubuntu/efs:/mnt/tibco/be/data-store -e
PU=cache -e AS_DISCOVER_URL=tcp://cache1SN:50000 <username>/
fdstore_sharednothing:GA
//Start inference on instance 2
docker run -d --name=InfSN -v /home/ubuntu/efs:/mnt/tibco/be/data-store -p
8209:8209 -e PU=default -e AS_DISCOVER_URL=tcp://cache1SN:50000 <username>/
fdstore_sharednothing:GA

Ensure that all BusinessEvents application containers are connected to each other and inference is
processing events at port 8209.

13. For sending events using readme.html of the example application, replace localhost with the
public IP address of instance where the inference container is running.
As long as EFS is in running state, data is persisted.

14. To check the data recovery, stop all Amazon EC2 instances and start them again. Mount the EFS
target again as mentioned in Step 6.

15. Restart all stopped containers and check that the data is recovered in cache containers.

27

TIBCO BusinessEvents® Cloud Deployment Guide

Running TIBCO BusinessEvents Applications in
Kubernetes

Kubernetes is an open-source platform designed to automate deploying, scaling, and operating
application containers. Kubernetes can run application containers on clusters of physical or virtual
machines.

For more information about Kubernetes, see Kubernetes documentation.

In TIBCO BusinessEvents, to form a cluster, discovery nodes starts a cluster and other non-discovery
nodes (cache and inference). These non-discovery nodes connect to one or more discovery nodes and
become a member of the cluster. In Kubernetes, each TIBCO BusinessEvents node runs as a Kubernetes
pod. Pods communicate with each other by using their IP addresses. However, due to the dynamic
nature of the IP addresses, non-discovery nodes cannot always connect to discovery nodes. Thus, to
resolve this issue, discovery nodes are modeled as Kubernetes services. The service is reachable by its
name by using the Kubernetes DNS. Non-discovery nodes use indirection by using the Kubernetes
service to connect to discovery nodes.

● TIBCO BusinessEvents on OpenShift Container Platform Based Kubernetes

● TIBCO BusinessEvents on Microsoft Azure Based Kubernetes

● TIBCO BusinessEvents on AWS Based Kubernetes

● TIBCO BusinessEvents on Amazon EKS Based Kubernetes

● TIBCO BusinessEvents on Pivotal Based Kubernetes

● TIBCO BusinessEvents on Minikube Based Kubernetes

28

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/home/

TIBCO BusinessEvents on OpenShift Container Platform
Based Kubernetes

You can run any TIBCO BusinessEvents application on OpenShift Container Platform based Kubernetes
cluster and monitor them by using TIBCO BusinessEvents Enterprise Administrator Agent. You can
also manage business rules through WebStudio by running RMS on OpenShift Container Platform
based Kubernetes cluster.

For details, see OpenShift Container Platform documentation.

Readme for Sample Applications

TIBCO BusinessEvents provides readme.html files to help you in running the sample applications and
components on OpenShift Container Platform. You can follow the instruction in the readme.html file to
run the application, WebStudio, and TIBCO BusinessEvents Enterprise Administrator Agent by using
the provided sample YAML files.

The following table lists location of readme.html and sample YAML files for running sample
applications and other components:

Scenario
readme.html and Sample YAML Files
Location

Running TIBCO BusinessEvents application
(FraudDetection) without cache on OpenShift
Container Platform

BE_HOME\cloud\kubernetes\OpenShift

\inmemory

Running TIBCO BusinessEvents applications
(FraudDetectionCache and FraudDetectionStore)
with cache on OpenShift Container Platform

BE_HOME\cloud\kubernetes\OpenShift\cache

Running TIBCO BusinessEvents WebStudio on
OpenShift Container Platform

BE_HOME\cloud\kubernetes\OpenShift\rms

Running TIBCO BusinessEvents Enterprise
Administration Agent for monitoring TIBCO
BusinessEvents applications on OpenShift
Container Platform

BE_HOME\cloud\kubernetes\OpenShift\tea

Topics

● Running an Application on OpenShift Based Kubernetes Cluster

● Monitoring TIBCO BusinessEvents Applications on OpenShift Container Platform

● Running the RMS on OpenShift Container Platform

Running an Application on OpenShift Based Kubernetes Cluster
By using Red Hat OpenShift Container Platform, you can deploy a TIBCO BusinessEvents application
in the Kubernetes cluster managed in an on-premises infrastructure.
As OpenShift Container Platform is built on top of Kubernetes cluster, you do not need to install
Kubernetes separately. For details about OpenShift Container Platform, see OpenShift Container
Platform documentation.

29

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.openshift.com/container-platform
https://docs.openshift.com/index.html
https://docs.openshift.com/index.html

Prerequisites

● See Preparing for TIBCO BusinessEvents Containerization.

● Docker image of your TIBCO BusinessEvents application, see Building TIBCO BusinessEvents
Application Docker Image.

Procedure

1. Set up OpenShift Container Platform CLI to deploy the application from a terminal.
See Setting Up the OpenShift CLI Environment.

2. Push the application Docker image to the OpenShift Container Platform registry.
See Pushing Application Docker Image to OpenShift Container Registry.

3. Based on your application architecture, deploy the application on the Kubernetes cluster. See the
following topics based on your application persistence option:

● Running the Application Without Backing Store on OpenShift Container Platform.

● Running the Application with Shared Nothing Persistence on OpenShift Container Platform.

● Running the Application with Shared All Persistence on OpenShift Container Platform.

Setting Up the OpenShift CLI Environment
To run the application in an Kubernetes cluster on OpenShift, you can use OpenShift Container
Platform CLI which runs on top of the Kubernetes cluster.
You can download the oc client tool from the OpenShift web console and install it to execute OpenShift
Container Platform commands. In OpenShift Container Platform, you can create a new project that
defines the scope of resources and who can access those resources. The application images are deployed
in a project.

For details about OpenShift Container Platform or any of the step in the following procedure, see the
Red Hat OpenShift Container Platform documentation.

Prerequisites

● You must have valid subscription of OpenShift Container Platform on your Red Hat account, see
Red Hat OpenShift Container Platform.

Procedure

1. Download and install the oc client tool on the master node to access the OpenShift CLI commands.

2. Log in to the OpenShift CLI by using the oc login command .
For example:
$ oc login 203.0.113.0:8443 --token=ov40AhpOCBITwHBtC_vat0SF4xJd8lQNjylccs8ZOLc

3. Create a new project by using the oc new-project command.
For example:
$ oc new-project be-project --description="For running BE applications." --
display-name="be-project"

Result

A new project be-project is created and you are its project admin.

You can use the oc status command to see the status of your projects.

30

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.openshift.com/container-platform
https://www.openshift.com/products/container-platform

What to do next

Pushing Application Docker Image to OpenShift Container Registry.

Pushing Application Docker Image to OpenShift Container Registry
To deploy the application, you must push the application Docker image to the OpenShift Container
Platform default Docker registry.

The following procedure lists sample steps to complete the task. These steps can vary based on your
infrastructure setup. For details, see Red Hat OpenShift Container Platform documentation.

Prerequisites

● You must have the Docker image of your TIBCO BusinessEvents application, see Building TIBCO
BusinessEvents Application Docker Image.

● You must be logged in to OpenShift Container Platform CLI, see Setting Up the OpenShift CLI
Environment.

Procedure

1. Get the default Docker registry details of OpenShift Container Platform by using the oc describe
command.
oc describe -n default service/docker-registry

The command returns the registry details on the terminal which you can use for pushing the
application image. For example:
$ oc describe -n default service/docker-registry
Name: docker-registry
Namespace: default
Labels: <none>
Annotations: <none>
Selector: docker-registry=default
Type: ClusterIP
IP: 192.0.2.0
Port: 5000-tcp 5000/TCP
TargetPort: 5000/TCP
Endpoints: 198.51.100.10:5000
Session Affinity: ClientIP
Events: <none>

2. Tag the application Docker image with the OpenShift default Docker registry name and project
name.
Syntax:
docker tag <image_name>:<version> <registry_login_server>/<project_name>/
<image>:<version>

For example,
$ docker tag fdcache550:01 192.0.2.0:5000/be-project/fdcache550:01

3. Login to OpenShift Docker container registry using your OpenShift credentials.

For example:
$ docker login 192.0.2.0:5000 -u userid -p
ov40AhpTXYZOwHBtC_vat0SF4xJd8lQNjylccs8ZOLc

4. Push the tagged application Docker image to the OpenShift Docker container registry.
Syntax:
docker push <registry_login_server>/<project_name>/<image>:<version>

For example:
$ docker push 192.0.2.0:5000/be-project/fdcache550:01

31

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.openshift.com/container-platform

Running the Application Without Backing Store on OpenShift Container Platform
After uploading your TIBCO BusinessEvents application Docker image with no backing store to the
OpenShift Docker registry, you can deploy your application and services to the Kubernetes cluster. The
cluster manages the availability and connectivity of the application and service.
In OpenShift Container Platform, you do not have to setup Kubernetes separately. For more
information about Kubernetes and OpenShift Container Platform, see OpenShift Container Platform
documentation.

TIBCO BusinessEvents provides a readme.html file at BE_HOME\cloud\kubernetes\OpenShift\cache
for the Dockerized FraudDetectionCache application. You can follow the instruction in the
readme.html file to run the application by the using the sample YAML files. These sample YAML files
are available at BE_HOME\cloud\kubernetes\OpenShift\cache\persistence-none for deploying
TIBCO BusinessEvents application with no backing store on OpenShift Container Platform. For details
about these sample YAML files, see Sample Kubernetes YAML Files for Applications without Backing
Store.

Prerequisites

Your TIBCO BusinessEvents application must be uploaded to the OpenShift Docker registry, see
Pushing Application Docker Image to OpenShift Container Registry.

Procedure

1. Create the Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing Kubernetes objects in a YAML file, see the Kubernetes documentation.
For details about the sample YAML files, see Sample Kubernetes YAML Files for Applications
without Backing Store.

2. Create Kubernetes objects required for deploying and running the application by using the object
specification (.yaml) files.
Syntax:
oc create -f <kubernetes_object.yaml>

For example, create the Kubernetes objects by using the sample YAML files mentioned in Step 1.
oc create -f bediscoverynode.yaml

oc create -f bediscovery-service.yaml

oc create -f becacheagent.yaml

oc create -f beinferenceagent.yaml

oc create -f befdservice.yaml

3. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
oc logs <pod>

For example, use the oc get command to get the list of pods and then use the oc logs command to
view logs of bediscoverynode.
oc get pods

oc logs bediscoverynode-86d75d5fbc-z9gqt

4. Get the external IP of your application, which you can use to connect to the cluster.
Syntax:
oc get services <external_service_name>

For example,
oc get service befdservice

32

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.openshift.com/container-platform/latest/welcome/index.html
https://docs.openshift.com/container-platform/latest/welcome/index.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionCache example application with no backing store, you can use the provided sample
readme.html file at BE_HOME\cloud\kubernetes\OpenShift\cache to test the application. Provide
the external IP obtained to the readme.html file and follow the instructions in it to run the application.

However, if you have deployed any other sample application then update its readme.html file to test
the application. Update the server address in application readme.html file from localhost to the
external IP obtained. Now, follow the instructions in the readme.html file for testing the application.

Running the Application with Shared Nothing Persistence on OpenShift Container
Platform

After uploading your TIBCO BusinessEvents application Docker image with shared nothing persistence
to the OpenShift Docker registry, you can deploy your application and services to the Kubernetes
cluster. The cluster manages the availability and connectivity of the application and service.

In OpenShift Container Platform, you do not have to setup Kubernetes separately. For more
information about Kubernetes and OpenShift Container Platform, see OpenShift Container Platform
documentation.

TIBCO BusinessEvents provides a readme.html file at BE_HOME\cloud\kubernetes\OpenShift\cache
for the Dockerized FraudDetectionStore application. You can follow the instruction in the readme.html
file to run the application by the using the provided sample YAML files. These sample YAML files are
available at BE_HOME\cloud\kubernetes\OpenShift\cache\shared-nothing for deploying TIBCO
BusinessEvents application with shared nothing persistence on OpenShift Container Platform. For
details about these sample YAML files, see Sample Kubernetes YAML Files for Applications with
Shared Nothing Persistence.

Prerequisites

Your TIBCO BusinessEvents application must be uploaded to the OpenShift Docker registry, see
Pushing Application Docker Image to OpenShift Container Registry.

Procedure

1. Create the persistent volume folders with NFS on the master node and make them accessible from
remote server. For details about sharing the folder, refer to your operating system documentation.
For example, the following steps create a new folder on the system and make it accessible from
remote server.
a) Create a new directory pv001 and change its permission to read, write, and execute.

mkdir -p /home/data/pv001
chmod -R 777 /home/data/

b) Edit the /etc/exports file and add the following entry for the new folder.
/home/data/pv0001 *(rw,sync)

c) Export the file system to the remote server which can mount the folder and use it as local file
system. If you are connected to the remote server, do not mention the remote server URL in the
command.
exportfs -a

2. Create an object definition (.yaml) file for the persistent volume (PV) by using the folder path and
URL of machine in which the folder was created.

3. Create other Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing a Kubernetes object in a YAML file, see Kubernetes documentation. For
details about the sample YAML files, see Sample Kubernetes YAML Files for Applications with
Shared Nothing Persistence.

33

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.openshift.com/container-platform/latest/welcome/index.html
https://docs.openshift.com/container-platform/latest/welcome/index.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

4. Create Kubernetes objects required for deploying and running the application by using the object
specification (.yaml) files.
Syntax:
oc create -f <kubernetes_object.yaml>

For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
Kubernetes YAML Files for Applications with Shared Nothing Persistence .
oc create -f persistentvol.yaml

oc create -f becacheagent.yaml

oc create -f bediscovery-service.yaml

oc create -f beinferenceagent.yaml

oc create -f befdservice.yaml

5. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
oc logs <pod>

For example, use the oc get command to get the list of pods and then use the oc logs command to
view logs of becacheagent.
oc get pods

oc logs becacheagent-86d75d5fbc-z9gqt

6. Get the external IP of your application which you can use to connect to the cluster.
Syntax:
oc get services <external_service_name>

For example,
oc get service befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionStore example application with shared nothing persistence, you can use the provided
sample readme.html file at BE_HOME\cloud\kubernetes\OpenShift\cache to test the application.
Provide the external IP obtained to the readme.html file and follow the instructions in it to run the
application.

However, if you have deployed any other sample application, then update its readme.html file to test
the application. Update the server address in application readme.html file from localhost to the
external IP obtained. Now, follow the instructions in the readme.html file for testing the application.

Running the Application with Shared All Persistence on OpenShift Container Platform
After uploading your TIBCO BusinessEvents application Docker image with shared all storage to the
OpenShift Docker registry, you can deploy your application and services to the Kubernetes cluster. The
cluster manages the availability and connectivity of the application and service.

In OpenShift Container Platform, you do not have to setup Kubernetes separately. For more
information about Kubernetes and OpenShift Container Platform, see OpenShift Container Platform
documentation.

TIBCO BusinessEvents provides a readme.html file at BE_HOME\cloud\kubernetes\OpenShift\cache
for the Dockerized FraudDetectionStore application. You can follow the instruction in the readme.html
file to run the application by the using the provided sample YAML files. These sample YAML files are
available at BE_HOME\cloud\kubernetes\OpenShift\cache\shared-all for deploying TIBCO
BusinessEvents application with shared all persistence on OpenShift Container Platform. For details
about these sample YAML files, see Sample Kubernetes YAML Files for Applications with Shared All
Persistence.

34

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.openshift.com/container-platform/latest/welcome/index.html
https://docs.openshift.com/container-platform/latest/welcome/index.html

As a sample use case, the procedure uses MySQL databases. The supported databases are MySQL,
MariaDB, and PostgeSQL.

Prerequisites

Your TIBCO BusinessEvents application must be uploaded to the OpenShift Docker registry, see
Pushing Application Docker Image to OpenShift Container Registry.

Procedure

1. Set up database with OpenShift Container Platform by using the CentOS based MySQL Docker
image in Kubernetes.
For details, see OpenShift Container Platform documentation.

2. Connect to the database by using the port forwarding.
oc port-forward <mysql_pod_name> <port_number>:<port_number>

3. Run generated SQL scripts, such as initialize_database_mysql.sql,
create_tables_mysql.sql, and the project schema specific SQL script (see TIBCO BusinessEvents
Configuration Guide.

4. Set up the provisioner for the MySQL database by creating the persistent volume and PVC.
For details about the sample YAML files for persistent volume and PVC, see Sample Kubernetes
YAML Files for Applications with Shared All Persistence.

5. Create a configMap resource with database details.
You can use the Kubernetes command to enter into the pod container and then use Linux
commands get the database URL.

6. Create the Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing a Kubernetes object in a YAML file, see Kubernetes documentation. For
details about the sample YAML files, see Sample Kubernetes YAML Files for Applications with
Shared All Persistence.

7. Create Kubernetes objects required for deploying and running the application by using the object
specification (.yaml) files.
Syntax:
oc create -f <kubernetes_object.yaml>

For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
Kubernetes YAML Files for Applications with Shared All Persistence.
oc create -f mysql.yaml

oc create -f mysql-service.yaml

oc create -f persistent-volume-and-claim.yaml

oc create -f db-configmap.yaml

oc create -f bediscoverynode.yaml

oc create -f bediscovery-service.yaml

oc create -f becacheagent.yaml

oc create -f beinferenceagent.yaml

oc create -f befdservice.yaml

8. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
oc logs <pod>

35

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.openshift.com/container-platform/3.11/using_images/db_images/mysql.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

For example, use the oc get command to get the list of pods and then use the oc logs command to
view logs of bediscoverynode.
oc get pods

oc logs bediscoverynode-86d75d5fbc-z9gqt

9. Get the external IP of your application which you can use to connect to the cluster.
Syntax:
oc get services <external_service_name>

For example,
oc get services befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionStore example application with shared all persistence, you can use the provided sample
readme.html file at BE_HOME\cloud\kubernetes\OpenShift\cache to test the application. Provide
the external IP obtained to the readme.html file and follow the instructions in it to run the application.

However, if you have deployed any other sample application then update its readme.html file to test
the application. Update the server address in application readme.html file from localhost to the
external IP obtained. Now, follow the instructions in the readme.html file for testing the application.

Monitoring TIBCO BusinessEvents Applications on OpenShift Container
Platform

To monitor TIBCO BusinessEvents applications running on OpenShift Container Platform based
Kubernetes, run TIBCO BusinessEvents Enterprise Administrator Agent container in the same
Kubernetes namespace.

For TIBCO BusinessEvents Enterprise Administrator Agent, you can build only Linux containers (and
not Windows containers).

Prerequisites

● See Preparing for TIBCO BusinessEvents Containerization
● Docker image of TIBCO Enterprise Administrator server. For instructions, see readme.md at

TEA_HOME/docker in the TIBCO Enterprise Administrator installation.
● An TIBCO BusinessEvents application running on OpenShift Container Platform based Kubernetes,

see Running an Application on OpenShift Based Kubernetes Cluster

Procedure

1. Build the TIBCO BusinessEvents Enterprise Administrator Agent Docker image by using the script
provided by TIBCO BusinessEvents.
See Building TIBCO BusinessEvents Enterprise Administrator Agent Docker Image.

2. Push Docker images of TIBCO BusinessEvents Enterprise Administrator Agent and TIBCO
Enterprise Administrator server to OpenShift Container Registry.
For details, see Pushing Application Docker Image to OpenShift Container Registry.

3. Run the TIBCO Enterprise Administrator server on OpenShift Container Platform based
Kubernetes.
For instructions, refer readme.md at TEA_HOME/docker in the TIBCO Enterprise Administrator
installation.

4. Update the following Kubernetes object specification (.yaml) files for TIBCO BusinessEvents
Enterprise Administrator Agent:

36

TIBCO BusinessEvents® Cloud Deployment Guide

● beteagentdeploymemt.yaml - A deployment of TIBCO BusinessEvents Enterprise
Administrator Agent Docker image with the TIBCO Enterprise Administrator server URL and
login details.

● beteagentinternalservice.yaml - An internal service for connecting to TIBCO
BusinessEvents Enterprise Administrator Agent from other nodes

● k8s-authorization.yaml - A ClusterRoleBinding for binding roles to the user.

These object specification files are available at BE_HOME\cloud\kubernetes\<cloud_name>\tea.
For details about describing a Kubernetes object in a YAML file, see Kubernetes Documentation. For
details about the sample YAML files, see Sample YAML Files for TIBCO BusinessEvents Enterprise
Administrator Agent.

5. Create Kubernetes objects required for deploying and running TIBCO BusinessEvents Enterprise
Administrator Agent by using the object specification (.yaml) files.
Syntax:
oc create -f <kubernetes_object.yaml>

For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
YAML Files for TIBCO BusinessEvents Enterprise Administrator Agent.
oc create -f k8s-authorization.yaml

oc create -f beteagentdeploymemt.yaml

oc create -f beteagentinternalservice.yaml

6. (Optional) If required, you can check the logs of TIBCO BusinessEvents Enterprise Administrator
Agent pod.
Syntax:
oc logs <pod>

For example, use the oc get command for a list of pods and then use the oc logs command to
view the logs of beteagentdeploymemt.
oc get pods

oc logs beteagentdeploymemt-86d75d5fbc-z9gqt

What to do next

Launch TIBCO Enterprise Administrator in a web browser by using the external IP and port obtained
from the TIBCO Enterprise Administrator external service.

For more details about the functioning of TIBCO BusinessEvents Enterprise Administrator Agent, see
TIBCO BusinessEvents Administration..

Running the RMS on OpenShift Container Platform
To use TIBCO BusinessEvents WebStudio in OpenShift Container Platform, you must set up TIBCO
BusinessEvents and Rule Management Server (RMS) in OpenShift Container Platform based
Kubernetes.
In OpenShift Container Platform, you do not have to setup Kubernetes separately. For more
information about Kubernetes and OpenShift Container Platform, see OpenShift Container Platform
documentation.

TIBCO BusinessEvents provides a readme.html file at BE_HOME\cloud\kubernetes\OpenShift\rms
for the Dockerized CreditCardApplication project and RMS project. You can follow the instruction in
the readme.html file to run CreditCardApplication by the using the provided sample YAML files.
These sample YAML files are available at BE_HOME\cloud\kubernetes\OpenShift\rms for deploying
CreditCardApplication on OpenShift Container Platform. For details about these sample YAML files,
see Sample Kubernetes YAML Files for RMS.

37

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://docs.openshift.com/container-platform
https://docs.openshift.com/container-platform

Prerequisites

● See Preparing for TIBCO BusinessEvents Containerization

● You must have installed and login to OpenShift Container Platform CLI, see Setting Up the
OpenShift CLI Environment.

Procedure

1. To enable hot deployment for a project, add JMX connection details for each project for each
environment under the HotDeploy section in the RMS.cdd file. :
For example,
 <property name="ProjectName.ws.applicableEnvironments" type="string"
value="QA,PROD"/>
 <property name="ProjectName.QA.ws.jmx.hotDeploy.enable" type="boolean"
value="true"/>
 <property name="ProjectName.QA.ws.jmx.host" type="string" value="bejmx-
service.default.svc.cluster.local"/>
 <property name="ProjectName.QA.ws.jmx.port" type="integer" value="5555"/>
 <property name="ProjectName.QA.ws.jmx.user" type="string" value=""/>
 <property name="ProjectName.QA.ws.jmx.password" type="string" value=""/>
 <property name="ProjectName.QA.ws.jmx.clusterName"
value="CreditCardApplication"/>
 <property name="ProjectName.QA.ws.jmx.agentName" value="inference-class"/>

For more information about hot deployment property group, see the "RMS Server Configuration
Property Reference" section in TIBCO BusinessEvents WebStudio Users Guide.

2. Build the RMS Docker image. See Building RMS Docker Image.

3. In the RMS application CDD file, update the path for hot deployment of artifacts to the shared
location in RMS. For example:
<property name="be.engine.cluster.externalClasses.path" value="C:/
tibco/be/5.6/rms/shared/CreditCardApplication/Decision_Tables"/>
<property name="be.cluster.ruletemplateinstances.deploy.dir" value="C:/
tibco/be/5.6/rms/shared/CreditCardApplication/RTI/"/>

4. Build the RMS application Docker image. See Building TIBCO BusinessEvents Application Docker
Image.

5. Tag and push the RMS and application Docker images to the OpenShift Docker container registry.
For details, see Pushing Application Docker Image to OpenShift Container Registry.

For example:
$ oc describe -n default service/docker-registry
Name: docker-registry
Namespace: default
Labels: <none>
Annotations: <none>
Selector: docker-registry=default
Type: ClusterIP
IP: 192.0.2.0
Port: 5000-tcp 5000/TCP
TargetPort: 5000/TCP
Endpoints: 198.51.100.10:5000
Session Affinity: ClientIP
Events: <none>
$ docker tag rms:5.6.0 192.0.2.0:5000/test-project/rms:5.6.0
$ docker tag creditcardapp:01 192.0.2.0:5000/test-project/creditcardapp:01
$ docker login 192.0.2.0:5000 -u userid -p
ov40AhpTXYZOwHBtC_vat0SF4xJd8lQNjylccs8ZOLc
$ docker push 192.0.2.0:5000/test-project/rms:5.6.0
$ docker push 192.0.2.0:5000/test-project/creditcardapp:01

6. Create the Kubernetes object specification (.yaml) files based on your deployment requirement.
You must consider the following point while creating the object specification file:

38

TIBCO BusinessEvents® Cloud Deployment Guide

● Create separate persistent volume and PVCs for storing the project's hot deployed artifacts,
project shared files, projects ACLs, and email notifications.

● Create a node with RMS container and an internal service for connecting it to the cluster.

● Create discovery node, cache agent, and inference agent by using the application Docker image.

For details about describing a Kubernetes object in a YAML file, see Kubernetes documentation. For
details about sample YAML files, see Sample Kubernetes YAML Files for RMS.

7. Create Kubernetes objects required for deploying and running the application by using the object
specification (.yaml) files.
Syntax:
oc create -f <kubernetes_object.yaml>

For example, create the Kubernetes objects by using the sample YAML files mentioned in Step 1.
oc create -f bejmx-service.yaml

oc create -f berms-persistent-volumes.yaml

oc create -f berms-persistent-volume-claims.yaml

oc create -f berms.yaml

oc create -f berms-service.yaml

oc create -f bediscoverynode.yaml

oc create -f bediscovery-service.yaml

oc create -f becacheagent.yaml

oc create -f beinferenceagent.yaml

oc create -f befdservice.yaml

8. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
oc logs <pod>

For example, use the oc get command to get the list of pods and then use the oc logs command to
view logs of bediscoverynode.
oc get pods

oc logs bediscoverynode-86d75d5fbc-z9gqt

9. Copy the masked persistent volume folders to the same path in the container. When you mount the
PVC to the RMS project folder, it mask the other existing projects at the same path in the container.
Use the following command for copying required folders in RMS pods.

Syntax:
 oc cp <host_folder_path berms_pod_name>:<berms_pod_folder_path>

For example:
oc cp security berms-65f89dff4-cwg6z:/opt/tibco/be/5.6.0/rms/config/

oc cp notify berms-65f89dff4-cwg6z:/opt/tibco/be/5.6.0/rms/config/

oc cp shared berms-65f89dff4-cwg6z:/opt/tibco/be/5.6.0/rms/

oc cp WebStudio berms-65f89dff4-cwg6z:/opt/tibco/be/5.6.0/examples/standard/

10. Get the external IP of the RMS service.
Syntax:
oc get services <external_service_name>

39

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

For example,
oc get service rms-service

What to do next

Use the IP obtained to connect to TIBCO BusinessEvents WebStudio from your browser. For example, if
you have deployed the CreditCardApplication example application, you can use the provided sample
readme.html file at BE_HOME\cloud\kubernetes\OpenShift\rms to test the application. Provide the
external IP obtained to the readme.html file and follow the instructions in it to run the application.

40

TIBCO BusinessEvents® Cloud Deployment Guide

TIBCO BusinessEvents on Microsoft Azure Based
Kubernetes

You can run any TIBCO BusinessEvents application on Microsoft Azure based Kubernetes cluster and
monitor them by using TIBCO BusinessEvents Enterprise Administrator Agent. You can also manage
business rules through WebStudio by running RMS on Microsoft Azure based Kubernetes cluster.

Readme for Sample Applications

TIBCO BusinessEvents provides readme.html files for running the sample applications and
components on Microsoft Azure. You can follow the instruction in the readme.html file to run the
application, WebStudio, and TIBCO BusinessEvents Enterprise Administrator Agent by using the
provided sample YAML files.

The following table lists location of readme.html and sample YAML files for running sample
applications and other components:

Scenario
readme.html and Sample YAML Files
Location

Running TIBCO BusinessEvents application
(FraudDetection) without cache on Microsoft
Azure

BE_HOME\cloud\kubernetes\Azure\inmemory

Running TIBCO BusinessEvents application
(FraudDetectionCache and FraudDetectionStore)
with cache on Microsoft Azure

BE_HOME\cloud\kubernetes\Azure\cache

Running TIBCO BusinessEvents WebStudio on
Microsoft Azure

BE_HOME\cloud\kubernetes\Azure\rms

Running TIBCO BusinessEvents Enterprise
Administration Agent for monitoring TIBCO
BusinessEvents applications on Microsoft Azure

BE_HOME\cloud\kubernetes\Azure\tea

Topics

● Running an Application on Microsoft Azure Based Kubernetes Cluster

● Monitoring TIBCO BusinessEvents Applications on Microsoft Azure

● Running RMS on Azure Based Kubernetes

Running an Application on Microsoft Azure Based Kubernetes Cluster
By using the Azure Kubernetes Service (AKS), you can easily deploy an TIBCO BusinessEvents
application in the Kubernetes cluster managed by Microsoft Azure.
For more details about the AKS, see Azure Kubernetes Service documentation.

Prerequisites

● Docker image of the TIBCO BusinessEvents application, see Building TIBCO BusinessEvents
Application Docker Image.

● You must have a Microsoft Azure account with an active subscription. If you don't, create a new
Azure account.

41

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.microsoft.com/en-us/azure/aks/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/

Procedure

1. Set up Microsoft Azure command line environment.

2. Create an Azure Container Registry (ACR) and push the Docker image of the application to it, see
Setting Up an Azure Container Registry.

3. Create a Kubernetes cluster and deploy it to the Microsoft Azure, see Setting Up a Kubernetes
Cluster on AKS.

4. Based on your application architecture, deploy the application on the Kubernetes cluster. See the
following topics based on your application persistence option:

● Running the Application Without Backing Store on Azure.
● Running an Application with Shared Nothing Persistence on Azure.
● Running an Application with Shared All Persistence on Azure.

Setting up the Microsoft Azure CLI Environment
You can use either the Microsoft Azure Cloud Shell or Microsoft Azure command-line interface (CLI)
for running the Microsoft Azure commands. In the following sections, the procedures are provided for
the Azure CLI.

Prerequisites

You must have a Microsoft Azure account with an active subscription. If required, create a new Azure
account.

Procedure

1. Install the Microsoft Azure command-line interface (CLI). For installation instructions, see Microsoft
Azure CLI documentation

2. In Microsoft Azure CLI, sign in to Microsoft Azure by using the login command.
az login

The CLI opens a browser and loads the sign-in page.

3. Sign in with your account credentials in the browser.
For details, see Get started with Azure CLI.

What to do next

Create an Azure Container Registry (ACR) and push the Docker image of the application to it, see
Setting Up an Azure Container Registry.

Setting Up an Azure Container Registry
Microsoft Azure uses the Azure Container Registry for securely building and deploying your
applications. To create an Azure Container Registry, you need to create an Azure Resource group. An
Azure resource group is a logical container into which Azure resources are deployed and managed.
For more information about commands used in the following procedure, see Microsoft Azure CLI
documentation.

Prerequisites

● Set up the Microsoft Azure command line environment.
● Docker image of the TIBCO BusinessEvents application that you want to deploy to the Kubernetes

cluster, see Building TIBCO BusinessEvents Application Docker Image.

42

TIBCO BusinessEvents® Cloud Deployment Guide

https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/get-started-with-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest

Procedure

1. Create a resource group by using the az group create command.
az group create --name <resource_group_name> --location <location>

2. Create an Azure Container Registry instance in your resource group by using the az acr create
command.
az acr create --resource-group <resource_group_name> --name <registry_name> --
sku Basic --admin-enabled true

3. Login to the container registry created earlier by using the az acr login command.
az acr login --name <registry_name>

The command returns a Login Succeeded message once completed.

4. To use the TIBCO BusinessEvents application container image with Azure Container Registry, tag
the image with the login server address of your registry.
a) View the list of your local image by using the docker images command.

$ docker images

REPOSITORY TAG IMAGE ID
CREATED SIZE
fdcache latest 4675398c9172 13
minutes ago 694MB

b) Get the login server address for the Azure Container Registry by using the az acr list
command.
az acr list --resource-group <resource_group_name> --query "[].
{acrLoginServer:loginServer}" --output table

c) Tag your application image with login server address of your registry from the earlier step. This
creates an alias of the application image with a fully qualifies path to your registry.
docker tag fdcache <registry_login_server>/fdcache:01

d) Verify the tags applied to the image by running the docker images command again.
$ docker images

REPOSITORY TAG IMAGE
ID CREATED SIZE
mycontainerregistry.azuecr.io/fdcache 01
4675398c9172 13 minutes ago 694MB

5. Push the application image to your container registry by using the docker push command.
docker push <registry_login_server>/fdcache:01

6. Validate if the image is uploaded to your registry.
az acr repository list --name <registry_login_server> --output table

What to do next

After you have created an Azure Container Registry and pushed an image to the registry, deploy the
Kubernetes cluster on Microsoft Azure, see Setting Up a Kubernetes Cluster on AKS.

Setting Up a Kubernetes Cluster on AKS
Azure Kubernetes Services (AKS) manages the Kubernetes environment and provides options to
quickly deploy Kubernetes cluster.

Prerequisites

Set up the Azure Container Registry and push the application Docker image to it, see Setting Up an
Azure Container Registry.

43

TIBCO BusinessEvents® Cloud Deployment Guide

Procedure

1. To enable a Kubernetes cluster to interact with other Azure resource, an Azure Active Directory
service principal is required.
a) Create a service principal by using the az ad sp create-for-rbac command.

az ad sp create-for-rbac --skip-assignment

The output of the command provides the appId which is the service principal and password
which is the client-secret for creating the Kubernetes cluster.

b) Create the Kubernetes cluster with repository group and service principal created earlier.
az aks create --orchestrator-type=kubernetes --resource-group
<resource_group_name> --name=<cluster_name> --service-principal
<service_principal> --client-secret <client_secret> --node-count <node_count>
--generate-ssh-keys

Microsoft Azure creates a storage account when a Kubernetes cluster is created.

For more information about commands, see Microsoft Azure CLI documentation.

2. To connect to Kubernetes cluster from your local computer, use kubectl, the Kubernetes CLI. If you
use the Azure Cloud Shell, kubectl is already installed. You can also install it locally by using the
az aks install-cli command.
az aks install-cli

3. Configure kubectl to connect your Kubernetes cluster by using the az aks get-credentials
command.
az aks kubernetes get-credentials --resource-group <resource_group_name> --
name=<cluster_name>

4. Verify the connection to your Kubernetes cluster by using the kubectl get nodes command.
kubectl get nodes

What to do next

Based on your application architecture, deploy the application on the Kubernetes cluster:

● For deployment of application for No Backing Store cluster, see Running the Application Without
Backing Store on Azure.

● For deployment of application for Shared Nothing persistence, see Running an Application with
Shared Nothing Persistence on Azure.

● For deployment of application for Shared All persistence, see Running an Application with Shared
All Persistence on Azure.

Running the Application Without Backing Store on Azure
After uploading your TIBCO BusinessEvents application image with no backing store to the Azure
Container Registry and creating the Kubernetes cluster, you can deploy your application and services to
the Kubernetes cluster. The cluster manages the availability and connectivity of the application and
service.
For more information about Kubernetes concepts and Microsoft Azure, see Azure Kubernetes Service
documentation.

TIBCO BusinessEvents provides a readme.html file at BE_HOME\cloud\kubernetes\Azure\cache for
the Dockerized FraudDetectionCache application. You can follow the instruction in the readme.html
file to run the application by the using the provided sample YAML files. These sample YAML files are
available at BE_HOME\cloud\kubernetes\Azure\cache\persistence-none for deploying TIBCO
BusinessEvents application with no backing store on Microsoft Azure. For details about these sample
YAML files, see Sample Kubernetes YAML Files for Applications without Backing Store.

44

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/azure/aks/
https://docs.microsoft.com/en-us/azure/aks/

Prerequisites

● Your TIBCO BusinessEvents application must be uploaded to the Azure Container Registry, see
Setting Up an Azure Container Registry.

● The Kubernetes cluster must be deployed in the Microsoft Azure, see Setting Up a Kubernetes
Cluster on AKS.

Procedure

1. Create the Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing Kubernetes objects in a YAML file, see the Kubernetes documentation.
For details about the sample YAML files, see Sample Kubernetes YAML Files for Applications
without Backing Store.

2. Create Kubernetes objects required for deploying and running the application by using object
specification (.yaml) files.
Syntax:
kubectl create -f <kubernetes_object.yaml>

For example, create the following Kubernetes objects by using the sample YAML files mentioned in
Sample Kubernetes YAML Files for Applications without Backing Store.
kubectl create -f bediscoverynode.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f becacheagent.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f befdservice.yaml

3. (Optional) If required, you can also check logs of TIBCO BusinessEvents pods.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get list of pods and then use the kubectl logs
command to view logs of bediscoverynode.
kubectl get pods

kubectl logs bediscoverynode-86d75d5fbc-z9gqt

4. Get the external IP of your application which you can then use to connect to the cluster.
Syntax:
kubectl get services <external_service_name>

For example,
kubectl get services befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionCache example application without backing store, you can use the sample readme.html
file at BE_HOME\cloud\kubernetes\Azure\cache to test the application. Use the external IP that you
have obtained in the readme.html file and follow the instructions in it to run the application.

However, if you have deployed any other sample application, update its readme.html file to test that
application. Update the server address in application readme.html file from localhost to the external
IP obtained. Now, follow the instructions in the readme.html file for testing the application.

45

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

Running an Application with Shared Nothing Persistence on Azure
After uploading your TIBCO BusinessEvents application image with shared nothing persistenceto the
Azure Container Registry and creating the Kubernetes cluster, you can deploy your application to the
Kubernetes cluster. The cluster manages the availability and connectivity of the application. Microsoft
Azure also provide storage options to store and retrieve data.

Microsoft Azure provides two storage options for persistent volumes:

● Azure Disks - available for access to single node with the ReadWriteOnce privilege.

● Azure Files - available for access to multiple nodes and pods.

For more information about Kubernetes concepts and Microsoft Azure, see Azure Kubernetes Service
documentation.

TIBCO BusinessEvents also provides a readme.html file at BE_HOME\cloud\kubernetes\Azure\cache
for the Dockerized FraudDetectionStore application. You can follow the instruction in the readme.html
file to run the application by the using the provided sample YAML files. These sample YAML files are
available at BE_HOME\cloud\kubernetes\azure\cache\shared-nothing\<azure_storage_type> for
deploying TIBCO BusinessEvents application with shared nothing persistence on Microsoft Azure. For
details about these sample YAML files, see Sample Kubernetes YAML Files for Applications with
Shared Nothing Persistence.

Prerequisites

● Your TIBCO BusinessEvents application must be uploaded to the Azure Container Registry, see
Setting Up an Azure Container Registry.

● The Kubernetes cluster must be deployed in the Microsoft Azure, see Setting Up a Kubernetes
Cluster on AKS.

Procedure

1. Create Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing a Kubernetes object in a YAML file, see Kubernetes documentation. For
details about the sample YAML files, see Sample Kubernetes YAML Files for Applications with
Shared Nothing Persistence.

2. Create Kubernetes objects required for deploying and running the application by using the object
specification (.yaml) files.
Syntax:
kubectl create -f <kubernetes_object_spec>.yaml

For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
Kubernetes YAML Files for Applications with Shared Nothing Persistence for Azure file storage.
kubectl create -f manifest.yaml

kubectl create -f becacheagent.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f befdservice.yaml

3. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
kubectl logs <pod>

46

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.microsoft.com/en-us/azure/aks/
https://docs.microsoft.com/en-us/azure/aks/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of becacheagent.
kubectl get pods

kubectl logs becacheagent-86d75d5fbc-z9gqt

4. Get the external IP of your application, which you can use to connect to the cluster.
Syntax
kubectl get services <external_service_name>

For example,
kubectl get services befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionStore example application with shared nothing persistence, you can use the provided
sample readme.html file at BE_HOME\cloud\kubernetes\Azure\cache to test the application. Provide
the external IP obtained to the readme.html file and follow the instructions in it to run the application.

However, if you have deployed any other sample application then update its readme.html file to test
the application. Update the server address in application readme.html file from localhost to the
external IP obtained. Now, follow the instructions in the readme.html file for testing the application.

Running an Application with Shared All Persistence on Azure
After uploading your TIBCO BusinessEvents application image with shared all persistence to the Azure
Container Registry and creating the Kubernetes cluster, you can deploy your application to the
Kubernetes cluster. The cluster manages the availability and connectivity of the application. You can
use Microsoft Azure provided relational database service or you can use the Docker image of the
database that you want to use.

For more information about Kubernetes concepts and Microsoft Azure, see Azure Kubernetes Service
documentation.

The following procedure provides a sample implementation of Azure Database for MySQL as the
database service. For more information, see Azure Database for MySQL documentation.

If you want to use any other database service, follow its documentation on how to use with Docker and
Kubernetes.

TIBCO BusinessEvents also provides a readme.html file at BE_HOME\cloud\kubernetes\Azure\cache
for the Dockerized FraudDetectionStore application. You can follow the instruction in the readme.html
file to run the application by the using the provided sample YAML files. These sample YAML files are
available at BE_HOME\cloud\kubernetes\azure\cache\shared-all\<database_type> for deploying
TIBCO BusinessEvents application with shared nothing persistence on Microsoft Azure. For details
about these sample YAML files, see Sample Kubernetes YAML Files for Applications with Shared All
Persistence.

Prerequisites

● Your TIBCO BusinessEvents application must be uploaded to the Azure Container Registry, see
Setting Up an Azure Container Registry.

● The Kubernetes cluster must be deployed in the Microsoft Azure, see Setting Up a Kubernetes
Cluster on AKS.

47

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.microsoft.com/en-us/azure/aks/
https://docs.microsoft.com/en-us/azure/aks/
https://docs.microsoft.com/en-us/azure/mysql/

Procedure

1. Create an Azure Database instance of MySQL server with the az mysql server create command.
az mysql server create -g <resource_group_name> -n <mysql_server_name> -l
<location> --admin-user <admin_user> --admin-password <admin_password> --sku-
name <sku_name>

For details about command options, see Azure Database for MySQL documentation.

2. Create a MySQL server-level firewall rule and disable the SSL connection to connect to the server
from your local MySQL client.
az mysql server firewall-rule create --resource-group <resource_group_name> --
server <mysql_server_name> --name <firewall_rule_name> --start-ip-address
<start_ip_address> --end-ip-address <end_ip_address>

az mysql server update --resource-group <resource_group_name> --name
<mysql_server_name> --ssl-enforcement Disabled

For details about command options, see Azure Database for MySQL documentation.

3. To connect to the MySQL server, get the host information and access credentials.
az mysql server show --resource-group <resource_group_name> --name
<mysql_server_name>

For details about command options, see Azure Database for MySQL documentation.

4. Use the mysql command-line tool to establish a connection to your Azure Database for MySQL
server by using the earlier obtained host and credentials details, see mysql command-line
documentation.

5. Initialize the database, create the user, create the table, and load the data in the tables by using the
MySQL commands.
For details, see MySQL documentation.

6. Create Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing a Kubernetes object in a YAML file, see Kubernetes documentation. For
details about the sample YAML files, see Sample Kubernetes YAML Files for Applications with
Shared All Persistence.

7. Create Kubernetes objects required for deploying and running the application by using the object
specification (.yaml) files.
Syntax:
kubectl create -f <kubernetes_object_spec>.yaml

For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
Kubernetes YAML Files for Applications with Shared All Persistence:
kubectl create -f db-configmapmysql.yaml

kubectl create -f bediscoverynode.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f becacheagent.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f befdservice.yaml

8. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
kubectl logs <pod>

48

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.microsoft.com/en-us/azure/mysql/
https://docs.microsoft.com/en-us/azure/mysql/
https://docs.microsoft.com/en-us/azure/mysql/
https://dev.mysql.com/doc/refman/5.6/en/mysql.html
https://dev.mysql.com/doc/refman/5.6/en/mysql.html
https://dev.mysql.com/doc/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of bediscovery.
kubectl get pods

kubectl logs bediscovery-86d75d5fbc-z9gqt

9. Get the external IP of your application which you can use to connect to the cluster.
Syntax
kubectl get services <external_service_name>

For example,
kubectl get services befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionStore example application with shared all persistence, you can use the provided sample
readme.html file at BE_HOME\cloud\kubernetes\Azure\cache to test the application. Provide the
external IP obtained to the readme.html file and follow the instructions in it to run the application.

However, if you have deployed any other sample application then update its readme.html file to test
the application. Update the server address in application readme.html file from localhost to the
external IP obtained. Now, follow the instructions in the readme.html file for testing the application.

Monitoring TIBCO BusinessEvents Applications on Microsoft Azure
To monitor TIBCO BusinessEvents applications running on Microsoft Azure based Kubernetes, run
TIBCO BusinessEvents Enterprise Administrator Agent container in the same Kubernetes namespace.

For TIBCO BusinessEvents Enterprise Administrator Agent, you can build only Linux containers (and
not Windows containers).

Prerequisites

● See Preparing for TIBCO BusinessEvents Containerization
● Docker image of TIBCO Enterprise Administrator server. For instructions, see readme.md at

TEA_HOME/docker in the TIBCO Enterprise Administrator installation.
● A TIBCO BusinessEvents application running on Microsoft Azure based Kubernetes, see Running

an Application on Microsoft Azure Based Kubernetes Cluster.

Procedure

1. Build the TIBCO BusinessEvents Enterprise Administrator Agent Docker image by using the script
provided by TIBCO BusinessEvents.
See Building TIBCO BusinessEvents Enterprise Administrator Agent Docker Image.

2. Push Docker images of TIBCO BusinessEvents Enterprise Administrator Agent and TIBCO
Enterprise Administrator server to Azure Container Registry.
For details, see Setting Up an Azure Container Registry.

3. Run the TIBCO Enterprise Administrator server on Microsoft Azure based Kubernetes.
For instructions, refer readme.md at TEA_HOME/docker in the TIBCO Enterprise Administrator
installation.

4. Update the following Kubernetes object specification (.yaml) files for TIBCO BusinessEvents
Enterprise Administrator Agent:

● beteagentdeploymemt.yaml - A deployment of TIBCO BusinessEvents Enterprise
Administrator Agent Docker image with the TIBCO Enterprise Administrator server URL and
login details.

49

TIBCO BusinessEvents® Cloud Deployment Guide

● beteagentinternalservice.yaml - An internal service for connecting to TIBCO
BusinessEvents Enterprise Administrator Agent from other nodes

● k8s-authorization.yaml - A ClusterRoleBinding for binding roles to the user.
These object specification files are available at BE_HOME\cloud\kubernetes\<cloud_name>\tea.
For details about describing a Kubernetes object in a YAML file, see Kubernetes Documentation. For
details about the sample YAML files, see Sample YAML Files for TIBCO BusinessEvents Enterprise
Administrator Agent.

5. Create Kubernetes objects required for deploying and running TIBCO BusinessEvents Enterprise
Administrator Agent by using the object specification (.yaml) files.
Syntax:
kubectl create -f <kubernetes_object.yaml>

For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
YAML Files for TIBCO BusinessEvents Enterprise Administrator Agent.
kubectl create -f k8s-authorization.yaml

kubectl create -f beteagentdeploymemt.yaml

kubectl create -f beteagentinternalservice.yaml

6. (Optional) If required, you can check logs of TIBCO BusinessEvents Enterprise Administrator Agent
pod.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of beteagentdeploymemt.
kubectl get pods

kubectl logs beteagentdeploymemt-86d75d5fbc-z9gqt

What to do next

Launch TIBCO Enterprise Administrator in a web browser by using the external IP and port obtained
from the TIBCO Enterprise Administrator external service.

For more details on functioning of TIBCO BusinessEvents Enterprise Administrator Agent, see TIBCO
BusinessEvents Administration guide..

Running RMS on Azure Based Kubernetes
By using the Azure Kubernetes Service (AKS), you can easily deploy the rule management server(RMS)
on the Kubernetes cluster managed by Microsoft Azure.
TIBCO BusinessEvents installation provides the RMS project at BE_HOME\rms\project\BRMS.
Deploying RMS on Azure based Kubernetes is similar to deploying any other TIBCO BusinessEvents
application with no backing store. However, if you want to enable the hot deployment in RMS, you
must create persistent volumes claims (PVCs) (Step 4) and setup JMX environment variables (Step 1).

Prerequisites

Set up the Microsoft Azure command line environment.

Procedure

1. To enable hot deployment, in the RMS.cdd file, add JMX connection details for each project for each
environment under the HotDeploy section
For example,
 <property name="ProjectName.ws.applicableEnvironments" type="string"
value="QA,PROD"/>

50

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

 <property name="ProjectName.QA.ws.jmx.hotDeploy.enable" type="boolean"
value="true"/>
 <property name="ProjectName.QA.ws.jmx.host" type="string" value="bejmx-
service.default.svc.cluster.local"/>
 <property name="ProjectName.QA.ws.jmx.port" type="integer" value="5555"/>
 <property name="ProjectName.QA.ws.jmx.user" type="string" value=""/>
 <property name="ProjectName.QA.ws.jmx.password" type="string" value=""/>
 <property name="ProjectName.QA.ws.jmx.clusterName"
value="CreditCardApplication"/>
 <property name="ProjectName.QA.ws.jmx.agentName" value="inference-class"/>

For more information about hot deployment property group, see the "RMS Server Configuration
Property Reference" section in TIBCO BusinessEvents WebStudio Users Guide.
Alternatively, you can add these JMX connection details for the project from the Settings page in
TIBCO BusinessEvents WebStudio. For details, see TIBCO BusinessEvents WebStudio Users Guide.

2. Build the Docker image of RMS, see Building RMS Docker Image.

3. Create an Azure Container Registry (ACR) and push the Docker image of RMS to it, see Setting Up
an Azure Container Registry.

4. Create a Kubernetes cluster and deploy it to the Microsoft Azure, see Setting Up a Kubernetes
Cluster on AKS.

5. To store hot deployment artifacts, create Azure File type storage class and PVCs by using the
Kubernetes object specification (.yaml) files.
The sample YAML file berms-peristent-volume-claims.yaml for creating storage class and
PVCs is located at BE_HOME\cloud\kubernetes\Azure\rms. The berms-peristent-volume-
claims.yaml file set up PVC for the following storage purpose:

● for storing TIBCO BusinessEvents project files
● for storing TIBCO BusinessEvents project ACL files, such as, CreditCardApplication.ac
● for storing RMS artifacts after hot deployment, such as, rule template instances
● for storing Email notification files, such as, message.stg

For more information about the Kubernetes object spec files, see Kubernetes documentation.

6. Create Kubernetes objects required for deploying RMS by using the object spec (.yaml) files.
These objects include deployment and services for the cluster. Thus to deploy RMS on the
Kubernetes cluster, create:

● a discovery node (pod) to start the cluster
● a service to connect to discovery node
● a cache agent node which connects to the discovery node service
● an inference agent node which connects to the discovery node service
● a service to connect to the inference agent
● a RMS node containing the RMS Docker image and persistent volume claims to mount the

respective Azure File share
● an external service to connect to the RMS node
● an JMX service to connect to the JMX port of the RMS pod

For your reference, sample YAML files for deploying RMS to Kubernetes are available at BE_HOME
\cloud\kubernetes\Azure\rms, see Sample Kubernetes YAML Files for RMS.
In these .yaml files, update the image tag with the application Docker image tag including the
registry login server name that you have used in Step 4 of Setting Up an Azure Container Registry.
Also, update the DOCKER_HOST environment variable with bejmx-
service.default.svc.cluster.local.
For more information about the Kubernetes object spec files, see Kubernetes documentation.

51

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

7. Use the kubectl create command to create and deploy these objects to the Kubernetes cluster.
This command parses the specified manifest file and creates the defined Kubernetes objects.
kubectl create -f <kubernetes_object_spec>.yaml

For example, enter the following command to create the Azure File type storage class.
kubectl create -f manifest_azurefile.yaml

8. After successful creation of Kubernetes objects, use the kubectl cp command to upload the files
(required to perform various operations in WebStudio) from your computer to the PVCs.
kubectl cp <host_folder_path> <berms_pod_name>:<berms_pod_folder_path>

The following table lists the files to be uploaded to PVCs.

PVC Name Files to be uploaded

azurefile-webstudio BE_HOME\examples\standard\WebStudio\

azurefile-security BE_HOME\rms\config\security

azurefile-notify BE_HOME\rms\config\notify

azurefile-shared BE_HOME\rms\shared

9. To access WebStudio, you can get the external IP of the service of the RMS deployment by using the
kubectl get services command.
kubectl get services <external_service_name>

For example,
kubectl get services berms-service -o wide

What to do next

Use the IP obtained to connect to TIBCO BusinessEvents WebStudio from your browser.

52

TIBCO BusinessEvents® Cloud Deployment Guide

TIBCO BusinessEvents on AWS Based Kubernetes

You can run any TIBCO BusinessEvents application on Amazon Web Services (AWS) based Kubernetes
cluster by using Amazon EC2 and monitor them by using TIBCO BusinessEvents Enterprise
Administrator Agent. You can also manage business rules through WebStudio by running RMS on
AWS based Kubernetes cluster by using Amazon EC2.

Topics

● Running TIBCO BusinessEvents® on AWS Based Kubernetes Cluster

● Monitoring TIBCO BusinessEvents Applications on AWS

● Running RMS Applications in AWS Based Kubernetes

Running TIBCO BusinessEvents® on AWS Based Kubernetes Cluster
By using Amazon EC2, you can fully manage your Kubernetes deployment. You can provision and run
Kubernetes on your choice of instance types.

Prerequisites

● Docker image of TIBCO BusinessEvents application, see Building TIBCO BusinessEvents
Application Docker Image.

● Download and install the following CLIs on your system:

CLI Download and Installation Instruction Link

kops https://github.com/kubernetes/kops/blob/master/docs/aws.md

kubectl https://kubernetes.io/docs/tasks/tools/install-kubectl/

aws https://aws.amazon.com/cli/

Procedure

1. Set up a Kubernetes cluster on Amazon Web Services (AWS). For more information, see Setting up a
Kubernetes Cluster on AWS.

2. Go to the EC2 Container Services dashboard and create a repository with the same name as the
Docker image of TIBCO BusinessEvents application. Upload the BusinessEvents application image
to the repository. For help you can use the View Push Commands button.

AWS Repository name must be the same as the Docker image of TIBCO BusinessEvents
application.

For more information on how to create a repository in Amazon AWS, refer to https://
docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html.

3. Based on your application architecture, deploy the TIBCO BusinessEvents application on the
Kubernetes cluster. See the following topics based on your application persistence option:

● Running the Application Without Backing Store on AWS

● Running an Application with Shared Nothing Persistence on AWS.

● Running an Application with Shared All Persistence on AWS.

53

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html

Setting up a Kubernetes Cluster on AWS
Set up a Kubernetes cluster with AWS for running TIBCO BusinessEvents® application.

Procedure

Creating Cluster

1. Create an Amazon Simple Storage Service (Amazon S3) storage to store the cluster configuration
and state. You can use either AWS CLI or AWS console to create the storage.
For more information about Amazon S3, see Amazon S3 Documentation.
For example:
aws s3 mb s3://be-bucket

2. Create the Kubernetes cluster on AWS using the kops CLI.
For more information, see the kops CLI documentation.
For example:
kops create cluster --zones us-west-2a --master-zones us-west-2a --master-size
t2.large --node-size t2.large --name becluster.k8s.local --state s3://<s3-bucket-
name> --yes

Where,

● s3-bucket-name is the name of the S3 storage created earlier.

● becluster.k8s.local is the name of the cluster being created. Use k8s.local prefix to identify
a gossip-based Kubernetes cluster and you can skip the DNS configuration.

Validating Cluster

3. Validate your cluster using the validate command.
kops validate cluster

Node and master must be in ready state. The kops utility stores the connection information at
~/.kops/config, and kubectl uses the connection information to connect to the cluster.

Running the Application Without Backing Store on AWS
After uploading your TIBCO BusinessEvents application image with no backing store to the AWS
Registry and creating the Kubernetes cluster, you can deploy your application and services to the
Kubernetes cluster. The cluster manages the availability and connectivity of the application and service.

Prerequisites

For deploying BusinessEvents cluster for No Backing Store on AWS, you must first set up Kubernetes
cluster on AWS and then upload your Docker image on AWS. For more information, see Running
TIBCO BusinessEvents® on AWS Based Kubernetes Cluster.

Procedure

1. Create the Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing Kubernetes objects in a YAML file, see the Kubernetes documentation.
For details about the sample YAML files, see Sample Kubernetes YAML Files for Applications
without Backing Store.

2. Create Kubernetes objects required for deploying and running the application by using object
specification (.yaml) files.
Syntax:
kubectl create -f <kubernetes_object.yaml>

54

TIBCO BusinessEvents® Cloud Deployment Guide

https://aws.amazon.com/documentation/s3/
https://github.com/kubernetes/kops/blob/master/docs/aws.md
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

For example, create the following Kubernetes objects by using the sample YAML files mentioned in
Sample Kubernetes YAML Files for Applications without Backing Store.
kubectl create -f bediscoverynode.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f becacheagent.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f befdservice.yaml

3. (Optional) If required, you can also check logs of TIBCO BusinessEvents pods.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get list of pods and then use the kubectl logs
command to view logs of bediscoverynode.
kubectl get pods

kubectl logs bediscoverynode-86d75d5fbc-z9gqt

4. Get the external IP of your application which you can then use to connect to the cluster.
Syntax:
kubectl get services <external_service_name>

For example,
kubectl get services befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionCache example application with no backing store, update its readme.html file to test
the application. Update the server address in application readme.html file from localhost to the
external IP obtained. Now, follow the instructions in the readme.html file for testing the application.

Running an Application with Shared Nothing Persistence on AWS
By using the Kubernetes elements such as the StatefulSets object and dynamic volume provisioning
features, you can create TIBCO ActiveSpaces and Shared Nothing deployments.

StatefulSets gives deterministic names to the pods. Along with dynamic volume provisioning,
StatefulSets also give deterministic names to PersistentVolumeClaims (PVC). This ensures that when
a particular member of a StatefulSet goes down and comes up again, it attaches itself to the same PVC.
For more information about the Kubernetes concepts of StatefulSets, dynamic volume provisioning,
and PersistentVolumeClaims, see Kubernetes documentation.

Prerequisites

Ensure that CDD of your application is configured to use shared nothing persistence. For deploying
BusinessEvents cluster for the shared nothing persistence on AWS, you must first set up Kubernetes
cluster on AWS and then upload your docker image to an AWS docker registry. For more information,
see Running TIBCO BusinessEvents® on AWS Based Kubernetes Cluster.

Procedure

1. In AWS, create an EFS file system.
For more information on the steps to create an EFS file system, see Amazon EFS documentation.
Specify the Kubernetes cluster Virtual Private Cloud (VPC) and Security Group while creating a
mount target for the file system. On the File Systems page, verify that the mount target shows the
Life Cycle State as Available. Under File system access, you see the file system DNS name. Make
a note of this DNS name.

55

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/
https://docs.aws.amazon.com/efs/latest/ug/gs-step-two-create-efs-resources.html

After successful creation of the EFS file system, note its File System ID, which can be used for
creating EFS provisioner.

2. Create the EFS provisioner and other associated resources. Specify all the connection setup values
for the EFS file system in a manifest.yaml file and run the kubectl command to create the EFS
provisioner.
a) Download the sample manifest.yaml file from https://raw.githubusercontent.com/kubernetes-
incubator/external-storage/master/aws/efs/deploy/manifest.yaml and edit it according to your
setup.

b) In the configmap section, specify File System ID of the newly created EFS as the value of the
file.system.id: variable and Availability Zone of the newly created EFS as the value of the
aws.region: variables.

c) In the Deployment section, specify DNS name of the newly created EFS as the value of the
server: variable.

d) Run the kubectl command to apply the settings in manifest.yaml.
kubectl apply -f manifest.yaml

e) Ensure that the EFS provisioner pod is in the running state using the kubectl command.
kubectl get pods

3. Create other Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing a Kubernetes object in a YAML file, see Kubernetes documentation. For
details about the sample YAML files, see Sample Kubernetes YAML Files for Applications with
Shared Nothing Persistence.

4. Create Kubernetes objects required for deploying and running the application by using the object
specification (.yaml) files.
For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
Kubernetes YAML Files for Applications with Shared Nothing Persistence.
kubectl create -f becacheagent.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f befdservice.yaml

5. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of becacheagent.
kubectl get pods

kubectl logs becacheagent-86d75d5fbc-z9gqt

6. Get the external IP of your application, which you can use to connect to the cluster.
Syntax
kubectl get services <external_service_name>

For example,
kubectl get services befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionStore example application with shared nothing persistence, update its readme.html file
to test the application. Update the server address in application readme.html file from localhost to
the external IP obtained. Now, follow the instructions in the readme.html file for testing the
application.

56

TIBCO BusinessEvents® Cloud Deployment Guide

https://raw.githubusercontent.com/kubernetes-incubator/external-storage/master/aws/efs/deploy/manifest.yaml
https://raw.githubusercontent.com/kubernetes-incubator/external-storage/master/aws/efs/deploy/manifest.yaml
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

Running an Application with Shared All Persistence on AWS
After uploading your TIBCO BusinessEvents application Docker image with shared all storage to the
AWS registry and creating Kubernetes cluster, you can deploy your application and services to the
Kubernetes cluster. The cluster manages the availability and connectivity of the application and service.

Ensure that your application connection properties for database use global variables.

Prerequisites

● A Kubernetes cluster, see Setting up a Kubernetes Cluster on AWS.
● An AWS service registry. For instructions, see AWS documentation.

Procedure

1. Create an Amazon RDS based instance and configure it to connect to a TIBCO BusinessEvents
supported database (Oracle, MySQL, DB2, and so on).
For configuration details, see Amazon RDS documentation.

2. Create other Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing a Kubernetes object in a YAML file, see Kubernetes Documentation. For
details about the sample YAML files, see Sample Kubernetes YAML Files for Applications with
Shared All Persistence.

3. Create Kubernetes objects required for deploying and running the application by using the object
specification (.yaml) files.
For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
Kubernetes YAML Files for Applications with Shared All Persistence.
kubectl create -f db-configmap.yaml

kubectl create -f bediscoverynode.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f becacheagent.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f befdservice.yaml

4. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of bediscoverynode.
kubectl get pods

kubectl logs bediscoverynode-86d75d5fbc-z9gqt

5. Get the external IP of your application which you can use to connect to the cluster.
Syntax:
kubectl get services <external_service_name>

For example,
kubectl get service befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionStore example application with shared all persistence, update its readme.html file to

57

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.aws.amazon.com/ecr/
https://aws.amazon.com/documentation/rds/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

test the application. Update the server address in application readme.html file from localhost to the
external IP obtained. Now, follow the instructions in the readme.html file for testing the application.

Monitoring TIBCO BusinessEvents Applications on AWS
To monitor TIBCO BusinessEvents applications running on AWS based Kubernetes, run TIBCO
BusinessEvents Enterprise Administrator Agent container in the same Kubernetes namespace.

For TIBCO BusinessEvents Enterprise Administrator Agent, you can build only Linux containers (and
not Windows containers).

Prerequisites

● See Preparing for TIBCO BusinessEvents Containerization
● Docker image of TIBCO Enterprise Administrator server. For instructions, see readme.md at

TEA_HOME/docker in the TIBCO Enterprise Administrator installation.
● An TIBCO BusinessEvents application running on AWS based Kubernetes, see Running TIBCO

BusinessEvents® on AWS Based Kubernetes Cluster.

Procedure

1. Build the TIBCO BusinessEvents Enterprise Administrator Agent Docker image by using the script
provided by TIBCO BusinessEvents.
See Building TIBCO BusinessEvents Enterprise Administrator Agent Docker Image.

2. Push Docker images of TIBCO BusinessEvents Enterprise Administrator Agent and TIBCO
Enterprise Administrator server to the AWS repository.
For details, see Running TIBCO BusinessEvents® on AWS Based Kubernetes Cluster.

3. Run the TIBCO Enterprise Administrator server on AWS based Kubernetes.
For instructions, refer readme.md at TEA_HOME/docker in the TIBCO Enterprise Administrator
installation.

4. Update the following Kubernetes object specification (.yaml) files for TIBCO BusinessEvents
Enterprise Administrator Agent:

● beteagentdeploymemt.yaml - A deployment of TIBCO BusinessEvents Enterprise
Administrator Agent Docker image with the TIBCO Enterprise Administrator server URL and
login details.

● beteagentinternalservice.yaml - An internal service for connecting to TIBCO
BusinessEvents Enterprise Administrator Agent from other nodes

● k8s-authorization.yaml - A ClusterRoleBinding for binding roles to the user.

These object specification files are available at BE_HOME\cloud\kubernetes\<cloud_name>\tea.
For details about describing a Kubernetes object in a YAML file, see Kubernetes Documentation. For
details about the sample YAML files, see Sample YAML Files for TIBCO BusinessEvents Enterprise
Administrator Agent.

5. Create Kubernetes objects required for deploying and running TIBCO BusinessEvents Enterprise
Administrator Agent by using the object specification (.yaml) files.
Syntax:
kubectl create -f <kubernetes_object.yaml>

For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
YAML Files for TIBCO BusinessEvents Enterprise Administrator Agent .
kubectl create -f k8s-authorization.yaml

kubectl create -f beteagentdeploymemt.yaml

58

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

kubectl create -f beteagentinternalservice.yaml

6. (Optional) If required, you can check logs of TIBCO BusinessEvents Enterprise Administrator Agent
pod.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of beteagentdeploymemt.
kubectl get pods

kubectl logs beteagentdeploymemt-86d75d5fbc-z9gqt

What to do next

Launch TIBCO Enterprise Administrator in a web browser by using the external IP and port obtained
from the TIBCO Enterprise Administrator external service.

For more details on functioning of TIBCO BusinessEvents Enterprise Administrator Agent, see TIBCO
BusinessEvents Administration guide.

Running RMS Applications in AWS Based Kubernetes
To use TIBCO BusinessEvents® WebStudio in Kubernetes cluster, you must set up TIBCO
BusinessEvents and Rule Management Server (RMS) in AWS based Kubernetes.

Prerequisites

● Docker image of TIBCO BusinessEvents application, see Building TIBCO BusinessEvents
Application Docker Image.

● Download and install the following CLIs on your system:

CLI Download and Installation Instruction Link

kops https://github.com/kubernetes/kops/blob/master/docs/aws.md

kubectl https://kubernetes.io/docs/tasks/tools/install-kubectl/

aws https://aws.amazon.com/cli/

Procedure

1. Set up a Kubernetes cluster on Amazon Web Services (AWS). For more information, see Setting up a
Kubernetes Cluster on AWS.

2. In AWS, create an EFS file system.
For more information on the steps to create an EFS file system, see Amazon EFS documentation.
Specify the Kubernetes cluster Virtual Private Cloud (VPC) and Security Group while creating a
mount target for the file system. On the File Systems page, verify that the mount target shows the
Life Cycle State as Available. Under File system access, you see the file system DNS name. Make
a note of this DNS name.
After successful creation of the EFS file system, note its File System ID, which can be used for
creating EFS provisioner.

3. Create the EFS provisioner and other associated resources. Specify all the connection setup values
for the EFS file system in a manifest.yaml file and run the kubectl command to create the EFS
provisioner.

59

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.aws.amazon.com/efs/latest/ug/gs-step-two-create-efs-resources.html

a) Download the sample manifest.yaml file from https://raw.githubusercontent.com/kubernetes-
incubator/external-storage/master/aws/efs/deploy/manifest.yaml and edit it according to your
setup.

b) In the configmap section, specify File System ID of the newly created EFS as the value of the
file.system.id: variable and Availability Zone of the newly created EFS as the value of the
aws.region: variables.

c) In the Deployment section, specify DNS name of the newly created EFS as the value of the
server: variable.

d) Run the kubectl command to apply the settings in manifest.yaml.
kubectl apply -f manifest.yaml

e) Ensure that the EFS provisioner pod is in the running state using the kubectl command.
kubectl get pods

4. As RMS is running in a Docker container, separate external storage must be set up for required files
and artifacts. For this, create EFS based PersistentVolumeClaim (PVC) using the configuration
files (YAML format).
The sample YAML file berms-efs-persistent-volume-claims.yaml for creating storage class
and PVCs is located at BE_HOME\cloud\kubernetes\AWS\rms. The berms-efs-persistent-
volume-claims.yaml file set up the following PVC:

Sample PVCs for RMS

PVC Name Description

efs-webstudio Set up the PVC for storing TIBCO BusinessEvents project files.

efs-security Set up the PVC for storing TIBCO BusinessEvents project ACL files, such
as, CreditCardApplication.ac.

efs-shared Set up the PVC for storing RMS artifacts after hot deployment, such as,
rule template instances.

efs-notify Set up the PVC for storing Email notification files, such as, message.stg.

For more information about the Kubernetes object spec files, see Kubernetes documentation.

5. Run the create command of kubectl utility using the YAML files to create PVCs on the EFS file
system.
For example, create PVCs using the sample files:
kubectl create -f berms-efs-persistent-volume-claims.yaml

6. Mount the EFS file system into the Kubernetes EC2 instance nodes.
For more information on how to mount EFS file system on EC2 instance, refer AWS Documentation
at https://docs.aws.amazon.com/efs/latest/ug/mounting-fs.html.
After successful mounting, PVCs on EFS are available for uploading files.

7. Transfer files from your system to the respective PVCs.

● RMS project files (for example, project files at BE_HOME\examples\standard\WebStudio\) to
the project storage PVC (efs-webstudio)

● RMS security files and project access control (.ac) files at BE_HOME\rms\config\security to
the security storage PVC (efs-security).

● RMS notification related files (for example, message.stg at BE_HOME\rms\config\notify) to
the notify storage PVC (efs-notify).

60

TIBCO BusinessEvents® Cloud Deployment Guide

https://raw.githubusercontent.com/kubernetes-incubator/external-storage/master/aws/efs/deploy/manifest.yaml
https://raw.githubusercontent.com/kubernetes-incubator/external-storage/master/aws/efs/deploy/manifest.yaml
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://docs.aws.amazon.com/efs/latest/ug/mounting-fs.html

For information on how to transfer files from your system to EC2 instance, refer to the Amazon AWS
Documentation at https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
AccessingInstancesLinux.html.

8. Build the RMS Docker image for deploying to Kubernetes.
For every project add JMX configuration in RMS.cdd, for example:
 <property name="ProjectName.ws.applicableEnvironments" type="string"
value="QA,PROD"/>
 <property name="ProjectName.QA.ws.jmx.hotDeploy.enable" type="boolean"
value="true"/>
 <property name="ProjectName.QA.ws.jmx.host" type="string" value="bejmx-
service.default.svc.cluster.local"/>
 <property name="ProjectName.QA.ws.jmx.port" type="integer" value="5555"/>
 <property name="ProjectName.QA.ws.jmx.user" type="string" value=""/>
 <property name="ProjectName.QA.ws.jmx.password" type="string" value=""/>
 <property name="ProjectName.QA.ws.jmx.clusterName"
value="CreditCardApplication"/>
 <property name="ProjectName.QA.ws.jmx.agentName" value="inference-class"/>

For every project configure jmx.host as the fully qualified name (FQN) of the local JMX Kubernetes
service defined earlier, for example, bejmx-service.default.svc.cluster.local. Also, for every
project configure jmx.port as the JMX port number defined in the JMX Kubernetes service, for
example, 5555.

9. Create RMS Docker image. For more information, see Building RMS Docker Image.

10. Go to the EC2 Container Services dashboard and create a repository with the same name as the
RMS Docker image. Upload the RMS image to the repository. You can use the View Push
Commands button to view how to do that.

AWS Repository name should be same as the RMS Docker image.

For more information on how to create a repository in Amazon AWS, refer to https://
docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html.

11. Define an internal JMX Kubernetes service using the supplied sample YAML configuration file
bejmx-service.yaml.
RMS server uses this service to connect to the JMX port of a BusinessEvents pod.

12. Create other Kubernetes object specification (.yaml) files based on your deployment requirement.
These resources include deployment and services for the cluster. Thus, to deploy a BusinessEvents
cluster, create the following YAML files:

● Discovery node (pod) to start the cluster.
● Service to connect to the discovery node.
● Cache agent node that connects to the discovery node service.
● Inference agent node that connects to the discovery node service.
● Service to connect to the inference agent.
● RMS node containing RMS docker image.
● External service to connect to the RMS node.

For details about describing a Kubernetes object in a YAML file, see Kubernetes documentation. For
details about the sample YAML files, see Sample Kubernetes YAML Files for RMS.

13. Create Kubernetes objects required for deploying and running the application and RMS by using
the object specification (.yaml) files.
For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
Kubernetes YAML Files for RMS:
kubectl create -f bejmx-service.yaml

kubectl create -f berms.yaml

61

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

kubectl create -f berms-service.yaml

kubectl create -f bediscoverynode.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f becache.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f beinference-service.yaml

14. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of bediscoverynode.
kubectl get pods

kubectl logs bediscoverynode-86d75d5fbc-z9gqt

15. Get the external IP of your application which you can use to connect to the cluster.
Syntax:
kubectl get services <external_service_name>

For example,
kubectl get services berms-service

What to do next

Use the IP obtained to connect to TIBCO BusinessEvents WebStudio from your browser.

62

TIBCO BusinessEvents® Cloud Deployment Guide

TIBCO BusinessEvents on Amazon EKS Based
Kubernetes

You can run any TIBCO BusinessEvents application on Amazon Elastic Kubernetes Service (Amazon
EKS) and monitor the application by using TIBCO BusinessEvents Enterprise Administrator Agent. You
can also manage business rules in TIBCO BusinessEvents WebStudio by running RMS on the AWS
based Kubernetes cluster.

For details, see Amazon EKS Documentation.

Readme for Sample Applications

The readme.html files that are provided with TIBCO BusinessEvents contain information about
running the sample applications and components on Amazon EKS. You can follow the instruction in
the readme.html files to run the application, WebStudio, and TIBCO BusinessEvents Enterprise
Administrator Agent by using the sample YAML files.

The following table lists location of readme.html and sample YAML files for running sample
applications and other components:

Scenario
Readme.html and Sample YAML Files
Location

Running TIBCO BusinessEvents application
(FraudDetection) without cache on AWS

BE_HOME\cloud\kubernetes\AWS\inmemory

Running TIBCO BusinessEvents application
(FraudDetectionCache and FraudDetectionStore)
with cache on AWS

BE_HOME\cloud\kubernetes\AWS\cache

Running TIBCO BusinessEvents WebStudio on
AWS

BE_HOME\cloud\kubernetes\AWS\rms

Running TIBCO BusinessEvents Enterprise
Administration Agent for monitoring TIBCO
BusinessEvents applications on AWS

BE_HOME\cloud\kubernetes\AWS\tea

63

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.aws.amazon.com/eks/index.html

TIBCO BusinessEvents on Pivotal Based Kubernetes

You can run any TIBCO BusinessEvents application on a Pivotal based Kubernetes cluster and monitor
the application by using TIBCO BusinessEvents Enterprise Administrator Agent. You can also manage
your business rules in TIBCO BusinessEvents WebStudio by running RMS on the Pivotal based
Kubernetes cluster.

You can use Enterprise Pivotal Container Service (PKS) on Google Cloud Platform (GCP) to deploy
applications on Kubernetes. For details, see "Enterprise Pivotal Container Service" in Pivotal Docs.

Readme for Sample Applications

TIBCO BusinessEvents provides readme.html files to run the sample applications on a Pivotal based
Kubernetes cluster by using Enterprise PKS on GCP. To run your application, RMS, and TIBCO
BusinessEvents Enterprise Administrator Agent by using sample YAML files, follow the instructions
given in the readme.html files.

The following table lists common scenarios and location of respective readme.html and sample YAML
files for running sample applications and other components:

Scenario
readme.html and Sample YAML Files
Location

Running a TIBCO BusinessEvents application
(FraudDetection) without cache

BE_HOME\cloud\kubernetes\PKS\inmemory

Running a TIBCO BusinessEvents application
(FraudDetectionCache and FraudDetectionStore)
with cache

BE_HOME\cloud\kubernetes\PKS\cache

Running TIBCO BusinessEvents WebStudio BE_HOME\cloud\kubernetes\PKS\rms

Running TIBCO BusinessEvents Enterprise
Administration Agent for monitoring TIBCO
BusinessEvents applications

BE_HOME\cloud\kubernetes\PKS\tea

Topics

● Running an Application in Enterprise PKS Installed on GCP

● Monitoring TIBCO BusinessEvents Applications on Enterprise PKS

● Running RMS on Enterprise PKS

Running an Application in Enterprise PKS Installed on GCP
By using Enterprise PKS installed on GCP, you can deploy a TIBCO BusinessEvents application in the
Kubernetes cluster managed by Enterprise PKS.
For more information, see "Enterprise Pivotal Container Service" in Pivotal Docs.

Prerequisites

● See Preparing for TIBCO BusinessEvents Containerization

● Docker image of your TIBCO BusinessEvents application. See Building TIBCO BusinessEvents
Application Docker Image.

64

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.pivotal.io/pks
https://docs.pivotal.io/pks
https://cloud.google.com/docs/
https://docs.pivotal.io/pks

● Active Pivotal and Google Cloud accounts

● Download and install the following CLIs on your system:

CLI Download and Installation Reference

Enterprise PKS CLI
(pks)

"Installing the PKS CLI" in Pivotal Docs

Kubernetes CLI
(kubectl)

"Installing the Kubernetes CLI" in Pivotal Docs

Google Cloud CLI
(gcloud)

Google Cloud SDK documentation

Procedure

1. Install Enterprise PKS on GCP.
See Enterprise PKS documentation.

2. Set up a Kubernetes cluster on Enterprise PKS.
See Setting Up a Kubernetes Cluster with Enterprise PKS.

3. Push the TIBCO BusinessEvents application Docker image to Google Container Registry.
See Setting up Google Container Registry.

4. Based on your application architecture, deploy the application on the Kubernetes cluster. See the
following topics based on your application persistence option:

● Running an Application without Backing Store on Enterprise PKS

● Running an Application with Shared Nothing Persistence on Enterprise PKS

● Running an Application with Shared All Persistence on Enterprise PKS

Setting Up a Kubernetes Cluster with Enterprise PKS
In Pivotal, you can use Enterprise PKS to create and manage a Kubernetes cluster. Use the Enterprise
PKS Command Line Interface (PKS CLI) to deploy the Kubernetes cluster and manage its lifecycle. To
deploy and manage container-based workloads on the Kubernetes cluster, use the Kubernetes CLI
(kubectl).

Prerequisites

● Enterprise PKS installed on GCP. For details, see "Enterprise Pivotal Container Service" in Pivotal
Docs.

● Download and install the following CLIs on your system:

CLI Download and Installation Reference

Enterprise PKS CLI
(pks)

"Installing the PKS CLI" in Pivotal Docs

Kubernetes CLI
(kubectl)

"Installing the Kubernetes CLI" in Pivotal Docs

65

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.pivotal.io/pks
https://docs.pivotal.io/pks
https://cloud.google.com/sdk/docs/
https://docs.pivotal.io/pks
https://docs.pivotal.io/pks
https://docs.pivotal.io/pks
https://docs.pivotal.io/pks
https://docs.pivotal.io/pks

Procedure

1. Create a Kubernetes cluster with PKS CLI.
See "Managing Clusters" in Pivotal Docs.
Sample pks command syntax:
pks login -a <pks_api> -u <username> -p <password>

pks create-cluster <cluster_name> --external-hostname <hostname> --plan <plan-
name> --num-nodes <worker-nodes>

pks cluster <cluster-name>

2. Get access to the Kubernetes cluster for managing it from the Kubernetes CLI.
Sample pks command syntax:
pks get-credentials <cluster-name>

3. Verify access to the Kubernetes cluster by using the Kubernetes CLI.
Sample kubectl command syntax:
kubectl cluster-info

Setting up Google Container Registry
For deploying the TIBCO BusinessEvents application to the Kubernetes cluster, you must push the
application Docker image to Google Container Registry.
Alternatively, you can also use VMware Harbor Registry to store and manage application Docker
images for your Enterprise PKS deployment. For details, see Pivotal Docs.

To access Docker images in the Google Container Registry from an environment other than GCP, set up
a secret object (containing the credential information) for Kubernetes. You can use this secret object in
Kubernetes object specification (YAML) files for your deployment.

Prerequisites

● See Preparing for TIBCO BusinessEvents Containerization

● Docker image of your TIBCO BusinessEvents application. See Building TIBCO BusinessEvents
Application Docker Image.

● Download and install the following CLIs on your system:

CLI Download and Installation Reference

Kubernetes CLI
(kubectl)

"Installing the Kubernetes CLI" in Pivotal Docs

Google Cloud CLI
(gcloud)

Google Cloud SDK documentation

Procedure

1. Retrieve the project ID of the default project of your Google Cloud account.
Sample gcloud command:
gcloud config list core/project

2. To push the TIBCO BusinessEvents application Docker image to the Google Container Registry, first
tag it with the registry name and then push it. For details, see the Google Container Registry
documentation.

66

TIBCO BusinessEvents® Cloud Deployment Guide

https://docs.pivotal.io/pks
https://docs.pivotal.io/pks
https://docs.pivotal.io/pks
https://cloud.google.com/sdk/docs/
https://cloud.google.com/container-registry/docs/
https://cloud.google.com/container-registry/docs/

Sample command syntax:
docker tag <source-image> <hostname>/<project-id>/<image-name>

docker push <hostname>/<project-id>/<image-name>

3. Set up the Kubernetes secret object for pulling Docker images from Google Container Registry.
a) Create a Google cloud service account and store its key in a JSON file. See the Cloud Identity

and Access Management documentation.
Sample gcloud commands syntax:
gcloud iam service-accounts create <service-account-name>

gcloud iam service-accounts keys create ~/key.json --iam-account <service-
account-name>@<project-id>.iam.gserviceaccount.com

b) Add an IAM policy binding for the defined project and service account. See the Cloud Identity
and Access Management documentation.
Sample gcloud commands syntax:
gcloud projects add-iam-policy-binding <project-id> --
member=serviceAccount:<service-account-name>@<project-
id>.iam.gserviceaccount.com --role=<role>

c) Create the Kubernetes secret object by using the JSON file you have just created. See Kubernetes
documentation.
Sample kubectl commands syntax:
kubectl create secret docker-registry <secret-name> --docker-server=<hostname>
--docker-username=_json_key --docker-email=<email_id> --docker-
password=<password>

You can add this secret object in Kubernetes configuration (YAML) files of your deployments by
using the ImagePullSecrets field.

d) Add the secret object to the default service account. See Kubernetes Documentation.
kubectl patch serviceaccount default -p "{\"imagePullSecrets\": [{\"name\":
\"<secret-name>\"}]}"

Running an Application without Backing Store on Enterprise PKS
After uploading the Docker image of your TIBCO BusinessEvents application without backing store to
Google Container Registry, you can deploy your application to the Pivotal based Kubernetes cluster.
The cluster manages the availability and connectivity of the application and service.

TIBCO BusinessEvents provides a readme.html file at BE_HOME\cloud\kubernetes\PKS\cache for the
Dockerized FraudDetectionCache application. You can follow the instructions given in the
readme.html file to run the application by the using sample YAML files. These sample YAML files are
available at BE_HOME\cloud\kubernetes\PKS\cache\persistence-none for deploying TIBCO
BusinessEvents application without backing store on Enterprise PKS. For details about these sample
YAML files, see Sample Kubernetes YAML Files for Applications without Backing Store.

Prerequisites

● The Kubernetes cluster must be deployed on Enterprise PKS. See Setting Up a Kubernetes Cluster
with Enterprise PKS.

● Your TIBCO BusinessEvents application Docker image must be uploaded to the Google Container
Registry. See Setting up Google Container Registry.

Procedure

1. Create the Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing Kubernetes objects in a YAML file, see the Kubernetes documentation.
For details about the sample YAML files, see Sample Kubernetes YAML Files for Applications
without Backing Store.

67

TIBCO BusinessEvents® Cloud Deployment Guide

https://cloud.google.com/iam/docs/
https://cloud.google.com/iam/docs/
https://cloud.google.com/iam/docs/
https://cloud.google.com/iam/docs/
https://kubernetes.io/docs
https://kubernetes.io/docs
https://kubernetes.io/docs
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

2. Create Kubernetes objects required for deploying and running the application by using object
specification (.yaml) files.
Syntax:
kubectl create -f <kubernetes_object.yaml>

For example, create the following Kubernetes objects by using the sample YAML files mentioned in
Sample Kubernetes YAML Files for Applications without Backing Store.
kubectl create -f bediscoverynode.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f becacheagent.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f befdservice.yaml

3. (Optional) If required, you can also check logs of TIBCO BusinessEvents pods.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get list of pods and then use the kubectl logs
command to view logs of bediscoverynode.
kubectl get pods

kubectl logs bediscoverynode-86d75d5fbc-z9gqt

4. Get the external IP of your application which you can then use to connect to the cluster.
Syntax:
kubectl get services <external_service_name>

For example,
kubectl get services befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionCache example application without backing store, you can use the sample readme.html
file at BE_HOME\cloud\kubernetes\PKS\cache to test the application. Use the obtained external IP in
the readme.html file and follow the instructions in it to run the application.

However, if you have deployed any other sample application, update its readme.html file to test that
application. Update the server address in application readme.html file from localhost to the external
IP obtained. Now, follow the instructions in the readme.html file for testing the application.

Running an Application with Shared Nothing Persistence on Enterprise PKS
After uploading your TIBCO BusinessEvents application Docker image with shared nothing persistence
to Google Container Registry and creating the Kubernetes cluster, deploy and run your application on
the Kubernetes cluster. The cluster manages the availability and connectivity of the application.

For shared nothing persistence, create a Storage Class of GCP persistent disk in the Kubernetes cluster.
The StorageClass is configured in the manifest.yaml file. You can use this StorageClass to
provision persistent volumes for the cache and inference agents. For more information, see "Storage
Classes" in Kubernetes Documentation.

To run the Dockerized FraudDetectionStore application with shared nothing persistence, follow the
instructions in the readme.html file at BE_HOME\cloud\kubernetes\PKS\cache. Typically, sample
YAML files are provided to run the application. For this deployment, the sample YAML files are
available at BE_HOME\cloud\kubernetes\PKS\cache\shared-nothing. For details about these sample
YAML files, see Sample Kubernetes YAML Files for Applications with Shared Nothing Persistence.

68

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/home/

Prerequisites

● The Kubernetes cluster must be deployed on Enterprise PKS. See Setting Up a Kubernetes Cluster
with Enterprise PKS.

● Your TIBCO BusinessEvents application Docker image must be uploaded to the Google Container
Registry. See Setting up Google Container Registry.

Procedure

1. Create Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing a Kubernetes object in a YAML file, see Kubernetes documentation. For
details about the sample YAML files, see Sample Kubernetes YAML Files for Applications with
Shared Nothing Persistence.

2. Create Kubernetes objects required for deploying and running the application by using the object
specification (.yaml) files.
Syntax:
kubectl create -f <kubernetes_object_spec>.yaml

For example, create the following Kubernetes objects by using the sample YAML files mentioned in
Sample Kubernetes YAML Files for Applications with Shared Nothing Persistence.
kubectl create -f manifest.yaml

kubectl create -f becacheagent.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f befdservice.yaml

3. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of becacheagent.
kubectl get pods

kubectl logs becacheagent-86d75d5fbc-z9gqt

4. Get the external IP of your application, which you can use to connect to the cluster.
Syntax
kubectl get services <external_service_name>

For example,
kubectl get services befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionStore example application with the shared nothing persistence, you can use the sample
readme.html file at BE_HOME\cloud\kubernetes\PKS\cache to test the application. Use the obtained
external IP in the readme.html file and follow the instructions in it to run the application.

However, if you have deployed any other sample application then update its readme.html file to test
the application. Update the server address in the application readme.html file from localhost to the
external IP obtained. Now, follow the instructions in the readme.html file for testing the application.

69

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

Running an Application with Shared All Persistence on Enterprise PKS
After uploading your TIBCO BusinessEvents application image with shared all persistence to the
Google Container Registry and creating the Kubernetes cluster, you can deploy your application to the
Kubernetes cluster. The cluster manages the availability and connectivity of the application. You can
use the Docker image of the database that you want to use.

For the shared all persistence, configure a database server and define a storage for its database. For
example, you can use a MySQL server for database connections. To implement the database, you can
use the mysql container from the Docker hub. Provide the database connection details in the cache and
inference agent configuration files. Define a Storage Class object of the GCP persistent disk (gce-pd)
provisioner to provision storage (persistent volume claim) for the MySQL database.

TIBCO BusinessEvents provides a readme.html file at BE_HOME\cloud\kubernetes\PKS\cache for the
Dockerized FraudDetectionStore application. You can follow the instructions in the readme.html file to
run the application by the using the sample YAML files. These sample YAML files for deploying TIBCO
BusinessEvents application with the shared all persistence on Enterprise PKS are available at BE_HOME
\cloud\kubernetes\PKS\cache\shared-all. For details about these sample YAML files, see Sample
Kubernetes YAML Files for Applications with Shared All Persistence.

Procedure

1. Create the Kubernetes object specification (.yaml) files based on your deployment requirement.
For details about describing a Kubernetes object in a YAML file, see Kubernetes documentation. For
details about the sample YAML files, see Sample Kubernetes YAML Files for Applications with
Shared All Persistence.

2. Create Kubernetes objects required for deploying and running the application by using the object
specification (.yaml) files.
Syntax:
kubectl create -f <kubernetes_object_spec>.yaml

For example, create the following Kubernetes objects by using the sample YAML files mentioned in
Sample Kubernetes YAML Files for Applications with Shared All Persistence.
kubectl create -f persistent-volume-claim.yaml

kubectl create -f mysql.yaml

kubectl create -f mysql-service.yaml

kubectl create -f db-configmap.yaml

kubectl create -f bediscoverynode.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f becacheagent.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f befdservice.yaml

3. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of becacheagent.
kubectl get pods

kubectl logs becacheagent-86d75d5fbc-z9gqt

4. Get the external IP of your application, which you can use to connect to the cluster.

70

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

Syntax
kubectl get services <external_service_name>

For example,
kubectl get services befdservice

What to do next

Test the application by using the external IP obtained. For example, if you have deployed the
FraudDetectionStore example application with the shared all persistence, you can use the sample
readme.html file at BE_HOME\cloud\kubernetes\PKS\cache to test the application. Use the obtained
external IP in the readme.html file and follow the instructions in it to run the application.

However, if you have deployed any other sample application then update its readme.html file to test
the application. Update the server address in application readme.html file from localhost to the
external IP obtained. Now, follow the instructions in the readme.html file for testing the application.

Monitoring TIBCO BusinessEvents Applications on Enterprise PKS
To monitor TIBCO BusinessEvents applications running on Enterprise PKS, run TIBCO BusinessEvents
Enterprise Administrator Agent container in the same Kubernetes namespace as the application.

You can build only Linux container (and not Windows container) of TIBCO BusinessEvents Enterprise
Administrator Agent.

Prerequisites

● See Preparing for TIBCO BusinessEvents Containerization.
● Docker image of TIBCO Enterprise Administrator server. For instructions, see readme.md at

TEA_HOME/docker in the TIBCO Enterprise Administrator installation.
● A TIBCO BusinessEvents application running on Enterprise PKS. See Running an Application in

Enterprise PKS Installed on GCP.

Procedure

1. Build the TIBCO BusinessEvents Enterprise Administrator Agent Docker image by using the script
provided by TIBCO BusinessEvents.
See Building TIBCO BusinessEvents Enterprise Administrator Agent Docker Image.

2. Push Docker images of TIBCO BusinessEvents Enterprise Administrator Agent and TIBCO
Enterprise Administrator server to Google Container Registry.
For details, see Setting up Google Container Registry.

3. Run the TIBCO Enterprise Administrator server on Enterprise PKS.
For instructions, see readme.md at TEA_HOME/docker in the TIBCO Enterprise Administrator
installation.

4. Update the following Kubernetes object specification (.yaml) files for TIBCO BusinessEvents
Enterprise Administrator Agent:

● beteagentdeploymemt.yaml - A deployment of TIBCO BusinessEvents Enterprise
Administrator Agent Docker image with the TIBCO Enterprise Administrator server URL and
login details.

● beteagentinternalservice.yaml - An internal service for connecting to TIBCO
BusinessEvents Enterprise Administrator Agent from other nodes

● k8s-authorization.yaml - A ClusterRoleBinding for binding roles to the user.
These object specification files are available at BE_HOME\cloud\kubernetes\<cloud_name>\tea.
For details about describing a Kubernetes object in a YAML file, see Kubernetes Documentation. For

71

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

details about the sample YAML files, see Sample YAML Files for TIBCO BusinessEvents Enterprise
Administrator Agent.

5. Create Kubernetes objects required for deploying and running TIBCO BusinessEvents Enterprise
Administrator Agent by using the YAML files.
Syntax:
kubectl create -f <kubernetes_object.yaml>

For example, create the Kubernetes objects by using the sample YAML files mentioned in Sample
YAML Files for TIBCO BusinessEvents Enterprise Administrator Agent.
kubectl create -f k8s-authorization.yaml

kubectl create -f beteagentdeploymemt.yaml

kubectl create -f beteagentinternalservice.yaml

6. (Optional) If required, you can check logs of TIBCO BusinessEvents Enterprise Administrator Agent
pod.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of beteagentdeploymemt.
kubectl get pods

kubectl logs beteagentdeploymemt-86d75d5fbc-z9gqt

What to do next

Launch TIBCO Enterprise Administrator in a web browser by using the external IP and port obtained
from the TIBCO Enterprise Administrator external service.

For more details on functioning of TIBCO BusinessEvents Enterprise Administrator Agent, see TIBCO
BusinessEvents Administration guide..

Running RMS on Enterprise PKS
To use TIBCO BusinessEvents WebStudio on Pivotal, you must set up TIBCO BusinessEvents and Rule
Management Server (RMS) on Pivotal by using Enterprise PKS.

To connect to WebStudio, you must set up an external service to deploy the RMS project. The RMS
deployment can communicate with an instance of TIBCO BusinessEvents by using the instance JMX
port. You can implement it by setting up an internal JMX service Kubernetes object.

For storing project's hot deployed artifacts, project shared files, project ACLs, and email notifications,
define a Storage Class object of the GCP persistent disk (gce-pd) provisioner. You can use this Storage
Class to provision persistence volumes claims required for storage of these artifacts. For more
information about Storage Class and persistent volume claims, see Kubernetes Documentation.

TIBCO BusinessEvents provides a readme.html file at BE_HOME\cloud\kubernetes\PKS\rms for the
Dockerized CreditCardApplication project and RMS project. You can follow the instructions in the
readme.html file to run CreditCardApplication by using sample YAML files. These sample YAML files
for deploying CreditCardApplication on Enterprise PKS are available at BE_HOME\cloud\kubernetes
\PKS\rms. For details about these sample YAML files, see Sample Kubernetes YAML Files for RMS.

Prerequisites

The Kubernetes cluster must be deployed on Enterprise PKS, see Setting Up a Kubernetes Cluster with
Enterprise PKS.

72

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/home/

Procedure

1. To enable hot deployment in RMS, add JMX connection details in RMS.cdd for each project of each
environment under the HotDeploy section.
For example,
 <property name="ProjectName.ws.applicableEnvironments" type="string"
value="QA,PROD"/>
 <property name="ProjectName.QA.ws.jmx.hotDeploy.enable" type="boolean"
value="true"/>
 <property name="ProjectName.QA.ws.jmx.host" type="string" value="bejmx-
service.default.svc.cluster.local"/>
 <property name="ProjectName.QA.ws.jmx.port" type="integer" value="5555"/>
 <property name="ProjectName.QA.ws.jmx.user" type="string" value=""/>
 <property name="ProjectName.QA.ws.jmx.password" type="string" value=""/>
 <property name="ProjectName.QA.ws.jmx.clusterName"
value="CreditCardApplication"/>
 <property name="ProjectName.QA.ws.jmx.agentName" value="inference-class"/>

For more information about hot deployment property group, see the "RMS Server Configuration
Property Reference" section in TIBCO BusinessEvents WebStudio Users Guide.
Alternatively, you can add these JMX connection details for the project from the Settings page in
TIBCO BusinessEvents WebStudio. For details, see TIBCO BusinessEvents WebStudio Users Guide.

2. Build the RMS Docker image. See Building RMS Docker Image.

3. In the RMS application CDD file, update the path for hot deployment of artifacts to the shared
location in RMS.
For example, update the following properties for the CreditCardApplication sample:
<property name="be.engine.cluster.externalClasses.path" value="C:/
tibco/be/5.6/rms/shared/CreditCardApplication/Decision_Tables"/>
<property name="be.cluster.ruletemplateinstances.deploy.dir" value="C:/
tibco/be/5.6/rms/shared/CreditCardApplication/RTI/"/>

4. Build the RMS application Docker image. See Building TIBCO BusinessEvents Application Docker
Image.

5. Tag and push the RMS and application Docker images to Google Container Registry. For details, see
Setting up Google Container Registry.

6. Create the Kubernetes object specification (.yaml) files based on your deployment requirement.
You must consider the following point while creating the object specification file:

● Create separate persistent volume and persistent volume claims for storing the project hot
deployed artifacts, project shared files, project ACLs, and email notifications.

● Create a node with the RMS container, an internal JMX service for connecting it to the cluster,
and an external RMS service for accessing WebStudio.

● Create discovery node, cache agent, and inference agent by using the application Docker image.

For details about defining Kubernetes objects in a YAML file, see Kubernetes documentation. For
details about sample YAML files, see Sample Kubernetes YAML Files for RMS.

7. Create Kubernetes objects required for deploying and running the application by using the YAML
files.
Syntax:
kubectl create -f <kubernetes_object.yaml>

For example, create the following Kubernetes objects by using the sample YAML files in the
previous step.
kubectl create -f manifest_gcp.yaml

kubectl create -f persistent-volume-claims.yaml

73

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

kubectl create -f berms.yaml

kubectl create -f berms-service.yaml

kubectl create -f bejmx-service.yaml

kubectl create -f bediscoverynode.yaml

kubectl create -f bediscovery-service.yaml

kubectl create -f becacheagent.yaml

kubectl create -f beinferenceagent.yaml

kubectl create -f befdservice.yaml

8. (Optional) If required, you can check logs of TIBCO BusinessEvents pod.
Syntax:
kubectl logs <pod>

For example, use the kubectl get command to get the list of pods and then use the kubectl logs
command to view logs of becacheagent.
kubectl get pods

kubectl logs becacheagent-86d75d5fbc-z9gqt

9. Copy the masked persistent volume folders to the same path in the container. When you mount the
persistent volume claims to the RMS project folder, it masks the other existing projects that are at
the same path in the container.
Use the following command to copy the relevant folders to the RMS pods.

Syntax:
kubectl cp <host_folder_path berms_pod_name>:<berms_pod_folder_path>

For example:
kubectl cp security berms-65f89dff4-cwg6z:/opt/tibco/be/5.6.0/rms/config/

kubectl cp notify berms-65f89dff4-cwg6z:/opt/tibco/be/5.6.0/rms/config/

kubectl cp shared berms-65f89dff4-cwg6z:/opt/tibco/be/5.6.0/rms/

kubectl cp webstudio berms-65f89dff4-cwg6z:/opt/tibco/be/5.6.0/examples/standard/

10. Get the external IP of the RMS service.
Syntax:
kubectl get services <external_service_name>

For example,
kubectl get services rms-service

What to do next

Use the IP obtained from rms-service to connect to TIBCO BusinessEvents WebStudio from your
browser. For example, if you have deployed the CreditCardApplication example application, you can
use the provided sample readme.html file at BE_HOME\cloud\kubernetes\PKS\rms to test the
application. Use the obtained external IP in the readme.html file and follow the instructions in it to run
the application.

74

TIBCO BusinessEvents® Cloud Deployment Guide

TIBCO BusinessEvents on Minikube Based Kubernetes

You can try out any TIBCO BusinessEvents application locally on a Kubernetes cluster by using the
Minikube client and monitor them by using TIBCO BusinessEvents Enterprise Administrator Agent.
You can also manage business rules through WebStudio by running RMS on Minikube based
Kubernetes cluster.

For details about the Minikube client, see Kubernetes Documentation.

Readme for Sample Applications

TIBCO BusinessEvents provides readme.html files to help you in running the sample applications and
components on Minikube. You can follow the instruction in the readme.html file to run the application,
WebStudio, and TIBCO BusinessEvents Enterprise Administrator Agent by using the provided sample
YAML files.

The following table lists location of readme.html and sample YAML files for running sample
applications and other components:

Scenario
readme.html and Sample YAML Files
Location

Running TIBCO BusinessEvents application
(FraudDetection) without cache on Minikube

BE_HOME\cloud\kubernetes\minikube

\inmemory

Running TIBCO BusinessEvents application
(FraudDetectionCache and FraudDetectionStore)
with cache on Minikube

BE_HOME\cloud\kubernetes\minikube\cache

Running TIBCO BusinessEvents WebStudio on
Minikube

BE_HOME\cloud\kubernetes\minikube\rms

Running TIBCO BusinessEvents Enterprise
Administration Agent for monitoring TIBCO
BusinessEvents applications on Minikube

BE_HOME\cloud\kubernetes\minikube\tea

75

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/home/

Appendix: Sample YAML Files for Kubernetes Cluster

TIBCO BusinessEvents provides sample YAML files to create Kubernetes objects for different cloud
platforms and different persistence options. These YAML files are available at BE_HOME/cloud/
kubernetes/.

Topics

● Sample Kubernetes YAML Files for Applications without Backing Store

● Sample Kubernetes YAML Files for Applications with Shared Nothing Persistence

● Sample Kubernetes YAML Files for Applications with Shared All Persistence

● Sample YAML Files for TIBCO BusinessEvents Enterprise Administrator Agent

● Sample Kubernetes YAML Files for RMS

Sample Kubernetes YAML Files for Applications without Backing Store
TIBCO BusinessEvents provides sample YAML files for deploying the TIBCO BusinessEvents
application without a backing store at BE_HOME\cloud\kubernetes\<cloud_name>\cache
\persistence-none.

If you are using global variable group in YAML files, instead of the slash '/' delimiter between global
variable group name and global variable name, use "_gv_". For example, port is a global variable
which is part of the VariableGP global variable group, then instead of using VariableGP/port in
YAML files, use VariableGP_gv_port. Also, ensure that you do not use the "gv" token in any global
variable group name or global variable name.

The following tables list Kubernetes object specification files provided for cloud platforms. For details
on the Kubernetes objects used and YAML files, see the Kubernetes documentation.

Sample Kubernetes Resource YAML Files for No Backing Store

File Name Resource
Resourc
e Type Description

bediscovery

node.yaml

Discovery
node

Deploym
ent

Set up the discovery node with the application Docker
container for starting the cluster. Specify the
application Docker image to create the container.

This label which is used by the discovery node service
as selector. Specify only one replica of the discovery
node.

bediscovery

-

service.yam

l

Discovery
node service

Service
(Internal)

Set up an internal service for connecting non-discovery
nodes of the cluster to the discovery node.

Specify the label of the discovery node as selector.
Specify protocol and port that is used by other nodes
to connect to this service.

76

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

File Name Resource
Resourc
e Type Description

becacheagen

t.yaml

Cache agent
node

Deploym
ent

Set up the cache agent node with the application
Docker container for the cluster. Specify the application
Docker image to create the container. Specify replicas
value based on the number of cache agent you want to
start. Connect to the discovery node service using the
discovery protocol and port specified in the discovery
node service.

beinference

agent.yaml

Inference
agent node

Deploym
ent

Set up an inference agent with the application Docker
container for connecting to external APIs. Specify the
application Docker image to create the container.

Provide a label to the deployment which the inference
agent service can use as selector. Specify at least one
replica of the inference agent node. Connect to the
discovery node service using the discovery protocol
and port specified in the discovery node service.

befdservice

.yaml

Inference
agent service

Service
(LoadBal
ancer/
External)

Set up an external service to connect to the inference
agent.

Specify label of the inference agent as selector for the
service. Specify the protocol and port to connect to
this service externally.

Kubernetes Cluster Diagram

The following diagram shows the connections between different Kubernetes objects defined by using
the sample YAML files (listed in the previous table) for deploying TIBCO BusinessEvents application
without backing store.

Kubernetes Cluster Diagram for an Application without Backing Store

77

TIBCO BusinessEvents® Cloud Deployment Guide

Sample Kubernetes YAML Files for Applications with Shared Nothing
Persistence

TIBCO BusinessEvents provides sample YAML files at BE_HOME\cloud\kubernetes\<cloud_name>
\cache\shared-nothing for deploying TIBCO BusinessEvents application with shared nothing
persistence.

If you are using global variable group in YAML files, instead of the slash '/' delimiter between global
variable group name and global variable name, use "_gv_". For example, port is a global variable
which is part of the VariableGP global variable group, then instead of using VariableGP/port in
YAML files, use VariableGP_gv_port. Also, ensure that you do not use the "gv" token in any global
variable group name or global variable name.

The following tables list Kubernetes object specification files provided for cloud platforms. For details
on the Kubernetes objects used and YAML files, see the Kubernetes documentation.

Sample Object Definition Files for Storage

Cloud
Platform File Name

Resourc
e Type Description

OpenShift
Container
Platform

persistentv

ol.yaml

Persisten
tVolume

Set up the persistent volume for the agent in the
Kubernetes cluster.

Specify the name for the persistent volume, which the
cache agent and inference agent uses to create
persistent volume claims (PVCs). Specify the amount of
storage to be allocated to this volume. This sample file
uses the NFS plugin for the volume. Provide path of
the folder that you have created, and server URL for
mounting that folder.

Microsoft
Azure

manifest.ya

ml

(for Azure
disk storage)

StorageC
lass

Set up the persistent volume for the Azure File
provisioner type. Provide the mount options based on
the Kubernetes version. For details, see Microsoft
Azure documentation.

Amazon
Web
Services
(AWS)

manifest.ya

ml

ConfigM
ap

Deploy
ment

StorageC
lass

Set up the ConfigMap with the EFS file system details.

Also, set up the deployment to create a container with
the EFS provisioner and persistent volume.

Enterprise
PKS

manifest.ya

ml

StorageC
lass

Set up a StorageClass of the GCP persistent disk in
the Kubernetes cluster. Set the provisioner field as
kubernetes.io/gce-pd. You can use this
StorageClass to provision persistence volume claims
for the cache and inference agents.

For more information, see Storage Classes in
Kubernetes.

78

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://docs.microsoft.com/bs-cyrl-ba/azure/aks/azure-files-dynamic-pv
https://docs.microsoft.com/bs-cyrl-ba/azure/aks/azure-files-dynamic-pv
https://kubernetes.io/docs/concepts/storage/storage-classes/#gce-pd
https://kubernetes.io/docs/concepts/storage/storage-classes/#gce-pd

Sample Kubernetes Common Resource YAML Files for Shared Nothing Persistence

File Name Resource
Resourc
e Type Description

bediscovery

-

service.yam

l

Discovery
node service

Service
(Internal)

Set up an internal service for connecting non-discovery
nodes of the cluster to the discovery node. In case of
the shared nothing persistence, the first cache agent
node is the discovery node. Set the selector value as
the label of the cache agent defined in
becacheagent.yaml . Other nodes in the cluster use
this service to connect to the discovery node. Specify
protocol and port that are used by other nodes to
connect to this service.

becacheagen

t.yaml

Cache agent
node

StatefulS
et

Set up the cache agent node of the application Docker
container for the cluster. Specify the application Docker
image to create the container.

Specify replicas value (minimum value is 1) and start
as many cache agent as specified in the value. Connect
to the discovery node service using the discovery
protocol and port specified in the discovery node
service. Also, specify the details of the persistent
volume claims based on the storage used by the cloud
platform.

beinference

agent.yaml

Inference
agent node

StatefulS
et

Set up an inference agent of the application Docker
container for connecting to external APIs. Specify the
application Docker image to create the container.

Provide a label to the StatefulSet which the inference
agent service can use as selector. Specify at least one
replica of the inference agent node. Connect to the
discovery node service using the discovery protocol
and port specified in the discovery node service. Also,
specify the details of the persistent volume claims
based on the storage used by the cloud platform.

befdservice

.yaml

Inference
agent service

Service
(LoadBal
ancer/
External)

Set up an external service to connect to the inference
agent.

Set the selector value as the label of the inference
agent defined in beinferenceagent.yaml. Specify
protocol and port to connect to this service
externally.

79

TIBCO BusinessEvents® Cloud Deployment Guide

Sample Kubernetes YAML Files for Applications with Shared All
Persistence

TIBCO BusinessEvents provides sample YAML files at BE_HOME\cloud\kubernetes\<cloud_name>
\cache\shared-all.

If you are using global variable group in YAML files, instead of the slash '/' delimiter between global
variable group name and global variable name, use "_gv_". For example, port is a global variable
which is part of the VariableGP global variable group, then instead of using VariableGP/port in
YAML files, use VariableGP_gv_port. Also, ensure that you do not use the "gv" token in any global
variable group name or global variable name.

The following tables list the sample database and common Kubernetes object specification files
provided for cloud platforms. For details on the Kubernetes objects used and YAML files, see the
Kubernetes documentation.

Sample Database Object Definition Files

Cloud
Platform File Name

Resourc
e Type Description

OpenShift
Container
Platform

mysql.yaml StatefulS
et

Set up the MySQL node with the MySQL container.
Specify the CentOS based MySQL Docker image to
create the container. Specify the port that you have
forwarded as the container port. Specify the persistent
volume claims to be used for the MySQL database.

mysql-

service.yam

l

Service
(Internal
)

Set up the service for connecting to the MySQL
database.

persistent-

volume-and-

claim.yaml

Persisten
tVolume

Persisten
tVolume
Claim

Set up the persistent volume and persistent volume
claims to be used in MySQL. The MySQL node uses
this persistent volume claims for storage. Specify the
amount of storage to be allocated to this volume. This
sample file uses NFS plugin for the volume. Provide
path of the folder that you have created, and server
URL for mounting that folder.

Microsoft
Azure
(MySQL)

mysql.yaml StatefulS
et

Persisten
tVolume
Claim

Set up the MySQL node with the MySQL container.
Specify the MySQL Docker image to create the
container. Specify the port that you have forwarded as
the container port. Specify the PVC to be used for the
MySQL database.

mysql-

service.yam

l

Service
(Internal
)

Set up the service for connecting to the MySQL
database.

80

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

Cloud
Platform File Name

Resourc
e Type Description

Enterprise
PKS

mysql.yaml StatefulS
et

Set up the MySQL node with the mysql container from
the Docker hub. Specify the port that you have
forwarded as the container port. Define the volume by
using the PersistentVolumeClaim defined in the
persistent-volume-and-claim.yaml file for the
database storage. Also provide the path of the folder to
mount the volume.

mysql-

service.yam

l

Service
(Internal
)

Set up the service for connecting to the MySQL
database.

persistent-

volume-

claim.yaml

StorageC
lass

Persisten
tVolume
Claim

Setup the StorageClass with gce-pd provisioner and
its PersistentVolumeClaim to be used for the MySQL
database. The MySQL node uses this
PersistentVolumeClaim for storage. Specify the
amount of storage to be allocated to this
PersistentVolumeClaim.

Sample Kubernetes Resource YAML Files for Shared All Persistence

File Name Resource
Resourc
e Type Description

db-

configmap.y

aml

ConfigMap ConfigM
ap

Set up the environment variables for the database
connection. These environment variables are used by
deployment instances (bediscoverynode.yaml,
becacheagent.yaml, and beinferenceagent.yaml)
for connection to the database.

bediscovery

node.yaml

Discovery
node

Deploym
ent

Set up the discovery node with the application Docker
container for the starting the cluster. Specify the
application Docker image to create the container.
Provide a label which is used by the discovery node
service as selector. Specify only one replica of the
discovery node. Use the ConfigMap environment
variables to provide database connection values for the
global variables that are used in the application.

bediscovery

-

service.yam

l

Discovery
node service

Service
(Internal)

Set up an internal service for connecting non-discovery
nodes of the cluster to the discovery node.

Specify the label of the discovery node as selector.
Specify the protocol and port that is used by other
nodes to connect to this service.

81

TIBCO BusinessEvents® Cloud Deployment Guide

File Name Resource
Resourc
e Type Description

becacheagen

t.yaml

Cache agent
node

Deploym
ent

Set up the cache agent node with the application
Docker container for the cluster. Specify the application
Docker image to create the container. Specify replicas
value based on the number of cache agent you want to
start. Connect to the discovery node service using the
discovery protocol and port specified in the discovery
node service. Provide database connection values for
the global variables that are used in the application,
using the ConfigMap environment variables.

beinference

agent.yaml

Inference
agent node

Deploym
ent

Set up an inference agent with the application Docker
container for connecting to external APIs. Specify the
application Docker image to create the container.

Provide a label to the deployment which the inference
agent service can use as selector. Specify at least one
replica of the inference agent node. Connect to the
discovery node service using the discovery protocol
and port specified in the discovery node service.
Provide database connection values for the global
variables, that are used in the application, using the
ConfigMap environment variables.

befdservice

.yaml

Inference
agent service

Service
(LoadBal
ancer/
External)

Set up an external service to connect to the inference
agent.

Specify label of the inference agent as selector for the
service. Specify the protocol and port to connect to
this service externally.

Sample YAML Files for TIBCO BusinessEvents Enterprise Administrator
Agent

TIBCO BusinessEvents provides sample YAML files at BE_HOME\cloud\kubernetes\<cloud_name>
\tea for deploying TIBCO BusinessEvents Enterprise Administrator Agent for monitoring TIBCO
BusinessEvents applications.

If you are using global variable group in YAML files, instead of the slash '/' delimiter between global
variable group name and global variable name, use "_gv_". For example, port is a global variable
which is part of the VariableGP global variable group, then instead of using VariableGP/port in
YAML files, use VariableGP_gv_port. Also, ensure that you do not use the "gv" token in any global
variable group name or global variable name.

The following tables list the sample database and common Kubernetes object specification files
provided for cloud platforms. For details on the Kubernetes objects used and YAML files, see the
Kubernetes documentation.

82

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

Sample Kubernetes Resource YAML Files for No Backing Store

File Name Resource
Resourc
e Type Description

beteagentde

ploymemt.ya

ml

TIBCO
BusinessEve
nts
Enterprise
Administrato
r Agent node

Deploym
ent

Set up the node with the TIBCO BusinessEvents
Enterprise Administrator Agent Docker container.
Specify the TIBCO BusinessEvents Enterprise
Administrator Agent Docker image to create the
container.

Provide a label which is used by the
beteagentinternalservice service as selector.
Specify only one replica of the node. Specify the TIBCO
Enterprise Administrator server URL obtained from
the TIBCO Enterprise Administrator server external
service and login credentials.

beteagentin

ternalservi

ce.yaml

TIBCO
BusinessEve
nts
Enterprise
Administrato
r Agent node
service

Service
(Internal)

Set up an internal service for connecting TIBCO
Enterprise Administrator server to TIBCO
BusinessEvents Enterprise Administrator Agent.

Specify the label of the TIBCO BusinessEvents
Enterprise Administrator Agent node as selector.
Specify the protocol and port that is used by other
nodes to connect to this service.

k8s-

authorizati

on.yaml

Authorizatio
n

ClusterR
oleBindin
g

Assign roles to the users in TIBCO Enterprise
Administrator in the same Kubernetes namespace.

Sample Kubernetes YAML Files for RMS
TIBCO BusinessEvents provides sample YAML files at BE_HOME\cloud\kubernetes\rms.

If you are using global variable group in YAML files, instead of the slash '/' delimiter between global
variable group name and global variable name, use "_gv_". For example, port is a global variable
which is part of the VariableGP global variable group, then instead of using VariableGP/port in
YAML files, use VariableGP_gv_port. Also, ensure that you do not use the "gv" token in any global
variable group name or global variable name.

The following tables list the sample Kubernetes object specification files provided for cloud platforms.
For details on the Kubernetes objects used and YAML files, see the Kubernetes documentation.

83

TIBCO BusinessEvents® Cloud Deployment Guide

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

Sample Persistent Volume Claim Object Definition Files

Cloud
Platform File Name

Resourc
e Type Description

OpenShift
Container
Platform

persistent-

volume.yaml

Persisten
tVolume

Set up persistent volumes to provision storage for the
following RMS artifacts:

● Project hot deployed artifacts (webstudio-pv)

● Project shared files (shared-pv)

● Project ACLs (security-pv)

● Email notifications (notify-pv)

Specify the amount of storage to be allocated to these
volumes. This sample file uses the NFS plugin for the
volume. Provide path of the folder that you have
created, and server URL for mounting that folder.

Use these persistent volumes in persistent-volume-
claims.yaml to provision persistent volume claims for
storage of RMS artifacts.

persistent-

volume-

claims.yaml

Persisten
tVolume
Claim

Set up the persistent volume claims to store the
following RMS artifacts by using the respective
PersistentVolume defined in persistent-
volume.yaml:

● Project hot deployed artifacts (webstudio-pvc)

● Project shared files (shared-pvc)

● Project ACLs (security-pvc)

● Email notifications (notify-pvc)

Use these persistent volume claims in the inference
agent beinferenceagent.yaml to mount volumes for
RMS artifacts storage.

Microsoft
Azure
(MySQL)

persistent-

volume-

claims.yaml

Persisten
tVolume
Claim

Set up the StorageClass object with the Azure File
(azure-file) provisioner. This StorageClass is used
to provision persistent volume claims for storage of the
following RMS artifacts:

● Project hot deployed artifacts (azurefile-
webstudio)

● Project shared files (azurefile-shared)

● Project ACLs (azurefile-security)

● Email notifications (azurefile-notify)

Use these persistent volume claims in the inference
agent beinferenceagent.yaml to mount volumes for
RMS artifacts storage.

84

TIBCO BusinessEvents® Cloud Deployment Guide

Cloud
Platform File Name

Resourc
e Type Description

Enterprise
PKS

manifest_gc

p.yaml

StorageC
lass

Set the StorageClass object with the GCP persistent
disk (gce-pd) provisioner. This StorageClass is used
to provision persistent volume claims for storage of
RMS artifacts.

persistent-

volume-

claims.yaml

Persisten
tVolume
Claim

Set up the persistent volume claims to store the
following RMS artifacts by using the StorageClass
defined in manifest_gcp.yaml:

● Project hot deployed artifacts (webstudio-pvc)

● Project shared files (shared-pvc)

● Project ACLs (security-pvc)

● Email notifications (notify-pvc)

Use these persistent volume claims in the inference
agent beinferenceagent.yaml to mount volumes for
RMS artifacts storage.

Sample Kubernetes Resource YAML Files for RMS

File Name Resource
Resourc
e Type Description

bediscovery

node.yaml

Discovery
node

Deploym
ent

Set up the container with the docker image of the
application. Provide a label to the deployment which
the discovery node service can use as selector.
Specify only one replica of the discovery node. Provide
the JMX Kubernetes service name created earlier
(bejmx-service.default.svc.cluster.local) as
the value of DOCKER_HOST. Specify the volume mounts
to use the shared persistent volume claims created
earlier.

bediscovery

-

service.yam

l

Discovery
node service

Service
(Internal)

Set up the service to connect to the discovery node.
Specify the label of the discovery node as the value of
selector. Other nodes in the cluster use this service to
connect to the discovery node. Specify the protocol
and port to connect to this service.

becacheagen

t.yaml

Cache agent
node

Deploym
ent

Set up the container with the docker image of the
application. Specify replicas value and start as many
cache agent as specified in the value. Connect to the
discovery node service using the discovery protocol
and port specified in the discovery node service.
Provide the JMX Kubernetes service name created
earlier (bejmx-
service.default.svc.cluster.local) as the value
of DOCKER_HOST. Specify the volume mounts to use the
shared persistent volume claims created earlier.

85

TIBCO BusinessEvents® Cloud Deployment Guide

File Name Resource
Resourc
e Type Description

beinference

agent.yaml

Inference
agent node

Deploym
ent

Set up the container with the docker image of the
application. Provide a label to the deployment which
the JMX service can use as selector. Specify at least
one replica of the inference agent node. Connect to the
discovery node service using the discovery protocol
and port specified in the discovery node service.
Provide the JMX Kubernetes service name created
earlier (for example, bejmx-
service.default.svc.cluster.local) as the value
of DOCKER_HOST. Specify the volume mounts to use the
shared persistent volume claims for storing artifacts.

befdservice

.yaml

Inference
agent service

Service
(LoadBal
ancer/
External)

Set up an external service to connect to the inference
agent.

Specify label of the inference agent as value of
selector for the service. Specify the protocol and
port to connect to this service externally.

berms.yaml Discovery
node

Deploym
ent

Set up the container with the RMS docker image.
Provide a label to the deployment which the RMS node
service can use as selector. Specify the volume
mounts to use the shared persistent volume claims
created earlier.

berms-

service.yam

l

Discovery
node service

Service
(LoadBal
ancer/
External)

Set up the service to externally connect to the RMS
node. Specify the label of the RMS node as the value of
selector. Specify the protocol and port to connect
to this service.

bejmx-

service.yam

l

JMX service Service
(Internal)

Set up the service for RMS to connect to the JMX port
of the inference agent. Set up the label of the inference
agent as the value of the selector variable for
connection. Specify the protocol and port to connect
to this service.

86

TIBCO BusinessEvents® Cloud Deployment Guide

	Contents
	Figures
	TIBCO Documentation and Support Services
	Before You Begin
	Dockerize TIBCO BusinessEvents
	Dockerfile for TIBCO BusinessEvents
	Containerizing TIBCO BusinessEvents Application in Docker
	Building TIBCO BusinessEvents Application Docker Image
	Running a TIBCO BusinessEvents Application in Docker

	Containerizing RMS by Using Docker
	Building RMS Docker Image
	Running RMS in Docker

	Docker Run Command Reference
	Building TIBCO BusinessEvents Enterprise Administrator Agent Docker Image
	Setting Up BusinessEvents Multihost Clustering on Amazon EC2 Instances Using Docker
	Setting Up Standalone Amazon EC2 Instances
	Configuring Amazon RDS for Shared All Persistence
	Configuring Amazon EFS for Shared Nothing Persistence

	Running TIBCO BusinessEvents Applications in Kubernetes
	TIBCO BusinessEvents on OpenShift Container Platform Based Kubernetes
	Running an Application on OpenShift Based Kubernetes Cluster
	Setting Up the OpenShift CLI Environment
	Pushing Application Docker Image to OpenShift Container Registry
	Running the Application Without Backing Store on OpenShift Container Platform
	Running the Application with Shared Nothing Persistence on OpenShift Container Platform
	Running the Application with Shared All Persistence on OpenShift Container Platform

	Monitoring TIBCO BusinessEvents Applications on OpenShift Container Platform
	Running the RMS on OpenShift Container Platform

	TIBCO BusinessEvents on Microsoft Azure Based Kubernetes
	Running an Application on Microsoft Azure Based Kubernetes Cluster
	Setting up the Microsoft Azure CLI Environment
	Setting Up an Azure Container Registry
	Setting Up a Kubernetes Cluster on AKS
	Running the Application Without Backing Store on Azure
	Running an Application with Shared Nothing Persistence on Azure
	Running an Application with Shared All Persistence on Azure

	Monitoring TIBCO BusinessEvents Applications on Microsoft Azure
	Running RMS on Azure Based Kubernetes

	TIBCO BusinessEvents on AWS Based Kubernetes
	Running TIBCO BusinessEvents® on AWS Based Kubernetes Cluster
	Setting up a Kubernetes Cluster on AWS
	Running the Application Without Backing Store on AWS
	Running an Application with Shared Nothing Persistence on AWS
	Running an Application with Shared All Persistence on AWS

	Monitoring TIBCO BusinessEvents Applications on AWS
	Running RMS Applications in AWS Based Kubernetes

	TIBCO BusinessEvents on Amazon EKS Based Kubernetes
	TIBCO BusinessEvents on Pivotal Based Kubernetes
	Running an Application in Enterprise PKS Installed on GCP
	Setting Up a Kubernetes Cluster with Enterprise PKS
	Setting up Google Container Registry
	Running an Application without Backing Store on Enterprise PKS
	Running an Application with Shared Nothing Persistence on Enterprise PKS
	Running an Application with Shared All Persistence on Enterprise PKS

	Monitoring TIBCO BusinessEvents Applications on Enterprise PKS
	Running RMS on Enterprise PKS

	TIBCO BusinessEvents on Minikube Based Kubernetes
	Appendix: Sample YAML Files for Kubernetes Cluster
	Sample Kubernetes YAML Files for Applications without Backing Store
	Sample Kubernetes YAML Files for Applications with Shared Nothing Persistence
	Sample Kubernetes YAML Files for Applications with Shared All Persistence
	Sample YAML Files for TIBCO BusinessEvents Enterprise Administrator Agent
	Sample Kubernetes YAML Files for RMS

