
TIBCO BusinessEvents®

Event Stream Processing
Pattern Matcher Developer's Guide
Software Release 5.4
January 2017

Two-Second Advantage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws
and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO, The Power of Now, TIBCO ActiveMatrix, TIBCO ActiveMatrix BusinessWorks, TIBCO
Administrator, TIBCO ActiveSpaces, TIBCO BusinessEvents, TIBCO Designer, TIBCO Enterprise
Message Service, TIBCO Enterprise Administrator, TIBCO Hawk, TIBCO Live Datamart, TIBCO
LiveView Web, TIBCO Runtime Agent, TIBCO Rendezvous, TIBCO StreamBase, and Two-Second
Advantage are either registered trademarks or trademarks of TIBCO Software Inc. in the United States
and/or other countries.

Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise
Edition (J2EE), and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT
ALL OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED
AT THE SAME TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE
VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 2004-2017 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

2

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Contents

TIBCO Documentation and Support Services .4

Pattern Matcher Feature Overview . 5

Comparison of Pattern Matcher and Other Components . 5

Pattern Matching Functions in a Project .7

Success and Failure Listeners (Callback Functions) . 9

Function Documentation . 9

Advanced Listeners .9

Listener Required Signature . 9

Pattern Matching Examples . 11

Pattern Matcher Grammar . 12

Define Pattern Clause . 13

Using Clause .14

With Clause . 14

Correlation or Subscription Value . 14

With Clause and the Correlation Property . 15

Correlation and Exact Match .16

Starts With Clause . 17

Clauses for Explicit Temporal Constructs . 19

3

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

TIBCO Documentation and Support Services

Documentation for this and other TIBCO products is available on the TIBCO Documentation site. This
site is updated more frequently than any documentation that might be included with the product. To
ensure that you are accessing the latest available help topics, visit:

https://docs.tibco.com

Product-Specific Documentation

Documentation for TIBCO products is not bundled with the software. Instead, it is available on the
TIBCO Documentation site. To directly access documentation for this product, double-click the
following file:

TIBCO_HOME/release_notes/TIB_businessevents-

eventstreamprocessing_version_docinfo.html where TIBCO_HOME is the top-level directory in
which TIBCO products are installed. On Windows, the default TIBCO_HOME is C:\tibco. On UNIX
systems, the default TIBCO_HOME is /opt/tibco.

The following documents for this product can be found in the TIBCO Documentation site:

● TIBCO BusinessEvents Event Stream Processing Installation

● TIBCO BusinessEvents Event Stream Processing Pattern Matcher Developer's Guide

● TIBCO BusinessEvents Event Stream Processing Query Developer's Guide

● TIBCO BusinessEvents Event Stream Processing Release Notes

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, contact TIBCO Support:

● For an overview of TIBCO Support, and information about getting started with TIBCO Support,
visit this site:

http://www.tibco.com/services/support

● If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user name, you can
request one.

How to Join TIBCO Community

TIBCO Community is an online destination for TIBCO customers, partners, and resident experts. It is a
place to share and access the collective experience of the TIBCO community. TIBCO Community offers
forums, blogs, and access to a variety of resources. To register, go to the following web address:

https://community.tibco.com

4

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

https://docs.tibco.com
http://www.tibco.com/services/support
https://support.tibco.com
https://community.tibco.com

Pattern Matcher Feature Overview

The Pattern Matcher add-on provide pattern-matching functionality, complementing TIBCO
BusinessEvents rule processing and query processing features. Pattern Matcher consists of an easy-to-
use language and a service that runs in a TIBCO BusinessEvents agent.

It addresses some of the simpler and more commonly occurring problems in complex event processing
such as:

● Patterns in event streams

● Correlation across event streams

● Temporal (time based) event sequence recognition

● Duplicate event suppression

● Implementation of "Store and Forward" scenarios

Unlike rules or continuous queries, Pattern Matcher helps you to specify and identify the temporal
order of event arrival.

The Pattern Matcher functionality can be used with any object management type. Its functionality is not
dependent on or related to the object management layer.

The Pattern Matcher component listens to events that are explicitly sent to the service. It does not
discover new patterns; given the patterns you define, it identifies those patterns in the event stream,
returning valuable information you can make use of in your TIBCO BusinessEvents projects.

The pattern matcher service is not cluster aware. It operates within the scope of an agent. Keep this in
mind when designing patterns. For example, in a multi-engine deployment, do not attempt to correlate
events that may be received from a queue by different instances of an agent.

Components of Pattern Matcher

Pattern Matcher has two parts:

Pattern Description Language
 The pattern description language is a straight-forward English-like language with similarities to SQL
and regular expression languages. Within a simple syntax, however, you can specify complex patterns
using nesting and various temporal constructs. You can also templatize patterns using bind variables.
See Pattern Matcher Grammar for details.

Catalog Functions
 Catalog functions for design time and deploy time enable you to dynamically deploy and undeploy
patterns, specify values for bind variables, and specify success and failure listeners (callback
functions) to take follow on action. You can also start and stop the pattern matcher service, though
typically it is started and stopped when the TIBCO BusinessEvents engine itself starts and stops. See
Pattern Matching Functions in a Project for details.

Comparison of Pattern Matcher and Other Components
Each component of Pattern Matcher has different use for different situation.

The following table shows some of the key features provided by Pattern Matcher, rules and state
machines, and continuous queries. It enables you to decide which component to use for a given
situation.

5

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Comparison of Pattern Matcher and Other Components

Pattern Matcher Rules, State Machines Continuous Queries

Specify and identify event
arrival sequence and temporal
order

Recognize patterns Drive business logic Continuous computation over
one or more streams of events

Correlate across streams Specify join conditions Query join

Dynamic deployment

Templatized patterns

Complex patterns with sub-
patterns

Nested states

High availability and fault
tolerance

Like primitive state machines State transitions offer rich and
powerful syntax

Windowing constructs

Incremental aggregates,
sorting, and joins

6

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Pattern Matching Functions in a Project

Patterns can be deployed and undeployed dynamically in any agent that receives events such as a
query agent or inference agent.

In a startup rule function you can start the service. You can also create, register, instantiate, configure,
and deploy a pattern. In a shutdown rule function you can undeploy a pattern (which also unregisters
the pattern). However you can perform these operations in different parts of your code, depending on
the need.

See the online function reference in the HTML documentation for a list of functions.

Each agent has a separate instance of the pattern service. The patterns are not distributed. They are not
cluster-aware.

Start the Pattern Matcher Service

In a startup rule function, start the pattern service, so it’s running when the engine starts:
Pattern.Service.start();

You can start the Pattern Matcher service at any time after the processing unit starts. You can stop it any
time before the processing unit stops. However it is generally advisable to start it in a startup rule
function and stop the service in a shutdown rule function.

Send Events to the Service

You must send events to the service explicitly, for example in a rule that executes when the event is
asserted. The actions (then block) would contain the following:
Pattern.IO.toPattern(MyEvent);

The pattern service automatically routes events of the specified type to all subscribing patterns that
have been deployed in the agent.

You can invoke this call anywhere in the context of an agent, for example in a rule.

This call returns immediately because the actual work of routing to the pattern instances and the
processing is done by other threads.

Create the Pattern String

The name of this String (MyPatternString) in the example) must be unique within the service. For
example:
String MyPatternString = "define pattern /My/Pattern/URI \n" +
 " using /Ontology/EventA as a \n" +
 " and /Ontology/EventB as b \n" +
 " and /Ontology/EventC as c \n" +
 " with a.name and b.name and c.text = $ParamName \n" +
 " starts with a then b then c";

The value for bind variable $ParamName is provided in the Pattern.Manager.SetParameterString()
function (see step).

Register the Pattern

Register the pattern string and get the pattern URI, which must be unique:
String MyPatternURI = Pattern.Manager.register(MyPatternString);

The pattern URI is any unique string. You can use slashes or dashes or simple text depending on how
you want to organize the patterns using meaningful names. If the URI contains spaces, wrap the whole
URI in double quotes ("my name")

The pattern URI is also used to unregister the pattern.

7

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Instantiate the Pattern Instance

Instantiate the pattern instance and set any bind variable values. You can instantiate a registered pattern
multiple times, using a different instance name in each case and, as needed, different values for the
pattern variables.
Object MyPatternInstance = Pattern.Manager.instantiate(MyPatternURI);
Pattern.Manager.setParameterString(MyPatternInstance, "ParamName", "ParamValue");

Set the Closure

The closure distinguishes one pattern instance from another:
 Pattern.Manager.setClosure(MyPatternInstance, "This is MyPatternInstance");

The closure for a pattern is used by listeners (callback functions), to distinguish one instantiated pattern
instance from another.

Set the Listeners

Set the completion (success) listener and failure listener. See Success and Failure Listeners (Callback
Functions) for more on these callback functions.
 Pattern.Manager.setCompletionListener(MyPatternInstance,
 "/RuleFunctions/MyPatternSuccess");
 Pattern.Manager.setFailureListener(MyPatternInstance,
 "/RuleFunctions/PatternSc2Failure");

Deploy the Pattern Instance

Pattern.Manager.deploy(MyPatternInstance, "DeployedPatternInstanceName");

The instance name is used to undeploy the instance.

Undeploy and Unregister a Pattern

Before shutting down the service undeploy and unregister the patterns.
Pattern.Manager.undeploy("MyPatternInstance");
Pattern.Manager.unregister("MyPatternURI");

Stop the Pattern Service

You can stop the Pattern Matcher service at any time before the processing unit stops (and you can also
start it again) depending on need. It is generally advisable to stop the service in a shutdown rule
function so that the service stops before the processing unit itself stops.
Pattern.Service.stop();

8

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Success and Failure Listeners (Callback Functions)

For each instantiated and deployed pattern instance, you configure two callback rule functions. One
acts as a success listener and the other as a failure listener.

Do not perform time consuming operations in a listener. A listener should return control quickly to
insure efficient functioning of the pattern service.

The listeners execute every time a pattern succeeds or fails.

On successful completion of a pattern the service invokes the success listener. If the pattern fails
because of a timeout or elements of the pattern arriving out of order, then it invokes the failure listener.

Success and failure listeners have the same arguments. Advanced listeners have an additional
argument.

Functions that Cannot be Used in Listeners

Functions that read, modify, or delete concepts and events, such as Instance.deleteInstance(),
cannot be used in the callback functions that you use as listeners. These functions must execute in the
context of a run to completion cycle (RTC). They cannot be used in success or failure listeners, which
run in a different thread. (See the functions documentation for details on thread pool management
functions such as the Pattern.Manager.Advanced.setPoolSize() function.)

In order to use functions that execute in the context of an RTC, create a rule that executes the functions,
and create an event with all the necessary information. Send the event using
Pattern.IO.toDestination(), preferably on a local channel. The event is asserted in an RTC and
triggers the rule, which executes the desired functions.

TIBCO BusinessEventsFunctions that are valid in the query engine are also valid in the pattern engine.

Function Documentation
For all function documentation, see the tooltips in the function catalog view in TIBCO BusinessEvents
Studio. Tooltip text is also available in the online references available in the HTML documentation.
Expand to CEP Pattern > Pattern in the function catalog.

Advanced Listeners
Advanced listeners (callback functions) can provide some insight into the events that triggered the
pattern. Advanced listeners have an opaque object but otherwise the signature is the same as the simple
listener.

The opaque object contains information about the events in the pattern set. Various provided functions
enable you to get information from the object, for example,
Pattern.Advanced.getEventIds(opaque).

Listener Required Signature
Simple listeners (callback functions) must have a signature with the parameter types except the opaque
parameter. The advanced listener also uses the opaque parameter.

See Pattern Matching Functions in a Project to understand how these parameter values are created.

Parameter Notes

String patternDefURI Identifies the URI of the registered pattern definition.

9

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Parameter Notes

String

patternInstanceName

The name of the instantiated pattern instance.

This name enables you to identify data belonging to different
instantiations of the registered pattern definitions.

Object correlationId This ID is derived from the first correlation property for each pattern
set. The success or failure rule function is executed once for each set.

Object closure Closure object provided when executing the
Pattern.Manager.setClosure() function.

The closure for a pattern is used to distinguish one instantiated
pattern instance from another, generally used in completion and
failure listeners.

Object opaque Provides some insight into the events that triggered the pattern,
using provided catalog functions.

10

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Pattern Matching Examples

Some pattern matching example helps to understand pattern matching better.

Simple Correlation

Collects Order and Fulfillment events based on their Customer IDs.
define pattern /OrderTracker
using /Order as order and /Fulfillment as fulfillment
with order.customerId and fulfillment.customerId
starts with order then fulfillment

Simple Temporal Correlation

Collects Order and Fulfillment events based on their Customer IDs such that Fulfillment occurs within
10 minutes of placing the order.
define pattern /OrderFullfilmentSLA
using /Order as order and /Fulfillment as fulfillment
with order.customerId and fulfillment.customerId
starts with order then within 10 minutes fulfillment

A pattern instance is created when the Order event arrives. If a corresponding Fulfillment event does
not follow within 10 minutes of the Order event, then the Failure listener is triggered. If the event does
arrive on time, then the Success listener is invoked.

Duplicate Suppression – Store and Forward

Collects related events of the same type that share the same correlation ID.
define pattern /ShipmentAggregator
using /Shipment as shipment
with shipment.destinationState
starts with shipment
then within 2 hours repeat 0 to 49 times shipment

This pattern aggregates at most 50 Shipment events within a span of two hours. it uses the event's
destinationState as the correlation property. When the first shipment event arrives, the pattern
instance is created. Then the timer starts and the pattern instance waits for two hours, accumulating a
maximum of 49 more shipment events.

11

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Pattern Matcher Grammar

A pattern string has four main clauses: define pattern, using, with, and starts with clause. These clauses
define the patterns that need to be identified with specified streams.

The following figure displays the process flow of the four different clauses:

Syntax Example

The following is a simple example to illustrate the four clauses of a pattern. This example checks for an
incorrect order of events in an order fulfillment and shipping flow.
define pattern /OrderTracker
using /Order as order and /Fulfillment as fulfillment and /Shipment as shipment
with
 order.customerId
 and fulfillment.customerId
 and shipment.customerId
starts with order
then fulfillment
then shipment

The example demonstrates how Pattern Matcher correlates events across three different event streams.
The pattern listens to all three streams (Order, Fulfillment and Shipment).

A pattern listens only to events that are sent to the Pattern Matcher service. See Send Events to the
Service.

Syntax Diagrams

The syntax diagrams show the structure of a pattern and of each clause in a pattern.

Read the syntax diagrams from left to right. Items above or below a main line are optional. Items that
can repeat are shown by lines that loop back from the end to the beginning of the repeating section,
along with the separator character or word if one is required.

Miscellaneous Terms Used in Pattern Matcher Syntax Diagrams

alias Alias for an event in the pattern.

identifier A string that represents the name of a pattern or the URI of an entity. Identifiers

time unit Allowable time units are as follows:

milliseconds, seconds, minutes, hours, days

Names

● Pattern names (URIs) and event name can be any character inside double quotes, except double
quote itself. Pattern URI needs quotes only if there is a space in the URI.

● Field and property names must be valid Java identifiers.
● Each alias must be globally unique in the whole pattern.
● To escape a keyword, use the pound sign (# — also known as a hash sign) before the keyword, for

example, #define.
● Alias name, field name, property name, subscription field and bind variables can be use any of the

following:

12

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

— alphanumeric

— digit

— underscore ('_')

— slash ('/')

— Escaped keywords.

Bind Variables

Variables begin with the dollar sign ($). The value is provided at deploy time. See Create the Pattern
String.

You cannot use bind variables with the datetime() or date() functions. For example, it is not possible
to use this type of call:
$datetime($year,$day,$month,....)

You can, however, use bind variables using the following function:
Pattern.Manager.setParameterDateTime()

For example:
Pattern.Manager.setParameterDateTime(patternSc14, "javaUtilDate", date);

Not (Negation) Scenarios

Although the language has no explicit operator for Negation or Not, negative scenarios can be
implemented in other ways such as:

● Subscribe to the event type on which is not expected to occur.

● Do not describe it in the pattern.

So, when the undesired event does occur due to the subscription, the pattern instance will fail. The
following pattern example demonstrates a negation scenario:
define pattern OrderFullfilment
using Order as order and Fulfillment as fulfillment and Cancellation as cancellation
where
 order.customerId
 and fulfillment.customerId
 and cancellation.customerId
starts with order
then within 10 minutes fulfillment
then after 5 minutes

This pattern subscribes to Cancellation events but does not use them in the pattern. After the Order and
the Fulfillment events arrive within the times specified, the pattern waits for another five minutes,
during which it does not expect any input. If during this or any other time the Cancellation event
occurs, then the pattern fails.

Define Pattern Clause
The Define Pattern clause specifies a unique URI for the pattern.

The URI is used as a parameter in various catalog functions provided with the component.

13

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Examples

You can use any format that is useful to you in helping to identify the pattern. If you use spaces, use
double-quotation marks around the URI:
define pattern /Patterns/PatternA
define pattern "/My Ontology/My Patterns/PatternA"

Using Clause
The using clause specifies one or more event types to subscribe to in the pattern, and an alias for each.
One says that the pattern subscribes to these events.

Use and to separate each event type.

Examples

using /Ontology/EventA as a and /Ontology/EventB as b
using "/My Ontology/My Patterns/EventA" as a
 and "/My Ontology/My Patterns/EventB" as b

With Clause
In the with clause of a pattern, you specify a property for each event in the using clause. You cannot use
the event payload. Each event type can have one such property defined. The property or properties are
used for correlations and subscriptions.

Optionally you can specify an exact match with a property value on the second or subsequent events
listed in this clause. The specified property value must not match the value of any other property value
in the pattern. Use and to separate each property.

The match is successful only if each event instance that arrives in the Pattern Matcher service occurs in
the order specified in the starts with clause.

The first term in the with clause must use correlation. For details on this topic, see With Clause and the
Correlation Property for details.

Examples

with a.id and b.id
with a.id and b.id = "some string"

Correlation or Subscription Value
The subscriptionvar item specifies the correlation or subscription value.

The value can be one of the following:

● datevar

● datetimevar

● stringvar

14

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

● booleanvar

● longvar

● floatvar

● doublevar

● bindvar

The syntax for datevar and datetimevar are as follows:
$date(year,month,day,[,GMT offset])
$datetime(year,month,day,hour,minute,second,millisecond[,GMT offset])

Note that the $date() and $datetime() functions have an optional GMT timezone offset. This
timezone offset is expressed as a plus sign (+) or a negative sign (-) followed by four digits, within
double quotes. For example, to specify GMT minus eight hours and 30 minutes, use "-0830" As
another example, use "+0200" to specify GMT plus 2 hours.

With Clause and the Correlation Property
The first term in a with clause must be a correlation property. It is also sometimes referred to as the
subscription property.

Specify a property that will uniquely identify the event or related events. Instances of all the event
types in the pattern that are being correlated must have the same property value for the correlation to
succeed. For example if the correlation is a.name and b.name then the correlation succeeds if the value
of name is Joe in both cases.

Fields that can have null values cannot be used as correlation properties. Such fields are ignored.

Each instance of a pattern has an ID which is derived from this correlation property's value. If multiple
pattern instances exist simultaneously, the property values must be unique per pattern instance.

For example:
with order.customerId and shipment.customerId

In the above example, order and shipment events that share the same customerId will be correlated.

Here is an example of simple correlation:
with a.id and b.id

In the above case, the pattern succeeds when the following occurs:

15

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

● The value of the id property in an instance of event type b matches the value of the id property in
an instance of event type a.

● And the order in which these two events arrives matches the order specified in the starts with...
then... clauses.

You can use correlation with one event type. In this case the starts with... then... clauses specify
the temporal conditions that instances of that event must meet.

Correlation and Exact Match
You can use one or more exact matches in your pattern. To use an exact match, specify a property and
an exact value for that property.

In the following example, only the order event with the specified customerId property value will be
processed.
order.customerId = "123-ABC-456"

A pattern cannot begin with an exact match; a correlation is required as the first element in the clause.

If the first item in the then subclause of the starts with clause is one of the following:
then any one
then all

Then all events in that sequence must use correlation.

Example

To illustrate how exact matches are used, consider the following simple example. Orders are placed and
processed for shipment, then they sit on the loading bay, waiting for the next delivery truck. If the truck
does not pick up the orders within two hours, customer service is alerted.
define pattern /OrderShipper
using /Order as order and /orderProcessed as processed and /deliveryvan as van
with
 order.customerId
 and processed.customerId
 and van.pickupStatus=Ready
starts with order
then processed
then within 2 hours van

The pattern is deployed and the Pattern Matcher service starts listening to the events that are sent to it.
It puts sets of events that satisfy all the aspects of the pattern into "buckets." At a certain point in time, it
has the following "buckets":

● order.customerId=123, processed.customerId=123
● order.customerId=456, processed.customerId=456
● order.customerId=789

Then a truck arrives and the loading bay staff enters its status. A deliveryvan event is sent with
status=ready.

The Pattern Matcher updates all of its "buckets" for this pattern accordingly:

● order.customerId=123, processed.customerId=123, van.pickupStatus=ready
● order.customerId=456, processed.customerId=456, van.pickupStatus=ready

The above pattern instances succeed and the success rule function executes for each of the instances.

The bucket that contained only order.customerId=789 fails, and the failure rule function pattern
executes.

You might feel that the incomplete "bucket" with order.customerId=789 should just wait for its
corresponding event, processed.customerId=789 and be delivered on a later truck. If that is the case

16

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

you must write a different pattern. This simple example only illustrates how the Pattern Matcher
service processes a pattern that contains a correlation and an exact match.

You can specify an exact match in many ways, such as the following:
a.id = "some string"
a.id = 10
a.id = 10.0
a.id = 0.1d
a.id = 333333L
a.id = 333333l
a.id = false
a.id = False
a.id = $param1
a.id = $date(2009, 12, 25)
a.id = $dateTime(2009, 12, 25, 9, 48, 37, 0)
a.id = $javaUtilDate

Parameter values are provided at deploy-time.

Starts With Clause
A pattern describes a sequence of events, beginning with the starts with event, followed by each
then event, in the order specified. The starts with clause is where the actual event sequence or
pattern is described. For the pattern to succeed, all the events must be received according to the
specified order (and any additional time constraints).

Only events listed in the using clause can be used. You specify the event sequence or pattern using the
event aliases, to indicate the absence or occurrence of events in the sequence. Use then as the
conjunction, for example:
starts with a then b then c

In the simplest case, the order in which the events must occur is signified by the order in which they are
specified in the clause. However you can specify the ordering in a variety of ways. You can create sub-
clauses and sub-patterns to describe constraints such as the number of event occurrences and the
interval between them. To indicate a sub-pattern, wrap the event sequence in parentheses: (sub-
pattern).

Bind variables begin with the dollar sign ($). The value is provided at deploy time. See Create the
Pattern String.

Items Syntax

17

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Then Syntax

Alias List Syntax

Sub-pattern Syntax

Starts With Sub-clause Examples

starts with a
starts with a then b
starts with a then any one (a, b) then all (a, b)
starts with a then ((a then b))
starts with a then within 10 milliseconds | seconds | minutes | hours | days b
starts with a then repeat 10 to 20 times a
starts with a then repeat $intParam2 to $intParam3 times b
starts with a then after $longParam minutes
starts with a then all ((a then b), b)

Then Sub-clause Examples

then any one (a, b)
then all (a, b)
then within 10 milliseconds
then repeat 10 to 20 times a
then repeat $intParam2 to $intParam3 times b
then after $longParam minutes
then all ((a then b), b)

As shown in the example, a nested sub-pattern is surrounded by parentheses.

18

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

Clauses for Explicit Temporal Constructs
The pattern grammar implicitly describes a sequence of events: there is an implicit time component in
each pattern. In addition three constructs enforce explicit time-based restrictions on a sequence: within,
during, and after. You can use these constructs to enforce stricter time-based constraints on a
sequence:

Within

The within construct ensures that all the events described inside the within clause occur within the
time span specified. The timer starts as soon as the event preceding this sub-pattern arrives.

As soon as all the events in the sub-pattern occur in the correct sequence, the pattern instance moves to
the next step after the within clause.

During

Like within, the during construct ensures that all the events described inside the during clause occur
within the time span specified. The timer starts as soon as the event preceding this sub-pattern arrives.

The pattern remains in the during sub-pattern until the timer has expired, even if all the events in the
sub-pattern occur in the correct sequence before that time. (This behavior is the difference between
occurs within and occurs during.)

After

The after construct simply specifies a time period to wait before accepting the next event. It does not
accept any event or sub-pattern. The timer starts as soon as the event preceding this sub-pattern arrives.

Use this construct to model event sequences where there is no activity for certain fixed periods of time.

19

TIBCO BusinessEvents® Event Stream Processing Pattern Matcher Developer's Guide

	Contents
	TIBCO Documentation and Support Services
	Pattern Matcher Feature Overview
	Comparison of Pattern Matcher and Other Components

	Pattern Matching Functions in a Project
	Success and Failure Listeners (Callback Functions)
	Function Documentation
	Advanced Listeners
	Listener Required Signature

	Pattern Matching Examples
	Pattern Matcher Grammar
	Define Pattern Clause
	Using Clause
	With Clause
	Correlation or Subscription Value
	With Clause and the Correlation Property
	Correlation and Exact Match
	Starts With Clause
	Clauses for Explicit Temporal Constructs

