
TIBCO BusinessEvents ™

Language Reference
Software Release 3.0.1
November 2008

The Power to Predict ™

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN LICENSE.PDF) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.

TIB, TIBCO, TIBCO Software, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now, The
Power to Predict, TIBCO BusinessEvents, TIBCO ActiveMatrix BusinessWorks, TIBCO Rendezvous, TIBCO
Enterprise Message Service, TIBCO PortalBuilder, TIBCO Administrator, TIBCO Runtime Agent, TIBCO
General Interface, and TIBCO Hawk are either registered trademarks or trademarks of TIBCO Software Inc. in
the United States and/or other countries.

EJB, Java EE, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Excerpts from Oracle Coherence documentation are included with permission from Oracle and/or its affiliates.
Copyright © 2000, 2006 Oracle and/or its affiliates. All rights reserved.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README.TXT FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A
SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 2004-2008 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

 TIBCO BusinessEvents Language Reference

| iii

Contents

Preface . vii

Enterprise Suite and Inference Edition Features . viii

Related Documentation . ix
TIBCO BusinessEvents Documentation . ix
Other TIBCO Product Documentation . x

Typographical Conventions . xi

How to Contact TIBCO Support. xiv

Chapter 1 Rule Language Grammar. 1

Rule Language Basics. 2
Whitespace. 2
Comments . 2
Separators . 3
Identifiers (Names) . 3
Local Variables . 4
Keywords and other Reserved Words . 5
Literals . 6
Escape Sequences. 7
Operators . 7
Rule Components. 8

Attributes . 9

Accessing Concept and Event Properties . 11
Concept Property Atom . 11
Concept Property Array . 12
Event Property . 13

Exception Handling . 14
Syntax. 14
Examples . 15

Flow Control. 17
if/else . 17
for . 17
while . 18

Chapter 2 Working With Rule Language Datatypes . 19

Concept Properties to XML Datatype Conversions . 20

TIBCO BusinessEvents Language Reference

iv | Contents

Compatibility of Operators with Types. 21

Correcting Inconsistencies of Type . 23
String Operands. 23
Arithmetic Expressions . 23
Assignment Conversion . 24
Function Argument Conversion . 24

Chapter 3 Rule Language Syntax . 25

Rule Language Syntax . 26

Chapter 4 Creating Custom Functions. 29

Overview of Creating Custom Functions. 30
Restrictions . 30
Task Summary . 31

Structure of a Function Catalog . 32
Elements . 32
Example Function Catalog. 34

Java Archive Resource . 36

Chapter 5 Query Features Overview. 37

Query Features Overview . 38
Queries are Executed in Query Agents . 38
Queries Retrieve Information from Cache . 38
Two Main Types of Queries . 38
Structure of a Query Select Statement . 39
Summary of Functions Used to Create and Execute Queries . 39
For More Information . 40

Two Common Ways to Use Queries . 41
Triggering a Query from a Rule (in an Inference Agent) . 41
Using a Query as a Pre-filter . 41

Chapter 6 Query Language Components. 43

Select Clause . 44

From Clause . 45

Where Clause . 46

Group by Clause . 47

Order by Clause . 48

Limit Clause . 49

Stream Clause . 50

Stream Policy . 51

 TIBCO BusinessEvents Language Reference

Contents | v

Chapter 7 Working With the Query Language. 53

Querying the Cache and Using Query Results . 54
Query Function Catalog . 54
Using Functions Within Queries . 54
Using Bind Variables. 55
Limitation in Use of Arrays . 55

Lifecycle of a Query—Use of Query Functions . 56
Create the Query Definition . 56
Open a Query Statement . 57
Set Bind Variables (if Used) . 57
Execute an Instance of the Query Statement and Obtain Results . 58
Closing a Statement and Deleting a Query Definition . 60

Using Data from a Result Set . 61

Using Data from a Callback Rule Function . 62
The Callback Rule Function Required Signature . 62

Simple Snapshot Query Example . 64

Simple Continuous Query Example. 65
Example Showing Batching of Return Values . 66

Using Bind Variables in Query Text . 69

Chapter 8 Working With Continuous Queries . 71

Overview of Continuous Queries . 72
Executing a Continuous Query . 72
Ending a Continuous Query . 72
Understanding Query Windows . 72

Working With Implicit Windows . 74
Implicit Window Examples . 74

Working With Sliding, Tumbling, and Time Windows . 76
Use Sliding, Tumbling, or Time Windows for Events and not Concepts . 76

Explicit Window Example. 77

Sliding Window Examples . 79

Tumbling Window Examples . 81

Time Window Examples . 82

Optimizing the Design . 83
Reuse Existing Queries and Statements Whenever Possible . 83
Improve Performance by Pre-fetching Objects . 83
Use Filtering for Efficient Joins . 83
Effect of the Cache on Continuous Queries . 84
Effect of Time on Queries . 84

TIBCO BusinessEvents Language Reference

vi | Contents

Chapter 9 Query Language Reference . 87

Miscellaneous Terms Used in Query Syntax Diagrams . 88
Reading Query Language Syntax Diagrams . 88

Query Syntax . 89
Select Clause. 89
From Clause . 89
Where Clause . 89
Group by Clause . 89
Order By Clause . 90
Limit . 90
Stream Clause . 90
Stream Policy. 90

Expression Syntax . 91
Expression . 91
Boolean Expression. 91
DateTime Expression. 93
Entity Expression . 93
Number Expression . 93
String Expression. 96
Identifier-Dependent Expression . 97

Operators for Unary Expressions . 98

Operators for Binary Expressions . 99

Operators for Other Expressions . 101

Wildcards, Datatypes, and Literals . 102
Wildcard Characters . 102
Datatypes. 102
Literals . 102
Types and Literals . 102
Identifier . 103

Reserved Words . 104
Escaping the Keywords . 104

Index . 105

 TIBCO BusinessEvents Language Reference

| vii

Preface

TIBCO BusinessEvents™ allows you to abstract and correlate meaningful
business information from the data flowing through your information systems
and take appropriate action using business rules. By detecting complex patterns
within the real-time flow of simple events, BusinessEvents™ can help you to
detect and understand unusual activity, recognize trends, problems, and
opportunities. BusinessEvents delivers this business critical information in real
time to your critical enterprise systems or custom dashboards. With
BusinessEvents you can predict the needs of your customers, make faster
decisions, and take faster action.

BusinessEvents
The Power to Predict™

Topics

• Enterprise Suite and Inference Edition Features, page viii

• Related Documentation, page ix

• Typographical Conventions, page xi

• How to Contact TIBCO Support, page xiv

TIBCO BusinessEvents Language Reference

viii | Enterprise Suite and Inference Edition Features

Enterprise Suite and Inference Edition Features

BusinessEvents is available in the Inference Edition and in theEnterprise Suite.
The components available in each option are listed below.

Inference Edition and Enterprise Suite

Inference Edition provides inferencing features and comprises the following
components (also included in Enterprise Suite):

• Server—The BusinessEvents runtime engine.

• Workbench—A TIBCO Designer™ palette of BusinessEvents resources.

• TIBCO BusinessWorks 5.x Plug-in—A TIBCO Designer palette of activities
that enables communication between BusinessEvents and BusinessWorks™.
(When you select this option, BusinessEvents Workbench and Server are also
automatically selected.)

• Documentation—TIBCO BusinessEvents documentation. The doc folder
contains an HTML and a PDF folder. If you do not install documentation, this
folder is not included in the installation.

Enterprise Suite Only

All of the above components plus the following:

• Decision Manager application—A business user rule-building application.

• Rules Management Server—A rules server for the Decision Manager
application.

• Query—A language and set of functions for querying cache data.

• Database Concepts—A utility for creating concepts from database metadata,
with functions for updating the associated database tables or views.

• State Modeler—A component that enables you to model the life cycle of
concept instances.

The Decision Manager application is available only on Windows.

 TIBCO BusinessEvents Language Reference

Preface | ix

Related Documentation

This section lists documentation resources you may find useful.

TIBCO BusinessEvents Documentation
• TIBCO BusinessEvents Installation: Read this manual for instructions on site

preparation and installation.

• TIBCO BusinessEvents Getting Started: After the product is installed, use this
manual to learn the basics of BusinessEvents. This guide provides
step-by-step instructions to implement an example project and also explains
the main ideas so you gain understanding as well as practical knowledge.

• TIBCO BusinessEvents User’s Guide: Read this manual for instructions on using
TIBCO BusinessEvents to create, manage, and monitor complex event
processing projects.

• TIBCO BusinessEvents Decision Manager: This manual explains how to use
decision tables to create rules using a spreadsheet-like interface, as well as
how to administer the Rules Management Server.

• TIBCO BusinessEvents Language Reference: This manual provides reference and
usage information for the BusinessEvents rule language and the
BusinessEvents query language.

• TIBCO BusinessEvents Cache Configuration Guide: This online reference is
available from the HTML documentation interface. It provides configuration
details for cache-based object management. Cache-based object management
is explained in TIBCO BusinessEvents User’s Guide.

• TIBCO BusinessEvents Java API Reference: This online reference is available
from the HTML documentation interface. It provides the Javadoc-based
documentation for the BusinessEvents API.

• TIBCO BusinessEvents Functions Reference: This online reference is available
from the HTML documentation interface. It provides a listing of all functions
provided with BusinessEvents, showing the same details as the tooltips
available in the TIBCO Designer rule editor interface.

• TIBCO BusinessEvents Release Notes: Read the release notes for a list of new and
changed features. This document also contains lists of known issues and
closed issues for this release.

../tib_be_online_reference/tib_be_cache_configuration/user-guide.htm
../tib_be_online_reference/api/javadoc/index.html
../tib_be_online_reference/functions/index.html

TIBCO BusinessEvents Language Reference

x | Related Documentation

Other TIBCO Product Documentation
You may find it useful to read the documentation for the following TIBCO
products:

• TIBCO BusinessWorks™

• TIBCO Rendezvous®

• TIBCO Enterprise Message Service™

• TIBCO Designer™

• TIBCO Hawk™

• TIBCO Runtime Agent™

 TIBCO BusinessEvents Language Reference

Preface | xi

Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME

BE_HOME

Many TIBCO products must be installed within the same home directory. This
directory is referenced in documentation as TIBCO_HOME. The value of
TIBCO_HOME depends on the operating system. For example, on Windows
systems, the default value is C:\tibco.

Other TIBCO products are installed into an installation environment.
Incompatible products and multiple instances of the same product are installed
into different installation environments. The directory into which such products
are installed is referenced in documentation as ENV_HOME. The value of
ENV_HOME depends on the operating system. For example, on Windows
systems the default value is C:\tibco.

TIBCO BusinessEvents installs into a version-specific directory within
TIBCO_HOME. This directory is referenced in documentation as BE_HOME. The
value of BE_HOME depends on the operating system. For example on Windows
systems, the default value is C:\tibco\be\3.0.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

TIBCO BusinessEvents Language Reference

xii | Typographical Conventions

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand pathname

Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical ’OR’ that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand param1 | param2 | param3

 TIBCO BusinessEvents Language Reference

Preface | xiii

{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}

Table 2 Syntax Typographical Conventions

Convention Use

TIBCO BusinessEvents Language Reference

xiv | How to Contact TIBCO Support

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.

http://www.tibco.com/services/support
https://support.tibco.com

 TIBCO BusinessEvents Language Reference

| 1

Chapter 1 Rule Language Grammar

This chapter describes the grammar for TIBCO BusinessEvents rules.

Topics

• Rule Language Basics, page 2

• Attributes, page 9

• Accessing Concept and Event Properties, page 11

• Exception Handling, page 14

• Flow Control, page 17

TIBCO BusinessEvents Language Reference

2 | Chapter 1 Rule Language Grammar

Rule Language Basics

Whitespace
Whitespace is used to separate tokens (identifiers, keywords, literals, separators,
and operators) just as it is used in any written language to separate words.
Whitespace is also used to format code.

These are whitespace characters, excluding line terminators:

• the ASCII SP character, also known as "space"

• the ASCII HT character, also known as "horizontal tab"

• the ASCII FF character, also known as "form feed"

Line terminators include these characters:

• the ASCII LF character, also known as "newline"

• the ASCII CR character, also known as "return"

• the ASCII CR character followed by the ASCII LF character

Line terminators are not significant in condition or action rules.

Comments
Comment rules as shown:

/* text */ BusinessEvents ignores the text from “/*” to “*/”.

// text BusinessEvents ignores the text from “//” to the end of the line.

 TIBCO BusinessEvents Language Reference

Rule Language Basics | 3

Separators
The following tokens are used for separators:

Identifiers (Names)
An identifier (or name, to use the user interface label) is an unlimited-length
sequence of letters and digits, the first of which must be a letter. Letters include
uppercase and lowercase ASCII Latin letters A-Z, a-z, and the underscore (_).

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scripts in use in the world today, including the large sets
for Chinese, Japanese, and Korean. This allows programmers to use identifiers in
their programs that are written in their native languages.

Digits include the ASCII digits 0-9.

Two identifiers are the same only if they have the same Unicode character for each
letter or digit. Note that some letters look the same even though they are different
Unicode characters. For example, a representation of the letter A using \u0041 is
not the same as a representation of the letter A using \u0391.

Example identifiers:

• new_order

• E72526

• creditCheck

Identifiers may not be the same as any literal, keyword, or other reserved word.
See Keywords and other Reserved Words on page 5 and Literals on page 6.

; Statement separator for conditions and actions.

(Expression Grouping begin, or function argument list begin.

) Expression Grouping end or function argument list end.

, Argument list and statement expression list separator.

Do not use the dollar sign ($).

TIBCO BusinessEvents Language Reference

4 | Chapter 1 Rule Language Grammar

Local Variables
You can use local variables of the following types in action rules and rule
functions:

• Primitives

• Concepts

• Event definitions

You can also use primitive arrays, which are fixed length. Here are examples of
array declaration, initialization, and array creation expressions:

• Array declaration and initialization:

int i; // int

int[] ii = {1,2,i}; // array of int

• Array creation with initialization expression:

ii = int[] {1,2,3};

• Array creation without initialization expression:

int[] arr = int[5] {};

arr = int[5]{};

• Getting the length of the array:

int arrLength = arr@length;

 TIBCO BusinessEvents Language Reference

Rule Language Basics | 5

Keywords and other Reserved Words
Keywords are words that have special meaning to BusinessEvents. Keywords are
not available for use as identifiers. Other words are used internally by
BusinessEvents. These words are also not available for use as identifiers. Do not
use the words listed in this section as identifiers.

The following words are for BusinessEvents internal use. Do not use them as
identifiers, resource names, or folder names.

The following reserved words are either implemented as keywords in
BusinessEvents or may be implemented in the future. Do not use them as
identifiers, resource names, or folder names.

attribute moveto requeue then

declare priority rule when

abstract double interface switch

boolean else long synchronized

break Event native this

byte extends new throw

case final package throws

catch finally private TimeEvent

char float protected transient

class for public try

const goto return void

Concept if short volatile

ContainedConcept implements SimpleEvent while

continue import static

default instanceof strictfp

do int super

TIBCO BusinessEvents Language Reference

6 | Chapter 1 Rule Language Grammar

Literals
The BusinessEvents rule Language supports these literals:

• Integer — One or more digits without a decimal. May be positive or negative.
Examples: 4 45 -321 787878

• Long — An integer literal suffixed with the letter L. The suffixed L can be
either upper or lower case, but keep in mind that the lower case L (l) can be
difficult to distinguish from the number one (1).
Examples: 0l 0777L 0x100000000L 2147483648L 0xC0B0L

• Double — A number that has a decimal. D suffix is optional unless there is no
decimal point or exponent.
Examples: 1D 1e1 2. .3 0.0D 3.14 1e-9d 1e137

• String — Zero or more characters enclosed in double quotes (""). Opening and
closing double quotes cannot be interrupted by a line terminator (CR or LF).
Use the plus sign (+) to concatenate string segments.
Examples: "" " " "P0QSTN3" "The quick brown fox had quite a feast!"
"The quick brown fox " +
"had quite a feast!"

• Boolean — One of these two values: true false

• Null — This value: null

Do not use Unicode escapes for newlines or carriage returns as character literals.
They will be transformed into actual line terminators. Use ’\n’ or ’\r’ instead.

The characters CR and LF are line terminators, not input characters.

 TIBCO BusinessEvents Language Reference

Rule Language Basics | 7

Escape Sequences
You can represent single and double quotes, the backslash character, and some
nongraphic characters in literals using these escape sequences:

Operators
The language defines the following operators:

Table 3 Escape Sequences

Character Escape Sequence

backspace \b

horizontal tab \t

linefeed \n

form feed \f

carriage return \r

double quote \"

single quote \’

backslash \\

+ , - (unary) unary plus, unary minus

* , \ , % multiplication, division, remainder

+, - addition, subtraction

> , < , >= , <= greater than, less than, greater than or equal to, less than or
equal to

instanceof Tests whether an object is an instance of specified type.
Restricted to use with concepts and events.

Example:

boolean b = customer instanceof USCustomer;

== , != equality, inequality

&& , || , ! boolean AND, OR, NOT

= assignment

. property access

@ attribute access

TIBCO BusinessEvents Language Reference

8 | Chapter 1 Rule Language Grammar

Rule Components
A TIBCO BusinessEvents rule has three components:

• Declaration — Use the declaration to declare which concepts and events the
rule will depend on, and the names by which instances of these entities can be
referred to in the conditions and actions. Aliases must be valid identifiers.
Declaring multiple terms of the same type allows the rule to consider multiple
instances of the corresponding Entity.

• Conditions — Each statement in the condition must evaluate to a boolean
value. All of these statements must be true for the rule’s action to be executed.
Assignments and calls to certain functions are disallowed in the condition.

• Actions — List of statements that will be executed, when the rule is fired, for
each combination of terms that matches all the conditions.

 TIBCO BusinessEvents Language Reference

Attributes | 9

Attributes

You can use the attributes described in Table 4 in rules to return information
about an entity instance. These attributes are also documented in TIBCO
BusinessEvents User’s Guide for convenience.

Table 4 Attributes

Entity Attributes Type Returns

Event @id long The event’s unique internal ID.

@extId string The event’s unique external ID.

@ttl long The time to live of the event as
specified in the configuration. (This is
not the time-to-live remaining.)

@payload string The payload as a string value.

Repeating TimeEvent @id long The time event’s unique internal ID.

@closure string null.

@interval long The number of units between creation
of successive time events.

@scheduledTime dateTime The time scheduled for asserting into
the WorkingMemory.

@ttl long 0.

Rule-Based TimeEvent @id long The time event’s unique internal ID.

@closure string A string that was specified when the
event was scheduled.

@interval long 0.

@scheduledTime dateTime The time scheduled for asserting into
the WorkingMemory.

@ttl long The time to live of the event as
specified when scheduling the event.
(This is not the time-to-live remaining.)

TIBCO BusinessEvents Language Reference

10 | Chapter 1 Rule Language Grammar

Advisory Event id long The advisory event’s unique internal
ID

extId String Null

category String Broad category of advisory, for
example, an exception.

type String Type of advisory within the category.

message String Message for the user.

Concept @id long The concept instance’s unique internal
ID.

@extId string The concept instance’s unique external
ID.

ContainedConcept @id long The contained concept instance’s
unique internal ID.

@extId string The contained concept instance’s
unique external ID.

@parent concept The parent concept instance. (This is
treated as a concept reference in the
language.)

PropertyAtom @isSet boolean True if the property value has been set.
Otherwise, false.

PropertyArray @length int The number of PropertyAtom entries
in the array.

Table 4 Attributes (Cont’d)

Entity Attributes Type Returns

The internal ID is automatically generated by BusinessEvents. You cannot assign
it.

 TIBCO BusinessEvents Language Reference

Accessing Concept and Event Properties | 11

Accessing Concept and Event Properties

This section describes how to access concept properties and event properties
using the BusinessEvents language.

Concept Property Atom
This is the syntax for accessing a concept property atom:

instanceName.propertyName

where instanceName is the identifier of the concept instance, and propertyName is the
name of the concept property that you want to access.

For example to get the current value of the cost propertyAtom:

int x = instanceA.cost;

For example, to set a value with the current system time stamp:

instanceA.cost = value;

Get and Set PropertyAtom Value With User-Specified Time

You can get and set PropertyAtom values as follows:

• You can specify a time and get the PropertyAtom value stored in the history at
that time using one of the standard functions:

type Instance.PropertyAtom.gettype(PropertyAtom propertyAtomName, \
 long time)

where type is the type of the PropertyAtom and propertyAtomName is the name of
the PropertyAtom, and time is the time from which you want to retrieve the
value.

• You can set a value in the PropertyAtom History using one of the standard
functions:

Instance.PropertyAtom.settype(PropertyAtom propertyAtomName, \
type value, long time)

where type is the type of the PropertyAtom and the type of the new value,
propertyAtomName is the name of the PropertyAtom, value is the value to store in
the ring buffer, and time is the time stamp for the new entry.

If the history size is 0, BusinessEvents does not record a time stamp.

TIBCO BusinessEvents Language Reference

12 | Chapter 1 Rule Language Grammar

BusinessEvents manages these requests as follows:

— If the ring buffer has vacancies, BusinessEvents inserts the new entry into
the correct place based on its time stamp, shifts the older values out one
place, and returns True.

— If the ring buffer is full, and the new value has a more recent time stamp than
the oldest value, BusinessEvents inserts the new value into the correct
place, shifts older values if necessary, drops the oldest value, and returns
True.

— If the ring buffer is full, and the new value has a time stamp that is older than
the oldest value in the ring buffer, BusinessEvents does not insert the new
value into the ring buffer, and it returns False.

Concept Property Array
This is the syntax for accessing a concept property array:

instanceName.propertyName

where instanceName is the identifier of the concept instance, and propertyName is the
name of the concept property that you want to access.

Accessing a Value in the Property Array

To access a value in a property array, identify the position in the array of the value
as shown:

instanceName.propertyName[indexPosition]

For example:

String x = instanceA.lineItem[0];

This gets the current value of the first property atom in the array, lineItem, and
assigns it to the local variable, x.

Adding a Value to a Property Array

You can append a value to the end of a property array — you cannot add a value
to any other position in an array. This is the syntax:

instanceName.propertyName[indexPosition] = value

Array index difference In the BusinessEvents language, array indexes start from
zero (0). However, in XSLT and XPath languages, they start from one (1). It’s
important to remember this difference when using the rule language in the rule
editor, and when working in the XSLT mapper and the XPath builder.

 TIBCO BusinessEvents Language Reference

Accessing Concept and Event Properties | 13

To use the syntax shown above you must know the index position of the end of
the array. You can append a value to the end of an array without knowing the
index position of the end of the array using the @length attribute as shown:

instanceName.propertyName[instanceName.propertyName@length] = value

Event Property
This is the syntax for accessing an event property:

eventName.propertyName

For example:

String x = eventA.customer;

where eventName is the identifier of the concept instance and propertyName is the
name of the event property that you want to access.

TIBCO BusinessEvents Language Reference

14 | Chapter 1 Rule Language Grammar

Exception Handling

The BusinessEvents rule Language includes an Exception type that has
try/catch/finally commands to handle exceptions. The try/catch/finally
commands behave like their same-name Java counterparts.

This section describes the try/catch/finally commands.

Syntax
These combinations are allowed:

• try/catch

• try/finally

• try/catch/finally

try try {

try_statements

}

catch catch (Exception identifier) {

catch_statements

}

finally finally {

finally_statements

}

Advisory Events You can also use the special AdvisoryEvent event type to be
notified of exceptions that originate in user code but that are not caught with the
catch command. To use the AdvisoryEvent, click the plus sign used to add a
resource to the declaration. AdvisoryEvent is always available in the list of
resources.

When using the catch command, assignment of the Exception type is
mandatory, and you are limited to one catch block.

 TIBCO BusinessEvents Language Reference

Exception Handling | 15

Examples
This section provides some examples to demonstrate use of exception handling.

try/finally Example

String localStatus = "default status";
try {
 //readStatus might throw an exception
 localStatus = readStatus();
} finally {
 //If readStatus throws an exception,

//ScoreCard.status will be set to "default status"
 //but the exception won't be caught here.
 //Otherwise ScoreCard.status will be set to the

//return value of readStatus()
 Scorecard.status = localStatus;
}

try/catch/finally Example

String localStatus = "default status";
try {

//readStatus might throw an exception
localStatus = readStatus();

} catch(Exception exp) {
System.debugOut("readStatus() threw an exception with message"

+ exp@message);
} finally {

//If readStatus throws an exception,
//ScoreCard.status will be set to "default status"
//Otherwise ScoreCard.status will be set to the
//return value of readStatus()
Scorecard.status = localStatus;

}

TIBCO BusinessEvents Language Reference

16 | Chapter 1 Rule Language Grammar

try/catch Example

String localStatus = "default status";
try {

//readStatus might throw an exception
localStatus = readStatus();

} catch(Exception exp) {
System.debugOut("readStatus() threw an exception with message "

+ exp@message);
}

//If readStatus throws an exception,
//ScoreCard.status will be set to "default status"
//Otherwise ScoreCard.status will be set to the
//return value of readStatus()

Scorecard.status = localStatus;

 TIBCO BusinessEvents Language Reference

Flow Control | 17

Flow Control

The BusinessEvents rule Language includes commands to perform conditional
branching and iteration loops. This section describes these commands.

if/else
The if/else command allows you to perform different tasks based on
conditions.

Syntax:

if(condition){
 code_block;

}
else{

code_block;
}

for
The for command allows you to create a loop, executing a code block until the
condition you specify is false.

Syntax:

for(initialization; exit condition; incrementor){
code_block;
[break;]
[continue;]
}

break allows you to break out of the loop.

continue allows you to stop executing the code block but continue the loop.

For example:

int i;
for(i=0; i<10; i=i+1){
System.debugOut("Hello World!");
}

This example prints "Hello World!" to debugOut ten times.

TIBCO BusinessEvents Language Reference

18 | Chapter 1 Rule Language Grammar

while
The while command allows you to perform one or more tasks repeatedly until a
given condition becomes false.

Syntax:

while(condition){
code_block;
[break;]
[continue;]

}

break allows you to break out of the loop.

continue allows you to stop executing the code block but continue the loop.

 TIBCO BusinessEvents Language Reference

| 19

Chapter 2 Working With Rule Language Datatypes

This chapter provides datatype conversion tables, information about operators
and types, and information about how TIBCO BusinessEvents handles
inconstancy problems with datatypes.

Topics

• Concept Properties to XML Datatype Conversions, page 20

• Compatibility of Operators with Types, page 21

• Correcting Inconsistencies of Type, page 23

TIBCO BusinessEvents Language Reference

20 | Chapter 2 Working With Rule Language Datatypes

Concept Properties to XML Datatype Conversions

N - Numeric conversion loss of information possible

L - Shallow copy — Copies only the current value; not the history.

D - Deep copy — Copies the entire structure of the contained concept (current
value of property only).

ID - Copies the ID of the referred concept.

Table 5 Concept Properties to XML Datatype Conversions

In
t

L
o

n
g

F
lo

at

D
o

u
b

le

B
o

o
le

an

S
tr

in
g

D
at

eT
im

e

C
o

m
p

le
xT

yp
e

@
re

f

Property Type

Int L L L L L

Long N L N N L

Double N N N L L

String L L L L L L L

Boolean L L

Datetime L L

ContainedConcept D

ConceptReference ID

Datatype conversion tables for events are located in the TIBCO Rendezvous and
TIBCO Enterprise Message Service documentation.

 TIBCO BusinessEvents Language Reference

Compatibility of Operators with Types | 21

Compatibility of Operators with Types

Table 6, Operator Matrix, defines the compatibility of operators with types.

Table 6 Operator Matrix

Right Side of Operator

str int lon dou boo ent obj dat

L
ef

t
S

id
e

o
f

O
p

er
at

o
r

st
r

=, +, eq,
cmp,
inst

 + + + + + =, +, eq,
cmp,
inst

+

in
t + =, math,

eq, cmp
=, math,
eq, cmp

=, math,
eq, cmp

=, math,
eq, cmp

lo
n + =, math,

eq, cmp
=, math,
eq, cmp

=, math,
eq, cmp

=, math,
eq, cmp

d
o

u + =, math,
eq, cmp

=, math,
eq, cmp

=, math,
eq, cmp

=, math,
eq, cmp

b
o

o + =, eq =, eq

en
t + =, eq,

inst
=, eq,
inst

o
b

j =, +, eq,
cmp,
inst

=, math,
eq, cmp

=, math,
eq, cmp

=, math,
eq, cmp

=, eq =, eq,
inst

=, eq,
inst

=, eq,
inst

d
at

+, =, eq,
inst

=, eq,
cmp,
inst

Abbreviation Meaning and Notes

boo Boolean.

cmp Comparison operators: <, >, <=, >=

TIBCO BusinessEvents Language Reference

22 | Chapter 2 Working With Rule Language Datatypes

dat Date/Time

dou Double

ent Entity. Type includes Concept, Event and ScoreCard. Both
operands must either be of the same type or have a
subtype-supertype relationship

eq Equality operators: ==, !=

inst instanceof

int Integer

lon Long

math Numerical operators: unary +, unary -, =, - , *, /, %

obj Object

str String

Abbreviation Meaning and Notes

 TIBCO BusinessEvents Language Reference

Correcting Inconsistencies of Type | 23

Correcting Inconsistencies of Type

BusinessEvents attempts to correct inconsistencies of type whenever possible by
converting expressions to the appropriate type. BusinessEvents converts
expression types in the following cases:

• An expression uses the plus sign (+) with a string operand.

• An arithmetic expression includes numbers of differing types.

• The value of an expression is assigned to a variable of a different type.

• The arguments to a function are of the wrong type.

There are some inconsistencies of type that BusinessEvents cannot correct. For
example, all expressions within conditions must be of type boolean. If an
expression within a condition evaluates to anything other than boolean, it would
be illogical for BusinessEvents to convert the expression to boolean. In cases like
this, BusinessEvents returns an error at compile time.

String Operands
When an expression uses the plus sign (+) with a string operand, BusinessEvents
treats the expression as a request for concatenation rather than addition. It
converts the second operand to a string and concatenates the two strings.

For example:

"area code: " + 650 becomes

"area code: 650"

Arithmetic Expressions
The following information applies to these operators:

* / % + - < <= > = == !=

When an expression uses one of the above arithmetic operators with two numbers
of different numeric types, BusinessEvents promotes one of the two operands to
the numeric type of the other. It makes these promotions as follows:

• If either operand is a double, BusinessEvents promotes the other to a double.

• Otherwise, if either operand is a long, it promotes the other to a long.

TIBCO BusinessEvents Language Reference

24 | Chapter 2 Working With Rule Language Datatypes

Assignment Conversion
If the value of an expression is assigned to a variable, BusinessEvents converts the
expression’s type to that of the variable. This might include, for example,
converting a double to an int, or converting a generic model type to a more
specific model type.

Function Argument Conversion
Conversions of function arguments are handled in the same way as assignment
conversions.

 TIBCO BusinessEvents Language Reference

| 25

Chapter 3 Rule Language Syntax

This chapter lists the syntax of the rule language.

Topics

• Rule Language Syntax, page 26

TIBCO BusinessEvents Language Reference

26 | Chapter 3 Rule Language Syntax

Rule Language Syntax

<Conditions> := { <Predicate> }*
<Actions> := { <StatementOrLocalDecl> }*
<Predicate> := <Expression> ";"
<StatementOrLocalDecl> := <Statement> | <LocalVariableDeclaration> ";"
<Statement> := <LineStatement> | <BlockStatement>
<LineStatement> := ";" | <StatementExpression> ";" | "break" ";" |

"continue" ";" | "return" { <Expression> }? ";"
<BlockStatement> := <Block> | <If> | <While> | <For>| <TryCatchFinally>
<StatementExpression> := <PrimaryExpression> "=" <Expression> | <Name>
<Arguments>
<Name> := <Identifier> { .<Identifier> }*
<Arguments> := "(" Expression() { "," Expression() }* ")"
<LocalVariableDeclaration> := <Type> <VariableNameAndInit> { ","

<VariableNameAndInit> }*
<VariableNameAndInit> := <Identifier> { "=" <Expression> |

<DeclarationArrayLiteral> }?
<Type> := <TypeName> { "[]" }?
<TypeName> := <Name> | "boolean" | "int" | "long" | "double"
<DeclarationArrayLiteral> := "{" <Expression> { , <Expression> }* "}"
<Block> := "{" { <StatementOrLocalDecl> }* "}"
<If> := "if" "(" <Expression> ")" <Statement>
<While> := "while" "(" <Expression> ")" <Statement>
<For> := "for" "(" { <LocalVariableDeclaration> |

<StatementExpressionList> }? ";" { <Expression> }?
";" { <StatementExpressionList> }? ")" <Statement>
<StatementExpressionList>:=<StatementExpression> {
"," <StatementExpression> }*

<TryCatchFinally> := "try" <Block> { "catch" "(" "Exception" <Identifier>
")" <Block> { "finally" <Block> }? | "finally"

<Block> }<Expression> :=<ConditionalExpression> { '||'
<ConditionalExpression> }*

<CondtionalExpression> := <EquivalenceExpression> { '&&'
<EquivalenceExpression> }*

<EquivalenceExpression> := <LogicalExpresion> { <EquivalenceOps>
<LogicalExpression> }*

<LogicalExpression> := <AdditiveExpresion> { <LogicalOps>
<AdditiveExpression> | "instanceof" <Type> } }*

<AdditiveExpression> := <MultilicativeExpression> { <AditiveOps>
<MultiplicativeExpression> }*

<MultiplicativeExpression> := <PrimaryExpression> { <MultiplicativeOps>
<PrimaryExpression> }*

<UniaryExpression> := <PrimaryExpression> {<UnaryOps>
<PrimaryExperssion>}*

<PrimaryExpression> := <PrimaryPrefix> { <PrimarySuffix> }*
<PrimaryPrefix> := <Literal> | "(" <Expression> ")" | <Name> |

<ArrayLiteral> | <ArrayAllocator>
<ArrayLiteral> := <Type> "{" <Expression> { , <Expression> }* "}"
<ArrayAllocator> := <Type> "[" <Expression> "]" "{}"
<PrimarySuffix> := <ArrayIndex> | <Arguments> | <PropertyOrAttrAccess>
<PropertyOrAttrAccess> := ["." , "@"] <Identifier>
<ArrayIndex> := "[" <Expression> "]"
<EquivalenceOps> := ["==" , "!="]

 TIBCO BusinessEvents Language Reference

Rule Language Syntax | 27

<LogicalOps> := ["<" , "<=" , "=>" , ">"]
<AditiveOps> := ["+" , "-"]
<MultiplicativeOps> := ["*" , "/" , "%"]
<UnaryOps> := ["!" , "-" , "+"]

<Literal> := <INTEGRAL_LITERAL> | <DOUBLE_LITERAL> |
<STRING_LITERAL> | <BOOLEAN_LITERAL> | "null"

<INTEGRAL_LITERAL> := <DECIMAL_INT_LITERAL> | <HEX_INT_LITERAL> |
<OCTAL_INT_LITERAL>
| <DECIMAL_LONG_LITERAL> | <HEX_LONG_LITERAL> |
<OCTAL_LONG_LITERAL>

<DOUBLE_LITERAL> := { ["0"-"9"] }+ "." { ["0"-"9"] }* { <EXPONENT> }? {
["d" , "D"] }? | "." { ["0"-"9"] }+ { <EXPONENT> }? {
["d" , "D"] }? | { ["0"-"9"] }+ <EXPONENT> {
["d","D"] }? | { ["0"-"9"] }+ { <EXPONENT> }? ["d" ,
"D"]

<STRING_LITERAL> := '"' <STRING_CONTENTS> '"'
<BOOLEAN_LITERAL> := "true" | "false"
<DECIMAL_INT_LITERAL> := ["1"-"9"] { ["0" - "9"] }*
<HEX_INT_LITERAL> := "0" ["x" , "X"] { ["0"-"9" , "a"-"f" , "A"-"F"] }+
<OCTAL_INT_LITERAL> := "0" { ["0"-"7"] }*
<DECIMAL_LONG_LITERAL> := <DECIMAL_INT_LITERAL> ["l" , "L"]
<HEX_LONG_LITERAL> := <HEX_INT_LITERAL> ["l" , "L"]
<OCTAL_LONG_LITERAL> := <OCTAL_INT_LITERAL> ["l" , "L"]
<EXPONENT> := ["e" , "E"] { ["+" , "-"] }? { ["0"-"9"] }+
<STRING_CONTENTS> := { ~['"' , '\' , "\n" , "\r"] |{ '\'

{ ["n" , "t" , "b" , "r" , "f" , '\' , "'" , '"'] |
["0"-"7"] { ["0"-"7"] }? | ["0"-"3"] ["0"-"7"]
["0"-"7"]

}
}

}*

<ReserevedWord> := ["true", "false", "null", "if", "else", "while",

"for", "continue","break", "return", "int", "long",
"double", "boolean", "instanceof", "rule",
"attribute", "declare", "when", "then", "this",
"moveto", "requeue", "priority", "package", "char",
"float", "abstract", "default", "private", "do",
"implements", "protected","throw", "import",
"public", "throws", "byte", "transient", "case",
"extends","short", "try", "catch", "final",
"interface", "static", "void", "finally",
"strictfp", "volatile","class", "native", "super",
"const", "new", "switch", "goto", "synchronized"]

// Identifiers additionaly are restricted not to be any of the above reserved words

<Identifier> := [<ID_START> { <ID_PART> }*]
<ID_START> := except '$', any character for which

java.lang.Character.isJavaIdentifierStart()
returns true

<ID_PART> := except '$', any character for which
java.lang.Character.isJavaIdentifierPart()
returns true

TIBCO BusinessEvents Language Reference

28 | Chapter 3 Rule Language Syntax

<SINGLE_LN_COMMENT> := "//" { ~["\n", "\r", "\r\n"] }*
{ ["\n", "\r", "\r\n"] }

<MULTI_LN_COMMENT> := "/*" { ~["*/"] }* "*/"

 TIBCO BusinessEvents Language Reference

| 29

Chapter 4 Creating Custom Functions

This chapter describes how to use custom functions with TIBCO BusinessEvents.
It does not provide any information about programming the functions.

Topics

• Overview of Creating Custom Functions, page 30

• Structure of a Function Catalog, page 32

• Java Archive Resource, page 36

TIBCO BusinessEvents Language Reference

30 | Chapter 4 Creating Custom Functions

Overview of Creating Custom Functions

This chapter does not contain detailed instructions for creating custom functions
or programming in Java. It is assumed that you are comfortable programming in
Java, and have at a minimum already implemented a class and a static function.

Restrictions
Note the following restrictions that pertain to using custom functions.

Static and Non-Static Functions

Custom functions must be written in Java and have public static modifiers.

As a workaround, encapsulate a non-static function in a static function and
compile the encapsulating class to get the .class file.

Return Types

BusinessEvents custom functions support the following return types:

• Java types supported are: Object, String, Calendar (which displays in
BusinessEvents as DateTime), Integer, Long, Double, Boolean, int, long,
double, and boolean (but not byte, short, float, or char).

• Entity model object, for example, concept or event. Also any well defined
entities in the model of that type.

• Arrays are not supported return types, with this exception: One-dimensional
Java arrays of any supported type are supported.

Name Overloading

The functions.catalog file makes functions available for use in TIBCO
Designer. The structure of the file requires each function within a class to have a
unique name. Because of this structure, you cannot refer to an overloaded
function in functions.catalog.

For example, the standard Java library has several String.valueOf() functions
overloaded for each primitive type (String.valueOf(int i),
String.valueOf(double d) and so on). However, the BusinessEvents standard
function catalog has a separate function name for each data type:
valueOfBoolean(), valueOfDouble(), valueOfInt(), and valueOfLong().

See Structure of a Function Catalog on page 32, for more about the
functions.catalog file.

 TIBCO BusinessEvents Language Reference

Overview of Creating Custom Functions | 31

Task Summary
TIBCO BusinessEvents allows you to write your own custom functions in Java
and add them to the function registry, making them available from within the
function registry along with the prepackaged functions in the rule editor.

The steps below summarize the tasks required to integrate your own custom
functions with TIBCO BusinessEvents:

1. Write your custom static function in Java and compile it.

2. Create a file called functions.catalog, an XML file that makes it possible to
access your custom functions from the functions registry within the rule
editor. The XML can also include information for a tool tip for each function.

3. Create a .jar file that includes your .class file and functions.catalog.

4. Add the location of the .jar file to the class path for the BusinessEvents
Server and Workbench. Also add locations for any dependent classes.

The following pages provide more information about each of these tasks.

TIBCO BusinessEvents Language Reference

32 | Chapter 4 Creating Custom Functions

Structure of a Function Catalog

A function catalog is an XML file that conforms to function_catalog.xsd — a
schema. This allows BusinessEvents to integrate your custom functions with the
function registry in the rule editor. The function catalog must be in the XML
format described in Table 7 to map properly to the schema.

Elements
Table 7 lists and describes the elements used in the function catalog. Each
element’s horizontal position within the Element Name column indicates the
correct nesting position within the XML file.

• Name the function catalog functions.catalog.

• Place functions.catalog in the root folder of the required Java archive
resource (.jar) file.

Table 7 Function Catalog Elements

Element
Name Sub-Elements Description

<catalog name="name "> The root element. Attribute: name="name"

where name is a name you provide for this functions catalog.

Example: <catalog name="custom">

<category> This is a sub-element of <catalog>. <category> is a nesting
container for a set of related functions within this functions
catalog.

<name> A name you provide for this category.

<function> A container for the information about a single function.

<name> The name of the function.

<class> The java class that implements the function.

<desc> Optional. A description of the function.

<args> A comma separated list of descriptive names for the function’s
arguments. BusinessEvents takes the argument type from the
function itself.

 TIBCO BusinessEvents Language Reference

Structure of a Function Catalog | 33

<isActionOnly> Valid values: true, false

Optional.

If this function has side effects, for example, if it can modify
values, you can only use it in action rules. Set this parameter to
true to alert BusinessEvents that this function has side effects.

<tooltip> This is a sub-element of <function>. This element contains the
elements of a tool tip. A tool tip provides information about a
function when the user floats the curser over the name of the
function in the functions catalog in the rule editor.

<synopsis> A brief description of the function for display within the tool
tip.

Example:
<synopsis>Takes value of "amount" and returns item
name.

<args> A container for descriptive information about the function’s
arguments. The information you provide will be displayed in
the function’s tool tip.

<paramdesc> A sub-element of <args>. Provides descriptive information for
one argument. Use this tag once for each argument. Attributes:

• name=’arg_name’

• type=’arg_type’

Example:
<paramdesc name=’amount’ type=’int’>arg1</paramdesc>

<returns> Describes the return value.

Attribute: type=’return_type’

Example:
<returns type=’string’>item name</returns>

Table 7 Function Catalog Elements (Cont’d)

Element
Name Sub-Elements Description

TIBCO BusinessEvents Language Reference

34 | Chapter 4 Creating Custom Functions

Example Function Catalog
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<catalog name="Custom">
<category>
<name>Categories</name>
<category>
<name>SimpleOnes</name>
<function>
<name>firstSample</name>
<method>firstSample</method>
<class>com.tibco.be.functions.custom.CustomJavaHelper</class>
<args></args>

<tooltip>
<synopsis>You could write java here</synopsis>

</tooltip>
</function>

</category>
<category>
<name>TimeBasedPropertyValues</name>

<function>
<name>snapshotOverTime</name>
<method>snapshotOverTime</method>
<class>com.tibco.be.functions.custom.CustomJavaHelper</class>
<args>entity, startTime, endTime, namespace</args>
<isActionOnly>true</isActionOnly>
<tooltip>
<synopsis>This is the synopsis</synopsis>
<args>

<paramdesc name="propertyDouble"
type="PropertyAtomDouble">Property to serialize.</paramdesc>
<paramdesc name="startTime"type="long">Start time for
serialising the history values.</paramdesc>

<paramdesc name="endTime" type="long">End time for
serialising the history valiues.</paramdesc>

</args>
<returns type="String">An XML String Serialization
of the PropertyAtomDouble passed.</returns>

</tooltip>
</function>

</category>
<category>
<name>Serialize</name>

<function>
<name>serializeConcept</name>
<method>serializeConcept</method>

<class>com.tibco.be.functions.custom.CustomJavaHelper</class>
<args>concept, changedOnly, nameSpace, root</args>
<isActionOnly>true</isActionOnly>
<tooltip>
<synopsis>Serializes the Concept passed to an XML String
which is returned.</synopsis>

<args>
<paramdesc name='concept' type='Concept'>The Concept to

serialize.</paramdesc>
<paramdesc name='changedOnly' type='boolean'>true - data
modified since last conflict resolution cycle
serialized</paramdesc>

<paramdesc name='nameSpace' type='String'>A path describing
the nameSpace to save in.</paramdesc>

<paramdesc name='root' type='String'>The name of
the serialized data.</paramdesc>

</args>
<returns type='String'>An XML String Serialization of
the Concept passed.</returns>

 TIBCO BusinessEvents Language Reference

Structure of a Function Catalog | 35

</tooltip>
</function>
</category>

</category>
</catalog>

TIBCO BusinessEvents Language Reference

36 | Chapter 4 Creating Custom Functions

Java Archive Resource

To use your custom function with BusinessEvents, place the following resource
files in a Java archive resource (.jar):

• The static function .class file. If the function itself is non-static, this is the
encapsulating static function.

• The XML file described in Structure of a Function Catalog on page 32.

Make the .jar file and any dependent class files available to BusinessEvents in
one of these ways:

• Add the location of the JAR file to the tibco.env.STD_EXT_CP variable in the
configuration file: BE_HOME\bin\be-engine.tra.

• Locate the file in BE_HOME\lib.

BE_HOME is the directory in which BusinessEvents is installed.

 TIBCO BusinessEvents Language Reference

| 37

Chapter 5 Query Features Overview

This chapter provides a short overview of query features.

Topics

• Query Features Overview, page 38

• Two Common Ways to Use Queries, page 41

TIBCO BusinessEvents Language Reference

38 | Chapter 5 Query Features Overview

Query Features Overview

Queries are Executed in Query Agents
Queries can only be executed by specialized agents called query agents. One
engine (node) can have multiple query agents, or a mixture of inference agents
and query agents.

Query agents have channels and destinations, but no Rete network (working
memory).

For instructions on how to configure a query agent, see Chapter 23, Configuring
Query Agents (Cache OM) in TIBCO BusinessEvents User’s Guide.

Queries Retrieve Information from Cache
The query language enables you to query concepts and simple events in the
cache, using an SQL-like language.

You can’t query scorecards or time events (they don’t exist in the cache). You can’t
query the objects in the Rete network itself, or those in the backing store.

Query Feature is Read-Only

Query features provide view-only access into the cache. You can’t use query
language to do any updates to data in the cache.

Two Main Types of Queries
Two types of queries are available, snapshot queries and continuous queries.

Snapshot Queries

Snapshot queries return data from the cache as it exists at a moment in time. A
snapshot query returns a single, finite collection of entities that exist in the cache.

Query features are available only in the TIBCO BusinessEvents Enterprise Suite.

Query features are available in conjunction with cache-based object management.

 TIBCO BusinessEvents Language Reference

Query Features Overview | 39

Continuous Queries

Continuous queries collect data as objects are added, deleted, or modified in the
cache. That is, continuous queries work on data streaming through the query.
Continuous queries continue to gather and return data when notified of changes,
until you stop the query.

Continuous queries use windows to process data (snapshot queries do not).

Structure of a Query Select Statement
The text of a query uses a structure similar to the structure of a SELECT statement
in SQL, and it has parallels with the structure of a BusinessEvents rule, too:

Each clause in a statement is examined in detail in Chapter 6, Query Language
Components, on page 43. For a quick reference to the query syntax, see Chapter 9,
Query Language Reference, on page 87.

The query text is provided as an argument to the Query.create() function. Use
of functions to create and execute queries is explained next.

Summary of Functions Used to Create and Execute Que ries
All queries are created and executed using a set of query functions. The query
functions are called from rule functions in the query agent. Three functions are
mandatory, and additional functions are available for different purposes,
explained later in this guide.

The terminology shown in italics is used throughout documentation.

• Create the query First a Query.create() function creates the query definition
which contains the query text and a name for the definition.

• Create the query statement Then the Query.Statement.open() function is
used to create a query statement, which is a named instance of the query
definition.

������
������

�	
�
������

�
�	��������
�	
�����
������

	��	���
������ ;

TIBCO BusinessEvents Language Reference

40 | Chapter 5 Query Features Overview

• Execute an instance of the query statement and obta in results Two ways to
execute a query instance are provided:

— For snapshot queries, you can use either the Query.Statement.execute()
function or a Query.Statement.executeWithCallback() function.

— For continuous queries you must use the
Query.Statement.executeWithCallback() function, with the
IsContinuous parameter set to true.

These functions are generally placed in an event preprocessor rule function.

• Use results To use results returned by a query, you can create events to send
information between query and inference agents. You could also send results
out to some other system. The use to which results are put depends on the
business need.

See Lifecycle of a Query—Use of Query Functions on page 56 for more details.

For More Information
The query features are documented in detail in the following chapters:

• Chapter 6, Query Language Components, on page 43 Provides a detailed
reference to each clause of a query statement.

• Chapter 7, Working With the Query Language, on page 53 Explains how to
use the query functions and how to work with results.

• Working With Continuous Queries on page 71 Explains how continuous
queries use different kinds of windows

Chapter 9, Query Language Reference, on page 87 Provides a reference to the
query language components, expressions, operators, wildcards, datatypes,
literals, and reserved words,

 TIBCO BusinessEvents Language Reference

Two Common Ways to Use Queries | 41

Two Common Ways to Use Queries

The following sections show two ways queries can be used.

Triggering a Query from a Rule (in an Inference Age nt)
Queries can only run in a query agent. Rules can only run in an inference agent. In
order for a rule to trigger a query to execute, the rule must send an event to the
query agent. In order for the query results to be used in a rule, the query agent
must send them in an event to an inference agent.

Inference Agent 1. A rule in the inference agent sends an event to destination D1, including any
necessary query parameters.

Query Agent 2. The query agent listens for messages on destination D1.

3. When event E1 arrives, an event preprocessor executes a query statement.

4. A query function collects results into another event, E2 and sends it to
destination D2.

Inference Agent 5. The inference agent listens on destination D2.

6. When event E2 arrives, a rule in the inference agent collects the results from
the event and processes them as needed.

Using a Query as a Pre-filter
Query agents can act as pre-filters and routers. Suppose you want to check for the
existence of a concept in the cache, using properties of an event. If the concept
does not exist, you want to create it. You can achieve this result as follows:

Query Agent 1. The query agent listens for messages on a destination D1.

2. On receiving a message (event A) at D1, the query agent executes the query
statement to determine if the corresponding concept exists in cache.

— If the query finds an existing concept, nothing happens.

— If the query does not find an existing concept the agent sends event A to
destination D2.

Inference Agent 3. The inference agent listens for messages on destination D2.

4. On receiving a message (event) at D2, a rule in the inference agent creates the
concept.

TIBCO BusinessEvents Language Reference

42 | Chapter 5 Query Features Overview

 TIBCO BusinessEvents Language Reference

| 43

Chapter 6 Query Language Components

This chapter expands each of the components of the select statement:

Topics

• Select Clause, page 44

• From Clause, page 45

• Where Clause, page 46

• Group by Clause, page 47

• Order by Clause, page 48

• Limit Clause, page 49

• Stream Clause, page 50

• Stream Policy, page 51

������
������

�	
�
������

�
�	�������� �	
�����
������

	��	���
������ ;

TIBCO BusinessEvents Language Reference

44 | Chapter 6 Query Language Components

Select Clause

In the select clause, you specify the columns that will appear in the query results.
In the example below, a select clause projects two columns, address and name,
which are properties of the concept /customer. The alias for the customer concept
is the letter c:

select c.name, c.address from /customer c

You can also give each projection an alias, for example:

select c.name as name

The use of the optional "as" makes the code more readable.

In the select clause you can use the following:

• Literal values

• Catalog functions and rule functions

• Entities that are declared in the from clause, unless you are using a group by
clause (see Group by Clause on page 47)

You can use an optional limit clause to specify the maximum number of rows to
return, and you can use an offset to ignore the first n rows.

You can use an optional distinct clause to prevent the query from returning
duplicate rows.

Examples of Select Clauses

These examples show only the select clause. A complete query requires a
select and a from clause.

select A.*
select {limit: first 10} A.name
select /#DateTime/now() as C
select /RuleFunctions/GetState() as D
select /#String/concat(B.customerId,”ABC”) as E
select B.*, A.custId id, B@extId as extId

select

����� distinct �����

���	����
�

as

,

*

 TIBCO BusinessEvents Language Reference

From Clause | 45

From Clause

Just as a rule declaration specifies the scope of the rule, the from clause specifies
the scope of the query. The items in the from clause must exist in the project
ontology.

Continuous Queries

The from clause in a continuous query can specify window policies. See Overview
of Continuous Queries on page 72 and sections following, for more information.

Examples

The select and from clauses are required for all queries.

select * from /Concepts/Address as A
select * from /Concepts/Customer B
select * from /EntityA as A
select * from /EntityB B
select * from /EntityX, /EntityY, /EntityZ

��	���������� �����

������������
���
from

as

,

TIBCO BusinessEvents Language Reference

46 | Chapter 6 Query Language Components

Where Clause

The optional where clause is analogous to a rule’s conditions. The expression in
the where clause can be simple or complex. In the where clause you can use
following:

• Literal values

• Catalog functions and rule functions

• Entities that are declared in the from clause

Examples

where A.customerId = B.customerId

where A.id = B@extid // Entity attributes
and (B@parent.name = 'ABCD' or C.name = "EFGH")
and A.tokens[5] = 50 // array property
and (A.containedConceptE.price > 100
or B.startTime > /#DateTime/addMinute(/#DateTime/now(),5))
and B.value between 2 and 5

where
�

�����
���	����
�

The pound sign (#) is used to escape reserved (key) words. See Reserved Words
on page 104 for a complete listing.

 TIBCO BusinessEvents Language Reference

Group by Clause | 47

Group by Clause

The optional group by clause allows you to group entities that share one or more
criteria into a single row—each group is represented by one row.

For example:

select c.zipcode from customer c group by c.zipcode;

The above query would return a list of zip codes.

Although the group by clause in this example reduces the result set to a list of zip
codes, additional information from the query is internally available to the
aggregation functions. You can use any of the standard group functions that are
applicable, such as those used to calculate count, sum, average, maximum, and
minimum.

Aggregation functions operate on all entities (and their attributes and properties)
that make up a given group. For example, you could find out how many
customers are in each zip code:

select count(*) from customer c group by c.zipcode;

Optional having Clause

The optional having clause allows you to apply conditions after entities are
grouped. For example this query returns the number of customers in each zip
code, except for those zip codes where there are three or fewer customers:

select c.zipcode, count(*) as count_zipcode
from /customer c
group by c.zipcode
having count_zipcode > 3;

Note that the having clause accepts aliases declared in the select clause.

You can also use aggregation functions in the having clause in order to apply
conditions on the whole group.

group by ���	����
�

having
�

�����
���	����
�

,

When you use a group by clause, the select clause c annot use the entities specified
in the from clause What is available to the select clause has been, in effect,
reduced using the group by clause. When you use a group by clause, the select
clause can use only the group by criteria, and aggregation functions.

TIBCO BusinessEvents Language Reference

48 | Chapter 6 Query Language Components

Order by Clause

The optional order by clause enables you to sort the results in ascending or
descending order.

In a continuous query, each set of ordered results in a window constitutes one
batch of results. For an example, see Example Showing Batching of Return Values
on page 66.

See also Limit Clause on page 49.

Examples

order by A.State, C, D, E
order by A@extId, B.name {limit : first 10}

select o.customerId as cid
from /Concepts/#Order o
where o.lines@length >= 5
group by o.customerId
having count(*) >= 3
order by cid desc;

In the above example, each row in the result shows the ID of a customer who has
placed three or more orders each of which contained 5 or more lines.

order by ���	����
�

�����

,

asc

desc

 TIBCO BusinessEvents Language Reference

Limit Clause | 49

Limit Clause

You can use an optional limit clause in a select or an order by clause.

When used in a select clause, the limit the maximum number of rows to return.

You can also use an optional offset to ignore the first n rows.

When used in an ordered by clause, the limit applies to each of the items in the
ordered list (after the ordering is executed). See Implicit Window Examples on
page 74.

Example Showing Use in Select Clause

select {limit: first 10 offset 20} c.name from /Customer c

Without the limit clause, this query would return all customers. With the limit, it
returns 10 customers, with an offset of 20. That is, it returns customers 20-30.

Example Showing Use in Order By Clause

select s.deptName, count(*)
from /Student s
group by s.deptName
order by count(*) desc {limit: first 2};

The above query keeps count of the number of students per department. Every
time a student enrolls or leaves, the count changes and the query produces the
entire list sorted on the count, sorted in descending order, and limited to the first
two.

The limit clause specifies that only the first two of the ordered lists of
departments are returned by the query: the list of departments with the largest
number of students, and the list of departments with the second largest number
of students.

{ limit : first

offset

}�
�������	��

�
�������	��

TIBCO BusinessEvents Language Reference

50 | Chapter 6 Query Language Components

Stream Clause

The stream clause is used for continuous queries only. It is used within a from
clause.

Use of Emit: New and Emit: Dead

The emit key word determines whether the query is evaluated when an entity
enters the window (emit : new) or when an entity leaves the window (emit :
dead).

The default value is emit : new.

See Time Window Examples on page 82 for some example uses.

See Stream Policy on page 51 for more details on how the window is defined.

{

; policy : ��	�����
����

new

dead

emit : }

 TIBCO BusinessEvents Language Reference

Stream Policy | 51

Stream Policy

The stream policy (also known as a window policy) is used for continuous queries
only. It determines what kind of window is used: a time window, sliding window,
or tumbling window. See Working With Sliding, Tumbling, and Time Windows on
page 76.

Note that continuous queries that use an implicit window do not have a stream
policy. See Working With Implicit Windows on page 74.

The value of long literal specifies the size of the window. When used for a time
window, the value refers to a time unit specified by time unit. The time unit can be
specified in milliseconds, seconds, minutes, hours or days. For example:
maintain last 5 minutes defines a time window of five minutes.

For sliding and tumbling windows, the number refers to a number of entities.

Where Clause

The optional where clause is used as a pre-filter (a filter on results that enter the
window). It eliminates entities that are not useful for the query.

By Clause

Maintaining a single window (like a sliding window) over all the events in the
window may not be what you need for a query. The (optional) by clause allows
you to do aggregations within the window. In this regard, the by clause is similar
to the group by clause.

For example, instead of a single window of size 50 that contains all the entities,
you can maintain a window of size 50 for each combination of values for the fields
in the by section:

select car.id, car.color from "CarEvent" {policy: maintain last 50
sliding by country, state, city where type = "Sedan"} car;

���������

maintain last �
�������	��

sliding

tumbling
by

where

,

���	����
�

���	����
�

TIBCO BusinessEvents Language Reference

52 | Chapter 6 Query Language Components

See Explicit Window Example on page 77 for a detailed discussion of an example
that uses a stream policy. See Time Window Examples on page 82 for more
examples.

 TIBCO BusinessEvents Language Reference

| 53

Chapter 7 Working With the Query Language

This chapter explains how to use the query language to create and execute queries
and use results returned by a query. It covers snapshot and continuous queries.

Topics

• Querying the Cache and Using Query Results, page 54

• Lifecycle of a Query—Use of Query Functions, page 56

• Using Data from a Result Set, page 61

• Using Data from a Callback Rule Function, page 62

• Simple Snapshot Query Example, page 64

• Simple Continuous Query Example, page 65

• Using Bind Variables in Query Text, page 69

TIBCO BusinessEvents Language Reference

54 | Chapter 7 Working With the Query Language

Querying the Cache and Using Query Results

To use the query language features, you put query text (SQL-like statements that
retrieve information from the cache) as arguments to an appropriate function
from the CEP Query function catalog and place the query functions in one or
more rule functions.

You can also use bind variables to create prepared statements.

Query Function Catalog
A catalog of functions called CEP Query is provided for use in writing and
managing queries. The following categories and functions are provided in the
catalog:

• Query category: create(), delete(), exists()

• Callback category: delete(), exists(), getStatementName()

• ResultSet category: close(), get(), isBatchEnd(), isOpen(), next()

• Statement category: clearSnapshotRequired(), clearVars(), close(),
execute(), executeWithCallback(), getSnapshotRequired(), getVar(),
isOpen(), open(), setSnapshotRequired(), setVar()

Each category also has a Metadata subcategory, which contains functions such as
findColumn(), getColumnCount(), getColumnName(), getColumnType(),
getQueryName(), and getStatementName().

Tooltips associated with all these functions show the function signatures and
other helpful text. The tooltips are available in TIBCO Designer and in the online
reference, TIBCO BusinessEvents Functions Reference.

For general information on using the functions provided with BusinessEvents, see
Understanding and Working With Functions in TIBCO BusinessEvents User’s
Guide.

Using Functions Within Queries
Many of the available catalog functions as well as custom functions can be used in
the text of a query. You can also use rule functions from the same project.

Functions that
can’t be used in

queries

The following functions cannot be used within queries:

• Rule functions with a Validity field that is set to anything other than "Action,
Condition, Query." (The Validity field is in the rule function Configuration
tab.)

../tib_be_online_reference/functions/index.html

 TIBCO BusinessEvents Language Reference

Querying the Cache and Using Query Results | 55

• Ontology functions.

• All catalog functions that assert, modify or delete objects in the cache or in
working memory. Queries cannot change the cache.

For information on custom functions see Chapter 4, Creating Custom Functions,
on page 29.

Using Bind Variables
You can place bind variables in the query text argument of the query definition.
The values of the variables can be set when a query statement is opened, enabling
a single query definition to be reused.

See Using Bind Variables in Query Text on page 69 for details.

Limitation in Use of Arrays
You can use arrays within expressions in a query, but returning arrays in the
results of the query is not supported in this release.

TIBCO BusinessEvents Language Reference

56 | Chapter 7 Working With the Query Language

Lifecycle of a Query—Use of Query Functions

This section explains how to use functions to create and execute queries, and to
gather query results. In summary:

1. Create the Query Definition: A query definition is a Java runtime object (similar
to a factory class).

2. Open a Query Statement: A query statement is an object that represents one
instance of the query. You can create multiple statements that can run in
parallel.

3. Set Bind Variables (if Used): For the named query statement, set values for
bind variables (if any are used in the query definition).

4. Execute an Instance of the Query Statement and Obtain Results

5. See Closing a Statement and Deleting a Query Definition, for details on how
queries and query statements that are no longer used are removed.

Also see Using Data from a Result Set on page 61 and Using Data from a Callback
Rule Function on page 62 for details on how to get and use query results.

Create the Query Definition
Creating a query definition is a distinct and separate step from opening and
executing a query statement. Creating a query definition is the most expensive
step in the process of making the query available for execution. Therefore it is
often best done at engine startup.

Format:
Query.create(String QueryDefinitionName, String QueryText);

The query definition name is used in other functions to identify the query
definition. The query text contains the select statement.

Example:

Query.create("report","select zipcode, total_sales, agent_name
from /Concepts/Sales where total_sales > $min");

Where $min is a bind variable whose value is provided at runtime.

 TIBCO BusinessEvents Language Reference

Lifecycle of a Query—Use of Query Functions | 57

If a query statement based on this definition is executed and returns a result set,
the result set columns would be, zipcode, total_sales, and agent_name, with
rows of entity values that match the condition specified at the time the query was
executed.

Open a Query Statement

Format:
Query.Statement.open(String QueryDefinitionName, String StatementName);

The query definition name references the query definition that contains the query
text. The statement name defined here is used in other functions to identify this
query statement.

Example:

Query.Statement.open("report", S_Id);

Where S_Id is a string variable that contains the statement name. Names can be
constructed in various ways, as shown in Simple Snapshot Query Example on
page 64.

Set Bind Variables (if Used)
If you used bind variables in the query definition, then you set the values after
opening the query statement, and before executing it. This sequence is required.
The functions need not be executed right after each other, however. For example,
the Query.Statement.open() function could be in a startup rule function and
the Query.Statement.setvar() function could be in a rule function called on
assertion of an event, followed by the Query.Statement.execute() function.

Format

Query.Statement.setVar(String StatementName, String BindVariableName,
Object Value);

Open a named query statement for each set of variable values that are used at
execution time. For example, if you set the variable values two different ways,
you would provide two open query statements, each with its own name, to keep
the configured queries and their returned information distinct from each other

TIBCO BusinessEvents Language Reference

58 | Chapter 7 Working With the Query Language

Example
Query.Statement.setVar(S_Id, "min", evt.min_total_sales);

See Using Bind Variables in Query Text on page 69 for more details.

Execute an Instance of the Query Statement and Obta in Results
To execute a query and specify how a query returns values, you use one of the
following functions:

• Query.Statement.execute() provides results using a result set. This
function is used for snapshot queries only.

• Query.Statement.executeWithCallback() provides results using a
callback rule function, which is called once for each matching result. This
function can be used with snapshot or continuous queries.

To Obtain Results Using a Result Set

The Query.Statement.execute() function returns values in a result set. The
result set is a tabular form (with rows and columns) on which you can perform
operations to return data. It is used for snapshot queries only. Execution is
synchronous.

Format

Query.Statement.execute(String StatementName, String resultsetName);

Example

Query.Statement.execute(S_Id, evt@extId);

In the above example, S_Id is a string variable providing the name that was given
in the Query.Statement.open() function. The example shows use of the external
ID of event evt (evt@extId) as the result set name, as a way to ensure that each
result set has a unique name.

See Using Data from a Result Set on page 61 for more information.

Closing a Result Set

After you have collected the data you need, close the result set. You can close the
result set directly, or close it indirectly by closing a higher-level item such as the
the statement or the query definition. To close the result set use the following
function:

 TIBCO BusinessEvents Language Reference

Lifecycle of a Query—Use of Query Functions | 59

Query.ResultSet.close(String ResultsetName);

For example:

Query.ResultSet.close("rset");

To Obtain Results Using a Callback Rule Function

You can use Query.Statement.executeWithCallback(), for snapshot or
continuous queries. If you set the IsContinuous argument to true, the query
runs as a continuous query.

The behavior depends on whether the query executes as a snapshot or as a
continuous query:

• When used with snapshot queries, the query looks at the current state of the
cache and calls the rule function once for each matching row, in quick
succession.

• When used in continuous queries, the query listens for changes to the cache,
and calls the rule function as matches occur over the lifetime of the query.

The format of the Query.Statement.executeWithCallback() function is shown
below.

Format
Query.Statement.executeWithCallback(
String StatementName,
String ExecutionName,
String CallbackUri,
boolean IsContinuous,
Object Closure)

The ExecutionName parameter keeps results from different executions distinct from
each other.

The CallbackUri parameter value provides the project path to the callback rule
function.

The IsContinuous parameter defines if the query is a snapshot or continuous query.

The Closure parameter is stored during the execution of the query, and provided as
a parameter to the callback function every time that function is called.

Example
String execID = evt@extId;
Query.Statement.executeWithCallback(
MyStmt, MyexecID, "/MyRuleFunction", false, evt);

See Using Data from a Callback Rule Function on page 62 for more details.

TIBCO BusinessEvents Language Reference

60 | Chapter 7 Working With the Query Language

Closing a Statement and Deleting a Query Definition
You can close or delete at different levels. You can delete a query definition to
make room for new query definitions. You can also delete (close) the statement
that is running, without deleting the query definition itself. Use the following
functions as needed for your situation:

Query.Statement.close(String StatementName);

Query.delete(String QueryDefinitionName);

When you delete a query or a statement, all their subordinate artifacts are deleted
as well, including result sets.

You can also close just the result set. See Closing a Result Set on page 58.

 TIBCO BusinessEvents Language Reference

Using Data from a Result Set | 61

Using Data from a Result Set

See To Obtain Results Using a Result Set on page 58 for details about obtaining
results.

The result set maintains a cursor (that is, a reference) on the current row, initially
positioned just before the first row so that you can perform operations on the
table. The only way to do operations on the table is through the cursor. You can
move the cursor to the next row, using the following function:

boolean Query.ResultSet.next(String ResultsetName)

The above function returns false when the cursor moves after the last row (or
when there is no row).

To get the value of a column in the row referenced by the cursor, pass the index of
that column to the following function:

Object Query.ResultSet.get(String ResultsetName, int
ZeroBasedColumnIndex)

The following example shows how you can get the value of column 1 in each row
of the result set and simply display it on the console:

while(Query.ResultSet.next("rset")) {
System.debugOut(Query.ResultSet.get("rset",1));

}

Where "rset" is the name of the result set.

TIBCO BusinessEvents Language Reference

62 | Chapter 7 Working With the Query Language

Using Data from a Callback Rule Function

When you use the Query.Statement.executeWithCallback() function, the
agent calls the specified callback rule function once for each row of data
generated. The row of data is provided as an array of columns.

The callback rule function is called in the following circumstances:

• Once for each row of data generated by the query.

• At the end of a batch of rows (continuous queries only).

• Once, when there are no more results, indicating the end of the results
(snapshot queries) or that the statement was closed or the query deleted
(continuous queries). See Closing a Statement and Deleting a Query
Definition on page 60.

You can provide a closure object when executing the statement. The closure object
is provided to each rule function call. It can contain anything useful in the
execution context. For example, you can use an object array to accumulate each
row of results returned in each callback rule function call.

The Callback Rule Function Required Signature
The callback function must have a signature with the following parameter types,
provided in the order specified:

Parameter Notes

String id Identifies the current execution. Uses the value of
ExecutionName, which was provided when calling the
Query.Statement.executeWithCallback()
function. The ID enables you to identify rows of data
belonging to different executions of the same query (or
different queries).

 TIBCO BusinessEvents Language Reference

Using Data from a Callback Rule Function | 63

boolean isBatchEnd Used in the case of continuous queries only, and is
useful only when the query text contains an order by
clause (see Order by Clause on page 48).

Only true at the end of a batch of rows of data
generated by the query.

In the case of continuous queries where no sorting is
used, each row of data is a batch.

See Example Showing Batching of Return Values on
page 66.

boolean hasEnded When true, signals the end of the execution.

Object row An array of columns representing one row of data
generated by the query. Each column corresponds to
an item in the projection (see Select Clause on page 44).

Object closure Closure object provided when executing the executing
the Query.Statement.executeWithCallback()
function, or null.

The object provided depends on your needs. For
example, it could be a simple string, or it could be an
array of objects used to add a row of data from each
callback rule function.

Parameter Notes

TIBCO BusinessEvents Language Reference

64 | Chapter 7 Working With the Query Language

Simple Snapshot Query Example

The following example code could be placed in a preprocessor rule function that
receives an event called requestEvent. It includes all steps from creating to
closing the query.

The example is simplified for clarity. In a real-world use case, the creation step
could be performed in a startup rule function, and the output could be sent in an
event to an inference agent or other destination.

Query.create("report853", "select agent_name, total_sales, zipcode
from /Concepts/Sales");

String id = requestEvent@extId;
String stmt = "S" + id;
String rset = "R" + id;
Query.Statement.open("report853", stmt);
Query.Statement.execute(stmt, rset);
while(Query.ResultSet.next(rset)) {

String agent = Query.ResultSet.get(rset, 0);
double sales = Query.ResultSet.get(rset, 1);
String zip = Query.ResultSet.get(rset, 2);
System.debugOut(rset + ": Agent " + agent

+ " sold $" + sales
+ " in " + zip
+ ".");

}
System.debugOut(rset + ": ========");
Query.ResultSet.close(rset);
Query.Statement.close(stmt);
Query.Close("report853");

The last three lines are provided for completeness. However, if the
Query.Close() function is used, you would not need to include the
Query.ResultSet.close() or Query.Statement.close() functions. See
Closing a Statement and Deleting a Query Definition on page 60 for details about
these hierarchical relationships.

Sample Output

R123: Agent Mary Smith sold $15063.28 in 94304.
R123: Agent Robert Jones sold $14983.05 in 94304.
R123: ========

 TIBCO BusinessEvents Language Reference

Simple Continuous Query Example | 65

Simple Continuous Query Example

The example provided in this section shows how a callback rule function is used
to gather results generated by the query. The callback rule function is shown next:

MyRF(ID, isBatchEnd, hasEnded, row, closure)

if (hasEnded) {
System.debugOut(ID + ": ========");

} else if (isBatchEnd) {
System.debugOut(ID + ": --------");

} else {
Object[] columns = row;
String agent = columns[0];
double sales = columns[1];
String zip = columns[2];
System.debugOut(id

+ ": Agent " + agent
+ " sold $" + sales
+ " in " + zip
+ ". " + closure);

}

Create the Query

Query.create("report853", "select agent_name, total_sales, zipcode
from /Concepts/Sales");

Open and Execute the Query Statement

String id = requestEvent@extId;
String stmt = "S" + id;
String clbk = "C" + id;
Query.Statement.open("report853", stmt);
Query.Statement.executeWithCallback(
stmt, clbk, "/MyRF", true, "@@@@");

Where requestEvent is an event, and "/MyRF" is the path to the rule function
shown at the beginning of the section. The true parameter indicates that this is a
continuous query.

TIBCO BusinessEvents Language Reference

66 | Chapter 7 Working With the Query Language

Sample Output

In the sample output below, each row of data (generated when a relevant change
occurs in the cache) is one batch, because the query does not involve ordering or
aggregation. The last line below indicates that the query has ended. For example,
someone closed the statement (not shown in the code sample).

C123: Agent Mary Smith sold $15063.28 in 94304. @@@@
C123: --------

Time passes…

C123: Agent Robert Ng sold $14983.05 in 94304. @@@@
C123: --------

Time passes…

C123: Agent Jose Ortiz sold $16244.78 in 94304. @@@@
C123: --------
C123: ========

Function Calls

This section shows the parameter values for each function call.

As a reminder: the first Boolean indicates whether the batch has ended or not; the
second Boolean indicates whether the execution has ended or not.

Mary Smith makes a sale.

MyRF(clbk, false, false, ["Mary Smith", 15063.28, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")

Time passes… Robert Ng makes a sale.

MyRF(clbk, false, false, ["Robert Ng", 14983.05, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")

Time passes… Jose Ortiz makes a sale.

MyRF(clbk, false, false, ["Jose Ortiz", 16244.78, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")
MyRF(clbk, true, true, null, "@@@@")

Example Showing Batching of Return Values
This example is the same as the example above, with the addition of an order by
clause in the query text, to show batching behavior. Only the output and function
calls differ.

 TIBCO BusinessEvents Language Reference

Simple Continuous Query Example | 67

Create the Query

Query.create("report853", "select agent_name, total_sales, zipcode
from /Concepts/Sales order by agent_name");

Sample Output

Mary Smith makes a sale.

C123: Agent Mary Smith sold $15063.28 in 94304. @@@@
C123: --------

Time passes… Robert Ng makes a sale.

C123: Agent Mary Smith sold $15063.28 in 94304. @@@@
C123: Agent Robert Ng sold $14983.05 in 94304. @@@@
C123: --------

Time passes… Jose Ortiz makes a sale.

C123: Agent Jose Ortiz sold $16244.78 in 94304. @@@@
C123: Agent Mary Smith sold $15063.28 in 94304. @@@@
C123: Agent Robert Ng sold $14983.05 in 94304. @@@@
C123: --------
C123: ========

Function Calls

This section shows the parameter values for each function call.

As a reminder: the first Boolean indicates whether the batch has ended or not; the
second Boolean indicates whether the execution has ended or not.

Mary Smith makes a sale.

MyRF(clbk, false, false, ["Mary Smith", 15063.28, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")

Time passes… Robert Ng makes a sale.

MyRF(clbk, false, false, ["Mary Smith", 15063.28, 94304], "@@@@")
MyRF(clbk, false, false, ["Robert Ng", 14983.05, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")

Time passes… Jose Ortiz makes a sale.

MyRF(clbk, false, false, ["Jose Ortiz", 16244.78, 94304], "@@@@")
MyRF(clbk, false, false, ["Mary Smith", 15063.28, 94304], "@@@@")

TIBCO BusinessEvents Language Reference

68 | Chapter 7 Working With the Query Language

MyRF(clbk, false, false, ["Robert Ng", 14983.05, 94304], "@@@@")
MyRF(clbk, true, false, null, "@@@@")
MyRF(clbk, true, true, null, "@@@@")

 TIBCO BusinessEvents Language Reference

Using Bind Variables in Query Text | 69

Using Bind Variables in Query Text

Query definitions can use literal values for entity attributes in query text, or they
can use bind variables whose values are provided at runtime.

In the Query.create() function, use a dollar sign ($) to indicate a bind variable
in the query text. (See $min in the example below.)

The values for all bind variables must be supplied to a statement when it
executes. Set the value of a bind variable, using the Query.Statement.setVar()
function, from the CEP Query Functions catalog, as shown next.

Query.Statement.setVar(String StatementName, String BindVariableName,
Object value);

When you use the Query.Statement.setVar() function, functions must be
called in the following order:

Query.Statement.open()
Query.Statement.setVar()
Query.Statement.execute() OR Query.Statement.executeWithCallback()

All three functions must reference the same query statement name.

The following example shows how a bind variable in a query definition is set as
the value of an event property by the Query.Statement.setVar() function. The
value could be defined as a literal value as desired, or in some other way,
depending on context and need.

Example
Query.create("report927", "select agent_name, total_sales, zipcode
from /Concepts/Sales where total_sales >= $min");
Query.Statement.open("report927", S_Id);
Query.Statement.setVar(S_Id, "min", evt.min_total_sales);
Query.Statement.execute(S_Id, "rset");

Where evt.min_total_sales is an event property of a numeric type.

Clearing Bind Variables

You can use Query.Statement.clearVars() to clear all bind variable values
associated with the named statement.

TIBCO BusinessEvents Language Reference

70 | Chapter 7 Working With the Query Language

 TIBCO BusinessEvents Language Reference

| 71

Chapter 8 Working With Continuous Queries

This chapter focuses on the features of continuous queries.

Topics

• Overview of Continuous Queries, page 72

• Working With Implicit Windows, page 74

• Working With Sliding, Tumbling, and Time Windows, page 76

• Explicit Window Example, page 77

• Sliding Window Examples, page 79

• Tumbling Window Examples, page 81

• Time Window Examples, page 82

• Optimizing the Design, page 83

TIBCO BusinessEvents Language Reference

72 | Chapter 8 Working With Continuous Queries

Overview of Continuous Queries

Continuous queries listen to and process the data stream of notifications sent
from the cache. Notifications are sent when entities are added to, modified or
deleted from the cache.

Unlike snapshot queries, continuous queries do not examine the cached entities
themselves. Entities that were created before a query starts are not visible to it—
unless they are modified while the query is running.

A continuous query returns results throughout its lifetime, as changes occur.
When nothing changes, the query waits.

Executing a Continuous Query
You use the Query.Statement.executeWithCallback() function with the
IsContinuous argument set to true to execute a continuous query statement. See
Using Data from a Callback Rule Function on page 62. and See Two Main Types of
Queries on page 38 for more information.

Ending a Continuous Query
A continuous query only ends when one of the following occurs:

• You explicitly stop it.

• Its query statement is closed.

• Its query definition is deleted.

• The query agent engine stops.

Understanding Query Windows
Continuous queries use windows to contain the entities that are added or
changed.A window is a boundary for analyzing data streams. It is a container in
which events and concepts are held and processed by the query. Entities enter and
leave the window as determined by the window type and how it is configured.

What makes a query run as a continuous query? A continuous query must be
executed using the Query.Statement.executeWithCallback() function.
Snapshot queries can also use this function. However, when you set the argument
IsContinuous to true, the query runs as a continuous query. See Overview of
Continuous Queries on page 72 for more details.

 TIBCO BusinessEvents Language Reference

Overview of Continuous Queries | 73

One query can contain multiple windows, and the contents of these windows can
be analyzed and compared.

Windows can be divided into two basic types, explicit and implicit.

Explicit windows (sliding, tumbling, and time windows) define the window
boundary, that is, a condition that limits the lifecycle of the entities in the window.

With implicit windows, the lifetime of the entities themselves control the lifecycle
of the entities in the implicit window. Implicit windows process changes,
additions, and deletions affecting the specified entities until the query ends.

Types of Windows

See Working With Sliding, Tumbling, and Time Windows on page 76 for content
that applies to all these types of explicit windows.

Implicit Window A group by clause in the select statement determines that the
query is a continuous query using an implicit window. See Working With Implicit
Windows on page 74.

Sliding Window Has a specified queue size, into which entities flow. When the
queue is full and a new entity arrives, the oldest entity in the queue is removed
from the window (FIFO). See Sliding Window Examples on page 79

Tumbling Window Has a specified queue size, specified as a certain number of
entities, and empties each time the maximum size is exceeded. Emptying the
window completes one cycle. The lifetime of an entity in the window, therefore, is
one cycle. See Tumbling Window Examples on page 81

Time Window Specifies a time period during which entities remain in the window.
See Time Window Examples on page 82.

Ensure that the lifetime of an entity in an explicit window is shorter than the
lifetime of the entity itself. Otherwise errors occur.

TIBCO BusinessEvents Language Reference

74 | Chapter 8 Working With Continuous Queries

Working With Implicit Windows

Implicit windows are created when the query does not have an explicit policy
(window) clause, and the query is executed as a continuous query (see Executing
a Continuous Query on page 72).

The lifecycle of an entity within an implicit window is affected by the life cycle of
that entity in the cache:

• When an entity in the scope of the query is added to the cache or is updated in
the cache, it is automatically added to the window.

• When an entity is deleted from the cache, it automatically exits the window.

Deletion of entities may cause an update of the query output, depending on the
query text.

Example

select count(*) from /EventA evt group by 1;

The example shows a group by 1 clause. This is a dummy group, required
because aggregate functions, count(*) in this case, require a group by clause.

Suppose that for the first 10 minutes after the query statement is executed, 100
events are created in quick succession. Every time the query receives a new event
notification, the count goes up progressively until it stabilizes at 100.

Suppose that thirty minutes later, 50 of those 100 events are consumed by a rule or
expire because of their time to live (TTL) settings. The events are deleted from the
cache. The query receives deletion notifications and the query output, count(*),
changes until it drops and stabilizes at 50.

Implicit Window Examples

select d.name, count(*), avg(s.age)
from /Department d, /Student s
where d.name = s.deptName
group by d.name;

The above query joins Department and Student entities using the department
name. It then keeps a count and an average of age of students per department.

 TIBCO BusinessEvents Language Reference

Working With Implicit Windows | 75

select s.deptName, count(*)
from /Student s
group by s.deptName
order by count(*);

The above query keeps count of the number of students per department. Every
time a student enrolls or leaves, the count changes and the query produces the
entire list sorted on the count.

TIBCO BusinessEvents Language Reference

76 | Chapter 8 Working With Continuous Queries

Working With Sliding, Tumbling, and Time Windows

The lifecycle of an entity in a window can be determined either by a specified
duration of the entity in the window, or by setting a maximum number of entities
that can be in the window at any time. The stream policy (also known as a window
policy) determines what kind of lifecycle and what kind of window to use: a time
window, sliding window, or tumbling window.

You can filter entities entering the query using a where in the stream policy. You
can also do aggregations within the window using a by clause. See Stream Policy
on page 51.

Use Sliding, Tumbling, or Time Windows for Events a nd not Concepts
Concepts are mutable and events are immutable after they are asserted. The
mutability of concepts makes them unsuitable for queries that use sliding,
tumbling, or time windows, as explained next.

Entities enter a sliding, tumbling, or time window when they are added to the
cache and they remain in the window according to criteria such as duration in the
window or number of items in the window. This characteristic enables you to
gather statistical information such as how many transactions were processed in
an hour.

Deleting an entity from the cache does not cause it to be removed from such a
window. (This behavior is different from the behavior of implicit windows.)

When a concept is modified, internal actions delete the old value from the cache
and add the new one. Sliding, tumbling, and time windows ignore the deletion,
but recognize the addition. Therefore the old and the new value both appear in
the window, leading to unexpected results.

Events are immutable (after assertion), so this issue does not arise in the case of
events.

If you know that in your environment concepts will not be modified, then you can
safely use concepts in sliding, tumbling, and time windows.

 TIBCO BusinessEvents Language Reference

Explicit Window Example | 77

Explicit Window Example

If you are familiar with SQL, you know that the order in which the clauses are
presented in a query string is not the order in which they are processed. For
example, here is a fairly complex example formatted to make each clause distinct:

select
tick.symbol, trade.counterpartyId, avg(tick.volume), count(*),

from
/Trade trade,
/StockTick

{policy: maintain last 5 sliding
where symbol = "TIBX" or symbol = "GOOG"
by symbol}

tick

where
trade.settlestatus = "FULLY_SETTLED"
and
trade.securityId = tick.symbol

group by
tick.symbol,
trade.counterpartyId

having
count(*) > 2;

In fact, the clauses are processed in the following order, as shown in Figure 1,
How a Query String is Processed, on page 78: from (including stream clause),
where, group by (including having), select.

Of special interest is how the where clause in the stream policy operates with the
main where clause; and how the stream policy can create multiple windows.

TIBCO BusinessEvents Language Reference

78 | Chapter 8 Working With Continuous Queries

Figure 1 How a Query String is Processed

Trade

(trade)

StockTick

(tick)

policy

symbol = "TIBX"

or

symbol = "GOOG"

where

trade.securityId

= tick.symbol

from

sliding

by symbol

where

trade.settlestatus

= "FULLY_SETTLED"

group by

tick.symbol,

trade.counterpartyId

TIBX
1 2 3 4 5

GOOG
1 2 3 4 5

Listener (callback rule function)

TIBX, CP1, 20, 500

select

tick.symbol,

trade.counterpartyId,

avg(tick.vol),

count(*),

having

count(*) > 2

TIBX, CP1 �	
���
������� avg(tick.vol) count(*)
TIBX, CP2 �	
���
������� avg(tick.vol) count(*)
TIBX, CP3 �	
���
������� avg(tick.vol) count(*)
GOOG, CP1 �	
���
������� avg(tick.vol) count(*)

GOOG, CP2 �	
���
������� avg(tick.vol) count(*)
GOOG, CP3 �	
���
������� avg(tick.vol) count(*)

 TIBCO BusinessEvents Language Reference

Sliding Window Examples | 79

Sliding Window Examples

A sliding window policy maintains a queue of a specified size, into which entities
flow. When the queue is full and a new entity arrives, the oldest entity in the
queue is removed from the window (FIFO).

select car from /CarEvent {policy: maintain last 5 sliding} car;

The above query has a sliding window over Car events. It retains the last 5 car
events that have passed through the query. Every time a new event arrives, the
query produces output that matches the latest event that arrived.

select car from /CarEvent {policy: maintain last 5 sliding; emit: dead} car;

The above query is similar to the previous one except for the emit clause. The
query maintains a sliding window over the last 5 events. However, instead of
echoing the event that just arrived, it emits the oldest event in the window that
got displaced when the new event arrived. The query starts producing output
only after the window has filled up and reached its full size.

select count(*) from /CarEvent {policy: maintain last 25 sliding} car group by 1;

The above query maintains a count of the number of events in the sliding
window. Every time an event arrives or drops out of the window (or both), the
query produces output. Note that when the query starts and events start arriving,
the count progresses towards the maximum window size (25). Once it reaches 25,
the number stops changing, because the window will always have a count of 25
from then on.

select stock.symbol, avg(stock.price), count(*)
from /StockTick {policy: maintain last 30 sliding

where symbol = "ABCD" or symbol = "WXYZ"
by symbol} stock

group by stock.symbol;

The query above performs a rolling average and a count over a sliding window of
size 30. The window has a pre-filter clause that only consumes StockTick events
whose symbols match "ABCD" or "WXYZ." All other symbol types are dropped
and prevented from entering the window. Also, the by clause indicates that a

TIBCO BusinessEvents Language Reference

80 | Chapter 8 Working With Continuous Queries

sliding window must be maintained per symbol. The group by clause matches
the by clause because both of them specify grouping on symbol. As as result, the
query correctly maintains a rolling average and count over the last 30 events, per
symbol.

select stock.symbol, avg(stock.price), count(*)
from /StockTick {policy: maintain last 30 sliding

where symbol = "ABCD" or symbol = "WXYZ"
by price} stock

group by stock.symbol;

The by and group by clauses in the above query are used differently here from
the way they are used in the prior example. This query maintains a sliding
window of size 30 based on price. However, the group by clause is on the
symbol. So, the windowing based on price is of little use here.

 TIBCO BusinessEvents Language Reference

Tumbling Window Examples | 81

Tumbling Window Examples

A tumbling window a specified queue size, specified as a certain number of
entities, and empties each time the maximum size is exceeded. Emptying the
window completes one cycle. The lifetime of an entity in the window, therefore, is
one cycle.

select count(*) from /BurgerSoldEvent {policy: maintain latest 500} burger group by
1;

The above query maintains a count over a tumbling window of events. Every
time events arrive, the query picks up a maximum of 500 events, passes them
through the query processing stages, in this case a counter, and produces the
count as the result. Because this is a tumbling window, all those 500 or less events
expire immediately and so the query runs once again and flushes all the events
from the window. Now, the count drops to 0 and the query produces "0" as the
count.

select count(*) from /BurgerSoldEvent {policy: maintain last 500 tumbling; emit:
new} burger group by 1;

The query above is not very useful because it forgets how many events have been
processed every time the window "tumbles."

One way to solve this problem is to store all the events in a very large window,
forever—but this is impractical. Another way is to define a tumbling window,
which retains events for just one cycle and then keep a counter that remains
pinned even if the window appears to disappear after it empties itself.

emit: new

clause
To create such a counter, use the emit: new clause. This clause indicates to the
query that it should only record events entering the window and not those exiting
it. So, in this case the count keeps increasing as new events arrive and it never
decreases.

TIBCO BusinessEvents Language Reference

82 | Chapter 8 Working With Continuous Queries

Time Window Examples

Time windows use a stream policy that specifies how long an entity remains in
the window. See Stream Policy on page 51.

The expiry time is calculated from a start time. You can use the event or concept's
timestamp property to define the start time. Otherwise, the time the event or
concept entered the window is used as the default start time.

select coldpizza from /PizzaOrderEvent {policy: maintain last 45 minutes; emit:
dead} coldpizza;

The above query holds PizzaOrderEvents for 45 minutes in a time window. The
window uses the default timestamp that is associated with the event when it
enters the query.

emit: dead

clause
Without an emit: dead clause, the query would produce the event as its output
as soon as it arrives. But because of the emit: dead clause, it is delayed for the
amount of time specified in the window.

select count(*) from /NetworkPing {policy: maintain last 2 minutes} dosattack group
by 1 having count(*) > 120;

The above query maintains the count on a 2 minute time window over network
ping events. Whenever the number of pings in the last two minutes goes above
120, it produces output that can be treated as an attack.

 TIBCO BusinessEvents Language Reference

Optimizing the Design | 83

Optimizing the Design

It is important to be aware of the following points when working with queries.

Reuse Existing Queries and Statements Whenever Poss ible
Creating a new query is an "expensive" operation. If possible, create the queries
ahead of time (in a startup function), then keep reusing those existing query
definitions in new statements. (See Lifecycle of a Query—Use of Query Functions
on page 56 for more details)

For example, you could create a query in a startup function. That query may use
bind variables, for more flexibility (see Using Bind Variables in Query Text on
page 69. Then, in a preprocessor rule function, you could create a new statement
using that query, set values in the statement for all the bind variables of the query
using the data in the event, and execute the statement. As a result, the query
would be customized and executed for each event reaching the preprocessor.

Depending on your situation, it might be possible to create a single statement, and
keep reusing that same statement, executing it multiple times.

Improve Performance by Pre-fetching Objects
When a query executes, objects are fetched from the cache as needed for query
processing. Objects are placed in the local query cache for use by the query. You
can improve performance by pre-fetching the objects. See the section Configuring
Query Agents—Engine Properties for Performance in TIBCO BusinessEvents
User’s Guide for details.

Use Filtering for Efficient Joins
When performing a join between two or more entities in a query, the most
selective operators (filter on entity attributes) must appear before the actual join
expression. This makes the join more efficient.

The function that creates a new query requires that you provide a globally unique
name. You can later refer to that query using its name. The function that opens a
new statement requires you to provide an existing query name, and a new
globally unique statement name. You can later refer to that statement using its
name.

TIBCO BusinessEvents Language Reference

84 | Chapter 8 Working With Continuous Queries

Joins that test for equality (equivalent joins), that is, joins between two entities
that use the equals operator (=), perform better than joins that test for inequality
(non-equivalent joins), that is, joins using operators such as greater than, less
than, and so on (>, <, >=, <=).

Example

In the example below, the two entities Trade and StockTick are joined by
matching their respective securityId and symbol. But the query also places the
restriction that only TIBX trades and stock ticks are of interest, and only if the
trade's settlement status is FULLY_SETTLED. These filters appear before the actual
join expression, which is more efficient than if they were placed after the join
(t.securityId = tick.symbol).

select tick.symbol,
sum(tick.price) * 1000 / count(*),
avg(tick.volume),
count(*),
t.counterpartyId

from /Trade t, /StockTick {policy: maintain last 1 sliding where symbol = "TIBX"}
tick
where t.securityId = "TIBX"

and t.settlestatus = "FULLY_SETTLED"
and t.securityId = tick.symbol

group by tick.symbol, t.counterpartyId
having count(*) > 2;

Effect of the Cache on Continuous Queries
Queries are run against the object cache, not against the contents of working
memory. Ensure that the objects you want to query are in the cache when the
query is run, and are not, for example, removed from the cache before the query
executes.

For example, while a continuous query is running, multiple batches of results
may be received. At the time it is first received, a batch of continuous query
results contains items that are in the cache. If you wait for another batch, some (or
all) of the objects in the old results may have been evicted from the cache.

Effect of Time on Queries
While running continuous queries, errors can occur if entity creation and deletion
happen in rapid succession.

 TIBCO BusinessEvents Language Reference

Optimizing the Design | 85

Example Consider a continuous query that is monitoring entities of type /OrderEvents.
Suppose that OrderEvents entities are created, asserted, and consumed, at a fast
rate. When an OrderEvent entity is asserted, it is also added to the cache. When it
is consumed, an OrderEvent entity is deleted from the cache. The continuous
query receives the creation notification and the deletion notification one after the
other.

If there is a long enough delay between the creation and deletion actions and the
moment a query agent attempts to process the related notifications, the agent will
try to retrieve OrderEvent entities that have already been removed from the
cache, resulting in runtime errors.

This situation may occur when, for example, a very quick succession of
notifications is sent, or the network traffic suffers delays, and so on.

Query Agent
Local Cache

The query agent retains the most recently processed entities in a local cache to
avoid frequent network lookups. But in the example above, the OrderEvent is
deleted from the cache even before the create-notification is processed by the
query, so the Orderevent can’t be copied into the query agent's private cache.

Keep such situations in mind as you design your queries.

TIBCO BusinessEvents Language Reference

86 | Chapter 8 Working With Continuous Queries

 TIBCO BusinessEvents Language Reference

| 87

Chapter 9 Query Language Reference

The syntax diagrams in this section show the structure of a query and of each
clause in a query. Operators and other items used in the syntax diagrams (except
standard SQL terms) are also defined in this chapter.

Topics

• Miscellaneous Terms Used in Query Syntax Diagrams, page 88

• Query Syntax, page 89

• Expression Syntax, page 91

• Operators for Unary Expressions, page 98

• Operators for Binary Expressions, page 99

• Operators for Other Expressions, page 101

• Wildcards, Datatypes, and Literals, page 102

• Reserved Words, page 104

TIBCO BusinessEvents Language Reference

88 | Chapter 9 Query Language Reference

Miscellaneous Terms Used in Query Syntax Diagrams

The following table defines terms used in syntax diagrams shown in Chapter 9,
Query Language Reference, on page 87, and that don’t fall into categories
documented in other tables, such as operators,

Reading Query Language Syntax Diagrams
The syntax diagrams in this section show the structure of a query and of each
clause in a query. Read them from left to right. Items above or below the main line
are optional. Items that can repeat are shown by lines that loop back from the end
to the beginning of the repeating section, along with the separator character.

Table 8 Miscellaneous Terms Used in Query Syntax Diagrams

alias Each alias must be globally unique in the whole query (this includes aliases
defined in the projection—that is, aliases used in the select clause and in the from
clause.

entity Use the fully qualified ontology name of an entity, with its project path.

From /concepts/customer data

Remember that names are case sensitive

time unit Allowable time units are as follows:

milliseconds, seconds, minutes, hours, days

 TIBCO BusinessEvents Language Reference

Query Syntax | 89

Query Syntax

The top level syntax for a query is as follows:

Select Clause

From Clause

Where Clause

Group by Clause

������
������

�	
�
������

�
�	��������
�	
�����
������

	��	���
������ ;

select

����� distinct �����

���	����
�

as

,

*

��	���������� �����

������������
���
from

as

,

where
�

�����
���	����
�

group by ���	����
�

having
�

�����
���	����
�

,

TIBCO BusinessEvents Language Reference

90 | Chapter 9 Query Language Reference

Order By Clause

Limit

Stream Clause

Stream Policy

order by ���	����
�

�����

,

asc

desc

{ limit : first

offset

}�
�������	��

�
�������	��

{

; policy : ��	�����
����

new

dead

emit : }

���������

maintain last �
�������	��

sliding

tumbling
by

where

,

���	����
�

���	����
�

 TIBCO BusinessEvents Language Reference

Expression Syntax | 91

Expression Syntax

Expression

Boolean Expression

Between Expression

�����	�
���	����
�

���������
���	����
�

�

�����
���	����
�

��	�������	����
�

����������	����
�

�
���	��
��
���	����
�

������	����
�

��������
���	����
�

���������	��������������	����
�
���������	��
���

�
���������	����
�

���������
���	����
�

���������
���	����
� between and

���������
���	����
�

�����	�
���	����
�

�����	�
���	����
� between and

�����	�
���	����
�

TIBCO BusinessEvents Language Reference

92 | Chapter 9 Query Language Reference

Comparison Expression

In Expression

Logical Expression

���	����
����	����
�

���������
���	����
�

���������
���	����
�

�����	�
���	����
�

�����	�
���	����
�

=

!=

<>

>

<

>=

<=

>

<

>=

<=

���	����
� in ()���	����
�

,

�

�����
���	����
� orand

�

�����
���	����
�

not
�

�����
���	����
�

or
�

�����
���	����
�

�

�����
���	����
�

 TIBCO BusinessEvents Language Reference

Expression Syntax | 93

DateTime Expression

Entity Expression

Number Expression

�������������	��

���������
���	����
�

���������	��������������	����
�
�����������������
�

)

min(

max(

���������	��������������	����
�
���������������
�

�������	����
�

�
������	����
�

�
��������	����
�

TIBCO BusinessEvents Language Reference

94 | Chapter 9 Query Language Reference

Int Expression

abs

��������	��

)(�������	����
�

�������	����
�

min(

max(

�������	����
�

count(���	����
�

���������	��������������	����
�
������������

)

)

*

+

-

�������	����
���������	����
�

*

 TIBCO BusinessEvents Language Reference

Expression Syntax | 95

Long Expression

�
������	����
�

�
�������	��

+

-

�
������	����
�

abs

�
������	����
�

*

���������	��������������	����
�
���������
���

�������	����
�

�
�������	����
�

min(

max(

)

TIBCO BusinessEvents Language Reference

96 | Chapter 9 Query Language Reference

Double Expression

String Expression

�
��������	����
�

�
���������	��

�
��������	����
�

abs

�
��������	����
�

�
������	����
�

�
���������	����
�

���������	��������������	����
�
������������	
�

+

-

*

/

min(

max(

sum(

avg(

)

)(�
��������	����
�

��	�������	����
� ��	�������	����
�||

��	��������	��

���������	��������������	����
�
���������������
�

 TIBCO BusinessEvents Language Reference

Expression Syntax | 97

Identifier-Dependent Expression

���������	
������������
 []�������	����
�

���������	

���������	�
��������������
 (

.

@

���������	
���������������

���������	
������������	���

,

)

���	����
�

����������	����
�

TIBCO BusinessEvents Language Reference

98 | Chapter 9 Query Language Reference

Operators for Unary Expressions

Table 9 Operators for Unary Expressions in Queries

Operator Description and Examples Datatypes Result type

not Negation

not x

x must be a Boolean Boolean

abs absolute value

abs x

x must be a number The type of the
operand

+ unary plus

+ x

x must be a number The type of the
operand

- unary minus

-x

x must be a number The type of the
operand

() Group (that is, parentheses)

(a+b)

Any The type of the
operand

 TIBCO BusinessEvents Language Reference

Operators for Binary Expressions | 99

Operators for Binary Expressions

Table 10 Operators for Binary Expressions in Queries (Sheet 1 of 2)

Operator Description and Examples Datatypes Result type

 Relational Expression Operators

= equality

x = y

x and y can be any
type

Boolean

!=

<>

 inequality

x != y

x <> y

x and y can be any
type.

Boolean

>

<

>=

<=

Greater than

Less than

Greater than or equal to

Less than or equal to

x > y (and so on)

Generically known as
comparison operators

x and y must both
be number types, or
both be Datetime
types.

Boolean

 Logical Operators

and
or

Logical (Boolean) and, or.

x and y

x or y

x and y must be
Boolean

Boolean

 Mathematical Operators

Also used in the projection (select clause)

* Multiplication

x * y

x and y must both
be numbers.

Either the type of x or y,
whichever has the
larger capacity.

\ Division

x \ y

x and y must both
be numbers.

double

TIBCO BusinessEvents Language Reference

100 | Chapter 9 Query Language Reference

mod Remainder

x mod y

x and y must both
be numbers.

Either the type of x or y,
whichever has the
larger capacity.

+ Addition

x + y

x and y must both
be numbers.

Either the type of x or y,
whichever has the
larger capacity.

- Subtraction

x - y

x and y must both
be numbers.

Either the type of x or y,
whichever has the
larger capacity.

 Postfix Operators

[] Array dereferencing, to access
an array element.

x[y]

x must be an array
and y must be an
int.

Type of the array
element.

. For object graph traversal, to
access a property

x.y

x must be an entity
and y must be a
property.

Type of y.

@ For object graph traversal, to
access an attribute

customer@extId

x must be an entity
and y must be a
attribute.

Type of y.

 String Operator

|| String concatenation

x || y

x and y must be
String

String

Table 10 Operators for Binary Expressions in Queries (Sheet 2 of 2)

Operator Description and Examples Datatypes Result type

 TIBCO BusinessEvents Language Reference

Operators for Other Expressions | 101

Operators for Other Expressions

Table 11 Operators for Other Expressions in Queries

Operator Description and Examples Datatypes Result type

between and Between operator for range
expressions. Range is
inclusive.

x between y and z

x and y must all be
number types, or
all be Datetime
types.

Boolean

in() Inclusion operator. Checks if
an expression is in a group of
items.

x in (y1, y2, ..., yn)

Any Boolean

$ Bind variable prefix.

$name

name has no type. It
is just a label.

The type of $name is
determined by its
surrounding
expression. For
example, in the
expression:

($minimum + 14.58)

$minimum is a bind
variable of type double.

TIBCO BusinessEvents Language Reference

102 | Chapter 9 Query Language Reference

Wildcards, Datatypes, and Literals

Wildcard Characters
• The asterisk (*) is a wild card character, meaning "all"

• The single quote (’) is a single character wildcard

Datatypes
All types supported by BusinessEvents.

Literals
Literal values can be of any of the data types described below, plus the following:

• hex

• octal

• char

Types and Literals

Table 12 Query Language Types and Literals

Type Syntax of Literals Example

int A signed integer expressed using only digits and an
optional sign prefix. It has a minimum value of
-2,147,483,648 and a maximum value of 2,147,483,647
(inclusive).

1234567

long A signed integer expressed using only digits and an
optional sign prefix. It has a minimum value of
-9,223,372,036,854,775,808 and a maximum value of
9,223,372,036,854,775,807 (inclusive).

digits

1234567

double A double-precision 64-bit IEEE 754 floating point. 12345.67

1.234e+56

 TIBCO BusinessEvents Language Reference

Wildcards, Datatypes, and Literals | 103

Identifier
First character must be alphabetical (upper or lower case) or the underscore
character. Other characters can be alphabetical or numeric or the underscore
character.

String String literals are surrounded by double quotes.

To escape double quote and backslash characters,
prefix them with a backslash.

"hello"

"She says:
\"Hello.\""

"c:\\temp\\myfile"

boolean The boolean data type has only two possible values:
true and false. Use for simple flags that track true and
false conditions.

true

false

DateTime yyyy-MM-dd'T'HH:mm:ss.SSSZ

where

yyyy: four digit year

MM: two digit month

dd: two digit day of month

HH: two digit hour of day in 24 hour format

mm: two digit minutes in hour

ss: two digit seconds in minute

SSS: three digit milliseconds in second

’T’: the letter T

Z: timezone expressed as defined in RFC 822.

2008-04-23T13:30:25.
123-0700

Entity type "entity-project-path"

Entity project path begins with a forward slash and
folders are separated with a forward slash.

"/a/b/MyConcept"

Entity No literal is used for entity instances. (Not applicable)

Table 12 Query Language Types and Literals

Type Syntax of Literals Example

TIBCO BusinessEvents Language Reference

104 | Chapter 9 Query Language Reference

Reserved Words

The following key words are used by the object query language.

Escaping the Keywords
You cannot use key words as identifiers, resource names, or folder names without
prefixing them with the # escape character.

Examples:

select id from /#Order o
select /#DateTime/format(birthDate, "yyyy-MM-dd") from /Person
select e.sender as #from from /Email e

abs and as asc

avg between by concept

count days dead desc

distinct emit entity event

false first from group

having hours in last

latest like maintain max

milliseconds min minutes mod

new not null object

or order policy seconds

select sum true using

where

 TIBCO BusinessEvents Language Reference

| 105

Index

Symbols

(pound sign) used to escape keywords 104

@closure 9

@extId 9

@id 9

@interval 9, 9

@isSet 10

@length 10

@parent 10

@payload 9

@scheduledTime 9, 9

@ttl 9, 9, 9

A

actions 8

AdvisoryEvent event type 14

array indexes, start from zero or one 12

arrays

accessing and appending values 12

indexes start from zero or one 12

primitive 4

attributes 9

B

batching of return values 66

BE_HOME xi

between expression 91

binary expressions, operators for 99

bind variables 55

in query text 69

boolean expression 91

C

callback rule functions 59

required signature 62

using data from 62

closing a statement 60

comparison expression 92

concept properties, accessing 11

concepts, when not to use in explicit windows 76

conditions 8

continuous queries

executing 72

overview 72

simple example 65

create the query definition 56

custom functions

name overloading not supported 30

return types supported 30

static modifiers 30

tool tips 33

customer support xiv

D

datatypes 102

datetime expression 93

declaration 8

deleting a query definition 60

double expression 96

E

effect of the cache on continuous queries 84

effect of time on queries 84

TIBCO BusinessEvents Language Reference

106 | Index

emit

dead 50, 82

new 50, 81

ending a continuous query 72

entity expression 93

escape sequences 7

escaping the keywords 104

event properties, accessing 13

execute an instance of the query statement and obtain

results 58

executing a continuous query 72

explicit windows, example 77

expression 91

syntax 91

F

filtering for efficient joins 83

from clause 45

functions

that can’t be used in queries 54

used to create and execute queries 39

within queries 54

G

group by clause 47

I

identifier 103

identifier-dependent expression 97

implicit windows 74

examples 74

improve performance by pre-fetching objects 83

in expression 92

inference agents 41

int expression 94

L

lifecycle of a query 56

limit 49, 90

limitation in use of arrays 55

literals 102, 102

local variables 4

logical expression 92

long expression 95

N

number expression 93

O

open a query statement 57

operators

for binary expressions 99

for other expressions 101

for unary expressions 98

optimizing the design 83

order by clause 48, 90

P

pre-filter 41

primitive arrays 4

property arrays, index from zero or one 12

property values, accessing 11, 11

Q

queries are executed in query agents 38

queries retrieve information from cache 38

query agents 41

local cache 85

 TIBCO BusinessEvents Language Reference

Index | 107

query as a pre-filter 41

query features overview 38

query function catalog 54

query statement, open 57

query string, how processed 78

query syntax 89

terms used in diagrams 88

query windows 72

querying the cache and using query results 54

R

reserved words 104

result set 58

using data from 61

rules

triggering queries from 41

S

select clause 44, 89

select statement, structure of 39

set bind variables (if used) 57

sliding windows 76

examples 79

snapshot queries, example 64

stream clause 50, 90

stream policy 51, 90

string expression 96

structure of a query select statement 39

support, contacting xiv

syntax diagrams 88

T

technical support xiv

TIBCO_HOME xi

time windows 76

examples 82

tool tips 33

triggering a query from a rule 41

tumbling windows 76

examples 81

types and literals 102

types of windows 73

U

unary expressions, operators for 98

use of query functions 56

V

variables, local 4

W

where clause 46, 89

wildcard characters 102

wildcards, datatypes, and literals 102

windows, types of 73

	Preface
	Enterprise Suite and Inference Edition Features
	Related Documentation
	TIBCO BusinessEvents Documentation
	Other TIBCO Product Documentation

	Typographical Conventions
	How to Contact TIBCO Support

	Chapter 1 Rule Language Grammar
	Rule Language Basics
	Whitespace
	Comments
	Separators
	Identifiers (Names)
	Local Variables
	Keywords and other Reserved Words
	Literals
	Escape Sequences
	Operators
	Rule Components

	Attributes
	Accessing Concept and Event Properties
	Concept Property Atom
	Concept Property Array
	Event Property

	Exception Handling
	Syntax
	Examples

	Flow Control
	if/else
	for
	while

	Chapter 2 Working With Rule Language Datatypes
	Concept Properties to XML Datatype Conversions
	Compatibility of Operators with Types
	Correcting Inconsistencies of Type
	String Operands
	Arithmetic Expressions
	Assignment Conversion
	Function Argument Conversion

	Chapter 3 Rule Language Syntax
	Rule Language Syntax

	Chapter 4 Creating Custom Functions
	Overview of Creating Custom Functions
	Restrictions
	Task Summary

	Structure of a Function Catalog
	Elements
	Example Function Catalog

	Java Archive Resource

	Chapter 5 Query Features Overview
	Query Features Overview
	Queries are Executed in Query Agents
	Queries Retrieve Information from Cache
	Two Main Types of Queries
	Structure of a Query Select Statement
	Summary of Functions Used to Create and Execute Queries
	For More Information

	Two Common Ways to Use Queries
	Triggering a Query from a Rule (in an Inference Agent)
	Using a Query as a Pre-filter

	Chapter 6 Query Language Components
	Select Clause
	From Clause
	Where Clause
	Group by Clause
	Order by Clause
	Limit Clause
	Stream Clause
	Stream Policy

	Chapter 7 Working With the Query Language
	Querying the Cache and Using Query Results
	Query Function Catalog
	Using Functions Within Queries
	Using Bind Variables
	Limitation in Use of Arrays

	Lifecycle of a Query-Use of Query Functions
	Create the Query Definition
	Open a Query Statement
	Set Bind Variables (if Used)
	Execute an Instance of the Query Statement and Obtain Results
	Closing a Statement and Deleting a Query Definition

	Using Data from a Result Set
	Using Data from a Callback Rule Function
	The Callback Rule Function Required Signature

	Simple Snapshot Query Example
	Simple Continuous Query Example
	Example Showing Batching of Return Values

	Using Bind Variables in Query Text

	Chapter 8 Working With Continuous Queries
	Overview of Continuous Queries
	Executing a Continuous Query
	Ending a Continuous Query
	Understanding Query Windows

	Working With Implicit Windows
	Implicit Window Examples

	Working With Sliding, Tumbling, and Time Windows
	Use Sliding, Tumbling, or Time Windows for Events and not Concepts

	Explicit Window Example
	Sliding Window Examples
	Tumbling Window Examples
	Time Window Examples
	Optimizing the Design
	Reuse Existing Queries and Statements Whenever Possible
	Improve Performance by Pre-fetching Objects
	Use Filtering for Efficient Joins
	Effect of the Cache on Continuous Queries
	Effect of Time on Queries

	Chapter 9 Query Language Reference
	Miscellaneous Terms Used in Query Syntax Diagrams
	Reading Query Language Syntax Diagrams

	Query Syntax
	Select Clause
	From Clause
	Where Clause
	Group by Clause
	Order By Clause
	Limit
	Stream Clause
	Stream Policy

	Expression Syntax
	Expression
	Boolean Expression
	DateTime Expression
	Entity Expression
	Number Expression
	String Expression
	Identifier-Dependent Expression

	Operators for Unary Expressions
	Operators for Binary Expressions
	Operators for Other Expressions
	Wildcards, Datatypes, and Literals
	Wildcard Characters
	Datatypes
	Literals
	Types and Literals
	Identifier

	Reserved Words
	Escaping the Keywords

