TIBCO BusinessEvents™

Architect’'s Guide

Software Release 4.0
May 2010

The Power to Predict " ')} T BCO®

The Power of Now?®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN LICENSE.PDF) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.

TIB, TIBCO, TIBCO Software, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now, The
Power to Predict, TIBCO BusinessEvents, TIBCO ActiveSpaces, TIBCO ActiveMatrix BusinessWorks, TIBCO
Rendezvous, TIBCO Enterprise Message Service, TIBCO PortalBuilder, TIBCO Administrator, TIBCO Runtime
Agent, TIBCO General Interface, and TIBCO Hawk are either registered trademarks or trademarks of TIBCO
Software Inc. in the United States and/or other countries.

EJB, Java EE, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Excerpts from Oracle Coherence documentation are included with permission from Oracle and/or its affiliates.
Copyright © 2000, 2006 Oracle and/or its affiliates. All rights reserved.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README.TXT FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A
SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This product is covered by U.S. Patent No. 7,472,101.
Copyright © 2004-2010 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

Contents
T T == vii
LIS L 1= iX
Preface e Xi
Related Documentation e Xii
TIBCO BusinessEvents Documentation. e Xii
TIBCO BusinessEvents Event Stream Processing. xiii
TIBCO BusinessEvents Decision Manager e xiii
TIBCO BusinessEvents Data Modeling xiii
TIBCO BusinessEvents Views e Xiv
Other TIBCO Product Documentation e Xiv
Typographical Conventions XV
How to Contact TIBCO SUPPOIt.o e e e e xviii
Chapter 1 OVerVieWttt et et e et et aaa e aaaaeeeennnn 1
What's Different About Complex Event Processing. e 2
Technical Requirements of a CEP System. e e 3
A Model-Driven Approach.o 3
Stateful Rule ENgineo 5
Object Management OptioNS i 5
Main Product COmMPONENTS 6
Design-time Components e 6
Administration Components 7
Designtime Resource OVEIVIEW.t e e e e 9
Channels and EVENts 9
(7] 0 o7=T o) = 10
SCOrE Cardsot 10
RUIES . o 11
Object Management and Fault Tolerance. it e e e 11
State Modeler 12
Database CoNCEPtSot 12
QuUEry Language.o 12
Pattern Languageo 13

TIBCO BusinessEvents Architect’'s Guide

iv | Contents

Chapter2 Channelsand Eventsttt iiiiae e eennnnnnes 15
Channels and Events OVErVIEW 16
EVENt PreprOCESSOrS. . . . 17
Preprocessor Use GUIdEliNeS e e 17
Types of Channels 19
Default Destinations and Default Events. 20
Message Acknowledgment 21
TyPEs Of EVENtS.o 22
SIMple EVENtS 22
TIMeE EVeNIS . . o o 23
AdVISOry EVENtS e 23
Simple Events — Time to Live and Expiry ACtions 24
Event Expiration and Expiry ACtions 25
Chapter 3 CoNCePtSottt ettt et ae ettt 27
Overview Of CONCEPES oot 28
Concept Property History 30
History Size . . . o 30
HIiStory PoOliCyo 32
Concept Relationships o 34
Inheritance Relationships. 34
Containment Relationships 35
Reference Relationships 36
Rules Governing Containment and Reference Relationships 37
When a Contained or Referred Concept InstanceisDeleted 39
Chapter4 Rulesand Functions. i e et aaans 41
RUIES . . .o 42
Inferencing RUIES 42
Rule Priority and Rank. 42
Organizing and Deploying Inferencing Rules. 43
Rule FUNCHONS . . . 44
Virtual Rule Functions and Decision Tables. 44
Startup and Shutdown Rule FUNCHIONSo 45
When Startup Rule Functions Execute 45
Creating Entities With a Startup Action in a Multi-Engine Project 46
ActiveMatrix BusinessWorks Containers 46
Chapter 5 Run-time Inferencing Behavior it 47
Runtime Architecture and FIOwW. 48

TIBCO BusinessEvents Architect’'s Guide

Contents | v

Rule Evaluation and Execution. e 49
Understanding Conflict Resolution and Run to Completion Cycles. 51
How the Rete Network is Built 53
Testing the Truth of a Rule’s Conditions Using the Dependency Set. 53
How a Rule Becomes NeWly True e e e e e e e 54
Order of Evaluation of Rule Conditions e 54
Chapter 6 Object Management Options. ittt et innnanneenns 57
Object Management (OM) OVEIVIEW oottt e e e e e e e et e 58
The Cache Object Manager e e e e 58
The In Memory Object Manager. 59
The Berkeley DB (Persistence) Object Managerot e 60
Summary of Object Management Features 60
Migrating to a Different Object Management Method. 61
Berkeley DB Object Managerot 62
Fault Tolerance With Berkeley DB Manager. e 63
Object Management and Fault Tolerance Scenarios.ttt e 64
Cache OM with Memory Only Mode on All Objects and Fault Tolerance Scenarios 64
Berkeley DB Object Management and Fault Tolerance Scenarios. 65
Cache Object Management and Fault Tolerance Scenarios, 66
Chapter 7 Distributed Cache OM it i e e ettt naanneeens 69
Cache Object Management Feature OVerview i e 70
Distributed Cache CharacteristiCs i e e 70
Scaling the System. 70
Reliability of Cache Object Management e 71
Concurrency — Multi-Agent and Concurrent Rete Features 71
Where Object Management is Configured i e 72
Characteristics of Distributed Caching Schemes. 73
Failover and Failback of Distributed Cache Data i, 74
Limited and Unlimited Cache Size 74
Distributed Cache and Multi-Agent Architecture and Terms e 76
Cache ClUSIEISo 77
Cache Cluster Processing Units (NOES) oottt e e e 77
InferenCe AgENtS.o 77
Cache Agents (Storage NOdES)ttt 78
QUEIY AGENES . . ottt 78
Dashboard Agents o e 79
Cache ClUSIEr DISCOVEIYot e e e e e e e e e e 80
Cluster Member Discovery Using Multicast Discovery. i 80
Cluster Member Discovery Using Well-Known-Addresses. 81
Discovery When Host Machines Have Multiple Network Cards 81

TIBCO BusinessEvents Architect’'s Guide

vi | Contents

Load Balancing and Fault Tolerance of Inference Agents. 82
Load Balancing of Inference Agents in @ Group 82
Fault Tolerance Between Inference Agentsina Group e 82

Cache OM with @a Backing Store e e e 84
Backing Store Write Options — Cache-aside and Write-behind 84

Cache Manager Options at the Entity Level 86
Between Cache and Backing Store: Preloading Options and Limited Cache Size 86
Between Rete Network and Cache: Cache Modes i e 87

Chapter 8 Cache Modes and Project Design.oiiiiiiniii ity 89

Working With Cache Modes e e 90
Cache Plus Memory — For Constants and Less Changeable Objects. 91
In Memory Only — Useful for Stateless Entities 91
Cache Only Mode o 92

Loading Cache-Only Objects into the Rete Network. e 93
Cache Load FUNCHIONS.o e e e e e 93
Loaded Objects are Not New and Don’t Trigger Rulesto Fire. 94

Chapter 9 Concurrency and ProjectDesignciiiiiiiiiinnneeerrnnnnnnns 95

Designing for CONCUITENCY ottt et e 96

Multi-Agent Features and Constraints. 97
Concepts are Shared Across Agents ASynchronously i 97
Scorecards are Local to the Agent. 97
Events are Owned by the Agent that Receives Them 98
Multi-Agent Example Showing Event Handling 99

Using Locks to Ensure Data Integrity Within and Across Agents i 101
Understanding Locking in BusinessEvents e 101
When to Use LoCKING. oo 102
Lock Processing Example FIow. e 102
Locking FUNCHIONS o e e 104
Tips 0N UsSiNg LOCKS. . . . o 105
Avoiding Deadlock when Multiple Keys Protect One Object 106
Diagnosing and Resolving Lock Failures. e 106

Chapter 10 Deploying, Monitoring and Managing.ciiiriiiiennn... 109

Deploy-time Configuration and Deployment e 110
Cluster Deployment Descriptor (CDD).o e e 110
Deployment Methods. e 111
Hot Deployment e 111
Monitoring and Management. e 111

3T 1= 113

TIBCO BusinessEvents Architect’'s Guide

Figures | vii

Figures

Figure 1 Channels and Destinations e 20
Figure 2 History Ring Buffer. 31
Figure 3 History PoliCyo 32
Figure 4 TIBCO BusinessEvents Architecture e 49
Figure 5 Runto Completion CyCleo 51
Figure 6 Cache Object Management and Fault Tolerance Architecture 76

TIBCO BusinessEvents Architect’'s Guide

viii | Figures

TIBCO BusinessEvents Architect’'s Guide

Tables | ix

Tables

Table 1 General Typographical Conventions XV
Table 2 Syntax Typographical Conventions e XVi
Table 3 Containment and Reference Concept RelationshipRules. 38
Table 4 Cache OM with Memory Only Mode on All Objects and Fault Tolerance Scenarios. 64
Table 5 Persistence and Fault Tolerance Scenarios. 65
Table 6 Cache and Fault Tolerance SCenarios. e 66

TIBCO BusinessEvents Architect’'s Guide

x | Tables

TIBCO BusinessEvents Architect’'s Guide

Topics

Preface

TIBCO BusinessEvents' allows you to abstract and correlate meaningful
business information from the events and data flowing through your information
systems, and take appropriate actions using business rules. By detecting patterns
within the real-time flow of events, BusinessEvents' can help you to detect and
understand unusual activities as well as recognize trends, problems, and
opportunities. BusinessEvents publishes this business-critical information in real
time to your critical enterprise systems or dashboards. With BusinessEvents you
can predict the needs of your customers, make faster decisions, and take faster
action.

BusinessEvents
The Power to Predict™

¢ Related Documentation, page xii
e Typographical Conventions, page xv

* How to Contact TIBCO Support, page xviii

TIBCO BusinessEvents Architect’'s Guide

xi

xii | Related Documentation

Related Documentation

This section lists documentation resources you may find useful.

TIBCO BusinessEvents Documentation

TIBCO BusinessEvents Installation: Read this manual for instructions on site
preparation and installation.

TIBCO BusinessEvents Getting Started: After the product is installed, use this
manual to learn the basics of BusinessEvents. This guide provides
step-by-step instructions to implement an example project and also explains
the main ideas so you gain understanding as well as practical knowledge.

TIBCO BusinessEvents Architect’s Guide: If you are architecting an application
using TIBCO BusinessEvents, read this guide for overview and detailed
technical information to guide your work.

TIBCO BusinessEvents Developer’s Guide: After the architect has designed the
system, use this manual to implement the design in BusinessEvents Studio.

TIBCO BusinessEvents Administration: This book explains how to configure,
deploy, monitor, and manage a BusinessEvents application and the data it
generates.

Online References:

— TIBCO BusinessEvents Cache Configuration Guide: This online reference is
available from the HTML documentation interface. It provides
configuration details for cache-based object management. Cache-based
object management is explained in TIBCO BusinessEvents Administration.

— TIBCO BusinessEvents Java API Reference: This online reference is available
from the HTML documentation interface. It provides the Javadoc-based
documentation for the BusinessEvents APL

— TIBCO BusinessEvents Functions Reference: This online reference is available
from the HTML documentation interface. It provides a listing of all
functions provided with BusinessEvents, showing the same details as the
tooltips available in the BusinessEvents Studio rule editor interface.

TIBCO BusinessEvents Release Notes: Read the release notes for a list of new and
changed features. This document also contains lists of known issues and
closed issues for this release.

TIBCO BusinessEvents Architect’'s Guide

Preface

TIBCO BusinessEvents Event Stream Processing

This BusinessEvents add-on is available separately, and includes the
BusinessEvents Query Language features and the Pattern Matching Framework.

® TIBCO BusinessEvents Event Stream Processing Installation: Read this brief
manual for installation instructions. A compatible version of TIBCO
BusinessEvents must be installed first.

e TIBCO BusinessEvents Event Stream Processing Add-on Query Developer’s Guide:
This manual explains how to use the object query language to query various
aspects of the running system.

* TIBCO BusinessEvents Event Stream Processing Pattern Matcher Developer’s
Guide: This manual explains how to use the pattern matcher language and
engine to correlate event patterns in a running system.

* TIBCO BusinessEvents Event Stream Processing Release Notes: Read the release
notes for a list of new and changed features. This document also contains lists
of known issues and closed issues for this release.

TIBCO BusinessEvents Decision Manager

This BusinessEvents add-on is available separately. It incorporates a decision
modeling business user interface, and associated runtime.

e TIBCO BusinessEvents Decision Manager Installation: Read this brief manual for
installation instructions. A compatible version of TIBCO BusinessEvents must
be installed first.

e TIBCO BusinessEvents Decision Manager User’s Guide: This manual explains
how business users can use decision tables and other decision artifacts to
create business rules. It also covers configuration and administration of Rules
Management Server, which is used for authentication, authorization, and
approval processes.

® TIBCO BusinessEvents Decision Manager Release Notes: Read the release notes
for a list of new and changed features. This document also contains lists of
known issues and closed issues for this release.

TIBCO BusinessEvents Data Modeling

This BusinessEvents add-on is available separately. It contains state models and
database concept features.

e TIBCO BusinessEvents Data Modeling Installation: Read this brief manual for
installation instructions. A compatible version of TIBCO BusinessEvents must
be installed first.

TIBCO BusinessEvents Architect’'s Guide

xiii

xiv

Related Documentation

TIBCO BusinessEvents Data Modeling Developer’s Guide: This manual explains
data modeling add-in features for BusinessEvents. The database concepts
feature enables you to model BusinessEvents concepts on Database tables. The
state modeler feature enables you to create state machines.

TIBCO BusinessEvents Data Modeling Release Notes: Read the release notes for a
list of new and changed features. This document also contains lists of known
issues and closed issues for this release.

TIBCO BusinessEvents Views

This BusinessEvents add-on is available separately. It includes graphical
dashboard components for run-time event monitoring.

TIBCO BusinessEvents Views Installation: Read this manual for instructions on
site preparation and installation.

TIBCO BusinessEvents Views Developer’s Guide: This book explains how to use
BusinessEvents BusinessEvents Views to create meaningful metrics that are
presented to business users in real-time for proactive decision making.

TIBCO BusinessEvents Views User’s Guide: This book explains how to monitor
metrics in BusinessEvents BusinessEvents Views and how to represent the
business processes graphically.

TIBCO BusinessEvents BusinessEvents Views Release Notes: Read the release
notes for a list of new and changed features. This document also contains lists
of known issues and closed issues for this release.

Other TIBCO Product Documentation

You may find it useful to refer to the documentation for the following TIBCO
products:

TIBCO ActiveSpaces®

TIBCO Hawk®

TIBCO Rendezvous®

TIBCO Enterprise Message Service
TIBCO ActiveMatrix BusinessWorks' "

TIBCO BusinessEvents Architect’'s Guide

Preface

Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention
TIBCO_HOME
ENV_HOME
BE_HOME

Use

Many TIBCO products must be installed within the same home directory. This
directory is referenced in documentation as TIBCO_HOME. The value of
TIBCO_HOME depends on the operating system. For example, on Windows
systems, the default value is C:\tibco.

Other TIBCO products are installed into an installation environment.
Incompatible products and multiple instances of the same product are installed
into different installation environments. The directory into which such products
are installed is referenced in documentation as ENV_HOME. The value of
ENV_HOME depends on the operating system. For example, on Windows
systems the default value is C:\tibco.

TIBCO BusinessEvents installs into a directory within ENV_HOME. This
directory is referenced in documentation as BE_ HOME. The value of BE_ HOME
depends on the operating system. For example on Windows systems, the default
value is C:\tibco\TIBCO BusinessEvents\4.0.

code font

Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font

Bold code font is used in the following ways:

In procedures, to indicate what a user types. For example: Type admin.

In large code samples, to indicate the parts of the sample that are of
particular interest.

In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

TIBCO BusinessEvents Architect’'s Guide

XV

XVi | Typographical Conventions

Table 1 General Typographical Conventions (Cont’d)

Convention Use
italic font Italic font is used in the following ways:
¢ Toindicate a document title. For example: See TIBCO BusinessWorks Concepts.

¢ To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

* Toindicate a variable in a command or code syntax that you must replace.
For example: MyCommand pathname

Key Key name separated by a plus sign indicate keys pressed simultaneously. For
combinations example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
% example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply

\\‘// e
(4 the information provided in the current section to achieve a specific result.
The warning icon indicates the potential for a damaging situation, for example,
A data loss or corruption if certain steps are taken or not taken.

Table 2 Syntax Typographical Conventions
Convention Use
[1] An optional item in a command or code syntax.

For example:

MyCommand [optional_ parameter] required_parameter

A logical ‘'OR’ that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand paraml | param2 | param3

TIBCO BusinessEvents Architect’'s Guide

Preface I xvii

Table 2 Syntax Typographical Conventions

Convention Use

{17 A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair paraml and param?, or the pair param3 and param4.

MyCommand {paraml param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either paraml or param2 and the second can be either param3 or param4:

MyCommand {paraml | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be parami. You can optionally include param? as the
second parameter. And the last parameter is either param3 or param4.

MyCommand paraml [param2] {param3 | param4}

TIBCO BusinessEvents Architect’'s Guide

xviii | How to Contact TIBCO Support

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

* For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http:/ /www.tibco.com/services/support
¢ If you already have a valid maintenance or support contract, visit this site:
https:/ /support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.

TIBCO BusinessEvents Architect’'s Guide

Chapter 1

Topics

1

Overview

This chapter provides an overview of TIBCO BusinessEvents, including a brief
introduction to complex event processing and event-driven applications, and a
description of the major product components

* What's Different About Complex Event Processing, page 2
* Main Product Components, page 6

® Designtime Resource Overview, page 9

TIBCO BusinessEvents Architect’'s Guide

2 | Chapter 1 Overview

What'’s Different About Complex Event Processing

Complex Event Processing (CEP) is a set of technologies that allows "events" to be
processed on a continuous basis.

Most conventional event processing software is used either for Business Process
Management (BPM), TIBCO iProcess for example, or for Service Oriented
Architecture (SOA), for example TIBCO ActiveMatrix BusinessWorks software.

CEP is unlike conventional event processing technologies, however, in that it
treats all events as potentially significant and records them asynchronously.
Applications that are appropriate for CEP are event-driven, which implies some
aspect of real-time behavior. To be more specific, the typical CEP application area
can be identified as having some aspect of "situation awareness," "sense and
respond,” or "track and trace," aspects which overlap in actual business situations.

Situation awareness is about "knowing" the state of the product, person,
document, or entity of interest at any point in time. Achieving this knowledge
requires continuous monitoring of events to do with the entity, events that
indicate what situation or state the entity is in, or about to be in. As an example, a
dashboard indicates all performance indicators for a runtime production process.
All the production plant events are monitored and the situation, or health, of the
production process is determined via some performance indicators that are
shown in real-time to one or more operators.

Sense and respond is about detecting some significant fact about the product,
person, document or entity of interest, and responding accordingly. To achieve
this result the software does the following:

¢ Monitors events that indicate what is happening to this entity.
® Detects when something significant occurs.
* Executes the required response.

As an example, you may monitor cell phone or credit card usage, detect that a cell
phone or credit card is being used consecutively at locations that are too far apart
for real-time person-to-business transactions. Detection of such transactions
indicates that an act of fraud is in progress. The system responds accordingly,
denying the transactions, and invoking the necessary workflow to handle the
situation as defined in standard procedures.

Track and trace is about tracking the product, person, document or entity of
interest over time and tracing pertinent facts like location, owner, or general
status. An example would be tracking events from an RFID-enabled inventory
control system where at any point in time you need to know how many widgets
are in what location.

TIBCO BusinessEvents Architect’'s Guide

What's Different About Complex Event Processing | 3

"non

"Situation awareness," "sense and respond," and "track and trace" can all be
classified as types of activity monitoring, for which the continuous evaluation of
incoming events is suitable. For this reason, CEP is often described as a
generalization of Business Activity Monitoring (BAM), although the event
processing task may be only indirectly be related to business, as in the case of an
engine monitoring application or process routing task.

Technical Requirements of a CEP System

CEP systems must be able to receive and record events and identify patterns of
these events and any related data. CEP systems must also handle temporal or
time-based constraints, especially for handling the non-occurrence of events. The
following TIBCO BusinessEvents features satisfy these requirements:

¢ Arich event model, incorporating event channels (for different event
mechanisms) and destinations (for different types of events).

* A pattern detection mechanism using a sophisticated, high performance,
declarative rule engine.

¢ A state model mechanism that allows entities to be described in terms of state,
and in particular allows modelling of time-out events to handle the
non-occurrence of events. (State modeling requires TIBCO BusinessEvents
Data Modeling, purchased separately.)

A Model-Driven Approach

TIBCO BusinessEvents can be described not only as a CEP engine but also as an
event-driven rule engine or real-time rule engine. TIBCO BusinessEvents enables
CEP problems to be solved through a model-driven approach, in which the
developer defines the event, rule, concept (class) and state models which are then
compiled so that at run-time incoming events are processed as efficiently as
possible. The various models are as follows:

Event model The event model describes the inputs into BusinessEvents. Events
provide information through their properties and (optionally) through an XML
payload. The event model provides the primary interface between
BusinessEvents and the outside world, for input as well as output. Typical event
sources (or channels) are messages from TIBCO Rendezvous and TIBCO
Enterprise Message Service middleware, events generated explicitly by
BusinessEvents, and custom mechanisms for non-standard event sources. Events
can be used to trigger rules.

TIBCO BusinessEvents Architect’'s Guide

4

Chapter 1 Overview

Concept model The concept model describes the data concepts used in
BusinessEvents, which may be mapped from events or their payloads, or loaded
by some other mechanism into BusinessEvents. The concept model is based on
standard UML Class and Class Diagram principles.

Rule model Rules provide one of the main behavioral mechanisms in
BusinessEvents. Rules are defined in terms of declarations (events and concepts of
interest), conditions (filters and joins on and between the attributes of the events
and concepts), and actions. The underlying rule engine is based on an algorithm
called the Rete algorithm, which mixes all rules together into a type of look-up
tree, so that any additional concept instance or event can near-instantly cause the
appropriate rule or rules to fire and invoke the appropriate actions. Rules are
almost always defined in general terms (concepts or classes and events), so they
apply to however many combinations of those events and classes exist in memory
at any one time. The combination of rule declaration and condition defines the
event pattern required for CEP operation. Rule actions that update other concepts
may cause other rules to become available for firing, a process called inferencing or
forward chaining. These types of rules are generally called Production Rules. The
appropriate UML Production Rule Representation is still under development.

Rule functions Algorithms, procedures or functions may be usefully defined as
parameterized rule functions and re-used as required in rule actions and other
areas where a behavior can be specified.

State model An important item of metadata for a concept or object is its state.
Typically a state model describes the states that an entity can hold, and the
transitions between states that are allowed, and the conditions for such
transitions. Internally the state model is just additional metadata, but it is more
useful to describe the state model as a visual model of states and transitions. The
state transition rules can be viewed as special customizations of standard rules.
The state model is based on the standard UML State Model principles. Requires
TIBCO BusinessEvents Data Modeling add-on software.

Query model Queries can provide both snapshot and continuous views of the
data in a BusinessEvents cache. Queries can also provide continuous views of
data arriving through channels. They are constructed and executed from rule
functions in a specialized agent (called a query agent). Queries provide event
stream processing or set operations to derive information that can then be used in
rule functions, or shared (via events or the cache). Requires TIBCO
BusinessEvents Event Stream Processing add-on software.

TIBCO BusinessEvents Architect’'s Guide

What's Different About Complex Event Processing | 5

Stateful Rule Engine

At run-time, the rule engine executes rules based on new events and data sources
on a continuous basis. The rule memory is never "reset” (unless by design), so that
future events can always be compared to past events. For this reason, the rule
engine is described as a stateful rule engine. If required, the working memory can
be cleared and a new set of data asserted for each "transaction," in which case the
engine is operating as a stateless rule engine.

Object Management Options

To ensure resilience, BusinessEvents provides two persistence mechanisms for the
events and data loaded into the system. One is called Persistence. It is a
checkpoint mechanism that causes the data in the working memory to be saved to
a lightweight database engine, to be restored when and as required. The other is a
high performance distributed cache that allows data to be persisted and removed
from the Rete network or returned to the Rete network, as required to handle
extremely large problem domains (that would not typically fit into a runtime
memory model). A backing store can be added to provide additional reliability
and object management options. Just as data can be moved between the Rete
network and the cache, so can less used data be moved between the backing store
and the cache, to balance storage, memory, and performance requirements.

These characteristics provide BusinessEvents with its enterprise and extreme
transaction processing capabilities. Note that no rule operations are stored in the
databases: this is because it is more efficient to simply rerun the rules and recreate
the appropriate actions, than it is to persist the internal workings of the rule
engine.

TIBCO BusinessEvents Architect’'s Guide

6 | Chapter 1 Overview

Main Product Components

This section presents the major components of TIBCO BusinessEvents and how
they are used.

Design-time Components

Design time activities performed using the BusinessEvents resources include
building an ontology — a set of concepts, scorecards and events that represent the
objects and activities in your business — and building rules that are triggered
when instances of ontology objects that fulfill certain criteria arrive in events. The
output of the design-time activities is an enterprise archive (EAR) file, ready to
deploy (or configure for deployment as needed).

See tutorials in TIBCO BusinessEvents Getting Started to learn more.

BusinessEvents Studio

Studio is an Eclipse-based project building environment. It organizes project
resources and makes the project organization and the project resources visible in
graphical ways.

Perspectives

The Eclipse plug-ins for BusinessEvents and for BusinessEvents add-ons provide
these perspectives:

BusinessEvents Studio Development Provides resources for building
BusinessEvents projects.

BusinessEvents Studio Debug Provides resources for debugging rules and rule
functions in BusinessEvents projects.

BusinessEvents Studio Diagram Provides interactive graphical views of a project
that allows you to see relationships between project resources and open editors
for individual resources.

BusinessEvents Studio Decision Table Provides resources for building decision
tables. (Available with TIBCO BusinessEvents Decision Manager.)

BusinessEvents Studio State Modeler Provides resources for building state
models. It allows you to model states of ontology concept instances and use those
states in rules. (Available with TIBCO BusinessEvents Data Modeling.)

TIBCO BusinessEvents Architect’'s Guide

Main Product Components

Integration with TIBCO ActiveMatrix BusinessWorks

Add-on Software

TIBCO BusinessEvents communicates with TIBCO ActiveMatrix BusinessWorks
through a provided plug-in that contains a palette of ActiveMatrix BusinessWorks
Activities. Details are provided in TIBCO BusinessEvents Developer’s Guide.

The following add-on products are separately available:

. ™
¢ TIBCO BusinessEvents = Decision Manager provides a business rules
application for business users and a rules management server.

 TIBCO BusinessEvents' Data Modeling provides database concepts and state
modeler features

e TIBCO BusinessEvents = Event Stream Processing provides query and pattern
matching features.

» TIBCO BusinessEvents = Views provides visibility into the data flowing
through a running BusinessEvents application, using meaningful metrics that
are presented to business users in real-time for proactive decision making.

Administration Components

Object Managers

Administration of a deployed system involves management of objects generated
by the inference engine, deploy-time configuration for tuning and other aspects of
the system, deployment, management, and monitoring.

Your choice of an object manager depends on the need to persist objects generated
by the rules executing in the inference engine. You can manage objects in memory
only, or using a persistence database, or using a cache and backing store.

The recommended way to manage objects for most production needs is to use a
cache and a backing store. When Cache Manager is used, agents of different types
co-operate to provide efficient object storage and access, with options to use load
balancing and fault tolerance of data and engine processes.

Object management is partly a design-time and partly an administration topic,
because your choice of object management method can affect how you design
rules. For example, you may have to retrieve objects if they are stored only in the
cache or only in the backing store, so they can be used in the Rete network. See
Chapter 6, Object Management Options, on page 57 for an introduction to these
topics.

TIBCO BusinessEvents Architect’'s Guide

7

8 | Chapter 1 Overview

Deploy-time Configuration Using a Cluster Deployment Descriptor (CDD)

The CDD editor enables you to define all the deploy-time properties for the entire
cluster, from cluster-wide settings dealing with object management, through
processing unit settings (that is, those at the BusinessEvents engine level), to
agent class and agent instance settings. At deploy-time, you specify an EAR file,
which contains project resources, and also a CDD file and a processing unit (a unit
that deploys as an engine). The CDD defines all the deploy settings that apply to
the specified unit. Thus, there is no need to maintain separate configuration files
for each separate engine (processing unit), and you can change configuration
settings without having to rebuild the EAR file. Deploy-time settings include
object manager configuration, processing unit and agent class definition,
specification of the channels and rules to enable for a a particular agent class, and
what startup and shutdown functions to run.

Deployment Topology Configuration Using a Site Topology Editor

If you will deploy using the BusinessEvents Monitoring and Management
component (see next), then you will use the canvas-based site topology editor to
configure the deployment topology. In the topology editor you configure
deployment units that deploy to host machines, and you bind them to host
machines. Each deployment unit contains one or more processing units (generally
one), and each processing unit contains one or more agent classes. The processing
units and agent class definitions are read from the CDD file, and you add
deploy-time configuration settings.

BusinessEvents Monitoring and Management (BEMM)

BEMM can use the topology file definitions to manage the deployment —
deploying, starting, stopping engines and so on. It also makes various methods
available for controlling the deployment at different levels. You can also add more
engines that are not predefined in the topology file and monitor and manage
them (but you can’t restart them using BEMM).

BEMM can also monitor the health of the deployment, based on health metric and
alert thresholds you configure and display the metrics using a web-based
graphical UL It can send out email when certain conditions occur or take other
action. BEMM has a profiler and can generate other helpful reports. BEMM
monitoring features enable you to easily spot bottlenecks or other troublespots in
the system so you can address any issues.

TIBCO BusinessEvents Architect’'s Guide

Designtime Resource Overview | 9

Designtime Resource Overview

In a rule engine, the things that the project works with such as employees,
inventory, parts, and so on are concepts in the ontology (knowledge model) of the
project, as are scorecards, which hold metrics. When TIBCO BusinessEvents Data
Modeling software is used, a database concept feature enables you to create
concepts from database data, and a state modeler feature enables you to model
the behavior of concepts given certain occurrences.

Events such as flight take-off, purchase of a mortgage, sale of stock, and so on are
also part of the ontology. Events can be created from messages arriving through
channels, and generated internally, for use in the engine and to send out messages
to external systems.

Rules are triggered by events and by changes in concepts and scorecards. For
example, rules might cause a baggage to be rerouted if there is a certain problem
at the airport. Rule functions are functions written in the rule language that can be
called from rules or other rule functions. Some rule functions serve special
purposes at startup, shutdown, and in preprocessing events. When TIBCO
BusinessEvents Decision Manager software is used, its decision tables also provide
rules. These, however, are business rules, and are triggered only indirectly by the
inferencing engine.

When TIBCO BusinessEvents Event Stream Processing software is used, you can
design complex queries that provide information on the event stream or on cached
objects that can in turn be fed into rules. You can also design event patterns to
watch for, and take certain actions when they occur or don’t occur.

Designing the ontology and the rules well is key to a good CEP (complex event
processing) project.

The sections below describe the features mentioned above in greater detail, with
the exception of the features provided in add-on software which are documented
in their respective manuals.

Channels and Events

Channels (except for local channels which communicate between agents),
represent physical connections to a resource, such as a Rendezvous daemon, J]MS
server, or HTTP server or client.

A channel has one or more destinations, which represent listeners to messages
from that resource. Destinations can also be used to send messages to the
resource.

TIBCO BusinessEvents Architect’'s Guide

10

Chapter 1 Overview

Concepts

Score Cards

Messages arriving through channels are transformed into simple events.
Conversely, simple events sent out of BusinessEvents are transformed to the
appropriate type of message.

BusinessEvents processes three kinds of events. Only simple events are used in
channels.

¢ Simple Event A representation of a single activity (usually a business activity)
that occurred at a single point in time.

* Time Event A timer. Generally created and used to trigger rules.

¢ Advisory Event A notice generated by BusinessEvents to report an activity in
the engine, for example, an exception.

BusinessEvents creates instances of simple events and time events based on
user-configured event definitions.

See Chapter 2, Channels and Events, on page 15.

A concept definition is a definition of a set of properties that represent the data
fields of an entity. Concepts are equivalent to UML Classes: they represent
class-level information, and at runtime the instances of concepts are called objects.

Concepts can describe relationships among themselves. For example, an order
concept might have a parent/child relationship with an item concept. A
department concept might be related to a purchase_requisition concept based
on the shared property, department_id.

With the TIBCO BusinessEvents Data Modeling (purchased separately), concepts
can include a state model. Also with the TIBCO BusinessEvents Data Modeling,
you can create concepts can be created by importing table and view data from
databases, and you can update the database definitions using RDBMS functions.
These concepts are called database concepts.

Concept properties can be updated by rules and rule functions (including rule
functions whose implementation is provided by decision tables).

See Chapter 3, Concepts, on page 27

A score card serves as a static variable that is available throughout the project.
You can use a ScoreCard resource to track key performance indicators or any
other information. Use rules to view a scorecard value, use its value, or change its
value. Note that unlike concepts and event definitions, which describe types of
instances, each scorecard is both the description and the instance.

TIBCO BusinessEvents Architect’'s Guide

Designtime Resource Overview | 11

A score card is similar to a global variable, except that with multiple active
inference agents, the value is local to the agent, and you can update the value of a
scorecard in rules, but not the value of a global variable.

See Designing for Concurrency on page 96 for some important points about score
cards.

Rules
Rules define what constitutes unusual, suspicious, problematic, or advantageous
activity within your enterprise applications. Rules also determine what
BusinessEvents does when it discovers these types of activities. You can execute
actions based on certain conditions which are defined using simple events,
concept instances, events, score cards, or a combination of these objects.
Functions

BusinessEvents offers the following types of functions for use in rules:
e Standard — These functions are provided with BusinessEvents.

¢ Ontology — BusinessEvents generates these functions based on the resources
in your project.

¢ Custom — You can write custom functions using Java and integrate them into
BusinessEvents for use in rules.

* Rule Function — In addition to Java-based custom functions, you can use rule
function resources to write functions using the BusinessEvents rule language.

Standard functions include a set of temporal functions, which allow you to
perform calculations based on a sampling of a property’s values over time. These
functions make use of the history for that property.

See Chapter 4, Rules and Functions, on page 41

Object Management and Fault Tolerance

An important aspect of most BusinessEvents applications is management of the
objects created and modified at runtime.

Although configuring object management is an administrative task, it is
important to consider the effect of object storage options when designing projects.

Different projects have different object management requirements. For some, it is
acceptable to destroy the objects once the rule engine cycle that needs them has
completed. They require only memory-based object management. For others, the
instances have longer term value and need to be persisted.

TIBCO BusinessEvents Architect’'s Guide

12

Chapter 1 Overview

State Modeler

Related to object management is configuration of fault tolerance features.
BusinessEvents supports a variety of object management and fault tolerance
options.

Cache Object Management and Multi-Engine (Multi-Agent) Mode

Cache object management enables BusinessEvents to run in multi-agent mode,
also known as multi-engine mode. In this mode, load balancing, parallel
processing, and rule chaining features are available at the agent level.

See Chapter 6, Object Management Options, on page 57 and chapters following

The State Modeler feature is available only with the TIBCO BusinessEvents Data
Modeling add-on software. State Modeler is based on the UML-standard
definition for State Models. It allows you to model the life cycle of a concept
instance — that is, for each instance of a given concept, you can define which
states the instance will pass through and how it will transition from state to state.

States have entry actions, exit actions, and conditions, providing precise control
over the behavior of BusinessEvents. Transitions between states also may have
rules. Multiple types of states and transitions maximize the versatility and power
of State Modeler.

See TIBCO BusinessEvents Data Modeling Developer’s Guide.

Database Concepts

The database concepts feature is available only with the TIBCO BusinessEvents
Data Modeling add-on software. Database concepts are BusinessEvents concepts
with database behavior. They are created using a utility that enables you to map
tables or views from a database to BusinessEvents concepts.

See TIBCO BusinessEvents Data Modeling Developer’s Guide.

Query Language

Available with TIBCO BusinessEvents Event Stream Processing add-on software,
the query features enable you to perform set operations against cached concepts
as well as against incoming event streams. Queries can obtain information at a
point in time (snapshot queries, for cache queries only. They can also listen to a
message stream and collect information continuously.

TIBCO BusinessEvents Architect’'s Guide

Designtime Resource Overview | 13

Queries use an object-oriented SQL-like query language within rule functions.
Query results can then be passed using events, or can be shared in cached
concepts to be used in other rules or rule functions.

See TIBCO BusinessEvents Query Developer’s Guide

Pattern Language

Available with TIBCO BusinessEvents Event Stream Processing add-on software,
the Pattern Matcher add-on provides pattern-matching functionality,
complementing TIBCO BusinessEvents rule processing and query processing
features. Pattern Matcher consists of an easy-to-use language and a service that
runs in a BusinessEvents agent. It addresses some of the simpler and more
commonly occurring problems in complex event processing such as patterns in
event streams, correlation across event streams, temporal (time based) event
sequence recognition, duplicate event suppression, and implementation of "Store
and Forward" scenarios.

See TIBCO BusinessEvents Query Developer’s Guide

TIBCO BusinessEvents Architect’'s Guide

14 | Chapter 1 Overview

TIBCO BusinessEvents Architect’'s Guide

15

Chapter2 ~ Channels and Events

This chapter explains how messages arrive and leave through channels, and are
transformed to and from events.

Topics

* Channels and Events Overview, page 16

¢ Event Preprocessors, page 17

¢ Types of Channels, page 19

® Default Destinations and Default Events, page 20

* Message Acknowledgment, page 21

* Types of Events, page 22

* Simple Events — Time to Live and Expiry Actions, page 24

TIBCO BusinessEvents Architect’'s Guide

16 | Chapter 2 Channels and Events

Channels and Events Overview

Channels (except for local channels) represent physical connections to a resource,
such as a Rendezvous daemon, JMS server, or HTTP server or client.

Destinations in a channel represent listeners to messages from that resource, and
they can also send messages to the resource. All destinations for a particular
channel use the same server.

Arriving messages are transformed into simple events, using message data and
metadata. Simple events sent out of BusinessEvents are transformed to the
appropriate type of message.

In addition to simple events, which work with incoming and outgoing messages
of various sorts, BusinessEvents uses a special-purpose event type called
So0APEvent, which inherits from SimpleEvent. It is used for sending and receiving
SOAP messages in an HTTP channel. Two other types of events are also used:
time events and advisory events. These event types are described in Types of
Events on page 22.

TIBCO BusinessEvents Architect’'s Guide

Event Preprocessors

Event Preprocessors

Setting locks if
concurrency
features are used

Loading cache
only entities

Improving project
efficiency

Event preprocessors are rule functions with one argument of type simple event.
(Event preprocessors are not used for time or advisory events.) Event
preprocessors are multithreaded. They perform tasks after an incoming message
arrives at the destination and is transformed into a simple event, but before it is
asserted into the Rete network (if it is — events can be consumed in the event
preprocessor).

Time events do not go through an event preprocessor. If you are using cache-only
cache mode, take care when designing rules that execute as a result of a time
event. For example, a rule that has a join condition using a time event and a
concept would not execute if the concept is not loaded in the Rete network.

You can aggregate events, edit events, and perform other kinds of event
enrichment in a preprocessor. You can also use preprocessors as explained below.

You must set locks in the preprocessor when concurrency features are used to
protect concept instances during RTC. Locking ensures that updates to concept
instances during an RTC do not conflict with another set of updates to the same
concept instances in another RTC. Locks are released at the end of the RTC.

If you are using the Cache Only cache mode for any entities, you must also load
the relevant entities from the cache using an event preprocessor.

You can also use preprocessors to improve performance by avoiding unnecessary
RTCs in the inference engine. For example you can consume events that are not
needed. Another way to use the preprocessor for efficient processing is to transfer
an event’s contents to a new concept that is not processed by the agent's set of
locally active rules. Such a concept is automatically asserted, does not trigger
rules, and is saved into the cache (depending on OM configuration) where it is
available for processing by any agent as needed.

Preprocessor Use Guidelines

Consuming events in a preprocessor is allowed It can be useful in some
applications and reduces the flow of messages into the Rete network.

You can only modify events before they are asserted into the Rete network Rule
evaluation depends on event values at time of assertion, so values can be changed
only before assertion, that is, in the preprocessor.

TIBCO BusinessEvents Architect’'s Guide

17

18 | Chapter 2 Channels and Events

You can create concepts but not modify or delete existing concepts Modifying or
deleting concepts that already exist in the system could disrupt an RTC. You can
modify or delete concepts that were created in the same preprocessor, however.

See Also
Loading Cache-Only Objects into the Rete Network on page 93
Using Locks to Ensure Data Integrity Within and Across Agents on page 101

TIBCO BusinessEvents Architect’'s Guide

Types of Channels

Types of Channels

BusinessEvents provides the following types of channels:

Local channels Connect co-located agents. One use for local channels is to
enable a query agent to make use of a co-located inference agent for additional
processing.

TIBCO Rendezvous channels Connect TIBCO BusinessEvents to TIBCO
Rendezvous sources and sinks.

HTTP channels, including SOAP support An HTTP channel acts as an HTTP
server at runtime, enabling BusinessEvents to serve requests from clients, as
well as to act as a client of other servers

JMS channels Connect TIBCO BusinessEvents to TIBCO Enterprise Message
Service provider sources and sinks.

TCP channels connect to data sources not otherwise available through
channels, using a catalog of functions.

% Each JMS Input Destination Runs a Session

Every JMS destination that is configured to be an input destination runs in its own
JMS Session. This provides good throughput on queues and topics for processing,
and less connections.

Support for SOAP Protocol

Support for SOAP protocol is provided by these features (using SOAP over
HTTP):

A specialized event type whose payload is configured as a skeleton SOAP
message

A set of functions for extracting information from SOAP request messages and
constructing response messages.

A utility that constructs project resources based on the SOAP service’s WSDL
file (document style WSDLs with literal encoding are currently supported).

TIBCO BusinessEvents Architect’'s Guide

19

20 | Chapter 2 Channels and Events

Default Destinations and Default Events

Incoming
Messages

Outgoing
Messages

Using default destinations and default events simplifies project configuration for
many scenarios.

Incoming messages can be mapped to a default event that you specify when you
configure the destination. All messages arriving at that destination are
transformed into the default event type, unless they specify a different event.

For example, in Figure 1 the channel is configured to listen to the flow of
messages on Rendezvous. The orders destination directs BusinessEvents to map
messages coming in on the subject, orders, to the new_order simple event.

Figure 1 Channels and Destinations

. RV Channel
Y —.—:J
; Destination: Default Event:
Subject: new_order
"’L orders orders -
: |
) ﬂ o.—.—.:J 4
ty
©
c
(]
o
3
&
2T e o= Zhs
i f:;éjsm' Default Destination: Event:
credit credit_timeout
@

You can map incoming messages to specified event types. The technique is
explained in Mapping Incoming Messages to Non-default Events in TIBCO
BusinessEvents Developer’s Guide.

Outgoing messages can be sent to a default destination. When the destination is
not otherwise specified (for example in rules or rule functions), events are sent to
the destination you select as their default destination.

For example, in Figure 1 the event credit_timeout is sent out through its default
destination credit.

You can send an event to the default destination of its event type using the
Event.sendEvent() or Event.replyEvent() functions.

You can send an event to a specified destination using the Event.RouteTo ()
function.

TIBCO BusinessEvents Architect’'s Guide

Message Acknowledgment | 21

Message Acknowledgment

For each message type (that is, each type of channel), BusinessEvents
acknowledges the receipt of messages according to the protocol of the messaging
system. Some messages do not require acknowledgement. For example reliable
Rendezvous messages do not require acknowledgment.

Message Acknowledgment Timing
An event is acknowledged as follows:
¢ Ina preprocessor: Immediately after the event is consumed.
¢ During a run to completion (RTC) cycle:
— With Cache OM, during the post RTC phase.
— With Persistence OM, after the event is written to disk, during a checkpoint.

— With In Memory OM, during the post RTC phase, but only if the event has
been explicitly consumed.

TIBCO BusinessEvents Architect’'s Guide

22 | Chapter 2 Channels and Events

Types of Events

Simple Events

BusinessEvents processes three kinds of events:

e Simple Event A representation of a single activity (usually a business activity)
that occurred at a single point in time. The SOAPEvent event type inherits
from SimpleEvent.

* Time Event A timer. Time events can be configured to repeat at intervals, or
they can be scheduled using a function in a rule or rule function.

¢ Advisory Event A notice generated by BusinessEvents to report an activity in
the engine, for example, an exception.

BusinessEvents creates instances of simple events and time events based on
user-configured event definitions. The following sections provide more detail on
each type of event.

Inheritance You can use inheritance when defining simple events.

Attributes In addition to user defined properties, events have built-in attributes
for use in rules and rule functions. For example, simple events have these
attributes: @id, @extId, @ttl, and @payload. Concepts and scorecards also have
built-in attributes. See TIBCO BusinessEvents Developer’s Guide for details.

A simple event definition is a set of properties related to a given activity. It includes
information for evaluation by rules, meta-data that provides context, and a
separate payload -- a set of data relevant to the activity.

For example, suppose you are interested in monitoring the creation of new
employee records. You might create a simple event definition that includes
important fields from the employee record, perhaps the social security number,
department, and salary. You could then write a rule to create an instance of this
simple event each time a new employee record is created.

A simple event is an instance of a simple event definition. It is a record of a single
activity that occurred at a single point in time.

Just as you cannot change the fact that a given activity occurred, once an event is
asserted into the Rete network, you can no longer change it. (Before assertion you
can use an event preprocessor to enrich the event, however.) Simple events expire
when their time to live has elapsed, unless BusinessEvents has instructions to
consume them prior to that time.

TIBCO BusinessEvents Architect’'s Guide

Types of Events | 23

Example 1: A temperature sensor records a reading that is above a predefined
limit. The payload might include the temperature-sensor ID, the reading, and the
date and time. This simple event might trigger a complex event that would
immediately notify a manager.

Example 2: A customer purchases four airline tickets from San Francisco,
California to San Jose, Costa Rica. The payload might include the date and time of
purchase, the date and time of the flight, the purchase price, the credit card
number, the flight number, the names of the four passengers, and the seat
assignments. This simple event alone may include no exceptions. However, it is
possible that when examined within the context of other related events, an
exception may arise. For example, one or more of the passengers may have
booked tickets on another flight during the same time period.

Time Events

A time event is an event definition that triggers the creation of event instances
based on time. There are two ways to configure a time event:

* Rule based A rule schedules the creation of a time-event instance at a given
time.

¢ Time-interval based (Repeat Every) BusinessEvents creates a time-event
instance at regular intervals.

Advisory Events

Advisory events are asserted into the Rete network automatically when certain
conditions, for example, exceptions, occur. Add the AdvisoryEvent event type to
rules to be notified of such conditions. An advisory event expires after the
completion of the first RTC cycle (that is, the time to live code is set internally to
zero). The types of advisory events are described next.

Exception The BusinessEvents engine automatically asserts an advisory event
when it catches an exception that originates in user code but that is not caught
with the catch command of the BusinessEvents Exception type. (For information
on working with exceptions, see Exception Handling in TIBCO BusinessEvents
Developer’s Guide.)

BusinessEvents-ActiveMatrix BusinessWorks Integration Advisory events are also
used in the container mode BusinessEvents-ActiveMatrix BusinessWorks
integration feature invokeProcess () function. Such events are asserted when the
ActiveMatrix BusinessWorks process fails or times out (or is cancelled).

Engine Activated Advisory Event An advisory event is asserted when an engine
has finished starting up and executing startup functions (if any).

TIBCO BusinessEvents Architect’'s Guide

24 | Chapter 2 Channels and Events

Simple Events — Time to Live and Expiry Actions

Example

Events have a time to live (TTL) setting. Events can’t be modified after they are
initially asserted, but they can continue trigger rules during their time to live.

Events Recovered From Cache or Persistence Store

When Cache object management is used, events with a sufficiently long time to
live (TTL) setting are cached. Similarly, when Persistence object management is
used, such events are persisted in the data store.

With Persistence and Cache OM types, the TTL period is re-evaluated when an
event is recovered from the persistence database or reloaded from cache. For
example, if the TTL is 60 minutes and event is recovered 30 minutes after it is
asserted, then its remaining TTL is 30 minutes.

Using TTL Options to Trigger Rules Correctly

Set the event’s time to live so that it can trigger the rules you intend. If a rule
correlates different events, you must ensure that those event instances are all in
the Rete network concurrently. Time to live options are as follows:

e Zero (0): the event expires after the completion of the first RTC cycle. Do not
set to 0 if you want to correlate the event with a future event or other future
occurrences of this event, as explained below.

¢ One or higher (>0): the event expires after the specified time period has
elapsed. The TTL timer starts at the end of the action block of the rule or
preprocessor function in which the event is first asserted.

* A negative integer (<0): the event does not expire, and must be explicitly
consumed.

Consider the following example:

® A process sends eventA, eventB, and eventC.

e The TTL for all three simple events is 0.

e Rule 1 has the condition: eventA.id == eventB.id.

e Rule 2 has the condition: eventC.id != null.

At runtime, BusinessEvents behaves as follows:

1.

BusinessEvents receives eventA. Because there is no eventB in the Rete
network, eventA doesn’t trigger any rules. BusinessEvents consumes eventA.

TIBCO BusinessEvents Architect’'s Guide

Simple Events — Time to Live and Expiry Actions

2. BusinessEvents receives eventB, but eventA has been consumed — there is no
eventA in the Rete network. So eventB does not trigger any rules.
BusinessEvents consumes eventB.

3. BusinessEvents receives eventC, which triggers Rule 2 because Rule 2
depends only on eventcC.

To trigger Rule 1, you must configure the time to live for eventA and eventB to
ensure that both events will be in the Rete network concurrently. You can trigger
Rule 1 in these ways:

¢ If you know that eventA is sent before eventB, set the TTL for eventA to a time
greater than the maximum period that can elapse between sending eventA
and sending eventB.

¢ If youdon’t know the order in which eventA and eventB are sent, set the TTL
for both simple events to a time greater than the maximum time between the
occurrence of the two simple events.

Event Expiration and Expiry Actions

&

After the time to live (TTL) period, the event expires and is deleted from the Rete
network. Any expiry actions are taken.

With Persistence object management, the expired event is marked for deletion.

With Cache object management, events TTL is evaluated when the event is
retrieved from the cache.

Expiry Actions

For each simple event definition, BusinessEvents allows you to specify one or
more actions to take when the event expires, using the BusinessEvents rule
language. For example, you can write an action that routes the simple event to a
different destination, sends a message, or creates a new event. This action can be
anything that is possible with the rule language.

An expiry action can be inherited from the event's parent.

If an event is explicitly consumed in a rule, BusinessEvents does not execute the
expiry action.

TIBCO BusinessEvents Architect’'s Guide

25

26 | Chapter 2 Channels and Events

TIBCO BusinessEvents Architect’'s Guide

27

Chapter3 Concepts

This chapter discusses BusinessEvents concepts, which are created from
information in messages or built in rules.

Topics

¢ Overview of Concepts on page 28
¢ Concept Property History on page 30
¢ Concept Relationships on page 34

TIBCO BusinessEvents Architect’'s Guide

28 |Chapter3 Concepts

Overview of Concepts

4

Concept types are descriptive entities similar to the object-oriented concept of a
class. They describe a set of properties. For example, one concept might be
Department. The Department concept would include department name, manager,
and employee properties.

Runtime Behavior of Concepts

Rules at runtime can create instances of concepts. For example, when a simple
event arrives, a rule can create an instance of a concept using values present in the
event. Rules can also modify existing concept instance property values.

Concepts must be explicitly deleted from working memory when no longer
needed or they will steadily increase memory usage. Use the function
Instance.deleteInstance() to delete concept instances.

Depending on other factors, adding, modifying, and deleting concept instances
can cause BusinessEvents to evaluate or re-evaluate dependent rules, as explained
in Understanding Conflict Resolution and Run to Completion Cycles on page 51.

Concepts are automatically asserted into the Rete network when created, except
in the following cases:

¢ Database concepts returned by database query operations (requires TIBCO
BusinessEvents Data Modeling).

e Concepts passed to a rule function in the context of ActiveMatrix
BusinessWorks integration projects.

Understanding Concept Property History

Each concept property includes a history, the size of which is configurable. The
history size determines how many previous values BusinessEvents stores for that
property. See Concept Property History on page 30.

Database concept properties do not support history tracking (Available in TIBCO
BusinessEvents Data Modeling).

Concept Relationships

Concepts can have inheritance, containment and reference relationships with
other concepts. See Concept Relationships on page 34.

TIBCO BusinessEvents Architect’'s Guide

Overview of Concepts | 29

Exporting Concepts to XSD Files

You can export concept and event types to XML Schema Definition (XSD) files.
XML schemas are used for interoperability between BusinessEvents and third
party tools or SOA platforms that use well-defined XML for message
communication, transformation, and validation.

TIBCO BusinessEvents Architect’'s Guide

30 |Chapter3 Concepts

Concept Property History

History Size

Each concept property includes a history, the size of which is configurable. The
history size determines how many previous values BusinessEvents stores for that
property. You can also set the history policy to record all values or only changed
values.

For ContainedConcept and ConceptReference properties History is tracked when
a contained or referenced concept instance changes to a different concept instance.
History is not tracked, however, when a contained or referenced concept’s
properties change. See Concept Relationships on page 34 for more on
containment and reference relationships.

Database concepts Database concept properties do not support history tracking.

If you set the history size to one or more, BusinessEvents stores the property value
when the property changes, along with a date and timestamp, up to the number
specified. When the maximum history size is reached, the oldest values are
discarded as new values are recorded.

If you set the history size to 0, BusinessEvents does not store historical values for
the concept. It stores the value without a time and date stamp.

TIBCO BusinessEvents Architect’'s Guide

Concept Property History | 31

For example, consider a Customer concept:

Property Name History Comments

customer_name 1 These properties tend to be very stable and
you may have little interest in tracking a

customer_address 1 history for them.

city 1

state 1

zip 1

account_number 0 With history size 0, BusinessEvents does not

record the timestamp when the value is set.

credit_limit 4 Credit limit may change more frequently and
you may have an interest in tracking the
changes.

Historical Values are Stored in a Ring Buffer

The historical values for a concept property are kept in a ring buffer, as illustrated
in Figure 2.

Figure 2 History Ring Buffer

History value for this property is 8.

values 9 & 10
replace
values 1 & 2

TIBCO BusinessEvents Architect’'s Guide

32

Chapter 3 Concepts

History Policy

The ring buffer stores both the value and the time at which the value was
recorded. After the ring buffer reaches maximum capacity, which is eight in this
example, BusinessEvents begins replacing older values such that it always stores
the 7 most recent values, where 1 is the history size. Note in Figure 2 in the ring
buffer on the right, after the buffer reached maximum capacity, V9 replaced V1,
then V10 replaced V2, making V3 the oldest value stored in the ring buffer.

BusinessEvents can record values using either of these policies:

* Changes Only BusinessEvents records the value of the property every time it
changes to a new value.

* All Values BusinessEvents records the value of the property every time an
action sets the value even if the new value is the same as the old value.

Which you choose depends on what you are tracking. For example, if you are
setting the history for a property that tracks how many people pass a sensor every
five minutes, All Values might be the best policy. However, if you are setting the
history for a property that tracks the level of liquid in a coffee pot, Changes Only
might be more appropriate.

For example, look at the two ring buffers in Figure 3. In both cases, the same series
of values is set to the same property, but the history policy is different.

Figure 3 History Policy

History policy: History policy:
record changes record all values

RS BRY
o e
N CEE

T=Time

TIBCO BusinessEvents Architect’'s Guide

Concept Property History | 33

History Policy and Rule Evaluation The history policy affects how frequently
BusinessEvents re-evaluates rules that are dependent on the property. Each time
BusinessEvents records a value, it reevaluates rules that are dependent on that
property. If you track changes only, rules are re-evaluated less frequently than if

you track all values.

TIBCO BusinessEvents Architect's Guide

34 |Chapter3 Concepts

Concept Relationships

Concepts can have inheritance, containment and reference relationships with
other concepts.

Inheritance Relationships

Definition: One concept inherits all the properties of another concept, similar to
Java, where a subclass inherits all the properties of the superclass that it extends.
You can define a hierarchy of inheritance, where each concept in the hierarchy
extends the concept above it.

The relationship is defined by the Inherits From field in the concept resource
editor.

Concepts that are related to each other directly or indirectly by inheritance cannot
have distinct properties that share a common name. Therefore, the following
restrictions apply:

e If two concepts are related by inheritance, you cannot create a new property in
one with a name that already exists in the other.

e If two unrelated concepts have properties that share a name, you cannot create
an inheritance relationship between the two concepts.

Also, BusinessEvents does not allow you to create an inheritance loop; for
example, if Concept A inherits from Concept B, Concept B cannot inherit from
Concept A.

At runtime, a rule on a parent concept also affects all its child concepts. For
example, suppose the concept Coupe inherits from the concept Car. A rule on Car
is therefore also a rule on Coupe.

TIBCO BusinessEvents Architect’'s Guide

Concept Relationships

Containment Relationships

Definition: One concept is contained inside another concept. You can define a
hierarchy of containment, where each concept in the hierarchy is contained by the
concept above it.

The relationship is defined using a ContainedConcept property in the container
concept.

When working with container and contained concepts in the rule editor, the XSLT
mapper and XPath builder show the entire hierarchy of properties.

In the rule editor, you can also use the @parent attribute to get the parent of a
contained concept instance.

Deep containment relationships can also cause memory issues. When
BusinessEvents retrieves a concept from cache, its child concepts are also
retrieved. When you modify a child concept, its parent concepts are considered to
be modified. It is recommended that you keep concept relationships shallow. See
Table 3, Containment and Reference Concept Relationship Rules, on page 38 for
these and other rules governing the behavior of concepts linked by containment,
and also reference. The table can also help you to choose which is the appropriate
type of relationship for your needs.

Containment Example: Car with Wheels, Doors, and Engine

The following example illustrates some of the rules that are listed in Table 3. To
configure a concept Car to contain a concept Wheel, you add a
ContainedConcept property, Wheels for example, whose value is an instance of
the concept Wheel. The Wheels property provides the link between the container
and contained concept:

Car (Concept) — Wheels (property) — Wheel (Concept)

The concept Car contains four instances of the contained concept Wheel, so you
define the property as an array.

The concept Car could also contain other concepts, such as Door and Engine,
defined in a similar way using ContainedConcept properties.

TIBCO BusinessEvents Architect's Guide

35

36

Chapter 3 Concepts

However, the contained concepts — Wheel, Door, and Engine — cannot be
contained by any other concept type. They can only be contained by the Car
concept. For example, the concept Wheel cannot be contained in the concept
Motorbike, if it is already contained by the concept Car.

A container concept can link to a contained concept using only one
ContainedConcept property. You can use inheritance, however, to achieve a
result similar to that gained by the general programming technique of linking to
multiple contained class properties. Suppose you extend the concept Wheel by
creating child concepts CarWheel and MotorcycleWheel. You can then use
CarWheel as the concept contained by Car, and MotorcycleWheel as the concept
contained by Motorcycle. Rules that apply to Wheel also apply to CarWheel and
MotorcycleWheel, because of inheritance.

Depending on your needs, another option would be to use a reference
relationship instead of a containment or inheritance relationship.

Reference Relationships

Definition: One concept instance references another concept instance. A concept
that is the target of a reference can itself refer to one or more other concepts.
Reference relationships are not, however, hierarchical.

The relationship is defined by a ConceptReference property in the referring
concept.

See Table 3, Containment and Reference Concept Relationship Rules, on page 38
for rules governing the behavior of concepts linked by containment or reference.
The table also helps you to choose which is the appropriate type of relationship
for your needs.

Properties of concept references cannot be used in a condition.

Reference Example: Order with SalesRep and Customer

The following example illustrates some of the rules that are listed in Table 3.

TIBCO BusinessEvents Architect’'s Guide

Concept Relationships | 37

To configure a concept Order to reference a concept SalesRep, you add a
ConceptReference property, Rep for example, whose value is the ID of concept
SalesRep. The Rep property provides the link between the referring and
referenced concepts:

Order (Concept)—Rep (property)—SalesRep (Concept)

You can also define additional reference relationships such as:
Order (Concept)—BackupRep (property)—SalesRep (Concept)
Order (Concept)—Lines (property array)—Lineltem (Concept)
Order (Concept)—Cust (property)—Customer (Concept)
Customer (Concept)—Orders (property)—SalesRep (Concept)

Reference Examples: Self Reference

A concept definition can have a reference relationship to itself. This is generally
because the instances of one concept definition can have reference relationships to
other instances of the same definition. For example:

* A ListItemconcepthas a next property which is a reference to a ListItem
concept.

* A Person concept has a spouse property which is a reference to a Person
concept.

® A Person concept has a children property which is an array of references to
Person concepts.

Rules Governing Containment and Reference Relationships

Table 3 presents the rules governing designtime and runtime use of containment
and reference relationships. By comparing the rules, you can decide which type of
relationship to use an a particular case.

TIBCO BusinessEvents Architect's Guide

Chapter 3 Concepts

Table 3 Containment and Reference Concept Relationship Rules

Containment

One concept is contained in another

Reference
One concept points to another

Designtime Rules

One container concept can contain multiple different contained concepts, and a contained concept

can itself also act as a container concept.

One referring concept (that is, the concept that has the ConceptReference property) can have a
reference relationship with multiple referenced concepts, and a referenced concept can also refer to

other concepts.

A container concept can link to a contained
concept using only one ContainedConcept
property. (Some other object oriented
languages do allow you to reuse object types in
parent object properties.)

A referring concept link to a referenced concept
using multiple ConceptReference properties.
(That is, multiple ConceptReference properties
can reference the same referenced concept.)

A contained concept can have only one
container concept.

A referenced concept can be referred to by
multiple referring concepts

Runtime Rules

When one contained instance is replaced with
another, BusinessEvents deletes the instance that
it replaced automatically. You do not have to
delete the replaced instance explicitly.

When one referenced instance is replaced with
another, BusinessEvents does not delete the
instance that it replaced automatically. It may
not be appropriate to delete the referenced
instance. If you want to delete the referenced
instance, do so explicitly.

When a contained instance is modified, the
container instance is also considered to be
modified. The reasoning can be seen by a simple
example: a change to the wheel of a car is also a
change to the car. Rules that test for modified
instances would return the Car concept instance
as well as the Wheel concept instance.

When a referenced instance is modified, the
referring instance is not considered to be
modified. The reasoning can be seen by a simple
example: a change to the support contract for a
customer is not a change to an order that
references that customer.

When a container instance is asserted or deleted,
the contained instance is also asserted or
deleted, along with any other contained
instances at lower levels of the containment
hierarchy.

When a referring instance is asserted or deleted,
the referenced instance is not also asserted or
deleted.

TIBCO BusinessEvents Architect’'s Guide

Concept Relationships | 39

When a Contained or Referred Concept Instance is Deleted

This section highlights an important difference in behavior when history is
tracked for an array property, and when history is not tracked, or the property is
not an array.

Property Settings
(ContainedConcept or ConceptReference

Effect of deleting a Contained or Referenced

Property) Concept:

Single value property, regardless of history The value of the ContainedConcept or

setting. ConceptReference property becomes null.
Multiple-value property (array), with The array entry that held the deleted concept is
History is set to 0 or 1 (that is, historical removed, reducing the array size by one.

values are not tracked).

Multiple-value property (array), whose The array entry that held the deleted concept
History is set to 2 or more (that is, historical =~ remains and its value is set to null, so that history
values are tracked). can be tracked.

For more on history, see Concept Property History on page 30.

TIBCO BusinessEvents Architect's Guide

40 | Chapter 3 Concepts

TIBCO BusinessEvents Architect’'s Guide

41

Chapter 4 Rules and Functions

This chapter considers the part that rules and functions play in a BusinessEvents
application.

Topics

* Rules, page 42
* Rule Functions, page 44

¢ Startup and Shutdown Rule Functions, page 45

TIBCO BusinessEvents Architect's Guide

42 | Chapter 4 Rules and Functions

Rules

Most rules in BusinessEvents are used for inferencing. However, regular business
rules also have a role to play.

Inferencing Rules

Inferencing rules are at the heart of BusinessEvents. Inferencing rules are
declarative, and at runtime are executed based on the outcome of each conflict
resolution cycle (see Understanding Conflict Resolution and Run to Completion
Cycles on page 51.)

A rule includes the following parts:
® A declaration of entity types
* (optionally) one or more separate conditions, which evaluate to true or false

® An action, which is eligible to execute only when all conditions evaluate to
true.

Statements in a rule action might create or modify concept instances, create and
send simple events, call functions and rule functions, and so on depending on
need.

Rule Priority and Rank

For each RTC, the rule agenda is sorted by priority and then within priority by
rank, for those rules that use the same ranking mechanism. Use of priority and
rank is optional. You can also use priority without using rank.

TIBCO recommends that you use priority and rank features only as needed; that
is, unless there is reason to set priority (or priority and rank), let the rule engine
determine the sequence of execution. This lessens the complexity of rule
maintenance, and takes advantage of the power of the inferencing engine.

Rule Priority

Because BusinessEvents rules are declarative rather than procedural, there is no
inherent order for processing. However, a priority property allows you to specify
the order in which rules in one RTC execute.

Rule Rank Within the Same Priority

If you want to also control the order in which rules with the same priority execute,

TIBCO BusinessEvents Architect’'s Guide

Rules | 43

you can use the rule rank feature. The value for the Rank property is a rule
function that returns a double. The larger the return value, the higher the ranking.
You can specify the same rule function in different rules to perform ranking across
tuples of those rules.

Other Rules

Not all rules in BusinessEvents are inferencing rules. Rules in decision tables are
business rules, executed only when the table is invoked.

Organizing and Deploying Inferencing Rules

You can organize rules depending on your project and project maintenance needs.
Rules are organized in folders. At deploy time you can select folders of rules or
individual rules (or both) for deployment.

TIBCO BusinessEvents Architect's Guide

44 | Chapter 4 Rules and Functions

Rule Functions

A rule function is a function written in the BusinessEvents rule language. All rule
functions created for a project are available project-wide.

Rule functions can take arguments and can return a value. The return type can be
set to void, indicating that the rule function does not return anything.

Like other types of functions, you can use rule functions in rule conditions and
rule actions.

You can use project settings to use rule functions as preprocessors (see Event
Preprocessors on page 17 and as startup and shutdown actions.

Virtual Rule Functions and Decision Tables

Decision tables are available with TIBCO BusinessEvents Decision Manager
add-on software.

A virtual rule function (VRF) has arguments but no body or return type. The
implementation of a virtual rule function is a decision table. Business users can
create decision tables in Decision Manager stand-alone business user interface.
Decision tables can also be created in the BusinessEvents user interface.

Users start by selecting a virtual rule function. They drag and drop entities from
an argument explorer to form rows in a decision table. Each row forms a business
rule, for example the condition area might specify that age is less than 18, and the
action area might specify that credit is refused. More technical users can use the
BusinessEvents rule language to create more complex rules.

One VRF can have multiple implementations. You can set a priority that
determines the order of execution for multiple implementations of a VRE.
Functions are also available for choosing an implementation to execute (and other
actions specific to decision tables). If there is just one implementation, you can call
the virtual rule function in the same way you call any other rule function.

TIBCO BusinessEvents Architect’'s Guide

Startup and Shutdown Rule Functions | 45

Startup and Shutdown Rule Functions

Startup and shutdown rule functions are rule functions that are configured to
execute during normal system startup and shutdown, respectively.

Startup and shutdown rule functions take no arguments and their Validity setting
must be Action (meaning they can’t be used in conditions or queries).

iy See Appendix C, Engine Startup and Shutdown Sequence in TIBCO
\!(BusinessEvents Administration for a useful reference that helps you understand
what you can do in startup and shutdown actions.

Startup Rule Startup rule functions are optional and are used to initialize the system. For
Functions example they can provide initial values for scorecards. Startup rule functions can
be used to perform more "expensive" operations so that the system is more
efficient at runtime. For example, in a startup rule function you might load
specified entities from the backing store to the cache.

Startup rule functions may trigger rule actions. However, note that
BusinessEvents executes all startup rule functions before it begins the first RTC
cycle, which completes when all rules eligible to execute have executed and no
more actions remain.

Shutdown Rule Shutdown rule functions are optional and are used to perform various actions
Functions during a normal shutdown, for example, they can send events to external
systems.

When Startup Rule Functions Execute
Startup rule function execute on startup of an active node.

In recovery situations, startup rule functions execute on failback to a failed node
that has restarted.

However, if recovery is from a situation that does not involve node failure, then
startup actions do not execute. For example, the network connection goes down.
The agent becomes inactive and fails over to another node. The connection is
restored. The agent becomes active again, but does not restart. Startup functions
do not execute on the node that became active again.

If you want to execute startup rule functions on only one node in a deployment,
use programming logic to do so.

TIBCO BusinessEvents Architect's Guide

46 | Chapter 4 Rules and Functions

Creating Entities With a Startup Action in a Multi-Engine Project

Startup (and shutdown) rule functions execute in all active agents. When
multi-engine (multi-agent) functionality is used, ensure that multiple agents do
not attempt to create the same entity. See Designing for Concurrency on page 96
for more information.

ActiveMatrix BusinessWorks Containers

In ActiveMatrix BusinessWorks integration projects, if ActiveMatrix
BusinessWorks is running as the container, do not specify any startup actions that
result in starting or invoking an ActiveMatrix BusinessWorks process.

Note that after the ActiveMatrix BusinessWorks engine is initialized, processes
that invoke BusinessEvents rule functions will fail if the BusinessEvents engine
has not finished starting up. For example, an ActiveMatrix BusinessWorks
process that listens to a JMS queue may attempt to invoke a BusinessEvents rule
function before the BusinessEvents engine has started up.

TIBCO BusinessEvents Architect’'s Guide

47

Chapter5 Run-time Inferencing Behavior

This chapter explains rule evaluation in the inferencing engine and related topics.

Topics

* Runtime Architecture and Flow, page 48

* Understanding Conflict Resolution and Run to Completion Cycles, page 51

TIBCO BusinessEvents Architect’'s Guide

48 | Chapter 5 Run-time Inferencing Behavior

Runtime Architecture and Flow

At runtime, one or more nodes (JVMs) running one or more BusinessEvents
inference agents process the incoming events using a Rete network as the
inferencing engine, and a set of rules that are triggered by conditions in incoming
events. One or more event stream processing query agents can query incoming
events.

BusinessEvents has two layers of functionality:

* Rules Evaluation and Execution based on the state and value of objects and
incoming events. This functionality is achieved using one or more inference
agents configured with the appropriate rules. Each inference agent executes
rules using one or more Rete networks to optimize performance and provide
rule inferencing capabilities.

* Lifecycle Management of Objects and Events including distribution,
clustering, persistence and recoverability. Various options are available to
achieve the levels of functionality appropriate for business needs, from
in-memory only storage of objects, to advanced caching features and a
backing store (database). Figure 4 shows cache object management.

In addition, when TIBCO BusinessEvents Event Stream Processing software is
used, a third layer is added: queries and pattern matching. A query agent enables
visibility into the event stream and cache data. Pattern matching features enable
actions to be taken on recognition of a pattern of events, or failure to complete a
pattern of events.

TIBCO BusinessEvents Architect’'s Guide

Runtime Architecture and Flow | 49

Figure 4 TIBCO BusinessEvents Architecture

Enterprise and External Resources

¥
Channels
| 1
Object Manager l l
Ontology Objects Rete Network
&’3 o Concept ',fz Rules
pts o
0% o Scorecards r\ o State Machine Rules
o Events o Object References
o Time Events \/
o Domain Models r ‘ |
Functions N4
Ontology Object ‘
Cache Ontology Standard and Custom
L Functions Functions

4 |

. Backing Store

Enterprise and External
Resources

Rule Evaluation and Execution

Information from enterprise applications and other sources flows into
BusinessEvents through channels as messages. Messages represent the events that
BusinessEvents processes based on event definitions (event types). Events can be
filtered (ignored), preprocessed into concepts or cached concepts, or asserted into
the rule engine's working memory.

In an inference agent, all the rules whose conditions match information in the
events (as well as concepts, if specified in the rule conditions) are assembled into a
rule agenda and the first rule executes. If a rule successfully executes, its rule
actions create and modify the objects in working memory. The rule agenda is
derived from an internal runtime memory structure known as a Rete network
(because it uses a derivative of the Rete algorithm).

BusinessEvents rule engine is a forward-chaining inferencing engine. Every time
the facts (concepts, score cards, and events) in its working memory change — due
to rule actions or the arrival of new events — the inferencing engine updates the
rule agenda. As a result, new rules are available to execute while others are now
unavailable. The selection of which rule to execute first from a choice of several is

TIBCO BusinessEvents Architect’'s Guide

50 | Chapter 5 Run-time Inferencing Behavior

called conflict resolution. The agenda process repeats until there is no more new
information to process. This is known as RTC, or run to completion. See
Understanding Conflict Resolution and Run to Completion Cycles on page 51 for
more details.

(Note that State Machine, is present only in TIBCO BusinessEvents Data
Modeling add-on software).

TIBCO BusinessEvents Architect’'s Guide

Understanding Conflict Resolution and Run to Completion Cycles | 51

Understanding Conflict Resolution and Run to Completion Cycles

Run to completion
cycle

Conflict resolution
cycle

This section helps you to understand what triggers rules to execute, and why a
rule may not execute, so that you can design rules more effectively.

A run to completion, or RTC, cycle generally begins when an external action causes
changes to the Rete network. It ends when there are no more rule actions to
execute as a result of that initial change (and any subsequent changes caused by
rule actions). This is also known as forward chaining, or inferencing. During one RTC
changes can occur in the Rete network, but no new external actions can affect it.

Figure 5 Run to Completion Cycle

Run to Completion Cycle

One Conflict Resolution Cycle

BusinessEvents
executes the first rule
action on the agenda,
and removes it from
the agenda.

BusinessEvents
builds the
agenda

External action
changes Rete
network

Does the action
change Rete
network?

Yes

BusinessEvents
refreshes the
agenda

RTC Yes Is the agenda No
ends empty?

One RTC is composed of one or more conflict resolution cycles. A conflict resolution
cycle begins when BusinessEvents builds (or refreshes) a rule action agenda, a list
of all rules that are eligible to fire. The agenda is used to determine which rule
action to execute next. The agenda is built based on the following information:

* The scope and conditions of the rules in the project.

e The current contents of the Rete network.

TIBCO BusinessEvents Architect’'s Guide

52

Chapter 5 Run-time Inferencing Behavior

A More Detailed
Look

&

Next conflict
resolution cycle

One conflict resolution cycle ends when a rule action is executed (or the agenda is
empty). If the rule action changes the contents of the Rete network, another
conflict resolution cycle begins.

The Rete network changes The first of the conflict resolution cycles is initiated by
change in the Rete network, caused by an external action such as a message
arriving at a destination.

All subsequent changes to the Rete network during one RTC occur because of rule
actions.

BusinessEvents builds the agenda To build the rule action agenda,
BusinessEvents examines all rules that are newly true because of the change to
Rete network and compares them with rule dependencies. The agenda’s entries
are ordered according to rule priority, rule rank, and other criteria.

See How the Rete Network is Built on page 53 and How a Rule Becomes Newly
True on page 54 for more details.

BusinessEvents executes the first rule on the agenda and removes it from the
agenda As a result, one of the following occurs:

® The rule action does not change the Rete network and BusinessEvents
executes the next rule entry in the agenda (if there is one).

OR
¢ The rule action does change the Rete network and BusinessEvents refreshes
the rule action agenda (see next section).
Events created during an RTC are not sent to destinations until the entire RTC is
complete.
Similarly, objects are not written to cache until the entire RTC is complete.
BusinessEvents refreshes the rule action agenda If a rule action changes the

contents of the Rete network, the agenda is refreshed, beginning a new conflict
resolution cycle. When the agenda is refreshed, any of the following can occur:

* Rules that have become newly true are added to the agenda.
* Rules that have become false are dropped from the agenda.

* Rules that were newly true at the last conflict resolution cycle and are still true
remain in the agenda. (In other words, rules are newly true for the duration of
the run to completion cycle unless they become false.)

As a result, either the agenda is empty and the RTC ends, or the first rule in the
refreshed agenda is executed, ending this conflict resolution cycle and beginning
the next one.

TIBCO BusinessEvents Architect’'s Guide

Understanding Conflict Resolution and Run to Completion Cycles | 53

An empty agenda An empty agenda ends the RTC At some point, no more actions remain to be
marks the end of ~ executed. The conflict resolution has run to completion. The RTC is over. Now
one RTC begins the post RTC phase. At various points during this phase the following
actions happen (depending on how the project has been configured):

¢ Events are sent to destinations.
¢ Cache OM: Changes are saved to the cache and written to the backing store.

* Cache OM, cache-only cache mode: All cache-only objects are removed from
the Rete network. See Loading Cache-Only Objects into the Rete Network,
page 93 for important information about working in cache only mode.

¢ Persistence OM: One transaction is completed and saves changes (enabling
rollback in case of failures).

¢ Profiler: profiler data is updated.

How the Rete Network is Built

Before any data enters the system, BusinessEvents builds the Rete network, which
embodies all the rule dependencies, using the rule conditions (if any). All the
dependencies in a rule are called its dependency set.

A Rule’s Dependency Set

A rule’s dependency set is everything needed to determine the truth of all the
conditions. For example, a rule has this condition:

c.name == "Bob";

Where c is a concept of type /Customer. In this case, the dependency set of the
rule contains only the name property of the concept type /Customer.

As another example, suppose a rule has these conditions:

b.num<10;
hasAGoldMembership(c);

Where b is another concept type and num is one of its properties. The dependency
set for this rule is b.num and c.

Testing the Truth of a Rule’s Conditions Using the Dependency Set

During a conflict resolution cycle, BusinessEvents tests each rule’s dependency
set against the new set of facts. If the facts match the rule dependencies, the rule
conditions are all true and the rule action is added to the rule action agenda. The
structure of the Rete network enables very quick matching between facts and rule
dependency sets.

TIBCO BusinessEvents Architect's Guide

54 | Chapter 5 Run-time Inferencing Behavior

If BusinessEvents cannot calculate dependencies on the properties of an entity
from the rule condition, for example if you pass an entity to a function,
BusinessEvents evaluates the rule every time the entity or its properties changes.

How a Rule Becomes Newly True

A rule is true if objects in the rule scope exist in the Rete network and if all of the
rule conditions are met by objects in the Rete network. However when building
the rule action agenda, BusinessEvents examines only rules that are newly true.

A rule is newly true if it has become true due to a change in the Rete network
during the current RTC.

In the case of a rule with no conditions, assertion of an object in the scope
(declaration) of the rule makes the rule newly true.

A rule that was false and becomes true because of the changes in the Rete network
during the RTC is newly true.

Less obviously, a rule that was already true can also become newly true. For
% example, a rule may already be true because a condition that specifies a range is
satisfied. It becomes newly true if the property value in the Rete network changes
but is still within the range. For example, the condition ¢ .b<10; is true if the Rete
network includes a c.b with value 9. It is newly true if an action at the end of a
conflict resolution cycle changes the value from 9 to 8.

A rule remains newly true until it is executed or it is removed from the agenda, or
the RTC ends.

A rule is removed from the agenda because a change in the Rete network during
an RTC means that the facts no longer satisfy its dependency set, for example
because a concept instance is deleted or a concept property changes value.

Order of Evaluation of Rule Conditions

The order in which conditions are evaluated is determined internally by
BusinessEvents. Using a rule’s dependency set, BusinessEvents evaluates the
following kinds of rule conditions in the order shown, to perform the evaluation
efficiently.

1. Filters, that is, conditions that only involve one scope element (object). Filters
are the least expensive operations, in terms of processing cost. For example:

Customer.type = "gold";
Customer.numOrders > 50;

TIBCO BusinessEvents Architect’'s Guide

Understanding Conflict Resolution and Run to Completion Cycles | 55

2. Equivalent join conditions, that is, conditions that compare two expressions
using == where each expression involves one (different) object from the scope.
Equivalent joins take more processing than filters, but less than
non-equivalent joins. For example:

Customer.accountMgr == AccountManager.id;

3. Non-equivalent join conditions, that is, conditions involving two or more scope
elements other than equivalent joins. These are done last because they are the
most expensive in terms of processing cost. For example:

Customer.numOrders < AccountManager.threshold;
MyFunctions.match(Customer, AccountManager);

To optimize performance, do as much filtering as possible, to reduce the number

N of times BusinessEvents evaluates a join condition.

Enforcing the Order of Condition Evaluation
To enforce the order of evaluation between two or more conditions, put them on
the same line (that is, in one statement ending in a semicolon) joined by the logical
operator &&.
Be aware of some differences in execution when you combine conditions. For
example, consider the following separate conditions. A null pointer exception
might be thrown if concept . containedConcept is null, if the second condition
was checked before the first:
concept.containedConcept != null;
concept.containedConcept.property == "test";
You can, however, combine the conditions as follows:

concept.containedConcept != null && concept.containedConcept.property == "test";

In this case, a null pointer exception is not thrown when
concept.containedConcept is null because it is always checked first.

TIBCO BusinessEvents Architect's Guide

56 | Chapter 5 Run-time Inferencing Behavior

TIBCO BusinessEvents Architect’'s Guide

Chapter 6

Topics

57

Object Management Options

This chapter introduces object management and fault tolerance options in
BusinessEvents so you can select the appropriate options for your needs.

* Object Management (OM) Overview, page 58
® Berkeley DB Object Manager, page 62

® Object Management and Fault Tolerance Scenarios, page 64

TIBCO BusinessEvents Architect’'s Guide

58 |Chapter6 Object Management Options

Object Management (OM) Overview

&

&

Object management refers to various ways that BusinessEvents can manage the
ontology object instances created by BusinessEvents.

Use of the Cache manager enables rich functionality and is generally chosen for
enterprise applications. The In Memory object manager can also play a useful
secondary role in testing, and as an event router.

Note that you can’t mix object managers in one BusinessEvents application.

The goals of object management are as follows:

* Object Persistence Enables objects to be available for reuse, either in memory
caches or in databases. Objects can also be recalled into the Rete network, thus
extending the possible functionality of your system.

e Data Recovery Ability to survive failures without loss of data.

® Object Partitioning The ability to partition the objects among multiple JVMs.
and to handle notifications of object additions, deletions, and changes to all
the agents, enabling them to remain synchronized

® Object Clustering The ability to maintain multiple copies of each object in
different nodes (JVMs) such that if one node fails, another node can take over
(backup-count).

* Message Acknowledgment See Message Acknowledgment on page 21 for
information on the way each object management option handles message
acknowledgment.

The Cache Object Manager

In order to understand these options you should understand these terms:

Processing Unit: A processing unit deploys as a BusinessEvents engine. One
engine runs in one JVM.

Agent: Each processing unit contains one or more agents of different types. The
main types are inference agents, which perform the inferencing work, and cache
agents, which manage the objects.

Using cache clustering technology, object data is kept in memory caches, with
redundant storage of each object for reliability and high availability. Within a
cache cluster, processing units deployed as cache agents manage the data and
handle recovery. Cache data is shared by all agents in the cluster.

TIBCO BusinessEvents Architect’'s Guide

Object Management (OM) Overview | 59

Recovery from total failure is available if you implement a persistent backing
store. Recovery from failure of individual processing units (JVMs) is available
without a backing store. Optional cache management features (modes) provide
fine-grained controls for managing the memory footprint.

Fault tolerance is provided at the inference agent level. Agents belonging to the
same agent class can act in a traditional fault tolerant manner, where active agents
take over for inactive agents. Fault tolerance can also be provided implicitly,
because all active agents in the same class share the workload. There may be no
need to keep any agents inactive. It depends on your needs.

Cache-based object management is generally the best choice for CEP systems. It
offers richer functionality, and is the method that receives most focus in these
chapters.

Cache-Related Features Cache-based object management enables additional

% features, such as features for querying the cache (additional querying features are
available with TIBCO BusinessEvents Event Stream Processing add-on software),
and concurrency features. Rules can also take advantage of the availability of
persisted data. Load balancing of messages from a queue is also available.

Cache OM offers finer-grained object management options, at the object level. See
Chapter 7, Distributed Cache OM, on page 69.

For implementation details, see TIBCO BusinessEvents Administration.

The In Memory Object Manager

The In Memory object manager does not persist object instances. They are
maintained in local JVM memory only. Objects are managed by standard JVM
features. This is the only section on In Memory manger, because if its simplicity.

In Memory OM does not provide data recovery in case of system failure. The
working memory on each system is not synchronized. Object state is not
maintained. At startup after a failure, object state is initialized to the application’s
starting state.

TIBCO BusinessEvents Architect’'s Guide

60

Chapter 6 Object Management Options

The In Memory option is a good choice for development and testing
environments. In production environments, the In Memory option is best used for
stateless operations and transient objects. An independently deployed In Memory
application can act as an event router, directing events to agents in a cache cluster
for processing.

For Fault Tolerance If you require fault tolerance with an in memory only system,
then configure for Cache OM, but use the Memory Only mode for all objects. (In
Memory OM itself does not support fault tolerance.) Because data is not persisted,
it is lost during failover and failback. However, the engine process continues.

Another advantage of this approach is that the in memory processing units can
participate in the larger cluster, instead of being a separately deployed
application.

The Berkeley DB (Persistence) Object Manager

S

* Do not confuse Berkeley DB object manager with cache plus backing store
object management. Both use a database, but are otherwise quite different.

¢ Berkeley DB object manager is deprecated in BusinessEvents 4.0.0.

Object data is periodically written to a data store on disk. Each agent has its own
data store. This option enables recovery of objects from the persisted state, but
does not support built-in fault tolerance mechanisms. Custom means can be used
to provide fault tolerance.

Summary of Object Management Features

OM Option

In Memory

Berkeley DB

The following table illustrates which features are supported for each object
management option.

Fault
Tolerance

No (Use
Cache with
Memory
Only objects)

Data

Recovery Partitioning Clustering

Persistence

Yes Yes No No (Custom)
(snapshot)

TIBCO BusinessEvents Architect’'s Guide

Object Management (OM) Overview | 61

Data
Recovery

Fault

OM Option Persistence Tolerance

Partitioning Clustering

Yes Yes Yes Yes Yes (at agent

Cache level)

Migrating to a Different Object Management Method

You can use In Memory object management in early phases of development. In
later phases, you can implement Cache OM and take advantage of features it
makes possible.

You can also migrate a production system from Persistence to Cache. See TIBCO
BusinessEvents Installation, Chapter 6, Migrating Persistence Data to Backing
Store.

Perform tests after changing object management method As with any change in
% configuration, be sure to perform thorough testing before going into production.

TIBCO BusinessEvents Architect’'s Guide

62 |Chapter6 Object Management Options

Berkeley DB Object Manager

&

Berkeley DB OM (formerly known as Persistence-Based OM) is deprecated in this
release. Do not use this OM in new projects. Instead use Cache Manager with
backing store. Follow procedures in TIBCO BusinessEvents Installation to migrate
data. You must of course configure the other features of Cache Manager as well.

As illustrated in the figure on this page, the Berkeley DB object management
option persists a snapshot of the working memory for each inference agent (rule
session) in the deployed system. The data for each inference agent is persisted to a
data store at specified intervals.

A small cache for each inference agent ensures that currently used objects are
available in memory for improved performance. You can control the size of the
cache (see Caches Used for Persistence-Based Object Management in TIBCO
BusinessEvents Administration).

The persistence data store uses

I

Internal : (
Data Store Berkeley DB and is provided and
managed by BusinessEvents.
JVM . .
Internal Persistence-based object
Data Store management provides data recovery

in the case of a complete system

failure. When the system comes up
after a system failure,
BusinessEvents restores the working
memory (or memories) to the last
checkpoint state. It also receives all
of the previously unacknowledged
messages.

Legend

BusinessEvents Server
I (Engine)

.{: Rete Network (Working

Memory — Rule Session) Data in memory at time of failure

mmmm Persistence Data Cache and not yet written to disk is lost.

TIBCO BusinessEvents Architect’'s Guide

Berkeley DB Object Manager | 63

Use of the Berkeley DB option affects performance, due to the disk writes
required. BusinessEvents provides parameters — checkpoint interval and
property cache size — to help you tune performance. You can also determine how
many objects to keep in the data cache, in order to manage JVM memory usage for
the application for better performance.

Memory Usage Tips

: * The persistence database can be used purely as virtual memory. You can
disable recovery features if you don’t need them.

* You can tune memory usage by setting the number of properties and number
of events to keep in JVM memory,. You can also set aside a percentage of JVM
memory for use by the persistence layer.

* For services that need a lot of memory, consider running each rule session
(inference agent) in a separate engine.

See Cluster Tab — Berkeley DB Manager Settings and Properties in TIBCO
BusinessEvents Administration for details.

Fault Tolerance With Berkeley DB Manager

Fault tolerance features for Berkeley DB object management are not provided by
BusinessEvents. You can, however, implement a custom fault tolerance solution
using TIBCO Rendezvous and TIBCO Hawk or third-party fault-tolerance tools.
For example, you could set up two servers that each point to the same persistence
data store, and you could write rules in your fault-tolerance tool to detect failure
and take appropriate steps (for example, removing any lock files) when failing
over to the secondary server.

If you will provide a custom fault tolerance solution, do not enable any built-in
% BusinessEvents fault tolerance features. They are not used with your custom
solution.

TIBCO BusinessEvents Architect’'s Guide

64 |Chapter6 Object Management Options

Object Management and Fault Tolerance Scenarios

The tables in this section help you understand how fault tolerance and object
management options work in various deployment scenarios to maintain data
integrity. The tables explain what is possible in each type of object management
given the following conditions:

Processing Units (PUs) One or multiple PUs, where a PU is a BusinessEvents
server running in one JVM.

Agents One or multiple inference agents running in a PU. Each inference agent is
configured by an agent class in the CDD. An inference agent has one or more Rete
networks. See Designing for Concurrency on page 96 for related details.

When implementing a recovery strategy you must take care to maintain the
integrity of stateful objects. Concepts and scorecards are stateful objects and must
maintain state across inference agents. Not all options provide that option.

Cache OM with Memory Only Mode on All Objects and Fault Tolerance
Scenarios

In Memory object management does not support fault tolerance. This table
presents options available if you use Cache OM with Memory Only mode set on
all objects, which provides fault tolerance for memory only objects.

Table 4 Cache OM with Memory Only Mode on All Objects and Fault Tolerance Scenarios

PUs

Agents With Fault Tolerance Configuration No Fault Tolerance Configuration

1PU (N/A) Data is isolated to a single PU (JVM).

1 Agent No recovery.

1PU (N/A) No recovery.

n Agents

n PUs Data is isolated in each PU. Failover and Data is isolated to each PU. No
failback are allowed. Object state isnot ~ recovery.

1 Agent

preserved or transferred.
Recommended only for stateless
operations.

TIBCO BusinessEvents Architect’'s Guide

Object Management and Fault Tolerance Scenarios

Table 4 Cache OM with Memory Only Mode on All Objects and Fault Tolerance Scenarios (Cont’d)

PUs

Agents
n PUs

n Agents

With Fault Tolerance Configuration

Data is isolated in each multi-agent PU.

Object state is not maintained during
failover and failback. Recommended
only for stateless operations.

No Fault Tolerance Configuration

No recovery.

Berkeley DB Object Management and Fault Tolerance Scenarios

S

Fault Tolerance with Persistence-Based Object Management As explained in the
table below, the BusinessEvents built-in fault tolerance feature is not supported
for use with persistence-based object management. You can implement a custom

solution, however.

Table 5 Persistence and Fault Tolerance Scenarios

PUs
Agents

With Fault Tolerance Configuration

No Fault Tolerance Configuration

1PU (N/A) Data is isolated in a single persistence
1 Agent database. On recovery, object state is
recovered to the last checkpoint.
1PU (N/A) In all deployment scenarios, each
n Agents agent’s data is isolated in a separate
persistence database. On recovery,
n PUs Not supported with BusinessEvents object state is recovered to the last
A built-in fault tolerance. Automatic checkpoint of the appropriate database.
gent failover and failback is not possible due
to presence of lock files. Use a custom
solution.
n PUs Not supported with BusinessEvents
built-in fault tolerance. Automatic
n Agents

failover and failback is not possible due
to presence of lock files. Multiple write
operations by agents on the primary PU
could lead to data inconsistency. Use a
custom solution.

TIBCO BusinessEvents Architect’'s Guide

65

66 |Chapter6 Object Management Options

Cache Object Management and Fault Tolerance Scenarios

In all cases it is assumed that dedicated cache agents are also running. Fault
tolerance of the engine process refers to inference agents only. See Distributed
Cache and Multi-Agent Architecture and Terms on page 76.

If you use multi-engine (multi-agent) features, fault tolerance is implicit. When all
agents in an agent group are active, if any active agent fails, remaining agents in
the group automatically handle the work load.

In all cases, in the event of total system failure, use of a backing store ensures
recovery of data written to the backing store.

Table 6 Cache and Fault Tolerance Scenarios

PUs

Agents With Fault Tolerance Configuration No Fault Tolerance Configuration
1PU (N/A) (N/A)
1 Agent
1PU (N/A) Each agent in the same PU is a (N/A)
different agent, not part of the same
n Agents
agent group.

TIBCO BusinessEvents Architect’'s Guide

Object Management and Fault Tolerance Scenarios | 67

Table 6 Cache and Fault Tolerance Scenarios (Cont’d)

PUs . . - - -
Agents With Fault Tolerance Configuration No Fault Tolerance Configuration
n PUs Fault tolerance is at the agent level. Multi-agent mode: N/A. Fault tolerance
1 Agent Multi-agent mode: If one or more is implicit.
agents in a group fails, the load is Single-engine mode (deprecated

distributed among remaining agents in feature): N/A
that group. All agents can be active or

some can be inactive. Configuration

uses a MaxActive property and a

Priority property.

Single-engine mode (Deprecated
feature): Priority setting determines
which agent in an agent group is active,
as well as the failover and failback
order.

Cluster data is shared between agents in
all groups across all PUs, using the
cache cluster.

If the number of cache object backups is
one, one cache agent (at a time) can fail
with no data loss. If the number of
backups is two, two servers can fail, and
SO on.

Because caches exist in memory only,
recovery is not available in the case of a
total system failure. All data in each
JVM memory is lost in a total system
failure.

In the event of total system failure, use
of a backing store ensures recovery of
data written to the backing store.

n PUs Same as n PUs 1 agent. Each of the Multi-agent mode: N/ A. Fault tolerance
agents in one PU is fault tolerant with is implicit.

the agents in the same agent group,

which are deployed in other PUs.

n Agents

TIBCO BusinessEvents Architect’'s Guide

68 | Chapter 6 Object Management Options

TIBCO BusinessEvents Architect’'s Guide

Chapter 7

Topics

69

Distributed Cache OM

Cache object management (OM) is the standard choice for most BusinessEvents
deployments. Distributed cache architecture has been chosen as the most
appropriate for BusinessEvents.

This chapter provides an overview of Cache OM and concurrency features
concurrency can be achieved using multi-agent features or concurrent Rete
features or both.

Concurrent Rete does not require Cache OM, but multi-agent features do.

More detailed information is provided in the chapters following.

¢ Cache Object Management Feature Overview, page 70

® Characteristics of Distributed Caching Schemes, page 73

¢ Distributed Cache and Multi-Agent Architecture and Terms, page 76
® Cache Cluster Discovery, page 80

* Load Balancing and Fault Tolerance of Inference Agents, page 82

¢ Cache OM with a Backing Store, page 84

® Cache Manager Options at the Entity Level, page 86

TIBCO BusinessEvents Architect’'s Guide

70 | Chapter 7 Distributed Cache OM

Cache Object Management Feature Overview

Cache-based object management is generally the best choice for a CEP system,
and a distributed cache is generally the most appropriate, especially when used
with a backing store (database). All the provided caching schemes use a
distributed cache and are configured for production as shipped.

For configuration of other caching schemes, and for advanced configuration of
the provided schemes, consult the TIBCO BusinessEvents Cache Configuration Guide
online reference.

Cache OM is a requirement for other features such as multi-agent and concurrent
Rete features (as explained in Chapter 9, Concurrency and Project Design, on
page 95).

Distributed Cache Characteristics

In a distributed cache, cached object data is partitioned between the PUs (JVMs)
in the cache cluster for efficient use of memory. By default one backup of each
item of data is maintained, on a different PU. You can configure more backups of
each object to be kept on different PUs to provide more reliability as desired, or to
disable maintenance of backups.

Distributed caching offers a good balance between memory management,
performance, high availability and reliability. It also offers excellent system
scaling as data needs grow. See Characteristics of Distributed Caching Schemes
on page 73 for more details.

Scaling the System

To scale the system’s capacity to handle more data, add more cache agents, which
are PUs specialized to handle cache data only (see Cache Agents (Storage Nodes)
on page 78).

To scale the systems capacity to process more data, add more inference agents (see
Inference Agents on page 77).

In addition, each entity can have a different cache mode, to help you balance
memory usage and performance (see Between Rete Network and Cache: Cache
Modes on page 87).

TIBCO BusinessEvents Architect’'s Guide

Cache Object Management Feature Overview | 71

Reliability of Cache Object Management

When you use Cache object management without a backing store, objects are
persisted in memory only, and reliability comes from maintaining backup copies
of cached objects in memory caches.

To provide increased reliability in the case of a total system failure, add a backing
store.

See Characteristics of Distributed Caching Schemes on page 73 for more details.

Concurrency — Multi-Agent and Concurrent Rete Features

When you use cache object management (generally with a backing store) then you
can also use multi-agent features.

You can also use concurrent Rete with any OM option.

Multi-Agent Concurrency

Multiple inference agents can run concurrently in either of two ways. In both
cases the agents share the same ontology and same cache cluster:

* Multiple instances of the same inference agent, each running on different PUs,
form an agent group. This provides load balancing of messages arriving from
queues, as well as fault tolerance.

¢ Different agents in different PUs work concurrently to distribute the load on
the JVM processes. This results in quicker conflict resolution and the ability to
handle a heavy incoming message load. For example, Agent X connects to
Agents Y and Z to create rule chaining across a set of PUs. Each agent uses
different sets of rules, such as rules for fraud, upsell and cross-sell. All agents
operate against the same cluster and share the same ontology. The output
from one agent may trigger rules deployed in another agent, causing forward
chaining of the work load

Concurrent Rete

Another way to achieve concurrency is to use the multi-threaded Rete feature.
This feature can be used with or without cache. For example, suppose one
application routes messages to multiple other agents in other applications. It
might use In Memory object management, because there is no need to persist or
reuse data, and also use concurrent Rete for high performance.

TIBCO BusinessEvents Architect’'s Guide

72 | Chapter 7 Distributed Cache OM

Concurrency and Locking

With agent or RTC concurrency, you must use locking: in both cases multiple
RTCs are being processed at the same time, and data must be protected as in any
concurrent system. See Designing for Concurrency on page 96 for more details.

Where Object Management is Configured

Object management is configured using the Cluster Deployment Descriptor, an
XML file that you edit in BusinessEvents Studio using a provided editor.

See Chapter 2, CDD Configuration Procedures and Chapter 3, Cluster
Deployment Descriptor Reference in TIBCO BusinessEvents Administration for
details.

TIBCO BusinessEvents Architect’'s Guide

Characteristics of Distributed Caching Schemes | 73

Characteristics of Distributed Caching Schemes

The cache characteristics are defined by a caching scheme. The provided caching
schemes are all distributed caching schemes, and the appropriate scheme is
chosen internally based on configuration choices. This section explains in some
more detail the advantages of a distributed scheme over a replicated scheme, in
which all data is replicated in all JVMs.

In a distributed cache, cached object data is partitioned between the storage PUs
in the cache cluster for efficient use of memory. This means that no two storage
PUs are responsible for the same item of data. A distributed caching scheme has
the following characteristics:

® Data is written to the cache and to one backup on a different JVM (or to more
than one backup copy, depending on configuration). Therefore, memory
usage and write performance are better than in a replicated cache scheme.
There is a slight performance penalty because modifications to the cache are
not considered complete until all backups have acknowledged receipt of the
modification. The benefit is that data consistency is assured.

Each piece of data is managed by only one cluster node, so data access over the
| network is a "single-hop" operation. This type of access is extremely scalable,
because it can use point-to-point communication and take advantage of a
switched network.

* Read access is slightly slower than with replicated cache because data is not
local. The cache is distributed between the nodes.

e Data is distributed evenly across the JVMs, so the responsibility for managing
the data is automatically load-balanced across the cluster. The physical
location of each cache is transparent to services (so, for example, API
developers don’t need to be concerned about cache location).

* You can add more cache agents as needed for easy scaling.

* The system can scale in a linear manner. No two servers (JVMs) are
responsible for the same piece of cached data, so the size of the cache and the
processing power associated with the management of the cache can grow
linearly as the cluster grows.

Overall, the distributed cache system is the best option for systems with a large
data footprint in memory.

TIBCO BusinessEvents Architect’'s Guide

74 | Chapter 7 Distributed Cache OM

Failover and Failback of Distributed Cache Data

&

It is not necessary to use fault tolerance for cache agents: the cluster transparently
handles failover of data to other cache agents if one cache agent fails.

The object manager handles failover of the cache data on a failed cache agent and
it handles failback when the agent recovers.

When a storage node (that is a node hosting a cache agent) fails, the object
manager redistributes objects among the remaining storage nodes using backup
copies, if the remaining number of cache nodes are sufficient to provide the
number of backups, and if they have sufficient memory to handle the additional
load.

However, because this is a memory-based system, note that if one node fails, and
then another cache node fails before the data can be redistributed, data loss may
occur. To avoid this issue, use a backing store.

If redistribution is successful, the complete cache of all objects, plus the specified
number of backups, is restored. When the failed node starts again, the object
management layer again redistributes cache data.

Specifically, when a cache agent JVM fails, the cache agent that maintains the
backup of the failed JVM’s cache data takes over primary responsibility for that
data. If two backup copies are specified, then the cache agent responsible for the
second backup copy is promoted to primary backup. Additional backup copies
are made according to the configuration requirements. When a new cache agent
comes up, data is again redistributed across the cluster to make use of this new
cache agent.

Because they store data in memory, cache-based systems are reliable only to the
extent that enough cache agents with sufficient memory are available to hold the
objects. If one cache agent fails, objects are redistributed to the remaining cache
agents, if they have enough memory. You can safely say that if backup count is
one, then one cache agent can fail without risk of data loss. In the case of a total
system failure, however, the cache is lost.

Limited and Unlimited Cache Size

The size of a cache can be unlimited or limited. Limited cache size is used when a
backing store is available to hold the evicted cache entries. (see Specifying
Limited Cache Size in TIBCO BusinessEvents Administration).

TIBCO BusinessEvents Architect’'s Guide

Eviction Policy

Characteristics of Distributed Caching Schemes

Performance is best when all the data is in cache. But if the amount of data
exceeds the amount of memory available in the cache machines, you must limit
the cache size and use a backing store to store additional data. Depending on the
application needs, you can use the backing store as the main storage and retrieve
objects from the backing store as needed.

With a limited cache, objects are evicted from the cache when the number of
entries exceeds the limit. The default eviction policy is a hybrid policy:

Hybrid eviction policy chooses which entries to evict based the combination
(weighted score) of how often and recently they were accessed, evicting those that
are accessed least frequently and were not accessed for the longest period first.

The evicted objects are transparently loaded from the backing store when needed
by agents.

Only use an unlimited cache if you deploy enough cache agents to handle the
data. Otherwise out of memory errors may occur.

Only use a limited cache size if you have configured a backing store. Evicted

objects are lost if there is no backing store.

For backing store configuration, see Chapter 13, JDBC Backing Store
Configuration in TIBCO BusinessEvents Administration.

TIBCO BusinessEvents Architect’'s Guide

75

76 | Chapter 7 Distributed Cache OM

Distributed Cache and Multi-Agent Architecture and Terms

The drawing below illustrates a typical Cache OM architecture.

Figure 6 Cache Object Management and Fault Tolerance Architecture

Backing Legend
Store PU Processing Unit
IA Inference Agent
PU 1 PU 2 PU 3 PU4 | § CA Cache Agent
CA1 CA2 CA3 CA4 > Object Management
3 EE Layer
S
@ Rete Network (Working
= Memory)
()
3
~ ~— Channels (/0
o= (o)
£ LB Load Balanced
A 4 A \ 4 D Destinations
() Network >
PUS5 PU 6 PU7
IA1 «-LB IA1 «-LB 1A 1
4 i _ Agent Group
== == == AT
IA2 <-LB17> N Inactive 1A 2 Agent Group
[&3 [e EEI M == ¥
D2 I/0 /0 -1 D2 10
- | D1 o= - | D1 o= - | D1 o=

O Vessaging)

Different BusinessEvents processing units and agents within the processing units
have specialized roles in a Cache OM architecture. Sections below provide more
detail.

The drawing illustrates one possible configuration, and assumes destinations that
are JMS queues, for load balancing.

TIBCO BusinessEvents Architect’'s Guide

Distributed Cache and Multi-Agent Architecture and Terms | 77

Agent group IA1 has three active agents, and agent group IA2 has two load
balanced agents and one inactive agent for fault tolerance. Each agent group is
listening on a different destination. See Load Balancing and Fault Tolerance of
Inference Agents on page 82 for details.

Cache Clusters
A cache cluster is a logical entity that provides the following services:

* Cache Management: Partitioning, replication, distribution and failure
recovery (see Reliability of Cache Object Management on page 71).

* Fault Tolerance (of data): Notifications to inference agents so that the state of
each agent’s working memory remains synchronized with the others, so any
agent in the cluster can take over in event of a JVM failure.

You define the cluster member machines, processing units, and agents in the
Cluster Deployment Descriptor (CDD) which is an XML file, configured in the
CDD editor in BusinessEvents Studio. See CDD Configuration Procedures in
TIBCO BusinessEvents Administration.

Cache Cluster Processing Units (Nodes)

Each processing unit in a cache cluster runs in an instance of a Java virtual
machine (JVM). It hosts one or more BusinessEvents agents. It is also known as a
node in the TIBCO BusinessEvents Cache Configuration Guide.

Inference Agents

An inference agent executes rules according to the rule agenda created using the
Rete network. In Cache OM systems, inference agents are connected to the cache
cluster, enabling fault tolerance of engine processes and cache data, as well as
load balancing (with queues).

At design time, you configure an inference agent class with a selection of rules
from the project, and a selection of destinations, and, as needed, a selection of
shutdown and startup functions. Instances of an agent class deploy as an agent
group. Each agent in a group runs in a different processing unit, concurrently, to
enable load balancing (when events come from a queue) and fault tolerance.

For more information see the following sections:
* Load Balancing and Fault Tolerance of Inference Agents on page 82

* Designing for Concurrency on page 96

TIBCO BusinessEvents Architect's Guide

78 | Chapter 7 Distributed Cache OM

Cache Agents (Storage Nodes)

Query Agents

The purpose of cache agents is to store and serve cache data for the cluster.
Dedicated cache agent PUs are non-reasoning agents used as storage nodes only
(one per PU). Cache agents are responsible for object management. They
participate in distribution, partitioning and storage of the objects in the cluster.

Other Agent Nodes Functioning as Cache Agents It is possible, but not
recommended, to enable inference and query agent nodes to act as cache agents in
addition to their other functions. Using dedicated cache agent nodes for data
storage is more efficient and more scalable for production scenarios. Enabling
storage on a different kind of agent can be convenient during testing.

When a backing store is used, you can balance what objects to keep in the cache
and what to keep in the backing store, until needed.

Memory and Heap Size Guideline for Cache Servers

The amount of memory you need for cache servers depends on factors such as
how many objects you have, their object management configuration, and whether
you are using limited or unlimited cache.

You must find an appropriate balance for your projects between too little memory,
which leads to too much time spent in garbage collection, and too much memory,
which leads to longer garbage collection cycles. The optimal heap size depends on
factors such as how much data is kept in each cache server, how many cache
servers are used, and whether the cache is limited or unlimited.

For example, if you use a JVM heap size of 1024 MB (1GB), in order to minimize
the impact of garbage collection, about 75% of the heap can be used to store cache
items, which means about 768 MB per heap. The other 25% is then available for
garbage collection activities.

Different operating systems have different requirements so make adjustments as
required.

Query agents are available only with TIBCO BusinessEvents Event Stream
Processing add-on software. Query agents use an SQL-like query language. You
can query data that is in the cache. You can also query data arriving in events,
known as event stream processing or ESP.

A query agent is a non-reasoning agent. It has read-only access to the underlying
objects in the cache cluster. A query agent can execute rule functions, but not
rules. You can mix query agents and inference agents within one node as desired.

TIBCO BusinessEvents Architect’'s Guide

Distributed Cache and Multi-Agent Architecture and Terms | 79

TIBCO BusinessEvents Event Stream Processing Query Developer’s Guide explains
how to work with the query language.

Dashboard Agents

Dashboard agents are available only with TIBCO BusinessEvents Views add-on
software. They are similar to a query agent in that their role is to generate
information based on queries. The information is made available to the
BusinessEvents Views dashboard. See TIBCO BusinessEvents Views Developer’s
Guide for details.

TIBCO BusinessEvents Architect's Guide

80 | Chapter 7 Distributed Cache OM

Cache Cluster Discovery

&

This section explains how the members of the cache cluster can be defined. In
many cases, the default multicast values in the provided engine property files
work out of the box, with no configuration. Two methods are available: multicast,
and well-known-addresses.

Configuration instructions are provided in Configuring a Cache Manager Cluster
— Cluster Tab in TIBCO BusinessEvents Administration

When discussing cache clusters, BusinessEvents processing units are also referred
to as nodes. The term node is used in the TIBCO BusinessEvents Cache Configuration
Guide and in this section.

Cluster Member Discovery Using Multicast Discovery

Network Traffic

With multicast cache cluster configuration, the cluster membership is established
using the multicast IP address and port. When a BusinessEvents node subscribes
to this multicast IP address it broadcasts information about its presence to the
address.

Multicast discovery is used by default. The default values provided mean you
may not have to configure any discovery-related properties. However, if you
deploy multiple BusinessEvents projects in your environment, you must specify
different multicast address and port settings for each project.

You can use multicast when instances of an application are deployed to hosts in
the same subnet, or across subnets when broadcast is enabled between the
subnets.

Adding, Removing, and Moving Nodes

The object management layer uses multicast to discover new nodes and add them
to the cache cluster. Similarly when nodes are removed or moved to a different
server, the multicast protocol ensures that members are kept current without any
additional configuration.

For the above reason, multicast discovery requires less maintenance than the
well-known-address method, which requires configuration updates for all such
changes.

When multicast discovery is used, network traffic is generated by the following
activities:

TIBCO BusinessEvents Architect’'s Guide

Cache Cluster Discovery | 81

Cluster heartbeat The most senior member in the cluster issues a periodic
heartbeat using multicast. The rate is configurable and defaults to one per second.

Message delivery Messages intended for multiple cluster members are often sent
using multicast, instead of unicasting the message one time to each member.

For peer-to-peer communications and data transfer, the object management layer
then uses unicast as needed. Peer-to-peer connections are automatically
established with other servers listening on the multicast address.

Cluster Member Discovery Using Well-Known-Addresses

Well-known-address configuration uses direct member-to-member
(point-to-point) communication, including messages, asynchronous
acknowledgements (ACKSs), asynchronous negative acknowledgements (NACKSs)
and peer-to-peer heartbeats. The addresses are "well known" to the extent that
they are known to each server in the cluster.

Use well-known-addresses instead of multicast to define the cluster participants
when multicast is undesirable or unavailable, for example, if nodes are deployed
to different subnets and broadcast between the subnets is not enabled.

Specifying one or more well-known addresses disables all multicast
communication.

4

Adding, Removing, and Moving Nodes

You must ensure that the well known address information is updated on all
machines to account for system changes, such as adding, removing, and moving
nodes to different machines.

If a machine changes name or IP address, the cluster continues to work correctly
until the next time you restart that machine.

Discovery When Host Machines Have Multiple Network Cards

If a host machine has multiple network cards, you must specify which IP address
and port to bind to. To do this you use localhost and localport properties.

Do this whether you are using multicast or well-known-addresses to define the
cache cluster.

TIBCO BusinessEvents Architect's Guide

82 | Chapter 7 Distributed Cache OM

Load Balancing and Fault Tolerance of Inference Agents

This section assumes multi-engine (now termed multi-agent) features are
enabled. They are enabled by default and the single-engine mode is deprecated.

Cache agents and query agents do not need or use fault tolerance features. Query
% agents do not maintain stateful objects and don’t require fault tolerance. Fault
tolerance of cache agents is handled transparently by the object management
layer. For fault tolerance of cache data, the only configuration task is to define the
number of backups you want to keep, and to provide sufficient storage capacity.
Use of a backing store is recommended for better reliability (see Reliability of
Cache Object Management on page 71).

Load Balancing of Inference Agents in a Group

Load balancing enables horizontal and vertical scaling. The underlying cluster
behaves like a database for all the agents connected to the cluster. Load balancing
makes use of point-to-point messaging, such as JMS queues. With point-to-point
communication, messages are automatically distributed among the members of
an agent group. (You can also use different agents to listen to different queues.)

Every JMS input destination runs in its own JMS Session. This provides good
throughput for processing, and less connections (see Each JMS Input Destination
Runs a Session on page 19).

Certain aspects of the design have to be managed by the application. See
Designing for Concurrency on page 96 for related information.

Fault Tolerance Between Inference Agents in a Group

All inference agents in an agent group automatically behave in a fault tolerant
manner. All load is distributed equally within all active agents in the same group.
If any agents fail, the other agents automatically distribute the load between the
remaining active agents in the group.

You can optionally start a certain number of agents in a group and keep the rest
inactive. If an active agents fails, an inactive agent is automatically activated. For
most situations, there is no need to maintain inactive agents.

TIBCO BusinessEvents Architect’'s Guide

Load Balancing and Fault Tolerance of Inference Agents

In single-engine mode (deprecated), only one agent in a group is active at a time.
A priority property determines the startup order and the failover and failback
order.

Fault Tolerance Limitation

Entities that use Memory Only cache mode are not recoverable in failover or
failback situations. (See Working With Cache Modes on page 90.)

Behavior of Inactive Agents

Inactive agents maintain a passive Rete network. They do not listen to events
from channels, do not update working memory, and do not do read or write
operations on the cache.

Startup rule functions do not execute on failover When an inactive node becomes
active, it does not execute startup rule functions.

TIBCO BusinessEvents Architect's Guide

83

84 | Chapter 7 Distributed Cache OM

Cache OM with a Backing Store

You can implement a backing store for use with Cache OM to provide data
persistence.

During regular operation, cache data is written to the backing store. On system
restart, data in the backing store is restored to the cache cluster.

Implementing a Backing Store

To implement a backing store, you need to provide a supported database product.
Scripts are provided to set up the database for your project’s ontology. If the
ontology changes, scripts help you adapt the backing store accordingly (though
some manual work may be required depending on the nature of the changes).
Existing backing store data can be preserved.

See Chapter 13, JDBC Backing Store Configuration in TIBCO BusinessEvents
Administration for more details.

A legacy Oracle-only backing store implementation is also maintained in this
release but is deprecated.

Configuring Backing Store Options

Various options are available for configuring the backing store for your needs,
and for using it to support your data persistence and access needs, as explained in
this chapter. See Cache Manager Options at the Entity Level on page 86 for more
information about fine grained controls over data storage and retrieval.

Backing Store Write Options — Cache-aside and Write-behind

Writes to the backing store can be done in either of two ways: Cache-aside, in
which the inference agent handles all writes simultaneously, and offers
transaction control; or write-behind, in which the cache agent handles writes to
cache then database.

Cache-aside is a later implementation to offer improved controls based on
experiences with the earlier write-behind method.

For most systems, especially those with a lot of I/0O, including updates and
deletes within an RTC, cache-aside is generally recommended.

TIBCO BusinessEvents Architect’'s Guide

Cache-aside

Write-behind

Cache OM with a Backing Store

With cache-aside database write strategy, inference agents manage writes to the
cache, the local L1 cache, and the backing store, simultaneously, in the post RTC
phase. (The cache agent reads from the backing store, but does not write to it.)

Cache-aside provides transaction control, making sure transactions, including
deletes, are performed following an RTC. It allows batching of Rete transactions
(RTCs) and provides thread and queue size controls.

With write-behind database write strategy, the cache management layer handles
writes to cache and to the backing store. First it writes data to the cache and then
to the backing store.

Writes are managed by the cache agents. For inserts and updates, one
write-behind thread is used for each entity type. Deletes are performed by the
distributed cache threads (configurable) and they are synchronously deleted from
the database.

You can configure a write-delay property to define whether the write is
synchronous or asynchronous.

Write operations from multiple writers to the cache are batched.

Write-behind batches the writes during the delay period which increases database
call efficiency and minimizes network traffic.

Write-behind does not offer transaction controls, and can be slower than
cache-aside.

If enough cache agents fail, the cache management layer won’t be able to persist a
write that was done previously, resulting in an inconsistent database. (This risk
can be minimized by using a short write-behind delay or synchronous writes.)

TIBCO BusinessEvents Architect's Guide

85

86 | Chapter 7 Distributed Cache OM

Cache Manager Options at the Entity Level

With cache-based object management and a backing store, objects created by the
event processing application, can be used or kept in three locations:

® The Rete network (JVM memory)
e The cache
® The backing store

You can manage where the object data is kept at the level of the entity type. The
best choice depends on how often the object changes, and how often it is accessed.
The various options balance the memory and performance characteristics of the
system. Different applications have different priorities and it is up to you to
choose the options that suit your needs.

Between Cache and Backing Store: Preloading Options and Limited Cache Size

When the system demands an object that exists in backing store but not in cache,
the object is automatically loaded from the backing store into the cache, and then
into the Rete network. This takes time, but reduces the need to store so much data
in the cache, which uses up memory.

You can also specify what to preload into the cache from the backing store at
startup.

You can remove items from cache that are not frequently needed, and use the
backing store to store them.

See Understanding How Entity Objects are Managed in TIBCO BusinessEvents
Administration.

Limiting Cache Size

When you use a backing store, you can limit the size of the cache by specifying the
cache size. This is helpful for large volumes of data that the available memory
cannot hold. When the number of objects in cache reaches the cache size limit,
some of the objects are automatically evicted from cache (they are still in the
backing store).

See Chapter 2, CDD Configuration Procedures in TIBCO BusinessEvents
Administration.

TIBCO BusinessEvents Architect’'s Guide

Cache Manager Options at the Entity Level | 87

Between Rete Network and Cache: Cache Modes

As explained above, you can store less-frequently-used objects in the backing
store only, and they are retrieved into the cache as needed. In a similar way, you
can keep memory objects in the cache or Rete network as follows:

® Cache Plus Memory: In the Rete network as well as in the cache, used for
constants and concepts that change infrequently.

® Cache Only: Only in the cache, most commonly used mode.

¢ Memory Only: Only in the Rete network, used for objects whose persistence is
not important.

These controls are known as cache modes, or simply modes, for short. They apply
to individual entity types.

Cache modes allow you to define how to manage the instances of each object
type. In a concurrent system, Cache Plus Memory mode is inappropriate for most
objects, due to the difficulties involved in keeping all the concurrent processes
synchronized. Use that mode only for constants, and concepts that change
infrequently.

Small, frequently used, stateless entities can be kept in JVM memory only, for
improved performance.

Most typically, Cache Only mode is used, and the objects are retrieved into
memory (the Rete network) only when needed for an RTC. Locking is still
required as in any concurrent system.

See Chapter 8, Cache Modes and Project Design, on page 89 for more details.

TIBCO BusinessEvents Architect's Guide

88 | Chapter 7 Distributed Cache OM

TIBCO BusinessEvents Architect’'s Guide

89

Chapter8 Cache Modes and Project Design

This chapter explains how use of different cache modes for ontology objects can
affect your project design.

Topics

* Working With Cache Modes, page 90
¢ Loading Cache-Only Objects into the Rete Network, page 93

TIBCO BusinessEvents Architect’'s Guide

90 | Chapter 8 Cache Modes and Project Design

Working With Cache Modes

As explained in Between Rete Network and Cache: Cache Modes on page 87, with
Cache OM, you can keep memory objects in the cache or Rete network using the
following cache modes:

® Cache Plus Memory: In the Rete network as well as in the cache
® Cache Only: Only in the cache
¢ Memory Only: Only in the Rete network, depending on your need.

This section describes the cache modes available in more detail, and explains how
to use them appropriately.

The Rete network consumes a large amount of the available memory in the JVM.
You can use cache modes to tune the performance of your application, and reduce
its footprint in memory.

See Loading Cache-Only Objects into the Rete Network, page 93 for important
information about how use of the cache only mode affects your project design.

Cache Modes are Set on Individual Entities to Tune Performance

You set cache modes at the level of individual entity types in your project. This
fine granularity allows you to tune performance and memory usage based on the
size and usage of the concepts, scorecards, and events in your project ontology.

For example, you can use the In Memory Only cache mode to that frequently used
stateless entities are kept in memory (and are not cached). Objects kept in
memory are highly available to the application.

On the other hand, using Cache Only mode for large and infrequently used
entities reduces the memory footprint. However, you must explicitly load them
(in rules or rule functions) so they are available to the Rete network.

Don’t Mix Memory Only with Cache Modes in Related Concepts

All concepts related by hierarchy, containment, or reference must use either:

e Memory Only mode

® Cache Only mode or Cache Plus Memory mode, or both (but not Memory
Only).

See Concept Relationships on page 34 for more details about the relationships
between concepts.

TIBCO BusinessEvents Architect’'s Guide

Working With Cache Modes | 91

Cache Plus Memory — For Constants and Less Changeable Objects

With the cache plus memory setting (Cache + Memory), the entity objects are
serialized and are always available in cache. There is one object in the cache (in a
logical sense), and any number of references (handles) to that object in each JVM.
References to the entities are tracked in the working memory so they can be
deserialized and retrieved from the cache when needed by the engine.

The agent’s working memory is used to store the Rete network for the loaded
rules. The inference agent does not store the actual object. It relies on the object
management layer to load the objects on demand from the backing store. For
example, consider a rule of this form:

Declaration (Scope): Customer
Condition: Customer.age < 20

If the cache mode is Cache plus Memory (Cache + Memory), then working
memory stores handles to all customers, including those whose age is greater
than 20. The customer objects for customers whose age is less than 20 are
deserialized and retrieved from cache when the rule condition is evaluated, in
order to process the rule.

Because a Rete network is so large, the references themselves can consume large
amounts of memory. To reduce the memory footprint, it is recommended that you
use the Cache Only mode for most entity types.

In addition, the Cache Only mode is more straightforward to use as there is less to
synchronize in a multi-agent environment when the Rete network is flushed after
each RTC.

Appropriate locking in complex projects that use concurrency features can be
difficult with Cache Plus Memory.

In Memory Only — Useful for Stateless Entities

When you select In Memory Only mode for an entity type, instances of that entity
are available only in the engine’s local JVM memory only. These entities and their
properties are not recoverable, or clustered or shared. For this reason, it is
recommended that you use this mode for stateless entities only.

This mode is typically used for static reference data that can be created in the rule
functions on startup.

In Memory Only mode can also be used for transient utility entities that created
and deleted within a single processing, and are not needed across RTC cycles.

Entities configured in this mode do not persist objects to the cluster and
correspondingly the objects are not recovered from the cluster.

TIBCO BusinessEvents Architect’'s Guide

92

Chapter 8 Cache Modes and Project Design

S

This cache mode works the same as the In Memory object management option
(but is set for individual objects).
Fault Tolerance Limitation

Entities that use In Memory Only cache mode are not recoverable in fault
tolerance failover or failback situations.

Cache Only Mode

As with the Cache plus Memory mode, when you choose the Cache Only mode
for selected entities, the entity objects are serialized and are always available in
cache. The difference is that at the end of the RTC, the objects and their references
are removed from the Rete network, thus freeing memory.

The Cache Only mode is stateless between RTCs. You must explicitly load the
objects needed by rules in an RTC, and you must ensure proper locking is used
(see Using Locks to Ensure Data Integrity Within and Across Agents on page 101).

Various functions are available for loading the entities into the Rete network.
They are generally used in an event preprocessor. See Loading Cache-Only
Objects into the Rete Network, page 93 for more details.

TIBCO BusinessEvents Architect’'s Guide

Loading Cache-Only Objects into the Rete Network | 93

Loading Cache-Only Objects into the Rete Network

When you use cache only mode for an entity type, objects of that type behave
normally when they are created during an RTC (see Understanding Conflict
Resolution and Run to Completion Cycles on page 51 for more details). At the end
of an RTC, however, they are removed from the Rete network and written to the
cache.

Ensure you use correct locking before loading objects. See Designing for
% Concurrency on page 96 for details.

Cache Load Functions

You must explicitly load cache-only objects into the Rete network when they will
be needed during an RTC, using an appropriate cache load function in the
Coherence function category:

C_CachelLoadConceptByExtId()
C_CachelLoadConceptsByExtId()
C_CacheloadConceptById()
C_CacheLoadConceptsById()
C_CacheLoadEventByExtId()
C_CachelLoadEventById()
C_Cachel.oadParent ()

Contained The functions that load concepts by ExtID or ID have a parameter to control
concepts whether contained concepts are also loaded. The C_CacheLoadParent () function,
which loads a given concept’s parents, has the option to return all parents or the
immediate parent. (Parents are concepts related to the given concept by a
containment relationship).

Referenced Concepts You must explicitly load all referenced concepts as needed.
Only containment relationships can be handled automatically.

&

Usein A general best practice is to use these functions in an event preprocessor. Event
preprocessor preprocessors are multithreaded so performance is better. Also, if you load the
objects in the preprocessor, then the rules themselves do not have to take account
of the need to load the objects during execution. For example, in the preprocessor,
you could preload an order concept using an ExtID available in the event as
follows:

Concepts.Order order =
Coherence.C_Cachel.oadConceptByExtId(orderevent.Order_Id, false);

TIBCO BusinessEvents Architect’'s Guide

94 | Chapter 8 Cache Modes and Project Design

Loaded Objects are Not New and Don’t Trigger Rules to Fire

The loaded objects do not behave like newly arrived entities. They are not
asserted: their presence alone does not trigger rules. They are simply restored to
the Rete network. They behave as if they had never been removed. For example,
rules do fire if there is a join condition between the entity loaded from cache and
another entity that is asserted or modified in the same RTC.

Also if you modify the object that you reloaded, it can trigger the rule.
% Limited Use of getByExtld() Only use this function to retrieve cache-only objects

that have already been loaded into the Rete network by a preprocessor. The
getByExtId() function does not load the object into the Rete network.

TIBCO BusinessEvents Architect’'s Guide

Chapter 9

Topics

95

Concurrency and Project Design

This chapter explains some aspects of concurrency (engine concurrency and
concurrent Rete) that affect project design.

* Designing for Concurrency, page 96
* Multi-Agent Features and Constraints, page 97
¢ Using Locks to Ensure Data Integrity Within and Across Agents, page 101

TIBCO BusinessEvents Architect’'s Guide

96 | Chapter 9 Concurrency and Project Design

Designing for Concurrency

You can use multiple active inference agents to achieve load balancing, scaling,
and performance. You can also enable concurrent RTC cycles within one agent,
known as the concurrent Rete feature. Multi-agent and concurrent Rete features
provide concurrent RTC functionality — across agents in the case of multiple
agents, and within agents, in the case of concurrent Rete.

It is important to be aware of some design considerations when designing project
that take advantage of these concurrency features.

The section Multi-Agent Features and Constraints on page 97 explains more
about concurrency and how it affects the way events and objects are processed in
a multi-agent configuration, or with concurrent Rete.

The section Using Locks to Ensure Data Integrity Within and Across Agents on
page 101 explains how to manage access to objects in a concurrent configuration.
As with any concurrent system, care must be taken to ensure that two agents or
RTCs do not attempt to update the same instance at the same time, and to ensure
that reads return a valid and up-to-date instance of an object.

TIBCO BusinessEvents Architect’'s Guide

Multi-Agent Features and Constraints | 97

Multi-Agent Features and Constraints

Multi-agent features can be used in two ways:

* Deployment of instances of the same agent, each in a different processing unit,
for load balancing and fault tolerance. (A processing unit is one JVM, also
known as a node.)

* Deployment of instances of different agents, to achieve rule-chaining for high
distribution of the work load and high performance.

In both multi-agent cases, the agents are in the same cache cluster and work on
the same ontology objects and, to provide performant systems.

Concepts are Shared Across Agents Asynchronously
All concepts are shared between agents in the cluster in an asynchronous manner.

For instance, an Agent X receives an event E, fires a rule R1 that creates a concept
C1. An agent Z receives an event E2, fires a rule R2 that joins concept C1 and
event E2.

Therefore, there is inherent latency between an object change in an agent, and
reception of the notification by the other agents in the cluster.

Because of the asynchronous sharing of objects between agents, ensure that
% events have a long enough time to live setting so that they do not expire before all
actions pertaining to the event are done.

It is recommended that you explicitly consume events when their work is done so
that they don’t cause any unwanted (unforeseen) actions to occur by their
presence in the Rete network.

Scorecards are Local to the Agent

Scorecards are not shared between agents. (This is true in all OM types.) Each
inference agent maintains its own set of scorecards and the values in each agent
can differ. This enables scorecards to be used for local purposes and minimizes
contention between the agents.

As an analogy consider a bank ATM scenario. Money can be drawn from the same
account using different ATMs. However, each ATM maintains a "scorecard"
indicating only how much money it dispenses.

TIBCO BusinessEvents Architect’'s Guide

98

Chapter 9 Concurrency and Project Design

s |

An agent key property (Agent . AgentClassName . key) is available for tracking
scorecards. It identifies an agent uniquely so that its scorecard can be restored
from the cache.

Do not use scorecards as a mechanism to share data between multiple agents.

Events are Owned by the Agent that Receives Them

In a load balanced group of agents, events (messages) received by an agent are
owned by that agent. Even when the event is retrieved from cache (for example
for a join condition), the ownership is maintained. No other agent can work with
that event, unless the owning agent fails.

Cache cluster services provide for reassignment of ownership of clustered events
to other agents in the same group, in the event of node failure, so there is no single
point of failure. (Of course, if the event’s time-to-live period expires during this
transition, the event expires and is not reassigned.)

Events from Queues

Events received from a queue are each taken up by one agent or another. You can
set up load balancing of events arriving from a queue among events that share the
destination. These are generally events in the same group (class) but don’t have to
be. For example, when an agent X receives an Event E1 from a queue, agent B in
the same agent group does not see the event.

Events from Topics

Messages sent on a topic, however, are received by all agents that actively listen to
the topic. Each agent generates its own event instance (with its own ID) when
receiving the message. While t could be useful for multiple agents to receive
events sent on a topic, this often leads to undesirable results. Care must be taken
to ensure that just one agent receives topic-based messages.

Event Related Constraints

Repeating Time Events Not Supported

Time events configured to repeat at intervals are not supported in multi-agent
configurations. Rule-based time events, however, are supported.

TIBCO BusinessEvents Architect’'s Guide

Multi-Agent Features and Constraints

State Machine Timeouts

State machines can be configured to have state timeouts. The agents in the cluster
collaborate to take ownership of management of the state machines, thereby
providing automatic fault tolerance.

Multi-Agent Example Showing Event Handling

Example
Scenario

The following example shows how concepts are shared and events are not shared
in a load balancing agent group.

Agent A has the following rules:

Rule Scope Condition Action
R1 Event E1 None Create concept C1
R2 Event E2, Concept E2.x==Cl.x; Send event E3

C1

Agent A listens to destinations on which events E1 and E2 arrive.

You start two instances of agent A called A1l and A2. Both are active, therefore
they both listen to the destinations on which events E1 and E2 arrive.

At runtime, the arrival of two events illustrates the expected behavior:

. Agent A1 receives an instance of Event E1:
Rule R1 executes and creates an instance of concept C1.

During the post RTC phase, the instance of C1 is written to cache.

LN s -

Event E1 has a Time to Live of 30 seconds. It is acknowledged and then moved
to the cache.

4. With Cache Plus Memory mode, Agent A2 receives a notification and loads
the instance of concept C1 in its Rete network. With Cache Only mode, Agent
A2 has to explicitly load the concept when it will be needed for an RTC.

Note that the event E1 is in the cache, but Agent A2 does not load the event in its
Rete network. However, if the node (JVM) containing Agent Al fails, then Agent
A2 moves the pending events to its Rete network.

TIBCO BusinessEvents Architect’'s Guide

99

100 | Chapter 9 Concurrency and Project Design

2. Agent A2 receives an instance of Event E2:

1. Rule R2 executes because agent A2 is aware of the instance of C1. (With Cache
Only mode the instance of C1 is in the Rete network only if it has been
explicitly loaded.)

2. In the post-RTC phase, Agent A2 sends out event E3.

The effect of cache modes on design is explained in other sections of this chapter.

TIBCO BusinessEvents Architect’'s Guide

Using Locks to Ensure Data Integrity Within and Across Agents | 101

Using Locks to Ensure Data Integrity Within and Across Agents

Multiple agents can read from and write to the same cache cluster and at times
they can operate on the same set of objects. Multiple threads in one agent can also
behave in a similar manner, to enable concurrent RTCs.

Locking is used to ensure the data you read is up-to-date, and to ensure that no
other RTC is updating the same data concurrently.

Understanding Locking in BusinessEvents

Locking protects the thread of execution when multiple threads in an agent can
cause conflicts by trying to write to the same concept at the same time during
multi-threaded Rete operations (where multiple RTCs are running concurrently).
The same type of issue can occur across inference agents operating concurrently.
Locking is also necessary to ensure that stale data — data that has been modified in
another RTC but not yet written to cache — is not read.

Locking is one of the necessary costs of tuning inference agents for higher
performance through multi-threaded Rete or concurrency across agents.

Lock operations do not operate a lock on the object you want to protect itself.
They set a common flag that represents a lock — it is up to the developer to
ensure that all accesses and updates to a concept subject to locking are enforced,
and that only necessary concepts (concepts that are written to as well as used in
conditions) are locked

The goal of locking is to ensure consistency across concurrent RTCs. For example,
if one RTC has a rule condition that includes a concept, and another RTC updates
that concept, then the results could be undefined (does the condition use the new
or old values of the object?). Or if two RTCs update the same object at the same
time, then different properties of the object could be set by different threads
leaving an overall object with incorrect property values.

The typical lock operation is: in the event preprocessor set the lock, using any
unique string as a key. For example, you can use the object extld as the lock string.

If a preprocessor cannot acquire the lock (because another event’s preprocessor
has acquired it) then it waits until either the lock is released OR some timeout
occurs.

Locking code needs to be prepared carefully. If two events try lock(A) then lock(B)
and lock(B) then lock(A) respectively, then a situation can arise where both are
waiting on each other’s thread. Locking should be used sparingly.

TIBCO BusinessEvents Architect’'s Guide

102

Chapter 9 Concurrency and Project Design

With Cache Plus Memory OM, the need for locks is greater than with Cache Only,
because each agent’s Rete network must be synchronized for changes made in all
other agents’ Rete networks.

Because of issues around effective locking with Cache Plus Memory in
% multi-agent scenarios, Cache Only mode is generally recommended. Cache Plus
Memory is useful for objects that change infrequently.

When to Use Locking

Depending on your application, locking may not be required in all cases.
However it is almost always needed. For most applications, use locking in the
following cases:

With Cache Only mode, for writes. Locking is done using an event preprocessor.

With Cache Plus Memory mode, for writes, and for subscription RTCs. These
RTCs run internally to keep the Rete networks on each agent synchronized
with the cache). Locking is done using a subscription preprocessor. It uses the
same locking key (string) as in the event preprocessor, if one was used.

With any mode, for reads. If you want to read the latest version of a concept in
one agent at the same time that another agent might create or update the same
concept, mediate the reads through the same lock that was used when
creating or updating the concept. This is done using an event preprocessor
and, for Cache Plus Memory, a subscription preprocessor.

With state modeler, for timeouts. State modeler timeouts don’t go through an
event preprocessor, so locking is done a different way. This is explained in
TIBCO BusinessEvents Data Modeling Developer’s Guide.

Lock Processing Example Flow

The following example demonstrates common locking requirements. It uses these
features:

Cache Plus Memory mode (requires more locking than Cache Only mode)

Cache-aside and backing store (backing store not shown).

TIBCO BusinessEvents Architect’'s Guide

Using Locks to Ensure Data Integrity Within and Across Agents | 103

Two agents receive messages that require changes to one Customer instance:

Change
Cust. 123
Address

Change
Cust. 123
Address

(> Messaging >
Node A Node B
o o
L L
110 110
Event Event
Preprocessor Preprocessor

Subscription
(f: Preprocessor

Rete Network e }\ Rete Network
(RTC) (RTC)

Post RTC
Notificatio

o

=}

Event Note that event preprocessors are multi threaded (see Event Preprocessors on
Preprocessor page 17 for more details).

1. A message comes into a channel on Agent A: a change to a customer address.
BusinessEvents dequeues the message from the queue, deserializes the
message to an event, and calls the event preprocessor function. The
preprocessor acquires a lock using the customer’s extID as the key:

Coherence.C_Lock(Customer@extId, -1, false);

TIBCO BusinessEvents Architect’'s Guide

104 | Chapter 9 Concurrency and Project Design

This function causes the thread to stop until it gets the lock. In this example,
the thread gets the lock.

2. Only one thread handles the RTC. (Concurrent RTC is not used in this
example.) Other event preprocessor threads go into a queue. During the RTC,
a rule executes and modifies the customer address. After RTC completes, the
post RTC phase begins: the address change is written to L1 cache, the cluster
cache, and the backing store in parallel. Messages arising from the RTC are
sent.

3. After the post RTC actions are completed, the lock is released.

If the write-behind option is used instead of cache-aside, the lock is released after
changes are written to cache.

&

Subscription Subscription preprocessor activities run on a different thread from event
Preprocessor preprocessor activities. One subscription task handles all the changes to the

(Cache Plus objects from one regular RTC and executes as many preprocessors as there are
Memory Only) ~ modified objects.

4. Agent A sends a change notification to all other agents that have subscribed to
cluster notifications for this object. Agent B receives the notification, and calls
the subscription preprocessor function. It contains the same function shown in
step 1 above. It uses the same locking string. Agent B acquires the lock (that is
the function returns true). The agent updates the Rete network with the
changes (using a "subscription RTC"). It will release the lock when the
subscription RTC is complete.

5. While the subscription update thread holds the lock, Agent B receives a
message with a change to the same customer’s address and attempts to
acquire a lock, but it is blocked (that is, the function returns false).

When the subscription preprocessor releases the lock, then Agent B’s event
preprocessor can acquire it (depending on timeout behavior) and assert the
event to the Rete network.

Depending on timing, either an event preprocessor or a subscription
preprocessor could be holding the lock.

Locking Functions
The BusinessEvents lock function has the following format:

Coherence.C_Lock(String key, long timeout, boolean LocalOnly)

TIBCO BusinessEvents Architect’'s Guide

Using Locks to Ensure Data Integrity Within and Across Agents | 105

If you want to acquire the lock only within the agent, set LocalOnly to true. Set the
LocalOnly parameter to false to acquire a cluster wide lock. For example if you are
only concerned about the preprocessor threads in one agent, you can use a local
lock.

The thread that calls the C_Lock () function is the only thread that gets blocked.

Unlock Function

All the locks acquired during event processing are released automatically after all
post RTC actions, cache operations (and database writes in the case of cache-aside
mode) are done.

The format of the unlock function is as follows:
Coherence.C_UnLock(String key, boolean LocalOnly)

You can use the corresponding C_Unlock() function for cases where the
automatic unlocking does not meet your needs.

The Coherence.C_Lock() and Coherence.C_UnLock() functions are available

% in event and subscription preprocessors and in rules. However, in general it is not
a good idea to use C_Lock() in rules as the order of processing of rules is not
guaranteed.

You can call Coherence.C_Unlock in a rule only when concurrent Rete is used.

Tips on Using Locks

The example LockExample (in BE_LHOME/examples/standard) demonstrates
these points, showing use of locks to prevent race conditions.

® Choose an appropriate key for C_Lock(). Note that C_Lock() does not lock
any entity or object as such. The purpose of C_Lock() is to ensure sequential
processing of related set of objects, but yet ensure concurrent processing of
unrelated objects. For example, you want to process messages related to one
customer sequentially across the cluster, but want to process messages for
different customers in parallel. In this case you could use the customer ID as
the key used for C_Lock (). This ensures that all messages for a given
customer ID are processed sequentially.

¢ Do not use unchecked and infinite waits (-1) on the lock. The recommended
approach is to use the timeout argument, and then exit with an error.

* Always check the return value of C_Lock () and if false, either retry or handle
it as an error. Don't let application logic proceed if it returns false. Doing so
may result in lost updates or stale reads or other such data inconsistency
issues.

TIBCO BusinessEvents Architect's Guide

106

Chapter 9 Concurrency and Project Design

¢ Try to minimize the C_Lock()s acquired in one thread. If you have to acquire
multiple locks in one thread, ensure that the locks are acquired in the same
order of keys, that is, sort the keys. See Avoiding Deadlock when Multiple
Keys Protect One Object on page 106.

* Acquire locks before creating instances, to ensure that no other thread creates
the same instance.

* Use c_lock() even for read-only operations. If you don’t you may get
"Inconsistent Database" messages, for example, if there are concurrent deletes
elsewhere in other threads or agents.

¢ Ingeneral, Avoid using C_Lock() in a rule. Since rule order of execution is not
guaranteed it may lead to deadlocks.

Avoiding Deadlock when Multiple Keys Protect One Object

In simplest cases you can use some unique feature of the object you want to
protect as the locking key, for example, a customer ID. However different events
may point to the same objects using different information. For example, from one
channel, the object may be identified using customer ID, and from another, using
account ID.

In such cases multiple keys are used to identify the same object. When you
acquire a lock to protect such an object, you must first get the other key from your
system, sort the keys and take a lock on both keys. Sorting can be implemented
using a custom function.

If the ordering of keys is not guaranteed, it may lead to a deadlock in a
multi-agent or concurrent Rete (multi-threaded) environment. For this reason,
avoid use of C_Lock() in a loop, where the intention is to process multiple
messages. There are other ways to achieve this, for example, using the
assertEvent_Async () function.

Diagnosing and Resolving Lock Failures

Instead of throwing an exception after failing to acquire a lock after a few
attempts, re-route the event to a special destination that only handles errors (an
"error queue"), so you have control over which queue the message goes to.

Write a preprocessor on the “error queue” that does do one of the following for
each message:

¢ Consumes it
* Reports it and then consumes it

® Repairs it and then resends it

TIBCO BusinessEvents Architect’'s Guide

Using Locks to Ensure Data Integrity Within and Across Agents

For example:

System.debugOut("Attempting to lock..");
boolean result = false;
for(int 141 = 1; i <= 3; 1 = 1 + 1){
result = Coherence.C_Lock("$lock0", 2000, false);

if(result == false){
System.debugOut("Lock acquisition '$lock0O' failed. Attempts: " + 1i);

}

else{
System.debugOut("Lock acquisition '$lockO' succeeded. Attempts: " + 1i);
break;

¥

}

if(result == false){
Event.consumeEvent (newevent) ;
Event.routeTo(newevent, "/Channel/LockErrorDestination", null);

}

Logging Lock Statuses

If you suspect a deadlock situation is occurring, you can enable the following
property to log lock statuses:

be.engine.lockManager.enableRecording=true

When this property is set to true,BusinessEvents prints the lock statuses in a log in
the local Inference engine. Use of this logging feature can affect performance.

TIBCO BusinessEvents Architect's Guide

107

108 | Chapter 9 Concurrency and Project Design

TIBCO BusinessEvents Architect’'s Guide

109

Chapter 10 Deploying, Monitoring and Managing

This brief chapter adds some details about deployment and runtime.

Topics

* Deploy-time Configuration and Deployment, page 110

TIBCO BusinessEvents Architect’'s Guide

110 | Chapter 10 Deploying, Monitoring and Managing

Deploy-time Configuration and Deployment

The BusinessEvents design-time project is deployed as a BusinessEvents
application, which can have multiple engines spanning multiple hosts.

Each engine equates to one processing unit, which runs in one JVM (Java Virtual
Machine). One processing unit can host multiple agents, except in the case of a
cache agent. There can be only one cache agent per processing unit. Each
BusinessEvents agent is a runtime component of the overall application.

In order to deploy these units you create two resources: an EAR file and a cluster
deployment descriptor, which is an XML file.

The Enterprise Archive Resource (EAR) is a standard component, used when
deploying a BusinessEvents application. The EAR file the project ontology. When
you are finished designing the project in BusinessEvents Studio, you simply
choose a menu option to build the EAR.

See Administration Components on page 7 for an overview of the cluster
deployment descriptor, the site topology editor and file, and the BusinessEvents
Monitoring and Management component.

Cluster Deployment Descriptor (CDD)

All methods of deployment require a cluster deployment descriptor. After you
define the project ontology and other resources, you configure the agents and
processing units that will use those resources at runtime. Different kinds of agents
play different roles in a large application: inference agents perform rule
evaluation, query agents perform queries, and cache agents are deployed as cache
agent nodes when the Cache object management option is used. You can include
multiple agents in an engine instance by including multiple BusinessEvents
agents within one processing unit.

Configuration an agent involves the following (depending on the type of agent
you are configuring):

® Selecting one or more sets of rules
® Selecting destinations

® Selecting event preprocessors for destinations, and thread settings to handle
preprocessing more efficiently

® Selecting functions that perform startup and shutdown actions

Also in the CDD, you configure the object manager you have chosen for the
deployment. See Chapter 6, Object Management Options, page 57 and Chapter 7,
Distributed Cache OM, page 69 for more on object management.

TIBCO BusinessEvents Architect’'s Guide

Deploy-time Configuration and Deployment | 111

All the properties that in prior releases were listed in the engine TRA files are now
consolidated into the CDD file, and the same file is used by every engine at
deploy-time: you simply specify which processing unit you want to deploy.

For more information about configuring the CDD see Chapter 2, CDD
Configuration Procedures in TIBCO BusinessEvents Administration.

Deployment Methods
You can use these three deployment methods:

* At the command-line. You specify the CDD file to use and the processing unit
within that CDD file.

¢ Using BusinessEvents Monitoring and Management. This is the preferred
method. BEMM can monitor and manage the units you configure in the
topology file. It can also manage units you start in other ways: all it needs is
the PID of the JVM running the processing unit.

¢ Using TIBCO Administrator. TIBCO Administrator belongs to an earlier
generation of TIBCO products. Deployment to an Administrator domain has
certain limitations in this release: You must call the processing unit default,
and you must call the CDD file default.cdd. However if you have been
using this utility in your environment, you can continue to do so.

For more details, see Chapter 8, Deploying a TIBCO BusinessEvents Project in
TIBCO BusinessEvents Administration.

Hot Deployment

Depending on the changes made to your BusinessEvents project, you may be able
to replace an EAR file for a BusinessEvents project with an updated one, without
stopping the BusinessEvents engine. This feature is referred to as hot deployment.
For more information about the BusinessEvents hot deployment feature,
including the project changes that are supported, see Chapter 9, Hot Deployment
in TIBCO BusinessEvents Administration.

Monitoring and Management

The BusinessEvents Monitoring and Management (MM) component provides a
dashboard for deployment and for monitoring the status of deployed
BusinessEvents engines. Before you use this component you must configure it to
suit your needs. Most configuration is done in the CDD file for the emonitor
project, the BusinessEvents application that acts as the MM server at runtime. See
TIBCO BusinessEvents Administration for details.

TIBCO BusinessEvents Architect’'s Guide

112 | Chapter 10 Deploying, Monitoring and Managing

TIBCO BusinessEvents Architect’'s Guide

Index

A

acknowledgement of messages (events) 21
actions
overview of rule actions 11
advanced caching options 87
and concept relationships 90
cache only 92
cache plus memory 91
in memory only 91
understanding 90
advisory events 10, 22
all values history policy 32
architecture
components 6
runtime 48

B

BE_HOME xv

C

cache modes 90
cache only (advanced caching option) 92

cache plus memory (advanced caching option) 91

cache-based object management
advanced caching options 87

advanced caching options, understanding 90

and message acknowledgement 21
fault tolerance scenarios 66
overview 58

reliability 71

See also advanced caching options
understanding 70

changes only history policy 32
channels 9

overview 11

cluster heartbeat 81
command-line startup
complex event processing

defined 2
requirements for 3

components 6

concept model 4

concept reference 36, 36
concept relationships 35, 36

and advanced caching options 90
inheritance 34

concepts

history parameter 30
multiple checkbox for concept properties 30
overview 10

conditions

overview 11

conflict resolution 50
conflict resolution cycles 51
consumeEvent(event) 21
contained concept 35, 35
customer support xviii

D

deploy time configuration

overview 111

deployment

hot 111, 111
overview 110, 111

destinations 9

TIBCO BusinessEvents Architect’'s Guide

113

114 | Index

E

entities, setting cache mode options for 90
ENV_HOME xv
event acknowledgement 21
event model 3
events

advisory 10, 22

expiry action 25

simple 10, 22, 22

time 10, 22

time events 23
expiry action 25

F

failover and failback
and distributed cache data 74

fault tolerance
and cache-based object management 66
and in memory object management 64

and persistence-based object management 63, 65
not available for in memory only advanced caching

option 83,92
functions
overview 11
See also rule functions
temporal 11
types 11

G

garbage collection guidelines 78

H

heap size 78
heartbeat, cluster 81

TIBCO BusinessEvents Architect’'s Guide

history parameter

for concept properties 30

history policy 32

ring buffer 31
history policy, effect on rule evaluation 33
hot deployment 111

overview 111

in memory object management
and message acknowledgement 21
fault tolerance scenarios 64
in memory only (advanced caching option) 91
inheritance 34, 34
instances
concepts 10

J

JMS
channels 11

K

key metrics. See scorecards

L

local channels 11

locks 104
diagnosing failures of 106
logging statuses of 107
tips on using 105

memory
and cache only advanced caching option 92
heap size guideline 78
tuning tips for persistence object management 63
memory-based object management. See in memory
object management
message acknowledgement 21
message acknowledgement with object
management 21
message delivery messages 81
multi-engine features 71

N

nodes (JVMs) 64

(o)

object management
advanced caching options 87, 90
and fault tolerance scenarios 64
and message acknowledgement 21
options introduced 5
overview 58
See also in memory object management, persis-
tence-based object management and
cache-based object management
object management and fault tolerance scenarios
cache-based object management 66
in memory object management 64
persistence-based object management 65
ontology functions 11

Index | 115

P

persistence-based object management
and fault tolerance 63
and message acknowledgement 21
fault tolerance scenarios 65
overview 60
understanding 62
preprocessors, locking functions in 104
property arrays 30

Q

query language 12

R

reevaluating rules 33
Rendezvous. See TIBCO Rendezvous
Rete algorithm 49
Rete network 49
ring buffer 31
RTC 51
rule agenda 49
rule based time events 23
rule engines
conflict resolution cycles 51
rule evaluation 49
rule functions 4
purpose and usage of 44
virtual 44
rule model 4
rules
actions 11
conditions 11
overview 11
reevaluating 33
rule resources 11
run to completion 50

TIBCO BusinessEvents Architect’'s Guide

116 | Index

S

scorecards

overview 10
sense and respond 2
simple events 10, 22, 22
situation awareness 2
standard functions 11
startup. See command-line startup. See also deploy-

ment.

state machines 4

See also state modeler
state modeler

overview 12
stateful rule engine 5
support, contacting xviii

T

technical support xviii

temporal functions
overview 11

TIBCO BusinessEvents terminology 9

TIBCO Rendezvous
channels 11

TIBCO_HOME xv

time events 10, 22,23
rule based 23
time-interval based 23

track and trace 2

\"

virtual rule functions 44

TIBCO BusinessEvents Architect’'s Guide

	Figures
	Tables
	Preface
	Related Documentation
	TIBCO BusinessEvents Documentation
	TIBCO BusinessEvents Event Stream Processing
	TIBCO BusinessEvents Decision Manager
	TIBCO BusinessEvents Data Modeling
	TIBCO BusinessEvents Views
	Other TIBCO Product Documentation

	Typographical Conventions
	How to Contact TIBCO Support

	Chapter 1 Overview
	What’s Different About Complex Event Processing
	Technical Requirements of a CEP System
	A Model-Driven Approach
	Stateful Rule Engine
	Object Management Options

	Main Product Components
	Design-time Components
	Administration Components

	Designtime Resource Overview
	Channels and Events
	Concepts
	Score Cards
	Rules
	Object Management and Fault Tolerance
	State Modeler
	Database Concepts
	Query Language
	Pattern Language

	Chapter 2 Channels and Events
	Channels and Events Overview
	Event Preprocessors
	Preprocessor Use Guidelines

	Types of Channels
	Default Destinations and Default Events
	Message Acknowledgment
	Types of Events
	Simple Events
	Time Events
	Advisory Events

	Simple Events — Time to Live and Expiry Actions
	Event Expiration and Expiry Actions

	Chapter 3 Concepts
	Overview of Concepts
	Concept Property History
	History Size
	History Policy

	Concept Relationships
	Inheritance Relationships
	Containment Relationships
	Reference Relationships
	Rules Governing Containment and Reference Relationships
	When a Contained or Referred Concept Instance is Deleted

	Chapter 4 Rules and Functions
	Rules
	Inferencing Rules
	Rule Priority and Rank
	Organizing and Deploying Inferencing Rules

	Rule Functions
	Virtual Rule Functions and Decision Tables

	Startup and Shutdown Rule Functions
	When Startup Rule Functions Execute
	Creating Entities With a Startup Action in a Multi-Engine Project
	ActiveMatrix BusinessWorks Containers

	Chapter 5 Run-time Inferencing Behavior
	Runtime Architecture and Flow
	Rule Evaluation and Execution

	Understanding Conflict Resolution and Run to Completion Cycles
	How the Rete Network is Built
	Testing the Truth of a Rule’s Conditions Using the Dependency Set
	How a Rule Becomes Newly True
	Order of Evaluation of Rule Conditions

	Chapter 6 Object Management Options
	Object Management (OM) Overview
	The Cache Object Manager
	The In Memory Object Manager
	The Berkeley DB (Persistence) Object Manager
	Summary of Object Management Features
	Migrating to a Different Object Management Method

	Berkeley DB Object Manager
	Fault Tolerance With Berkeley DB Manager

	Object Management and Fault Tolerance Scenarios
	Cache OM with Memory Only Mode on All Objects and Fault Tolerance Scenarios
	Berkeley DB Object Management and Fault Tolerance Scenarios
	Cache Object Management and Fault Tolerance Scenarios

	Chapter 7 Distributed Cache OM
	Cache Object Management Feature Overview
	Distributed Cache Characteristics
	Scaling the System
	Reliability of Cache Object Management
	Concurrency — Multi-Agent and Concurrent Rete Features
	Where Object Management is Configured

	Characteristics of Distributed Caching Schemes
	Failover and Failback of Distributed Cache Data
	Limited and Unlimited Cache Size

	Distributed Cache and Multi-Agent Architecture and Terms
	Cache Clusters
	Cache Cluster Processing Units (Nodes)
	Inference Agents
	Cache Agents (Storage Nodes)
	Query Agents
	Dashboard Agents

	Cache Cluster Discovery
	Cluster Member Discovery Using Multicast Discovery
	Cluster Member Discovery Using Well-Known-Addresses
	Discovery When Host Machines Have Multiple Network Cards

	Load Balancing and Fault Tolerance of Inference Agents
	Load Balancing of Inference Agents in a Group
	Fault Tolerance Between Inference Agents in a Group

	Cache OM with a Backing Store
	Backing Store Write Options — Cache-aside and Write-behind

	Cache Manager Options at the Entity Level
	Between Cache and Backing Store: Preloading Options and Limited Cache Size
	Between Rete Network and Cache: Cache Modes

	Chapter 8 Cache Modes and Project Design
	Working With Cache Modes
	Cache Plus Memory — For Constants and Less Changeable Objects
	In Memory Only — Useful for Stateless Entities
	Cache Only Mode

	Loading Cache-Only Objects into the Rete Network
	Cache Load Functions
	Loaded Objects are Not New and Don’t Trigger Rules to Fire

	Chapter 9 Concurrency and Project Design
	Designing for Concurrency
	Multi-Agent Features and Constraints
	Concepts are Shared Across Agents Asynchronously
	Scorecards are Local to the Agent
	Events are Owned by the Agent that Receives Them
	Multi-Agent Example Showing Event Handling

	Using Locks to Ensure Data Integrity Within and Across Agents
	Understanding Locking in BusinessEvents
	When to Use Locking
	Lock Processing Example Flow
	Locking Functions
	Tips on Using Locks
	Avoiding Deadlock when Multiple Keys Protect One Object
	Diagnosing and Resolving Lock Failures

	Chapter 10 Deploying, Monitoring and Managing
	Deploy-time Configuration and Deployment
	Cluster Deployment Descriptor (CDD)
	Deployment Methods
	Hot Deployment
	Monitoring and Management

