TIBCS

TIBCO BusinessWorks™ Container Edition
Performance Benchmark & Tuning Guide

Version 2.10.0 | December 2024

@ CLOUd Copyright © 2015-2024. Cloud Software Group, Inc. All Rights Reserved.

2 | Contents

Contents

Contents . 2
Changing Help Preferences 6
OVEIVIEW 8
TIBCO BusinessWorks Container Edition Architecture 10
Performance Benchmark Fundamentals 11
Interpreting Benchmarks 12
Misleading Experiments ... 13
Test Client Limitations ... 13
Points to Remember ... 14
Benchmarking and Testing Performance ... 15
Performance Benchmarking Process ... 15
Performance Benchmarking Criteria 15
Performance Testing Tools and Techniques ... 16
Collecting Performance Data ...l 17
Deploying Performance Testing Framework ... 17
Developing a Performance Testing Plan 18
Build a Baseline Test ... 18
Compare Baseline to Targets ... 18
Build Stability Test ... 19
Develop Incremental TestS ... 19
Develop Peak Rate Tests 19
Develop Steady State Tests ... 20
Develop Resource Plan ... 20
Develop Component Deployment Plan 20

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

3| Contents

Monitoring and Analyzing TIBCO BusinessWorks Container Edition Components .. 20

JVisUal M 21

Monitoring Threads and Taking a Thread Dump Using JVisualVM ... 21

Understanding Thread Dumps 27
Identifying Potential Improvement Areas ... 27
Implementing Specific Enhancements 28
Comparing ResUILS . 28
Setting JVM Parameters ...l 30
JVM Parameters . 30

Heap SPaCe . 30

Heap Dump On Out of Memory Error 31
Best Practices ... 32
Engine Tuning Guidelines 33
ThreadCount (bw_engine_threadcount) ... 33
StepCount (bw_engine_stepcount) ... 34
Flow Limit 35
Application Statistics ... 37

Process Statistics ... 37
Process Execution Statistics 37

Activity Instance Statistics ... 38
JVM Tuning Guidelines 39
Specifying JVM Heap Size ... 39
JVM Garbage Collection ...l 40
Transport and Resource Tuning Guidelines ... 42
HTTP RESOUICEe .. 42
HTTP Client Resource ... 44
JMS Resource and JMS TranSpOrt ... 45
Impact of SSL on Performance ...] 46

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

4| Contents

Container Tuning Guidelines 47
Horizontal Scaling ... 47
Vertical Scaling ... 48
Tuning Parameters 51
HTTP Connector RESOUICE ... 51
HTTP Client Resource Tuning Parameters ... 53
JDBC Connection ResSOUrCe ... 54
TCP Connection ReSOUICe ...l 55
IMS ReCeIVEI 56
Blocking Queue Size ... 56
Debugging Performance Issues 58
Debugging High CPU Utilization Issues 58
Debugging High Memory Utilization Issues ... 59
Debugging High Latency Issues ...l 61
Performance Improvement Use Cases ... 63
Performance Improvement Use Cases - Design Time and Deployment ... 63

Usecase 1: Using File as the Input Type for Parse Data Activity 63

Usecase 2: Schema changes for improved performance ... 65

Using XSD Schema Type for the Parse JSON activity ... 67

Usecase 4: Changing XSLT Version to Improve Latency ... 68

Usecase 5: Repetition Count Tuning for XML Authentication Policy 69
Tools for Memory Monitoring, Tracking, and Analysis ... 71
TOP Command for Memory Monitoring ... 71
Native Memory Tracking ... 72
Jemalloc and Jeprof .. 73
Detecting Increase in Heap Allocations with UMDH ... 75
Memory Saving Mode 79
Performance Use Case - Memory Optimization ... 79

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

5 | Contents

RefereNCes . 82
TIBCO Documentation and Support Services ... 83
Legal and Third-Party Notices 85

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

6 | Changing Help Preferences

Changing Help Preferences

By default, documentation access from TIBCO Business Studio™ for BusinessWorks™ is
online, through the TIBCO Product Documentation website that contains the latest version
of the documentation. Check the website frequently for updates. To access the product
documentation offline, download the documentation to a local directory or an internal web
server and then change the help preferences in TIBCO Business Studio for BusinessWorks.

Before you begin
Before changing the help preferences to access documentation locally or from an internal
web server, download the documentation.

1.
2.

6.

Go to https://docs.tibco.com/
In the Search field, enter TIBCO ActiveMatrix BusinessWorks™ and press Enter.

Select the TIBCO ActiveMatrix BusinessWorks™ product from the list. This opens the
product documentation page for the latest version.

Click Download All.

A compressed .zip file containing the latest documentation is downloaded to your
web browser's default download location.

Copy the .zip file to a local directory or to an internal web server and unzip the file.

To point to a custom location:

Procedure

1.

2.

Perform one of the following steps in TIBCO Business Studio for BusinessWorks based
on your operating system:

e On Windows OS: Click Window > Preferences

e On macOS: Click TIBCO Business Studio > Preferences.

In the Preferences dialog, click BusinessWorks > Help.

3. Click Custom Location, and then browse to the html directory in the folder where

you extracted the documentation or provide the URL to the html directory on your

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://docs.tibco.com/
https://docs.tibco.com/

7 | Changing Help Preferences

internal web server.

4. Click Apply, and then click OK.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

8 | Overview

Overview

TIBCO BusinessWorks™ Container Edition allows customers to apply the power and
functionality of TIBCO BusinessWorks™ Container Edition in order to build cloud-native
applications with an API-first approach and deploy it to container-based PaaS platforms
such as Cloud Foundry™, Kubernetes,Kubernetes, and Openshift or to similar Docker-
supported cloud platforms.

TIBCO BusinessWorks Container Edition enables you to create services and integrate
applications using a visual, model-driven development environment, and then deploy them
in the TIBCO BusinessWorks Container Edition runtime. It uses the Eclipse graphical user
interface (GUI) provided by TIBCO Business Studio™ for BusinessWorks™ to define business
processes and generate deployable artifacts in the form of archive files. For more
information, see the TIBCO BusinessWorks Container Edition Concepts guide for additional
details.

Performance plays a very important role in terms of stability, scalability, throughput,
latency, and resource utilization. With a view to achieve optimal performance of the TIBCO
BusinessWorks Container Edition application, it is important to understand the various
levels at which the tuning methods and best practices can be applied to the components.

The intent of the TIBCO BusinessWorks Container Edition Performance Benchmarking and
Tuning guide is to provide guidelines with respect to performance benchmarking, tuning
methodologies and best practices. This document must be used along with other product
documentation and project-specific information to achieve the desired performance
results. The goal is to assist in tuning and optimizing the runtime for most common
scenarios.

This document describes architectural concepts related to performance tuning for TIBCO
BusinessWorks Container Edition. The document includes the different tuning parameters,
steps required to configure the parameters, and design techniques for better performance.
However, you must TIBCO FOCUS® on real customer use cases to understand the issue and
the associated solution.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

9 | Overview

o Note: The performance tuning and configurations in this document is
okprovided for reference only. They can be reproduced only in the exact
environment and under workload conditions that existed when the tests were
done. The numbers in the document are based on the tests conducted in the
performance lab for TIBCO BusinessWorks Container Edition 2.5.3 and may vary
according to the components installed, the workload, the type and complexity of
different scenarios, hardware and software configuration, and so on. The
performance tuning and configurations should be used only as a guideline, after
validating the customer requirements and environment. TIBCO does not
guarantee their accuracy.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

10 | TIBCO BusinessWorks Container Edition Architecture

TIBCO BusinessWorks Container Edition
Architecture

The most important component in TIBCO BusinessWorks Container Edition is BWEngine. It
runs inside a container either on a cloud foundry environment or on a docker based
platform. The purpose of BWEngine is to handle a continuous stream of thousands of
processes, each with dozens of activities, in an operating environment with finite
resources. Resources include the memory, CPU threads, and connections.

The BWEngine performs the following additional functions:
e XML and JSON data transformation and validation

XPath transitions and flow control

Connection and session management with recovery and retries

Exception management and logging

Management and monitoring services

Message Flow Architecture

Process Starters

HTTFReceres

Ready /Blocked State

Thread Poal [for Job exedution] Step Count

T1 | Binding|¥5LT |Validate | Activity ?

=
= o
E E T2 | Binding|[¥sLT|validate | Activity

= = =

=] = E T3 | Binding[¥sLT [validate | Activity @
PASEacee wtilaniag E 5_
< .
L

T4 | Binding [¥SLT|validate | Acthity @

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

11 | Performance Benchmark Fundamentals

Performance Benchmark Fundamentals

The goal of performance measurement is to understand the performance capabilities and
limitations of a system. Every system has limitations, and benchmarks characterize the
system in a way that you can understand these limitations.

Benchmarks can be complicated if the system capabilities and limitations vary depending
on the demands placed on the system. They also vary based on the resources that are
available to the system, for example, CPU, memory, network bandwidth, and disk
bandwidth. The set of benchmark measurements must be carefully designed so that the
impact of these factors can be understood clearly .

Basic Performance Curve

Ll
MNormal Operation Region Owverload Region

| |

Qutput rate

Operating Capacity

Overload

In the above example, the X axis characterizes the input rate, and the Y axis represents the
output rate. The system is exposed to load at a controlled rate and is in a steady-state for
some period of time. After an initial stabilization period, both the input and output rates
are measured, providing one data point for the performance curve. This example assumes
that all other factors are being held constant.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

12 | Performance Benchmark Fundamentals

Input Rate :m:& Output Rate

The shape of the performance curve tells us a lot about the system under test. If each
input results in a single output, then over the normal operating range, the output rate
exactly matches the input rate and within statistical bounds. If each input results in more
than one output, or if you are measuring data rates instead of input and output rates,
there may be a scale factor relating the two values. However, over the normal operating
range there must be a linear relationship between the two rates - that is the curve is a
straight line.

The input rate that marks the end of this linear region marks the operating capacity of the
system. This may mark the true limits of the system design, or it may indicate that some
type of resource limit has been hit. This could be the result of the available physical
memory or the bandwidth available on the NIC card or the available CPU cycles getting
exhausted. It is important to determine the nature of the limit, as this may indicate ways to
alter the environment and increase capacity either by tuning the system or adding
resources.

Beyond the operating capacity, further increase in the input rate exceeds the capacity of
the system to perform work. Once this occurs, increasing the input rate does not produce
the same level of increase in the output. The inputs are increasing faster than the system is
producing output. If the input rate continues to increase it reaches a point where the
output rate begins to decline. The system is taking resources away from completing work
and applying them to accepting the inputs.

Operating under a load is inherently unstable. Inputs arrive faster than the work is getting
completed, and this results in inputs piling up. This buffer for memory, disk, and messaging
system is finite in capacity. At full capacity the system fails. Thus systems can, at best,
operate in the overload mode for short periods of time.

Interpreting Benchmarks

Each benchmark measurement provides a single data point on the performance curve. In
order to meaningfully interpret that benchmark you must understand where you are on the

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

13 | Performance Benchmark Fundamentals

curve.

Failure to understand your position on the curve can lead to significant misinterpretation
of data.

Misleading Experiments

One of the most commonly run performance tests is when a large but fixed number of
inputs are applied at the fastest possible rate, often by placing them in an input queue and
then turning the system on. The output rate is often misinterpreted as the system capacity.

However, if you look at the performance curve, it is likely that the system is actually
operating far into the overload region with an output rate significantly below the operating
capacity. Such tests characterize the system under overload circumstances, but they do not
accurately reflect the capabilities of the system. This is especially true when it is possible
to further configure or tune the system to limit the input rate so that it cannot exceed the
operating capacity.

Another type of test involves running tests at the low-end of the performance spectrum.
While these experiments may be sufficient to establish the slope of the normal operation
curve, they give no insight into the actual capacity of the system. They can often lead to
false conclusions when comparing designs. Measurements at the low end of the
performance curve show only the increased resource utilization.

Test Client Limitations

When the apparent capacity of a system is reached without having exhausted any of the
available resources, it is necessary to also consider whether the limiting factor might be the
test client rather than the system under test.

A test client with a limited number of threads may not be capable of providing inputs or
receiving outputs at the rate required to drive the system to its full capacity. Ideally, the
test client is configurable through its own parameters. In some cases, it may be necessary
to run multiple copies of the test client, each on a different machine, in order to drive the
system under test to capacity.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

14 | Performance Benchmark Fundamentals

Points to Remember

Keep the following points in mind while performing the benchmarking and tuning
excercise.

» Always document the test design in sufficient detail to allow others to accurately
reproduce your results.

» Always range demand until the operating capacity of the system under test has been
reached. Further increases in input rate do not result in proportional increases in
output rate.

e Always document measured or estimated resource availability and consumption.

e Once an apparent operational limit has been reached, investigate to determine
whether a true resource constraint has been reached. Consider adding resources
such as adding memory, CPU or changing to a higher network bandwidth.

 If an operational limit has been reached without exhausting available resources:

° Consider whether tuning the system under test might further increase the
operational capacity.

° Consider whether the design or configuration of the test harness might be the
true limiting factor in the experiment.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

15 | Benchmarking and Testing Performance

Benchmarking and Testing Performance

This section outlines the steps required to successfully evaluate and tune a TIBCO
BusinessWorks Container Edition environment.

Performance Benchmarking Process

This document must be used as a general guideline and is not representative of any
comprehensive tuning that may need to be done for each use case. Additional or fewer
steps may be required, depending on individual factors and contextual requirements. Such
tuning requires multiple iterations.

One of the fundamental requirements before performing any kind of tuning exercise is to
carefully eliminate all external factors that can potentially affect any performance issues.

Performance Analysis and Tuning is an iterative process consisting of following:
e Establish performance benchmarking criteria
e Review TIBCO BusinessWorks Container Edition performance architecture
 Establish performance best practices guidelines

* Identify and review tuneable parameters for the use case

Performance Benchmarking Criteria

The first step when measuring performance is to identify the Service Level Agreement.
Performance targets are determined by user response time and message processing
requirements.

Examples of performance requirements include:
e Engine throughput or number of messages processed per second
» Processing speed or average process instance duration and latency

e Web response time. The response and request time

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

16 | Benchmarking and Testing Performance

» Resource utilization
» Concurrent request, sleep time, registered and if applicable, the concurrent users

Defining the minimum, desired, and peak targets for each requirement helps identifying
the type of data to collect and to evaluate the test results.

In addition to these normal load expectations, abnormal error-recovery scenarios under
unusually high loads must be considered. For example, the TIBCO BusinessWorks Container
Edition process might be receiving or polling messages from a TIBCO Enterprise Message
Service queue, and the above targets reflect the normal flow of messages through the
queue.

However, if communication to the TIBCO Enterprise Message Service server has been
disrupted for an extended period of time, or if the TIBCO BusinessWorks Container Edition
Engine shuts down, a much higher load may be experienced when communication is re-
established or when the engine restarts.

These scenarios must be addressed when considering the engine performance under load,
and to ensure that the throughput does not deteriorate below the target in such situations.

Business requirements also control the decision to use reliable or certified messaging.
Certified messaging has an impact on performance.

Performance Testing Tools and Techniques

Once you have established appropriate goals for performance benchmarking, it is
necessary to define the performance testing and monitoring framework.

This step significantly varies for each project based on application design and deployment
requirements. However, it is important to establish key performance monitoring and
benchmark measurement techniques and tools. Monitoring each component requires
different techniques. It is important to monitor the application including the CPU, memory
and logs, the hardware resources, network and performance metrics using load generation
tools.

To monitor application resources like CPU, memory, thread dumps and GC, you can use
JVisualVM. For more information on JVisualVM and thread dumps, see Monitoring threads
and taking a thread dump using JVisualVM.

You can generate Heap dumps from JVisualVM, and can analyze using memory analyzer
tools. For errors during load testing, the application logs can be monitored. To monitor the

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

17 | Benchmarking and Testing Performance

container level statistics you can use any of the docker stats, VMware Tanzu, Openshift,
GCP UL.

Collecting Performance Data

Begin with creating a set of processes for testing purposes. These can be actual processes
that are used in production or more basic processes that represent the production
scenarios. The granularity and scope of your performance requirements must determine
how processes are used for performance testing.

Measure the memory, and CPU usage of the container during all tests. Identify the TIBCO
BusinessWorks Container Edition metrics that can measure conformance with
requirements. A general strategy is to begin with summary metrics, and then progress to
detailed metrics as areas for improvements are identified.

However, if specific performance goals have been defined, you can tailor data collection to
provide only required information. Understand where process instance lifetime is spent
and collect detailed process instance metrics while processing a few representative process
instances. Calculate total throughput, collect summary metrics while generating a typical
number of incoming messages of typical size and frequency.

Conduct separate tests for minimum, desired, and peak target numbers. Wherever possible,
restrict other container and engine activities during this time. If average metrics are used,
restrict the test window to ensure that data collected is relevant.

Deploying Performance Testing Framework

Developing a framework depends on performance goals established earlier and business
requirements.

Allocate adequate resources for running BusinessWorks™ container and testing its
performance. Deploy BusinessWorks™ application container and start measuring
application performance using any monitoring tool like JConsole/JVisualVM. Verify that
your BW application running inside a container is providing the performance metrics, such
as memory and CPU usage.

Once you have established the key performance matrix and determined the tools and
techniques to measure the components, the next step is to establish an appropriate
framework for testing performance.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

18 | Benchmarking and Testing Performance

Frequently, a customer would require building a script using third-party performance
testing tools such as HP Load Runner, SilkPerformer or JMeter. These tools are frequently
used to build extensible framework to invoke HTTP, SOAP, REST and JMS messages.

Developing a Performance Testing Plan

Developing a performance testing plan involves building an appropriate set of tests to
meet business objectives.

This section provides series of tests that can be planned based on overall objectives.

Build a Baseline Test

For initial performance tests, consider deploying the TIBCO BusinessWorks™ Container
Edition application inside a single container.

Test the performance of the Application Container with varying payload and workload
depending on the requirement. After some basic testing, consider adding more Containers.
Repeat the tests for testing scalability with added Containers.

For more information, see Container Tuning Guidelines.

Collect all the performance metrics during the benchmark tests like CPU, memory, 1/O,
network, latency, throughput, and GC during the tests.

Perform tests for minimum, desired, and peak numbers that are identified as required.
Capture and store output for the test runs. When the baseline tests are complete, stop the
performance data collection utility, stop sending messages, and then stop the Container.

Compare Baseline to Targets

Compare baseline test results to performance requirements. If requirements are met, begin
testing the next use case. If the requirements are not met, continue with the remaining
steps.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

19 | Benchmarking and Testing Performance

Build Stability Test

Frequently, many performance issues can be identified in the stability test, where the
application is deployed under lower load conditions, such as five to ten concurrent users
with a pre-established think time.

This test focuses on end-to-end successful transactions, and does not aim at measuring the
overall response time. Since the test system involves various components, it is important
to familiarize ourselves with the following:

* Tuning parameter at each component level

* Monitor database resources, if applicable

* Monitor any incomplete TIBCO BusinessWorks Container Edition jobs
» Worst performing activities, that is CPU time and Elapsed Time

The test must be completed end-to-end, and the application developer must fix any issues
associated with the run. The overall percentage of error and warning must also be noted.

Develop Incremental Tests

Define tests that measure different criteria including error rate in a steady incremental
load; for example, 50 users, 100 users, 250 users, and so on.

The user must also define the payload for testing the deployed services. The application
must be tested considering the peak load in the production environment.

Develop Peak Rate Tests

The overall business objectives can be different for each project. To measure the system
against an extreme number of users, without failing, a peak load test is designed to
determine whether the system can respond to the desired maximum number of users and
requests without degradation in response time.

Performance depends on the hardware available in the environment. If the CPU and
memory resources are not sufficient, then increasing the numbers further degrades the
performance.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

20 | Benchmarking and Testing Performance

Develop Steady State Tests

This test can be run when the business objective requires providing well established quality
of service for the business users, such as the number of concurrent users with the least
amount of response time.

The steady state keeps steady capacity or steady number of requests per minute, even if
the number of concurrent users keep increasing.

This test focuses on maintaining partner quality of service and capacity, and the high
number of users.

Develop Resource Plan

The choice of a proper operating system with the appropriate number of CPUs is one of the
most important decisions during this testing phase.

Develop Component Deployment Plan

The test plan must extend results obtained in the section, "Develop Hardware and
Resource Plan", and design for the optimal production deployment.

In this phase of the test, optimal production deployment is planned based on test results
obtained in the previous test.

This can be achieved by increasing the number of instances of components on a single
container or multiple containers, and using different load balancing and fault tolerance
techniques to achieve optimal production objectives.

Monitoring and Analyzing TIBCO BusinessWorks
Container Edition Components

There are various ways and tools to monitor and analyze the TIBCO BusinessWorks
Container Edition components, BW application inside a container. Some of them are
described in this section.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

21 | Benchmarking and Testing Performance

JVisualVM

JVisualVM that is shipped with the Java SDK is a tool that provides a visual interface for
viewing detailed information about TIBCO BusinessWorks Container Edition applications
while they are running on the AppNode which resides within the container.

JVisualVM organizes JVM data that is retrieved by the Java Development Kit (JDK) tools
and presents the information in a way that allows data on multiple TIBCO BusinessWorks
Container Edition applications, which can be viewed quickly. We have to monitor the
application remotely by enabling the JMX on the JVM.

Users can monitor CPU, memory, classes, threads, monitor the current state of the thread,
running, sleeping, wait, and monitor. JVisualVM displays the thread view in real time.

Monitoring Threads and Taking a Thread Dump
Using JVisualVM

Use JVisualVM to monitor threads and take thread dumps for a container.

Procedure
1. Enable JMX on the Application Container by adding the following JMX property in the
docker run or within the yml files for remote monitoring. BW_JMX_Config environment
variable is used to set JMX configuration (RMI host and JMX port) for monitoring the
TIBCO BusinessWorks Container Edition application. The value must be provided in
RMI_HOST:JMX_PORT format.

e Docker- For docker run, provide the BW_JMX_CONFIG value as below:

docker run -e BW_JMX_CONFIG="<RMI_Host>:<JMX_Port>"" -d
-p <Host_ApplicationPortToExpose> :<Container_ApplicationPort>
-p <Host_JIMXPortToExpose> :<Container_JMXPort> <ApplicatonImageName>

Where,

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

22 | Benchmarking and Testing Performance

[e]

RMI_HOST is the docker host IP

[e]

JMX_PORT is the remote JMX connection, which gets enabled.
° Container_Application port is the end-user requests that get processed.

° Container_JMXPort handles the JMX connection request.

o Note: Published ports (-p) are exposed ports that are accessible
publicly over the internet. These ports are published to the public-
facing network interface in which the container is running on the
node (host).

e Kubernetes- In yml file, provide the environment variable entry as BW_JmX_
CONFIG. Please refer the following manifest.yml file:

Containers:
- name: <ApplicationName>
image: <ApplicationImageName>
env:
- name: BW_JMX_CONFIG
value: "<JIMX_PORT>"

Once the application container is running, use the kubectl port-forward
<your-app-pod> <JIMX_PORT> port.

o Note: kubectl port-forward forwards connections to a local port
from a port on a pod where the container is running.

e VMware Tanzu- In yml file, provide the environment variable entry as BW_JMx_
CONFIG. Please refer the following manifest.yml file:

applications:

- name: <ApplicationName>
memory: 512M
path: <ArchiveName>
buildpack: <BuildpackName>
env:

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

23 | Benchmarking and Testing Performance

BW_JIMX_CONFIG: <JMX_PORT>

Once the application container is running, add the SSH into the container and
map the container port to the localhost or node port using the command

below:

cf ssh -N -T -L <Host_Port>:<HostIP>:<Container_JMX_PORT>
<ApplicationName>
Where,

° Host_Port is the port, which is available on the host machine.

© HostIP is the IP address of the machine from which the JMX connection is
being launched.

° Container_JMX_Port is the JMX_PORT specified in the BW_JMX_CONFIG
while the application is launched.

2. Start jvisualvm.exe from the JDK_HOME/version/bin directory.

3. Connect to the application container remotely or by using the JMX_PORT. To connect
remotely, select Remote in the Applications tab and right-click Add Remote Host.
Enter the remote Host name field.

Endd Remiote Host B
Host name: [35.166.45.187] a{ Docker Host IP]

I™ Display name: [35.166.45.167

Advanced Settings | ok | cancel

4. Add the JMX connection to the remote host as displayed in the images below.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

24 | Benchmarking and Testing Performance

-
IE]@ Rermokte

H E

Snapshat: add M Connectior. ..
#dd jstatd Connection. ..
Rename...
Remove
Propetties

Connection: [35.166.45.187:9050 “{ Docker Host IP:JM¥_Port]

Usage: <hostname» i <port» OR service: jmx: <protocol»: <sap»

I™ Display name: [55.166.45,157:9050

[~ Use security credentials

Ll-sarm:l

Passward: |

I_ SIEVE SECUTRLY credenitisls

[~ Do not require SSL connection

ok | coacer |

5. Right-click the remote JMX connection for the Container and select Open.

6. The AppNode CPU, memory, classes, and threads can be monitored in the Monitor
tab. The memory chart also provides the maximum memory settings of the JVM. You
can perform a manual GC and obtain the heap dump too.

The following figure demonstrates the typical heap usage pattern of the AppNode
running inside a container, which is a sawtooth pattern. This sawtooth pattern
indicates the normal behavior of the JVM. For more information, see the Stack
Overflow website. Here the memory usage steadily increases and then drops due to
garbage collection.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

http://stackoverflow.com/questions/7219532/why-a-sawtooth-shaped-graph
http://stackoverflow.com/questions/7219532/why-a-sawtooth-shaped-graph

25 | Benchmarking and Testing Performance

3ava visualvm

o] A2l €|] @ 5]]| LI

L WAL 1Y)

Soirm
fo) gereme

(5]}
File Applications View Tools Window Help
| S |8
Appications X e 35.166.45.167:9090 (i 1) x OnE
[Overview bl Montor | [Threads | 3, Sampler |
~ . Ny
o rpsche et (i s05) C© 35.166.45.187:9090 (pid 1)
s C: Program (pid 25444) Monitar M W Memory [Classes ¥ Threads
- Jansole (pid 107004)
g Jonsole (pid 72112) Uptime: 33 min 20 sec Perform GC [Em—
- s Local Application (pid 103492)
+ g Local Applcation (pid 24336) cPu % [Heap | Metaspace x
- Local Applcation (pd 75124)
\. s com, thco,gems Gems (pid 64952) CPU usage: 0.49% GC activity: 0.0% Size: 142,606,336 B Used: 66,410,024 B
s run (pid 112124) o Max: 180,355,072 B
437 Remote
A 10.97.112.27 s 12518
1B} 35.166.45.15
= 1008
- o
Snapshots -
e
some
209 25 Me
o Al
st Pt B B Sz SEERm e e rn Pt e B SEE A SoaPm
[CPU usage M GC activity M Heap size W Used heap
Classes % Threads x
Total loaded: 14,209 Shared loaded: 0 Live: 91 Daemon: 37
Total unloaded: €5 Shared unloaded: 0 Live peak: 93 Total started: 102
@
0000 o
@
sa00
2
e FECT ot e o B el e e saiem sazem SaTe Sadem
[0 Total loaded classes W Shared loaded dlasses M Live threads M Daemon threads.

7. You can monitor the thread states and obtain the thread dump from the Threads
tab.

File

=

3ava visualvm

[-[21x]
Applications View Tools Window Help
5 | B T

Applcations X

Local
[szt
- &s ApacheMeter jor (pid 85054)
s e Program (pid 25444)
- Jansole (pid 107004)
o s JConsole (pid 72112)
- s Local Application (pid 103492)
- ¢ Local Application (pid 24336)
- Local Applcation (pd 75124)
- s com tibco.gems Gems (pid 64952)
s vun (pid 112124)
437 Remote
A 10.97.112.27
=B 35.166.45.187

Snapshots

e 35.166.45.167:9090 (i 1) x

Threads

Live threads: 92
Daemon threads: 36

verview |] voritor =) Threads | £ sanpler |
< 35.166.45.187:9090 (pid 1)

[V Threads visualization

Thread Bump

e BlE 6l emale

EARSIF]|

L WAL 1Y)

Timeline x
@ a @ |vem
e | S0z:00FM Soz0sE sozom sozask Seziz0pm sozzsei Rumng | ol [+
B qtpB17880261-35 Oms (0% 296,527 ms. ;I
B qtp&17880261-37 oms (0% 296,527 ms.
I gtpe1 788026 1-36 Acceptor(206,527 ms (100%) 206,527 ms
O qtp&17880261-35 Selectord 296,527 ms (100%) 296,527 ms.
I qtpa17880261-3¢ Oms (0%) 206,527 ms
O 5CR Component Actor oms (0% 296,527 ms
@ MioSocketAcceptor-1 296,527 ms (100%6) 298,527 ms.
O [Timer] - Main Queue Handler Oms (0% 296,527 ms.
O CM Event Dispatcher oms (0% 296,527 ms.
O CM Configuration Lpdater Oms (0%) 206,527 ms
O EMF Reference Cleaner Oms (0% 296,527 ms.
O Refresh Thread: Equinox Cantaine. Oms (0% 296,527 ms.
O Bundle File: Closer oms (0% 296,527 ms
O stark Level: Equinox Container: 90 oms (03] 296,527 ms.
O Framework Event Dispatcher: Equi Oms (0%) 206,527 ms
@ Active Thread: Equinox Cc oms (0% 296,527 ms.
O EMF Reference Cleaner Oms (0%) 206,527 ms
@ RMI TCP Accept-0 296,527 ms (100%) 296,527 ms.
B RMI TCP Accept-9090 296,527 ms (100%6) 296,527 ms.
O signal Dispatcher 296,527 ms (100%) 296,527 ms
O Finalizer oms (0% 298,527 ms.
O Reference Handler Oms (0%) 206,527 ms
O main oms (0% 296,527 ms.
ERMITCP tion{173-103.24: 205,140 ms (100%) 205,140 ms
B RMI TCP Connection(18)-103.24: 199,582 ms (100%6] 199,582 ms
O RMI TCP b 0)-103.24: 52,073 ms (37.9%) 137,524 ms ~
I |

ESRunning B Sleeping [Wait

s
fo) gereme

B Park B Moniker

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

26 | Benchmarking and Testing Performance

1 [35.166.45.187:5090 (d) x| RIS =
[i) Overview | i) moitor | (= Threads | G sampler (5= [Ehreaddump] 5:13:55 P x

C 35.166.45.187:9090 (pid 1)

Thread Dump

core-0s-27 17513500 :i

Full thread Gump Tava HotSpot (TH) 64-Bit Server VN (25 144-bl mixed mode):

03.243.236. 11" - Thread 0lls
TUMNAELE
e InpucStrean. socket Readd (Narive Method)

B R
B ;
g
f

Transport. Java: 550)

s
ionHendler. run0 (TCPTransport. java:826)

{a Java.uril ThreadPaol]

0)-103.243.236. 11" - Thread £@lls
tate: RUNNAELE
. InpucStrean socket Readt (Narive Method)

e I T S e RSP <~ L WAL Y [©F D

8. JVisualVM provides CPU and memory profiling capabilities. By default, the profiling
tool is not in a running state until you are ready to profile the application. You can
choose from the following profiling options:

a. CPU Profiling - Select CPU Profiling to profile and analyze the performance of
the application in terms of throughput, scalability, or response time.

b. Memory Profiling - Select Memory Profiling to analyze the memory usage of
the application. The results display the objects allocated by the application and
the class allocating those objects.

When you start a profiling session, JVisualVM attaches to the local, or remote
AppNode and starts collecting the profiling data.

When the profiling results are available, they are displayed in the Profiler tab.
JVisualVM has the following plug-ins for the java implementation:
i. A sampling profiler - Statistical and lightweight

ii. An instrumental profiler - Heavier

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

27 | Benchmarking and Testing Performance

o Note: CPU and memory usage in the Monitor tab are for an
application running inside a container. In the actual scenario, we
may need to set the container memory greater than the JVM heap
size.

Understanding Thread Dumps

Keep in mind the following points while working with thread dumps.

* A thread dump displays the thread name, thread id (tid), which is the address of the
thread structure in memory, id of the native thread (nid) which correlates to the OS
thread id, thread priority, state (runnable, waiting, blocked, and so on), source code
line and method calls.

» Waiting on monitor and waiting for monitor entry - It is very important to understand
the difference between the Waiting on monitor state and waiting for monitor entry
state. Waiting on monitor means sleep or wait on an object for a specific period or
until notified by another thread. Waiting for monitor means to wait to lock an object
since some other thread may be holding the lock, which can happen in a
synchronized code.

* IBM Thread Dump Analyzer can be used for further analysis. For more information,
see

https://www.ibm.com/developerworks/community/groups/service/html/communityvi
ew?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c

Identifying Potential Improvement Areas

If performance requirements are not met and you need to improve the performance, some
modifications may be needed.

Modifications may be required in the following areas:
» Adding hardware resources in terms of CPU and Memory
* Modifying JVM parameters

* Increasing engine threads

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c

28 | Benchmarking and Testing Performance

Running multiple Containers

Reducing message size, message burst size or message frequency

Modifying process design or activity settings

Tune additional engine parameters and analyze impact

* Tune shared resource level thread pools, connections or any other settings

You can create a prioritized list of modifications using symptoms specific to your
environment, such as memory usage patterns or error messages, .

Implementing Specific Enhancements

Scaling involves adding resources or containers. Tuning involves changes to the
manifest.yml file and changes to the process design. When making any type of change, it
is crucial to keep other factors stable so that the effect can be correctly measured.

For example, a sample list of modifications might include:
* Allocate additional memory for the engine JVM
* Increase the number of engine threads

e Enable flow control

These changes can be implemented in an incremental way. The reasonable approach is to
implement the first modification, and then test to measure the effect of this change. After a
satisfactory value is determined, implement the next modification and measure the effect
of the first two changes combined, and so on.

In this example, all the modifications are related to the same resource and memory usage.
If the engine requires more memory, then increasing the number of threads in the JVM
would be ineffective. However, some scenarios might require measuring the effect of each
modification separately, by backing out one change before implementing another.

Comparing Results

After implementing modifications and repeating the test scenarios, compare the adjusted
results to the baseline test results.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

29 | Benchmarking and Testing Performance

Exporting performance data to a third-party application to compare test results can
simplify this step.

If performance improves because of the modifications, compare the adjusted results to the
performance requirements. If the requirements are met, begin testing the next use case. If

the requirements are not met, repeat the step, "Develop Incremental Tests" and step
"Develop Peak Rate Tests", for additional enhancements.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

30 | Setting JVM Parameters

Setting JVM Parameters

This section describes the JVM parameters for the AppNode.

JVM Parameters

This section specifies some of the JVUM parameters and their default values for the
AppNode.

Heap Space

JVM parameters that can be configured for the AppNode heap are minimum heap space
(Xms) and maximum heap space (Xmx).

The default values for these parameters are -Xmx1024m -Xms128m. If you have to change
this value, you can update it using the BW_JAVA_OPTS environment variable.

For all the platforms the default heap size is 1,024 MB, you can update it using the BW_
JAVA_OPTS environment variable.

For Docker:

docker run -e BW_JAVA_OPTS="-Xmx2048M -Xms2048M" -d -p <Host_
ApplicationPortToExpose>:<Container_ApplicationPort>
<ApplicationImageName>

For Kubernetes or VMware Tanzu or Openshift:

applications:

-name: <ApplicationName>
memory: 512M

path: <ArchiveName>
buildpack: <BuildpackName>
env:

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

31| Setting JVM Parameters

-name: BW_JAVA_OPTS
value: "Xmx2048M -Xms2048M"

Heap Dump On Out of Memory Error

The parameter -XX: +HeapDumpOnOutOfMemoryError can be set to enable heap dump when
the JVM runs out of memory. You have set this parameter in the BW_JAVA_OPTS
environment variable.

For Example, BW_JAVA_OPTS="-Xmx1024M -Xms1024M -
XX:+HeapDumpOnOutOfMemoryError

Once JVM throws an OOM exception, heap dump snapshots get generated and it gets
stored within the container. Please follow the below steps to copy the heap dump
snapshot from the container to your local machine:

e Connect to the container

o docker exec -it <containerID> bash

e Copy the snapshot from a container to the local machine

© docker cp <containerId>:/filepath/within/container/host/path/target

By default the heap dump snapshot gets stored in the root location with the name java_
pidl.hprof.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

32 | Best Practices

Best Practices

This section describes some of the important observations and guidelines developed in
field trials.

These guidelines are based on numerous performance improvement projects and details of
the new features introduced with TIBCO BusinessWorks Container Edition.

e TIBCO BusinessWorks Container Edition Engine Tuning Guidelines
e TIBCO BusinessWorks Container Edition Transport and Resource Tuning Guidelines
e JVM Tuning Guidelines

e Container Tuning Guidelines

Note: TIBCO recommends to first tune the BWEngine until all the resources are
fully utilized and then go for container tuning.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

33| Engine Tuning Guidelines

Engine Tuning Guidelines

This section provides high-level steps for TIBCO BusinessWorks Container Edition
performance tuning. Specific details are discussed in the subsequent sections.

When tuning the TIBCO BusinessWorks Container Edition engine allocate significant time to
select the JVM configurations and the necessary tuning parameters depending on the use
cases, payload and workload requirements.

 Since jobs process on a separate Java thread, the number of engine threads controls
how many jobs can run simultaneously. The number of threads that an engine can
allocate is set in the environment variable section in the .ym1 file.

e Measuring the available CPU and memory resources on your system under a typical
processing load helps you to determine if the default value of eight threads is
appropriate for your environment.

For example, if engine throughput has reached a plateau, yet measurements show
that CPU and memory are not fully utilized, increasing this value can improve
throughput. Typically it is advisable to double the engine threads when tuning the
engine if CPU resources are available.

e There are two ways of using CPU resources to the maximum capacity:
° Optimize engine thread.
° Tune thread pools, where available, for asynchronous activities.

e Typical numbers of engine threads range between eight and thirty-two. Specifying a
value too low can cause lower engine throughput even though spare CPU resources
exist. Specifying a value too high can cause CPU thrashing behavior.

* If the pace of the incoming processes still exceeds the number of threads available to
run them, consider using flow control.

ThreadCount (bw_engine_threadcount)

The threadCount property specifies the number of threads that the ActiveMatrix
BusinessWorks engine allocates .The default value of engine threads is eight.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

34| Engine Tuning Guidelines

The jobs in memory are run by the engine. The number of jobs that can be run
concurrently by the engine is limited to the maximum number of threads, indicated by this
property. This property specifies the size of the job thread pool, and is applied to the BW
Application running within the container.

Threads run a finite number of tasks or activities uninterrupted and then yield to the next
job that is ready. The thread count can be tuned to the optimum value by starting with a
default value of eight threads and then doubling it up until maximum CPU is reached.

The CPU and memory resources must be measured under a typical processing load to
determine if the default threadCount value is suitable for the environment. Please refer the
below formats to set threadCount value on different container platforms:

Docker:

docker run -e BW ENGINE_THREADCOUNT=16 -p <Host_
ApplicationPortToExpose>:<Container_ApplicationPort>
<ApplicationImage>

Kubernetes:

Update the yml file as shown below:

env:
-name: BW_ENGINE_THREADCOUNT
value: 32

VMware Tanzu:

Update the yml file as shown below:

env:
BW_LOGLEVEL: ERROR
BW_ENGINE_THREADCOUNT: 32

StepCount (bw_engine_stepcount)

The engine stepCount property determines the number of activities that are run by an
engine thread, without any interruption, before yielding the engine thread to another job
that is ready in the job pool.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

35| Engine Tuning Guidelines

Exceptions to stepCount can occur when the job in a transaction, is blocked, or is waiting
for an asynchronous activity to complete. When a job is in a transaction, the thread is not
released until the transaction is complete, even when the stepCount is exceeded.

However, if a job is blocked or waiting for an asynchronous activity to complete, the thread
can be yielded even when the stepCount has not been reached.

The default value of this property is -1. When the value is set to -1, the engine can
determine the necessary stepCount value. A low stepCount value may degrade engine
performance due to frequent thread switches depending on the scenario. Given the nature
of the jobs and the number of activities it includes, a high step count value may result in
uneven execution of available jobs.

Please refer the below formats to set the step count value on different container platforms:

Docker:

docker run -e BW_ENGINE_STEPCOUNT=10 -p <Host_
ApplicationPortToExpose>:<Container_ApplicationPort>
<ApplicationImage>

Kubernetes:

env:
-name: BW_ENGINE_STEPCOUNT
value: 10

VMware Tanzu:

env:
BW_LOGLEVEL: ERROR
BW_ENGINE_STEPCOUNT: 10

Flow Limit

This property specifies the TIBCO BusinessWorks Container Edition application's process
starters or service bindings flow limit value. There is no default value.

Flow limit is useful when the engine needs to be throttled, as the property specifies the
maximum number of jobs that can be started before suspending the process starter. This

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

36 | Engine Tuning Guidelines

ensures that the incoming requests do not overwhelm the engine performance and the
CPU and memory is preserved.

If the flow limit is set to a particular value at the application level, each of its process
starters contains the same value. For example, if you set the flow limit at application level
as eight and the application has two process starters, the flow limit for each of these
process starters is eight.

If you want to set the value for one process starter only, set the flow limit at the
component level by using the environment variable, BW_COMPONENT_JOB_FLOWLIMIT.

For more information on the environment variable, see "Environment Variables for Docker"
in TIBCO BusinessWorks Container Edition Application Development.

o Note: For component level, use only the BW_COMPONENT_JOB_FLOWLIMIT
environment variable.

If the number of jobs being created exceeds the flow limit, the engine suspends the
creation of new jobs but continues running the jobs in memory. The engine resumes
creating jobs when sufficient resources are available. There is no default flow limit value
and it is not enforced by the engine unless the flow limit property is specified for an
application.

o Note: Only set the flowlimit property for applications using non-HTTP based
transports, for example, JMS. If applications are using HTTP-based transports,
ensure you set the Max QTP thread value of the HTTP Connector share resource
to apply the Flow limit.

o Note: Get the logs for the component states such as Start, Stop, and Resume
based on whether the Flowlimit is breached or complied by enabling the core
runtime logger com.tibco.bw.core at INFO level.

Docker:

docker run -e BW_APPLICATION_JOB_FLOWLIMIT=32
-p <Host_ApplicationPortToExpose>:<Container_ApplicationPort>
<ApplicationImage>

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

37| Engine Tuning Guidelines

Kubernetes:

env:
-name: BW_APPLICATION_JOB_FLOWLIMIT
value: 32

VMware Tanzu:

env:
BW_LOGLEVEL: ERROR
BW_APPLICATION_JOB_FLOWLIMIT: 32

Application Statistics

The TIBCO BusinessWorks Container Edition engine collects three types of statistics for an
application, application job metrics, process statistics, and execution statistics.

Enabling statistics adds a certain performance overhead.

Application statistics collection can be enabled or disabled from the monitoring dashboard.
For more information, see the Application Monitoring and Troubleshooting section in the
product documentation.

We can view process data, activity data, process instance data, and application properties
in the Application Statistics.

Process Statistics

Process statistics collection for an application or an individual processes can be enabled or
disabled from monitoring dashboard.

For more information, see Application Monitoring and Troubleshooting guide.

Process Execution Statistics

Using process execution statistics, you can collect information for individual processes and
activities of an application such as status, start time, elapsed time and so on.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://docs.tibco.com/pub/bwce/2.4.0/doc/pdf/TIB_bwce_2.4.0_application_monitoring_and_troubleshooting.pdf
https://docs.tibco.com/pub/bwce/2.4.0/doc/pdf/TIB_bwce_2.4.0_application_monitoring_and_troubleshooting.pdf

38 | Engine Tuning Guidelines

You can use this information to identify time consuming activities and processes in an
application.

Statistic Description

Status Status of the activity. For example, completed, faulted or cancelled.

Execution The execution time for an activity is the actual time (in milliseconds) required
Time by the activity to complete.

Elapsed Elapsed time of an activity is the time difference (in millseconds) between start
Time time and end time of the activity. Between the start and end time, control may

get switched with other activities from other jobs. This is the time taken to run
an activity plus all the delays in acquiring resources like engine threads, JDBC
connections, network, and so on. The elapsed time is eval time plus the time
taken for evaluating all the forward transitions from that particular activity.

Activity Instance Statistics

Using activity statistics, you can collect the information for each activity in the process
diagram. The following activity statistics is collected:

Process Instance Statistics

The following process instance statistics are collected:

Statistic Description
State State can be completed and faulted
DurationTime The time for a process is the total time taken by the process, including the

elapsed time for all the activities run for the process.
EvalTime The Eval Time for an activity is the actual time (in milliseconds) used by

the activity itself to complete while using the engine thread. Asynchronous
activities may use other threads not included in this time.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

39 | JVM Tuning Guidelines

JVM Tuning Guidelines

Each TIBCO BusinessWorks Container Edition engine runs as a multi-threaded Java server
application. Processes and other objects used internally by TIBCO BusinessWorks Container
Edition are Java objects that consume memory while the engine is running.

Java provides some useful parameters for tuning memory usage. Ensure that you consider
these factors when selecting a JVM.

Besides the JVM version and the vendor, the most relevant tuning parameters are:
e JVM heap size

» Garbage collection settings

Specifying JVM Heap Size
The default Java heap size, which varies according to platform, is a conservative estimate

made by the developers of the particular type of Java being used.

When you calculate the amount of memory required for an AppNode, you must determine
the largest heap size that can reside in a physical memory. For best engine performance,
paging to disk must be avoided.

The recommended heap size for a small workload is 1024 MB, for medium 2048MB, and for
large workload 4GB or more. The recommendations change based on the scenarios,
payload and workload.

To set the JVM available memory, use the following parameters:
e The Initial JVM Size parameter sets the minimum amount of memory used.

e The maximum JVM Size sets the maximum amount of memory used.

For more information, see Setting Appnode JVM Parameters .

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

40 | JVM Tuning Guidelines

o Note: TIBCO recommends to set minimum heap size to default value and tune
the maximum heap based on monitoring of memory usage and garbage
collection frequency under load. It is also recommended to run baseline,
scalability, and stability tests for identifying the optimum value of maximum
heap size.

The total amount of JVM memory required to operate a TIBCO BusinessWorks Container
Edition engine must be the memory for each process plus the maximum number of
processes that can be in the process pool. If flow control is enabled, the process pool can
contain up to the Max Jobs value.

o Note: While uploading ears, deploying applications, and browsing, increase the
heap size in bwagent and AppSpace. tra files. The property specified in the
AppSpace.tra file applies to all AppNodes associated with the AppSpace.
However, the property specified in the AppNode. tra file only applies to a specific
AppNode and overwrites the property specified in the AppSpace.tra file. The
property specified in bwagent.tra does not overwrite properties in the
AppNode. tra or the AppSpace.tra files.

JVM Garbage Collection

Tuning garbage collection requires good understanding of garbage collection frequency,
message size, and longevity, young, tenured, and perm.

Many JVMs have different levels of algorithms to suit application requirements. Hence, it is
very difficult to provide general recommendations.

The option AggressiveHeap affects the memory mapping between the JVM and operating
system, and the option ParallelGC allocates multiple threads to part of the garbage
collection system.

Note: The client must try to experiment with these options, but the results are
not deterministic. It can be argued that a multi-process system of four to twelve
CPUs, using ParallelGC can produce better results.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

41 | JUM Tuning Guidelines

We recommend that the application must not make direct explicit garbage collection. If the
application does make a call to explicit garbage collection, to disable it, use verbose:gc -

XX:+DisableExplicitGC command. These properties can be appended to the BW_JAVA_
OPTS variable.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

42 | Transport and Resource Tuning Guidelines

Transport and Resource Tuning Guidelines

Performance must be one of the criteria for using the appropriate transport. Besides
performance, you must also consider interoperability, reliability, and security requirements.

You have choices of using HTTP or JMS, SOAP over HTTP, SOAP over JMS and TIBCO Active
Enterprise™ messages. The best practice of selecting a proper standard for the project is
beyond the scope of this document. However, the following general results from a
performance point of view are provided for your reference only.

You must use them only as general observations, and for initial understanding. For
different environment and different requirements, these results cannot be directly applied
to their work. Instead, it is strongly recommended that you create a realistic scenario in the
lab and then derive the appropriate results.

HTTP Resource

Performance characteristics of SOAP and REST are closely tied to the performance of the
HTTP implementation in TIBCO BusinessWorks Container Edition.

In some situations, you can alter the configuration of the HTTP server that receives
incoming HTTP requests for TIBCO BusinessWorks Container Edition. There are two thread
pools that can be tuned or set to appropriate values for handling the incoming concurrent
requests efficiently.

e Acceptor Threads: These are the Jetty server threads. Acceptor threads are HTTP
socket threads for an HTTP Connector resource that accept the incoming HTTP
requests. While tuning these threads, the rule of thumb, as per the Jetty
documentation, is acceptors > =1<=#CPUs.

* Queued Thread Pool: The Queued Thread Pool (QTP) uses the default job queue
configuration. The QTP threads accept the requests from the Acceptor Threads.

You can configure the following two properties to specify values for the Queued thread
pool.

e Minimum QTP Threads: The minimum number of QTP threads available for

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

43 | Transport and Resource Tuning Guidelines

incoming HTTP requests. The HTTP server creates the number of threads specified by
this parameter when it starts up. The default value is 10.

e Maximum QTP Threads: The maximum number of threads available for incoming
HTTP requests. The HTTP server cannot create more than the number of threads
specified by this parameter. The default value is 75. This limit is useful for
determining the number of incoming requests that can be processed at a time.
Setting a high number creates that many threads and drastically reduce the
performance.

TIBCO recommends that if you have a large number of incoming requests, you can change
these values to handle more incoming requests concurrently. You can also increase these
numbers only if you have a higher peak concurrent request requirement, and you have
large enough hardware resources to meet the requests.

In addition to the QTP threads, REST services also include the bw-flowlimit-executor-
provider thread pool, which is a part of the Jersey framework. The QTP threads offload the
work to bw-flowlimit-executor-provider threads. These threads handle the processing of
the RESTful services. The core pool size of these threads is equivalent to the min QTP
thread pool that is the settings are picked from the values provided for the QTP pool on
the HTTP Connector resource. The pool size values cannot be modified directly, which
means that if users want to modify the thread settings, they need to change the QTP
thread pool values.

All the incoming requests are processed by one of the available Jersey threads. If in case
the Jersey thread is not available, the request is queued (based on blocking queue size),
and this holds true until the Queue gets filled up. If the load persists continuously and the
Queue is already full, then the Jersey threads are scaled up to maxQTP(in other words,
Jersey maxPoolSize), that is the setting are picked from the values provided for the QTP
pool on the HTTP Connector resource.

The bw-flowlimit-executor-provider threads are created for every service deployed in the
application EAR. If there are 10 services deployed in a single EAR, on a single AppNode
container, then the bw-flowlimit-executor-provider threads created would be equal to the
number of services deployed that is (10) * CorePoolSize.

For more information about configuration details of the parameters, see Tuning
Parameters

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

44 | Transport and Resource Tuning Guidelines

HTTP Client Resource

There are two important tuning considerations related to the HTTP client:
e HTTP Client Thread Pool

» Connection Pooling

HTTP Client Thread Pool - If you are using HTTP or SOAP with HTTP Send Request or
SOAP Invoke (Reference) activity, it is important to verify that the rate of request received
on the HTTP server keeps up with the rate at which the client sends messages. This
situation is arises when there are very high numbers of concurrent requests being made.

Each Request and Response activity that uses the HTTP protocol, for example, Send HTTP
Request or SOAP Invoke is associated with a unique thread pool.

Each request is run in a separate thread, which belongs to the thread pool associated with
the activity. The number of threads in the pool determines the maximum number of
concurrent requests a request or response activity can run. This is a cached thread pool
with no default value.

Alternatively, you can create a separate client thread pool and define the core and max
pool values. Set the value of this property to a reasonable number for your system. If you
set the value too high, it may result in extra resources being allocated that are never used.

You may want to increase the value of the max pool size. However, this value must be
increased only if the client side has more backlogs compared to the receive side. TIBCO
recommends that you design a test framework that helps you monitor such behavior and
determine optimal thread pool count.

Connection Pooling - In the absence of connection pooling, the client makes a call to the
same server in a single threaded communication. By enabling connection pooling,
multithreaded communication is enabled. Hence, by default the HTTP Client provides
single threaded connection. Single threaded connection can be used for multiple
sequential requests. However in cases where there are multiple concurrent requests,
enabling connection pooling is required.

If connection pooling is enabled, it can improve performance as a pool of reusable shared
connections are maintained. Using the connection pooling feature you can keep the default
values for the number of connections that the client establishes with the service, or tune
them appropriately. The values must not be set to zero (0).

For more information, see Tuning Parameters.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

45 | Transport and Resource Tuning Guidelines

JMS Resource and JMS Transport

Explained below are some usage recommendations when using JMS resource or JMS
transport.

Usage Recommendations

Transport such as JMS can be throttled by limiting the number of sessions. JMS does not
deliver more messages until some of the sessions have been acknowledged.

The combination of TIBCO Enterprise Message Service features Explicit Acknowledge and
FlowLimit also exists. In this case, location of ack in process makes no difference.

When using Client Ack, the JMS session cannot receive a new message until the current
message is acknowledged.

Using TIBCO BusinessWorks Container Edition you can configure multiple sessions to receive
messages faster, and set number of sessions higher than the number of engine threads.

Acknowledge and confirm messages as soon as possible, to improve throughput.

By holding Client ack to the end of the process, you block that session. This means you slow
down the rate at which TIBCO BusinessWorks Container Edition pulls messages from the JMS
server, which holds messages for a longer period of time.

With TIBCO Enterprise Message Service Explicit Ack, a single session is used to receive all
messages. This mode allows for more efficient resource utilization, and provides even load
distribution across multiple engines.

The best way to increase performance beyond the capability of a single engine is to distribute
the load over multiple engines using a load-balanced transport such as JMS Queue, to
distribute the work. External mechanisms exist to allow HTTP to be used for this purpose also.
Simple and Text JMS message types have the lowest processing overhead.

To design a long running process to fetch a message and process it, use Get JMS Queue

message activity in a loop instead of Wait For JMS Queue message. In most cases, a JMS
starter is sufficient in this scenario.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

46 | Transport and Resource Tuning Guidelines

Usage Recommendations
If possible, choose NON_PERSISTENT as the delivery mode in replying to a JMS message.

For multiple JMS Receiver activities on an AppNode, the polling interval value has an impact
on the CPU utilization of the AppNode. Lower the polling interval, higher is the CPU utilization,
and higher the polling interval, lower the CPU utilization. In an environment where there are
constraints on the available CPU resources, TIBCO recommends that the polling interval value
must be increased to lower the CPU consumption.

Impact of SSL on Performance

When using HTTP over SSL, the overhead added by SSL on the overall request and
response or throughput for a scenario is limited.

For scenario and settings details, see HTTP Connector Resource .

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

47 | Container Tuning Guidelines

Container Tuning Guidelines

Factors such as user load, or the number of tasks performed by an application, can impact
the performance metrics like disk space and memory of the container that the application
is using. For many applications, increasing the available memory can improve overall
performance. Similarly, running additional instances of an application can allow the
application to handle increase in user load and concurrent requests. These adjustments are
called as scaling an application.

Horizontal Scaling

Horizontally scaling an application creates or destroys instances of the application.
Incoming requests to the application are automatically loaded balanced across all the
instances allocated to the application, and each instance handles tasks in parallel with
every other instance. Adding more instances allows the application to handle increased
traffic and demand.

Kubernetes:

For this platform, you can do the horizontal scaling by increasing the PODS that is the
containers allocated for that application. Below snapshot shows scaling through the
Kubernetes dashboard.

(-'- localhost:8001/apifvl/proxy/namespaces/kube-system/senvices/kubernetes-dashboard/#/replicationcontrollertnar e HQ Search ‘ Ww A 4+ #

Set desired number of pods

Replication controller will be updated to reflect the desired count.
Current status: created, desired

Number of pods*
2

CANCEL

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

48 | Container Tuning Guidelines

VMware Tanzu:

Horizontal scaling can be achieved through the cf cli as well as with the cloud foundry Ul.
Use cf scale APP -i INSTANCES to horizontally scale your application. Cloud Foundry
increases or decreases the number of instances of your application to match INSTANCES.
Below snapshot shows the horizontal scaling through the cloud foundry Ul.

Tibco Apps Manager admin ~

APP
RestApp | C @ Running View App &

~ S Overview Services Route (1) Logs Tasks Settings Buildpack: bwee-buildpack-231vé
connector

mfce

Events Last Push: 09:55 AM 07/07/17 Scaling

Perf

Started app Instances Memory Limit Disk Limit
|3|llgil‘| > admin 07/07/2017 at 04:25:19 AM UTC
1 1GB v 1GB

® Updated app
admin 07/07/2017 at 04:25:13 AM UTC

Instances

CPU MEMORY DISK UPTIME

1015.45MB 475.66 MB 4hr 31 min

ibco Software Inc. All rights reserved.

Vertical Scaling

Vertically scaling an application changes the memory limit that container platform such as
Docker, VMware Tanzu, Kubernetes applies to all instances of the application. We can
deploy multiple applications with one cf push command by describing them in a single
manifest. For doing this, we need to look into the directory structure and path lines in the
manifest. We can also define the number of instances and memory allocation parameters
in the manifest file, which is used while deploying the application.

Docker:

For Docker, the vertical scaling is achieved by increasing the memory allocated for the
container as well as increasing the number of CPUs defined for the container.

Use docker run -m MEMORY to change the memory limit applied to the container of your
application. Memory must be an integer followed by either an M, for megabytes, or G, for
gigabytes.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

49 | Container Tuning Guidelines

Use docker run -cpus 2.00 to change the number of CPUs allocated for that container.
Number is a fractional number. 0.000 means no limit. If you do not specify this parameter,
it uses all the CPUs available on that host or instance where the container is running.

Below snapshot shows how to set the CPU and memory for the container:

docker run -m 1024M -cpus 2.0 -p
<Host_ApplicationPortToExpose>:<Container_ApplicationPort>
<ApplicationImageName>

Kubernetes:

For this platform vertical scaling can be done by increasing the resource limits that are CPU
and Memory allocated for the container. One can achieve this by specifying the limits in the
manifest.yml file. Below is the snapshot of the manifest.yml file.

containers:
resources:
limits:
cpu: 0.5
memory: 512Mi
requests:
cpu: 0.5
memory: 512Mi

Kubernetes schedules a Pod to run on a Node only if the Node has enough CPU and RAM
available to satisfy the total CPU and RAM requested by all of the containers in the Pod.
Also, as a container runs on a Node, Kubernetes does not allow the CPU and RAM
consumed by the container to exceed the limits you specify for the container. If a Container
exceeds its RAM limit, it shut downs from an out-of-memory condition. If a container
exceeds its CPU limit, it becomes a candidate for having its CPU use throttled.

You can improve reliability by specifying a value that is a little higher than what you expect
to use. If you specify a request, a Pod is guaranteed to be able to use that much of the
resource.

If you do not specify a RAM limit, Kubernetes places no upper bound on the amount of
RAM a Container can use. A Container could use the entire RAM available on the Node
where the Container is running. Similarly, if you do not specify a CPU limit, Kubernetes
places no upper bound on CPU resources, and a Container could use all of the CPU
resources available on the Node. In this, you do not need to do the vertical auto scaling.

VMware Tanzu:

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

50 | Container Tuning Guidelines

For the cloud foundry, you can do the vertical scaling by increasing the container resources
that are memory, and disk. You can do this through the cloud foundry command line and

the cloud foundry UL.

Usecf scale APP -m MEMORY to change the memory limit applied to all instances of your
application. MEMORY must be an integer followed by either an M, for megabytes, or G, for

gigabytes.
The below snapshot shows how vertical scaling can be done through VMware Tanzu Ul.
P Pivotal Apps Manager Search by App Name es admin
app
test_server \II ® Running VIEW APP [}
Overview Services Route (1) Logs Tasks Settings Buildpack: bw-buildpack-qaauto..
connector
Events Last Push: 11:53 AM 06/22/18 Scaling
ﬂW&II\fIHTY]E‘qﬂ
y Startedapp Instances Memory Limit Disk Limit
Perf admin 06/22/2018 at 06:23:31 AM UTC N 168 s 168 s
plugin Updated app
20Min 06/22/2018 21 06:23:19 AM UTC Autoscaling
Instances
cPU Memory Disk uptime
0 0% 518508 576.19MB 6d2hr 47 min

o Note: Vertical scaling beyond a certain limit is not good practice in the
containerized deployment. Typically you must consider horizontal scaling if the
container resource limit requirement is greater than 2cores or 4vCPUs.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

51 | Tuning Parameters

Tuning Parameters

This section explains the tuning parameters for the following connectors, connection
resources and messaging servers:

e HTTP Connector Resource

HTTP Client Resource Tuning Parameters

JDBC Connection Resource

TCP Connection Resource

JMS Receiver

Blocking Queue Size

HTTP Connector Resource

This section describes the tuning parameters for the HTTP Connector resource that you
can configure in TIBCO Business Studio for BusinessWorks.

Basic Configuration

Field Description
Acceptor These are the HTTP socket acceptor threads for the HTTP Connector resource,
Threads which pick up the HTTP requests.

The default value is 1.

Accept This is the number of connection requests to be queued before the operating
Queue Size system starts sending rejections.

The value can be set to either 0 or -1 .These values signify that the queue size
is 50 or OS-specific.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

52 | Tuning Parameters

HTTP Connector - Basic Configuration

HTTP Connector

General

Package: hitpserver_acceptorthreads Y Mame: HTTPConnectarRescurce

There a1 reference to this reseurce
Drescription:

= Basic Configuration

Hast: 10154143114
Port: Sl

Accept Queus Size: o

Acceptor Threads: 1

Advanced Configuration

Field Description

Queued The Queued Thread Pool is the thread pool provided by Jetty that uses the
Thread default job queue configuration. The QTP threads accept requests from the
Pool Acceptor threads.

The default values are:

e Minimum QTP threads = 10

e Maximum QTP threads =75

HTTP Connector - Advanced Configuration

e RIS es CoTeTaTon
Header Bulfer Size (B) 0% S B s Non-Blacking 10 Sockers T
Fieqqu est Bufer Sive (5) g192 BRI Use Dueer Buffers =i
Fiesponse Buffer Size (B) BTG BB uREnceding
Wlax Tdle Time frns) 2000 “ B I Enable DS Lookups
Low Resource Mae kdle Time (ms) 0 = |§I Compression
Linger Time {ms) i e :_'I |ﬁ:l Compressible Mime Types St Tt | fest e bewtiplaim
Max Pt Size 2E7152 SERE RevereProvyHom
Mlan Seve Past Size Sl 2 E @ Revene Prowy Pom [}
Minimum QTP Thresds L]) f'?_-l @ Meximum QTP Threads 5

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

53 | Tuning Parameters

HTTP Client Resource Tuning Parameters

This section describes the tuning parameters for the HTTP Client resource that you can
configure in TIBCO Business Studio for BusinessWorks.

HTTP Client

You can configure the following fields.

Field Description
Maximum This is the maximum number of concurrent HTTP connections allowed by
Total the resource instance to be opened with the target service.

Connections o .
This property is enabled only if connection pooling is enabled, that is the

disable connection pooling parameter is not selected. For applications that
create many long lived connections, increase the value of this parameter.

Default value = 200

Maximum This is the maximum number of concurrent HTTP connections allowed by
Total the resource instance to be opened with the target service to the same host
Connections or route. This property is enabled only if connection pooling is enabled, that
Per Host or is the disable connection parameter is not selected.

Route

This value cannot be more than the maximum total connections. The value
for these threads can be modified at design time in TIBCO Business Studio
for BusinessWorks as shown in the snapshot. Every connection created here
also counts into Maximum Total Connections.

Default value = 20

HTTP Client Resource

[g = 5
Irglementation Liteesy | B F -
Dirabile Conncuion Peoing e B
R Teasd Conmections: bt] :'1 Gl ldte Connaction Tirmeout fd): e] A :!: ig:
M psbenum Tois] Cenmecions Fer HostRovie 3 ELEEE smaleCheck | iy 7]
Default Host: lecalhadt PR Dafault Posx) =N
Thueed Becl =[x

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

54 | Tuning Parameters

Thread Pool Resource

You can optionally create the client thread pool that routes the messages to the target
service. The thread pool resource can be created by either selecting a thread pool resource
template or creating a new one. The values for these threads can be modified at design
time in TIBCO Business Studio for BusinessWorks.

The default values are:
e Core Pool Size =5

e Max pool Size = 10

HTTP Client Thread Pool

+ Thread Pool
Core Pool Size: 5 = l_lr_ [ez{l Thread Pool Mame Prefec m g{l__
Max Pool Size: 10 = I3 @ Daemon i) [EQ
Keep Alive Time (s): 0 = i3 Priotity: 5 ==
Autostart Core Threads: O B8 Rejection Pelicy: ELDCKING -

JDBC Connection Resource

This section describes the tuning parameters for the JDBC Connection resource that you
can configure in TIBCO Business Studio for BusinessWorks.

JDBC Connection

You can configure the following field.

Field Description
Max This parameter specifies the maximum number of database connections to
Connections allocate.

Default value = 10

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

55 | Tuning Parameters

JDBC Connection Resource

JDBC Connection

Connection Type: Direct
Maximum Connections: 10

TCP Connection Resource

This section describes the tuning parameters for the TCP Connection resource that you
can configure in TIBCO Business Studio for BusinessWorks.

TCP Connection

You can configure the following fields.

Field Description
Maximum This is the maximum number of simultaneous client sessions that can
Connections connect with the server. This parameter is enabled only if connection

pooling is enabled.

Default value = 10

Maximum Wait This is the maximum wait time in milliseconds to connect to the TCP server.
Time This parameter is enabled only if connection pooling is enabled.

Default value = 10000 ms

TCP Connection Resource

* TCPConnection
Host:
Fort:
Enable Connecton Paal: 5]
‘When Exhausted Connection: Elock
Maximum Connections: 10

Blaximum 'Wait Time {msec): 10000

[dle Timegut {mseck -1

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

56 | Tuning Parameters

JMS Receiver

You can configure the polling interval variable in the Advanced tab of the JMS Receive
Message activity.

Field Description

Polling This property specifies the polling interval in seconds to check for new messages.
Interval If a value is not specified for the property, Setting a value in this field overrides
(sec) the default polling interval.

Default value = 2

JMS ReceiveMessage

% JMSReceiveMessage [IMS Receive Message)
General Message Sdector

Desengran Apphcation Praperties Type:

Advamied Pellinag betervel (isck

DAPIERY oqarce ey

l:upul Custom Job &

Blocking Queue Size

This is the number of requests to be queued before the operating system starts sending
rejections. In case of unavailability of Jersey threads, all the incoming requests get queued
up until the queue gets full. The default blocking Queue size is Integer.MAX_VALUE which is
unbounded. The Blocking Queue size can be modified at design time in TIBCO Business
Studio for BusinessWorks as shown in the following image.

Parameter location: Bindings > RestService > Advanced Configurations > Blocking
Queue Size

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

57 | Tuning Parameters

= Path P wmeters

= Ay ata il Cardegnie abman.
B Qs Sie: [THPRNAT = QE

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

58 | Debugging Performance Issues

Debugging Performance Issues

This section describes how to debug for performance related issues.
» Debugging High CPU Utilization Issues
e Debugging High Memory Utilization Issues

* Debugging High Latency Issues

Debugging High CPU Utilization Issues

The CPU utilization of container application for a particular service depends on the
complexity of service implementation, payload, workload, number of services deployed on
the container application, and the CPU or Memory resources made available in the
container.

Before you begin

Assuming all the components of the engine are tuned for debugging high CPU utilization
issues on the container, collect the following data that helps in further debugging and
understanding the issues.

Procedure
1. Capture thread dumps for analyzing the thread state and calls. Capture five thread
dumps at an interval of 5 seconds each. Redirect all the collected threads dumps to
separate files.

e The thread dumps can be captured using the jstack utility shipped with JDK.

./jstack <PID of container application> > ThreadDump_n.txt

e The thread dumps can be captured through JConsole or JVisualVM utilities.

2. Capture top CPU consuming threads data for 5 minutes run by using a jvmtop utility.

For more information about the jvmtop utility, see support article KB000034702.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://support.tibco.com/s/article/Debug-High-CPU

59 | Debugging Performance Issues

./jvmtop <PID of container application> > JVM_topthreads.txt

3. Capture method level CPU profiling data for 5 minutes run by using a jvmtop utility.

./jvmtop --profile <PID of container application> > JVM_
CPUProfile.txt

4. Capture container logs for the test run duration.

5. Capture the CPU and memory utilization of the container application for 5-minutes
run.

e The data can be captured through a top utility on Unix.

top -p <PID of container application> > top_container.txt

e The data can also be captured through JConsole or JVisualVM utilities.

6. Check the BW_JAVA_OPTS and other runtime parameters with which the container is
running. This helps analyze the JVM parameters and other engine tuning parameters.

7. Capture system configurations of containers such as CPU details, RAM, and number
of cores where, TIBCO BusinessWorks™ Container Editionapplications, external
services, and load generator are running. Capture details of /proc/meminfo and
/proc/cpuinfo files.

cat /proc/meminfo and cat /proc/cpuinfo

Debugging High Memory Utilization Issues

The memory utilization for a particular service on the container application depends on the
complexity of service implementation, payload, workload, the number of services deployed
on the container application, CPU, or memory resources made available to the container .

Before you begin
Assuming all the components of the engine are tuned for debugging high memory
utilization issues on the container application, collect the following data that helps in

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

60 | Debugging Performance Issues

further debugging and understanding the issues.

Procedure

1. Capture the heap dump on the container application when memory issues are
observed on the container application.

e The heap dumps can be captured by using the jmap utility.

jmap -dump:live,file=memorydump.hprof <PID of container
application>

e The heap dumps can also be captured through JConsole or JVisualVM utilities.

The heap dump can be analyzed using the memory analyzer tool for checking
memory leaks and top components of memory.

2. Capture jstat data for checking the allocation and utilization of different memory
pools for 5-minutes run.

jstat -gc <PID of container application> > jstat_gc.txt

3. Capture thread dumps for analyzing the thread state and calls. Capture five thread
dumps at an interval of 5 seconds each. Redirect all the collected threads dumps to
separate files.

e The thread dumps can be captured by using the jstack utility shipped with JDK.

./jstack <PID of container application> > ThreadDump_n.txt

e The thread dumps can also be captured through JConsole or JVisualVM.
4. Capture container logs for the test run duration.

5. Capture the CPU and memory utilization data of the container application for 5-
minutes run.

e The data can be captured through the top utility on Unix.

top -p <PID of container application> > top_application.txt

e The data can also be captured through JConsole or JVisualVM utilities.

6. Check the BW_JAVA_OPTS and other run-time parameters with which the container
is running. This helps analyze the JVM parameters and other engine tuning

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

61 | Debugging Performance Issues

parameters.

Capture system configurations of servers such as CPU details, RAM, and number of
cores where TIBCO BusinessWorks Container Edition applications, external services,
and load generator are running. Capture details of /proc/meminfo and
/proc/cpuinfo files.

cat /proc/meminfo and cat /proc/cpuinfo

Debugging High Latency Issues

The latency of a particular service depends on the complexity of service implementation,
payload, workload, the number of services deployed on a container, and CPU or memory
resources made available to the container.

Before you begin

Assuming all the components of the engine are tuned for debugging high latency issues on
the container, collect the following data that helps in further debugging and understanding
the issues.

Procedure

1.

Capture the process execution statistics for the test run. This would help analyze the
time spent in individual processes and activities. For more information, see the TIBCO
BusinessWorks Container Edition Application Monitoring and Troubleshooting guide.

Capture thread dumps for analyzing the thread state and calls. Capture five thread
dumps at an interval of 5 seconds each. Redirect all the collected threads dumps to
separate files.

» The thread dumps can be captured using the jstack utility shipped with JDK.

./jstack <PID of container application> > ThreadDump_n.txt

e The thread dumps can be captured through the JConsole or JVisualVM utilities.

Capture top CPU consuming threads data for 5 minutes run by using the jvmtop
utility.

For more information about the jvmtop utility, see support article KB000034702.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://support.tibco.com/s/article/Debug-High-CPU

62 | Debugging Performance Issues

./jvmtop <PID of container application> > JVM_topthreads.txt

4. Capture method level CPU profiling data for 5 minutes run by using the jvmtop utility.

./jvmtop --profile <PID of container application> > JVM_
CPUProfile.txt
5. Capture container application logs for the test run duration.

6. Capture the CPU and the memory utilization data for five runs on the container
application.

e The data can be captured through the top utility on Unix.

top -p <PID of container application> > top_application.txt

e The data can also be captured through JConsole or JVisualVM utilities.

7. Check the BW_JAVA_OPTS and other run-time parameters with which the container
is running. It helps analyze the JVM parameters and other engine tuning parameters.

8. Capture system configurations of servers such as CPU details, RAM, and number of
cores where TIBCO BusinessWorks Container Edition container application, external
services, and load generator are running. Capture details of /proc/meminfo and
/proc/cpuinfo files.

cat /proc/meminfo and cat /proc/cpuinfo

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

63 | Performance Improvement Use Cases

Performance Improvement Use Cases

Given the wide range of use cases and even more complex and demanding scenarios that
the platform can address, the default configuration of TIBCO BusinessWorks Container
Edition might require some adjustments to reach optimal performance.

Performance Improvement Use Cases - Design
Time and Deployment

To accomplish a business objective or requirement, designing the applications
appropriately is an important aspect, as this impacts the overall performance of the
application and the system as a whole, to some extent. With complexities being introduced
in the way the processes in TIBCO BusinessWorks Container Edition are designed it is
imperative that users are able to adhere to best practices which eventually lead to better
end-to-end performance at run time. The use cases discussed here are based on the
experience for large production implementations and proof of concept scenarios where
implementing certain design changes helped improve the performance.

Usecase 1: Using File as the Input Type for Parse
Data Activity

Use Case 1: A customer in the banking domain observed that the time taken to parse
records was increasing with every record.
The process is shown in the following image:

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

64 | Performance Improvement Use Cases

@ o =
Tnter a—) |-i
oy 1
L BanderHR Jﬂﬂﬂ*dm
ms] L
Loyl art —y f:j' — = . e
~ = —r | -—
~ Kl =2, -'-'1} = \/@->} (T
S FedbrdType HeaderTypell RendesiS | rseTileHS T.-:pe . .Igjnd
| o =
T-v-fx - - i '
I N * Rt nal Ty 10w A Wy n.-rd:g ﬁ
ben | J Ly
[Low r-]. - - 'm] _+ ‘erkebae TI
pe) — - L4y [E
s Detullypedll- 38 Kended T ., [— (b
- WirtaFila TS Auriler TR
B ———_— By -)
(LA
\ LogEQF COF Totsl

The project is designed to parse data in an iterative manner from a file in the text format.
This data is converted into a schema which is then evaluated against certain conditions, by
the transitions. Based on specific values, the data is rendered in a particular format using
the data conversion ActiveMatrix BusinessWorks plug-in. This parsed data is written to files
and then eventually updated to the database.

Initial analysis showed that the overall high latency was due to the Parse Data activity
highlighted in the above image.

Further analysis revealed that the time taken to parse the records was high since the input
type of the Parse Data activity was configured to string, as displayed in the image below.
When the input type is set to string, the entire contents of the source are read. For
accessing specific records the search operation is performed in such a way that the entire
source file is scanned.

& RecordType {Parse Data)

General Name: | RecordType

Desmptm Data Format: ﬁ dat sFormatifasounce L:

Input |

o Input Type: EX

Fauk Encading: |ascu

e— Skip Blark Spaces: a
Manualy Specify Start Recard: HE
Strict Valiclation: O
Conbinue On Ervor: O

The other option to configure the input type is file. When the input type is file the data is
read from the source by means of a pointer. While accessing a specific range of records the
search is performed based on the position of the pointer which makes the operation faster.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

65 | Performance Improvement Use Cases

Testing and Measurement

The testing was focused on the aspects listed below:

e Comparative tests were conducted with input type for the Parse Data activity
configured to string and file. The tests were performed to parse records in multiple
iterations.

e The latency, memory and CPU utilization was measured.

e The overall latency was reduced by almost 10 times when the input type for the
Parse Data activity was set to file.

Solution for performance improvement

e TIBCO recommends that for faster processing, use the input type as file.

 In case of both the options, the input for Parse Data activity is placed in a process
variable and this consumes memory. Hence large memory is required to read large
number of records. To reduce memory usage, TIBCO recommends that a small set of
records are read, parsed and processed before moving on to the next set of records.

Usecase 2: Schema changes for improved
performance

In a customer project comprising of multiple schemas (more than 50), it was observed that
the latency for a single request -response was high, that is around few seconds.

The project mainly included multiple REST services as shown in the following image.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

66 | Performance Improvement Use Cases

seervice-oestl... - =
Q 2] service-gestioneean/post |

£l post
#1 [—
)l get - - -
2] put @ LOoG | LOG
i Log4d Lreate postOut Logl
service-gesti... .
[]
£l post
[} Exception
2] sernice-gestioneeanfget |
[=D~
| —— - o=
LogS Retriewe et Log®

4 Exception

5 service-gestionesan/put |

- T
—_— —_— —

| Logh Update putTiut LoglD

Some of the schemas in the project are shown in the following image.

Schemas

@ Books.xsd

@ Cuskomer ,xsd

@ CuskomersOrders, xsd

@ FTPExecutelepositResponse. xsd
8] MBCIFY.xsd

1

Analysis confirmed that the schema operations were heavy with the current design
implementation which contributed to the high latency.

Testing and Measurement

The testing was focused on the aspects listed below:

o With the default settings, a test was run for a single request and the total latency was
measured from the logs.

» Few changes were made in the schema definition where the include tags were
replaced with import, and the test was repeated and time was measured. For more
information, see

Solution for performance improvement

 If the schemas in the project consist of include, these can be replaced with

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

67 | Performance Improvement Use Cases

importsas shown in the example in the section, . This reduces the time considerably.

* This design implementation reduced the latency by almost 95 %.

Using XSD Schema Type for the Parse JSON activity

Use Case 3: In a customer usecase slow performance was observed in terms of latency,
when the schema type for the Parse JSON activity was configured to XSD type as
compared to Generic type. A comparison was done between the XSD and Generic type of
schema for the Parse JSON activity.

The process is shown in the following image:

e
J._.%x L Q
H1 TPRecCswer ReadFie
SendHT TPResponse
A= =
s " w0,

Parse 50N

In this process, a JSON file consisting of multiple records or elements is read by the Read
File activity, parsed by the Parse JSON activity in multiple iterations and then converted
to XML.

The schema type for the Parse JSON activity can be configured to either XSD or Generic
as shown in the following image:

T Properties 51 |* Problems (7) EW Help £ Conscle

#A ParselSON (Parse 1S0N)
|

General Namne: | ParseIs0N

Desription Schema Type: (GEneric

Output Edtor S S S S ———
Irq:L.t— Badgerfish: Vel

Cukput Input Json Style:

Fault

The Generic type converts a JSON string to an XML string without using any schema for
conversion. The XSD type converts a JSON string to an XML document defined using a
schema specified in the Output Editor. The user may want to use the Generic type a
specific schema is not required for conversion or the XSD type can be used when
conversion needs to be done based on a particular schema.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

68 | Performance Improvement Use Cases

Testing and Measurement

The testing was focused on the aspects listed below:

e With schema type as XSD, tests were run to process the records from the file and the
total time was measured for the end to end process to complete.

e With schema type as Generic, tests were run to process the records from the file and
the total time was measured for the end to end process to complete.

Solution for performance improvement

It was observed that with the schema type configured to Generic the time taken is
50% less than the time taken when the schema type is configured to XSD. TIBCO
recommends to configure the schema type to Generic for better performance.

Usecase 4: Changing XSLT Version to Improve
Latency

In a customer use case, slower performance was observed in terms of latency, when the
XSLT source version for Mapper activity was 1.0 as compared to 2.0. The project is
configured to read from an XML file, which is parsed by the Parse XML activity and the
output content is further processed by the Mapper activity, as shown in the following
image:

iptesi.Process

8B :

Empiy1 Log

The XSLT source for 'Mapper activity was set to the default 1.0 version as shown in the
following image. This version can be configured as follows: Select Activity > Input Tab >

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

69 | Performance Improvement Use Cases

Right-click on the mapping element (RHS) > Select Show Edit Tab -> Select XSLT Source.

= Peopurines 17 81 Problesra @ BW Help D Console L] o
Map-EIPResponse (Mapper)
vl
et Diata Sowsce Functions Constants A T Eoli Statermasnt XSIT Source
Decaigticn E : .
5, proveisConsent = g Map- ERRespons-nput Farse
pel Eg &6 & irwot B ciietSOModfedDownPaymentResponss
Inpust b §lgdFile » | grahe " dom ™1 0
Output th Sl Endpeint = statusCode? <] Right Chck Fuslch F
= yrafiaMenage? F e ‘Lr
= drboyg Diata P

W sfock froce!
= proceiiiiackT

W subSrarus®
~ B shiMocifiedownPoymants?

* W ikcadifircDaunPaamenl w

Testing and Measurement

The testing was focused on the aspect below:

e The tests were run to measure end to latency with XSLT version set to 1.0 and then
with 2.0.

Solution for performance improvement

It was observed that the latency improved considerably by 100% when the version was
changed to 2.0 from 1.0.

Usecase 5: Repetition Count Tuning for XML
Authentication Policy

A use case was designed with XML authentication policy. For XML authentication policy, the
username and password used during authentication are set in an XML file. This file consists
of a parameter called the repetitionCount, which is the number of iterations used to
compute the hash for the password. The higher the repetitionCount, the harder it
becomes for an attacker to crack the password. However, using a higher repetition
consumes more CPU time during the password verification. The default value is 1000. The
following image shows an example of the XML file:

In this particular use case, it was observed that the throughput was low and the service

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

70 | Performance Improvement Use Cases

was not scalable although the resources were available.

Testing and Measurement

The testing was focused on the aspects below:

e Load tests were run with a fixed concurrency and the default repetitionCount
(1000).

e The results provided very low throughput. This was analyzed and the analysis
showed that the calls most of the time was spent in the calls related to computing

the hash for the password.

¢ Since the hashing is determined by the repetitionCount, this parameter value was
reduced to 1 and the tests were run with the same concurrency.

Solution for Performance Improvement

It was observed that setting the repetitionCount to 1 improved the throughput by almost
10 times.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

71 | Tools for Memory Monitoring, Tracking, and Analysis

Tools for Memory Monitoring, Tracking, and
Analysis

For monitoring, tracking, and analyzing memory usage, the following utilities are available.

TOP Command for Memory Monitoring

The top command is used for memory monitoring. It works only on Linux platform.

The top command produces an ordered list of running processes selected by user-specified
criteria, and updates it periodically. By default, ordering is by CPU usage, and it shows
processes that consume maximum CPU. The top command also shows how much
processing power and memory are being used, as well as the other information about the
running processes.

o Note: This utility works on Linux OS only.

The top command output monitors the RSS memory as well as the CPU utilization of the
TIBCO BusinessWorks Container Edition AppNode.

top -p PID > top.txt

Sample output is as follows:

Cpu(s): 4.7%us, 1.1%sy, 0.0%ni, 94.1%id, 0.0%wa, 0.0%hi, 0.1%s1,
0.0%st

Mem: 65914304k total, 59840516k used, 6073788k free, 3637208k buffers
Swap: 15359996k total, 119216k used, 15240780k free, 43597120k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

925 root 20 0 3650m 997m 27m S 4.0 1.6 238:05.72 bwappnode-Http

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

72 | Tools for Memory Monitoring, Tracking, and Analysis

Press 1 on same top output window and it would give usage per core

top - 02:13:25 up 160 days, 15:16, 26 users,

0.00
Tasks: 1 total,

0O running, 1 sleeping,

Cpu® : 8.3%us, 6.7%sy, 0.0%ni, 85.0%id,
0.0%st
Cpul : 4.7%us, 0.5%sy, 0.0%ni, 94.8%id,
0.0%st
Cpu2 : 4.2%us, 0.4%sy, 0.0%ni, 95.1%id,
0.0%st
Cpu3 : 3.8%us, 0.4%sy, 0.0%ni, 95.8%id,
0.0%st

Mem: 65914304k total,
Swap: 15359996k total,

PID USER PR NI

925 root 20

59839448k used, 6074856k free,

0O stopped,

load average: 0.00, 0.00,

O zombie
0.0%hi, 0.0%s1,

0.0%hi, 0.0%s7,
0.0%hi, 0.3%si,

0.0%hi, 0.0%si,

3637208k buffers

119216k used, 15240780k free, 43597124k cached

VIRT RES SHR S %CPU ?

O 3650m 997m 27m S 4.7

Native Memory Tracking

The Native Memory Tracking (NMT) is a Java HotSpot VM feature that tracks internal
memory usage for a Java HotSpot VM.

o Note: This utility works on Windows OS and Linux OS.

TIME+ COMMAND

1.6 238:08.62 bwappnode-Http

For more information about Native Memory Tracking, see docs.oracle.com.

Procedure

1. To enable native memory tracking on the JVM, set the parameter -
XX:NativeMemoryTracking=summaryin the BW_JAVA_OPTS environment variable.

For example: BW_JAVA_OPTS="-Xmx1024M -Xms1024M -

XX:NativeMemoryTracking=summary

2. Establish an early baseline. Use NMT baseline feature to get a baseline to compare by
running command: jemd <pid> VM.native_memory baseline.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://docs.oracle.com/en/

73 | Tools for Memory Monitoring, Tracking, and Analysis

3. Collect the memory data after starting the test runs by running jcmd <pid>
VM.native_memory summary.

4. To monitor memory changes, use the following command: jemd <pid> VM.native_
memory summary.diff

5. If the application leaks a small amount of memory, it takes a while to show up.
Comparing the memory pools from NMT output help identify the memory pool
contributing to increase in memory.

6. The jcmd utility is shipped with JDK. It is under $JDK_HOME /bin directory.

For more information about jemd utility, see docs.oracle.com

Jemalloc and Jeprof

The jemalloc tool tracks down native memory allocations and identifies native memory
leak suspects. Use jeprof utility to analyze heap files.

o Note: The jemalloc and jeprof utilities work on Linux OS only.

Procedure
1. Download jemalloc from GitHub.com.

2. Install the tool by following the steps specified at GitHub.com.
3. Once jemalloc is built, include jemalloc in BWCE buildpack.

4. Edit the bwce-buildpack/resources/prestart.sh file and add the following commands
before the exec ./tibco.home/bwx/x/bin/startBWAppNode.sh command:

export LD_PRELOAD=/root/jemalloc/jemalloc-stable-
4/1ib/1libjemalloc.so

export MALLOC_CONF=prof:true,lg_prof_interval:30,lg_prof_
sample:17,prof_final:true,prof_leak:true

5. When the server is started and the memory allocation is done, jeprofx.heap files
are generated at . /tibco.home/bwx/x/bin/ folder.

As the memory utilization grows, more files would be generated.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://docs.oracle.com/en/
https://github.com/jemalloc/jemalloc/tree/stable-4
https://github.com/jemalloc/jemalloc/blob/stable-4/INSTALL

74 | Tools for Memory Monitoring, Tracking, and Analysis

6. Analyze the heap files with the jeprof command. JDK needs to be installed or
included in the buildpack for running jeprof commands as it uses local java for
analyzing the jeprof*.heap files.

jeprof --show_bytes <PATH to java> jeprof.x.heap

The jeprof utility is included in the jemalloc\bin folder. After execution of jeprof
command, jeprof console opens.

7. Type top on the jeprof console. For example:

jeprof --show_bytes /usr/lib/jvm/java-8-oracle/jre/bin/java
jeprofx.heap

Using local file /usr/bin/w.

Using local file jeprof.19678.0.f.heap.

Welcome to jeprof! For help, type 'help'.

(jeprof) top

It shows the following output:

Total: 267184 B

258032 96.6% 96.6% 258032 96.6% _3_2_5

3616 1.4% 97.9% 3616 1.4% _nl_intern_locale_data
2048 0.8% 98.7% 2208 0.8% __tzfile_read

1024 0.4% 99.1% 1024 0.4% getpwnam

1024 0.4% 99.5% 1072 0.4% getpwuid

448 0.2% 99.6% 448 0.2% __gconv_lookup_cache

224 0.1% 99.9% 224 0.1% strdup

160 0.1% 99.9% 160 0.1% __tzstring

128 0.0% 100.0% 3760 1.4% _nl_load_locale_from_archive
48 0.0% 100.0% 48 0.0% get_mapping

8. To run the jeprof command on a single file, use the following command:
jeprof --show_bytes <PATH to java> <Heap file name>

After execution of jeprof command, jeprof console opens.

9. Type top on the jeprof console. For example:

jeprof --show_bytes /usr/lib/jvm/java-8-oracle/jre/bin/java

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

75 | Tools for Memory Monitoring, Tracking, and Analysis

jeprof.19678.0.f.heap
Using local file /usr/bin/w.
Using local file jeprof.19678.0.f.heap.
Welcome to jeprof! For help, type 'help'.
(jeprof) top

It shows the following output:

Total: 267184 B

258032 96.6% 96.6% 258032 96.6% _3_2_5

3616 1.4% 97.9% 3616 1.4% _nl_intern_locale_data
2048 0.8% 98.7% 2208 0.8% __tzfile_read

1024 0.4% 99.1% 1024 0.4% getpwnam

1024 0.4% 99.5% 1072 0.4% getpwuid

448 0.2% 99.6% 448 0.2% __gconv_lookup_cache

224 0.1% 99.9% 224 0.1% strdup

160 0.1% 99.9% 160 0.1% __tzstring

128 0.0% 100.0% 3760 1.4% _nl_load_locale_from_archive
48 0.0% 100.0% 48 0.0% get_mapping

10. To stop profiling once the analysis is done and leak suspects are identified run
command:

unset MALLOC_CONF

If profiling is not stopped, the jeprof heap files are continuously generated.

Detecting Increase in Heap Allocations with
UMDH

The user-mode dump heap (UMDH) utility works with the Windows operating system to
analyze the heap allocations for a specific process. UMDH utility is used to locate which
routine in a specific process is leaking memory.

o Note: The UMDH utility works on Windows OS only.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

76 | Tools for Memory Monitoring, Tracking, and Analysis

Before you begin
e Download and install the UMDH utility for Windows OS. For more information, see

Debugging Tools for Windows from Microsoft documentation.

Enable "Create user mode stack trace database" with gflags.exe -i bwappnode-
umdh.exe +ust command. Get the process name from task manager.

C:\Program Files (x86)\Windows Kits\10\Debuggers\x64>gflags.exe -i
bwappnode-umdh.exe +ust
Current Registry Settings for bwappnode-umdh.exe executable are:
00001000

ust - Create user mode stack trace database

Before using UMDH, you must have access to the proper symbols for your
application. UMDH uses the symbol path specified by the environment variable _NT_
SYMBOL_PATH. Set the variable to a path containing symbols for your application.

If you also include a path to Windows symbols, the analysis is more complete. The
syntax for this symbol path is the same as that used by the debugger.

For more information, see Symbol Path for Windows Debugger from Microsoft
documentation.

For example, if the symbols for your application are located at C:\MySymbols, then to
use the public Microsoft symbol store for your Windows symbols, using C:\MyCache
as your downstream store, run the following command to set your symbol path:

C:\Program Files (x86)\Windows Kits\10\Debuggers\x64>set _NT_
SYMBOL _
PATH=c:\mysymbols;srvxc:\mycachexhttps://msdl.microsoft.com/downloa
d/symbols

Procedure

1.

Determine the process ID (PID) for the process to investigate.

For more information, see Finding the process ID from Microsoft documentation.

Analyze the heap memory allocations for the process before the memory leak is
detected, and save it to a log file.

Collect the data at application start up before sending load.

For example, if the PID is 5872, and name of the log file is log_before.txt, use the

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/symbol-path
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/finding-the-process-id

77 | Tools for Memory Monitoring, Tracking, and Analysis

following command:
umdh.exe -p:5872 -f:log_before.txt

4. Use the UMDH utility to analyze the heap memory allocations for this process after
the memory starts increasing, and save it to a log file.

5. Collect this data at regular intervals when an application starts leaking memory.
For example, if the PID is 5872, and name the log file is log_after.txt, use the
following command:
umdh.exe -p:5872 -f:log_after.txt

6. The UMDH utility can compare two different log files and display the change in their
respective allocation sizes. To redirect the results into a third text file, use the

greater-than symbol (>). To convert the byte and allocation counts from hexadecimal
to decimal, use the -d option.

For example, to compare log_before.txt and log_after.txt files, and save the
results to the file log_compare. txt, use the following command:
umdh.exe -d log_before.txt log_after.txt > log_compare.txt

7. For each call stack that is labeled as "BackTrace" in the UMDH log files, there is a
comparison made between the two log files. The snippet of the output is as follows:

// where:

// BYTES_DELTA - dincrease in bytes between before and after log
// NEW_BYTES - bytes in after log

// OLD_BYTES - bytes 1in before log

// COUNT_DELTA - 1dincrease in allocations between before and
after log

// NEW_COUNT - number of allocations in after log

// OLD_COUNT - number of allocations 1in before log

// TRACEID - decimal index of the stack trace in the trace
database

// (can be used to search for allocation instances in the
original

// UMDH Tlogs) .

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

78 | Tools for Memory Monitoring, Tracking, and Analysis

+ 8856 (18400 - 9544) 12 allocs BackTrace5
+ 3 (12 - 9) BackTrace5 allocations

ntdll!RtlpAllocateHeap+2298
ntdll!RtlpAllocateHeapInternal+727
MSVCR100!malloc+5B
jvm!JVM_ResolveClass+387AE
jvm!?2?2+0 : 53C415D6
jvm!JVM_GetManagementExt+6A5FF
jvm!JIVM_GetManagementExt+786B1
jvm!JVM_GetManagementExt+7A162
jvm!JVM_GetManagementExt+CA4E
jvm!JIVM_FindSignal+178329
jvm!JVM_FindSignal+1792E4
jvm!JIVM_FindSignal+179491
jvm!JIVM_FindSignal+17969F
jvm!JVM_GetManagementExt+82712
jvm!JIVM_GetManagementExt+8305F
jvm!JVM_ResolveClass+5F5FF
jvm!JIVM_FindSignal+68FA
MSVCR100!endthreadex+43
MSVCR100!endthreadex+DF
KERNEL32!BaseThreadInitThunk+14
ntdll!RtlUserThreadStart+21

This UMDH output shows that there were 8856 total bytes allocated from the call
stack.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

79 | Memory Saving Mode

Memory Saving Mode

All activity output variables in a running process instance are stored in a memory, and
hence consume memory. Memory saving mode allows memory used by an activity output
variable to be released when the value of the variable is no longer needed.

In @ memory saving mode, as each activity runs, the list of activity output variables is
continuously evaluated to determine if subsequent activities in the process refer to the
specific activity output variable. If no activities refer to the activity output variable, the
memory used by it is released.

Memory Saving Mode can reduce the memory used by actively running process instances,
as well as potentially improve the performance of checkpoints. By default, memory saving
mode is enabled. This property enables the usage of memory saving mode, which frees
activity output variables once they are no longer needed. The default value is true.

Memory saving is enabled at design-time and run-time.
To disable the Memory Saving Mode:

e For design-time: To disable the memory saving mode, unselect the Save information
to support memory saving mode checkbox available at Window > Preferences >
BusinessWorks > Process Diagram in the Memory Saving Mode section. Then, to
remove the memory saving variable, right-click on ActiveMatrix BusinessWorks™
Projects and select Refactor > Repair BusinessWorks Projects. In the dialog, select
the Remove memory saving variables option. On clicking the Preview button, the
variables that can be removed from different activities are displayed on the Preview
page, then select OK.

e For run-time: Configure the following bwengine property in the BW_JAVA_OPTS
environment variable while running the application to disable the Memory Saving
Mode:

bw.engine.enable.memory.saving.mode=false.

Performance Use Case - Memory Optimization

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

80 | Memory Saving Mode

The service under test was a REST implementation with other activities like Mapper,
Render JSON, Parse JSON, and Invoke REST API. The implementation had multiple mapper
activities with iterator and accumulate output. The max heap of the TIBCO BusinessWorks™
Container Edition application was set to 4 GB for these tests. The testing was focused on
analyzing the memory usage of the TIBCO BusinessWorks Container Edition application
under load.

Memory usage with bw.engine.enable.memory.saving.mode set to false

The following snapshot shows the JVM snapshot of the TIBCO BusinessWorks Container
Edition application under heavy load with memory saving set to false.

P mage 0% SC b 0%

| | .i _J"I i F N "1 {4l |,_

Memory usage with bw.engine.enable.memory.saving.mode set to true

The following snapshot shows the JVM snapshot of the TIBCO BusinessWorks Container
Edition application under heavy load with memory saving set to true.

Totlumlaget 00 Uesred ke — Love pnsiz 300 Tetnd simriest 55

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

81 | Memory Saving Mode

Performance findings

» Enabling memory saving reduced the heap usage of the application under heavy
load.

e Enabling memory saving did not degrade the performance of deployed services in
terms of latency and throughput.

o Note: The improvements showcased must be used as reference. The
performance impact of enabling memory saving mode may vary based on
service implementation, workload, and payload on the system.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

82 | References

References

e High Load: https://wiki.eclipse.org/Jetty/Howto/High_Load

e Saw tooth Shaped Graph: http://stackoverflow.com/questions/7219532/why-a-
sawtooth-shaped-graph

e jvmtop utility: https://github.com/patric-r/jvmtop

e Debugging Java Native Memory Leaks: https://www.evanjones.ca/java-native-leak-
bug.html

e Tracking Down Native Memory Leaks in Elasticsearch:
https://www.elastic.co/blog/tracking-down-native-memory-leaks-in-elasticsearch

» Discrete sequential memory leak analysis with jemalloc and jeperf:
https://www.igorkromin.net/index.php/2018/06/21/discrete-sequential-memory-leak-
analysis-with-jemalloc-jeperf/

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://wiki.eclipse.org/Jetty/Howto/High_Load
http://stackoverflow.com/questions/7219532/why-a-sawtooth-shaped-graph
http://stackoverflow.com/questions/7219532/why-a-sawtooth-shaped-graph
https://github.com/patric-r/jvmtop
https://www.evanjones.ca/java-native-leak-bug.html
https://www.evanjones.ca/java-native-leak-bug.html
https://www.elastic.co/blog/tracking-down-native-memory-leaks-in-elasticsearch
https://www.igorkromin.net/index.php/2018/06/21/discrete-sequential-memory-leak-analysis-with-jemalloc-jeperf/
https://www.igorkromin.net/index.php/2018/06/21/discrete-sequential-memory-leak-analysis-with-jemalloc-jeperf/

83 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services

For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO BusinessWorks™
Container Edition page:

e TIBCO BusinessWorks™ Container Edition Release Notes

e TIBCO BusinessWorks™ Container Edition Installation

e TIBCO BusinessWorks™ Container Edition Application Development

e TIBCO BusinessWorks™ Container Edition Application Monitoring and Troubleshooting
e TIBCO BusinessWorks™ Container Edition Bindings and Palettes Reference

e TIBCO BusinessWorks™ Container Edition Concepts

e TIBCO BusinessWorks™ Container Edition Error Codes

e TIBCO BusinessWorks™ Container Edition Getting Started

e TIBCO BusinessWorks™ Container Edition Maven Plug-in

e TIBCO BusinessWorks™ Container Edition Migration

e TIBCO BusinessWorks™ Container Edition Performance Benchmarking and Tuning
e TIBCO BusinessWorks™ Container Edition REST Implementation

» TIBCO BusinessWorks™ Container Edition Refactoring Best Practices

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-businessworks-container-edition
https://docs.tibco.com/products/tibco-businessworks-container-edition

84 | TIBCO Documentation and Support Services

e TIBCO BusinessWorks™ Container Edition Samples

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

» To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

» To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to

TIBCO Community.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://support.tibco.com/
https://support.tibco.com/
https://ideas.tibco.com/
https://community.tibco.com/

85 | Legal and Third-Party Notices

Legal and Third-Party Notices

SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix BusinessWorks, ActiveSpaces, Business Studio,
TIBCO Business Studio, TIBCO Designer, TIBCO Enterprise Administrator, Enterprise Message Service,
Rendezvous, and TIBCO Runtime Agent are either registered trademarks or trademarks of Cloud
Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://www.cloud.com/legal
https://scripts.sil.org/OFL

86 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2015-2024. Cloud Software Group, Inc. All Rights Reserved.

TIBCO BusinessWorks™ Container Edition Performance Benchmark & Tuning Guide

https://www.cloud.com/legal

	Contents
	Changing Help Preferences
	Overview
	TIBCO BusinessWorks Container Edition Architecture
	Performance Benchmark Fundamentals
	Interpreting Benchmarks
	Misleading Experiments
	Test Client Limitations
	Points to Remember

	Benchmarking and Testing Performance
	Performance Benchmarking Process
	Performance Benchmarking Criteria
	Performance Testing Tools and Techniques
	Collecting Performance Data
	Deploying Performance Testing Framework
	Developing a Performance Testing Plan
	Build a Baseline Test
	Compare Baseline to Targets
	Build Stability Test
	Develop Incremental Tests
	Develop Peak Rate Tests
	Develop Steady State Tests
	Develop Resource Plan
	Develop Component Deployment Plan
	Monitoring and Analyzing TIBCO BusinessWorks Container Edition Components
	JVisualVM
	Monitoring Threads and Taking a Thread Dump Using JVisualVM
	Understanding Thread Dumps

	Identifying Potential Improvement Areas
	Implementing Specific Enhancements
	Comparing Results

	Setting JVM Parameters
	JVM Parameters
	Heap Space
	Heap Dump On Out of Memory Error

	Best Practices
	Engine Tuning Guidelines
	ThreadCount (bw_engine_threadcount)
	StepCount (bw_engine_stepcount)
	Flow Limit
	Application Statistics
	Process Statistics

	Process Execution Statistics
	Activity Instance Statistics

	JVM Tuning Guidelines
	Specifying JVM Heap Size
	JVM Garbage Collection

	Transport and Resource Tuning Guidelines
	HTTP Resource
	HTTP Client Resource
	JMS Resource and JMS Transport
	Impact of SSL on Performance

	Container Tuning Guidelines
	Horizontal Scaling
	Vertical Scaling

	Tuning Parameters
	HTTP Connector Resource
	HTTP Client Resource Tuning Parameters
	JDBC Connection Resource
	TCP Connection Resource
	JMS Receiver
	Blocking Queue Size

	Debugging Performance Issues
	Debugging High CPU Utilization Issues
	Debugging High Memory Utilization Issues
	Debugging High Latency Issues

	Performance Improvement Use Cases
	Performance Improvement Use Cases - Design Time and Deployment
	Usecase 1: Using File as the Input Type for Parse Data Activity
	Testing and Measurement
	Solution for performance improvement

	Usecase 2: Schema changes for improved performance
	Testing and Measurement
	Solution for performance improvement

	Using XSD Schema Type for the Parse JSON activity
	Testing and Measurement
	Solution for performance improvement

	Usecase 4: Changing XSLT Version to Improve Latency
	Testing and Measurement
	Solution for performance improvement

	Usecase 5: Repetition Count Tuning for XML Authentication Policy
	Testing and Measurement
	Solution for Performance Improvement

	Tools for Memory Monitoring, Tracking, and Analysis
	TOP Command for Memory Monitoring
	Native Memory Tracking
	Jemalloc and Jeprof
	Detecting Increase in Heap Allocations with UMDH

	Memory Saving Mode
	Performance Use Case - Memory Optimization

	References
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

