
TIBCO ActiveMatrix BusinessWorks™ Plug-in
for Mobile Integration
Expresso Server Guide
Software Release 6.2.0
December 2016

Two-Second Advantage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws
and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO, Two-Second Advantage, TIBCO Hawk, TIBCO Rendezvous, TIBCO Runtime Agent, TIBCO
ActiveMatrix BusinessWorks, TIBCO Administrator, TIBCO Designer, TIBCO ActiveMatrix Service
Gateway, TIBCO BusinessEvents, TIBCO BusinessConnect, and TIBCO BusinessConnect Trading
Community Management are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.

Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise
Edition (J2EE), and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT
ALL OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED
AT THE SAME TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE
VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 2014-2016 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

2

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Contents

Figures . 4

TIBCO Documentation and Support Services .5

Introduction to Expresso . 6

Typical Workflow in Expresso . 7

Starting the Expresso Server .7

Compiling a Mobile Client Application . 8

Provider . 9

JSON Schema for Defining Providers . 9

Implementation Guidelines for Defining Providers . 11

Defining and Registering a Provider .11

Getting a Subscription Request from the Expresso Server .11

Services .12

GET /schemas/provider-schema . 12

GET /schemas/subcription-schema . 14

POST /system/providers .14

Response Status Codes . 15

Configuration Files .16

expresso.properties . 16

pojoprovider.properties . 17

quartz.properties . 18

Writing a Provider in Java .19

Implementing a Provider in Java . 19

Implementing an Event for a Provider . 22

Configuring an Event with the Provider .24

Running the Provider . 25

Creating a Provider in TIBCO ActiveMatrix BusinessWorks 6.x . 26

Workday Provider Sample . 26

Hiring an Employee . 26

Creating a Job Position (Optional) . 28

Terminating an Employee . 30

Running a TIBCO ActiveMatrix BusinessWorks 6.x Project .31

SalesForce Provider Sample .32

Creating a SalesForce Provider . 33

Editing the Saved WSDL . 35

Configuring the TIBCO ActiveMatrix BusinessWorks 6.x Project .36

3

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Figures

Components of Expresso . 6

4

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

TIBCO Documentation and Support Services

Documentation for this and other TIBCO products is available on the TIBCO Documentation site. This
site is updated more frequently than any documentation that might be included with the product. To
ensure that you are accessing the latest available help topics, visit:

https://docs.tibco.com

Product-Specific Documentation

The following documents for this product can be found in the TIBCO Documentation Library:

● TIBCO ActiveMatrix BusinessWorks Plug-in for Mobile Integration Installation

● TIBCO ActiveMatrix BusinessWorks Plug-in for Mobile Integration User's Guide

● TIBCO ActiveMatrix BusinessWorks Plug-in for Mobile Integration Developer's Guide

● TIBCO ActiveMatrix BusinessWorks Plug-in for Mobile Integration Expresso Server Guide

● TIBCO ActiveMatrix BusinessWorks Plug-in for Mobile Integration Release Notes

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, contact TIBCO Support:

● For an overview of TIBCO Support, and information about getting started with TIBCO Support,
visit this site:

http://www.tibco.com/services/support

● If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user name, you can
request one.

How to Join TIBCOmmunity

TIBCOmmunity is an online destination for TIBCO customers, partners, and resident experts. It is a
place to share and access the collective experience of the TIBCO community. TIBCOmmunity offers
forums, blogs, and access to a variety of resources. To register, go to the following web address:

https://www.tibcommunity.com

5

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

https://docs.tibco.com
http://www.tibco.com/services/support
https://support.tibco.com
https://www.tibcommunity.com

Introduction to Expresso

While working with a mobile application (app), almost everything that happens in the app is based on
events and actions. For example, clicking a button or icon on the mobile is a click event. Based on the
event, you can trigger any action such as navigating to another page or invoking a JavaScript.

Based on the event-action model, Expresso enables you to automate your flows where received events
can trigger pre-configured actions. Expresso exposes REST APIs to make this possible.

Expresso consists of the following components:

● The mobile client application provides the user interface to view and select events, pick the action
that needs to be triggered for the selected event, map attributes, add filters, set schedules, change
profile details, mark favorite pods, and brew an expression. After brewing the expression, users
must run it to start receiving notifications and alerts based on the events created.

In terms of APIs, the mobile client application consumes the APIs exposed by the Expresso server.

● The Expresso server provides the interface for making providers available to the mobile client
application. The server mandates that a provider must describe its events and actions in a format
understood by the server. In this case, the format is a JSON format conforming to the JSON provider
definition schema published to the server.

In terms of APIs, the server enables the providers to expose the APIs which can then be consumed
by the mobile app users.

● Providers are third-party applications that provide events to the server. Provider applications need
to register themselves with the Expresso server for being a part of the Expresso inventory.

In terms of APIs, the providers expose APIs that can be communicated by the Expresso server to the
mobile client application.

Components of Expresso

To summarize, the Expresso Server exposes REST APIs to allow any type of providers to plug-in and
expose events, actions, and pods to the mobile application. It also provides REST APIs to create your
own mobile app.

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration 6.x enables you to develop
providers for Expresso using the ExpressoNotify activity and an Expresso Provider shared resource.
For more details on the activity and the shared resource, refer to TIBCO ActiveMatrix BusinessWorks
Plug-in for Mobile Integration User's Guide. The ActiveMatrix BusinessWorks platform handles most of
the activities necessary for an Expresso provider thereby making the developer experience simpler and
richer.

Providers can also be developed outside of the TIBCO ActiveMatrix BusinessWorks Plug-in for Mobile
Integration 6.x environment. For example, you can develop providers using Java.

Expresso ships with the following sample providers installed in $TIBCO_HOME\expresso\providers:

6

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

● TIBCO ActiveMatrix BusinessWorks 6.x - SalesForce and Workday

● POJO - JIRA and Twilio

Typical Workflow in Expresso

1. The provider registers with the Expresso server with details of events and actions. Multiple
providers can register with the server.

2. The Expresso server shows all registered events to the mobile app user.

3. The mobile app user defines (includes mapping attributes and adding filters) and "brews" the
expression. When an expression is brewed, the Expresso server stores a definition, creates an
instance of the definition, and runs the instance.

4. The Expresso server subscribes for the event to the provider.

5. The provider listens for subscription requests and when an event comes in, the information is
passed to the server.

6. The server matches the filter criteria and then executes the action defined by the mobile app user.

Starting the Expresso Server

Run $TIBCO_HOME\expresso\1.0\bin\expresso.exe.

7

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Compiling a Mobile Client Application

A sample mobile client application is shipped with Expresso. This sample application can be used to
connect to the Expresso server, create, and brew an expression.

Build and run the sample using Xcode. When running the iPhone Simulator, configure the Expresso
Server URL on the Login screen.

For more information on compiling the mobile client application, refer to:

TIBCO_HOME\expresso\client\iOS_mobile_app\Expresso iOS 1.0 library Usage Guide.pdf

8

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Provider

An Expresso provider is a RESTful service provider that provides business data, events, and services to
the Expresso server relevant to a specific business domain.

An event pod is a provider resource that is stateful and asynchronous in nature and provides business
events to the Expresso server through a subscription mechanism. It enables the Expresso server to
subscribe to it by sending an HTTP POST request with Expresso Event Source Request object as its
body. The Expresso Event Source Request object contains an Expresso web hook URL along with other
data. The provider stores the Expresso web hook URL and posts business events on this URL whenever
available. The Event source defines its output event structure in the form of a JSON schema. An Event
Source enables terminating the subscription by sending an HTTP DELETE request with Expresso Event
Source Request object as its body.

For example, a JIRA provider can have an event source that notifies Expresso whenever a defect is
logged.

JSON Schema for Defining Providers

Providers must conform to the following JSON provider definition schema published the server. A
provider must provide its description and register itself with Expresso by invoking the RESTful
provider registration service of the Expresso server. The provider registration service adds the provider
to the Expresso's provider inventory. The provider is then made available to the mobile app users.
{
 "type": "object",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Schema for Expresso provider definition",
 "title": "Provider",
 "required": [
 "events",
 "name",
 "description",
 "actions"
],
 "properties": {
 "events": {
 "type": "array",
 "items": {
 "type": "object",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Event definition",
 "title": "Event",
 "required": [
 "uniqueName",
 "eventSubscriptionUrl",
 "usage",
 "eventSchema",
 "description"
],
 "properties": {
 "uniqueName": {
 "type": "string",
 "description": "Unique name of the event"
 },
 "eventSubscriptionUrl": {
 "type": "string",
 "description": "The resource url for susbcription to the event "
 },
 "usage": {
 "type": "string",
 "description": "Sample usage of this event"

9

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

 },
 "eventSchema": {
 "type": "string",
 "description": "Schema of the event data"
 },
 "description": {
 "type": "string",
 "description": "Short description of the event"
 }
 }
 },
 "description": "Events supported by the provider"
 },
 "name": {
 "type": "string",
 "description": "Unique name for the provider"
 },
 "outputSchemaForEvent": {
 "type": "string"
 },
 "description": {
 "type": "string",
 "description": "Short description of the provider"
 },
 "userActivation": {
 "type": "string",
 "description": "Optional schema for activation of the provider"
 },
 "modifiedDate": {
 "type": "integer"
 },
 "actions": {
 "type": "array",
 "items": {
 "type": "object",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Definition of Action supported by the provider",
 "title": "Action",
 "required": [
 "actionEndpointUrl",
 "description",
 "actionSchema",
 "uniqueName"
],
 "properties": {
 "actionEndpointUrl": {
 "type": "string",
 "description": "The resource URL for invoking the action"
 },
 "description": {
 "type": "string",
 "description": "Short description of the action"
 },
 "actionSchema": {
 "type": "string",
 "description": "Input schema for the action"
 },
 "uniqueName": {
 "type": "string",
 "description": "Unique name of the action within the provider
definition"
 }
 }
 },
 "description": "Actions supported by the provider"
 },
 "createdDate": {
 "type": "integer"
 }
 }
}

10

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Implementation Guidelines for Defining Providers

A provider must adhere to the following implementation guidelines:

● Have a simple and unique name in the context of the Expresso provider inventory.

● Provide services specific to a single business domain.

● Have simple, precise, and non-nested input and output schemas. It must not define more than 4-6
properties.

Defining and Registering a Provider

Procedure

1. Get the provider definition schema from the Expresso server (using GET /schemas/provider-
schema).

2. Define the provider (event pods and actions) and register the provider by passing the description to
the Expresso server (using POST /system/providers).

The Expresso server adds the provider to the Expresso inventory.

Getting a Subscription Request from the Expresso Server

To get the schema for a subscription request body sent to the provider by the Expresso server, use
POST /system/providers.

11

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Services

The following services are available:

Service Description

GET <baseurl>/schemas/
provider-schema

Gets the provider definition schema from the Expresso server.

GET <baseurl>/schemas/
subcription-schema

Gets the subcription request schema sent to the provider by the
Expresso server.

POST <baseurl>/system/
providers

Creates and registers providers.

GET /schemas/provider-schema

Use this service to get the provider definition schema from the Expresso server.

Response Body

{
 "type": "object",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Schema for Expresso provider definition",
 "title": "Provider",
 "required": [
 "events",
 "name",
 "description",
 "actions"
],
 "properties": {
 "events": {
 "type": "array",
 "items": {
 "type": "object",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Event definition",
 "title": "Event",
 "required": [
 "uniqueName",
 "eventSubscriptionUrl",
 "usage",
 "eventSchema",
 "description"
],
 "properties": {
 "uniqueName": {
 "type": "string",
 "description": "Unique name of the event"
 },
 "eventSubscriptionUrl": {
 "type": "string",
 "description": "The resource url for susbcription to the event "
 },
 "usage": {
 "type": "string",
 "description": "Sample usage of this event"
 },

12

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

 "eventSchema": {
 "type": "string",
 "description": "Schema of the event data"
 },
 "description": {
 "type": "string",
 "description": "Short description of the event"
 }
 }
 },
 "description": "Events supported by the provider"
 },
 "name": {
 "type": "string",
 "description": "Unique name for the provider"
 },
 "outputSchemaForEvent": {
 "type": "string"
 },
 "description": {
 "type": "string",
 "description": "Short description of the provider"
 },
 "userActivation": {
 "type": "string",
 "description": "Optional schema for activation of the provider"
 },
 "modifiedDate": {
 "type": "integer"
 },
 "actions": {
 "type": "array",
 "items": {
 "type": "object",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Definition of Action supported by the provider",
 "title": "Action",
 "required": [
 "actionEndpointUrl",
 "description",
 "actionSchema",
 "uniqueName"
],
 "properties": {
 "actionEndpointUrl": {
 "type": "string",
 "description": "The resource URL for invoking the action"
 },
 "description": {
 "type": "string",
 "description": "Short description of the action"
 },
 "actionSchema": {
 "type": "string",
 "description": "Input schema for the action"
 },
 "uniqueName": {
 "type": "string",
 "description": "Unique name of the action within the provider
definition"
 }
 }
 },
 "description": "Actions supported by the provider"
 },
 "createdDate": {
 "type": "integer"
 }
 }
}

13

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

GET /schemas/subcription-schema

Use this service to get the subcription request schema sent to the provider by the Expresso server.

Response Body

{
 "type": "object",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Event Subcriber definition",
 "title": "Subscriber",
 "required": [
 "expressoSubscriberId",
 "expressoCallbackUrl"
],
 "properties": {
 "expressoSubscriberId": {
 "type": "string",
 "description": "Subcriber Id"
 },
 "expressoCallbackUrl": {
 "type": "string",
 "description": "Webhook callback url"
 }
 }
}

POST /system/providers

Use this service to create and register providers. The following parameters need to be provided.

Parameters

● Name

● Actions

— uniqueName - The name of the Expresso action. The name is displayed as Domain Name on
the mobile application UI.

— Description - Description of the action. The description is displayed as Domain Description on
the mobile application UI.

— actionSchema

— actionEndpointUrl

● Events

— uniqueName - The name of the Expresso event. This name is displayed as the name of the pod
on the mobile application UI. The event name must be unique in the provider.

— Description - Description of the event. The description is displayed as the description of the pod
on the mobile application UI.

— eventSchema

— description

● description

14

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Response Status Codes

HTTP
Status
Code Description

200 Operation successful.

204 No content.

401 Authentication failed.

403 Forbidden.

404 Requested resource not found.

15

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Configuration Files

Expresso provides the following configuration files:

● expresso.properties: configure various properties related to the Expresso server.
● pojoprovider.properties: configure details of a POJO provider.
● quartz.properties: configure Quartz to use the appropriate persistent job store and also add the

required dependencies.

expresso.properties

The expresso.properties file enables you to set various properties related to the Expresso server:

Property Description

local.host Host name or IP address of the Expresso server. Default host is localhost,
0.0.0.0.

local.port Local port of the Expresso server. Default value is 36136.

public.host Public host name or IP address of the Expresso server.

public.port Public port of the Expresso server.

Sample File

##########################
Expresso server config
Usage: java ExpressoServer -Dexpresso.config.file=<path>/expresso.properties
##########################

#public.host = expresso.com
#public.port = 36136
#local.host = 0.0.0.0
local.port = 36136
socket.connectTimeout = 20000
socket.readTimeout = 20000
provider.port = 40000

##
Twilio Provider config to be configured by the user#
##

#expresso.providers.twilio.account_token = <value>
#expresso.providers.twilio.account_sid = <value>
#expresso.providers.twilio.from_number = <value>

##
Email Provider config to be configured by the user
##

mail.sender.email = <value>
mail.sender.password = <value>
mail.subject.default = Notificaton from Expresso
mail.smtp.host = smtp.gmail.com
mail.smtp.port = 465

16

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

to enable authentication
mail.smtp.auth = true

to use SSL
mail.smtp.socketFactory.port = 465
mail.smtp.socketFactory.class = javax.net.ssl.SSLSocketFactory

to use TLS
#mail.smtp.starttls.enable = true

###
iOS push notification provider config
###

expresso.providers.pushnotifications.apns.host = gateway.push.apple.com
expresso.providers.pushnotifications.apns.port = 2195
expresso.providers.pushnotifications.apns.threadPoolSize = 4
expresso.providers.pushnotifications.apns.ssl.pkcs.keystore.file.path =
%TIBCO_EXPRESSO_HOME_ESC%/config/expresso_apns_prod.p12
expresso.providers.pushnotifications.apns.ssl.pkcs.keystore.password = tibco
expresso.providers.pushnotifications.apns.ssl.jks.truststore.file.path =
%TIBCO_EXPRESSO_HOME_ESC%/config/apns_prod_truststore.jks
expresso.providers.pushnotifications.apns.ssl.jks.truststore.password = tibco

##
Max. number of user messages to be packaged in one chunk
##
expresso.user.max_no_of_messages = 50

pojoprovider.properties

The pojoprovider.properties file enables you to set various properties related to POJO providers.

Property Description

local.host Local host name or IP address of the provider server.
Default host is 0.0.0.0.

local.port Local port on which the provider server wants to
listen to. Default value is 40000.

public.host Public host name or IP address of the provider
server.

public.port Public port of the provider server.

expresso.server.baseUrl URL that points to the Expresso server to send
registration requests.

expresso.pojo.provider.samples.path List of all the jars which provide POJO provider
implementations.

Sample File

##########################
POJO Provider config
Usage: java ProviderServer -Dpojoprovider.config.file=C:/tibco/expresso/providers/
pojo/config/pojoprovider.properties
##########################

POJO Provider server port (public and/or local) to listen to:

17

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

1. Subscriptions from Expresso server
2. Messages received for different POJO implementation events

#public.host = provider.com
#public.port = 80

#local.host = localhost
#local.port = 40000

URL to point to Expresso server to send registration requests
expresso.server.baseUrl=http://localhost:36136

Allows users to list all the jars which provide POJO provider implementations.
expresso.pojo.provider.samples.path=C:/tibco/expresso/providers/pojo/lib/
sampleProviders.jar

##########################
Twilio Provider config
##########################

expresso.providers.twilio.account_sid = <value>
expresso.providers.twilio.account_token = <value>
expresso.providers.twilio.incoming_sid_number = <value>

##########################
Timer Provider config
##########################
expresso.providers.timer.interval_ms = 60000
expresso.providers.timer.message = Hello Expresso

quartz.properties

Expresso embedds a Quartz scheduler for scheduling Expresso executions.

The out-of-box configuration uses an in-memory job store called RAMJobStore. All jobs and triggers are
stored in RAM and therefore do not persist between program executions; this has the advantage of not
requiring an external database. To persist jobs across program executions, you can configure Quartz to
use the appropriate persistent job store and also add the required dependencies. You can configure
Quartz in the quartz.properties configuration file located in the EXPRESSO_HOME/config directory.

For additional information, refer to the Quartz documentation available at: http://quartz-scheduler.org/
documentation/quartz-2.x/configuration/.

Sample File

Default Properties file for use by StdSchedulerFactory
to create a Quartz Scheduler Instance, if a different
properties file is not explicitly specified.
#

org.quartz.scheduler.instanceName: DefaultQuartzScheduler
org.quartz.scheduler.rmi.export: false
org.quartz.scheduler.rmi.proxy: false
org.quartz.scheduler.wrapJobExecutionInUserTransaction: false

org.quartz.threadPool.class: org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount: 10
org.quartz.threadPool.threadPriority: 5
org.quartz.threadPool.threadsInheritContextClassLoaderOfInitializingThread: true

org.quartz.jobStore.misfireThreshold: 60000

org.quartz.jobStore.class: org.quartz.simpl.RAMJobStore

18

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

http://quartz-scheduler.org/documentation/quartz-2.x/configuration/
http://quartz-scheduler.org/documentation/quartz-2.x/configuration/

Writing a Provider in Java

The pojoProvider server facilitates writing providers in Java. It exposes abstract classes through the
pojoProvider-api JAR that needs to be extended to implement providers and their events. The
provider has to only implement logic to process data coming from external services and subsequently
generate appropriate event data. The registration of providers with the Expresso server, and the
maintenance of subscriptions and unsubscriptions for events is handled by the pojoProvider server
internally. The pojoProvider server communicates both with the Expresso server as well as external
services that want to send data to concerned providers.

The pojoProvider server saves the event-specific subscriber data in the .expressoprovider folder
created in your home directory. This is useful when you restart the pojoProvider server. It helps
resume functioning from the last-left state. That is, if the pojoProvider server is restarted even when
there are existing subscriptions, the server can resume functioning when it is started again.

A provider can be written in Java using the pojoProvider-api.jar shipped along with Expresso.
Writing a provider in Java consists of two steps:

1. Adding configuration data as per user requirements for the provider that is to be written in the
pojoprovider.properties file located in:

%TIBCO_EXPRESSO_PROVIDERS_HOME_ESC%/pojo/config/pojoprovider.properties

2. Implementing the POJO provider in Java with the help of two abstract classes found in the
pojoProvider-api.jar:

● AbstractExpressoProvider: a class needs to extend this abstract class to create a Java
provider.

● AbstractExpressoEvent: a class needs to extend this abstract class to create an event for a
provider.

Implementing a Provider in Java

For ease of explanation, the process of implementing a provider in Java is explained using an example
of a "Timer" provider that generates events at regular intervals and publishes a message to the Expresso
server. The time interval and message are set in the properties file and can be changed by the user.

1. Specifying data in the properties file. The configuration data that is required by the user can be
specified in the pojoprovider.properties file. For this example, two properties are added:

● expresso.providers.timer.interval.millsecs = 3000

● expresso.providers.timer.message = Hello Expresso

2. Implementing the POJO provider in Java. A provider can register itself with the Expresso server
stating its name, description, and a list of events that it has to offer. The library offers two abstract
classes that a user can extend to realise their provider and its events.

The project also needs the commons-configuration-1.10.jar and jetty-7 libraries
in the build path.

Procedure

1. Write a provider class that extends the AbstractExpressoProvider class.

19

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

2. Define the class by mentioning its name and description by overriding the getName() and
getDescription() methods.

3. Return a list of events that the provider has by overriding the getProviderEvents() method.

4. If required, write initialization code, such as loading data from the pojoprovider.properties file,
in the overridden init() method.

20

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Writing a Class that Extends the AbstractExpressoProvider Class
The following example illustrates the methods that the extending class must implement. The
TimerProvider.java class extends the AbstractExpressoProvider class.
import java.util.HashMap;
import java.util.Iterator;
import com.tibco.expresso.providers.api.AbstractExpressoEvent;
import com.tibco.expresso.providers.api.AbstractExpressoProvider;

public class TimerProvider extends AbstractExpressoProvider{

//These are user defined fields, specific to the provider

private static final String TIMER_PROPS = "expresso.providers.timer";
public static HashMap<String, String> timerData = new HashMap<String,
String>();
public static final String TIMER_INTERVAL =
"expresso.providers.timer.interval_ms";
public static final String TIMER_MESSAGE = "expresso.providers.timer.message"

@Override
public String getName()
{
 // TODO Auto-generated method stub
 // name of the provider should be returned here

 return "Timer";
}
@Override
public String getDescription()
{
 // TODO Auto-generated method stub
 // description of the provider should be returned here.

 return "Provides Timer events";
}

// The getProviderEvents() method will be explained and overridden
//in later parts once we create events using the AbstractExpressoEvent
//class as it returns a map of events that the provider has to offer.

@Override
public HashMap<String, AbstractExpressoEvent> getProviderEvents()
{
 return null;
}

//This method can be used to initialize and load data specific to the
//provider on its start up. All the properties mentioned in the
//pojoprovider.properties file are available to the “config”
//object of every provider and can be retrieved as shown below.
//For this provider, we are saving them in timerData HashMap to
//use later on.

@Override
public void init()
{

//Set the provider colour if required.
//This colour will reflect in all the event pods specific to this
//provider in the mobile app. The default value of colour is taken as
//white if not set by the provider.

 setProviderColour(Colour.Grey)

 Iterator<String> timerKeys = config.getKeys(TIMER_PROPS);
 while(timerKeys.hasNext())
 {
 String key = timerKeys.next();
 timerData.put(key, config.getString(key));
 }

21

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

 }
}

Implementing an Event for a Provider

Procedure

1. Write an event class that extends the AbstractExpressoEvent class.

2. Define an event data class whose object represents and returns event data generated by the event
back to the Expresso server.

3. Override the subscribeToEvent() and unSubscribeFromEvent() to handle subscriptions for the
event. The subscribeToEvent() method is called with a providerWebhookUrl parameter which is
generated specific to every event by the provider server. This URI listens to a POST call from
external services and subsequently routes it to the event through the onExternalEvent() method.

4. If the provider requires communication with external services, handle it in the overridden
onExternalEvent() method.

5. Notify the subscriber using the notifySubscriber() method either in the onExternalEvent()
method itself, or elsewhere as per specific provider requirement.

22

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Writing a Class that Extends the AbstractExpressoEvent Class
This sample illustrates the methods that the extending class must implement. Here,
TimerEvent.java extends the AbstractExpressoEvent class.
public class TimerEvent extends AbstractExpressoEvent
{

// provider specific fields

 private boolean isRunning = false;
 private Timer timer;

/ EventData class: Every event needs to publish data back to the Expresso
//server. On specific intervals, the timer event will notify the Expresso
//along with an event data object of type TimerEventData. This event data
//class is event specific. This class is set while creating an object in
//the provider class. pojoProvider internally converts the data to JSON
//format as required by Expresso while publish events using an object of
//the event data class.

public static class TimerEventData {

 private String message;

 public void setMessage(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }

 }

// subscribeToEvent is called by the pojoProvider on two occasions. When the
//first subscription to an event is received, and if pojoProvider is
//restarted and existing subscriptions from Expresso were present on it. The
//pojoProvider sends a providerWebhookUrl to the provider. This is meant to
//be used by the provider if it listens to another service. For timer, it
//isn’t required, but it is used in the TwilioProvider as the url to listen
//for messages coming from Twilio.
//For example: http://(somehost).com:80/events/Twilio/SMSReceived. Such url
//is then registered with Twilio for listening to webhook callbacks from
//Twilio. For timer, the events are generated locally and thus the
//providerWebhookUrl isn’t required. On receving a call, this method should
//implement logic to initiate the publishing of events. Here, the
//timer.start() call does the same.

@Override
public boolean subscribeToEvent(URI providerWebhookUrl)
{
 timer = new Timer();
 isRunning = true;
 timer.start();
 return true;
}

//Once the subscription is received, in case the provider depends on external
//service to notify it with data, the onExternalEvent method is called along
//with the request object and a response object. The provider should extract
//data from the request object and set the response object according to what
//the external service desires. Please refer to the TwilioReceiveSMS class
//in the samples to see this usage. For timer, as no external service is
//communicating with it, This method is left blank. On receiving of external
//event, or on fulfilment of the providers own conditions, the provider has
//to call the notifySubscriber() method passing the event data object
//to it. In this case, we are doing so after regular intervals using the
//Timer class.

@Override
public void onExternalEvent(HttpServletRequest request,HttpServletResponse

23

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

response)
{
 // TODO Auto-generated method stub
}

class Timer extends Thread {

 private int interval;
 private final TimerEventData eventData;

Timer()
{
/** Use data from properties file to decide time interval between
 * events and the message to send in event data. Default is interval
 * is 30000 ms and default message is "Hello Expresso"
*/
 intrvl = TimerProvider.timerData.get(TIMER_INTERVAL);
 if (intrvl == null)
 intrvl = "30000";
 interval = Integer.parseInt(intrvl);
 msg = TimerProvider.timerData.get(TIMER_MESSAGE);
 if (msg == null)
 msg = "Hello Expresso";
 /*
 * Create object of class that represents the event data.
 */
 eventData = new TimerEventData();
 eventData.setMessage(msg);

}

 @Override
 public void run() {
 while (isRunning) {
 try {
 Thread.sleep(interval);
 /*
 * Notify subscriber
 */
 notifySubscriber(eventData);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 } // loop ends
 } // run() ends
 } // class Timer ends

//unSubscribeFromEvent is called when the last subscriber unsubscribes from
//the event. In this method the provider is supposed to handle logic to
//stop sending events. In the TimerProvider we set the flag to false.

@Override
public boolean unSubscribeFromEvent()
{
 isRunning = false;
 return true;
}

}

Configuring an Event with the Provider

Modify the getProviderEvents() method in the TimerProvider class to return a map containing
event names and its corresponding objects.

24

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

The pojoProvider server internally converts the data to the JSON format as required by the Expresso
server during provider registration.
public HashMap<String, AbstractExpressoEvent> getProviderEvents()
{

HashMap<String, AbstractExpressoEvent> events = new HashMap<String,
AbstractExpressoEvent>();

//Event 1:
/Create an object of the Event created above.

TimerEvent timerEvent = new TimerEvent();

//Set the name, description and usage of that event.

timerEvent.setEventDetails("TimerEvent","Generates events after specific time
intervals","Timer event received with message :{message}");

//Set the class whose object will be returned as event data.

timerEvent.setEventSchemaClass(TimerEventData.class);

//Set the name of the provider to which this class belongs, this is used while
//notifying an event Expresso

timerEvent.setProviderName("Timer");

//Put the object in a map with the event name as key, make sure that the key
//matches exactly to the event name as it will be used by the provider
//server to lookup later.

events.put("TimerEvent", timerEvent);

//More events can be added in a similar way to the map.

return events;

}

Running the Provider

Procedure

1. Export the provider as a JAR file.

2. Append the path of the provider JAR to the expresso.pojo.provider.samples.path property in
the pojoprovider.properties file.

3. Run pojoProvider.exe.
The providers are automatically loaded and registered with the Expresso server.

25

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Creating a Provider in TIBCO ActiveMatrix BusinessWorks
6.x

Expresso ships with two TIBCO ActiveMatrix BusinessWorks samples installed in $TIBCO_HOME
\expresso\providers:

● SalesForce
● Workday

Workday Provider Sample

Workday provider in TIBCO ActiveMatrix BusinessWorks 6.x has two events - Hire Employee and
Terminate Employee. Whenever a new employee is hired or terminated in the Workday application,
the provider notifies the Expresso server about the events along with associated data. This section
describes the following:

● Hiring an employee
● Creating a job position (optional)
● Terminating an employee
● Running a TIBCO ActiveMatrix BusinessWorks 6.x project

Hiring an Employee

Procedure

1. Login to the Workday instance.
2. Click on the search field and search for the Hire Employee task.
3. To hire an employee against a previously created job position in the Human Resources department,

select Human Resources as Supervisory Organization, select Create a New Pre-hire, and click OK.

4. On the next screen, specify details such as country, name, and contact number. Mandatory fields are
marked with an asterisk (*).

5. Click OK.
6. On the next screen, specify Hire Date. Select Position from available open job positions. If no

position is available, you can create a position. Specify details such as the following and click
Submit.

26

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

● Employee Type: Regular

● Job Profile: Staff Recruiter

● Time Type: Full Time

● Location : Mumbai

7. On the next screen, click Open to assign compensation for the hired employee.

8. Click Submit to assign default salary. Click on the salary to assign a new salary instead of default
salary.

The employee is successfully hired.

27

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

9. Click Done.
Workday sends a notification about the event to the Notification URL specified in the Edit
Subscription screen.

Creating a Job Position (Optional)

To hire an employee, it is mandatory to have a position within the organization. To create a position in
Workday, create a job requisition.

Procedure

1. Click on the search field and search for Create Job Requisition.

2. Select Human Resources as Supervisory Organization and create a new position as shown in the
following image.

3. On the Recruiting Information screen, specify the following mandatory fields and click Next.

● Number of Openings
● Reason: Create Job Requisition > New Position > Requesting Additional Staff

28

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

● Other mandatory fields marked with an asterisk (*).

4. Specify mandatory fields such as Job Posting Title, Job Profile, Worker Subtype, Time Type,
Location, and click Next.

5. (Optional) Specify optional details such as Education. You can also attach files on the Attachment
screen if required. Click Next.

6. On the Summary screen, click Submit.

7. Click Open to assign a default compensation for the newly created job position.

8. Assign the salary and click Approve.

9. For change organization assignment, click Skip.

10. Click Review.

29

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

11. Click Done.
The position is created.

Terminating an Employee

Procedure

1. In Workday, click on the search field and search for Terminate Employee.

2. Enter the name of the employee to be terminated and click OK.

3. On the next screen, specify the mandatory details and click Submit.

The employee is terminated and workday sends a notification which triggers the WorkdayEvent
service. The NotifyTerminateEmployee activity sends a notification to the Expresso server with
data such as employee name, employee ID, date when the employee is terminated, and the
department.

30

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

Running a TIBCO ActiveMatrix BusinessWorks 6.x Project
The WorkdayEventProcess service uses Notification.wsdl and implements the
Receive_Notification operation. It has two Expresso Notify activities, NotifyHireEmployee and
NotifyEmployeeFired which send a received notification to Expresso.

Procedure

1. Configure the shared resource:

● ExpressoServer Resource: Specify the Expresso server host and port.

● WorkdayHTTPConnector: Specify values for PROVIDER.HOST and PROVIDER.PORT.

● HTTPConnector: Specify values for WORKDAY.NOTIFICATION.PORT. (Note: This port is used by
the web service to listen for events from Workday.)

2. Configure the notification URL:
a) Note the SOAP Endpoint URI of the WorkDayEvent service.

b) In Workday, search for Edit Subscriptions.
c) On the Edit Subscriptions screen, under Integration System, choose the integration system and

click OK.

d) Select v22.1 as the Uses API Version. Specify the Notification URL and click OK.

Configure the Notification URL in the workday instance with the URI where the
Workday BusinessWorks application is hosted, followed by the SOAP endpoint URI.

31

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

3. Run the project and execute the Hire Employee or Terminate Employee business process in
Workday.
The following figure shows the service for the Terminate Employee Event.

SalesForce Provider Sample

The SalesForce provider in TIBCO ActiveMatrix BusinessWorks 6.x demonstrates how to configure the
notification message that is sent when a Lead is converted in Salesforce. This section describes:

● Creating a SalesForce provider

32

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

● Editing the saved WSDL
● Configuring the TIBCO ActiveMatrix BusinessWorks 6.x project

Creating a SalesForce Provider
To create a SalesForce provider, you must open an account with https://developer.salesforce.com and
configure outbound messages from it.

Procedure

1. Open an account with https://developer.salesforce.com. After signing up, verify the account and log
in to the homepage of the developer account.

2. On the home page, click Create > Workflow & Approvals > Workflow Rules. The All Workflow
Rules screen appears. Click New Rule to create a new workflow rule.

3. Select Lead as the Object. Configure the rule fields as follows:

4. After saving it, add New Outbound Message as a workflow action.

33

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

5. Configure an outbound message for the workflow rule. Configure the endpoint URL to a dummy
value; you need to change it later. In Lead Fields, select fields from the lead object that you want to
receive when a lead is converted in Salesforce. Salesforce sends a SOAP message along with these
fields.

6. Save the outbound message, and open it to view the following tab. Salesforce provides a WSDL
which confines to the SOAP outbound message that was configured. Click Save link as to save this
WSDL file. Use the WSDL file to configure a SOAP service in TIBCO ActiveMatrix BusinessWorks
6.x.

7. After saving the WSDL, make sure that you activate the rule using the outbound message.

34

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

8. Click on the Leads tab in Salesforce. Click New to create a new lead.

9. Configure a new lead and save it. This lead is used later to trigger the Salesforce event.

Editing the Saved WSDL

Procedure

1. Remove the binding and service tags to make the saved WSDL abstract.

2. Delete the part highlighted in the following figure:

35

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

3. Save the WSDL.
You can now create a web service in TIBCO ActiveMatrix BusinessWorks 6.x that implements the
WSDL.

Configuring the TIBCO ActiveMatrix BusinessWorks 6.x Project

Procedure

1. Using the abstract WSDL created in Editing the Saved WSDL, create a TIBCO ActiveMatrix
BusinessWorks 6.x service. Implement the notifications operation for NotificationPort portType.
Add the ExpressoNotify activity to the process.

2. Configure the SOAP service binding for the service. Note the endpoint URL configured here. Also
note the port that is configured for the HTTPConnectorResource. In this case, it is 8080.

36

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

3. Configure the schema for the ExpressoNotify activity using the Input Editor tab as showin in the
following figure. This is your event schema; map it according to the incoming SOAP message.

4. Create an Expresso Provider shared resource and configure it as follows:

Name: SalesForceEventProvider. This is displayed as the domain name of the provider.

Expresso Server Cient Config: the server configuration details.

Expresso Event Configuration > Event Name: this name is directly seen as the pod name.

Expresso Event Configuration > Implementing Process: select the process containing the
ExpressoNotify activity that was configured.

5. Similarly, create a workflow rule in Salesforce to send an outbound message when changes are
made to a campaign. The name of the campaign is Test Campaign. The criteria for the workflow
rule is "Campaign: Campaign NameEQUALSTest Campaign".

37

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

The fields to be included in the outbound message are: ActualCost, BudgetedCost,
ExpectedResponse, Id, Name, NumberOfContacts, NumberOfLeads, NumberOfResponses,
NumberSent, and Status.

Before implementing the service in TIBCO ActiveMatrix BusinessWorks 6.x, make sure
you change the targetnamespace of the second WSDL, as it is the same as the first one and
may create errors on startup.

6. Implement the service and add the ExpressoNotify activity as shown for the first service. Configure
it as a second event with the SalesforceProvider shared resource. Note the endpoint URI for the
binding.

7. Start the application. The SalesforceProvider is registered with the Expresso server with the two
events and their schemas.

8. Configure the outbound message in the SalesForce cloud instance with the URI where the
SalesForce BusinessWorks application is hosted, appending the URI from the SOAP endpoint"/
leadevent" . Refer to Creating a SalesForce Provider.

9. Trigger the service by converting a lead or changing any field of the Test Campaign.

38

TIBCO ActiveMatrix BusinessWorks™ Plug-in for Mobile Integration Expresso Server Guide

	Contents
	Figures
	TIBCO Documentation and Support Services
	Introduction to Expresso
	Typical Workflow in Expresso
	Starting the Expresso Server

	Compiling a Mobile Client Application
	Provider
	JSON Schema for Defining Providers
	Implementation Guidelines for Defining Providers
	Defining and Registering a Provider
	Getting a Subscription Request from the Expresso Server

	Services
	GET /schemas/provider-schema
	GET /schemas/subcription-schema
	POST /system/providers
	Response Status Codes

	Configuration Files
	expresso.properties
	pojoprovider.properties
	quartz.properties

	Writing a Provider in Java
	Implementing a Provider in Java
	Implementing an Event for a Provider
	Configuring an Event with the Provider
	Running the Provider

	Creating a Provider in TIBCO ActiveMatrix BusinessWorks 6.x
	Workday Provider Sample
	Hiring an Employee
	Creating a Job Position (Optional)
	Terminating an Employee
	Running a TIBCO ActiveMatrix BusinessWorks 6.x Project

	SalesForce Provider Sample
	Creating a SalesForce Provider
	Editing the Saved WSDL
	Configuring the TIBCO ActiveMatrix BusinessWorks 6.x Project

