
TIBCO ActiveMatrix BusinessWorks™ Plug-in
Development Kit
Developer's Guide
Software Release 6.1
November 2015

Two-Second Advantage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws
and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO, Two-Second Advantage, TIBCO ActiveMatrix BusinessWorks, TIBCO Business Studio, TIBCO
Enterprise Administrator, and TIBCO ActiveMatrix BusinessWorks Plug-in Development Kit are either
registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other
countries.

Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise
Edition (J2EE), and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT
ALL OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED
AT THE SAME TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE
VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 2014-2015 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

2

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Contents

TIBCO Documentation and Support Services .6

Product Overview . 7

Installing BusinessWorks Plug-in Development Kit . 9

Getting Started .11

Defining a HelloWorld Palette .11

Adding Business Logic . 16

Running the HelloWorld Plug-in .18

Packaging the HelloWorld Plug-in .19

Generated Code .21

Plug-in Bundles . 21

Design-Time Bundle . 21

Model Bundle . 23

Runtime Bundle .24

Design-Time Class Specification .26

[PaletteName] . 26

[PaletteName]ExceptionsSchema . 26

[ActivityName]General/Advanced/customizedSection . 27

[ActivityName]ModelHelper . 27

[ActivityName]Schema . 27

[ActivityName]Signature .28

Runtime Class Specification . 28

[ActivityName]EventSource . 29

[ActivityName]AsynchronousActivity . 30

[ActivityName]SynchronousActivity . 32

Target Platform . 35

Creating a Plug-in . 36

Defining a Palette . 36

Adding and Configuring Activities . 37

Activity Types .40

Creating Schema with XSD/WSDL . 41

Creating Schema with XSD Editor . 44

Adding Business Logic . 45

Creating Java Global Instance Shared Resource . 48

Adding Java Global Instance Shared Resource . 48

Adding Business Logic . 49

Creating a Process . 50

Configuring Java Global Instance Shared Resource . 51

Creating Documentation .53

3

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Editing a Plug-in . 56

Merging Code . 57

Editing an Activity . 57

Updating Schema .58

Adding an Activity . 60

Deleting an Activity . 60

Testing a Plug-in . 61

Creating an Installer for a Plug-in .62

Exporting Features . 62

Generating an Installer . 63

Using a Plug-in . 65

Installing and Uninstalling a Created Plug-in . 65

Installing a Created Plug-in .66

Uninstalling a Created Plug-in . 67

Running the Plug-in . 68

Deploying an Application . 68

Working with the Sample Projects .70

GSON . 70

Importing the GSON Sample Project . 70

Importing the JavaToJSON Process .71

Running the JavaToJSON Process .72

LinkedIn .73

Importing the LinkedIn Sample Project . 73

Importing the LinkedIn Processes . 74

Generating an Access Token and a Token Secret . 74

Running the LinkedIn Processes . 75

Running the Retrieve Process . 75

Running the RetrieveDefaultProfile Process .76

Running the Update Process . 77

Managing Logs for a Created Plug-in . 79

Log Levels . 79

Setting Up a Log Level . 79

Exporting Logs to a File . 80

Frequently Asked Questions . 81

How to Get Input at Run Time . 81

How to Create and Update Output at Run Time . 81

How to Add Third-Party Libraries . 82

How to Add Online Help for a Palette . 82

How to Add License . 83

How to Add an Activity Icon .83

4

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

How to Find BusinessWorks API JavaDoc . 84

Troubleshooting . 85

General Problems . 85

Migration Problems .87

5

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

TIBCO Documentation and Support Services

Documentation for this and other TIBCO products is available on the TIBCO Documentation site:

https://docs.tibco.com

Documentation on the TIBCO Documentation site is updated more frequently than any documentation
that might be included with the product. To ensure that you are accessing the latest available help
topics, please visit https://docs.tibco.com.

Product-Specific Documentation

Documentation for TIBCO products is not bundled with the software. Instead, it is available on the
TIBCO Documentation site. To directly access documentation for this product, double-click the
following file:

TIBCO_HOME/release_notes/TIB_bwpdk_version_docinfo.html

where TIBCO_HOME is the top-level directory in which TIBCO products are installed. On Windows,
the default TIBCO_HOME is C:\Program Files\tibco. On UNIX systems, the default TIBCO_HOME
is /opt/tibco.
The following documents for this product can be found on the TIBCO Documentation site:

● TIBCO ActiveMatrix BusinessWorks Plug-in Development Kit Developer's Guide
● TIBCO ActiveMatrix BusinessWorks Plug-in Development Kit Release Notes

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, contact TIBCO Support:

● For an overview of TIBCO Support, and information about getting started with TIBCO Support,
visit this site:

http://www.tibco.com/services/support

● If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user name, you can
request one.

How to Join TIBCOmmunity

TIBCOmmunity is an online destination for TIBCO customers, partners, and resident experts. It is a
place to share and access the collective experience of the TIBCO community. TIBCOmmunity offers
forums, blogs, and access to a variety of resources. To register, go to the following web address:

https://www.tibcommunity.com

6

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

https://docs.tibco.com
https://docs.tibco.com
http://www.tibco.com/services/support
https://support.tibco.com
https://www.tibcommunity.com

Product Overview

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit is a tool that speeds up the
development of new plug-ins for TIBCO ActiveMatrix BusinessWorks™.

BusinessWork Plug-in Development Kit guides you through a set of wizards to create palettes and
activities, and build scripts for a new plug-in. BusinessWorks Plug-in Development Kit is used to
develop many of the plug-ins supported on ActiveMatrix BusinessWorks including plug-ins for
Marketo, MDM, and SharePoint.

TIBCO ActiveMatrix BusinessWorks is a leading integration platform to integrate a wide variety of
technologies and systems within enterprise and on cloud. ActiveMatrix BusinessWorks includes an
Eclipse-based graphical user interface (GUI) based on TIBCO Business Studio™ for design, deployment,
and testing of process flows. The processes designed in TIBCO Business Studio can be deployed to the
BusinessWorks process engine. TIBCO ActiveMatrix BusinessWorks plug-ins extend the functions of
ActiveMatrix BusinessWorks by adding more activities. A TIBCO ActiveMatrix BusinessWorks plug-in
is designed to integrate third-party applications with ActiveMatrix BusinessWorks. See TIBCO
ActiveMatrix BusinessWorks Concepts for more details about TIBCO ActiveMatrix BusinessWorks.

BusinessWorks Plug-in Development Kit works with TIBCO Business Studio to boost developers
productivity by creating plug-ins that are not yet currently available for a platform. Once developed,
the plug-ins created by BusinessWorks Plug-in Development Kit are installed and used exactly like the
plug-in provided by TIBCO. BusinessWorks Plug-in Development Kit hides the complexity of plug-in
development, generates the code to conform to BusinessWorks SDK specifications, and provides
tooling to package, install, and document the plug-in.

As TIBCO is regularly developing and making many plug-ins, before you develop a new plug-in, check
if TIBCO has already developed and made a plug-in available for your needs.

The following figure illustrates a complete workflow of creating and using a TIBCO ActiveMatrix
BusinessWorks plug-in:

7

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

BusinessWorks Plug-in Development Kit provides the following features:

● Creating a plug-in

BusinessWorks Plug-in Development Kit provides a plug-in development wizard to guide
developers in creating a plug-in step by step. During the process, you have to create a palette, add
and configure activities, and add business logic.

For more details, see Creating a Plug-in.
● Editing an existing plug-in

BusinessWorks Plug-in Development Kit provides a plug-in editing wizard to guide developers in
editing an existing plug-in that is created by using BusinessWorks Plug-in Development Kit. You
can modify activity configurations, and add new activities to the plug-in.

For more details, see Editing a Plug-in.
● Generating an installer

BusinessWorks Plug-in Development Kit provides the functionality to package a created plug-in as
a TIBCO Eclipse plug-in, which is an installation package for the Eclipse provisioning platform.

For more details, see Creating an Installer for a Plug-in.
● Documentation template

BusinessWorks Plug-in Development Kit generates a documentation template based on the plug-in
that you create. You can update this template to guide your plug-in users.

For more details, see Creating Documentation.

8

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Installing Plug-in Development Kit

TIBCO ActiveMatrix BusinessWorks Plug-in Development Kit is packaged as a TIBCO Eclipse Plug-in,
which is an installation package for the Eclipse provisioning platform.

You can use Eclipse Update Manager to install TIBCO ActiveMatrix BusinessWorks Plug-in
Development Kit.

Prerequisites

Ensure that you have installed TIBCO ActiveMatrix BusinessWorks.

Procedure

1. Download the installation package of TIBCO ActiveMatrix BusinessWorks Plug-in Development
Kit.

2. Open TIBCO Business Studio in one of the following ways:

● Microsoft Windows: click Start > All Programs > TIBCO > TIBCO_HOME > TIBCO
Business Studio version_number > Studio for Designers.

● Linux: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

● Mac OS: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

3. From the menu, click Help > Install New Software.

4. In the Available Software dialog, click Add. In the Add Repository dialog, click Archive and locate
the .zip file downloaded in Step 1. Click OK.

5. Select the TIBCO ActiveMatrix BusinessWorks(TM) Plug-in Development Kit 6.1.0 check box.
Click Next.

9

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

6. In the Install Details dialog, review the components to be installed. Click Next.

7. In the Review Licenses dialog, click I accept the terms of the license agreement. Click Finish to
install TIBCO ActiveMatrix BusinessWorks Plug-in Development Kit.

8. During the installation, a security warning dialog is displayed, click OK to complete the
installation.

9. Click Yes when you are prompted to restart TIBCO Business Studio.

10

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Getting Started

You can begin to use BusinessWorks Plug-in Development Kit by creating a HelloWorld plug-in.

For simplicity, the HelloWorld plug-in contains only one activity, which responses with the "Hello
World" string.

Defining a HelloWorld Palette
The first step in creating the HelloWorld plug-in is to create a SayHello activity in the HelloWorld
palette.

Procedure

1. Open TIBCO Business Studio in one of the following ways:

● Microsoft Windows: click Start > All Programs > TIBCO > TIBCO_HOME > TIBCO
Business Studio version_number > Studio for Designers.

● Linux: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

● Mac OS: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

2. Open the BusinessWorks Plug-in Development Kit wizard in one of the following ways:

● From the menu, click File > New > Create a new or modify BW Plug-in Project.

● On the toolbar, click Create a new or modify BW Plug-in Project .

● Press Alt+T.

3. In the Get Started dialog, click Create New BW6 Palette to create a palette:
a) In the Palette name field, enter HelloWorld as the palette name.
b) In the Palette package name field, enter com.tibco.bw as the package name.

11

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

c) In the Palette version field, enter the palette version that you want to use.
By default, the palette version is 1.0.0.

d) By default, is used as the palette icon. If you want to use another icon, click Browse to locate
a palette icon.
The size of the icon cannot be less than 32x32.

e) Use the default location as the project folder. Click Next.

4. In the Define Activities, Process Starters and Signal-In dialog, add and configure an activity:
a) In the Name field, enter SayHello as the activity name.
b) From the Type list, select Asynchronous as the activity type.

c) By default, is used as the activity icon. If you want to use another icon, click Browse to locate
the icon. Click Go to configure the activity.
The size of the icon cannot be less than 48x48.

12

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

d) Click to add an attribute for the SayHello activity and configure the attribute as follows:

● Enter YourName as the value of the Name attribute.

● Select String as the value of the Type attribute.

● Enter YourName as the value of the Label attribute.

● Select TextBox as the value of the Control Type attribute.

● Select General as the value of the Section ID attribute.

e) From the Resource schema type list, select XSD Editor.
f) Click Input to create an input schema for the activity.
g) In the Create XML Schema dialog, click to add a primitive element, and then set the element

name to YourInput. Click OK.

13

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

h) Click Output to create an output schema for the activity. In the Create XML Schema dialog, click
 to add a primitive element, and then set the element name to Output. Click OK.

5. Click Apply to save your activity configurations.
You are now brought back to the Define Activities, Process Starters and Signal-In dialog. The
configured SayHello activity is displayed.

6. In the Define Activities, Process Starters and Signal-In dialog, click Next to verify the palette and
activity configurations.

7. In the "Palette summary" dialog, review the palette information and click Finish to generate the
code for the HelloWorld palette and the SayHello activity.

14

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

8. Change the target platform to running platform for the design-time module.
a) Click Window > Preferences, and then click Plug-in Development > Target Platform.
b) Click Add to add a running platform for the design-time module.
c) In the Target Definition dialog, click Default to choose the running platform. Click Next.
d) In the Target Content dialog, click Finish.
e) You are back to the Target Platform dialog, select the Running Platform (Active) check box.

Click Apply, and then click OK.

By default, the target platform is bw-runtime after launching TIBCO Business Studio. See Target
Platform for more details.

9. Close the runtime bundle and feature, and open the design bundle and feature.

Result

When the code generation is completed, the design-time, model, and runtime bundles and features are
displayed in TIBCO Business Studio.

15

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

What to do next

Adding Business Logic

Adding Business Logic
After configuring the plug-in palette and activity, you can add business logic for the SayHello activity.

Prerequisites

Ensure that you have generated a HelloWorld palette and a SayHello activity, as described in Defining
a HelloWorld Palette.

Procedure

1. In TIBCO Business Studio, from the menu, click Run > Run Configurations to launch a child TIBCO
Business Studio:
a) In the "Create, manage, and run configurations" dialog, double-click Eclipse Application in the

left panel, and then click New_configuration.
b) Click the (x)= Arguments tab, and then enter the following parameters in the VM arguments

field. Click Apply.

● Microsoft Windows: -Dorg.osgi.framework.bootdelegation=javax.xml.* -
XX:MaxPermSize=256m -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:

+UseParNewGC -Xms512m -Xmx768m

16

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

● Linux: -Dorg.osgi.framework.bootdelegation=javax.xml.* -
XX:MaxPermSize=256m -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:

+UseParNewGC -Xms512m -Xmx768m

● Mac OS: -XstartOnFirstThread -
Dorg.osgi.framework.bootdelegation=javax.xml.* -XX:MaxPermSize=512m -XX:

+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:+UseParNewGC -Xms512m -

Xmx768m

c) Click Run to launch a child TIBCO Business Studio configured with the bw-runtime platform.

2. In the child TIBCO Business Studio, click File > Import to import the features and bundles of
runtime and model to the child TIBCO Business Studio:
a) In the Select dialog, expand the General folder and select Existing Projects into Workspace.

Click Next.
b) In the Import Projects dialog, click Browse to locate the project folder that contains the

HelloWorld plug-in project.
c) Click Deselect All, and then select the runtime and model bundles, and features. Click Finish.
The bundles and features of runtime and model are loaded in the child TIBCO Business Studio.

3. In the Project Explorer view, expand the com.tibco.bw.palette.helloworld.runtime folder, and then
click src > com.tibco.bw.palette.helloworld.runtime > SayHelloAsynchronousActivity.java .

4. In the SayHelloAsychronousActivity.java file, find the evalOutput() method.

5. In the evalOutput() method, enter Hello World as the output text.
This method is used to generate the output structure for an activity by passing the string value to
the output structure.
protected <A> N evalOutput(N inputData, ProcessingContext<N> processingContext,
Object data) throws Exception {

 SayHelloOutput sayHelloOutput = new SayHelloOutput();
 sayHelloOutput.setOutput("Hello World");
 N output = PaletteUtil.parseObjtoN(SayHelloOutput.class, sayHelloOutput,
processingContext, activityContext.getActivityOutputType().getTargetNamespace(),
"SayHelloOutput");

17

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

 // begin-custom-code
 // add your own business code here
 // end-custom-code
 return output;
}

6. Save the SayHelloAsychronousActivity.java file.

What to do next

Running the HelloWorld Plug-in

Running the HelloWorld Plug-in
To check whether the HelloWorld plug-in works as expected, you can create a business process using
the created SayHello activity.

Prerequisites

Ensure that you have added business logic, as described in Adding Business Logic.

Procedure

1. In the child TIBCO Business Studio, click File > New > BusinessWorks Resources from the menu.

2. In the "Select a wizard" dialog, click BusinessWorks Application Module. Click Next.

3. In the Project dialog, enter HelloWorld in the Project name field. Click Finish to create a
HelloWorld project.

The helloworld process editor is displayed.

4. From the General Activities palette, select and drop a Timer activity to the process editor. From the
HelloWorld palette, select and drop a SayHello activity to the process editor.

5. Drag the icon to create a transition between the Timer activity and the SayHello activity.

You can also click in the Palette view to create a transition.

The icon is displayed only when you select a Timer activity.

6. In the process editor, double-click the SayHello activity:
a) In the General tab, enter AAA in the YourName field.
b) In the Input tab, enter AAA as the value of the YourInput element.

7. On the toolbar, click to save your configurations.

18

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

8. From the menu, click Run > Debug Configurations. In the "Create, manage, and run
configurations" dialog, click BusinessWorks Application > BWApplication in the left panel, and
then select HelloWorld.application in the Applications tab.

9. Click Debug to start the HelloWorld process.

Result

In the Debug perspective, click the BusinessWorks Jobs tab, and then click helloworld.Process >
SayHello. Click the Output tab in the Job Data view.

Hello World is displayed in the Output tab.

What to do next

Packaging the HelloWorld Plug-in

Packaging the HelloWorld Plug-in
You can generate a provisioning platform (p2) installer for the created HelloWorld plug-in.

Prerequisites

Ensure that you have exported the design, model, and runtime features of the plug-in to three folders
one by one. See Exporting Features for more details.

Procedure

1. In the parent TIBCO Business Studio with the running platform selected, click Help > Create
BusinessWorks Plug-in Installer.

2. In the BW6 Plug-in Information dialog, provide the following information:

19

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

● Plug-in Properties File

Click Browse to locate the bw6_devkit_configuration.properties file that is located in the
HelloWorld project folder.

● Model Bundle Path

Click Browse to locate the folder that contains the model feature exported in the Exporting
Features section.

● Design Bundle Path

Click Browse to locate the folder that contains the design-time feature exported in the Exporting
Features section.

● Runtime Bundle Path

Click Browse to locate the folder that contains the runtime feature exported in the Exporting
Features section.

● Output Location

Click Browse to select the folder where the generated plug-in installer is saved.

What to do next

Using a Plug-in

20

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Generated Code

TIBCO ActiveMatrix BusinessWorks Plug-in Development Kit is a tool for generating a code template
of a BusinessWorks plug-in.

The following folders are generated for a created plug-in:

● The doc folder contains a documentation template generated according to the created palette and
activity. You can update this template and use it as the online help for the created activities. See
Creating Documentation for more details.

● The palette folder contains the generated design, model, and runtime bundles. BusinessWorks
Plug-in Development Kit also generates a Java file corresponding to each created activity. Each Java
file contains a class where you can add your business logic. See Plug-in Bundles for more details.

● The bw6-devkit_configuration.properties file contains plug-in project related information.
This file is required when editing a plug-in and generating an installer.

Plug-in Bundles
A bundle is a collection of files (resources and code) of the created plug-in. Each bundle contains
different files and is associated with different functions.

After adding and configuring activities for your plug-in, you have to change the target platform to
design time. When the code generation is completed, the following bundles are generated and
displayed in the Project Explorer view:

● Design-Time Bundle
● Model Bundle
● Runtime Bundle

Design-Time Bundle
The design-time bundle contains the code related to activity configurations.

Open the parent TIBCO Business Studio configured with the running platform, and then expand the
design-time bundle in the Project Explorer view, the following files and folders are displayed:

21

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Folders and
Files Description

src Contains the source code of the design-time configurations.

A palette package is created, which contains the following Java files:

● The Palette_Name.java file contains the methods to access your plug-in
project.

● The Palette_NameExceptionsSchema.java file contains the fault schema
related methods.

This file is generated only when you do not configure any fault
schema.

Besides, a separate package is created corresponding to each activity. Each
activity package contains the following Java files:

● The ActivityNameGeneral/Advanced/customizedSection.java file
contains the source code of the General tab, the Advanced tab, and the
customized tab, including the source code for the GUI elements configured
in these sections.

● The ActivityNameModelHelper.java file contains the source code to
initiate a model.

● The ActivityNameSchema.java file contains the input and output schema.

This file is generated when using an XSD file or a WSDL file or
using XSD Editor to generate the activity input and output.

● The ActivityNameSignature.java file contains the source code of the
Input, Output, and Fault tabs.

icons Contains the palette icon to be displayed in the Palette view.

META-INF Contains a MANIFEST.MF file that provides information regarding the plug-in
bundle and package.

22

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Folders and
Files Description

schema Contains the input, output, and fault schema files of each activity.

plugin.xml Describes how the plug-in extends the platform, what extensions you can use,
and how the plug-in implements its functionality.

Model Bundle
The model bundle contains the code related to the data model and the implementation validator of the
plug-in activities.

Open the parent TIBCO Business Studio configured with the running platform, and then expand the
model bundle in the Project Explorer view, the following files and folders are displayed:

Folders and
Files Description

src Contains the source code of the data model.

Use the interface and corresponding implementation files of the activity to
create a data model.

src-custom Contains the implementation code of the activity validator.

icons Contains the activity icon to be displayed in the Palette view and process editor.

META-INF Contains a MANIFEST.MF file that provides information regarding the plug-in
bundle and package.

model Contains a .ecore file that describes the data model structure and a .genmodel
file that generates the code of the data model.

plugin.xml Describes how the plug-in extends the platform, what extensions you can use,
and how the plug-in implements its functionality.

23

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Runtime Bundle
The runtime bundle contains the code related to business logic implementation and unit test.

Open the child TIBCO Business Studio configured with the bw-runtime platform, and then expand the
runtime bundle in the Project Explorer view, the following files and folders are displayed:

24

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Folders and
Files Description

src Contains the source code to implement the business logic of each activity.

● The runtime package contains the following files:

— The PaletteNameContants.java file contains the defined constants
used in the code.

— The RuntimeMessageBundle.java file contains the bundle message
definition.

— The ActivityNameActivityType.java file contains the business logic
of the activity, including the logic information on how to get
configurations and input of the activity, and how to generate output
according to design-time configurations.

— The Resources.properties file contains the implementation of bundle
messages and error codes.

● The fault package contains the following files:

— The PaletteNameActivityBaseException.java file contains the errors
specified for the synchronous and asynchronous activities.

— The PaletteNameActivityLifecycleFault.java file contains
initialization errors.

— The PaletteNamePluginException.java file contains the error defined
by BusinessWorks Plug-in Development Kit by default.

— The FaultNameFault.java file contains the generated fault schema
according to the design-time configurations. Use the private <N, A> N
constructErrData () method and the public QName
getFaultElementQName() method to add other faults at run time. The
private <N, A> N constructErrData () method is generated only when
you add a customized fault at design time. If you do not specify any
fault schema at design time, this file is not generated.

The PaletteNameActivityBaseException.java file is not
available for the signal-in and process starter activities.

● The pojo package contains Java Architecture for XML Binding (JAXB)
generated common Java classes according to the output configurations. You
can assign values to these POJO classes.

● The util package contains the following files:

— The PaletteNamePluginLogger.java file contains the generated
logging utility.

— The PaletteUtil.java file contains the generated output utility.

unit-test Contains the source code for unit tests.

META-INF Contains a MANIFEST.MF file that provides information regarding the plug-in
bundle and package.

25

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Folders and
Files Description

OSGI-INF Contains configuration files of OSGI bundles. Each activity corresponds to a
bundle file.

Design-Time Class Specification
Use the design-time classes to generate input and output schema, and GUI elements.

The following design-time classes are generated when generating the palette code:

● The com.companyname.bw.palette.palette_name.design package contains the following classes:

— [PaletteName]
— [PaletteName]ExceptionsSchema

● The com.companyname.bw.palette.palette_name.design.activity_name package contains the
following classes:

— [ActivityName]General/Advanced/customizedSection
— [ActivityName]ModelHelper
— [ActivityName]Schema
— [ActivityName]Signature

[PaletteName]
This class is used to access your plug-in project.

The [PaletteName] class contains the following methods:

Methods Description

public void start() This method is called when the design-time bundle is
initialized by Eclipse.

This is a BusinessWorks 6 life-cycle method.

public void stop() This method is called when the design-time bundle is stopped
by Eclipse.

This is a BusinessWorks 6 life-cycle method.

public static palette_name
getDefault()

Use this method to get a plug-in instance.

This is a BusinessWorks 6 life-cycle method.

[PaletteName]ExceptionsSchema
This class is used to get the fault schema related information.

The [PaletteName]ExceptionsSchema class contains the following methods:

26

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Methods Description

protected InputStream
getSchemaAsInputStream()

Use this method to get the input stream of the fault schema.

This is a BusinessWorks 6 life-cycle method.

public static
List<XSDElementDeclaration>
getplug-in_nameFaultTypes()

Use this method to get the fault type.

private static
List<XSDElementDeclaration>
getFaultElements()

Use this method to get the fault elements.

[ActivityName]General/Advanced/customizedSection
This class is used to configure the General, Advanced, and customized tabs of an activity.

The [ActivityName]General/Advanced/customizedSection class contains the following methods:

Methods Description

protected Class <?>
getModelClass()

Use this method to specify a representation of a model object.

This is a BusinessWorks 6 life-cycle method.

protected void
initBindings()

Use this method to initialize control bindings to the activity input.

This is a BusinessWorks 6 life-cycle method.

protected Composite
doCreateControl()

Use this method to configure activity attributes in the General,
Advanced, and customized tabs.

This is a BusinessWorks 6 life-cycle method.

If you want to get the attribute value, you have to add a String attributes_value=
activityConfig.getAttributeName() method.

[ActivityName]ModelHelper
The [ActivityName]ModelHelper class contains a public EObject createInstance() method. This is a
BusinessWorks 6 life-cycle method. You can use this method to create a model instance and set the
initialization value for the model instance.

[ActivityName]Schema
This class is used to parse an XSD file and get the input, output, and fault type according to the defined
elements. This class is called by the [ActivityName]Signature class.

The [ActivityName]Schema class contains the following methods:

Methods Description

public static XSDElementDeclaration
getInputType()

Use this method to get the input type.

public static XSDElementDeclaration
getOutputType()

Use this method to get the output type.

27

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Methods Description

public static
List<XSDElementDeclaration>
getFaultElements()

Use this method to get the fault element.

If you do not specify any fault schema at design
time, this method is not generated.

protected InputStream
getSchemaAsInputStream()

Use this method to get the input stream.

This is a BusinessWorks 6 life-cycle method.

[ActivityName]Signature
This class is used to create input, output, and fault schema for an activity.

The [ActivityName]Signature class contains the following methods:

Methods Description

public boolean hasInput() Returns a value of false when an activity has no input.

This is a BusinessWorks 6 life-cycle method.

public boolean hasOutput() Returns a value of false when an activity has no output.

This is a BusinessWorks 6 life-cycle method.

public
XSDElementDeclaration
getInputType()

Use this method to configure an input schema.

This is a BusinessWorks 6 life-cycle method.

public
XSDElementDeclaration
getOutputType()

Use this method to configure an output schema.

This is a BusinessWorks 6 life-cycle method.

public
List<XSDElementDeclaratio
n> getFaultTypes()

Use this method to configure a schema for the Fault tab.

This is a BusinessWorks 6 life-cycle method.

private XSDSchema
getCompiledSchema()

Use this method to configure the imported XSD schema.

This method is generated only when the XSD or WSDL file
that you select for the activity imports other XSD schema.

Runtime Class Specification
Use runtime classes to add business logic for each activity.

The following runtime classes are generated:

● [ActivityName]EventSource
● [ActivityName]AsynchronousActivity
● [ActivityName]SynchronousActivity

28

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

[ActivityName]EventSource
This class is used to add business logic for the process starter and signal-in activities.

Both the process starter and signal-in activities are event source activities and use the same
EventSource<N> class.

The following sequence diagram illustrates how the methods in the [ActivityName]EventSource<N>
class are invoked:

The [ActivityName]EventSource<N> class contains the following methods:

Methods Description

public synchronized void destroy() Use this method to release or clean resources held by a
source, when an event source is destroyed.

This is a BusinessWorks 6 life-cycle method.

public synchronized boolean
isStarted()

Returns a boolean value indicating the status of an event
source.

This is a BusinessWorks 6 life-cycle method.

29

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Methods Description

public synchronized void start() Use this method to start an event source. You cannot start a
new event until this method is called.

Once this method is called, the event source uses the {@link
EventSourceContext} interface to notify the BusinessWorks
engine of a new event. You can use the {@link
EventSource#getEventSourceContext()} method to get the
{@link EventSource#getEventSourceContext()} object.

This is a BusinessWorks 6 life-cycle method.

protected <A> N evalOutput() Use this method to generate output when the business is
completed.

protected N
getOutputRootElement()

Use this method to get the root element of the output.

public synchronized void stop() Use this method to stop the event source from processing
new events.

When this method is called, the event source cannot use the
{@link EventSourceContext} interface to notify the
BusinessWorks engine of a new event.

Be careful when using this method to release or
delete the resources that are used to start an event
source. The {@link EventSource#start()} method
cannot be called after the {@link Event
source#stop()} method.

This is a BusinessWorks 6 life-cycle method.

public void init() Use this method to perform any required initialization.

The <code>eventSourceKind</code> argument of this
method indicates that the event source is being initialized by
a process starter activity or a signal-in activity.

Do not use this method to start an event source.
You can start the event source until the {@link
Event source#start()} method is called.

This is a BusinessWorks 6 life-cycle method.

[ActivityName]AsynchronousActivity
This class is used to add business logic for an asynchronous activity.

The following sequence diagram illustrates how the methods in the
[ActivityName]AsynchronousActivity<N> class are invoked:

30

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

The [ActivityName]AsynchronousActivity<N> class contains an internal class and the following
methods:

Methods Description

public void init() Use this method to initialize the activity.

This is a BusinessWorks 6 life-cycle method.

public void destroy() Use this method to release or clean resources held by a
source, when an event source is destroyed.

This is a BusinessWorks 6 life-cycle method.

31

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Methods Description

public void cancel() Use this method to revoke the execution of an asynchronous
activity, when the application is closed, or the asynchronous
activity is still running within the waiting time that is
specified in the {@link AsyncActivityController#setPending}
method.

This is a BusinessWorks 6 life-cycle method.

public void execute() Use this method to execute an asynchronous activity.

Do not execute the activity and business logic in
the same thread.

This is a BusinessWorks 6 life-cycle method.

public N postExecute() Use this method to complete the execution of an
asynchronous activity, when the asynchronous activity
issues a signal of completion by invoking the {@link
AsyncActivityCompletionNotifier#setReady} method in a
different thread.

This is a BusinessWorks 6 life-cycle method.

protected <A> N evalOutput() Use this method to generate output when the business is
completed.

protected <N> N
getOutputRootElement()

Use this method to get the root element of the output.

public String
getInputParameterStringValueByNa
me()

Use this method to get the value of a string parameter
according to the parameter name from the input.

This method cannot retrieve the value of a sub
node.

public String
getInputAttributeStringValueByNa
me()

Use this method to get the value of an attribute according to
the parameter name from the input.

public boolean
getInputParameterBooleanValueBy
Name()

Use this method to get the value of a boolean parameter
according to the parameter name from the input.

The [ActivityName]AsynchActivityExecutor<A> internal class contains the following method:

public void run() Use this method to add business logic before calling the
evalOutput() method. This method is executed in another
thread.

[ActivityName]SynchronousActivity
This class is used to add business logic for a synchronous activity.

The following sequence diagram illustrates how the methods in the
[ActivityName]SynchronousActivity<N> class are invoked:

32

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

The [ActivityName]SynchronousActivity<N> class contains the following methods:

Methods Description

public void init() Use this method to initialize the activity.

This is a BusinessWorks 6 life-cycle method.

public void destroy() Use this method to release or clean resources held by an
event source, when an event source is destroyed.

This is a BusinessWorks 6 life-cycle method.

public N execute() Use this method to define the execution of a synchronous
activity.

This is a BusinessWorks 6 life-cycle method.

protected <A> N evalOutput Use this method to generate output when the business is
completed.

protected N
getOutputRootElement()

Use this method to get the root element of the output.

33

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Methods Description

public String
getInputParameterStringValueByNa
me()

Use this method to get the value of a string parameter
according to the parameter name from the input.

This method cannot retrieve the value of a sub
node.

public String
getInputAttributeStringValueByNa
me()

Use this method to get the value of an attribute according to
the parameter name from the input.

public boolean
getInputParameterBooleanValueBy
Name()

Use this method to get the value of a boolean parameter
according to the parameter name from the input.

34

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Target Platform

During the development of plug-ins, your plug-in depends on other plug-ins, for example, the SWT
and JFace plug-ins. The set of plug-ins that you can use for your development is defined by the plug-ins
in your workspace in addition with the plug-ins defined by your target platform.

When you launch TIBCO Business Studio, the bw-runtime platform is used by default. You have to
change the platform to the running (design-time) platform when using BusinessWorks Plug-in
Development Kit to generate the palette code.

● Running Platform

This target platform is required for the design-time module. You can work on the UI related features
when the target platform is set to Running Platform.

● bw-runtime Platform

This target platform is required for the runtime module. You can work on the runtime related
features when the target platform is set to bw-runtime.

Click Window > Preferences, and then click Plug-in Development > Target Platform. The target
platform in use is selected.

35

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Creating a Plug-in

TIBCO ActiveMatrix BusinessWorks plug-ins extend the functions of ActiveMatrix BusinessWorks by
adding more activities. A TIBCO ActiveMatrix BusinessWorks plug-in is designed to integrate third-
party applications with ActiveMatrix BusinessWorks.

To create a plug-in, complete the following tasks:

1. Defining a Palette

2. Adding and Configuring Activities

3. Adding Business Logic

Defining a Palette
A palette groups the plug-in activities together.

Procedure

1. Open TIBCO Business Studio in one of the following ways:

● Microsoft Windows: click Start > All Programs > TIBCO > TIBCO_HOME > TIBCO
Business Studio version_number > Studio for Designers.

● Linux: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

● Mac OS: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

2. Open the BusinessWorks Plug-in Development Kit wizard in one of the following ways:

● From the menu, click File > New > Create a new or modify BW Plug-in Project.

● On the toolbar, click Create a new or modify BW Plug-in Project .

● Press Alt+T.

3. Click Create New BW6 Palette to start creating a plug-in.

4. In the Define Palette dialog, configure a palette for the plug-in:

36

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

a) In the Palette name field, enter a palette name.
By default, Example is the palette name.

b) In the Palette display name field, enter a display name for the palette.
The display name is displayed as the palette name in TIBCO Business Studio.

c) In the Palette package name field, enter a name of the package, which is the suffix of the
generated package name.

d) In the Palette version field, enter the palette version that you want to use.
By default, the palette version is 1.0.0.

e) In the Palette icon field, click Browse to locate an icon for the palette.

By default, is used as the palette icon. The supported image formats are .jpg, .gif, .png,
and .jpeg. The size of the icon must be 32x32 or larger. BusinessWorks Plug-in Development Kit
automatically generates the icon in size of 16x16 and 32x32.

f) By default, the Use default location check box is selected. The palette project is saved to the
workspace that you use in current. If you want to change the location of the project, clear the
check box and click Browse to select a new location.

5. Click Next to add activities for the created palette.

What to do next

Adding and Configuring Activities

Adding and Configuring Activities
An activity is an individual unit of work in a process. Each activity is represented by an icon in TIBCO
Business Studio and consists of a set of configurations.

Prerequisites

Ensure that you have configured a palette, as described in Defining a Palette.

Procedure

1. In the Name field, type a name of the activity that you want to create.

37

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

2. From the Type list, select an activity type.
See Activity Types for more details.

3. By default, is used as the activity icon. If you want to change the activity icon, click the text box
next to the Icon field, and select an icon to represent the activity.
The supported image formats are .jpg, .gif, .png, and .jpeg. The size of the icon must be 48x48 or
larger. BusinessWorks Plug-in Development Kit automatically generates the icon in size of 16x16,
32x32, and 48x48.

4. Click Go to configure the activity. Click to add attributes for the activity. Each activity attribute
contains the following properties:

38

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Properties Description

Name Name of the attribute.

Type Type of the attribute.

The following attribute types are supported: Int, Short, String, Float,
Double, Long, Boolean, and Date.

The attribute of the Double, Long, Float, or Short type is not
displayed in TIBCO Business Studio.

Label Display name of the attribute. The display name is the field name
displayed in TIBCO Business Studio.

Control Type Control type of the attribute.

The following types are supported: Hide, TextBox, FilePickerField,
ComboViewer, Button, PasswordField, DirectoryPickerField,
ActivityReferenceField, PropertyField.

BusinessWorks Plug-in Development Kit automatically selects a control
type according to the selected attribute type.

If you set the control type of an attribute to Hide, the attribute
of the activity is not displayed on UI.

If you want to add a Java global instance shared resource,
select PropertyField from this list.

Values Values to be displayed as default options.

Use comma (,) to separate values when the control type is
ComboViewer.

Section ID Name of the section that the attribute belongs to. The following three
options are supported:

● General

● Advanced

● Any customized section name

Module Property Whether the attribute supports the module property feature or not.

Required Field Whether the attribute is required or not.

5. From the Resource schema type list, select a way to generate the input, output, and fault schema:

● If you select XSD/WSDL, click Browse to locate an XSD file or a WSDL file. BusinessWorks
Plug-in Development Kit automatically generates input, output, and fault schema according to
the XSD or WSDL file. See Creating Schema with XSD/WSDL for more details.

● If you select Java Code, BusinessWorks Plug-in Development Kit automatically generates a
sample code of input and output.

● If you select XSD Editor, you have to manually create input, output, and fault schema. See
Creating Schema with XSD Editor for more details.

39

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

● If you select None, no input and output are generated. BusinessWorks Plug-in Development Kit
generates default schema for fault.

6. Click Apply to save your configurations.
You are now directed to the Define Activities, Process Starters and Signal-In dialog. Go back to Step
1 to add more activities.

7. Click Finish to generate code for the defined palette and activities.

8. Change the target platform to running platform for the design-time module.
a) Click Window > Preferences, and then click Plug-in Development > Target Platform.
b) Click Add to add a running platform for the design-time module.
c) In the Target Definition dialog, click Default to choose the running platform. Click Next.
d) In the Target Content dialog, click Finish.
e) You are back to the Target Platform dialog, select the Running Platform (Active) check box.

Click Apply, and then click OK.

By default, the target platform is bw-runtime after launching TIBCO Business Studio. See Target
Platform for more details.

9. Close the runtime bundle and feature, and open the design bundle and feature.

Result

When the code generation is completed, the design-time, model, and runtime bundles and features are
loaded in TIBCO Business Studio.

What to do next

Adding Business Logic

Activity Types
Activities are the individual units of work in a process.

Activities generally interact with an external system and perform a task. Activity that are used to
connect the same external applications can be grouped together.

40

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

BusinessWorks Plug-in Development Kit supports the following types of activities:
Synchronous Activities
Synchronous activities are blocking and they block the execution of the process until the activity task is
completed.

Asynchronous Activities
Asynchronous activities are non-blocking and they perform a task asynchronously without blocking
the execution of a process.

Process Starter Activities
Process starter activities are configured to react to events and trigger the execution of a process when
an event occurs. Process starter activities only have outputs in addition to other general
configurations.

Signal-In Activities
Signal-In activities wait for an asynchronous event in a process, and then proceed to execute the
process instance. Signal-In activities require conversations to be configured and are always blocking
the execution.

For more details about the conversation, see the TIBCO ActiveMatrix BusinessWorks 6
documentation.

Abstract Activities
Abstract activities are not TIBCO ActiveMatrix BusinessWorks 6 activities. BusinessWorks Plug-in
Development Kit uses this kind of activity to share common configurations. Abstract activities define
the common properties that are shared by all the activities in a plug-in and require no input and
output in addition to other general configurations.

Creating Schema with XSD/WSDL
BusinessWorks Plug-in Development Kit can parse the input, output, and fault schema from an XSD or
a WSDL file.

Procedure

1. In the Define Activities, Process Starters and Signal-In dialog, select XSD/WSDL from the Resource
schema type list.

2. Click Browse to locate a predefined XSD or a WSDL file.
3. Select a predefined element that you want to use as the input, output, or fault schema. If you want

to define multiple faults, you have to add the fault element one by one.

The XSD schema in the selected XSD or WSDL file must conform to the following rules:

● Contains a namespace.

● Does not contain an include element.

● If the XSD schema uses the import element, ensure the schemaLocation element is also used
and the value of the schemaLocation element is the relative path of the imported schema.

● The value of the elementFormatDefault attribute is unqualified.

41

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Use the following XSD file as an example:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema xmlns:tns="http://www.tibco.com/namespaces/tnt/plugins/example"
xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://
www.tibco.com/namespaces/tnt/plugins/example">
<element name="YourInput" type="tns:YourInputType"/>
<complexType name="YourInputType">
 <sequence>
 <element maxOccurs="1" minOccurs="0" name="YourName" type="string"/>
 </sequence>
</complexType>

<element name="YourOutput" type="tns:YourOutputType"/>
<complexType name="YourOutputType">
 <sequence>
 <element maxOccurs="1" minOccurs="0" name="Output" type="string"/>
 </sequence>
</complexType>

<element name="PluginException" type="tns:PluginExceptionType"/>
<complexType name="PluginExceptionType">
 <sequence>
 <element maxOccurs="1" minOccurs="0"
name="PluginfileExceptionMessage" type="string"/>
 </sequence>
</complexType>

<element name="InputFileException" type="tns:InputFileExceptionType"/>
<complexType name="InputFileExceptionType">
 <sequence>
 <element maxOccurs="1" minOccurs="1" name="fileInfo"
type="tns:fileInfoType">
 </element>
 </sequence>
</complexType>
<complexType name="fileInfoType">
 <sequence>
 <element maxOccurs="1" minOccurs="1" name="fullName" type="string">
 </element>
 <element maxOccurs="1" minOccurs="1" name="fileName" type="string">
 </element>
 <element maxOccurs="1" minOccurs="1" name="location" type="string">
 </element>
 <element maxOccurs="1" minOccurs="0" name="configuredFileName"
type="string">
 </element>
 <element maxOccurs="1" minOccurs="1" name="type" type="string">
 </element>
 <element maxOccurs="1" minOccurs="1" name="readProtected"
type="boolean">
 </element>
 <element maxOccurs="1" minOccurs="1" name="writeProtected"
type="boolean">
 </element>
 <element maxOccurs="1" minOccurs="1" name="size" type="long">
 </element>
 <element maxOccurs="1" minOccurs="1" name="lastModified"
type="string"/>
 </sequence>
</complexType>
</schema>

When adding and configuring activities in the Define Activities, Process Starters and Signal-In
dialog, use the example XSD file to configure the activity schema:

● Select the YourInput element as the activity input.

● Select the YourOutput element as the output.

42

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

● Select the InputFileException element as one fault.

● Select the PluginException element as another fault.

After generating the activity, click the Input, Output, and Fault tabs accordingly to check the
schema:

The following example is the generated input schema based on the selected XSD file:

The following example is the generated output schema based on the selected XSD file:

The following example is the generated fault schema based on the selected XSD file:

43

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Creating Schema with XSD Editor
You can use the XSD editor to configure the input, output, and fault schema of an activity.

When configuring an activity, the root element of input and output is created by default. You can add
primitive elements, anonymous complex elements, any elements, and attributes to this root element.

If you want to specify multiple exceptions, add the fault schema one by one.

The Choose Element Type function and the number of reference function are not supported when the
element type is anyType.

Take the input of the SayHello activity as an example.

Procedure

1. In the Simple XSD Create dialog, click SayHelloInput.

2. Click to add a primitive element.

3. Click the added primitive element and enter YourInput as the element name. Click to save your
configurations.

44

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

4. Click the SayHelloInput (sequence in order) root element, and then click OK to apply the
configurations.

Result

After generating the activity, the input structure of the SayHello activity is as shown in the following
figure:

Adding Business Logic
At run time, you can add your own logic for each activity.

● For a synchronous activity, add your business logic in the [ActivityName]SynchronousActivity
class.

● For an asynchronous activity, add your business logic in the [ActivityName]AsynchronousActivity
class.

● For a process starter activity or a signal-in activity, add your business logic in the
[ActivityName]EventSource class.

Prerequisites

Ensure that you have generated a palette and activities of the plug-in, as described in Defining a Palette
and Adding and Configuring Activities.

45

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Procedure

1. In the parent TIBCO Business Studio with the running platform selected, click Run > Run
Configurations.

2. In the "Create, manage, and run configurations" dialog, double-click Eclipse Application in the left
panel to create a new Eclipse application.
You can also use an existing Eclipse application.

3. Click the (x)= Arguments tab, and then enter the following parameters in the VM arguments field.
Click Apply.

● Microsoft Windows: -Dorg.osgi.framework.bootdelegation=javax.xml.* -
XX:MaxPermSize=256m -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:

+UseParNewGC -Xms512m -Xmx768m

● Linux: -Dorg.osgi.framework.bootdelegation=javax.xml.* -XX:MaxPermSize=256m -
XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:+UseParNewGC -Xms512m -

Xmx768m

● Mac OS: -XstartOnFirstThread -Dorg.osgi.framework.bootdelegation=javax.xml.*
-XX:MaxPermSize=512m -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:

+UseParNewGC -Xms512m -Xmx768m

4. Click Run to launch a child TIBCO Business Studio configured with the bw-runtime platform.
5. In the child TIBCO Business Studio, click File > Import to import the model and runtime bundles

and features:
a) In the Select dialog, expand the General folder and select Existing Projects into Workspace.

Click Next.
b) In the Import Projects dialog, click Browse to locate the project folder that contains the plug-in

project.
c) Click Deselect All, and then select the runtime and model bundles and features. Click Finish.
The runtime and model bundles are loaded in the child TIBCO Business Studio.

46

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

6. Click the runtime bundle, and then click the src folder to add the business logic.

Plain Ordinary Java Object (POJO) class is supported for implementation of source code. You can
assign values to POJO classes, and output is automatically generated.

See Runtime Class Specification and Runtime Bundle for more details.

7. If you have specified multiple faults when configuring activities at design time, BusinessWorks
Plug-in Development Kit only generates the first fault schema at run time. You have to add other
faults manually at run time:
a) Expand the runtime bundle and find the src folder.
b) Expand the com.company_name.bw.palette.palette_name.runtime.fault package.
c) In the com.company_name.bw.palette.palette_name.runtime.fault package, make a copy of the

fault_nameFault.java file.
d) Open the copied file and build the other faults by using the private <N, A> N constructErrData ()

method and the public QName getFaultElementQName() method.

47

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Creating Java Global Instance Shared Resource

You can use Java Global Instance shared configuration resource to specify a Java object to be shared
across all process instances in a Java Virtual Machine (JVM).

When the engine is started, an instance of the specified Java class is constructed. When the process
engine shuts down, if specified, a cleanup method is invoked on the object. The object is released before
the engine shuts down. If multiple process instances access the shared Java global instance, you might
want to ensure that only one process instance can access the object at a time. You can accomplish this
by either declaring the methods of the configured class as synchronous or by using a critical section
group.

Prerequisites

Ensure that you have created a palette, as described in Defining a Palette.

Procedure

1. Adding Java Global Instance Shared Resource

2. Adding Business Logic

3. Creating a Process

4. Configuring Java Global Instance Shared Resource

Adding Java Global Instance Shared Resource
You can add Java Global Instance shared resource for an activity.

Prerequisites

Ensure that you have created a palette, as described in Defining a Palette.

Procedure

1. In the Define Activities, Process Starters and Signal-In dialog, click to add an attribute for the
activity that you created in Adding and Configuring Activities.

2. Configure the attribute as follows:

● Enter the name of the attribute in the Name field. For example, JavaGlobal.

● Select String from the Type list.

● Enter the displayed name of the attribute in the Label field. For example, Java Global
Instance.

● Select PropertyField from the Control Type list.

● Select General or Advanced from the Section ID list, or enter any customized section name.

● Select or clear the Required Field check box to set whether the attribute is required or not.

3. From the Resource schema type list, select a way to generate the input, output, and fault schema:

● If you select XSD/WSDL, see Creating Schema with XSD/WSDL.
● If you select Java Code, BusinessWorks Plug-in Development Kit automatically generates a

sample code of input and output.
● If you select XSD Editor, see Creating Schema with XSD Editor.

48

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

● If you select None, no input and output are generated. BusinessWorks Plug-in Development Kit
generates a fault schema.

4. Click Apply to save your configurations.
You are now directed to the Define Activities, Process Starters and Signal-In dialog.

5. Click Finish to generate the activity with Java global instance shared resource in the palette.

6. Change the target platform to running platform for the design-time module.
a) Click Window > Preferences, and then click Plug-in Development > Target Platform.
b) Click Add to add a running platform for the design-time module.
c) In the Target Definition dialog, click Default to choose the running platform. Click Next.
d) In the Target Content dialog, click Finish.
e) You are back to the Target Platform dialog, select the Running Platform (Active) check box.

Click Apply, and then click OK.

By default, the target platform is bw-runtime after launching TIBCO Business Studio. See Target
Platform for more details.

7. Close the runtime bundle and feature, and open the design bundle and feature.

Result

When the code generation is completed, the design-time, model, and runtime bundles and features are
loaded in TIBCO Business Studio.

What to do next

Adding Business Logic

Adding Business Logic
You can add your own logic for each activity.

Prerequisites

Ensure that you have added Java global instance shared resource, as described in Adding Java Global
Instance Shared Resource.

Procedure

● Complete the steps in Adding Business Logic.

Java global instance shared resource is added to the runtime classes of your created activity.
/**
 *
 *
 *
 * @generated
 */
@Property(name = "JavaGlobalInstanceName")
public JavaGlobalInstanceResource javaGlobalInstanceResource;

You can also invoke methods to get the classes information that you configured.

49

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

What to do next

Creating a Process

Creating a Process
You can create a process to include the activity that contains the created Java global instance shared
resource.

Prerequisites

Ensure that you have created a business logic, as described in Adding Business Logic.

Procedure

1. In the child TIBCO Business Studio, click File > New > BusinessWorks Resources from the menu.

2. In the "Select a wizard" dialog, click BusinessWorks Application Module. Click Next.

3. In the Project dialog, enter a value in the Project name field, and select the Use Java configuration
check box. Click Finish to create a project.

4. In the created process editor, find the General Activities palette, select and drop a Timer activity to
the process editor.

5. From the palette that you created in Defining a Palette, select and drop the activity that you created
in Adding and Configuring Activities to the process editor.

6. Drag the icon to create a transition between the Timer activity and your created activity.

You can also click in the Palette view to create a transition.

The icon is displayed only when you select a Timer activity.

7. In the process editor, double-click your created activity. Click the General tab, you can see the Java
global instance shared resource you just added in Adding Java Global Instance Shared Resource.

50

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

What to do next

Configuring Java Global Instance Shared Resource

Configuring Java Global Instance Shared Resource
You can configure Java global instance shared resource for an activity according to your own
environment.

Prerequisites

Ensure that you have created a process to include the activity that contains the created Java global
instance shared resource, as described in Creating a Process.

Procedure

1. In the General tab of your created activity, click to create or choose a default resource.
a) In the Select JavaGlobalInstanceResource Resource Template dialog, click Create Shared

Resource.
b) In the Java Global Instance Resource dialog, review the detailed information, and click Finish.

2. In the Project Explorer view, expand project name, right-click the src folder, and select New > Class.

You have to select the Use Java configuration check box when you create the project, and
then the src folder can be created.

3. In the Java Class dialog, specify values in the Package and Name fields. Click Finish.
4. In the new .java file, add your own code logic, and save the file.

This is an example:
package com.test;

public class Person {
 private String name;
 private String age;

 public Person(String name, String age) {
 this.name = name;
 this.age = age;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {

51

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

 return name;
 }

 public void setAge(String age) {
 this.age = age;
 }

 public String getAge() {
 return age;
 }
}

5. In the Project Explorer view, expand project name > Resources > project name >
JavaGlobalInstanceResource.javaGlobalInstanceResource.

6. In the JavaGlobalInstanceResource.javaGlobalInstanceResource file, find the Java Global
Instance tab.
a) Click Browse to find the .java file that created in Step 4. In the Class Selection dialog, enter

the .java file name to find the created file. Select the file in the Matching items field, and click
OK.

b) From the Method list, select the constructor of the class.
c) In the Parameter Input area, specify a value in the Value field for the parameter. For example,

default.

7. In the Advanced Configuration tab, select the Invoke Cleanup Method check box, and select
clean() from the Cleanup Method list. Save your configurations.

8. In the Project Explorer view, expand com.company_name.bw.palette.palette_name.runtime > src >
com.company_name.bw.palette.palette_name.runtime > activity_nameactivity_type.java.

9. Double-click the .java file, you can see the code changes of the created Java global instance shared
resource.
/**
 *
 *
 *
 * @generated
 */
@Property(name = "JavaGlobalInstanceName")
public JavaGlobalInstanceResource javaGlobalInstanceResource;

52

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Creating Documentation

BusinessWorks Plug-in Development Kit generates a documentation template based on the activities
that you have created. You can update the documentation template to guide your plug-in users, and
configure the documentation for online help.

A doc folder is generated under the project folder after generating the plug-in activities. Open the
index.html, the created documentation template is displayed.

The documentation template contains a user's guide and an installation guide. In the user's guide,
BusinessWorks Plug-in Development Kit automatically creates reference topics for the created palette
and activities.

You can update the documentation template based on your requirements. For example, add a
description for the SayHello activity.

53

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

After updating the documentation, you can enable the online help function for the created palette, as
described in How to Add Online Help for a Palette.

After configuring the online help settings, in the process editor, right-click the activity and click Help >
Reference Page. The help content for the activity is displayed in the Reference view.

54

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

55

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Editing a Plug-in

You can update the activity attributes and schema, delete an activity, and add new activities.

Before editing a plug-in, see Merging Code for more details about how BusinessWorks Plug-in
Development Kit merges the code.

Procedure

1. Open TIBCO Business Studio in one of the following ways:

● Microsoft Windows: click Start > All Programs > TIBCO > TIBCO_HOME > TIBCO
Business Studio version_number > Studio for Designers.

● Linux: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

● Mac OS: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

2. Open the BusinessWorks Plug-in Development Kit wizard in one of the following ways:

● From the menu, click File > New > Create a new or modify BW Plug-in Project.

● On the toolbar, click Create a new or modify BW Plug-in Project .

● Press Alt+T.

3. Click Edit Existing BW6 Palette.

4. In the Define Activities, Process Starters and Signal-In dialog, click Browse next to the Devkit
Property File field to locate the bw6_devkit_configuration.properties file that contains the
plug-in configurations.
The bw6_devkit_configuration.properties file is located in the project folder of the plug-in.
The activities of the plug-in are displayed in the Define Activities, Process Starters and Signal-In
dialog.

56

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

5. Click Edit to update an activity.
See Editing an Activity for more details.

6. Click Delete to delete an activity.
See Deleting an Activity or more details.

7. In the Name field, enter a name of the activity to be added and select an activity type, and then click
Go to configure the activity.
See Adding and Configuring Activities for more details.

8. Click Finish to generate activities.

9. To add business logic, see Adding Business Logic.

Merging Code
BusinessWorks Plug-in Development Kit regenerates the source code, and merges the added business
logic to the source code when editing a plug-in.

Before editing the plug-in, ensure that you add your own code between the //begin-custom-code tag
and the //end-custom-code tag. Otherwise, the added business logic is deleted when regenerating the
source code.

The custom tags are settled. You cannot add new custom tags and the code in the new custom tag
cannot be merged.

For example, if you add your logic as follows, the added code is deleted after regenerating the code.
public EObject createInstance() {
 Get activity = Example2Factory.eINSTANCE.createGet();
 activity.setAttrName("b");
 return activity;

You have to add your logic between the //begin-custom-code tag and the //end-custom-code tag as
follows:
 public EObject createInstance() {
 Get activity = Example2Factory.eINSTANCE.createGet();
 // begin-custom-code
 activity.setAttrName("b");
 // end-custom-code
 return activity;

Editing an Activity
You can update the activity attributes and update the activity input, output, and fault schema. When
you update an activity, BusinessWorks Plug-in Development Kit regenerates the source code of the
activity.

When clicking Edit, the activity configurations are displayed in the Define Activities, Process Starters
and Signal-In dialog.

It is not good practice to change the activity type from Asynchronous/Synchronous to Signal-In/Process
Starter and vice versa.
See Updating Schema for more information about how to update the input, output, or fault schema of
an activity.

57

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Updating Schema
BusinessWorks Plug-in Development Kit provides you a [ActivityName]Signature class to update the
input and output schema after generating codes of activities.

Depending on the way that you select to generate the input, output, and fault schema, you can choose
different methods to update the activity schema:

● If you use an XSD file or a WSDL file to define the input, output, and fault schema, you can update
the XSD file or the WSDL file accordingly and regenerates the palette.

● If you use the default input, output, and fault schema generated by BusinessWorks Plug-in
Development Kit, you can use the [ActivityName]Signature class to update the schema accordingly.

● If you use the XSD Editor to define the input, output, and fault schema, you can use the XSD Editor
to update the schema accordingly.

In all, no matter you use which method to define the schema, you can use the [ActivityName]Signature
class that is located in the [ActivityName]Signature.java file to update the activity schema.

The following example shows how to use the [ActivityName]Signature class to update the input of the
SayHello activity to YourName and Email.

Procedure

1. In the parent TIBCO Business Studio with the running platform, click the design-time bundle.

2. Open the SayHelloSignature.java file that is located in the src folder.

58

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

3. Find the public XSDElementDeclaration getInputType() method and enter YourName and Email as
the input elements. Save your configurations.

The following code example is generated when selecting Java Code from Resource schema type
list:
public XSDElementDeclaration getInputType(final Configuration config) {
 XSDElementDeclaration inputType = null;
 String namespace = createNamespace(new Object[] { TARGET_NS, config,
"Input" });
 XSDSchema inputSchema = XSDUtility.createSchema(namespace);

 XSDModelGroup rootInput = XSDUtility.addComplexTypeElement(inputSchema,
"ActivityInputType", "ActivityInputType", XSDCompositor.SEQUENCE_LITERAL);
 XSDUtility.addSimpleTypeElement(rootInput, "YourName", "string", 1, 1);
 XSDUtility.addSimpleTypeElement(rootInput, "Email", "string", 0, 1);

 inputSchema = compileSchema(inputSchema);
 inputType = inputSchema.resolveElementDeclaration(getInputTypeRootName());
 // begin-custom-code
 // end-custom-code
 return inputType;
}

4. From the menu, click Run > Run Configurations, and then double-click Eclipse Application in the
left panel.

5. Click the (x)= Arguments tab, and then enter the following parameters in the VM arguments area.
Click Apply.

● Microsoft Windows: -Dorg.osgi.framework.bootdelegation=javax.xml.* -
XX:MaxPermSize=256m -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:

+UseParNewGC -Xms512m -Xmx768m

● Linux: -Dorg.osgi.framework.bootdelegation=javax.xml.* -XX:MaxPermSize=256m -
XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:+UseParNewGC -Xms512m -

Xmx768m

● Mac OS: -XstartOnFirstThread -Dorg.osgi.framework.bootdelegation=javax.xml.*
-XX:MaxPermSize=512m -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:

+UseParNewGC -Xms512m -Xmx768m

6. Click Run to launch a child TIBCO Business Studio.
Another TIBCO Business Studio workbench is launched.

59

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Result

In the child TIBCO Business Studio, check the input of the SayHello activity. The input elements,
YourName and Email are displayed.

Adding an Activity
You can add one or more activities to the palette by selecting the Edit Existing BW6 Palette option.

In the Define Activities, Process Starters and Signal-In dialog, enter a name of the activity that you want
to add, select the activity type, and provide an activity icon. Click Go to configure the activity.

See Adding and Configuring Activities for more details.

Deleting an Activity
You can delete existing activities by selecting the Edit Existing BW6 Palette option. BusinessWorks
Plug-in Development Kit deletes the reference of an activity from the palette but does not delete the
source code. You have to manually delete source code related to the activity.

60

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Testing a Plug-in

After creating a plug-in, you can test your plug-in by checking UI, running the plug-in, checking the
online help, and so on.

Open TIBCO Business Studio and perform the following actions to test your plug-in:

● Click the created activity and check if the UI elements are displayed as designed, if the input and
output schema are correct.

● If you have configured the online help settings as described in How to Add Online Help for a
Palette, right-click the created activity and click Help > Reference Page to check if the online help
for the activity is displayed.

● Create a BusinessWorks process by using the created activity and run the process. Check if the
result is expected.

61

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Creating an Installer for a Plug-in

You can create an installer for the palette generated by BusinessWorks Plug-in Development Kit. This
installer can be installed in TIBCO Business Studio through the Eclipse Provisioning system.

Exporting Features
Before packaging a plug-in, you have to export the design, runtime, and model features one by one.

Prerequisites

Ensure that you have created a plug-in as described in Creating a Plug-in.

Procedure

1. In TIBCO Business Studio with the running platform selected, click File > Export from the menu.

2. In the Select dialog, click the Plug-in Development folder and select Deployable features. Click
Next.

3. In the "Deployable features" dialog, select the design-time feature in the Available Features area.

4. In the Destination tab, click Browse next to the Directory field and locate the folder where the
design-time feature is exported. Click Finish.
An artifacts.jar file, a content.jar file, a features folder, and a plugins folder are exported
to the specified location.

5. Repeat Step 1 to Step 4 to export the model and runtime features one by one.

62

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Ensure that you have exported the design, model, and runtime features of the plug-in to
three different folders one by one.

Ensure that the target platform is bw-runtime when exporting the runtime feature. See
Target Platform for more details.

Generating an Installer
BusinessWorks Plug-in Development Kit can package a created plug-in as a TIBCO Eclipse Plug-in.

Prerequisites

Ensure that you have exported required bundles as described in Exporting Features.

Procedure

1. Choose one of the following ways to open the installer generation wizard:

● From the menu, click Help > Create BusinessWorks Plug-in Installer.

● On the toolbar, click Create BusinessWorks Plug-in Installer .

● Press Ctrl+6.

2. In the BW6 Plug-in Information dialog, provide the following information:

● Plug-in Properties File

Click Browse to select the bw6-devkit_configuration.properties file that contains the
project information of the plug-in.

The configuration file is generated when generating your plug-in code for the first time. You can
find this configuration file in your project folder that you specified in BusinessWorks Plug-in
Development Kit wizard.

● Model Bundle Path

Click Browse to select the folder that contains the model feature exported in the Exporting
Features section.

● Design Bundle Path

63

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Click Browse to select the folder that contains the design-time feature exported in the Exporting
Features section.

● Runtime Bundle Path

Click Browse to select the folder that contains the runtime feature exported in the Exporting
Features section.

● Output Location

Click Browse to select the folder where the generated plug-in installer is saved.

3. Click Finish to package the plug-in.

Result

The following two folders are generated in the output folder:

● The PaletteName-P2Installer folder contains the JAR files and plug-in features.

You can use this installer to install the created palette in TIBCO Business Studio by using Eclipse
Update Manager.

● The PaletteName-RuntimeInstaller folder contains the devkitpackager.jar file.

You can use this devkitpackager.jar file to install only the runtime component by using the
command line.

What to do next

Installing a Created Plug-in

64

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Using a Plug-in

After you have tested the plug-in created by BusinessWorks Plug-in Development Kit, you can use the
plug-in to complete a task by creating a business process and deploying the business process.

Before using the plug-in, see Installing a Created Plug-in to install the plug-in in TIBCO Business
Studio.

Installing and Uninstalling a Created Plug-in
BusinessWorks Plug-in Development Kit generates a p2 installer for a created plug-in. You can install
and uninstall the created plug-in by using Eclipse Update Manager.

After generating the p2 installer for a created plug-in as described in Creating an Installer for a Plug-in,
the following folders are created in the installer folder:

● The PaletteName-P2Installer folder contains the JAR files and plug-in features.

You can use this installer to install the created palette in TIBCO Business Studio by using Eclipse
Update Manager.

See Installing a Created Plug-in for more details about how to install the created plug-in, and see
Uninstalling a Created Plug-in for more details about how to uninstall a plug-in.

● The PaletteName-RuntimeInstaller folder contains the devkitpackager.jar file.

You can use this devkitpackager.jar file to install only the runtime component by using the
command line.

To install or uninstall the runtime component of a plug-in:

● Microsoft Windows and Mac OS:

1. Open the command line and switch to the PaletteName-RuntimeInstaller directory where
the devkitpackager.jar file is located.

2. Enter the following command to install the runtime component:

java -jar devkitpackager.jar -ri install -th tibcohome -i installerfolder

3. Enter the following command to uninstall the runtime component:

java -jar devkitpackager.jar -ri uninstall -th tibcohome -p palettename -v

version_number

● Linux:

1. Open the command line and switch to the TIBCO_HOME/tibcojre64/1.7.0/bin directory
where TIBCO Java is installed.

2. Enter the following command to install the runtime component:

./java -jar runtimeinstallerfolder/devkitpackager.jar -ri install -th

tibcohome -i installerfolder

3. Enter the following command to uninstall the runtime component:

./java -jar runtimeinstallerfolder/devkitpackager.jar -ri uninstall -th

tibcohome -p palettename -v version_number

where

65

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

● -th tibcohome is the directory where TIBCO ActiveMatrix BusinessWorks is installed. For
example, c:\tibco_bw6.

● -i installerfolder is the directory that contains the generated p2 installer.

● -p palettename is the palette that you want to uninstall.

● -v version_number is the version of the plug-in that you want to uninstall.

● runtimeinstallerfolder is the directory that contains the devkitpackager.jar file.

Installing a Created Plug-in
You can use Eclipse Update Manager to install a created BusinessWorks 6 plug-in in TIBCO Business
Studio.

Prerequisites

Ensure that you have generated a p2 installer as described in Creating an Installer for a Plug-in.

Procedure

1. Open TIBCO Business Studio in one of the following ways:

● Microsoft Windows: click Start > All Programs > TIBCO > TIBCO_HOME > TIBCO
Business Studio version_number > Studio for Designers.

● Linux: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

● Mac OS: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

2. From the menu, click Help > Install New Software.

3. In the Available Software dialog, click Add.

4. In the Add Repository dialog, click Local and select the p2 installer folder that you have generated.
Click OK.

66

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

5. Select the created plug-in that you want to install. Click Next.

6. In the Install Details dialog, review the components to be installed. Click Next.

7. In the Review Licenses dialog, click I accept the terms of the license agreement. Click Finish to
install the plug-in.

8. During the installation, a security warning dialog is displayed, click OK to complete the
installation.

9. Click Yes when you are prompted to restart TIBCO Business Studio.

Uninstalling a Created Plug-in
Use Eclipse Update Manager to uninstall BusinessWorks Plug-in Development Kit or a plug-in that is
created by using BusinessWorks Plug-in Development Kit.

Procedure

1. Open TIBCO Business Studio in one of the following ways:

● Microsoft Windows: click Start > All Programs > TIBCO > TIBCO_HOME > TIBCO
Business Studio version_number > Studio for Designers.

● Linux: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

● Mac OS: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

2. From the menu, click Help > Install New Software to open the Eclipse Update Manager.

3. In the Available Software dialog, click the already installed link.

4. In the Installed Software tab, click the plug-in that you want to uninstall, and then click Uninstall.

67

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

5. In the Uninstall Details dialog, review the product to be uninstalled. Click Finish to uninstall the
selected plug-in.

6. Click Yes when you are prompted to restart TIBCO Business Studio.

Running the Plug-in
After installing the plug-in, you can add your plug-in activities to a BusinessWorks process to complete
a task.
A process captures and describes the flow of business information in an enterprise between different
data sources and destinations. TIBCO ActiveMatrix BusinessWorks provides several methods to create
processes.

To debug the runtime code when running your created plug-in, you have to select the Launch JDT
Debugger check box in the Advanced tab under BusinessWorks Application > BWApplication in the
"Create, manage, and run configurations" dialog.

For more information about how to create a process, see TIBCO ActiveMatrix BusinessWorks Application
Deployment.

Deploying an Application
You can deploy an application to TIBCO Enterprise Administrator. After deploying the application,
you can manage the application in TIBCO Enterprise Administrator.

A typical workflow for deploying an application is:

1. Creating an application archive

2. Uploading an application archive

3. Deploying an application archive

4. Starting an application

68

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

For more details of how to deploy an application, see the TIBCO ActiveMatrix BusinessWorks 6
documentation.

69

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Working with the Sample Projects

The plug-in packages sample projects with the (p2) installer. The sample projects show how the plug-
ins generated by BusinessWorks Plug-in Development Kit work.

After installing TIBCO ActiveMatrix BusinessWorks Plug-in Development Kit, you can locate the
sample projects in the TIBCO_HOME/bw/palettes/devkit/version_number/samples directory. The
sample projects contain processes, each process corresponds to a task.

● GSON

You can convert Java object to JavaScript Object Notation (JSON).
● LinkedIn

You can use the LinkedIn processes to share and post content by calling REST API.

GSON
You can convert Java object to JavaScript Object Notation (JSON).

1. Importing the GSON Sample Project

2. Importing the JavaToJSON Process

3. Running the JavaToJSON Process

Importing the GSON Sample Project
Before running the project, you must import the sample project to TIBCO Business Studio.

Procedure

1. Open TIBCO Business Studio in one of the following ways:

● Microsoft Windows: click Start > All Programs > TIBCO > TIBCO_HOME > TIBCO
Business Studio version_number > Studio for Designers.

● Linux: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

● Mac OS: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

2. From the menu, click File > Import. In the Select dialog, expand the General folder and select the
Existing Projects into Workspace item. Click Next.

3. Click Browse next to the Select root directory field to locate the sample. Clear the check boxes of
runtime bundle and feature, click Finish.
The sample project is located in the TIBCO_HOME/bw/palettes/devkit/version_number/
samples/GSON directory.

4. Change the target platform to running platform for the design-time module.
a) Click Window > Preferences, and then click Plug-in Development > Target Platform.
b) Click Add to add a running platform for the design-time module.
c) In the Target Definition dialog, click Default to choose the running platform. Click Next.
d) In the Target Content dialog, click Finish.
e) You are back to the Target Platform dialog, select the Running Platform (Active) check box.

Click Apply, and then click OK.

70

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

By default, the target platform is bw-runtime after launching TIBCO Business Studio. See Target
Platform for more details.

5. Click Run > Run Configurations to launch a child TIBCO Business Studio.

6. In the "Create, manage, and run configurations" dialog, double-click Eclipse Application in the left
panel to create a new Eclipse application.

7. Click the (x)= Arguments tab, and then enter the following parameters in the VM arguments field.
Click Apply.

● Microsoft Windows: -Dorg.osgi.framework.bootdelegation=javax.xml.* -
XX:MaxPermSize=256m -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:

+UseParNewGC -Xms512m -Xmx768m

● Linux: -Dorg.osgi.framework.bootdelegation=javax.xml.* -XX:MaxPermSize=256m -
XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:+UseParNewGC -Xms512m -

Xmx768m

● Mac OS: -XstartOnFirstThread -Dorg.osgi.framework.bootdelegation=javax.xml.*
-XX:MaxPermSize=512m -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:

+UseParNewGC -Xms512m -Xmx768m

8. Click Run to launch a child TIBCO Business Studio configured with the bw-runtime platform.

9. In the child TIBCO Business Studio, click File > Import to import the model and runtime bundles
and features:
a) In the Select dialog, expand the General folder and select Existing Projects into Workspace.

Click Next.
b) In the Import Projects dialog, click Browse to locate the project folder that contains the plug-in

project.
c) Click Deselect All, and then select the runtime and model bundles and features. Click Finish.

Result

The sample project is imported to TIBCO Business Studio.

What to do next

Importing the JavaToJSON Process

Importing the JavaToJSON Process
Before running the JavaToJSON process, you must import this process to TIBCO Business Studio.

Prerequisites

Ensure that you have imported the GSON sample project, as described in Importing the GSON Sample
Project.

Procedure

1. In the child TIBCO Business Studio, click File > Import.

2. In the Select dialog, expand the General folder and select the Existing Studio Projects into
Workspace item. Click Next.

3. Click Browse next to the Select archive file field to locate the Sample.zip file.
The Sample.zip file is located in the TIBCO_HOME/bw/palettes/devkit/version_number/
samples directory.

71

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

4. In the Import Projects dialog, click Deselect All, and then select the GSON sample project. Click
Finish.

What to do next

Running the JavaToJSON Process

Running the JavaToJSON Process
Run the JavaToJSON process to convert Java object to JSON.

Prerequisites

Ensure that you have imported the process, as described in Importing the JavaToJSON Process.

Procedure

1. In the Project Explorer view, expand GSON-Sample > Processes > test > JavaToJSON.bwp.
2. In the process editor, double-click the JavaToJson activity, enter the following parameters:

a) Click the General tab, click to create or choose a shared resource.
See Configuring Java Global Instance Shared Resource for more details.

b) Click the Input tab, enter a value in the required address field.
You can also enter other optional values in other fields.

3. On the toolbar, click to save your configurations.
4. From the menu, click Run > Debug Configurations.
5. In the "Create, manage, and run configurations" dialog, click BusinessWorks Application >

BWApplication in the left panel, and then select GSON-Sample.application in the Applications
tab in the right panel.

6. Click Debug to start the test process.

Result

In the Debug perspective, click the BusinessWorks Jobs tab, and then click test.JavaToJSON >
JavaToJSON. Click the Output tab in the Job Data view. The output is displayed in the Output tab.

72

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

LinkedIn
You can use the LinkedIn processes to share and post content by calling REST API.

1. Importing the LinkedIn Sample Project

2. Importing the LinkedIn Processes

3. Generating an Access Token and a Token Secret

4. Running the LinkedIn Processes

Importing the LinkedIn Sample Project
Before running the project, you must import the sample project to TIBCO Business Studio.

Procedure

1. Open TIBCO Business Studio in one of the following ways:

● Microsoft Windows: click Start > All Programs > TIBCO > TIBCO_HOME > TIBCO
Business Studio version_number > Studio for Designers.

● Linux: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

● Mac OS: run the TIBCO Business Studio executable located in the TIBCO_HOME/studio/
version_number/eclipse directory.

2. From the menu, click File > Import. In the Select dialog, expand the General folder and select the
Existing Projects into Workspace item. Click Next.

3. Click Browse next to the Select root directory field to locate the sample. Clear the check boxes of
runtime bundle and feature, click Finish.
The sample project is located in the TIBCO_HOME/bw/palettes/devkit/version_number/
samples/LinkedIn directory.

4. Change the target platform to running platform for the design-time module.
a) Click Window > Preferences, and then click Plug-in Development > Target Platform.
b) Click Add to add a running platform for the design-time module.
c) In the Target Definition dialog, click Default to choose the running platform. Click Next.
d) In the Target Content dialog, click Finish.
e) You are back to the Target Platform dialog, select the Running Platform (Active) check box.

Click Apply, and then click OK.

By default, the target platform is bw-runtime after launching TIBCO Business Studio. See Target
Platform for more details.

5. Click Run > Run Configurations to launch a child TIBCO Business Studio.

6. In the "Create, manage, and run configurations" dialog, double-click Eclipse Application in the left
panel to create a new Eclipse application.

7. Click the (x)= Arguments tab, and then enter the following parameters in the VM arguments field.
Click Apply.

● Microsoft Windows: -Dorg.osgi.framework.bootdelegation=javax.xml.* -
XX:MaxPermSize=256m -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:

+UseParNewGC -Xms512m -Xmx768m

73

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

● Linux: -Dorg.osgi.framework.bootdelegation=javax.xml.* -XX:MaxPermSize=256m -
XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:+UseParNewGC -Xms512m -

Xmx768m

● Mac OS: -XstartOnFirstThread -Dorg.osgi.framework.bootdelegation=javax.xml.*
-XX:MaxPermSize=512m -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass -XX:

+UseParNewGC -Xms512m -Xmx768m

8. Click Run to launch a child TIBCO Business Studio configured with the bw-runtime platform.

9. In the child TIBCO Business Studio, click File > Import to import the model and runtime bundles
and features:
a) In the Select dialog, expand the General folder and select Existing Projects into Workspace.

Click Next.
b) In the Import Projects dialog, click Browse to locate the project folder that contains the plug-in

project.
c) Click Deselect All, and then select the runtime and model bundles and features. Click Finish.

Result

The sample project is imported to TIBCO Business Studio.

What to do next

Importing the LinkedIn Processes

Importing the LinkedIn Processes
Before running the LinkedIn processes, you must import these processes to TIBCO Business Studio.

Prerequisites

Ensure that you have imported the LinkedIn sample project, as described in Importing the LinkedIn
Sample Project.

Procedure

1. In the child TIBCO Business Studio, click File > Import.
2. In the Select dialog, expand the General folder and select the Existing Studio Projects into

Workspace item. Click Next.
3. Click Browse next to the Select archive file field to locate the Sample.zip file.

The Sample.zip file is located in the TIBCO_HOME/bw/palettes/devkit/version_number/
samples directory.

4. In the Import Projects dialog, click Deselect All, and then select the LinkedIn sample project. Click
Finish.

What to do next

Generating an Access Token and a Token Secret

Generating an Access Token and a Token Secret
You have to generate an access token and a token secret before running LinkedIn processes.

Prerequisites

Ensure that you have installed Java version 1.7 or above on your machine.

74

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Procedure

1. Log on to the LinkedIn website using your user name and password.
You have to register first if you do not have a user name and password.

2. Go to the Developers page, and click My Apps. Click Create Application to create your
applications.

3. Enter all the required information, and click Submit to receive the authentication keys of client ID
and client secret.

4. In the Default Application Permissions area, select the w_share check box to share content by the
application on LinkedIn. Click Update.

5. Extract the LinkedinTokenGenerator.zip file in the TIBCO_HOME/bw/palettes/devkit/
version_number/samples directory to a temporary directory.

6. On the command line, navigate to the temporary directory where this tool is extracted, run the
javac -cp "lib/*" src/TokenGenerator.java command, and then run the following command:

● Microsoft Windows: java -cp "src/;lib/*" TokenGenerator

● Linux: java -cp "src/:lib/*" TokenGenerator

● Mac OS: java -cp "src/:lib/*" TokenGenerator

7. On the command line, enter the client ID and the client secret that you received in Step 3.
8. Go to the website link that is displayed on the command line, and click Allow access to allow access

to your LinkedIn information.
After authorizing the access, you receive a PIN code to grant access.

9. On the command line, enter this PIN code to generate the access token and the token secret.

Running the LinkedIn Processes
Run the LinkedIn processes to share and post content by the REST API.

Prerequisites

Ensure that you have imported the processes, as described in Importing the LinkedIn Processes. You
have to generate an access token and a token secret before running LinkedIn processes, see Generating
an Access Token and a Token Secret for more details.

Procedure

● You can run the following processes:

● Running the Retrieve Process
● Running the RetrieveDefaultProfile Process
● Running the Update Process

Running the Retrieve Process

Run the Retrieve process to get the content, such as ID, the URL to the profile picture, the number of
LinkedIn connections.

Prerequisites

Ensure that you have imported the process, as described in Importing the LinkedIn Processes.

75

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Procedure

1. In the Project Explorer view, expand LinkedIn-Sample > Processes > test > Retrieve.bwp.

2. In the process editor, double-click the Retrieve activity, enter the following parameters:
a) Click the General tab, enter values in the Client ID, Client Secret, Access Token, and Token

Secret fields.
b) Click the Input tab, enter values in the fields field.

The following fields are supported: id, first-name, last-name, headline, num-connections, and
picture-url.

3. On the toolbar, click to save your configurations.

4. From the menu, click Run > Debug Configurations.

5. In the "Create, manage, and run configurations" dialog, click BusinessWorks Application >
BWApplication in the left panel, and then select LinkedIn-Sample.application in the Applications
tab in the right panel.

6. Click Debug to start the test process.

Result

In the Debug perspective, click the BusinessWorks Jobs tab, and then click Test.Retrieve > Retrieve.
Click the Output tab in the Job Data view. The output is displayed in the Output tab.

Running the RetrieveDefaultProfile Process

Run the RetrieveDefaultProfile process to get the default content.

Prerequisites

Ensure that you have imported the process, as described in Importing the LinkedIn Processes.

76

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Procedure

1. In the Project Explorer view, expand LinkedIn-Sample > Processes > test >
RetrieveDefaultProfile.bwp.

2. In the process editor, double-click the Retrieve activity, click the General tab, enter values in the
Client ID, Client Secret, Access Token, and Token Secret fields.

3. On the toolbar, click to save your configurations.

4. From the menu, click Run > Debug Configurations.

5. In the "Create, manage, and run configurations" dialog, click BusinessWorks Application >
BWApplication in the left panel, and then select LinkedIn-Sample.application in the Applications
tab in the right panel.

6. Click Debug to start the test process.

Result

In the Debug perspective, click the BusinessWorks Jobs tab, and then click
Test.RetrieveDefaultProfile > Retrieve. Click the Output tab in the Job Data view. The output is
displayed in the Output tab.

Running the Update Process

Run the Update process to post a message on the LinkedIn.

Prerequisites

Ensure that you have imported the process, as described in Importing the LinkedIn Processes.

77

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Procedure

1. In the Project Explorer view, expand LinkedIn-Sample > Processes > test > Update.bwp.

2. In the process editor, double-click the Update activity, enter the following parameters:
a) Click the General tab, enter values in the Client ID, Client Secret, Access Token, and Token

Secret fields.
b) Click the Input tab, enter values in the required text, title, and URL fields.

3. On the toolbar, click to save your configurations.

4. From the menu, click Run > Debug Configurations.

5. In the "Create, manage, and run configurations" dialog, click BusinessWorks Application >
BWApplication in the left panel, and then select LinkedIn-Sample.application in the Applications
tab in the right panel.

6. Click Debug to start the test process.

Result

In the Debug perspective, click the BusinessWorks Jobs tab, and then click Test.Update > Update.
Click the Output tab in the Job Data view. The output is displayed in the Output tab.

78

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Managing Logs for a Created Plug-in

TIBCO ActiveMatrix BusinessWorks provides the functionality to set up a log level to trace and
troubleshoot plug-in exceptions.

A logback.xml file is located in the TIBCO_HOME/bw/version_number/config/design/logback
directory. Update this file to set up a log level and export logs to a file.

Log Levels
The plug-in captures logs at different levels.

Log Level Description

Trace Includes all information regarding the running process.

Debug Includes all information regarding the running process.

Info Indicates normal plug-in operations. No action is required. A tracing message
tagged with Info indicates that a significant processing step is reached, and
logged for tracking or auditing purposes. Only information messages preceding
a tracking identifier are considered as significant steps.

Warn Indicates that an abnormal condition occurred. Processing continues, but
special attention from an administrator is required.

Error Indicates that an unrecoverable error occurred. Depending on the severity of
the error, the plug-in might continue with the next operation or might stop.

Setting Up a Log Level
By default, the log level is Error. You can change the log level to trace different messages.

If neither the plug-in log nor the BusinessWorks log is configured in the logback.xml file, the error
logs of the plug-in are displayed in the Console view by default.

If the plug-in log is not configured but the BusinessWorks log is configured in the logback.xml file, the
configuration for the BusinessWorks log is implemented by the plug-in.

Procedure

1. Navigate to the TIBCO_HOME/bw/version_number/config/design/logback directory and open
the logback.xml file.

2. Add the following node in the User loggers area to specify the log level for a created plug-in:
<logger name="com.tibco.bw.palette.palette_name.runtime">
 <level value="DEBUG"/>
</logger>

When the level is set to Debug, the input and output for the plug-in activities are also
displayed in the Console view. See Log Levels for more details regarding each log level.

3. Optional: Add the following node in the User loggers area to specify the log level for an activity:
<logger
name="com.tibco.bw.palette.palette_name.runtime.ActivityName_ActivityType_Activit
y">
 <level value="DEBUG"/>
</logger>

79

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

If the activity that you want to add a log level for is an event source activity, add the
following node:
<logger
name="com.tibco.bw.palette.palette_name.runtime.ActivityName_ActivityType">
 <level value="DEBUG"/>
</logger>

For example, if you want to set the log level of the SayHello activity to Debug, add the following
node:
<logger
name="com.tibco.bw.palette.HelloWorld.runtime.SayHelloAsynchronousActivity">
 <level value="DEBUG"/>
</logger>

If you do not configure a specific log level for an activity, the activity applies the log levels
that you configured for the plug-in.

4. Save the file.

Exporting Logs to a File
Modify the logback.xml file to export plug-in logs to a file.

Procedure

1. Navigate to the TIBCO_HOME/bw/version_number/config/design/logback directory and open
the logback.xml file.

After deploying an application in TIBCO Enterprise Administrator, navigate to the
TIBCO_HOME/bw/version_number/domains/domain_name/appnodes/space_name/

node_name directory to find the logback.xml file.

2. Add the following node to specify the file location.
<appender name="FILE" class="ch.qos.logback.core.FileAppender">
 <file>c:/bw6-helloworld.log</file>
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36}-%msg%n</pattern>
 </encoder>
</appender>

The file tag defines the location to which the log is to be exported, and the value is the absolute
path of the file.

You also have to add the file name in the file path.

3. Add the following node to the root node at the bottom of the logback.xml file to export the logs to
a file.
<root level="DEBUG">
 <appender-ref ref="STDOUT" />
 <appender-ref ref="FILE" />
</root>

4. Save the file.

80

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Frequently Asked Questions

The questions, such as, how to get the runtime input, how to update the runtime output, and how to
add third-party libraries, are listed with the corresponding answers.

How to Get Input at Run Time
BusinessWorks framework passes the input to the processContext parameter in the public N
execute(N input, ProcessContext<N> processContext) method, which can be used to retrieve the actual
value of a field.

You can find this method in the ActivityName_ActivityTypeActivity.java file from the runtime
bundle.

In addition to this method, BusinessWorks Plug-in Development Kit provides the following code
snippet to get the runtime input:
public String getInputParameterStringValueByName(final N inputData, final
ProcessingContext<N> processingContext, final String parameterName) {
 Model<N> model = processingContext.getMutableContext().getModel();
 N parameter = model.getFirstChildElementByName(inputData, null, parameterName);
 if (parameter == null) {
 return "";
 }
 return model.getStringValue(parameter);
}

where

● input is the activity input data.

● processingContext is the XML processing context.

● parameter value is the parameter name that you want to get the value for.

The following example shows how to get the input:
final String ACTIVITY_INPUT_FILE_NAME = "FileName";
String fileName = getInputParameterStringValueByName(input,
processContext.getXMLProcessingContext(), ACTIVITY_INPUT_FILE_NAME);

How to Create and Update Output at Run Time
BusinessWorks Plug-in Development Kit provides a protected <A> N evalOutput(N inputData,
ProcessingContext<N> processingcontext, Object data) method to create and update runtime output.

You can find this method in the ActivityName_ActivityTypeActivity.java file from the runtime
bundle. If you have selected using XSD to create the activity output, then the XSD elements are created
inside this method.
protected <A> N evalOutput(N inputData, ProcessingContext<N> processingContext,
Object data) throws Exception {

 SayHelloOutput sayHelloOutput = new SayHelloOutput();
 sayHelloOutput.setOutput("Hello World");
 N output = PaletteUtil.parseObjtoN(SayHelloOutput.class, sayHelloOutput,
processingContext, activityContext.getActivityOutputType().getTargetNamespace(),
"SayHelloOutput");
 // begin-custom-code
 // add your own business code here
 // end-custom-code
 return output;
}

81

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

How to Add Third-Party Libraries
The added third-party libraries are accessible in bundles.

Create a Bundle Project for Third-Party JAR Libraries

You can create a project that contains the third-party JAR libraries, and then import the project to a
bundle:

1. In TIBCO Business Studio, click File > New > Project.

2. In the "Select a wizard" dialog, click the Plug-in Development folder, and then click Plug-in from
Existing JAR Archives. Click Next.

3. In the "JAR selection" dialog, click Add to add the third-party JAR files.

4. In the Project Explorer view, click the MANIFEST.MF file of the bundle where you want to add the
third-party JAR files.

5. Click the Dependencies tab, and click Add in the Imported Packages section to add the packages
required from the third-party JAR.

Add Third-Party Libraries from a Library Folder

You can add the third-party libraries from a library folder:

1. Create a lib folder in the runtime bundle.

2. Copy the third-party library that you want to add to the lib folder.

3. Open the MANIFEST.MF file in the runtime bundle.

4. Click the Runtime tab.

5. In the Classpath area, click Add and select the third-party library from the lib folder.

How to Add Online Help for a Palette
You can enable the online help function for a created palette.

BusinessWorks Plug-in Development Kit generates a documentation template in the doc folder that is
located in the palette project folder. You can tailor the user's guide to add information specific to your
plug-in. The user's guide later can be made available online for a palette by using one of the
BusinessWorks extensions.

See Creating Documentation for more details about how to update the document template.

Procedure

1. Open the MANIFEST.MF file in the design-time bundle.

2. Click the Extensions tab and click the com.company_name.bw.design.BWContextHelp extension.

3. Update the default URL for your plug-in. Ensure that you have placed the document that is used as
the online help to an available online site.

Do not change id field.

82

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

How to Add License
You can add your license by changing the feature.properties file.

Procedure

1. In the Project Explorer view, open the design-time feature.

2. Open the feature.properties file and enter your license content as the value of the license
parameter.

How to Add an Activity Icon
You can add an icon for an activity.

Procedure

1. Open the MANIFEST.MF file in the model bundle.

2. Click the Extensions tab, and then click com.company_name.bw.model.ActivityIcon > activityIcon.

3. Update the ID of the activity type, and click Browse to change the icons of small, large, and diagram
icons.

83

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

How to Find BusinessWorks API JavaDoc
You can find BusinessWorks API and GenXSD JavaDoc to know details about classes and methods.

Procedure

● After installing ActiveMatrix BusinessWorks, you can find BusinessWorks API and GenXSD
JavaDoc in the TIBCO_HOME/bw/version_number/doc/html/javadoc directory.

84

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Troubleshooting

You might encounter compiling errors when creating a plug-in, or you might encounter problems
when you migrate BusinessWork Plug-in Development Kit 6.0 to 6.1. You can go over the listed
scenarios for troubleshooting.

● General Problems
● Migration Problems

General Problems
You might encounter compiling errors when creating a plug-in, you can go over the listed scenarios for
troubleshooting.

Scenarios Reason/Workaround

You might encounter a file not found, or cannot find
ecore file error when creating a plug-in.

Open a new workspace and create
the plug-in again.

A refresh error occasionally occurs when generating the plug-
in bundles because the project is not opened yet.

Reopen the project and refresh the
project, and then close the project.

A configuration error occurs after loading the property file of
the plug-in to be edited.

Check the ecore file according to
error information.

After generating the palette code, an error dialog is displayed
when importing projects.

Close the error dialog.

85

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Scenarios Reason/Workaround

When you do a repackage for a plug-in that you have created
by using TIBCO ActiveMatrix BusinessWorks Plug-in
Development Kit, if you import the design, runtime, and
model features to the same folder that contains the features
imported in the first package, and you also use the same
output folder for the generated package.

An error occurs when you install the plug-in with the second
package in TIBCO Business Studio.

1. Delete the exported features.

2. Export the runtime, design-
time, and model features to
three folders one by one, and
then regenerate the installer.

Validation errors occur when running activities that contain
the any element.

Add code manually.

86

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Scenarios Reason/Workaround

After installing a generated plug-in, "TIBCO ActiveMatrix" is
added at the beginning of the feature name.

Edit the featureName property to
change the feature name, the
providerName property to change
the provider name, and the
description property to change
the details in the
feature.properties files in the
following folders:

1. Design feature:

com.companyname.bw.palett

e.palette_name.design.fea

ture

2. Model feature:

com.companyname.bw.palett

e.palette_name.model.feat

ure

3. Runtime feature:

com.companyname.bw.palett

e.palette_name.runtime.fe

ature

Migration Problems
You might encounter problems when you migrate BusinessWork Plug-in Development Kit 6.0 based on
TIBCO ActiveMatrix BusinessWorks 6.2.X to version 6.1 based on TIBCO ActiveMatrix BusinessWorks
6.3. You can go over the listed scenarios for troubleshooting.

Scenarios Reason/Workaround

PDK version errors occur. Change a new workspace, or delete
the .JETEmitters folders in the old
workspace.

The installer that was generated with
BusinessWork Plug-in Development Kit 6.0 fails
to be installed on TIBCO ActiveMatrix
BusinessWorks 6.3.

Update the plug-in project dependency based
on TIBCO ActiveMatrix BusinessWorks 6.3,
and generate a new installer with
BusinessWork Plug-in Development Kit 6.1.

When editing processes with the process starter
and signal-in activities, code errors occur.

Comment out the return isStarted code.

The processes fail to run when the output and
fault schema contain any element.

Add code manually.

87

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

Scenarios Reason/Workaround

The design-time
com.companyname.amf.sca.model.validation

bundle is missing.

Add the
com.companyname.amf.sca.model.validati

on bundle in the MANIFEST.MF file, or editing
the project with ActiveMatrix BusinessWorks
Plug-in Development Kit 6.1.0.

88

TIBCO ActiveMatrix BusinessWorks™ Plug-in Development Kit Developer's Guide

	Contents
	TIBCO Documentation and Support Services
	Product Overview
	Installing BusinessWorks Plug-in Development Kit
	Getting Started
	Defining a HelloWorld Palette
	Adding Business Logic
	Running the HelloWorld Plug-in
	Packaging the HelloWorld Plug-in

	Generated Code
	Plug-in Bundles
	Design-Time Bundle
	Model Bundle
	Runtime Bundle

	Design-Time Class Specification
	[PaletteName]
	[PaletteName]ExceptionsSchema
	[ActivityName]General/Advanced/customizedSection
	[ActivityName]ModelHelper
	[ActivityName]Schema
	[ActivityName]Signature

	Runtime Class Specification
	[ActivityName]EventSource
	[ActivityName]AsynchronousActivity
	[ActivityName]SynchronousActivity

	Target Platform
	Creating a Plug-in
	Defining a Palette
	Adding and Configuring Activities
	Activity Types
	Creating Schema with XSD/WSDL
	Creating Schema with XSD Editor

	Adding Business Logic

	Creating Java Global Instance Shared Resource
	Adding Java Global Instance Shared Resource
	Adding Business Logic
	Creating a Process
	Configuring Java Global Instance Shared Resource

	Creating Documentation
	Editing a Plug-in
	Merging Code
	Editing an Activity
	Updating Schema

	Adding an Activity
	Deleting an Activity

	Testing a Plug-in
	Creating an Installer for a Plug-in
	Exporting Features
	Generating an Installer

	Using a Plug-in
	Installing and Uninstalling a Created Plug-in
	Installing a Created Plug-in
	Uninstalling a Created Plug-in

	Running the Plug-in
	Deploying an Application

	Working with the Sample Projects
	GSON
	Importing the GSON Sample Project
	Importing the JavaToJSON Process
	Running the JavaToJSON Process

	LinkedIn
	Importing the LinkedIn Sample Project
	Importing the LinkedIn Processes
	Generating an Access Token and a Token Secret
	Running the LinkedIn Processes
	Running the Retrieve Process
	Running the RetrieveDefaultProfile Process
	Running the Update Process

	Managing Logs for a Created Plug-in
	Log Levels
	Setting Up a Log Level
	Exporting Logs to a File

	Frequently Asked Questions
	How to Get Input at Run Time
	How to Create and Update Output at Run Time
	How to Add Third-Party Libraries
	How to Add Online Help for a Palette
	How to Add License
	How to Add an Activity Icon
	How to Find BusinessWorks API JavaDoc

	Troubleshooting
	General Problems
	Migration Problems

