Validating Project Data

Use the data validation function to filter out invalid data.

Procedure

  1. On the toolbar, click Validate.
  2. Next to Data types and constraints, click Auto suggest.
  3. In the "Configure data type" dialog, keep the default settings, click Next.
  4. On the "Data type result" page, use the data types suggested by TIBCO Clarity, click Next.
  5. Configure the constraints for the PATNO column data type:
    1. Change the data type from Integer to String.
    2. In the string/regular expression field, enter the regular expression:^\d\d\d$.
    3. Next to the Allows null check box, click Save to save the data type.
    4. In the "Save as data type" dialog, enter a name for the new custom type, and then click Add.
  6. Define custom data types for each column as shown in the following table:
    Column Name Description Variable Type Constraint Clarity Constraint Null Allowed?
    PATNO Patient number String Numerals Whole: ^\d\d\d$ Yes
    GENDER Gender String ’M’ or ’F’ Valid values: M, F Yes
    VISIT Date of visit Date Like 12/31/2013 MM/dd/yyyy Yes
    HR Heart rate Integer 40 to 120 40 to 120 Yes
    SBP Systolic blood pressure Integer 80 to 200 80 to 200 Yes
    DBP Diastolic blood pressure Integer 60 to 120 60 to 120 Yes
    DX Diagnosis code String 1 to 3 digits Length: 3 Yes
    AE Adverse event Boolean None None Yes

    See the following figure for validation rules configured for each column:

  7. Click Save changes to start validating data.

Result

The validating results are displayed on the data page. The rows that contain invalid values are marked with the icon. Click an icon to view the details.