
TIBCO DataSynapse GridServer®
Manager
Administration Guide
Version 7.1.0
July 2022

Document Updated: September 2022

Copyright © 2001-2022. TIBCO Software Inc. All Rights Reserved.

TIBCO GridServer® Administration Guide

2 | Contents

Contents
Contents 2

Typographical Conventions 9

Introduction 10
Before You Begin 10

The GridServer Administration Tool 11
Overview 11

Getting Started 12

Navigating the Administration Tool 12

User Accounts and Role-Based Access Control 19

Managing Users 20
About Authentication and Authorization 20
Types of Users 20

Role-Based Access Control 21

Using GridServer Built-In Authentication 24

Using GridServer Built-In Authorization 24
Creating User Accounts 25

Resetting User Accounts From the Command Line 26

Using LDAP Authentication and Authorization 26
Configuring GridServer for LDAP Authentication or Authorization 27

Authentication Schemes Supported in Comparison Mode 29

Security Notes 31

LDAP Configuration Example 31

Using Windows Authentication and Authorization 32
Configuring Windows Authentication 33

TIBCO GridServer® Administration Guide

3 | Contents

Configuring Windows Authorization 34

Using Pure Kerberos Authentication 34
Configuring Pure Kerberos Authentication 35

Configuring Pure Kerberos Authorization 38

Managing Multiple Brokers with Grid Single Sign-On (SSO) 39
Grid SSO Configuration 39

Constraints and Limitations 40

Client Routing 40
Routing Clients With Roles 41

Routing Clients On The Broker Routing Page 41

Routing Clients With The Driver API 42

Managing Services 43
Deploying Services 43
About Grid Libraries 44

Using Grid Libraries from a Service 50

Super Grid Libraries 50

Deployment 50

Disabling Resource Deployment 51

Bridges 54

JREs 54

Packaging Grid Libraries 56

Distributing Grid Libraries 56

Grid Library Filters 60

JAR Ordering File 63

Uploading and Deploying with the Admin API 63

Running Services 63
Registering a Service Type 64

Service Run-As 64

compressData 65

encryptionEnabled 65

Using Run-As 66

TIBCO GridServer® Administration Guide

4 | Contents

Scheduling 68
Reschedules and Retries 68

The Scheduler 70

Common Scheduler Features 75

Managing Engines 81
Engine Routing and Balancing 81
Balancing and Service Discriminators 82

Engine Weight-Based Balancer 83

Home/Shared Balancer 83

Engine Balancer Configuration 85

Engine Upper and Lower Bounds 86

Failover Brokers 86

Example Use Cases 87
N+1 Failover with Weighting 87

Engine Localization with Sharing 87

Engine Configuration 88
Editing an Engine Configuration 88

Creating a New Engine Configuration 89

Copying an Engine Configuration 89

Setting the Engine Configuration Used by Engines 89

Setting the Director Used by Engines 90

Configuring Engines With Multiple Network Adapters 91

Configuring Engine Daemons to Use SNAT 92

Using the System Classloader on an Engine 92

Configuring a Global Shared Grid Library Directory 92

Configuring When Engines Run 93
Manual Mode 93

Auto Mode 94

Configuring How Many Engines Run 97

Running Engines in Multiplexed Mode 97
Communication and Task Scheduling 99

TIBCO GridServer® Administration Guide

5 | Contents

Configuration 99

Configuring 64-bit Engine Daemons to run 32-bit Services 100
Configuration 100

Specifying that a Service is win32 101

Routing 32-bit Tasks to 64-bit Engines 101

Configuring a Caching HTTP Proxy Server 101

Configuring an External Engine Daemon Admin Tool 103

Quarantine Brokers 103
Quarantine Broker Concepts 104

Quarantine Status on Engines 104

Requirements 105

Configuring a Quarantine Broker 105

Setting Quarantine Status on Engines 106

Quarantine Broker Constraints 107

Grid Fault-Tolerance and Failover 109
The Fault-tolerant GridServer Deployment 109

Heartbeats and Failure Detection 110

Manager Stability Features 110

Engine Failure 110

Driver Timeout and Failure 111

Director Failure 112

Broker Failure 112

Failover Brokers 113

Task Fault Tolerance 114

Batch Fault-Tolerance 115

GridCache and PDriver Fault-Tolerance 116

Administration and Maintenance 117
Configuration Issues 117

Installation on Machines With Multiple Network Adapters 117
Using UNC Paths in a driver.properties File 117

TIBCO GridServer® Administration Guide

6 | Contents

Renaming a Broker 118

Moving a Manager 118

GridServer Manager Administration Procedures 119
Backup / Restore 119

Importing and Exporting Manager Configuration 119

Setting the SMTP Host 121

Configuring the Timeout Period for the Administration Tool 121

Reconfiguring Managers when Installing a Secondary Director 122

Reconfiguring the Engine Communication Port 122

Promoting a Secondary Director to Primary Director 123

Configuring SNMP 123

LogLogic Integration 124
Configuration 125

Logging Message Format 126

Output 128

Elasticsearch Integration 129
Configuration 129

Message Format 133

Database Maintenance 133
Database Types 134

Internal Database Reset 134

Internal Database Backup 135

Performing Reporting Database Maintenance 135

The Batch Scheduling Facility 136
Terminology 137

Editing Batch Definitions 138

Batch Components 140

Service Runners 144

Scheduling Batch Definitions 144

The Batch Schedule Page 145

Running Batches 145

Deploying Batch Resources 146

TIBCO GridServer® Administration Guide

7 | Contents

Batch Fault-Tolerance 146

Optimizing the Grid 147
Diagnosing Performance Issues 147

Tuning Data Movement 147

Diagnosing GridServer Issues 153
Troubleshooting Overview 153

Reporting an Issue 153

Obtaining Log Files 153
Manager Logs 154

Engine and Daemon Logs 155

Application Server Logs 156

Monitoring the Tomcat Application Server 157

Monitoring Engines Using JMX 157

Diagnosing Network Issues 157

Diagnosing Engine Issues 159

Diagnosing Driver Issues 162

Diagnosing Manager Issues 164
Manager Port Issues 164

Out of Memory Issues 164

Deployment Issues 164

GridCache Issues 166

Database Issues 167

Troubleshooting Tools 169
Task Admin Page 169

Task Queue Dump 170

Enabling Enhanced Task Instrumentation 170

Process Explorer 171

Dependency Walker 171

Event Streaming by Using Apache Kafka 172

TIBCO GridServer® Administration Guide

8 | Contents

Configuring Event Streaming 172

Events Captured by Apache Kafka 173

Reporting Database Tables 176
Data Type Mapping 176

batches 176

brokers 177

broker_stats 177

driver_events 178

engine_events 179

engine_info 179

engine_stats 180

event_codes 181

jobs 181

job_status_codes 183

roles 184

tasks 184

task_status_codes 185

user_events 186

users 186

Scheduler Instrumentation Database Table 188
scheduler_info 188

Engine Instrumentation Database Table 190
engine_ins 190

TIBCO Documentation and Support Services 191

Legal and Third-Party Notices 193

TIBCO GridServer® Administration Guide

9 | Typographical Conventions

Typographical Conventions
The following table lists the typographical conventions used in this guide:

Convention Use

TIBCO_HOME Many TIBCO products must be installed within the same home directory.
This directory is referenced in the documentation as TIBCO_HOME. The default
value of TIBCO_HOME depends on the operating system. For example, on
Windows systems, the default value is C:\tibco.

DS_INSTALL TIBCO GridServer® installs into a directory within TIBCO_HOME named
datasynapse. This directory is referenced in the documentation as DS_
INSTALL. The default value of DS_INSTALL depends on the operating system.
For example, on Windows systems, the default installation directory is
C:\tibco\datasynapse.

DS_MANAGER The Manager directory contains the read-only software files; by default, it is a
directory within DS_INSTALL named manager, and is referred to as DS_
MANAGER. For example, on Windows systems, the default Manager directory is
C:\tibco\datasynapse\manager.

DS_DATA The data directory is the location of all volatile files used by the application
Server such as server properties and configuration. By default, it is a
directory within DS_INSTALL named manager-data, and is referred to as DS_
DATA. For example, on Windows systems, the default data directory is
C:\tibco\datasynapse\manager-data.

TIBCO GridServer® Administration Guide

10 | Introduction

Introduction
The TIBCO GridServer® Administration is for administrators who maintain DataSynapse
GridServer installations. It describes how GridServer works and how to use the GridServer
Administration Tool. Topics include how to schedule and route Services, deploy resources,
manage failover Brokers, and perform other frequent tasks. This guide also provides
advanced information about security, tuning, database administration, and log files.

Before You Begin
This guide assumes that you know GridServer concepts. If you do not, see the TIBCO
GridServer® Installation Guide for information about the GridServer component architecture
and principles of operation.

Before beginning, you must already have a DataSynapse GridServer Manager running and
know the hostname, user name, and password. If this isn’t true, see the TIBCO GridServer®
InstallationGuide or contact your administrator.

TIBCO GridServer® Administration Guide

11 | The GridServer Administration Tool

The GridServer Administration Tool
This section provides information about the GridServer Administration Tool, the web-based
tool that enables the GridServer administrator to monitor and manage the Manager, its
Engines, and Drivers.

Overview
The GridServer Administration Tool is a web-based tool that enables the GridServer
administrator to monitor and manage the Manager, its Engines, and Drivers.

Authorized users can access the GridServer Administration Tool from any compatible
browser, anywhere on the network. Administrative user accounts provide password-
protected, role-based authorization.

The GridServer Administration Tool

In the GridServer Administration Tool, you can:

• Monitor Service and task execution and cancel Services

• Monitor Engine activity and restart Engines

TIBCO GridServer® Administration Guide

12 | The GridServer Administration Tool

• View and modify Manager and Engine configuration

• Download Engine installation archives

• Manage user accounts

• Subscribe to email notification of events

• Edit Engine properties and change values

• Configure routing of Drivers and Engines to Brokers

• View the GridServer API and download documentation

• Download the files necessary to develop and run GridServer applications

• Diagnose issues and monitor the grid

Getting Started
To use the GridServer Administration Tool, you must have access to the GridServe Manager
from any supported browser that has JavaScript enabled.

In the browser, open http://hostname:port (where hostname is the address of the Manager,
and port is the port on which it is listening, which is 8080 by default.); the Manager prompts
you for a user name and password.

Navigating the Administration Tool
The Administration Tool consists of a number of pages, organized in the following ways:

The Global Navigation Bar

The global navigation bar at the top of the Administration Tool contains links and
information about your current login session.

The Global Navigation Bar

The following information is shown in the global navigation bar:

TIBCO GridServer® Administration Guide

13 | The GridServer Administration Tool

• The Broker name, which is a random number generated during installation.

• The Hostname of the Manager.

• If the Manager has a Primary, Secondary, or no Director.

• If the Manager has an enabled, failover, or no Broker.

The banner includes icons that open the following links:

• The Information panel, which displays component versions, built date, and applied
updates.

• The Help panel, which displays context-sensitive help for this page, and other
documentation links.

• The Downloads panel, which contains download links for SDKs and Engine
installations.

• A Profile panel, which shows your current user name, security roles, and has links to
change your password or log out of the Administration Tool.

The Navigation Bar

The navigation bar contains categories, with each category having a submenu in the left
sidebar. Each submenu has links to several pages, which are displayed in the main content
area. Some submenus have subcategories at the top, which you can click to show different
collections of page links.

The following categories are available:

Menu Contents

Dashboard All of the sub-pages of the Dashboard.

Grid
Components

Pages used to manage, view, and configure Drivers, Brokers, and Engines.

Services Pages used to manage, view, and submit Services and Batches.

Admin Pages used for configuration, system and user administration, and
reinstallation.

Administration Tool Categories

TIBCO GridServer® Administration Guide

14 | The GridServer Administration Tool

Menu Contents

Diagnostics Pages providing logs and information useful when diagnosing issues.

When describing navigation to a page, the following format is used: Category > Submenu
> Page. For example, to view the Engine Admin page, click Grid Components > Engines >
Engine Admin.

Tables and Table Controls

Most pages have items or information shown in tables. For example, the Grid Components
> Engines > Engine Admin page displays a table with a row for each Engine in the grid.
The following controls enable you to perform actions on the listed items, or change what
items are displayed.

Action Controls

Each table item has an action control (), which opens a list of actions for the selected
items in the table. Some of these perform actions on table items, while others open a
new page. If no items are selected, this acts as a Global Action control, which opens a
list of actions to perform on all items.

Search Control

The Search control is displayed on any page containing a table. There are two types of
searches: a simple search, and a query search.

The Search Control

For the simple search, enter a string in the Search box, select a column to search from
the list, and click the search icon. A new table appears, containing the matching rows.

Click the icon next to Search and select Query for a query search. This enables you to
search properties using regular expressions consisting of, at minimum, a property,
operator, and value. Terms can also contain wildcards and regular expressions, as
defined by java.util.regex.Pattern. Click Search to run the query.

TIBCO GridServer® Administration Guide

15 | The GridServer Administration Tool

You can enter your own complex query by selecting Query Builder. If you first define a
query in the Query Builder and then select Query, the query is displayed in the Find
box.

Columns Control

The Columns control enables you to change which columns are displayed in a table.
When you click the Columns control, an overlay appears, listing all columns currently in the
table and columns that can be added.

To display a hidden column, click the + symbol next to the column in the Add Columns
list. To hide a column, click the X symbol next to the column in the Columns list.

The Columns overlay for the Grid Components > Engines > Engine Admin page

When you add a new column, it is added to the bottom of the list. The table displays the
columns from left to right in the order of this list. To change the order of columns, click
and drag the column name in the Columns list.

After you have made changes, click Save to apply them. To return to the default visible
columns, click Revert.

The displayed table rows are always sorted by a column that has an arrow in it, either
facing up or down. You can click this arrow to reverse the sort order of entries in the table,

TIBCO GridServer® Administration Guide

16 | The GridServer Administration Tool

or click another column to change the sort column. Table order is only kept for that page
view and is not persisted.

Refresh

Pages in the GridServer Administration Tool are automatically refreshed every ten seconds

by default to display the most current information available. Click the Refresh control
to view the last time a page was refreshed, or to disable automatic refreshes. You can also
customize the refresh rate by setting the AJAX Refresh Interval property on the Admin >
System Admin > Manager Configuration page, in the Security section.

Pager Controls

The Pager controls, shown above and below tables, enable you to step through multiple
pages of information, or specify how many rows appear on a page. Select a page number
from the Page list, or select a range from the items list to display those items. You can
select a greater number of items listed per page in a table or display all of the items; type a
number in the Results Per Page box and click Go.

Exporting Table Data

Most information shown in Administration Tool tables can also be accessed
programmatically using the GridServer Admin API. The Admin API can also be accessed
with SOAP Web Services; the WSDLs are available from the Grid Components > Drivers >
Web Services page.

For example, to generate a list of information about all logged in Engines as normally
presented on the Engine Admin page, you can write a simple client application that
connects to the Manager and uses the getAllEngineInfo method of the EngineAdmin Web
Service.

For more information about using the Admin API, see the TIBCO GridServer® Developer's
Guide.

The Dashboard

The dashboard provides current information about the status of your grid, summarizing
statistics into a single at-a-glance overview. The Dashboard > Overview page is
automatically updated every ten seconds.

TIBCO GridServer® Administration Guide

17 | The GridServer Administration Tool

Status tiles on the dashboard display an indicator of that components’ current state, along
with an arrow showing the trend of that statistic, and a small graph showing the last ten
minutes of changes to that statistic. Click any status tile to open a dialog that shows more
detail.

When you click the status tiles in the bottom row for grid components, the dialog also
shows a small table with links to recently-active components, and a link to that
component’s admin page. For example, if you click the Recently Created Engines status
tile, it shows a table of the recently created Engines, and a link to the Engine Admin page.

The Broker and Director Monitors

While the pages like the Service Session Admin page and Engine Admin page can be used
to oversee the running of Services on your grid, two graphical tools can be used to provide
a simpler overview of status information about your system. Both Directors and Brokers
have a graphical monitor available, which can be displayed in its own window.

Display the Broker or Director Monitor by going to Dashboard > Broker Monitor or
Dashboard > Director Monitor. Note that the Director Monitor is not available on
standalone Brokers, and the Broker monitor is not available on standalone Directors.

Both monitor pages display up-to-date information about your grid. The Director Monitor
contains graphs with statistics on Engines, tasks, Services and machine status, including
thread and memory information. The Broker Monitor contains similar information about
one specific Broker.

TIBCO GridServer® Administration Guide

18 | The GridServer Administration Tool

The Broker Monitor

TIBCO GridServer® Administration Guide

19 | User Accounts and Role-Based Access Control

User Accounts and Role-Based Access
Control
To log in to the GridServer Administration Tool, you must have an account and password.
GridServer supports a customizable system of role-based access control to provide account
security and enable different users to access different areas of the interface.

User accounts are assigned one or more Security Roles. Each Security Role defines a set of
permissions. A permission is the approval to use, see, or access a GridServer resource.
There are four default Security Roles: Configure, Manage, Service, and View. The
Configure role is for administrators and allows access to any part of the Administration
Tool. By default, the root account you created at installation is set to the Administer role;
you can also create accounts with full access for other administrative users. Users accounts
assigned other Security Roles have more limited access; some pages and features either
function differently, or are not available or visible.

You can create custom roles by going to the Admin > User Admin > Role Admin page and
selecting Create New Role from the global actions menu. This enables you to create a new
role, then add or remove what permissions are available to user accounts assigned that
role. You can also use the editor to add or remove permissions from the predefined roles.

For more information about configuring user accounts and security roles, see About
Authentication and Authorization.

TIBCO GridServer® Administration Guide

20 | Managing Users

Managing Users
GridServer user accounts enable you to specify which users are allowed to access different
features within the Administration Tool, and control what resources can be used by
different client software.

About Authentication and Authorization
Authentication is the process of determining if an entity is what it claims to be. GridServer
provides a built-in authentication service and user repository, plus the ability to use an
external LDAP server, Windows native authentication, or Kerberos.

Authorization is the process of determining what features a user has access to on a system.
GridServer provides Role-Based Access Control (RBAC) to provide this, in which Users can
be assigned roles manually, by using LDAP groups and by using Windows Domain groups.

Types of Users
GridServer users requiring authentication might be utilizing GridServer with client
applications (Drivers), interactively using the web-based Administration Tool, or
programmatically accessing the Admin interface. Each type is authenticated through the
same mechanism.

GridServer authenticates users according to the method defined by the administrator. After
a grid user is authenticated, the user receives an authentication token to use in further
correspondence. In the case of Administration Tool or Web Services users, the
authentication token is a standard HTTP session cookie. In the case where computer users
connect with the DataSynapse APIs, the authentication token is a DataSynapse object.

When a Driver attempts to log in, but has an authentication failure (incorrect user name or
password), it stops trying to log in. If the failure is due to some other issue (such as an
LDAP Server being temporarily down), it is not treated as an authentication failure. Any
current or future service/cache methods throw an appropriate exception. The Driver
process must be restarted at this point to alleviate the situation.

TIBCO GridServer® Administration Guide

21 | Managing Users

Operating system accounts are used to start GridServer software components, like the
Manager, Engine, and Driver. It is generally not required to use a superuser operating
system account to start any GridServer component.

Role-Based Access Control
Security Roles can be added and edited in the GridServer Administration Tool on the
Admin> User Admin > Role Admin page. Each role contains a set of permissions that you
can enable or disable. Each permission corresponds to a GridServer page, action, or
feature. For example, you might want to disable permissions in a role to prevent a subset
of users from editing Engine Daemons or managing Brokers. You can also enable
permissions in a role, like enabling Service-role users to view the current Manager log. You
can also use the Role Admin page to view what features are accessible in a given role.

TIBCO GridServer® Administration Guide

22 | Managing Users

Editing a Security Role

Security roles are assigned to a User via the Admin > User Admin > User Admin page.
Also, when using LDAP or Kerberos authentication, they can be auto-assigned via LDAP
groups, and when using Windows authentication, via the Windows Domain groups.

Editing Security Roles

To edit a Security Role:

1. Go to Admin > User Admin > Role Admin.

2. Select a role, click the Actions list, and select View/Edit.

TIBCO GridServer® Administration Guide

23 | Managing Users

3. Optionally, to create a new role, with no role selected, click the Actions list and
select Create a new Security Role.

The View/Edit Role page appears.

4. Select or clear the check boxes next to the permissions you want enabled in this
role. You can select another role from the Copy list, which selects that role’s enabled
features into the current role.

You can also edit the following role attributes:

— The name and description of the role.

— A list of Managers on which this user can log in, or * for all Managers. If a user
with this role attempts to log in to a Manager not listed, the login fails.

— A corresponding LDAP group for the role. When an LDAP user from that group
logs into GridServer, they receive this role.

— The maximum priority a user with this role can assign to a Service.

5. When you are done editing the role, click Save to save changes, or Cancel to discard
them.

The following actions are also available for each role:

• You can make a copy of a role with Copy.

• The Delete action completely removes a role. Note that you cannot delete a role if it
is currently assigned to any user.

Security Role Notes

Service Session Admin methods or actions require the user to have Service Username
Access to the Service in question. For example, the Service Session Admin page only
shows a user’s Services, and that user can only cancel their own Services.

Security Roles also affect the ability to use GridServer Web Services to interact with
GridServer. For a list of GridServer Web Service objects and methods enabled by role, see
the GridServer Developer’s Guide.

Security Roles do not filter Services that are submitted before changing the associated
Security Roles in an account. For example, a long-running Service is active and you change
a user’s account’s Security Role association from Configure to View. In such a scenario, the
user still has Configure-role access to that Service.

TIBCO GridServer® Administration Guide

24 | Managing Users

The Root Account Role

When a Manager is first installed, an initial account is created. This account, the root
account, has the Root role assigned to it. The root account contains all permissions, similar
to the Configure role. It is internal to the Manager, regardless of authentication mode. For
example, when LDAP authentication is enabled and the LDAP server is unavailable, the root
account is still available.

There are a number of restrictions related to the Root user role:

• The root account cannot be deleted.

• The root account’s role cannot be changed. All other information in the root account
(name, email, password, and so on) can be changed.

• You cannot add the Root role to any other account.

Using GridServer Built-In Authentication
GridServer’s built-in authentication mechanism uses the embedded Director database (the
internal database) to authenticate users. Passwords are stored in the database as secure
hashes; when a password is entered, it is hashed and the two are compared.

GridServer built-in authentication includes options for minimum user name length,
minimum password length, password complexity, password aging, and application
behavior on password failure. To configure password authentication, go to Admin >
System Admin > Manager Configuration > Security and change the settings under the
Admin User Management heading.

Each user account is mapped to one or more Security Roles, which dictate what features of
the Administration Tool they can use.

Using GridServer Built-In Authorization
GridServer’s built-in role-based access control can be used to define what features a user
can access on the system. Depending on the authentication type used, there are different
methods for assigning roles to users.

If you are using GridServer’s built-in authentication, user authorization is mapped in the
user account stored within GridServer. When you create or edit an account on the Admin >

TIBCO GridServer® Administration Guide

25 | Managing Users

User Admin > User Admin page, the Security Roles section of the Edit User dialog
enables you to select one or more roles that are given to that user’s account.

You can also use LDAP or Windows authorization, and edit roles so they map to users
based on their group name. When you edit a role on the Admin > User Admin > Role
Admin page, set the LDAP Group Name to the name of the group that receives that role.

If you are using Pure Kerberos or LDAP authentication, you can either use built-in
authorization or LDAP authorization. If you use built-in authorization, this means you must
create accounts for each of your users using GridServer’s built-in authentication, and
specify one or more roles for each user. Although you need to set passwords when you
create the user, they are ignored and Kerberos is used for authentication.

Creating User Accounts
To create a User Account:

1. Log in to the Administration Tool using the Configure-role account created when you
first installed GridServer, or any other account with access to the User Manage
feature.

2. Go to Admin > User Admin > User Admin.

3. Select Create New User from the Actions list. The New User Information page
appears.

4. Enter the User Name, a password, and confirm the password. Credentials entered
here are case sensitive. If you also use Active Directory which is case-insensitive,
matching credential syntax is recommended.

5. If using built-in authorization, in the Security Roles list, assign one or more roles by
selecting the role name in the left list, then clicking the >> button. If multiple roles
are selected, the account can access features specified in all roles.

6. You can also optionally enter a first and last name, and an E-mail address for
notifications.

7. When finished entering the user information, click Save.

GridServer sends a notification E-mail to the address provided in the new account,
provided that an SMTP host is set in the Manager’s configuration. You can customize the
templates used for the subject and body of these messages by selecting Edit Email
Notification Template from the Actions list on the User Admin page.

TIBCO GridServer® Administration Guide

26 | Managing Users

Resetting User Accounts From the Command Line
In addition to editing a user account’s password in the Administration Tool, you can also
change the password of a user account in the local database from the command line on
the Manager machine. This is useful if you are locked out of all accounts in the internal
database.

To unlock a user account:

1. Shut down the Manager.

2. From the DS_MANAGER directory of the Manager install, run the unlock.bat or
unlock.sh script for Windows or UNIX. The script takes two arguments: the user
name and a new password. For example:
unlock.sh jsmith NewPass123

3. Restart the Manager.

Using LDAP Authentication and Authorization
LDAP can be used for authentication, where a user is authenticated against a directory
entry; authorization, where groups assigned to that user map to GridServer roles; or both
authentication and authorization. For example, you can use Kerberos for authentication,
but assign roles with LDAP. Or you might wish to use LDAP for authentication, but assign
roles manually.

There are two authentication modes in LDAP. The Bind Mode authenticates a user using an
LDAP bind operation (login) to the LDAP server. If the operation succeeds, the user is
authenticated. In Comparison Mode, when a user logs in, the credentials of the user are
retrieved from the LDAP server and compared to the credentials submitted in the login
request. If the credentials match, the authentication is successful. Otherwise,
authentication fails. In general, a hashed password is used for comparison.

Note that you do not set Bind Mode or Comparison Mode explicitly. The mode is set
implicitly according to User Password Attribute: if User Password Attribute is set to any
value, the authenticator uses Comparison Mode, if User Password Attribute is blank, Bind
Mode is used.

If you are using LDAP for authentication, you must configure a user lookup. The User DN
Format allows you to specify the user with a single parameter substitution in the DN. This
is the preferred method, since it requires no LDAP search. If your directory is not

TIBCO GridServer® Administration Guide

27 | Managing Users

configured such that you can specify this, then use the User Search Base and
parameterized User Search String Format. In this case, the User Search Base specifies
where to start the search (to optimize it) and the User Search String Format specifies how
to match the entry by attribute.

If you are using LDAP for authorization, you must specify how the user’s groups are
located. If the groups are set as attributes of the user entry, use the User Group Attribute
setting. Otherwise, you must use the Group Search Configuration settings.

When the group is retrieved, any role that has the Group setting set to one of these groups
is assigned to the user. You can also assign groups manually, with the Admin > User
Admin> User Admin page, instead of or in addition to assigning with LDAP.

Parameters are specified to the LDAP search using the standard format {n}, where n is the
nth parameter. In this case, the user name is the only parameter ever used, so use {0} to
indicate user name.

Configuring GridServer for LDAP Authentication or
Authorization
After Manager installation, when the GridServer Administration Tool is accessed for the first
time, you are prompted to create a root user account. This root user account is usable
regardless of whether LDAP or the internal database is used for authentication.

To configure LDAP for authentication or authorization, complete the following task to
configure the connection, and then complete the tasks for configuring authentication,
authorization, or both.

Configure the Connection

Procedure

1. Log in to the GridServer Administration Tool using the root user account on a
Manager containing the primary Director.

2. Go to Admin > User Admin > Authentication.

3. Select LDAP from the Authentication Mode list.

4. In the Provider URL(s) box, enter a pipe-delimited list of URLs of your LDAP servers.
The first URL is the primary server and the rest are failover servers. For example,
ldap://host1:389|ldaps://host2:636.

TIBCO GridServer® Administration Guide

28 | Managing Users

5. If your server does not allow anonymous search, enter values in the Connection DN
and Connection Password boxes. Example values are cn=admin,dc=company,dc=com
and mysecret (encrypted form).

6. You can optionally use the JNDI Environment Variables box to enter a comma-
delimited list of name=value environment variables to use when connecting to your
LDAP server. For example, com.sun.jndi.ldap.connect.timeout=500. A list of
environment variables can be found in Oracle’s JNDI LDAP documentation.

7. You can also optionally configure if the host’s IP address is resolved by using
Resolve IP Address. This is false by default; if changed to true, if there is a failure
connecting to the host, the IP address is logged on failures instead of the hostname.
This is useful for diagnosing problem servers when using DNS load balancing.

8. To test that the values you have provided results in a working connection, click the
Test Connection button. A Test Results popup window displays if the test script was
able to connect. If not, go back to step 4 and confirm your values.

Configure Authentication

Procedure

1. Configure a user lookup method:

— For the User DN Format, specify the parameterized DN to be used to locate the
user, for instance, user={0},ou=usernames,dc=company,dc=com.

— For the full user search, specify the User Search Base, such as
ou=usernames,dc=company,dc=com, and the parameterized User Search String
Format, such as (&(objectclass=user)(sAMAccountName={0})). This starts
searching from the base for any entries that are of class user, and have an
attribute called sAMAccountName that matches the user name. User Search
Subtree optionally enables you to widen the scope of the user search to include
subtrees. Set this to false when possible to improve search performance and
reduce latency.

2. If you are using comparison mode, enter the name of the password attribute on the
user entry in the User Password Attribute field, and select the appropriate digest
method in Password Digest. In most cases Auto Detect is appropriate.

3. You can optionally enter attributes to retrieve other fields from your user search.
These include the User First Name Attribute, User Last Name Attribute, and User
Email Attribute boxes.

TIBCO GridServer® Administration Guide

29 | Managing Users

Configure Authorization

Procedure

1. Configure a group lookup method:

— If the groups are assigned as attributes of the user entry, enter that attribute
name in the User Group Attribute box, for example, memberOf.

— If a separate search is required to get the group information, you must configure
the following items: In the Group Search Format box, enter the pattern used to
match user names to group entries. For example, (memberUid={0}) returns all
groups that have a memberUid attribute that matches the user name. In the
Group Search Attribute box, enter the attribute that provides the name of the
group in the group entry. For example, cn. In the Group Search Base box, enter
the base of a group search. For example, ou=groups,dc=company,dc=com.

2. Click Save.

To map an LDAP group to a Role, go to the Admin > User Admin > Role Admin page, edit
the Role, and set the Group entry to the name of the group. Note that oftentimes the group
name might be in CN format, especially when using group search with a cn attribute. For
example, if the cn attribute for the group you want to assign to the Configure role is
CN=Administrators,CN=Builtin,DC=na,DC=tibco,DC=com,you can edit the Configure role
and specify the group as that entire name, not just Administrators.

Authentication Schemes Supported in Comparison
Mode
When comparison mode is in use, the following LDAP server password hash/encryption
schemes are supported:

Scheme Format Description Algorith
m

Notes

{SCHEME}H
ash

{crypt}Q8k7rHl9JtTOI UNIX crypt Calculate
hash
from the

Support
ed by
OpenLD

Supported LDAP Schemes

TIBCO GridServer® Administration Guide

30 | Managing Users

Scheme Format Description Algorith
m

Notes

clear text
password
based on
algorithm
and
compare
with
password
digest

AP

{SHA}!J78ElrfcxQlheAG/XBSz76U
py5+t65mE

SHA hashing
algorithm
followed by the
hash

{CLEARTEXT}mypassword Clear text
password

{SCHEME}H
ash
(passwd+se
ed)

{SSHA}!J78ElrfcxQlheAG/XBSz76
Upy5+t65mE

Seeded SHA
hashing
algorithm with
the first 6 chars
as the seed

Calculate
the seed
from the
hash and
calculate
hash
based on
the clear
text + salt

PAM MD5 1qPU.kEzE$Sydn2HVBATM2moKTI
TsPk0

Password hash in
1[salt]>$[has
h] format. 1 is
the magic string
for MD5 hashing

Apache MD5 $apr1$A7lJPWbr$4VO3DXCAD/1U2b
OX/fj6a/

$apr1$[salt]$[h
ash] format.

TIBCO GridServer® Administration Guide

31 | Managing Users

Scheme Format Description Algorith
m

Notes

$apr1$ is the
magic string

Clear Text Mypassword clear text
password in
octet string,
specified in
rfc2256

String
comparis
on

Must not
be used

Security Notes
It’s not possible for deleted users to access the Administration Tool because the GridServer
Director controls all user add/update/delete operations. When a user is deleted or demoted
to a group with lower privileges, all other GridServer Managers get the user table update
and refresh their local user cache.

When LDAP is used, this is no longer possible, as GridServer won’t get notifications for
LDAP user updates. Therefore, a timeout strategy is used to revalidate the user
authorization. User authorization has a 15 minute TTL that is independent of the
Application Server session. A deleted/demoted user does not have indefinite access to the
features that are no longer permitted.

LDAP Configuration Example
For a typical example configuration, consider an OpenLDAP server that can authenticate in
both Windows and Linux/UNIX domains. In the test LDAP schema, group information is
specified in individual group searches.

First, go to Role Administration and set up group names for the roles. Map the Manage role
to the support LDAP group.

Then configure the connection to the LDAP server as follows:

• Authentication Mode = LDAP

• Provider URL(s) = ldap://integrated.datasynapse.com:389

TIBCO GridServer® Administration Guide

32 | Managing Users

• Authentication Scheme = simple

Leave user name and Password blank since this directory allows anonymous search.

Next, after successfully testing the connection, configure the user search using the user DN,
and leaving Search String and Search Base blank:

• User DN Format = uid={0},ou=users,dc=datasynapse,dc=com

• User Search String Format = not set

• User Search Base = not set

• User Search Subtree = False

• User Search Timeout = 5000

• User Password Attribute = userPassword

• User Password Digest = Auto Detect

Finally, set up the group search. Since this LDAP schema keeps the groups as separate
entities, leave User Group Attribute blank, and specify a separate group search:

• Group Search Attribute = cn

• Group Search Base = ou=groups,dc=datasynapse,dc=com

• Group Search Format = memberUid={0}

• Group Search Limit = 0

• Group Search Timeout = 5000

• Group Search Subtree = True

Using Windows Authentication and
Authorization
Another method of user authentication is Windows Authentication. This takes advantage of
the native Windows authentication layer when the Manager is running on a Windows
machine on a Windows Domain. It uses the Negotiate protocol, like Pure Kerberos
Authentication, but requires much less configuration. It uses NTLM or Kerberos as the
authentication provider, depending on the client; Windows C++ and .NET use NTLM, while
other clients use Kerberos. This enables web browsers and Drivers to connect to Managers
by authenticating as the current Domain user, with no passwords needed.

TIBCO GridServer® Administration Guide

33 | Managing Users

Also, all Domain groups that a user belongs to are available as a group that can be mapped
to a GridServer Role.

Configuring Windows Authentication
To use Windows authentication, you must configure your Manager, Drivers, and web
browsers. Note that you can only use this method if all Managers run on Windows.

Manager Configuration

To configure your Manager to use Windows authentication:

1. Ensure that the Manager is part of the domain with which you want to authenticate.

2. Make sure that the additional third party LGPL download has been applied. For more
information, see the Installation Guide.

3. On the Managers:

In the Administration Tool, go to Admin > User Admin> Authentication, and
change Authentication Mode to Windows.

On the same page, enter the value for the Windows Domain used to authenticate
users in Windows Domain, and click Save.

Driver Configuration

For all Drivers, the DSNegotiateEnabled property specifies if Negotiate authentication is
used. Set this to true in the driver.properties file or by using the DriverManager API to
enable Negotiate authentication.

Also, the following must be configured, depending on the platform and Driver:

Windows C++ and .NET Drivers

Windows versions of C++ and .NET Drivers use NTLM and do not require any additional
configuration.

TIBCO GridServer® Administration Guide

34 | Managing Users

UNIX C++ and All Java Drivers

UNIX versions of C++ and all Java Drivers (including Windows) use Kerberos rather than
NTLM. Configure them using the instructions in All Java Drivers and UNIX C++ and Java
Drivers sections.

Browser Configuration

Users’ browsers must be configured to use Negotiate authentication. For example, in
Microsoft Edge, you add the URL to the Enterprise Mode site list. In Firefox, you use the
network.negotiate-auth.trusted-uris config parameter. See your browser’s
documentation for details.

If a user’s browser is not configured and they attempt to log in to the Administration Tool,
the browser presents them with a challenge popup screen, and they can log in manually.

Configuring Windows Authorization
When a user logs in, the list of Domain groups that user belongs to is available. All roles
that are assigned to those groups are then assigned to the user.

Note that all the users must be assigned to a group that is mapped to at least one role to
be able to log in. Additional Roles might be mapped with Windows groups or built-in
authorization.

Using Pure Kerberos Authentication
If you are not running all Managers on Windows, and you require authentication that does
not require a password, you use Pure Kerberos authentication. This also enables web
browsers and Drivers to connect to Managers by authenticating with a Windows domain,
and Drivers no longer have to store passwords.

The section assumes that you already have a Kerberos Realm set up, with a Kerberos Key
Distribution Center (KDC). Since the most common Kerberos installation is a Windows
Domain on which the KDC is on a Domain Controller (DC), this section proceeds with that
as an example.

TIBCO GridServer® Administration Guide

35 | Managing Users

Configuring Pure Kerberos Authentication
The following is an overview of the process:

On each Manager, there is a user that is a client of the KDC on the DC. This must be a user
on the Windows domain. This can be an existing user, or a new user can be created. Also,
this user does not need to be the same user who runs the Manager process, although it can
be.

A Service Principal Name (SPN) is created on the KDC. This is the name by which a client
uniquely identifies an instance of a service. It consists of the user name and Manager
hostname. There might be more than one per Manager; for example, one for the fully-
qualified hostname, one for the short name, and additional ones for aliases if any.

A keytab file is created for the user and placed on the Manager’s file system. It contains the
user credentials, and allows that user to use the KDC.

The Manager is then configured to use the realm, given the keytab location and DC
hostname.

Note that it is not necessary for the machine to be on the domain. While it is true for a
Windows Manager, there is no requirement for a UNIX Manager to be added to the domain.

To configure your Manager, you need the following information from your IT department:

• The name of your realm

• The fully-qualified hostname of the DC

The following table lists the various values that are used in the following procedure.
Substitute your own values for the following:

Setting Value

Realm Name REALM.NAME

DC Fully Qualified Hostname dc.domain.com

Manager Fully Qualified Hostname manager.domain.com

GridServer Username gs_user

TIBCO GridServer® Administration Guide

36 | Managing Users

Manager Configuration

To configure your Manager for pure Kerberos authentication:

1. Map one or more Server Principal Names. Log in to dc.domain.com. Open a console,
and execute the following to create SPNs for the short and fully qualified names:

setspn -A HTTP/manager gs_user
setspn -A HTTP/manager.domain.com gs_user

2. Create the keytab file:

From that same DC, generate a keytab:

 ktpass \
 /princ HTTP/manager.domain.com@REALM.NAME \
 /ptype KRB5_NT_PRINCIPAL \
 /crypto all \
 /mapuser gs_user@REALM.NAME
 /pass {gs_user password}\
 /kvno 0\
 /out GridServerUser.keytab \

Move this file to your Manager, and place it in a location and set permissions such
that only the user that runs the Manager can read it. Because it contains credential
information, it must be kept secure.

3. The KDC client requires a random sequence to protect the session. You can generate
one using the openssl command line tool by executing the following command:

openssl rand -hex 12

4. Edit the DS_MANAGER/webapps/livecluster/WEB-INF/web.xml file:

Uncomment the kerberosFilter section.

Set the param-value of kerberos.principal to
HTTP/manager.domain.com@REALM.NAME

Set the param-value of kerberos.keytab to the location of the keytab file on your
Manager.

Set the param-value of signature.secret to the random sequence that was just
generated.

TIBCO GridServer® Administration Guide

37 | Managing Users

Driver Configuration

For all Drivers, the DSNegotiateEnabled property specifies if Negotiate authentication is
used. Set this to true in the driver.properties file or by using the DriverManager API to
enable Negotiate authentication. Otherwise user name and password is used.

Also, the following must be configured, depending on the platform and Driver:

All Windows
• You must enable TGT on the system running the Driver. For more information, see
https://support.microsoft.com/en-us/topic/updates-to-tgt-delegation-
across-incoming-trusts-in-windows-server-1a6632ac-1599-0a7c-550a-
a754796c291e.

• The allowtgtsessionkey registry key must be set. Add or change this registry value:
HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Control\Lsa\Kerberos\Parameters

Value Name: allowtgtsessionkey

Value Type: REG_SZ

Value Data: 1

• The Driver user cannot be a member of the Local Admin group.

All Java Drivers

Java includes support for Kerberos authentication natively. The standard method of doing
this is via the login.conf and krb5.conf files.

Convenience properties have also been added to the driver.properties file so that you
do not need to set these files up:

• DSKerberosRealm: the name of the kerberos realm. For example, REALM.NAME

• DSKerberosKDC: The hostname of the KDC. For example, dc.domain.com

(Note that if your application is already set up to use Kerberos via standard methods, you
do not need to set these two values.)

Windows C++ and .NET Drivers

Create a file called krb5.ini and put it in the c:\windows directory:

TIBCO GridServer® Administration Guide

38 | Managing Users

This file must contain the following:

[libdefaults]
default_tgs_enctypes = AES256-CTS RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
default_tkt_enctypes = AES256-CTS RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
preferred_enctypes = AES256-CTS RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
[domain_realm]
.domain.com = REALM.NAME
dc = REALM.NAME
dc.domain.com = REALM.NAME

UNIX C++ and Java Drivers

UNIX Kerberos clients use a ticket cache. This ticket cache must be populated prior to
running the Driver.

This is done by executing the kinit command, which prompts the user for their password,
and populates the cache with a ticket.

Browser Configuration

Users’ browsers must be configured to use Negotiate authentication. For example, in
Microsoft Edge, you add the URL to the Enterprise Mode site list. In Firefox, you use the
network.negotiate-auth.trusted-uris config parameter. See your browser’s
documentation for details.

If a user’s browser is not configured and they attempt to log in to the Administration Tool,
the browser presents them with a challenge popup screen, and they can log in manually.

Configuring Pure Kerberos Authorization
Because Kerberos only provides authentication, authorization is provided with LDAP or
built-in authorization.

To be able to log in, all users must belong to at least one role that is assigned to a
Windows Domain group, which corresponds to an Active Directory LDAP group. See, Using
LDAP Authentication and Authorization. You only need to configure Authorization.
Additional Roles might be mapped with LDAP groups or built-in authorization.

TIBCO GridServer® Administration Guide

39 | Managing Users

Managing Multiple Brokers with Grid Single
Sign-On (SSO)
The Grid Single Sign-On (SSO) feature enables a user to be logged in to all Managers on a
Grid after having logged in once to any Manager.

Note
The use of Grid SSO is discouraged; using Kerberos with LDAP or
Windows authentication is preferred to achieve single sign-on.
Grid SSO must never be used when Pure Kerberos or Windows
Authentication are enabled.

The following prerequisites are required before you can enable Broker SSO:

• All Managers must reside in the same network sub-domain

• The Primary Director’s hostname that appears in the Admin > System Admin >
Manager Reinstall > Local Configuration > Hostname field must be a fully-
qualified name in this sub-domain.

Grid SSO Configuration
To configure Grid Single Sign-On:

1. Log in to the GridServer Administration Tool on the Manager containing the Primary
Director.

2. Go to Admin > System Admin > Manager Configuration > Security.

3. Click the Security link.

4. Set Grid Single Sign-On sub-domain to the network subdomain used by your
Managers. At installation, GridServer attempts to determine the subdomain name
based on the fully-qualified host name of the Director, and the value is entered in
the Grid Single Sign-On sub-domain field. If this value is incorrect, you must
change it before enabling SSO.

5. Set Grid Single Sign-On to true. Note that you must configure all Directors and
Brokers with their fully qualified hostnames.

TIBCO GridServer® Administration Guide

40 | Managing Users

6. Repeat this configuration for each Manager containing a Director in your grid. You do
not need to configure Managers with only Brokers.

Constraints and Limitations
The following constraints apply when using Grid SSO:

• You must enable cookies in your browser.

• When a Primary Director fails, the Grid SSO session is lost. If you have a Secondary
Director configured for failover, you can log in to it and start a new SSO session.

• Single sign-on enables you to log in to other Managers that are in the same network
subdomain. For example, if your Primary Director is director.grid.example.com,
logins to any Brokers in grid.example.com can be authenticated with Grid SSO. You
can’t use Grid SSO to connect to Brokers in other subdomains or domains. For
example, if your Primary Director is director.grid.example.com, you can’t
automatically log in to Brokers in prod.example.com or grid.example.co.uk.

• Only the following fields accept multi-byte characters:

— Username, Password, and Confirm Password on the initial login page.

— All fields on the Admin > User Admin > Run-As Credentials page.

— Choose Username on the User Event page.

— Username, Firstname, Lastname, Password, and Confirm Password on the
Users > Users page.

— RunAsUser on the Edit Service Type page.

• Grid SSO must not be used if Negotiate Authentication is used.

Client Routing
You can route Clients to Brokers using Roles, the Broker Routing page, and the Driver API.

TIBCO GridServer® Administration Guide

41 | Managing Users

Routing Clients With Roles
The easiest and most common method of routing clients is to set the Manager List in a
user role, and then set a user name in the driver.properties file. This routes clients
directly to a set of listed Brokers.

To configure the Manager List:

1. In the GridServer Administration Tool, go to Admin > User Admin > Role Admin.

2. Select a role, click the Actions list, and select View/Edit , or to create a new role,
with no role selected, click the Actions list and select Create a new Security Role.

3. Enter the list of Brokers to which you want the client to be routed.

4. Click Save.

5. Go to Admin > User Admin > User Admin.

6. Select a user, click the Actions list, and select Edit User, or to create a new user,
with no role selected, click the Actions list and select Create New User.

7. Assign the role to the user.

8. Edit the driver.properties file for the Driver, and set the DSUsername and
DSPassword properties to the user name and password of the user assigned the role
you created/edited.

Routing Clients On The Broker Routing Page
You can route clients to Brokers using rules based on Driver properties. This is similar to
how you can route Engines to Brokers by creating routing rules based on user-defined
properties. This limits Drivers that log in to a Broker based on the value of one or more
properties, using comparators you have defined.

To enable Driver Routing:

1. Define one or more properties in the driver.properties file used by the Driver. You
can view a Driver’s properties at the Grid Components > Drivers > Driver Admin
page.

2. Go to the Grid Components > Brokers > Broker Routing page. Select a Broker
from the list.

3. Click Edit.

TIBCO GridServer® Administration Guide

42 | Managing Users

4. In the Driver column are comparators for Drivers. Enter one or more comparators by
entering a property name, selecting an operator, entering a value, then clicking Add.
You can also select Is Missing, which evaluates the comparator as true if the
property is not present on a Driver.

Multiple comparators are ANDed together. If the comparators evaluate to true, the Driver is
allowed to log in to the Broker. Note that property names and values are case-sensitive.

You can add a single property in a comparator that holds different values by using a
comma-delimited value. For example, Broker A can have a comparator matching a
username property to be equal to TestUser1 or TestUser2 . If a Driver submits with either
TestUser1 or TestUser2 values, the Tasks are then routed to Broker A. In this use case, the
query must be: username equals TestUser1,TestUser2.

Routing Clients With The Driver API
You can use the connect(String broker) method of the DriverManager API on all Driver
platforms to force a client to log in to a specified Broker.

TIBCO GridServer® Administration Guide

43 | Managing Services

Managing Services
This section provides information about deploying, running, and scheduling Services.

Deploying Services
GridServer uses Grid Libraries to distribute classes, libraries, and other resources to
Engines. Grid Libraries provide a solution to the problem of distinct Services requiring
different versions of the same resource. They provide the following features:

• Version control, including optional automatic selection of the most current version
of a Grid Library.

• Resource upgrading without interrupting current Sessions.

• Specification of dependencies on other Grid Libraries.

• Specification of which C++ runtime to use and non-default JREs via dependencies.

• All-in-one packaging for JAR files, native libraries for multiple OSes, .NET assemblies,
Command Service executables, R scripts, and Engine Hooks.

• Specification of Environment Variables and Java System properties.

• Engines that require different compiler support libraries can participate in the same
Service Session.

• Parameterization of package configuration through the use of property substitution
files.

The Resource Deployment feature replicates Grid Libraries from a Manager to Engines. In
the simplest sense, this enables you to copy a set of bundled resources to each Engine to
run a Service.

This section details how to use Grid Libraries for Service deployment to your GridServer
installation.

TIBCO GridServer® Administration Guide

44 | Managing Services

About Grid Libraries
A Grid Library is a set of resources and properties necessary to run a Grid Service, along
with configuration information that describes how these resources are to be used. For
example, a Grid Library can contain JAR files, native libraries, configuration files,
environment variables, hooks, and other resources.

A Grid Library is deployed as an archive file in ZIP or gzipped TAR format, with a grid-
library.xml file in the root that describes the Grid Library. It might also contain any
number of directories that contain resources.

Grid Libraries are identified by name and version. Versions are optional, but recommended;
they are used to detect conflicts between a desired library and library that has already
been loaded. Versions also provide for automatic selection of the latest version of a library.
A GridServer Service can specify that it is implemented by a particular Grid Library when its
Service Type is registered, or by using a Service option.

Grid Libraries can specify that they depend on other Grid Libraries; like the Service Option,
such dependencies can be specified by the name, and optionally the version. Also, nearly
all aspects of a Grid Library can be specified to be valid only for a specific operating
system. This means that the same Grid Library can specify distinct paths and properties for
Windows and Linux but only the appropriate set of package options is applied at run-time.

Variable Substitution

You can use placeholder variables in a grid-library.xml file, which are then substituted
with their value as defined in a properties file or in an OS environment variable. This
enables quick changes in properties in the grid-library.xml file without redeploying the
Grid Library.

If the grid-library.xml file contains a property with a value contained with the $
character, such as $mydir$, it is substituted with the value in one of three places, in this
order:

• A default properties file in your Grid Library named grid-library.properties. This
can provide baseline values for your variables.

• An external properties file, named with the same name as the Grid Library archive,
with the extension .properties, in the Grid Library deployment directory. Values in
an external properties file replace those defined in the default properties file within
the Grid Library.

TIBCO GridServer® Administration Guide

45 | Managing Services

• A defined OS environment variable. This value replaces the value defined in either
properties file.

Note
If the substitution is not found in the file, the empty string, "", is
substituted.

Substitutions are allowed anywhere in a string within the content of property value
elements and path elements. Multiple substitutions per string are allowed. $ characters can
be treated as literals by escaping them with another $ character. Windows paths that are
specified in the library.properties file must escape the \ character with another \.

Versioning

Versioning provides the following functionality:

• It allows for deployment of new versions of libraries and deletion of old versions
without interrupting currently executing Service Sessions.

• It provides for specifying conflicts, or libraries that cannot coexist with each other.

• It allows for a Service Session or dependency to specify the use of the latest version
of a Grid Library.

To use versioning, you must specify the Grid Library version in the configuration file. An
Engine can load only one version of the library with the same name at any time. If the
version is not specified, it is implied to be 0.

The version is a String and must adhere to the following version format. This format is

[n1].[n2].[n3]...

where nx is an integer, and there might be one or more version points.

For instance,

4.0.1.1, 4.1, 3

are in the proper comparable version format.

TIBCO GridServer® Administration Guide

46 | Managing Services

The integer at each version point is evaluated starting at the first point, and continues until
a version point is greater than the other. If a version point does not exist for one, it is
implied as zero.

For instance

4.0.0.1 > 4.0
4.0.0.5 < 4.0.1.1

To specify that a dependency or Service uses a particular version of a Grid Library, the
version field is set to that value. To specify that it uses the latest version, the field is left
blank.

Note: If a version is specified it must match exactly. That is, 3.0.0 is not the same as 3; if
the library’s version is 3.0.0 and the Service specifies 3, the Service does not find that
library and subsequently fails.

If a version is specified but not in this format, and there are multiple versions of a library,
the “latest version” is undefined. Thus, automatic selection of the latest version is only
possible when all Grid Libraries with the specified name provide a version in the proper
format.

By default, if a Service was set to use the latest version of a Grid Library, all Engines work
on the latest version at the time the Service was started, regardless of whether a newer
library has been deployed. This can be changed by setting the GRID_LIBRARY_STRICT_
VERSIONING option in the driver.properties file to false. When false, if a newer version of
the library is deployed while the Service is running, Engines that have not yet worked on
the Service use the newer version, while Engines that worked on it prior to deployment
continue to use the older version.

Dependencies

Grid Libraries might specify dependencies on other Grid Libraries. A dependency
specification resolves to a particular Grid Library using two values:

• grid-library-name The name of the Grid Library, as specified in the dependency’s
XML

• grid-library-version The version of the Grid Library, as specified in the
dependency’s XML. OS compatibility is determined by checking the os and compiler
tags for the top-level element in the dependent Grid Library. If not specified, it uses
the latest version supported by the OS

TIBCO GridServer® Administration Guide

47 | Managing Services

Note that if a dependency resolves to more than one Grid Library, the dependency used is
undefined.

Two dependent libraries conflict if they have the same library name, but different versions.

It is possible to specify an OS attribute to a <dependency> element for ignoring Grid
Libraries that do not apply to an Engine’s particular operating system. For example, if a
Grid Library contains native libraries for multiple platforms, you can specify OS-specific
dependencies on the bridge Grid Libraries such that the Engine only loads the bridge
corresponding to its operating system.

Note that if a dependency is missing, the Engine logs a warning. Rather than the current
task failing, the Engine attempts to continue loading all necessary libraries to run the task.

Conflicts

A conflict between two Grid Libraries means that these libraries cannot be loaded
concurrently. When there is a conflict between a loaded Grid Library and a Grid Library
required by a Service, the Engine must restart to unload the current libraries and load the
requested library.

The following circumstances result in a conflict:

• Version Conflict The most common conflict arises with versioning, and typically
when upgrading versions or using more than one version of the same library
concurrently. This conflict arises when a Grid Library with the same grid-library-
name as the requested Grid Library, but a different version, is loaded.

• Explicit Conflict There can be situations in which different Grid Libraries can
conflict with each other due to conflicting native libraries, different versions of Java
classes, and so on. Because the Engine cannot determine these implicitly, the
conflict element can be used to specify Grid Libraries that are known to conflict
with this Grid Library.

Additionally, the value of the grid-library-name can be set to "*". This means that
this Grid Library can conflict with all other Grid Libraries (aside from its
dependencies), and it is guaranteed that no other Grid Libraries load concurrently
with this Grid Library. Note that this is only allowed if the Grid Library is not a
dependency; if the "*" is used as a conflict in a Grid Library that is a dependency, a
verification error occurs.

• Dynamic Version Conflict A Grid Library conflict occurs if dynamic versioning is
used, and the latest version of a Grid Library or Grid Library dependency has

TIBCO GridServer® Administration Guide

48 | Managing Services

changed due to an addition or removal of a dependency since the Grid Library has
been loaded.

• Variable Substitution Conflict A Grid Library conflict occurs if its variable
substitution file has changed since it has been loaded.

Grid Library Loading

When a Service Session is set to use a Grid Library, that library is loaded. Loading is the
process of setting up all resources in the Grid Library for use by the Service. A library is
loaded only once per Engine session.

First, the library loads itself, and then it loads all dependencies. The library loader uses the
depth-first, or preorder traversal algorithm when loading libraries. When there are a
number of dependencies in a Grid Library, the order in the XML is considered left-to-right
with respect to the algorithm. The library search order for lib-path and jar-path is
determined by their respective lists. Certain aspects of a load might require a restart, and
possibly re-initialization of the state.

The following steps are performed by a load of the root library and all dependencies:

1. It checks for conflicts with currently loaded Grid Libraries. If so, it restarts with the
requested Grid Library and clear out the current state of any loaded libraries.

2. If new lib-paths have been added for its OS, they append to the current list of lib-
paths. The state of loaded libraries includes all libraries already loaded, plus the
requested library. Note that specifying a JRE dependency has this effect.

3. If new jar-paths have been added for its OS, the JAR files and classes are added to
the classloader.

4. If new assembly-paths have been added, it adds them to the .NET search path.

5. If new command-paths have been added for its OS, it is added to the search path for
Command tasks.

6. If new hooks-paths have been added, any hooks in the path are initialized.

7. If the default is current and a Grid Library is requested, the Engine restarts.

State Preservation

Under most cases, when an Engine shuts down, it preserves the current state of which Grid
Libraries it has loaded. When it starts back up, it loads all Grid Libraries that were loaded
when it shut down. As Grid Libraries are loaded, the path elements they contain are added

TIBCO GridServer® Administration Guide

49 | Managing Services

to a ‘master’ list of paths for that type of pathelement. For example, if a Grid Library
contains a lib-path specification, that lib-path is appended to the list of lib-path values
obtained from already-loaded Grid Libraries.

Note that this means that it is up to the creator of the Grid Libraries deployed on the grid
to ensure that the ordering of library paths does not lead to loading the wrong library. For
example, if two different Grid Libraries each provide DLLs in their lib-paths that share the
same name, because of OS-specific library load conventions, the one used is the first one in
the aggregate lib-path from across all loaded Grid Libraries. Likewise for Java classes,
when more than one copy of the same class is in the classloader, it is undefined which
class loads. Therefore it is important to either subdivide Grid Libraries appropriately when
there is a possibility that such conflicts can arise, or to use the conflict element to
explicitly state conflicts.

Grid Library and RunAs State information persists on normal Engine shutdowns, which
includes task failures aside from crashes. If the Engine does not shut down normally, such
as if it crashes, or if the Daemon kills the process due to it exceeding the shutdown
timeout, the state is reset.

If an Engine shuts down due to a conflict, it clears the current state and sets up for only
the requested Grid Library upon restart. This is referred to as preloading. If an Engine shuts
down due to internal library inconsistencies or a crash, the state is not saved. State is also
cleared on all instances when a Daemon is disabled and re-enabled.

Task Reservation

If an Engine requires a restart to load a Grid Library, the task is reserved on the Broker for
that Engine. The Engine is instructed to log back into the same Broker, and takes that task
upon login. The timeout for this is configurable at Admin > System Admin > Manager
Configuration > Services.

Environment Variables and System Properties

All Environment variables and Java System properties for a Grid Library and all
dependencies are set each time a task is taken from a particular service that specified that
Grid Library. (They are not cleared after the task is finished.) Environment variables are set
via JNI so that they can be used by native libraries or .NET assemblies, and they are also
passed into Command Services. Note that environment variables such as PATH and LD_
LIBRARY_PATH must not be changed through this mechanism. Rather, library-path and
command-path are reserved for manipulating these variables.

TIBCO GridServer® Administration Guide

50 | Managing Services

Using Grid Libraries from a Service
Services can specify a Grid Library to use by setting the GRID_LIBRARY and optionally the
GRID_LIBRARY_VERSION Service Options. This is typically set by Service Type in the Services
> Services > Service Types page, although it can be set programmatically on the Session.
Services can specify a Grid Library to use by setting the corresponding Service Option
values. If the version is not set, a Service uses the latest version of a Grid Library.

If a Service needs to find resources in a Grid Library, it can use the Grid Library Path. This
value is a path value that includes the root directories of all Grid Libraries currently loaded.
For Java, .NET, and C++, the path is EngineProperties.GRID_LIBRARY_DIR; for command
services, it is the environment variable ds_GridLibraryPath.

Super Grid Libraries
A Grid Library can be declared as a Super Grid Library. This means that it is always loaded
when the Engine starts up. The typical use case for this is to have an EngineHook that
queries the system for some information, which is used to set EngineSession properties
prior to the Engine running any tasks.

To specify that a Grid Library is a Super Grid Library, set the super attribute in the grid-
library element. For example, <grid-library .. super="true" /> . Super Grid Libraries
also cannot have conflicts or dependencies. Other libraries cannot depend on or conflict
with them.

Super Grid Libraries are loaded upon startup before anything else. They are ignored on
conflict checks for * (all).

If a new Super Grid Library is deployed while an Engine is running, it is loaded. If a new
version of an existing Super Grid Library is deployed while an Engine is running, the Engine
restarts.

Deployment
Grid Libraries are deployed using the resource deployment page located at Services >
Services > Grid Libraries, or by using the Admin API. When a Grid Library is uploaded, it is
first verified to ensure that the ZIP archive is not corrupt and that the grid-library.xml
file validates against the Grid Library DTD. If there is an error, it is displayed next to the file
on the Services > Services > Grid Libraries page.

TIBCO GridServer® Administration Guide

51 | Managing Services

The Resource Manager then replicates uploaded, valid libraries to all Engines. Variable
Substitution property files also must be placed in this directory. Engines download Grid
Libraries based on the attributes in the root level grid-library element. Grid Libraries
whose attributes match the properties of a particular Engine are downloaded by that
Engine and ignored by Engines with non-matching properties. If no attributes are specified
in this element for a particular Grid Library, all Engines download it.

Adding or removing Grid Libraries or property files do not trigger an Engine and Daemon
restart. It is not necessary to restart until the Engine actually needs to use the Grid Library,
and even then only if necessary according to the loading procedure. If a deployed Grid
Library is changed, it does cause the Daemon and Engines to restart. Also, it is the
responsibility of the user not to delete Grid Libraries loaded by active Services from the
Libraries page, as that might lead to library load failures for subsequently executed tasks.

If you are not using the Resource Manager for replication, you can use an alternate shared
Grid Library directory. You must then set the Grid Library Path in all Engine Configurations
to point to this directory, instead of the default replicated location. When changes are
made to this library, you must then use the Update button on the Services > Services >
Grid Libraries page on the Primary Director. This sends a message to all Engines to check
and update their Grid Libraries using the Grid Library Manager.

The Resource Manager uses secure hashes as file signatures when determining if a file has
changed on the Manager. All files are signed when the Manager starts. After that, a file is
only signed again if the file’s last modified time has changed since the sign.

Disabling Resource Deployment
There are some situations in which you might not want to use the Resource Manager for
replication. For example, you might want to use another shared location for Grid Libraries,
deploy resources manually, or deploy different sets of resources to different Brokers.

There are four different strategies for disabling resource deployment:

• Disabling Director to Broker synchronization on the Director.

• Disabling Director to Broker synchronization on the Broker.

• Disabling Broker to Engine synchronization on the Broker.

• Disabling Broker to Engine synchronization in an Engine Configuration.

Each of the strategies is described below.

TIBCO GridServer® Administration Guide

52 | Managing Services

Note that for manual deployment, when you deploy Grid Libraries, you must click the
Update button on the Services > Services > Grid Libraries page to notify all Engines to
rescan their directories.

Disabling Director to Broker Synchronization on the Director

If you want to have different sets of resources on different Brokers, you can disable the
Director to Broker resource synchronization on the Director. This causes none of the
Brokers reporting to that Director to synchronize resources with that Director. The Brokers
continue to synchronize resources with their Engines.

To disable Director to Broker synchronization on the Director, go to Admin > System
Admin > Manager Configuration > Resource Deployment, and under the Director
Settings heading, change Synchronize Resources To All Brokers to False.

When you disable Director to Broker Synchronization, if for any reasons your Engines move
to a different Broker, they need to synchronize their resources with the new Broker. This
can result in a significant delay in the Engine being able to take tasks and can cause a
severe increase in network traffic depending on how many Engines move.

Warning
Grids that rely on Engines being shared are strongly
recommended not to use this option. If you must use this
option, minimize Engine movement by disabling Engine
sharing and balancing. In general, we do not recommend
you use this option and consider Grid Library filters instead.

Disabling Director to Broker Synchronization on the Broker

In some situations, it might be desirable to disable Director to Broker resource
synchronization on specific Brokers, while still permitting Broker to Engine resource
synchronization. For example, allowing “last week’s” tasks to run to completion on a
limited subset of the grid, while permitting “this week’s” tasks to be launched with new
resources.

This is similar to disabling synchronization on the Director, but because the setting is on
the Broker, it is used on a case-by-case basis. You can have some Brokers synchronize, and
disable synchronization on others.

TIBCO GridServer® Administration Guide

53 | Managing Services

To disable Director to Broker synchronization on a Broker, go to Admin > System Admin >
Manager Configuration > Resource Deployment, and under the Broker Settings heading,
change the value of Synchronize Resources From Director to False.

Note
If you disable synchronization on the Director, no Brokers
synchronize with the Director regardless of this setting on the
Broker.

Disabling Broker to Engine Synchronization on the Broker

If you want to manually deploy resources to Engines, such as when you use a shared
resource location on a shared file system, you can disable synchronization between a
Broker and all of its Engines.

To manually deploy resources:

1. Go to Admin > System Admin > Manager Configuration > Resource Deployment,
and under the Broker Settings heading, change the value of Synchronize
Resources to Engines to False.

2. Unpack the required Grid Libraries in a shared location, such as a shared network
drive that the Engines can access. You must manually extract the resource files, as
the Engine won’t unpack them.

3. In the Engine Configuration, set Grid Library Path to the location of the shared
resources from step 2.

Note
When Broker to Engine synchronization is disabled, Director to
Broker synchronization still occurs. This means the Engines still
auto-upgrade themselves when an update is installed.

Disabling Resource Synchronization in Engine Configuration

To change resource synchronization on a per-Engine basis, in the Engine Configuration,
under the Resource Validation heading, change the value of Synchronize Resources to
False. When an Engine with this setting disabled logs in, it does not synchronize resources.

TIBCO GridServer® Administration Guide

54 | Managing Services

This is useful when you want to isolate a set of Engines and prevent them from doing any
resource synchronization from any Broker. This must not be used if you want to manually
deploy your resources.

Note
When resource synchronization is disabled in the Engine
Configuration, Engines do not auto-upgrade themselves when
an update is installed or when the grid is upgraded.

Bridges
Bridges are Grid Libraries that enable Engines to execute non-Java Services, such as C++,
.NET, and R. All Bridges are pre-packaged and deployed in the Grid Library replication
directory upon GridServer Manager installation or upgrade.

JREs
In the rare event that a particular service cannot use the default JRE that is deployed to
the Engines, a JRE can be packaged as a Grid Library. The Service’s top-level Grid Library
then declares it as a dependency. When an Engine takes a Task, it then restarts using this
JRE. Note that the JRE must be a supported version.

JREs are packaged as jre_name-version.gz or jre_name-version.zip where, jre_name
includes jre-os. The version is the JRE version, for example, 1.8.0.331. The os is the
platform, such as linux64, win64, linux, or win32.

For example, for linux 64: jre-linux64-1.8.0.331.tar.gz.

For a JRE Grid Library, you can optionally specify JVM arguments in the XML. To do so, add
an <arguments> element to the root element. It can take any number of <property>
elements, each containing a <name> element and an optional <value> element.

If the property has a value, the argument name=value is added. Otherwise, only the name
argument is added.

If the same argument is set in the Engine Configuration and the Grid Library, the Grid
Library overrides the Engine Configuration.

TIBCO GridServer® Administration Guide

55 | Managing Services

Note
Specifying the JVM debug port inside a Grid Library results in
unpredictable behavior and is not supported. Set this functionality with
the Debug Start Port setting on the Grid Components > Engines >
Engine Configurations page.

Example: Creating a Multi-Platform JRE Grid Library

Here is an example of how to use the same JDK version Grid Library for Linux and
Windows:

1. Locate a functional installation of the target JDK version for each target platform.

2. Create a grid-library.xml file with the following contents:

For Linux:

 <?xml version="1.0" encoding="UTF-8"?>
 <grid-library jre="true" os="linux">
 <grid-library-name>jre-linux</grid-library-name>
 <grid-library-version>1.8.0.0</grid-library-version>
 <lib-path>
 <pathelement>./jre/lib/ext</pathelement>
 <pathelement>./jre/lib/i386</pathelement>
 <pathelement>./jre/lib/i386/server/</pathelement>
 <pathelement>./jre/bin</pathelement>
 <pathelement>./jre/lib/i386/native_
threads/</pathelement>
 </lib-path>
 </grid-library>

For Windows:

 <?xml version="1.0" encoding="UTF-8"?>
 <grid-library jre="true" os="win64">
 <grid-library-name>jre-win64</grid-library-name>
 <grid-library-version>1.8.0.0</grid-library-version>
 <lib-path>
 <pathelement>jre/bin</pathelement>
 <pathelement>jre/bin/server</pathelement>
 <pathelement>jre/lib</pathelement>
 <pathelement>jre/lib/ext</pathelement>
 </lib-path>
</grid-library>

TIBCO GridServer® Administration Guide

56 | Managing Services

Note that the order of pathelement is important. For example, if you want the server
VM, then jre/lib/i386/server must come before jre/lib/i386. This also applies
to the native_threads directory.

3. Create the Grid Library archive for each platform containing the grid-library.xml
that you created above and the JRE you wish to use. Each archive (either a tar.gz
or zip) has a top-level directory containing the grid-library.xml file and the jre
directory.

4. Name the Grid Library for each appropriate platform. For example, 1.8.0.0-
linux.tar.gz for Linux and 1.8.0.0-win32.zip for Windows

5. Add the following dependencies to your application:

 <dependency>
 <grid-library-name>jre-win64</grid-library-name>

 <grid-library-version>1.8.0.0</grid-library-version>
 </dependency>
 <dependency>
 <grid-library-name>jre-linux</grid-library-name>

 <grid-library-version>1.8.0.0</grid-library-version>
 </dependency>

After performing these steps your application uses the exact JRE version that you have
specified for each platform.

Packaging Grid Libraries
For more information about how to create and package Grid Libraries, see the GridServer
Developer’s Guide.

Distributing Grid Libraries
The GridServer system provides a Resource Deployment mechanism for securely
distributing Grid Libraries. The Grid Libraries to be deployed are uploaded to the Primary
Director. The resources on the Director are synchronized to Brokers, and then Brokers
synchronize the files with Engines. The files are secure in that they cannot be accessed by
anyone on the network, only the Engines.

TIBCO GridServer® Administration Guide

57 | Managing Services

Maker/Checker Support

In an enterprise grid environment, there might be multiple groups responsible for creating
resources. It might be necessary to minimize contention between the groups. For instance,
two groups might use the same core third party library and have packaged it as a Grid
Library, but each might have assigned the same version number to a slightly different
patch level, causing Engines to frequently restart.

To address this, there are two sets of resources for two different user roles. The “maker”
user has access to a staging area, where they can upload resources to a staging area. The
“checker” user then validates the resources (ensuring that there is not a version conflict in
our example) and deploys the resources. A “maker” user has a Security Role with access to
the Resource Deployment Maker feature (such as the default Manage role.) A “checker”
has access to the Resource Deployment Checker feature (such as the default Configure
role.)

If a Director to Broker sync fails for any reason, or if a file sign check fails for any reason,
the Broker to Engine sync is disabled until the next successful sync or sign. When in this
state, Engines act as if sync is disabled, and continue being operational with their current
set of resources.

The Resource Deployment Interface

The Administration Tool provides a graphical interface to manage resources synchronized
to Engines. To manage resources, on the Primary Director, go to Services > Services >
Grid Libraries. The Grid Libraries page features a file browser that can be used to manage
Grid Libraries.

The Grid Libraries page displays a list of Grid Libraries. To upload a Grid Library or Filter,
click Upload Grid Library at the top of the list. Click Choose File, browse to a file, then
click Upload. This transfers the file into the staging directory. To download a Grid Library,
click the file name in the list.

TIBCO GridServer® Administration Guide

58 | Managing Services

The Services > Services > Grid Libraries page

Each Grid Library can be in one of the following states:

• New — An undeployed resource in the staging directory.

• Deployed — A deployed resource in the deployment directory.

• Error — There was an issue with an uploaded file.

The following conditions cause an error in an uploaded Grid Library:

• A Grid Library in the staging directory has the same name as a Grid Library in the
deployment directory. You must first delete a deployed Grid Library before
uploading a replacement. The Administration Tool returns an error message if you
attempt to upload a file with the same name as a deployed file. If a resource is in
error status, the first line displays attributes of the resource file in the deployment
directory, and the second line displays attributes in the staging directory.

• The Grid Library’s archive file is corrupt.

• The Grid Library’s grid-library.xml file does not validate against the Grid Library
DTD.

The following buttons can be used on selected Grid Libraries:

• Deploy — Deploy selected resources from the staging to the deployment directory.

TIBCO GridServer® Administration Guide

59 | Managing Services

• Delete — Delete selected directories and files from the staging and deployment
directory. If the resource is in error status, only its staging copy is deleted.

• Update — Force an immediate file signing request and populate changes to the
Engines.

You can also show details for a Grid Library by clicking its name in the list. This opens a
Grid Library Details window, which displays the following:

The Grid Library Details page

• Properties and values set in the Grid Library’s grid-library.xml file.

• All Services using the Grid Library, directly or indirectly.

• A list of the Grid Library’s dependencies. If there are multiple dependencies, this is a
browsable tree you can click to view all dependencies.

• A browsable tree of all files and directories in the Grid Library.

TIBCO GridServer® Administration Guide

60 | Managing Services

Grid-Specific Resources for Multiple Grids

If you migrate Engines among multiple grids, you can configure GridServer to use a
different resources directory for each grid. This eliminates full Grid Library synchronizations
when Engines are migrated among grids, such as when using Federator to manage these
grids.

To enable this feature, go to Admin > System Admin > Manager Configuration >
Resource Deployment and in the Director settings, change the value of Use Grid Specific
Resources to true. If set to true, resources are downloaded to resources/grid-gridID in the
Engine installation directory, where gridID is the Manager ID of the Primary Director instead
of the resources directory. (For example, on a Windows Engine, this can be
C:\TIBCO\DataSynapse\Engine\resources\grid-1925105476.) Note that the Primary
Director must be restarted for the change to take effect.

You can also configure how many grids Engines can synchronize with by changing the
value of Number of Grids to Sync. This value specifies the number of grids that have
resources retained on the Engine. If the value is set to N and an Engine already has
resources downloaded from N+1 grids, the resources from the least recently visited grid are
deleted to conserve disk space. This value is a Director-level setting and must be set
consistently across multiple grids to effectively reduce resource re-download. Note that all
Brokers must be restarted for the change to take effect.

Grid Library Filters
You can limit which Engines synchronize a Grid Library using Grid Library filters. This
enables you to define a filter file in XML that specifies which Engines based on Engine
properties. This decreases hard drive usage and network bandwidth in deployments where
not all Engines can or are allowed to work on certain types of Services.

A Grid Library filter is an XML with the same name as its associated Grid Library and ends
with the extension .filter. When an Engine requests a resources sync, the list of Grid
Libraries are filtered based on the matching of the conditions.

Grid Library Filter DTD

A Grid Library filter has the following DTD:

TIBCO GridServer® Administration Guide

61 | Managing Services

Element Description Elements and
Attributes

grid-library-
filter

root element Elements

• property-
condition-
set*

property-
condition-set*

A set of conditions that must be satisfied for the
Engine to synchronize

Elements

• property-
condition*

• property-
condition-
set*

Attributes

• operator?

property-
condition*

A condition that must be satisfied for the Engine
to synchronize

Elements

• property

• comparison

Attributes

• null-
compare?

Grid Library Filter DTD

A property-condition uses the following comparison attributes:

• contains

• notContains

• matches

• notMatches

• equal

• notEqual

• greaterThan

TIBCO GridServer® Administration Guide

62 | Managing Services

• lessThan

• greaterThanEqual

• lessThanEqual

The operator attribute can be and (the default) or or. The null-compare attribute can be
false (the default) or true.

Filter Example

The following code is an example of a simple filter which only deploys a given Grid Library
to Engines running four or more instances:

<grid-library-filter>
<property-condition-set>

<property-condition>
<property>
<name>numInstances</name>
<value>4</value>

</property>
<comparison>greaterThanEqual</comparison>

</property-condition>
</property-condition-set>

</grid-library-filter>

Deploying Grid Library Filters

Grid Library filters are uploaded in the GridServer Administration Tool at Services >
Services > Grid Libraries, using the same control used to upload Grid Libraries. When you
upload a filter, it is first validated to ensure it is valid XML and the comparison, property,
value, and type elements are valid and property.name elements are not empty. Also, there
is a 16 KB size limit for filters, which is checked.

After the filter is validated, you are prompted if you want to deploy it. If you click Cancel,
the filter is not added to the Manager.

Deployed filters are shown in the list of entries on the Services > Services > Grid Libraries
page, and you can delete them the same way you delete a Grid Library. Unlike Grid
Libraries, you can upload a filter with a duplicate name to replace an existing filter with a
revised version.

TIBCO GridServer® Administration Guide

63 | Managing Services

JAR Ordering File
If you are using multiple JAR files and need the classloader to load them in a specific order
to prevent conflicts, you can specify the order in which they are loaded. To do this, create
a file called index.libs in the JAR path root and put the names of JAR files, one per line,
in the order in which they must be loaded. Those not in the list load afterwards in no
specific order.

Uploading and Deploying with the Admin API
You can programmatically upload, deploy, download, and delete Grid Libraries and filters
to a Manager using the JDriver Admin API. The ServiceAdmin class has methods you can
use to manipulate resources on a Manager. It includes the following related methods:

• uploadResource – uploads a resource into the temporary staging directory

• deployResources – copies resources from staging to deployed

• downloadResource – downloads a copy of a resource

• deleteResources – removes resources

• listResources – returns a list of resources on the Manager

You can also determine Grid Libraries loaded on Engines by using the EngineAdmin class to
get the EngineProperties. The GRID_LIBRARIES property is a list of all downloaded Grid
Libraries, and GRID_LIBRARIES_UPDATE_TIME, is the time at which they were last updated.

For more information, see the Java API documentation.

Running Services
To run a Service, you must deploy the Service’s classes to Engines, and set options that are
used when the Service is used. This is done in the Service Type, which specifies the Grid
Library containing a Service’s implementation, binds classes to Service methods, and sets
any Service options. One of the options that can be set is Service Run-As, or the user
account that is used to run the Service.

TIBCO GridServer® Administration Guide

64 | Managing Services

Registering a Service Type
To use a Service, you must first register a Service Type from the GridServer Administration
Tool.

To register a Service Type:

1. Go to Services > Services > Service Types.

2. A list of existing Service Types appears on that page, along with a line for adding a
new Service Type.

3. Enter the Service Type Name on the blank line.

4. Select the Service Implementation, then click Add.

5. A window with several options appears after clicking the Add button.

— For Java Service Types, enter the fully qualified class name for the Service.

— For .NET Service Types, enter the class, assembly, and domain name for the
Service.

— For R Service Types, enter the function interface for the Service.

— For dynamic libraries, enter the library name for the Service.

— For commands, enter the command line for the Service.

The window also allows you to enter options for the Service Type.

Note: After you register a Service Type, you must deploy the implementation to
your Engines. If you submit tasks without deploying a Service implementation,
the Driver submits the tasks with no error, but no Engines take tasks.

Service Run-As
There are often cases where Services require specific user permissions to access needed
resources. By creating the Engine process as a given user, all Service invocations executed
by the Engine can operate with these permissions. Service Run-As (or RA) allows for
specification of authentication domain accounts under which Service invocations execute.

By default, all RA credentials authenticate on the Engine Daemon to verify that the
credentials are valid for the Engine’s authentication domain. You can disable Service RA

TIBCO GridServer® Administration Guide

65 | Managing Services

authentication on the Broker, but do so only when you have a specific reason. For
example, if you are using Kerberos or Windows authentication, you must disable this if your
Drivers have Negotiate enabled, since there is no password available.

compressData
If you want the initial input and output data to be compressed, you must set the
compressData field as True. To disable the feature, set the value of the compressData
field as False.

Default value: Not set

encryptionEnabled
If you want the initial input and output data to be encrypted, you must set the
encryptionEnabled field as True. To disable the feature, set the value of the
encryptionEnabled field as False.

Default value: Not set

Types of Credentials

You can specify Service Run-As credentials for a given Service in one of two ways: as stored
credentials or pass through credentials.

• Stored Credentials — Enter Service Run-As credentials on the Director with the
GridServer Administration Tool. These credentials are synchronized with all Brokers.
These credentials are linked to Services in the Service Type Registry by specifying
the user name in the RunAsUser field. Credentials in the repository consist of a user
name and a password. The user name can be in Windows DOMAIN/username format if
domain-specific authentication is required. UNIX Engines ignore this domain.

• “Pass through” Credentials — The Driver provides the user name of the current
Principal that is logged in and is running the Driver. The password is provided as a
DriverManager property, CURRENT_USER_PASSWORD. These are referred to as “pass
through” credentials. A password set on the Driver is necessary to prevent user
account spoofing between authentication domains (for example, logging in as a local
user on the Driver machine to pose as an LDAP user in the credentials DB).

TIBCO GridServer® Administration Guide

66 | Managing Services

Pass through credentials are indicated for a Service in the Service Type Registry with the $
token. This token is substituted with the user name of the current principal that is
executing the Driver process. The token might also be prepended with a Windows domain
if domain-specific authentication is required. UNIX Engines ignore this domain.

Note
When you create a Service using pass through credentials and
the Collection.NEVER Service option, failover does not work
under all circumstances.

• If the Broker accepts the Service and the Engine has not
yet picked up the tasks, failover works correctly and tasks
successfully rerun.

• If the Broker accepts the Service and the Engine has
already picked up the tasks, tasks do not rerun
successfully and an Exception is thrown. Pass through
credentials do not persist through failover.

Using Run-As
To use Run-As, you must do three things: set up Engines, add credentials, and associate
credentials with Service Types.

Engine Setup

For information about how to set up Engines for Service run-as, see “Configuring Run-As
for Windows Engines” and “Configuring Run-As for UNIX Engines” in the GridServer
Installation Guide.

Managing Credentials

The Credentials DB is a store of RA credentials on the Director and Brokers used for RA
services. It is maintained on the Director and synchronized with Brokers.

The Run-As Credentials page in the Administration Tool lets you create, edit, and delete
RA credentials.

To add new Credentials to your Manager:

TIBCO GridServer® Administration Guide

67 | Managing Services

Procedure

1. In the Administration Tool, go to Admin > User Admin > Run-As Credentials.

2. Enter the name of a credential, a password, and then enter the same password
again.

3. Click Add.

Managing Run-As in Service Types

The Service Type Registry entries allow specification of an RA user name for use with that
Service. To specify a Run-As user for a Service Type:

Procedure

1. In the GridServer Administration Tool, go to Services > Services > Service Types.

2. Select an existing Service Type, click to the Actions control, and select Edit Service
Type. This opens the Service Type Editor window.

3. In the Service Type Editor window, under the ContainerBinding header, enter the
user name in RunAsUser.

Note that in this field, you can use $ to indicate the Driver’s current user. Leaving this value
blank (the default) indicates that the process runs as the same user running the Engine
Daemon.

If you are adding a user name that contains unicode characters, you must change to the
correct code page to match the user name.

The Specify Additional RunAs User permission is needed to specify a user other than the
Driver or Engine Daemon process.

It is also possible to specify a Windows domain in the RunAsUser field. For example, if you
are using a UNIX Driver (which is not in a Windows domain) and you want to run Services
on Windows Engines using a specific user and domain, you can specify this in the form
domain/username. The forward slash translates to a backslash. For example, specifying
DATASYNAPSE/BILL runs Services as the user BILL in the DATASYNAPSE Windows domain
(DATASYNAPSE\BILL).

TIBCO GridServer® Administration Guide

68 | Managing Services

Scheduling
One of the responsibilities of Brokers is scheduling, which is the management of Services
and tasks on Engines and interactions between Engines and Drivers. This section gives
more details on how scheduling works, and the method used to determine what tasks in a
Service are sent to what Engines.

Most of the time, the scheduling of Services and tasks on Engines is completely transparent
and requires no administration. However, to tune performance, or to diagnose and resolve
problems, it is helpful to have a basic understanding of how the Broker manages
scheduling.

Recall that clients create Service Sessions on the Broker. Each Service Session consists of
one or more tasks, which might be performed in any order. The scheduler determines the
optimal match of Engines to Services. Whenever an Engine reports to the Broker to request
work, the Broker assigns a task from that Service to the Engine. When an Engine completes
a task, it is queued on the Broker for collection by the client. If an Engine is interrupted
during processing, the task is requeued by the Broker.

Reschedules and Retries
Before the discussion of scheduling behavior, we must first define the terms Retry and
Reschedule within the context of scheduling tasks.

Retry

A Retry is when a task is re-queued due to a known failure of the task. Such failures can be
due to an error condition in the implementation, an error due to inability to download
data, or the failure of an Engine (the monitor has detected that the Engine is no longer
connected but it has not logged off.) It is always the result of the Engine returning the task
as failed to the Broker. When a task is retried, it is always placed at the front of that
session’s queue. The scheduler manages a retry count for each task, so that a limit can be
placed on the number of allowed retries.

Reschedule

A Reschedule is when a task is re-queued when it might or might not have failed. When a
task is rescheduled, it is by default placed at the back of that session’s queue, unless the
Reschedule First configuration option on the Broker is set to true. (Go to Admin > System

TIBCO GridServer® Administration Guide

69 | Managing Services

Admin > Manager Configuration > Services to set it.) The scheduler also manages a
reschedule count for each task. The following conditions result in a reschedule:

• Engine Logoff: When an Engine logs off gracefully while running a task (such as when
UI or CPU idle conditions are met, or there is a forced rebalance), the task is
rescheduled, but the reschedule count is not incremented, since there was no task
error.

• Redundant Rescheduler: If any of the Redundant Rescheduler strategies are in effect,
tasks might be rescheduled to other Engines. By default, those tasks are allowed to
continue to run on the current Engines, in case they finish before the rescheduled
tasks. In this case, the reschedule count is increased.

Timeout Behavior

When the INVOCATION_MAX_TIME option is set, it specifies that any invocation of a request
might not exceed this value. If a task times out on an Engine, it can either retry or be
rescheduled, depending on what makes more sense for your application. If retried, the
current Engine’s invoke process ends, and the task is assigned to another Engine. If
rescheduled, the current Engine task continues execution. In either case, the appropriate
count is incremented.

The default behavior (retry) is set on the Broker. It can also be set for the Service Type on
the Service Type Registry page, or programmatically when the Service Session is created.

The specific timing involved with a retry/reschedule depends mainly upon three properties:
The Task Max Time, the scheduler interval and the Engine heartbeat.

The moment the task is picked up by the Engine, the start time is marked. The scheduler
wakes up at least once in every scheduler interval seconds to check for any tasks in
progress that exceed the max time. If Reschedule on Timeout is false (the default), the
scheduler logs off Engines that have timed out, causing the tasks to retry immediately. The
tasks are placed at the top of its session’s queue. Note that the Engine on which the task is
running does not restart itself until the next message is sent, typically a heartbeat. If true,
those tasks are redundantly rescheduled, and Engines that have timed out are allowed to
continue; the task is complete as soon as any Engine completes it.

In general, the maximum time is the Task Max Time plus the Poll Period of Service
Rescheduler. For instance, if Task Max Time = 50 sec and Poll Period= 60 sec, best = 50 secs
and worst = 110 secs. However, it can take up to the Engine Heartbeat for the Engine on
which a task was retried to log back in.

TIBCO GridServer® Administration Guide

70 | Managing Services

The Scheduler
The scheduler is the component that is used on a GridServer Broker to assign tasks to
Engines. It attempts to make optimal matches based on criteria such as the session priority
level or SLA group, affinity, and Serial Service and Priority execution modes.

Scheduler Overview

The scheduler aims to schedule tasks to Engines by attempting to have the proper amount
of Engines allocated to all active Service Sessions at any given time. A Scheduling Event is
any event that might result in a task being assigned to an Engine, such as an Engine
finishing a task, an Engine logging in, or new tasks added. On any given scheduling event,
the scheduler decides the number of Engines each Session must have at the time, based on
static and dynamic criteria, and then assigns the appropriate number of Engines to
sessions based on how many the Session needs to reach the ideal level.

There are two modes under which the Scheduler can operate: Priority, or Service Level
Agreement (SLA).

Priority Mode

Every GridServer Service has an associated priority. By default, there are ten priority levels,
ascending in priority 0-9. When set to 0, the Service is suspended, meaning that no tasks
are assigned. Priority can also be set to Urgent, which is covered later in this section. The
priority is set when a Service is created. It can be changed at run time in the
Administration tool and by the Admin API.

A Priority Weight is associated with each Priority Level. The weight defines the amount of
Engines allocated to a session relative to all other active sessions. For example, if Session A
and B have weights of 2.0, and Session C has weight 4.0, and there are eight Engines,
Session A and B get allocated two Engines each, and Session C gets four. To set the
weights, go to Admin > System Admin > Manager Configuration > Services and change
the Priority Weights property. By default the weights are linear.

The number of priority levels can be changed. However, a large number of priority levels
can impact performance when Serial Priority is not enabled, so it is recommended that the
Serial Priority is enabled in this case.

There are two algorithms that are used in Priority mode, Usage, which allocates Engines to
all running Services as fairly as possible, and Time, which simply allocates Engines to
Sessions in the order in which they were created. Also, when Serial Priority Mode is

TIBCO GridServer® Administration Guide

71 | Managing Services

enabled, Sessions of a higher priority are assigned Engines when needed before lower
priority Sessions. By default, Usage is used with Serial Priority Mode disabled.

Usage Algorithm

The scheduler takes into account the amount of usage that the Session has received over a
given historical window of time. The “usage” refers to the amount of Engine clock time that
the Session has occupied during that window. When a Session is created, it is initialized in
such a way that it simulates as if it was running ideally over this window.

This usage provides the ordering in which Engines are allocated to Sessions. This addresses
starvation issues, round-off error (the number of ideal Engines is rarely an integer), and
under/over-utilization due to discrimination, changes in the number of available Engines,
and so on.

On a scheduling event, Sessions are assigned the ideal number of Engines less the amount
that are currently allocated, in the order of least to most usage.

This approach can be seen as analogous to a CPU thread scheduling algorithm. Each
Session is a “thread”, the Engines are the “CPU”, the window is the sample period, and
each task is an uninterruptible unit of CPU time allotted to a thread.

Whenever an Engine or set of Engines is available for scheduling, the scheduler decides
how many Engines each session must be allocated. In general, that value is:

Ideal Engines per Session = All Engines * Session Priority Weight / Total Weight,

where “Total Weight” is the sum of all Priority Weights of active sessions. This value is
rounded up to the next integer to prevent starvation for an ideal calculation of < 0.5, and
assures that the sum of Ideal Engine’s is always at least as large as Total Engines. This
algorithm also takes into account if the actual number of Engines that can be allocated is
less than the ideal, such as when a Session is towards the end, or when Max Engines is
used.

Recall that a Session’s usage is considered to be the total Engine clock time spent on the
session over the last configurable amount of time. This includes running and completed
tasks. When a Session is created, it must initialize its usage. The simplest, most fair method
of doing this is to assume it has been operating in a steady state over the window with the
ideal non-rounded number of Engines. The variables that monitor usage are then initialized
as such. If no sessions are active, it initializes them such that the session’s ideal is the total
number of Engines currently on the Broker.

Whenever there is an event that requires a scheduling episode, the scheduler assigns the
proper number of Engines to each session for it to be at its ideal amount. This assignment

TIBCO GridServer® Administration Guide

72 | Managing Services

is performed in order of least to most priority-normalized usage. If there are any
unassigned Engines remaining after this initial round based on usage (typically due to
disallowed conditions preventing assignment), a second tier round robin assignment is
performed.

Time Algorithm

The Time algorithm is used by setting Serial Service Execution to true. This algorithm
works as follows:

When a Session is created on the Broker, it is placed in the queue. On each scheduling
episode, the scheduler simply iterates through the queue and assigns all idle Engines it can
to each Session. Normally, only the first Session is assigned Engines, except when that
Session is finishing up, or if Discriminators prevent Engines from running on that Session. A
Session keeps its place in queue until it is destroyed regardless of whether or not it has
tasks in queue or running.

Serial Priority Mode

When Serial Priority Mode is enabled, the scheduler ensures that Sessions are assigned
Engines in order of priority. The scheduler iterates through each priority level in
descending order, and assigns as many Engines to Sessions at that level as possible. Either
the Time Algorithm or the Usage Algorithm, depending on whether Serial Service Execution
is enabled, is used on the subset of Sessions at the same Priority level. Note that this
means that Priority takes precedence over creation time.

Intrinsic Affinity

The scheduler uses the fact that an Engine has initialization data and updates from a
particular Service to prioritize routing of subsequent requests to that Service. This feature,
called affinity, reduces data movement, because unneeded Engines are not recruited into
the Service. For example, Engine A has worked on Session X and Engine B has not. If both
are idle and a task is submitted by X, Engine A is assigned the task. However, if Engine A is
busy, Engine B is assigned the task. You can also use the AFFINITY_WAIT Service option to
control how long a queued request avoids allocation to an available Engine that has no
affinity, in the hope of later being matched to an Engine with affinity.

Affinity is not used when using the Time algorithm.

For more information about tuning or customizing how the scheduler uses affinity, see
Optimizing the Grid.

TIBCO GridServer® Administration Guide

73 | Managing Services

Priority Aggregation

Priority Aggregation is a setting that can be enabled for the usage algorithm. When
enabled, the amount of Engines to be allocated is now aggregated over the entire group of
Sessions running at a priority level, rather than per Session. That is,

Ideal Engines per Session = All Engines * Session Priority Weight / Total Weight / Sessions
at Priority

This mode is used when you want to guarantee a known distribution of Engines amongst
priority levels regardless of how many Sessions are running at that level.

Example:

With 100 Engines total, 1 Session at level 6 gets 60, and 1 Session at level 4 gets 40.

Without priority aggregation, if another level 4 Session is added, each level 4 Session now
wants 29, and the level 6 wants 43. With it enabled, the level 6 Session still gets 60, and
each level 4 Session gets 20.

Urgent Priority Services and Preemption

A Session’s priority can be set to Urgent when that Session must be serviced immediately,
even preempting running tasks if necessary. An urgent Service’s weight is hard-coded to be
essentially infinite, so that they are assigned all available Engines.

When an Engine is preempted, the task it is currently running is canceled and rescheduled,
and the Engine becomes available for new tasks. Engines are preempted on a Service
under the following conditions: if after being assigned all free Engines a Service can still
make use of more Engines, then it might preempt some busy Engines, subject to two
constraints that can be adjusted with configuration properties. First, the urgent Service
must have been in the queue for Preempt Delay Seconds. Second, the percentage of
Engines in the grid running urgent Services cannot exceed Preemptable Engine Percent.

For example, if this property is set to 50, and 47 percent of the Engines are currently
running urgent Services, then at most three percent are preempted. This value is not a
hard limit on the number of Engines that might be running urgent Services, because free
Engines are allocated to urgent Services regardless of how many Engines are already
running urgent Services.

The scheduler chooses Engines for preemption based on the following rules: Engines
running an urgent Service are never preempted. An Engine running a task from a Service
with lower priority is generally selected in preference to one running a higher-priority task.
However, if the lower-priority task has been running for a long time, a short-running,

TIBCO GridServer® Administration Guide

74 | Managing Services

higher-priority task might be preempted instead. The Preempt Threshold Minutes
property determines the value at which this crossover happens. For example, if this
property is set to 30, then an Engine that has just started running a priority 2 task is
chosen for preemption over an Engine that has been running a priority 1 task for more
than 30 minutes. The formula is as follows: priority + (runningMillis /
preemptThresholdMillis).

Warning
Preemption can have a significant performance impact on
your grid and cause scheduling problems with other
Services. It must be used with caution.

Other important points concerning priority Services and preemption:

• Tasks canceled by preemption are not subject to a rescheduling limit, since they are
not considered failures.

• To prevent preemption from ever occurring, set Preemptable Engine Percent to 0.

• The first Service on the queue might not get all free Engines if it doesn’t have
enough tasks, it is already using its maximum number of Engines, or it discriminates
against some Engines. Free Engines that are not taken by the first urgent Service are
first offered to the other urgent Services on the queue, and then to all other
Services.

SLA Mode

When the SLA mode is used, the scheduler guarantees that a number or percentage of
Engines on the Broker is allocated to a group of Services, provided enough Engines are
available.

To enable SLA scheduling, go to Admin > System Admin > Manager Configuration >
Services and set SLA Scheduler Enabled to true. Then you must define the Broker’s SLA
Groups, which is a comma-delimited list of groups and values. The values must be either
all integers, or all floating points where 0 < x <1. When integers, it indicates that the SLA is
the actual number of Engines, otherwise it is the percentage of Engines currently logged in
to the Broker.

For example, setting SLA Groups to a=10,b=12,c=20 specifies that group A’s target is 10
Engines, group B’s target is 12 Engines, and group C has a 20-Engine target. Alternatively,
an SLA Groups setting of a=.25,b=.5,c=.1 sets the A, B, and C’s targets to 25%, 50%, and
10% of Engines, respectively.

TIBCO GridServer® Administration Guide

75 | Managing Services

Sessions are assigned to groups by setting Description.SLA_GROUP_NAME on the
Description. All Sessions must have this set; if not set or set to an invalid group name, the
Session is rejected by the Broker.

On every scheduling event, the scheduler calculates how many Engines must be allocated
to each SLA Group, and then assign Engines to Sessions as follows:

• The entire list of Sessions is ordered by the same Usage algorithm used in the
Priority mode. This ensures fairness in the steady-state. Scheduling is performed
round-robin within an episode, starting at the Session with the least amount of
usage.

• When a Broker has enough Engines to meet all group SLA Engine needs, Engines are
first assigned so that all SLA Groups have their SLA number met. Then any remaining
Engines are divided up among the groups, weighted by their SLA numbers, rounded
to the next integer.

• When a Broker does not have enough Engines to meet group SLA Engine needs, the
Engines are allocated to groups by weight as in the case of the remainder when
there are enough Engines.

For example, you have set SLA Groups as a=20, b=30, c=50, and there are nine remaining
Engines after SLA Engine needs are met. 9 * 20 / 100 = 1.8, so group A gets 2 remainders.
Likewise, group B gets 3, and group C gets 5. Note that in this case, one of the groups gets
one less than their number due to rounding, but the usage algorithm corrects these
inequities in the long run.

The SLA scheduler does not take Affinity into account, nor is there any analog to Urgent
Priority.

SLA Task Preemption

In the case of long-running tasks, you can use the task preemption option with the SLA
scheduler to better distribute Services to idle Engines. When the SLA Preemption Enabled
property is set to true, when one SLA group is idle, other groups might be allocated its
Engines. If Services are then added to the idle group, tasks are preempted to reallocate
Engines needed to meet its SLA.

Common Scheduler Features
The features in this section are common to both scheduler modes.

TIBCO GridServer® Administration Guide

76 | Managing Services

Grid Library Aware Scheduling

The GridServer scheduler does not schedule a task to an Engine if that Engine does not yet
have the root Grid Library for that Service. Additionally, when an Engine logs in, it does not
wait until it is synchronized to run tasks; rather, it works on any Services it can while it is
synchronizing any new libraries. This allows for straightforward library deployment on large
grids where it might take hours to fully sync; Services can be started at any time instead of
waiting until all Engines are synced.

Engine Blacklisting

If a Service sets the option engineBlacklisting (ENGINE_BLACKLISTING) to true, then
Engines that fail on a task from that Service do not receive any other tasks from that
Service. The default is false. “fail” means any action that results in a failed task being sent
back to the Manager, regardless of whether that failure was due to Engine hardware,
Engine environment, or Service implementation code. It does not include events such as
the Engine going offline to user activity, since that does not result in a task failure.

You can also set the option failuresBeforeBlacklist(FAILURES_BEFORE_BLACKLIST) to a
number of task failures before an Engine is blacklisted.

Blacklisted Engines are excluded for a particular Service Session only; they can freely
accept tasks from any other Service, regardless of Service Type, assuming the other
Services haven’t also blacklisted the Engine or have some Conditions in place that prevent
it. Blacklisted Engines can also be shared to other Brokers that need Engines.

To remove an Engine from all blacklists, go to Grid Components > Engines > Daemon
Admin and select Clear from Blacklists from the Actions list.

You can get a list of blacklisted Engines using the GridServer API. In Java, the
getBlackListedEngines method in com.datasynapse.gridserver.admin.ServiceAdmin
retrieves a list of Engines that have been blacklisted for a given Service. It is also available
for C++ and .NET. See the GridServer API for more information.

Engine Greylisting

If your Tasks are more heterogeneous, you might not want to use blacklisting, because a
single Task failure might not imply failure of all Tasks. Greylisting enables you to make it
less likely that an Engine works on a Service Session than other Engines, without
completely excluding that Engine. This is done by lowering affinity for an Engine for the
Task retry.

TIBCO GridServer® Administration Guide

77 | Managing Services

To use Engine Greylisting, set the Service option engineGreylisting (ENGINE_GREYLISTING)
to true. When a Task fails, the Service Affinity for that Engine is reduced by a configurable
amount, which by default is 5. To change this amount, go to Admin > System Admin >
Manager Configuration, and under the Affinity heading, change Greylist Affinity to a
negative value.

Greylisting can be used with blacklisting, if the failuresBeforeBlacklist is greater than
zero. The Service Affinity is reduced upon each Task failure until failuresBeforeBlacklist
is reached and the Engine is blacklisted.

The Clear from Blacklists action described above also clears greylists.

Engine Properties

Engines have a number of intrinsic properties, such as available memory or disk space,
performance (megaflops), operating system, and so forth, that the condition can use to
define eligibility. Custom properties can also be defined on the grid, and property values
can be assigned on a per-Engine basis. These properties are used in a number of the
following features.

Engine Tiers

Often time customers might have distinct sets of resources that they might want to use on
a preferred basis. Engine tiers provide a mechanism to specify the order in which groups of
Engines must be scheduled.

For example, you might have a set of high-performance dedicated blades, a pool of older
servers, and a group of desktop computers used as part-time grid resources when idle.
Ideally, you might not want to use older servers unless the high-performance servers are
completely in use, and avoid using desktop machines unless both other groups were busy.

Engine tiers are defined on the Broker at Admin > System Admin > Manager
Configuration > Services, under the Scheduling heading, with the Engine Tiers property.
The property’s format is an ordered, comma-delimited list of Engine property name-value
pairs. For example, for the above scenario, if you had a type Engine property, you might
use type=blade,type=server,type=desktop. The list is ordered from highest-tier to
lowest-tier. Engines matching the first tier are always scheduled before those in the second
tier, and so on.

If an Engine matches more than one property, the highest tier is matched. If it matches
none of the defined tiers, it is scheduled after all other tiers.

TIBCO GridServer® Administration Guide

78 | Managing Services

Conditions

Conditions are rules that are applied to Services and tasks that affect how they are
scheduled to Engines.

A Discriminator Condition limits the execution of tasks to a subset of Engines. If an Engine is
ineligible to take the next waiting task, it is assigned the first task it is eligible to take. An
Affinity Condition, like intrinsic affinity, provides for prioritized routing of tasks to Engines,
but does not prevent any Engines from taking tasks. These conditions typically are based
on Engine Properties. Users can also implement custom versions of these conditions. (Note
that Affinity is only used in Priority Mode with the Usage algorithm.)

Task Affinity provides the ability to run a set of Tasks on the same Engine or set of Engines.
For example, if a Task loads a large dataset, and a number of subsequent Tasks use the
same dataset, you can add a Task Affinity Condition to those Tasks so they prefer to run on
the Engine that ran the first Task.

When a QueueJump Condition is added to a task submission, the task is added to the front
of the Session’s queue so that it is the next task taken.

Dependency Conditions are used to create workflow amongst Sessions and tasks. A task
can be set to wait until another task or Session completes; likewise with Sessions.
Dependent tasks or Sessions can also optionally fail if the dependency fails.

For more information about using Conditions, see the GridServer Developer’s Guide.

Redundant Rescheduling

Redundant rescheduling addresses the situation in which a handful of tasks, running on
less-capable processors, might significantly delay or prevent Service completion. The basic
idea is to launch redundant instances of long-running tasks. The Broker accepts the first
result to return. Remaining instances are not immediately canceled; it waits to either finish,
or waits until the Service finishes. Redundant rescheduling is also useful when completion
of long running tasks is critical.

By default, redundant task rescheduling is not enabled. With pools of more capable or
nearly identical Engines, fastest task execution occurs when there is no redundancy from
rescheduling. In general, rescheduling is only appropriate when there are widely different
capabilities in Engines. To enable redundant rescheduling, you must enable one of the
three strategies, and set the REDUNDANT_RESCHEDULING_ENABLED Service option to true on
each Service you want to redundantly reschedule.

TIBCO GridServer® Administration Guide

79 | Managing Services

Note
In situations where a group of Engines might slow down a task
run, using discrimination can be more efficient than redundant
rescheduling.

Three separate strategies, running in parallel, govern rescheduling. Tasks are rescheduled
whenever one or more of the three corresponding criteria are satisfied. However, none of
the rescheduling strategies apply for any Service until a certain percentage of tasks within
that Service have completed; the Strategy Effective Percent property determines this
percentage.

The rescheduler scans the pending task list for each Service at regular intervals, as
determined by the Poll Period property. Each Service has an associated taskMaxTime, after
which tasks within that Service are rescheduled. When the strategies are active (based on
the Strategy Effective Percent), the Broker tracks the mean and standard deviation of
the (clock) times consumed by each completed task within the Service. Each of the three
strategies uses one or both of these statistics to define a strategy-specific time limit for
rescheduling tasks.

Each time the rescheduler scans the pending list, it checks the elapsed computation time
for each pending task. Initially, rescheduling is driven solely by the taskMaxTime for the
Service; after enough tasks complete, and the strategies are active, the rescheduler also
compares the elapsed time for each pending task against the three strategy-specific limits.
If any of the limits is exceeded, it adds a redundant instance of the task to the waiting list.
(The Broker resets the elapsed time for that task when it gives the redundant instance to
an Engine.)

The Reschedule First flag determines whether the redundant task instance is placed at the
front of the back of the waiting list; that is, if Reschedule First is true, rescheduled tasks
are placed at the front of the queue to be distributed before other tasks that are waiting.
The default setting is false, which results in less aggressive rescheduling.

Each of the three strategies computes its corresponding limit as follows:

• The Percent Completed Strategy waits until the Service nears completion (as
determined by the Remaining Task Percent setting), after which it begins
rescheduling pending tasks that are taking longer than the average completion time
for tasks within the Service.

• The Average Strategy returns the product of the mean completion time and the
Average Limit property. That is, this strategy reschedules tasks when their elapsed
time exceeds some multiple (as determined by the Average Limit) of the mean
completion time.

TIBCO GridServer® Administration Guide

80 | Managing Services

• The Standard Dev Strategy returns the mean plus the product of the Standard Dev
Limit property and the standard deviation of the completion times. That is, this
strategy reschedules tasks when their elapsed time exceeds the mean by some
multiple (as determined by the Standard Dev Limit) of the standard deviation.

TIBCO GridServer® Administration Guide

81 | Managing Engines

Managing Engines
This section contains information for managing GridServer Engines. For information about
installing Engines, see the GridServer Installation Guide. For information about
troubleshooting Engine issues, see Diagnosing Engine Issues.

Engine Routing and Balancing
Engines are dynamically allocated resources. They can migrate among Brokers based on
criteria such as load and policy. Use the Engine Balancer to manage logins and re-route
Engines to maintain an optimal balance across the grid. The Engine Balancer is a
component of the Director. The Primary Director’s balancer always runs. The Secondary
Director’s balancer runs only if the Primary is down.

The Director handles routing and load balancing as follows:

1. The Director regularly polls Brokers for the states of Engines on the Brokers. The
Director tests routing mechanisms against each Engine and determines the optimal
location for each Engine. Changes in the states of Engines due to load balancing
requirements result in changes in the optimal distribution of Engines on Brokers.

2. The Director sends a request to each Broker that has Engines that must be moved,
to log those Engines off.

3. Engines that must return to their home Broker log off immediately, regardless of the
task timeout setting.

4. Shared Engines that are busy restart immediately without finishing the current task.
Engines that are not busy log off immediately.

5. After an Engine logs off or restarts, it then logs in to the optimal Broker.

Two balancer algorithms are available. Choose one according to how you plan to use the
grid:

• The weight-based balancer algorithm attempts to distribute Engines equally by
relative weights, and it also allows rule-based routing using Engine properties.

• The Home/Shared Balancer routes Engines based on an Engine’s assigned Home
Brokers, and the sharing policy of Home Brokers to other Brokers. Both balancers

TIBCO GridServer® Administration Guide

82 | Managing Engines

take into account the number of running and pending tasks on each Broker, and the
desired maximum and minimum number of Engines for each Broker.

If you change the Engine Balancer on the Director, you must restart it. Also, all balancer
settings must be equal on Primary and Secondary Directors. You can configure routing
settings for online or offline Brokers.

Balancing and Service Discriminators
When the Director polls Brokers for Engine information, it also collects information about
Service Discriminators and blacklisted Engines. The Director avoids a situation where
Engines are at their home Broker and cannot take Services due to Service discrimination or
blacklisting, but also will not be shared to another Broker. (Task-level discriminators are
not taken into account.)

All of the following must be true for a Service, to report a Service discriminator:

• The Service is not complete.

• The Service has pending tasks.

• The number of busy Engines working on the Service does not exceed the max
Engines option of the Service.

To limit CPU and network usage during balancing, the maximum number of discriminators
reported by each Broker can be configured on the Director. You can configure it at Admin >
System Admin > Manager Configuration > Engines and Clients > Max Service
Discriminators. This setting specifies the number of Services with discriminators per
Broker that are considered.

If a Broker has more outstanding services with Service discriminators than the maximum
specified, a message is logged in the Broker logs, similar to the following:

INFO: [EngineSharing] Maximum number of discriminators 10 is reached
when collecting service level discriminators

When this occurs, the remaining discriminators over max (ten in the above example) are
not considered when allocating Engines to this Broker. This does not prevent the Engines
from being reallocated to the Broker even if the Engines do not satisfy the discriminators. If
Max Service Discriminators is set to 0, no discriminators are considered.

TIBCO GridServer® Administration Guide

83 | Managing Engines

If the Max Service Discriminators is set to a very high value, reporting of balance data from
the Broker to the Director takes more time.time, whichThis slows down the balancing.
Lower the value of the parameter, if balancing is slowed down to an unacceptable level.

Engine Weight-Based Balancer
The Engine weight-based balancer allocates Engines to Brokers based on each Broker’s
Engine weight value. This value is the amount of Engines allocated to the Broker relative to
the other Brokers’ weights, when all Brokers are idle. The algorithm also considers session
load and reallocates idle Engines to busy Brokers as they are needed. You can see a
Broker’s Engine weights value on the Grid Components > Brokers > Broker Admin page.

The Engine weight-based balancer permits rule-based routing through Engine Properties,
when it is necessary to restrict some Engines to a set of Brokers. You can route Engines by
their intrinsic properties, such as cpuTotal, and by user-defined properties. Create and
assign user-defined properties with the Grid Components > Engines > Engine Properties
page. Use the Grid Components > Brokers > Broker Routing page to set up routing rules
based on these properties.

Home/Shared Balancer
The Home/Shared Engine balancer uses an algorithm in which an Engine has a set of Home
Brokers that it always works on while it has outstanding tasks, yet the Engine can be
shared to other Brokers when there are no outstanding tasks on any home.

The balancer uses Broker needs and Engine preferences for Brokers to allocate Engines to
Brokers. Each Engine divides the existing Brokers into tiers (unordered sets of Brokers). The
two default tiers are:

• The Engine’s home Brokers

• The shared Brokers of those home Brokers

You can introduce a third tier by splitting shared Brokers into two groups: preferred shared
brokers, and common shared Brokers. The higher the tier, the more the Engine prefers the
Brokers in that tier.

The balancer uses the following rules:

• An Engine is routed to the highest-tiered Broker that has pending tasks. If multiple
Brokers in the same tier have pending tasks, the choice is made at random, as if all

TIBCO GridServer® Administration Guide

84 | Managing Engines

weights were 1. The number of Engines moving to a Broker is capped at the number
of pending tasks if there are more pending tasks than available Engines in the tier.

• An Engine leaves its current Broker only if there is a needy Broker in a higher tier. An
Engine does not move to a lower-tiered Broker unless it is idle.

• Failover Brokers are never allocated Engines unless they have pending tasks.

• If Options.MAX_ENGINES is set on a Service and the number of Engines from other
Brokers are not shared with this Broker to run the Service. If there are more Engines
on a Broker than the sum of all MAX_ENGINES values across active Services, the
excess Engines are reported as available for sharing.

Use the GridServer Administration Tool to configure Brokers. Configure an Engine’s home
Broker with the Grid Components > Engines > Engine Configurations page. Configure
Broker tiers (which Brokers share Engines with other Brokers) with the Grid Components >
Brokers > Broker Configuration page as follows:

1. To set the first tier of Brokers, fill in the Preferred Broker Sharing field. Supply a
comma-delimited list of the Brokers with which the current Broker shares Engines.

2. To set the second tier of Brokers, fill in the Common Broker Sharing field. Supply a
comma-delimited list of other Brokers with which the current Broker shares Engines.

3. You can also define additional tiers of Brokers by delimiting them with semicolons in
the Common Broker Sharing field. For example, to enter a second and third tier of
Brokers, you can enter the list B1, B2, B3; C1, C2, C3.

For example, an Engine configuration’s home Brokers are A and B. A’s preferred broker is C;
its common list is D,E. B’s preferred Broker is F; its common list is G. An Engine with this
configuration uses the following preferences: first: A, B; second: C, F; third: D, E, G. Within
each tier, Brokers are equal, and ordering doesn’t matter.

You can also use the Admin API to get or set the tiers. In
com.datasynapse.gridserver.admin.BrokerAdmin, use the methods setSharedBrokers
and getSharedBrokers to set or get the tier string. You can also create a Batch Definition
that uses the Admin API to change the tiers according to a time schedule. For more
information about using the Admin API, see the GridServer Developer’s Guide.

On the Grid Components > Brokers > Broker Configuration page, you can also set a
minimum number of idle home Engines for a Broker by adding the Min Idle Home Engines
property column to the page. If the idle home Engine count is below this value, home
Engines (idle or busy) are not logged off or shared to other Brokers.

TIBCO GridServer® Administration Guide

85 | Managing Engines

Engine Balancer Configuration
To configure Engine Balancing on the Director, go to Admin > System Admin > Manager
Configuration > Engines and Clients, and change the following properties:

Setting Description

Engine Balancer The Engine balancer to use: Weight-Based or Home/Shared.

Rebalance
Interval

The amount of time, in seconds, between balancing episodes. (Previously
called the Poll Period.)

Logoff Timeout The amount of time in seconds that an Engine waits to finish a task before
logging off.

Broker Query
Timeout

The maximum time to wait for Broker’s reply for balancer data queries.
The value is in milliseconds.

Soft Logoff If true, Engine logoffs do not restart the JVM unless needed by a home
Broker. This enables them to retain state and log in faster.

Engine Fraction The fraction of extra Engines that moves to another Broker on a balance.
This can be set to less than 1 to dampen Engine movement. For example,
if the fraction is 0.5 and the balancer determines that a Broker has eight
extra Engines, it moves four on the first balance. Assuming those Engines
move, on the next balance it determines that there are four extra and
moves two, and so on.

Engine Balance
Maximum

The maximum number of Engines that can move to another Broker on a
rebalance. The maximum applies over the entire grid. For example, if this
property is set to 100 and the balancer determines to rebalance 200
Engines (after taking Engine Balance Fraction into account), then only 100
Engines are actually rebalanced.

Max Service
Discriminators

The maximum number of service discriminators to consider when
reporting balance data from each Broker.

Allow Routing
When Sharing

If Broker Routing properties are used when the Sharing balancer is
enabled. Under most circumstances, when using the Sharing balancer, it is
best not to also use routing.

TIBCO GridServer® Administration Guide

86 | Managing Engines

Setting Description

Treat Pinned
Engines as Busy

If pinned Engines are reported as busy from a sharing point of view. In
some use cases, treating pinned Engine as busy Engines can reduce
Engine fluctuation and improve overall grid performance. Note that this
setting affects Engine sharing only. For information about Engine Pinning,
see the GridServer Developer’s Guide.

These settings must be identical on all Directors.

Engine Upper and Lower Bounds
You can configure upper and lower bounds on the number of Engines that can be logged in
at a given time. Set these upper and lower bounds on the Grid Components > Brokers >
Broker Admin page. If the columns for bounds are hidden, add them using the Column
control. The minimum value specifies that the balancer algorithm always leaves at least
this amount of Engines (assuming there are this many) on the Broker unless the Engines
are needed by Brokers in higher sharing tiers. The maximum value is the cap on the total
amount of Engines to allow on the Broker. The balancing algorithms use both values.

Failover Brokers
A Failover Broker temporarily takes over executing Service Sessions when the Client has no
other Brokers to which it is permitted to connect. From the Client perspective, Failover
Brokers become part of the pool of active Brokers when there are no other non-Failover
Brokers on which the client is permitted. From the Engine perspective, a Failover Broker
becomes part of the active pool when there are active sessions in progress on that Failover
Broker. In either case, the algorithm now views this Broker as a non-Failover. It is
important to take Failover Brokers into account when setting up the routing configuration.
For example, if you are setting up a role to allow a client on only one Broker under normal
conditions, you must also include a Failover Broker in its Manager List if you wish this
client to have a failover if its main Broker goes down.

See Grid Fault-Tolerance and Failover for more information.

TIBCO GridServer® Administration Guide

87 | Managing Engines

Example Use Cases
This section describes example use cases of client routing and load balancing.

N+1 Failover with Weighting
An organization has four groups using all available Engines in a grid. One group has a
guaranteed allocation of at least half of the grid any time it needs it, and the other three
groups share the remaining Engines.

• Brokers Set up five Brokers. Each group gets a Broker, plus one is used for failover.

• Drivers Create four roles, one for each group. In each role, set the Manager List
value to the group’s Broker and the failover Broker. Assign the roles to the
appropriate users.

• Engines Use the weight-based Engine Balancer. Adjust Engine Weight on the
Broker Admin page so the first group’s Broker is weighted at 3.0, and the other three
groups’ Brokers are weighted as 1.0. Set the failover Broker weight at 1.0, so that a
group is not assigned any more resources than normal if their Broker goes down.

Engine Localization with Sharing
A company has two groups, one in New York and one in London. Each has a single
middleware application that has a Driver that connects to its own Broker. Each group also
has a set of CPUs that it expects to always be working on their own calculations. However,
there are times when one group’s Broker is idle, so they are allowed to share with each
other.

• Brokers Set up four Brokers, a regular and a failover for each group. Each regular
Broker shares with the other regular Broker, plus its own failover Broker.

• Drivers Create two roles, one for each group. In each profile, set the Manager List
value to the group’s Broker and its failover Broker. Assign the roles to the
middleware application user.

• Engines Use the Home/Shared Engine Balancer. Set up two Engine Configurations,
“London” and “New York,” that set the Engines’ homes to their respective Brokers.

In this scenario, the application always connects to its local Broker, unless it is down, in
which case it moves to its failover. Whenever that Broker has pending requests, all of its

TIBCO GridServer® Administration Guide

88 | Managing Engines

Engines are always local. If the other group’s Broker is idle, or if it does not need all of its
Engines, any of its idle Engines are routed to the Broker that needs it.

Engine Configuration
Engine and Engine Daemon behaviors are controlled by a centralized profile called an
Engine Configuration. When new Engine Daemons are installed, they use the default Engine
Configuration for their platform (Windows, Linux, or other supported platforms.) Individual
Engine instances take the configuration of their Engine Daemon. You can edit existing
Engine Configurations, or create new Engine Configurations for different subsets of Engines
on your grid.

Editing an Engine Configuration
To change an Engine’s settings (for example, to point it to a new Director), you edit the
Engine Configuration used by the Engine. Settings change on all Engines using that
Configuration.

Warning
Changing an Engine Configuration causes Engines using that
Configuration to restart.

To change values in an Engine Configuration:

1. In the GridServer Administration Tool, go to Grid Components > Engines > Engine
Configurations.

2. Select a configuration in the Configuration list. The list contains names of all default
Engine Configurations, plus any custom configurations that have been created.

3. Change any of the values that appear in the Engine Configuration.

4. Click Save to keep your changes, or Cancel to revert changes.

Warning
When adding values to the Environment Variables box, it is
possible to set variables, particularly PATH, that can cause an
Engine to fail to start.

TIBCO GridServer® Administration Guide

89 | Managing Engines

Creating a New Engine Configuration
In some situations, you might need a subset of Engines to behave differently than other
Engines on your grid. For example, you might want a large group of Engines to report to a
different Director, or use a different compiler runtime. Instead of individually configuring
each Engine, you can create a new Engine Configuration with different Director settings,
and assign the new Configuration to a subset of Engines.

To create a new Engine Configuration:

1. Go to Grid Components > Engines > Engine Configurations, and click Add.

2. Select a platform for the Engine Configuration from the list.

3. Next to the selected platform, enter a name for the Configuration.

4. Click Create.

The initial values of the new Engine Configuration are the same as the default
Configuration for the selected platform. You can then change the values of the
configuration and click Save.

Copying an Engine Configuration
In a situation where you need several similar Engine Configurations, it’s often faster to
make a copy of an existing Engine Configuration, rather than creating many individual
Configurations.

To copy an existing Engine Configuration:

1. Go to Grid Components > Engines > Engine Configurations.

2. Select an existing Engine Configuration from the list.

3. Click Copy. You are prompted for a name for the new Configuration.

Setting the Engine Configuration Used by Engines

To change the Engine Configuration of an Engine Daemon

Procedure

TIBCO GridServer® Administration Guide

90 | Managing Engines

1. Go to Grid Components > Engines > Daemon Admin.

2. In the Configuration column, select an Engine Configuration from the list next to an
Engine Daemon.

To change a large number of Engine Daemons’ Configuration at once

Procedure

1. Go to Grid Components > Engines > Daemon Admin.

2. Use the Results Per Page and Search controls to limit the table to only the Engine
Daemons you want to change. For example, enter win32 in the search box and select
OS as the column to search, then click Go. If you have more than twenty win32
Engines, enter 100 in the Results Per Page box before you do your search. The goal
is to get all of the Engine Daemons you want to change on one page.

3. In the Actions list, select Configure Daemons on Page.

4. The Engine Daemon Editor page opens, displaying all of the Engine Daemons
previously in the table.

5. Select an Engine Configuration from the Configuration list.

6. Click Save.

Setting the Director Used by Engines
The Primary and Secondary Directors for an Engine are set during Engine installation. You
can later change the Directors to which an Engine reports, by changing the Engine
Configuration used by the Engine.

For Linux64 Engine

Prior to moving Engines from all versions earlier than 7.0.0_hotfix08 to 7.1.0, you must
perform the following steps:

1. Stop the server.

2. As a best practice, take a backup of the existing engine.sh file.

3. Replace engine.sh file - from the engineScriptUpdate folder to

TIBCO GridServer® Administration Guide

91 | Managing Engines

datasynapse/manager/webapps/livecluster/engineUpdate/linux64/ and
datasynapse/manager-data/engineUpdate/linux64/ folder.

4. Start the server.

5. Let the Engines log in and then restart the Engine Daemon.

6. Move the Engines.

Note:
In case of Grid Architecture, perform the steps from step 1 to step 5 on the
Primary Director.

Configuring an Engine's Director
1. Go to Grid Components > Engines > Engine Configurations.

2. Select the Engine Configuration used by the Engine. This is typically the operating
system of the Engine.

3. In the Directors and Brokers section, change Primary Director URL and Secondary
Director URL to the corresponding addresses and ports of the Primary and
Secondary Directors, in the format http(s)://address:port.

Note that this changes the Directors for all Engines using that Engine Configuration. Also
note that when moving Engines from one grid to another, Engines lose any custom Engine
properties that are defined on the former Director’s grid, because those are stored in the
grid’s administrative repository.

Configuring Engines With Multiple Network
Adapters
In some network configurations, the host running an Engine can have more than one
physical or logical network interface. When the Engine starts, it checks what IP address is
in use and uses it to advertise its file server location. In cases where there is more than one
network interface, it's possible for the Engine to pick the wrong one. To remedy this it is
possible to force the Engine to choose a specific interface. To configure the Engine to use a
different network interface, select the Engine Configuration it uses on the Engine
Configuration page, and set the Net Mask value under the File Server heading to match
the network range on which to run the Engine.

TIBCO GridServer® Administration Guide

92 | Managing Engines

Configuring Engine Daemons to Use SNAT
You can configure Engine Daemons for use on the other side of a NAT from the Manager
and Drivers. To do this, set the environment variable DS_USE_SNAT_IP_ADDRESS on an
Engine Daemon to the IP address that you want it to report to the Manager and all Drivers
as its address. Additionally, you must set Self Ping to FALSE in the Engine Configuration.

Using the System Classloader on an Engine
In most situations, the default classloader is used to load client classes. In some instances
however, some applications might require the use of the system classloader. This requires
deploying extra files to enable the Engine to use the system classloader.

To use the system classloader:

1. Copy the DS_MANAGER/webapps/livecluster/WEB-INF/etc/DSEngine.jar file to DS_
DATA/engineUpdate/shared.

2. Go to Grid Components > Engine > Engine Configurations, select an Engine
Configuration, and change the value of Classloader to System.

Note that this requires an Engine restart for any Grid Library that contains a jar-path.

Configuring a Global Shared Grid Library
Directory
You can configure Engines to use a shared directory for Grid Libraries instead of Engines
downloading their own copies.

To configure a global shared Grid Library directory:

1. Disable Engine synchronization on the Admin > System Admin > Manager
Configuration > Resource Deployment page.

2. On the Grid Components > Engines > Engine Configurations page, set the Grid
Library Path to a shared directory with read-only access that is available from all
Engines.

3. Unpack all necessary Grid Libraries into the shared Grid Library directory, with each
library in its own subdirectory matching the archive filename.

TIBCO GridServer® Administration Guide

93 | Managing Engines

4. Deploy the corresponding Grid Library archives to the Broker. The Broker still
requires the same access to the Grid Libraries it always had, though Engines can
now access them with an alternate method.

Notes:

• Grid Libraries do not automatically update when using this deployment method.
Manually unpack and update the shared Grid Libraries, and restart the Engines.

• The shared Grid Library directory must contain both the Grid Library archive files
and the extracted archives.

• Permissions are not maintained in .zip archives regardless of Broker OS.

• Permissions might be maintained when using .tar, .gz or .tgz Grid Libraries.

• If the configuration does not maintain permissions in any container or distribution
Grid Libraries, you must ensure that the executable permissions are set properly for
any executed scripts.

Note
Using a global shared Grid Library directory with multiple Engines
using the same network share can cause a significant drop in
performance.

Configuring When Engines Run
You can configure GridServer to avoid conflicts between work and regular use of the
machine. This is called adaptive scheduling, which you configure to adapt the Engine’s
activity level to your computing environment. The following section describes the methods
used to configure when an Engine Daemon runs Engines. Unless otherwise indicated, all of
the configuration options are available in Engine Configurations, which are modified on the
Grid Components > Engines > Engine Configurations page.

Manual Mode
When Manual Mode is enabled in an Engine Configuration, the Engine Daemon runs at all
times. This is the default. You can change an individual Engine Daemon to auto mode, or

TIBCO GridServer® Administration Guide

94 | Managing Engines

clear the Enabled option under Manual Mode in the Engine Configuration page to switch
all Engines using that configuration to Auto Mode.

Auto Mode
Auto Mode lets you specify if Engines run on a computer, based on its utilization. For
example, you might not want to run Engines when someone is logged in to the computer,
or if its CPU utilization is above a certain percentage.

For Windows Engines, there are two methods for determining utilization: User Idle and
Processor Utilization. When you select Auto Mode, select one of the two options. The
default is User Idle. Auto Mode for UNIX Engines always uses Processor Utilization mode. In
addition, you can also limit the hours an Engine runs using the Restricted Hours settings.
Each setting is described below.

User Idle

The User Idle feature is available for Windows Engines only. User Idle starts Engines if
mouse and keyboard input have been idle for a given time on the computer hosting the
Engine Daemon. This time is entered in seconds, and the default is 600 (10 minutes).
Engines halt when there is mouse or keyboard input.

User Idle also has a percentage setting, which is used to determine when Engines stop
running, in addition to UI activity. If processor utilization (in percent) on the host computer
exceeds this value, Engines stop. To disable this feature, set it to 100%, the default.

Processor Utilization (Windows Engines)

The Processor Utilization option enables Engine Daemons to monitor system CPU usage,
and start or stop Engines based on this statistic.

To use this option, enter two values: a percentage and a number of seconds. When CPU
utilization drops below the given percentage for the given number of seconds, Engines
start. For example, by default, Engines start when CPU utilization is below 50% for more
than 30 seconds. When utilization goes above the same CPU threshold value for the
specified number of seconds, Engines stop.

CPU usage on single CPU systems is calculated as the total CPU usage, minus the CPU
overhead of the Engine. Note that this does not include CPU usage for the Engine, invoke,

TIBCO GridServer® Administration Guide

95 | Managing Engines

or CPU idle processes. In multi-CPU systems where an Engine Daemon launches multiple
Engine instances, CPU utilization is calculated independently for each CPU.

In multi-CPU systems, all Engine instances start and stop incrementally. This is called
Incremental Scheduling, and is the default. When a CPU threshold value is reached,
Engines start or stop one at a time. After an Engine starts or stops, there is a delay for a
configurable interval—by default, the interval is 10 seconds. Utilization is checked again on
the next CPU after the interval delay, and the process repeats.

If you do not select Incremental Scheduling, Engine Daemons use Non-Incremental
Scheduling. In this case, all Engines on an Engine Daemon start or stop at the same time.

Processor Utilization (UNIX Engines)

On UNIX Engines, the Processor Utilization option works similar to its Windows
counterpart, but there are some specific changes:

• You can configure both a starting and a stopping threshold and time. This lets you,
for example, start Engines at 40% CPU utilization but stop them at 50%. (The
Engines must also be above or below the CPU utilization percentage for the
specified period of time.)

• The CPU usage sampling is averaged over a configurable period of time, with the
default at 10 seconds.

When using incremental scheduling, Engines are started only when all other Engines are
busy. This results in fewer Engine restarts when starting a new Service that requires a
restart to load Grid Libraries, and restarts due to download of new libraries when idle.

Also, in non-incremental scheduling, CPU utilization is the average CPU utilization across
all CPUs, and not individual CPU utilization. This total CPU utilization percentage is
calculated by adding the CPU utilization for each CPU and dividing by the number of CPUs.

For example, if a four-CPU computer has one CPU running at 50% utilization and the other
three CPUs are idle, the total utilization for the computer is 12.5%. Likewise, if the
maximum CPU threshold is set at 25% on a four-CPU machine and four Engines are
running, and a non-Engine program pushes the utilization of one CPU to 100%, all four
Engines exit. Even if the other three CPUs are idle, all Engines still exit. In this example, if
the minimum CPU threshold is set at 5%, all four Engines restart when total utilization is
below 5%.

This only applies to UNIX Engines, when non-incremental scheduling is used. With
incremental scheduling on UNIX Engines, and in all scheduling on Windows Engines, each
Engine Daemon only looks at the CPU utilization for the CPU on which it is running.

TIBCO GridServer® Administration Guide

96 | Managing Engines

Similar to Windows, CPU utilization calculation does not include CPU usage for the Engine,
invoke, or CPU idle processes.

Excluding Processes From Utilization Calculations

Windows and Linux Engines can also be configured to exclude a list of processes from
utilization calculations.

The Exclude the following list of processes from the processor utilization calculation
property in Windows and Linux Engine configurations can be used to specify processes that
are ignored in utilization calculations. The value of this parameter must be a comma or
semicolon-delimited list of case insensitive names, and are typically the executable names
without extension.

Any process spawned by a Service must be in this list to prevent the Service from shutting
down the Engine.

Note that Engine, invoke, and CPU idle processes are already excluded from utilization
calculations by default.

Restricted Hours

When using Auto Mode, you can also specify a range of hours when Engines run. For
example, if you want Engines to only run from 9:00 AM to 5:00 PM daily, configure this
using Restricted Hours. You can also have GridServer ignore restricted hours settings on
weekends.

To configure Restricted Hours:

1. Go to Grid Components > Engines > Engine Configurations.

2. Either select an existing Engine Configuration from the list to modify, or create a
new profile.

3. Under the Restricted Hours heading, select the first check box.

4. Enter a time range when the Engines are allowed to run. For example, if you want
Engines to run from 9:00 AM to 5:00 PM, enter 9:00 and 17:00.

5. Select the second option to ignore Restricted Hours settings on Saturdays and
Sundays.

Restricted Hours settings do not apply to Manual Mode.

TIBCO GridServer® Administration Guide

97 | Managing Engines

Configuring How Many Engines Run
There are three settings in the Engine configuration that determine how many Engine
instances an Engine Daemon runs.

The SMP Enabled property specifies if the Engine configuration starts an Engine instance
per processor core on the machine. This is set to True by default. Specifically, when SMP is
enabled, the Engine Daemon runs a number of Engine Instances equal to the value of the
Minimum Engine Instances property or the number of processor cores on the machine,
whichever is higher. By default, this is set to 1, meaning the number of Engine instances
always are the number of cores.

If SMP is disabled, the Engine Daemon always runs the number of Engine instances set in
the Minimum Engine Instances property in the Engine configuration.

You can also adjust the number of Engine instances used, to reserve a certain number of
cores for non-Engine activity. The value of the Core Relative Engine Instances parameter
is added to the value specified in Minimum Engine Instances. The relative value can be a
positive or negative number.

For example, if you want to ensure that a single core is always available with no Engine
running on it, set the value of Core Relative Engine Instances to -1. If a 4-core machine
uses this Engine configuration, its number of Engine instances is the higher of its number
of cores and the minimum instances (4) plus the relative instances value (-1), or 3. If a 2-
core machine uses this Engine configuration, it starts one Engine instance, leaving the
other core free.

You can also manually specify the number of instances that run for an Engine Daemon. If
you go to the Grid Components > Engines > Daemon Admin page, there is a list in the
Instances column that enables you to select Default or auto SMP. You can type a number
into this control to override the number of instances that are run.

Running Engines in Multiplexed Mode
On machines with multi-core processors, GridServer, by default, runs an Engine instance in
its own process per logical CPU. While this enables each process to work on different
Services, it also means each process runs in its own JVM, and requires its own set of
application data. This can cause unwanted overhead when running the same Service
across many CPU cores.

TIBCO GridServer® Administration Guide

98 | Managing Engines

To address this issue, you can run Engines in multiplexed mode, meaning that all Engine
instances run in a single process. This enables all Engine instances on that machine to
share the same set of application data, and multiplex their communication with the Broker.

Multiplexed Engines appear as individual Engines in the GridServer Administration Tool and
by the Admin API. Each multiplexed Engine has its own log, work, temp, and data
directories. They produce the same output to the reporting database.

You can’t mix single-process Engine instances and multiplexed Engines on the same
machine. For example, on an eight-core machine, you can’t have two processes with four
multiplexed Engines each; you can only have eight multiplexed Engines in one process.

Multiplexed Engines have the following differences with Engines running in their own
processes:

• All Engines are logged in to the same Broker at any given time. This is enforced by
the balancer.

• All Engines work on the same Service session at any given time. This is enforced by
the Scheduler

• All Engines reside in the same classloader, which means they can all share the same
set of Service Session data.

• They share the same initialization data and Service object. The Service init method is
only called once, and all updates are synchronized across all Engines.

• If one Engine has to log off, all Engines in the process are also logged off with the
same reason.

• Incremental scheduling is not supported.

• Autopack is not supported.

• The Service implementation must be threadsafe. See the GridServer Developer’s
Guide for more information about multiplexed mode development considerations.

• Running more than one task from a recursive Service is not supported.

• All multiplexed Engines share one set of properties. For example, getting the
instance property always reports instance 0, regardless of the Engine instance.

When using multiplexed Engines, Engine resources are shared. The first Engine does all
library loading, and this Engine is the first to start work. This also means that Engine Hooks
are only loaded once, as hooks are loaded when Grid Libraries are loaded.

When using GridCache, there is one cache per process, and all communication is handled
by Engine instance 0.

TIBCO GridServer® Administration Guide

99 | Managing Engines

Communication and Task Scheduling
When Engines are configured as multiplexed, communication with the Broker is
multiplexed over a single HTTP keep-alive session to reduce overhead. Also, only one
heartbeat is communicated per process. Heartbeats are received by Engine instance zero
and simulated to the other Engine Proxies.

To prevent starvation of Engines to other Service sessions, a lease duration is defined. This
is the amount of time a set of multiplexed Engines work on one Service before they stop
working on that Service and are allowed to work on others if necessary. The lifecycle for
this is as follows, given a lease duration of 5 minutes:

• When work is started on the Grid, Engine instance 0 picks up a task.

• Immediately following that, all other instances pick up tasks from the same Service
session.

• Assuming there is enough work, the instances continue to take tasks from that
session.

• After five minutes has passed, when any instance finishes a task, it does not pick up
any more tasks.

• As soon as the last instance has finished, immediately after the response has been
written, Engine instance 0 requests another task from any appropriate session. It can
be the same session or another session.

Configuration
To enable multiplexed mode, set the Multiplexed Mode property to true in the Engine
configuration. The default value is false.

To set the lease time, go to Admin > System Admin > Manager Configuration > Services,
and set the value of the Multiplexed Engine Lease property. The default time is one
minute.

The MULTIPLEXED_MASTER_ID Engine property is set on any multiplexed Engine to contain
the sessionID of Engine instance 0 within its process.

There are two buffer timeouts:

• MULTIPLEXED_ENGINE_MAX_BUFFER_WAIT: This is an absolute time set per Service.

TIBCO GridServer® Administration Guide

100 | Managing Engines

• MULTIPLEXED_ENGINE_AVG_BUFFER_WAIT: This is a factor that is multiplied by the
average task duration or the tasks executed during the lease. The default is 0.5. So if
the average duration is 10 seconds, this timeout is 5 seconds.

The timeout is measured starting from the first send request.

Configuring 64-bit Engine Daemons to run 32-
bit Services
The 64-bit Windows Engine Daemon can be configured to allow execution of 32-bit
Services. If allowed, when an Engine takes such a task, it restarts, clearing all existing
loaded libraries, and restarts as a 32-bit process.

Configuration
On the Windows Engine Configuration page, there is a setting called Additional Platforms
under Classes, Libraries, and Paths. It is a list with two values, None and win32. By
default it is None. Setting it to win32 on a Windows 64-bit configuration enables the
behavior; setting it on a Windows 32-bit configuration has no effect. This sets an Engine
property named additionalPlatforms to win32 or the empty string.

When this property is enabled, Engines download any Grid Libraries with the OS set to
win32 in the root element, in addition to all others it normally syncs.

Note that because Engines take tasks only if they have the root Grid Library of a Service
downloaded, this inherently allows these Engines to take 32-bit Windows Services.

When this property is enabled, the following behavior occurs:

• When a 32-bit task is taken by a 64-bit Engine, it restarts as a 32-bit Engine, clearing
all Grid Libraries except for the one from the Service and its dependencies

• When a 32-bit task is taken by a 32-bit Engine, it loads normally.

• When a task that is anything but 32-bit is taken by a 32-bit Engine, it restarts as a
64-bit Engine, clearing all Grid Libraries except for the one from the Service and its
dependencies.

• When a task that is anything but 32-bit is taken by a 64-bit Engine, it loads normally.

TIBCO GridServer® Administration Guide

101 | Managing Engines

Specifying that a Service is win32
Any Service for which the root Grid Library is marked as os="win32" is considered to be a
win32 Service.

If a Service's root Grid Library is not marked as such, the Engine remains 64-bit and fails.

Routing 32-bit Tasks to 64-bit Engines
By virtue of the Engine having the 32-bit Grid Library, they by default are allowed to run
such Services by the scheduler.

Note that existing applications might not use the OS attribute on the root Grid Library;
rather they might use discrimination instead to route Services to win32 Engines. To use 64-
bit Engine Daemons on these Services, you must set the OS attribute on that Grid Library.

Configuring a Caching HTTP Proxy Server
In a GridServer deployment where a Broker and its Engines are separated by a WAN, it can
be inefficient to transfer the same data over the WAN to multiple Engines from the Broker
or the Clients. One solution is to use an HTTP proxy server (such as Squid Web Cache) to
cache the session’s init data, which any Engine that works on the session must transfer.
You can specify a proxy server in an Engine configuration, and the proxy server caches the
Service data for other Engines also using the same proxy server.

To use a proxy server, such as Squid, for resource synchronization or data transfer,
configure Proxy Host and Proxy Port parameters to the proxy hostname and port. In case
you want to use Proxy with authentication along with Proxy Host and Proxy Port, you
must use Proxy Username and Proxy Password.

Two additional properties dictate what data is cached. Use Proxy for Data Transfer
causes Engines to use the HTTP proxy server for download of any session’s init data. The
Use Proxy for Resource Synchronization property causes Engines to use the HTTP proxy
for resource synchronization download.

If Engines are configured to use a proxy server and the proxy is not available, the Engine
does not attempt to download the Service data using alternate connection parameters. It’s
the administrator’s responsibility to make sure the proxy server is up and properly

TIBCO GridServer® Administration Guide

102 | Managing Engines

configured. The administrator must consider implementing DNS or IP failover if high
availability is required.

Due to the fact that HTTPS requests might not be properly cached in a proxy server, HTTPS
is not supported.

Token security for all resource downloads is not supported when using a proxy server. It is
assumed that the proxy server is in the same LAN and the LAN is secure. Note that the
proxy server cannot download a resource until one of the Engines provides a valid
download token.

Note that the following potential problems might occur when using caching proxy servers
for resource synchronization:

• Engines can download stale copies of an updated resource from the proxy server.
This occurs when the cache timeout is too long or a recently downloaded resource is
updated shortly afterward.

• The proxy server might not be able to serve a cached copy of an updated resource if
multiple Engines start downloading the resource in a very short time span. This can
occur when using Squid even if the collapsed_forwarding parameter is enabled.

To address these issues, adjust the cache size to ensure that the proxy server can cache
large files. Additionally, analyzing the resource download pattern and the proxy server
configuration is recommended to achieve optimal results. The important factors to
consider are:

• Size of the total resources that require downloading

• Size of the total proxy cache, the maximum size per object

• Maximum age of a cached object

• Proxy server behavior for concurrent requests

• Configure the HTTP proxy server to ignore the no-cache header. For example, the
following refresh_pattern option in the squid.conf file causes the squid cache to
ignore no-cache headers for URLs matching the regular expression of
“^http://.*/livecluster/resourcesproxy”:
refresh_pattern ^http://.*/livecluster/resourcesproxy 0 20% 4320 ignore-
no-cache

TIBCO GridServer® Administration Guide

103 | Managing Engines

Configuring an External Engine Daemon Admin
Tool
It is possible to configure an external administration or management tool or system that
can be opened from GridServer’s Administration Tool. When configured, you can open the
tool from the Engine Daemon Admin page with an item in the Actions control. Selecting the
new item opens a URL to the external tool. A set of runtime macros enable you to further
customize the URL.

To configure an external Engine Daemon Admin Tool:

1. In the GridServer Administration Tool, go to Admin > System Admin > Manager
Configuration > Engines and Clients.

2. In the Daemon Admin External Tool URL box, enter the URL to your external tool.

3. The following runtime macros can be used: ${DaemonID}, ${UserName}, ${IP},
${Status}, ${PrimaryDirector}, ${SecondaryDirector} and ${OS}. For example,
http://example.com/grid/reports.py?${DaemonID} might be used to look up
reports for an Engine Daemon with an external query tool.

4. In the Daemon Admin External Tool Name box, enter a description of the
configured tool.

To use an external tool, select it from the Actions control next to an Engine Daemon on the
Engine Daemon Admin page. It is named “Link to” plus the name you defined in the
Daemon Admin External Tool Name box.

Quarantine Brokers
In a security-oriented environment, it can be necessary to prevent new or untrusted
Engines from joining a grid and downloading potentially sensitive application data or
resources until the GridServer administrator explicitly grants permission for them to join.
You can exercise this control by using a Quarantine Broker, a dedicated Broker in a grid,
used only for Engine staging and verification. When Engines do not have permission to log
in to other production Brokers on your grid, they can only log on to the Quarantine Broker
and await permissioning by an administrator.

The quarantine status is set on any Engine Daemon with the Administration Tool or Admin
API. If an Engine Daemon’s quarantine status is set to “Verified”, the Engines managed by

TIBCO GridServer® Administration Guide

104 | Managing Engines

the Daemon might log in to the production Brokers after an Engine Daemon restart. The
Engines managed by a quarantined Engine Daemon might only log in to the Quarantine
Broker.

Quarantine Broker Concepts
To use a Quarantine Broker, there are two components: the Quarantine Broker, and a
method to Set Quarantine (send Engine Daemons to the Quarantine Broker) and Clear
Quarantine (change Engine Daemon status to allow Engine Daemons to log onto
production Brokers.)

The Quarantine Broker is specified on the Director. When the Quarantine Broker is
specified, the Director allows individual Engine instances to log in to either the production
Brokers or the Quarantine Broker based on the value of quarantine status of the managing
Engine Daemon. If the quarantine status of an Engine Daemon is “Verified”, all Engines
managed by the Engine Daemon might only log in to the production Brokers. Otherwise,
the Engines might only log in to the Quarantine Broker.

When using Engine balancing and a Quarantine Broker, the balancing only occurs on the
production Brokers. The Quarantine Broker is ignored for the purposes of Engine balancing,
and only verified Engines are balanced between the production Brokers.

If the Quarantine Broker is not set in a grid, Engines might log in to any Brokers in the grid
allowed by routing and balancing configurations.

Quarantine Status on Engines
The Director determines if an Engine is quarantined by looking for an Engine property
called QuarantineStatus. The QuarantineStatus property value is set to “New Engine” on
all newly installed Engines. This ensures that all new Engines are quarantined upon
installation when there is a quarantine Broker on the Grid.

When an Engine Daemon has its QuarantineStatus property set to any other string than
“Verified”, including the null string or having the property missing, it is considered
quarantined, and its Engines are only allowed to log in to the Quarantine Broker. When an
Engine Daemon has its QuarantineStatus property set to the string “Verified”, it is verified,
and its Engines are now allowed to log in to other Brokers as per its routing rules.

An unverified Engine Daemon might be cleared from the Administration Tool by changing
the QuarantineStatus property. This can be automated by using the Admin API. A verified

TIBCO GridServer® Administration Guide

105 | Managing Engines

Engine Daemon can be quarantined similarly. There is also an API method that can be
called in a Service Session to quarantine an Engine Daemon.

After quarantine status change, the Engine Daemon needs to be restarted for the managed
Engines to log in to the intended Broker set. This restriction minimizes the risk of setting
the quarantine status by mistake.

Requirements
All Directors require the same Quarantine Broker setting. When failover is configured, this
means the Secondary Director has the same Quarantine Broker configuration if the Primary
Director fails.

Although a grid might have multiple Brokers, either for redundancy or volume, you can
only define one Quarantine Broker in a grid.

When using a Quarantine Broker, you must have an account with Manager Configure Edit
access in its Security Role (only available in the Configure role by default) to clear
quarantine status of an Engine Daemon or set or change the Quarantine Broker definition.
An account must have Engine Properties Edit access in its Security Role (available in
Configure and Manage roles by default) to set Engine Daemon quarantine status. Any role
with Engine Daemon View access (all roles by default) can see Quarantine Broker and
Engine Daemon quarantine status.

Configuring a Quarantine Broker
To add a Quarantine Broker:

1. Install an additional Broker, if you don’t already have an extra one installed.

2. Determine the name of the Broker you wish to use. Broker names are automatically
given at installation, and are typically numeric. In the GridServer Administration
Tool, Grid Components > Brokers > Broker Admin shows a list of your Brokers,
with their names in the Broker Name column. Find the name of the Broker you wish
to use it for a Quarantine Broker. Note that you can also use this page to change the
names of Brokers, if you want to give the Broker a more logical name.

3. Go to Admin > System Admin > Manager Configuration > Engines and Clients.
Under the heading Quarantine Broker, enter the name of the Broker you want to be
the Quarantine Broker, then click Save. You do not need to restart the Manager.

TIBCO GridServer® Administration Guide

106 | Managing Engines

4. Repeat this configuration (with the same Broker name) for both Primary and
Secondary Directory on your grid.

The Quarantine Broker settings persist after Manager restart or future Manager upgrade. If
you must change or remove a Quarantine Broker, repeat step 3, but enter a new or blank
value for the name.

Setting Quarantine Status on Engines
There are two ways to set and clear quarantine status: interactively with the GridServer
Administration Tool, or programmatically with the GridServer Admin API. You can also use
the API to self-quarantine Engines. Each method is described below. Also, the following
constraints apply when setting quarantine status:

• Due to XML limitations for Engine properties, special XML chars are not allowed in
the QuarantineStatus property.

• If there is a problem setting the QuarantineStatus property, it throws an
AcccessException (a subclass of AdminException) based on the new value.

Using the GridServer Administration Tool

Use the Administration Tool to set or modify the QuarantineStatus property in one of the
following ways:

• From Grid Components > Engines > Daemon Admin, select Edit/View Properties
from the Actions list. Select QuarantineStatus from the Properties column, and
enter a new value.

• From Grid Components > Engines > Daemon Admin, select Set Property for
Daemons on Page, then select QuarantineStatus from the Engine Property List,
and change the value of the Property.

Using the Admin API

The following method in the EngineDaemonAdmin Admin API interface can be used to set
and clear Engine Daemon quarantine status:

public String setProperty(long id, String key, String value) throws
Exception

TIBCO GridServer® Administration Guide

107 | Managing Engines

The value of key must be QuarantineStatus to set the Engine Daemon quarantine status.
The value id is the identifier of the interested Engine Daemon. The value might be
retrieved by calling EngineDaemonAdmin.getEngineDaemonIds().

The corresponding API call for setProperty are also available for C++
(dsdriver::EngineDaemonAdmin.setProperty) and .NET
(EngineDaemonAdmin.SetProperty)

Engine Self-Quarantine Using an API Call

You can also quarantine an Engine using the following method in the Java API:

com.datasynapse.gridserver.engine.EngineSession.quarantine (String
reason) throws GridServerException;

This method might be called in a Service Session. When this method is called, a
synchronous message is sent to the Broker, the Broker then forwards the message plus the
Engine session ID to the active Director synchronously. When the Director receives the
message, it finds the Daemon ID based on the Engine session ID and sets the Engine
property. The Director asynchronously restarts the Engine Daemon identified by the
Daemon ID. If any exception occurs, it propagates back to the Engine. Due to the fact that
the Engine ID is not passed from the Engine to the Broker, this API call can not quarantine
any other Engine Daemons besides the managing Daemon of the current Engine.

The affected Engine Daemon restarts for the quarantine status change to take effect. When
the affected Engines receive the restart command, any running Services are canceled, as
usual.

The corresponding API call for quarantine are also available for C++
(dsdriver::EngineSession.quarantine) and .NET (EngineSession.quarantine)

Quarantine Broker Constraints
There is no finer configuration to direct Engine instances to specific Brokers using this
feature.

Due to the fact that there is only one quarantine Broker defined in a grid, several issues
might arise as a result:

• Quarantined Engines that don’t collocate with the quarantine Broker need to send
traffic over the WAN.

TIBCO GridServer® Administration Guide

108 | Managing Engines

• If the Quarantine Broker is not up or accessible, quarantined Engines cannot log in
to any Brokers in the grid. This might generate heavy login retry load when the
network is partitioned or unstable.

• Drivers are not treated in any special manner with regard to routing to Quarantine
Brokers. This is because some might wish to run tests that require a Driver on
Quarantined Engines. Routing rules are required to prevent production Drivers from
logging in to Quarantine Brokers.

TIBCO GridServer® Administration Guide

109 | Grid Fault-Tolerance and Failover

Grid Fault-Tolerance and Failover
GridServer is a fault-tolerant and resilient distributed computing platform. The GridServer
platform recovers from a component failure, guaranteeing the execution of Services over a
distributed computing grid with diverse, intermittent compute resources. This section
describes what GridServer does in the event of Engine, Driver, and Manager failure. Failures
of components within the grid can happen for a number of reasons, such as power outage,
network failure, or interruptions by end users. For the purposes of this discussion, failure
means any event that causes grid components to be unable to communicate with each
other.

The Fault-tolerant GridServer Deployment
A DataSynapse GridServer deployment consists of a Primary Director, an optional
Secondary Director, and one or more Brokers. Drivers and Engines log in to the Director,
which routes them to one of the Brokers. Directors balance the load among their Brokers
by routing Drivers and Engines to currently running Brokers.

A minimal fault-tolerant GridServer deployment contains two Directors, a Primary and a
Secondary, and at least two Brokers. The Brokers, Engines, and Drivers in the grid have the
network locations of both the Primary and the Secondary Directors. During normal
operation, the Engines and Drivers log in to their Primary Director; the Secondary Director
is completely idle.

TIBCO GridServer® Administration Guide

110 | Grid Fault-Tolerance and Failover

Other GridServer topographies, such as having multiple Managers to handle volume or to
segregate different types of Services to different Managers, are discussed in the GridServer
Installation.

Heartbeats and Failure Detection
Lightweight network communications sent at regular intervals, called heartbeats, are sent
between GridServer components, such as from Drivers to Brokers, from Engine Instances to
Brokers, and from Engine Daemons to Directors. A Manager detects Driver and Engine
failure when it does not receive a heartbeat within the configurable heartbeat interval time.
Drivers detect Broker failure by failing to connect when they submit tasks or poll for
results. Engines detect Broker failure when they attempt to report for work or return
results. To minimize unnecessary messaging, a heartbeat is sent only if no other message
has been sent within the heartbeat interval.

Heartbeat period for clients can be configured in the GridServer Administration Tool at
Admin > System Admin > Manager Configuration > Communication.

Manager Stability Features
Several precautions prevent Manager failure due to excessive traffic. For instance, the
number of threads used for file update is limited. This prevents a large number of file
updates from Brokers to Engines from preventing other HTTP activity due to use of all of
the HTTP threads on the application server. Instead, Engines retry the download later when
this maximum is reached. By default, this is set at 50 threads, but can be changed in the
GridServer Administration Tool; go to Admin > System Admin > Manager Configuration >
Communication, and change the Maximum Resource Download Connections property.

The number of Broker/Director messaging threads is also limited. If this limit is reached,
clients retry rather than immediately fail.

Engine Failure
Network connection loss, hardware failure, or errant application code can cause Engine
failure. When an Engine goes offline, the work assigned to it is requeued and assigned to
another Engine. Although work done on the failed Engine is lost, the task is assigned to a

TIBCO GridServer® Administration Guide

111 | Grid Fault-Tolerance and Failover

new Engine. Engines that have built up a considerable state or cache or that are running
particularly long tasks can cause a larger loss if Engine failure occurs. This can be avoided
by shortening task duration in your application or by using the Engine Checkpointing
mechanism. For more information about task duration, see Optimizing the Grid.

Each Engine has a checkpoint directory where a task can save intermediate results. If an
Engine fails and the Manager retains access to the Engine machine’s file system, a new
Engine copies the checkpoint directory from the failed Engine. It is the responsibility of the
client application to handle the correct resumption of work given the contents of the
checkpoint directory.

Note that if an Engine Daemon logs off the Director or otherwise fails, it does not log off its
Engines. Provided the failure has not caused the Engines to also fail, they continue working
and return results when completed.

Driver Timeout and Failure
When a client application fails, the Broker detects the failure when the Client does not
send a heartbeat and does not log back in within a specified time.

This time is defined as the Client Timeout Minutes plus the Driver Heartbeat Timeout; the
Driver Heartbeat Timeout is the Max Millis Per Heartbeat property times the Timeout
Factor property. Note that for Max Millis Per Heartbeat, this setting is the maximum value.
The actual value is randomly between half this value and the value. (For example, the
default value is set at 15000 milliseconds. This means the value is between 7500 and 15000
milliseconds.)

For example, by default, Client Timeout Minutes is 5 seconds (300,000 ms), Max Millis Per
Heartbeat is 16,000 ms and Timeout Factor is 15. This means the client timeout is
between 300,000 + 8,000 * 15 and 300,000 + 16,000 * 15 ms.

The Client Timeout Minutes is set on the Manager at Admin > System Admin > Engines
and Clients > Client Management > Client Timeout Minutes. The Driver Heartbeat
Timeout the Max Millis Per Heartbeat property times the Timeout Factor property; both
are set at Admin > System Admin > Communication > HTTP Connections > Driver
Heartbeat.

When client timeout happens, any currently running Services are canceled. If this happens,
application failure recovery or restart is the responsibility of your application.

The exception to cancellation is fully submitted Services of type Collection.LATER or
Collection.NEVER. Also, if a Client is collecting results from a Collection.LATER type

TIBCO GridServer® Administration Guide

112 | Grid Fault-Tolerance and Failover

Service, none of the outputs are removed until all are collected and the Client destroys the
Service, so that if a Client fails during collection it can restart and recollect the outputs.

It is also possible to collect tasks from a failed client application for Services of type
Collection.AFTER_SUBMIT and Collection.IMMEDIATELY if cancellation has not yet
occurred. To do this, you must collect and pass in the Driver session ID, in the same
fashion as collection of a Collection.LATER Service. For more information about collection
of Collection.LATER Services, see "Deferred Collection (Collect Later)" in the GridServer
Developer’s Guide.

All Driver file servers return a Server Unavailable code with instructions to retry if they are
processing too many concurrent requests. This significantly reduces the chance of a Service
invocation failing due to a temporarily overloaded Driver.

Director Failure
If the Primary Director fails, the Secondary Director takes over balancing and routing
Drivers and Engines to Brokers. The Directors do not maintain any state, so no work is lost
if a Director fails and is restarted. Also, both Directors follow the same rules for routing to
Brokers, so it makes no difference which Director is used for login.

The Primary Director is also responsible for an internal database, which contains data
needed by the Manager for operation, such as the User list, routing properties, and so on.
You can modify these values only on the Primary Director. This database synchronizes with
the Secondary Director while both are running. The Secondary Director backs up this
database on every database backup so that the grid can remain in operation when the
Primary Director is down. Features that modify the internal database are not available from
the Administration Tool when a Secondary Director is active.

Broker Failure
Like the Director, the Broker is a robust application that runs indefinitely. The Broker
typically only fails when there is a hardware failure, power outage, or network failure.
However, the fault tolerance built into the Drivers guarantees that all Services complete
even in the event of failure.

The most likely reason that a Driver disconnects from its Broker is a temporary network
outage. Therefore, the Driver does not immediately attempt to log in to another Broker.
Instead, the Driver waits a configurable amount of time to reconnect to the Broker to

TIBCO GridServer® Administration Guide

113 | Grid Fault-Tolerance and Failover

which it was connected. After the configured wait time expires, the Driver attempts to log
in to any available Broker. Specify the configured amount of time as DSBrokerTimeout in
the driver.properties file. The property is BROKER_TIMEOUT in the API.

After the Driver times out and reconnects to another Broker, all Service instances resubmit
any outstanding tasks and continue. Tasks that are already complete are not resubmitted.
The Service instances also resubmit all state updates in the order in which they were
originally made. From the Service instance point of view, there is no indication of error,
such as exceptions or failure, just the absence of any activity during the time in which the
Driver is disconnected. That is, all Services run successfully to completion as long as
eventually a suitable Broker is brought online.

If an Engine is disconnected from its Broker and there are no Failover Brokers, the process
shuts down, restarts, and logs in to any suitable Broker. Any work is discarded. Failover
brokers are described in the next section.

Failover Brokers
In the fault-tolerant configuration, you can set up some Brokers as Failover Brokers. When
a Driver logs in to a Director, the Director first attempts to route it to a non-Failover Broker.
If no non-Failover Brokers are available, the Director considers all Brokers and typically
routes the Driver to a Failover Broker.

GridServer configuration with Failover capability

A Failover Broker without active Services is not considered for Engine routing. If it has
active Services, it is considered like any other Broker, and follows Engine routing like any

TIBCO GridServer® Administration Guide

114 | Grid Fault-Tolerance and Failover

other Broker. Thus, if a Failover Broker becomes idle, its Engines are routed back to other
Brokers.

The Primary Director monitors the state of all Brokers on the grid. If a Driver that is logged
in to a Failover Broker is able to log in to a non-Failover Broker, it is logged off so it can
return to the non-Failover Broker. All running Services continue on the new Broker by auto-
resubmission.

By default, all Brokers are non-Failover Brokers. Designate one or more Brokers within the
grid as Failover Brokers when you want those Brokers to remain idle during normal
operation.

Task Fault Tolerance
Task fault tolerance enables an Engine to continue executing a task even if it logs off of a
Broker, so that it does not lose work due to a Broker failure. This means that if an Engine is
working on a task, and it logs off the Broker, it does not immediately exit. Rather, it
continues to work on that task, while continuing attempts to log in to a Broker with the
Service on which it is working. If it does not log back in within a defined time period, it
exits. If it does log back in, it notifies the Broker that it is working on the task. If the task is
completed, it immediately sends the result; otherwise, it does so upon completion.

Using this feature is only recommended when you have individual tasks that take many
hours to finish. For example, if a report runs during the night and some tasks take eight
hours to process, task fault tolerance ensures that the eight-hour tasks don’t have to start
from the beginning if the Broker fails at 7 AM. Enabling task fault tolerance can diminish
the efficiency of the grid, since it redundantly schedules all outstanding tasks. For short
tasks, it’s usually more efficient to simply recalculate tasks in the event of a Broker failure.

Consider the following example of task fault tolerance:

1. An Engine and Driver are connected to Broker A. The Driver submitted a Service, and
an Engine is working on that Service.

2. Broker A goes down.

3. The Driver tries to reconnect with Broker A. The Engine continues working and tries
to reconnect to Broker A.

4. After five minutes, the Driver gives up attempts to connect to Broker A. It connects
to Broker B and resubmits outstanding work.

TIBCO GridServer® Administration Guide

115 | Grid Fault-Tolerance and Failover

5. The Service is now on Broker B. The Engine logs in to Broker B and indicates that it
is taking that task. If the Engine already finished its work, it immediately writes the
task. Otherwise, after it completes its work, it writes its task.

If another Engine takes the task by the time the original Engine logs in, no attempt is made
to cancel the task on the Broker. It is the same as a redundantly rescheduled task.

The situation is similar when an Engine logs into a Failover Broker and works on a task.
When the Driver switches back to the Primary Broker, the Engine logs off the Failover
Broker and reconnects to the Primary Broker. The task is not canceled.

To enable task fault tolerance, go to Admin > System Admin > Manager Configuration >
Engines and Clients, and change the value of Engine Timeout Minutes. Make the Engine
timeout longer than the Driver’s timeout, which is the value of DSBrokerTimeout set in the
driver.properties file (five minutes by default.) Note that changes to this value take
effect at the next Engine Login.

To use task fault tolerance, another Broker must be available for failover, and the Client
running the session must fail over to the Broker and resubmit its session.

No attempt is made upon login of the Engine running a fault-tolerant task to cancel that
same task if it has already been taken by another Engine.

Batch Fault-Tolerance
Batch Schedules that exist on a Manager are persistent, provided the Next Run field is not
never. This persistence provides failover capability in the event of a Manager failure,
because the Batch Schedules still exist when the Manager is restarted.

The following Batch Schedules are persistent:

• Absolute schedules

• Relative schedules with repeat

• Cron schedules

All persistent Batches restart when the Manager restarts, just as if they were scheduled for
the first time. Batch runs scheduled for the time when the Manager was down are ignored.

TIBCO GridServer® Administration Guide

116 | Grid Fault-Tolerance and Failover

GridCache and PDriver Fault-Tolerance
GridCache supports fault tolerance as described below. Note that Primary and failover
Brokers must have their clocks synchronized for GridCache failover.

Because PDriver uses GridCache for its implementation, the same fault-tolerance capability
described below applies to PDriver jobs.

Client

If any client puts data in the cache and subsequently fails or logs out, that data is still
available to all other clients. This is because the Broker maintains the master index and a
complete view of the cached data. This availability does not apply to the local caching
mode where a region has a local loader that does not synchronize with the other local
caches.

Broker Restart

You can configure GridCache to survive Manager restart and failure. GridCache’s cache
index is rebuilt on system startup; objects persisted on the Broker’s file system are
recovered. If some or all of the cache is stored in memory, that information is lost.

Failover

A failover Broker can manage a GridServer cache when a regular Broker goes down, if the
persistent cache directory is on a shared filesystem. Configure the location of this
filesystem from the Manager Configuration page in the GridServer Administration Tool.
When the regular Broker goes down and the failover Broker takes over, the failover Broker
builds its cache index and begins managing the cache from the shared filesystem. All
clients that then fail over to the failover Broker can get references to the existing cache
regions on the shared file system.

Note that a failover Broker can be configured to fail over only to one shared cache
directory. Therefore, a failover Broker can’t serve as a failover for multiple Brokers with
different cache directories; a different failover Broker has to be used for each Broker.

Note that a failover Broker can fail over to only one shared cache directory. One failover
Broker can’t serve as a failover for multiple Brokers that have different cache directories.
Brokers with different cache directories require separate failover Brokers.

TIBCO GridServer® Administration Guide

117 | Administration and Maintenance

Administration and Maintenance
This section contains several procedures that are commonly used when administering a
GridServer Manager. Most of the tasks outlined below use the Administration Tool. The
Administration Tool also provides online help, which further describes each page’s
features.

Configuration Issues

Installation on Machines With Multiple Network
Adapters
In some network configurations, on a machine with more than one network interface, a
GridServer component can default to using the incorrect interface. You can configure the
component to use the correct interface as follows:

• Drivers To configure the Driver to use a different network interface, edit the
driver.properties file and set the DSLocalIPAddress property to the IP number of
the correct interface. For example:
DSLocalIPAddress=192.168.12.1

• Engines To configure the Engine to use a different network interface, select the
Engine Configuration used by the Engine on the Engine Configuration page, and set
the Net Mask value under the File Server heading to match the network range on
which to run the Engine.

Using UNC Paths in a driver.properties File
To use UNC paths to specify a hostname or directory within a driver.properties file, you
must change all backslashes (\) to forward slashes (/) in the path.

TIBCO GridServer® Administration Guide

118 | Administration and Maintenance

For example, to change the log directory to the UNC path \\homer\service1-dir, change
the following line:

DSLogDir=./ds-data

to this:

DSLogDir=//homer/service1-dir

Renaming a Broker
Renaming a Broker can cause issues with Engine migration. Specifically, its Engines log in
to a new Broker and start taking tasks, but save the old Broker name as a Broker to log in
to after restart. After restart, they cannot log in to the requested Broker and restart again,
repeating this cycle.

To avoid this issue, restart the Director after renaming a Broker.

Moving a Manager
If you must move a Manager from one machine to another, you must take a few things into
account:

• The new Manager needs to have the same fully-qualified domain name as the old
one.

• The directory structure of the new Manager needs to exactly match the old one. In
other words, it needs to be at the exact same location in the file system.

Using a different IP address for the new Manager works, but other components on the grid
might have cached the old IP address of the Manager. This means you might need to
restart your Primary Director. If it is the Primary Director you are updating, you might need
to restart all Brokers attached to it. If you are unsure if you must restart, check if your
components are logging into your manager as expected.

TIBCO GridServer® Administration Guide

119 | Administration and Maintenance

GridServer Manager Administration Procedures
The following procedures are commonly used when maintaining a GridServer installation.
Most of the procedures have to do with the GridServer Manager. See Managing Engines for
more information about managing Engines.

Backup / Restore
Backup of GridServer Managers requires an OS-level file copy of the DS_DATA directory.

Backup Procedure

To back up a GridServer installation:

l Archive (with GNU tar or ZIP) or simply copy the DS_DATA directory. (This is the
directory that is specified by DS_DATA_DIR variable.)

Restore Procedure

To restore a GridServer installation:

1. Unpack the original GridServer Manager installation using WinZip or a similar tool for
Windows; on a UNIX system, unpack using tar.

2. If you previously set DS_DATA_DIR in the server.bat or server.sh file, edit that file
in the new installation and change the definition again.

3. Copy the backup DS_DATA directory to its previous location.

Importing and Exporting Manager Configuration
GridServer Managers support the ability to export the configuration and deployment of
Directors and Brokers into a signed JAR file format and later import this same format to
another Manager. You can migrate Manager configurations from a UAT or prototype grid to
a production grid, simplify administration of multiple Manager systems, or disseminate an
organization’s default Manager configuration among all clusters in the organization.

The Import/Export feature imports and exports the following component configurations:

• Manager configurations

TIBCO GridServer® Administration Guide

120 | Administration and Maintenance

• Service Types

• Batches / Batch schedule

• Service Runners

• Contents of the internal repository

• GridCache Schemas

• Resource files, including Grid Library files

• Credentials repository

• Server Hooks

You can only Import/Export the internal repository and Manger Configurations on Managers
of the same version and update. For example, if you export a GridServer 5.1 Manager
configuration, you can’t import it on a GridServer 6.1 installation.

Warning
Not all Manager configuration items are exportable. Server
environment-specific items, such as reporting database
configuration, are not exported.

To export a configuration

Procedure

1. In the GridServer Administration Tool, go to Admin > System Admin > Manager
Import/Export.

2. Select the configurations to include in the JAR. In each configuration group, you can
select individual items, or choose Select all to include all items in that group.

3. Click Export.

4. A File Download dialog box appears. Click Save to save the JAR file.

To import a configuration

Procedure

1. Go to Admin > System Admin > Manager Import/Export.

2. Click the Browse button next to the Provide File for import box.

TIBCO GridServer® Administration Guide

121 | Administration and Maintenance

3. Browse to the location of the JAR file containing the GridServer Manager
configuration export.

4. Click Upload to begin the import.

5. A list of configurations found in the JAR file are displayed, with configurations
highlighted in red if they install over existing configurations. Select the
configurations you want to import, then click Import.

If the Manager requires a restart for changes to take effect, a message is displayed and the
Manager automatically shuts down.

Setting the SMTP Host
You can configure the GridServer Administration Tool to send email notifications,
configured on the Admin > System Admin > Email Notification page. It also sends new
account messages when a new user account is created. To send the email, you must
configure a SMTP host for the Manager. This is typically configured during Manager
installation, but you can add or change the value afterward.

To set the SMTP host:

1. Go to Admin > System Admin > Manager Configuration > Admin.

2. Under the Mail heading, in SMTP Host, enter the name of your SMTP server.

3. In Contact Address, enter the email address of an administrative contact. A
notification is sent from this address to the new user when their account is created
on the Administration Tool.

4. Click Save.

Configuring the Timeout Period for the
Administration Tool
For security purposes, the GridServer Administration Tool times out after a certain period
and requires users to log in again. By default, the timeout period is 60 minutes.

To change the timeout period:

1. Go to Admin > System Admin > Manager Configuration > Security.

TIBCO GridServer® Administration Guide

122 | Administration and Maintenance

2. Under the Admin User Management heading, change the value of Admin Browser
Timeout.

Reconfiguring Managers when Installing a
Secondary Director
When you install a Manager that includes a Secondary Director, you must also configure
the Manager containing the Primary Director. This registers the Secondary Director’s
address with the Primary Director, as well as reconfigures the Engine and Driver
configurations.

To reconfigure the Manager containing the Primary Director, select Admin > System
Admin > Manager Reinstall, and enter the Secondary Director’s address and port on the
corresponding page. This configures the Primary Director to recognize the Secondary
Director, and reconfigures Engine and Driver configurations accordingly.

Reconfiguring the Engine Communication Port
By default, the Manager uses port 8000 for communication with Engines. This port can be
changed, but you must also change Engine configurations to log in at the new port.

Warning
If you reconfigure the Manager's messaging port prior to
updating an Engine’s configuration, the Engine is no longer
able to reach the Manager. Consequently, Engines can not
log in after the Manager Reconfigure process, and you must
re-install them. To avoid this issue, change the port used for
Engine communication first.

To change the port used for Engine communication:

1. Go to Grid Components > Engines > Daemon Admin.

2. Select Configure All Daemons from the Global Actions list.

3. Change the Primary Director property to the URL with the new port.

4. All Engine Daemons then log off and no longer appear in the Daemons list.

TIBCO GridServer® Administration Guide

123 | Administration and Maintenance

5. Edit the server.xml file in the base directory location defined in DS_DATA. (If DS_
DATA is not defined, the file is in TIBCO_HOME\manager-data\conf for Windows, or
TIBCO_HOME/manager-data/conf for UNIX.)

6. To change the messaging port, replace the value of 8000 in the following line:
<Connector port="8000"

7. Restart the Manager. After restart, all Daemons reappear in the Daemons list.

8. Go to Grid Components > Engines > Daemon Admin, select Configure All
Daemons, and change all Primary Director URLs back to “default”.

Promoting a Secondary Director to Primary Director
When a Primary Director fails and a Secondary Director takes over, it has a backup copy of
the internal database that is used to store user accounts and other properties. However,
because it can’t resynchronize this information to the Primary Director when it returns, it is
read-only and cannot be modified.

In a situation where the failed Primary Director is unavailable for some time, you might
need to promote the Secondary Director to the role of Primary Director, and possibly
assign another Secondary Director. Note that this requires a failover setup with two
Director machines that are both capable of handling a volume necessary for your grid’s
demands, plus an optional Secondary Director.

To promote a Secondary Director to Primary Director:

1. Log in to the Secondary Director in the GridServer Administration Tool.

2. Go to Admin > System Admin > Manager Reinstall.

3. Select Manager Configuration and click Next.

4. In the Director list, select Primary.

5. Finish the configuration.

Configuring SNMP
GridServer supports Simple Network Management Protocol (or SNMP), which can generate
alerts (called traps) on a per-event basis. For example, you can send events such as ‘Server
Started’ and ‘Engine Died’ as traps to an SNMP monitoring station. The SNMP interface is

TIBCO GridServer® Administration Guide

124 | Administration and Maintenance

administered through an administrative plugin on the GridServer Manager. The traps
themselves are defined in a Management Interface Base, or MIB, which is designed for
applications; a MIB specific to DataSynapse is defined and included with the Manager.

To configure and enable SNMP support for your Manager:

1. Go to Admin > System Admin > SNMP Event Traps.

2. Enter the hostname and port of your SNMP server in the Host and Port fields, then
click Add.

3. If you have multiple SNMP servers, repeat step 2 for each server.

4. In SNMP Version, select the version of the SNMP protocol your servers use.

5. Select each event in the event list for which you want to generate a trap.

6. Go to Admin > System Admin > Manager Configuration > Admin.

7. Under the SNMP heading, set enabled to True for the Broker, Director, or both.

The DataSynapse MIBs are located at DS_MANAGER/webapps/livecluster/WEB-
INF/etc/snmp.

Some SNMP events generate traps from the Broker, while others generate traps from the
Director. The following is a list of events that generate traps, sorted by Broker or Director:

Broker Trap Events Director Trap Events

DriverAddedEvent, DriverRemovedEvent,
EngineAddedEvent, EngineDiedEvent,
EngineBlackListedEvent, EngineGreyListedEvent,
EngineRemovedEvent, JobCancelledEvent,
JobFinishedEvent, JobRunning,
MemoryWarningEvent, TaskFailed

BrokerAddedEvent,
BrokerRemovedEvent,
EngineDaemonAddedEvent,
EngineDaemonRemovedEvent,
LocalDatabaseBackupFailureEvent,
RemoteDatabaseBackupFailureEvent,
ServerStartedEvent

SNMP Trap Events

LogLogic Integration
GridServer can seamlessly integrate with TIBCO LogLogic® for analysis of Manager and
Engine logs. You can optionally configure GridServer to send log messages to a syslog
daemon, where they can be captured by LogLogic.

TIBCO GridServer® Administration Guide

125 | Administration and Maintenance

Configuration
GridServer log items can be sent to a centralized syslog daemon, which is then used for
capture by LogLogic. This is configured in the Manager Configuration or the Engine
Configuration.

Manager Configuration

To configure syslog output for a Manager, go to Admin > System Admin > Manager
Configuration > Logging > Syslog.

Engine Configuration

To configure Syslog output for a group of Engines, go to Grid Components > Engines >
Engine Configurations and edit the properties in the Logging to a Syslog Server section.
This affects all Engines using that Engine Configuration.

Configuration Properties

Configuration properties are as follows:

Property Description Default

Enabled If syslog output is enabled. false

Syslog Server
Address

The hostname or IP address of the syslog
server.

Syslog Server
Port

The port of the syslog server 514

Components The comma-separated list of components that
are logged.

The component is the value that is in brackets
on a log message.

If the logger is set to use the Fully Qualified

Syslog Configuration Properties

TIBCO GridServer® Administration Guide

126 | Administration and Maintenance

Property Description Default

Class Name, the component name is just the
unqualified class name.

Use the * character to log all components.
(The * character can only be used to indicate
all, it cannot be used in component names.)

Max Log Level The highest level of messages that are sent to
syslog.

Note that log messages higher than the
default log level are not sent; this setting only
limits what is sent to syslog.

ALL

Tag The syslog tag, which is typically the name of
the program or process that generated the
message.

GridServerEngine or
GridServerManager

Time Zone The time zone of the time stamp. Currently
only GMT and default time zones are
supported.

Facility The syslog facility level. 1

Logging Message Format

Facility

The syslog facility value is an integer from 0-23. See the Syslog protocol definition in RFC
5424 for more information about facility values.

Severity

The severity is an integer from 0-7. The following table describes the severity levels, and
how Java log levels are mapped to them:

TIBCO GridServer® Administration Guide

127 | Administration and Maintenance

Code Severity Java Level Description General Description

0 Emergency System is
unusable.

A "panic" condition usually
affects multiple
apps/servers/sites. At this
level it usually notifies all
tech staff on call.

1 Alert Action must be
taken
immediately.

Must be corrected
immediately, therefore
notify staff who can fix the
problem. For example, the
loss of a primary ISP
connection.

2 Critical Critical
conditions.

Must be corrected
immediately, but indicates
failure in a secondary
system. For example, the
loss of a backup ISP
connection.

3 Error SEVERE Error
conditions.

Non-urgent failures, these
must be relayed to
developers or admins;
each item must be
resolved within a given
time.

4 Warning WARNING Warning
conditions.

Warning messages, not an
error, but indication that
an error occurs if action is
not taken. For example,
file system 85% full - each
item must be resolved
within a given time.

5 Notice Normal but Events that are unusual

Syslog Severity Levels

TIBCO GridServer® Administration Guide

128 | Administration and Maintenance

Code Severity Java Level Description General Description

significant
condition.

but not error conditions -
might be summarized in
an email to developers or
admins to spot potential
problems - no immediate
action required.

6 Informational INFO, CONFIG Informational
messages.

Normal operational
messages - might be
harvested for reporting,
measuring throughput, and
so on - no action required.

7 Debug FINE,FINER,
FINEST

Debug-level
messages.

Info useful to developers
for debugging the
application, not useful
during operations.

Output
The output is in standard syslog format:

<PRI> HEADER MSG
PRI: Integer value: (Facility * 8) + Severity
HEADER: Timestamp Address

• The timestamp format is MMM dd HH:mm:ss

• The address can be hostname or IP. The fully qualified domain name as reported by
the OS is used.

MSG: TAG: CONTENT

• The separator between TAG and CONTENT can be a number of things, but a colon is
most common.

• The CONTENT is the GridServer log message, without the initial timestamp.

TIBCO GridServer® Administration Guide

129 | Administration and Maintenance

Elasticsearch Integration
To support integration with Elasticsearch, Manager log messages and Server events can be
sent to a REST endpoint as JSON. This enables you to use Elasticsearch for Engine and
Broker usage analysis, and to perform quicker and easier issue diagnosis with log parsing.
This feature can also be used for any tool like Elasticsearch that accepts messages on an
HTTP(S) REST endpoint as JSON.

Configuration
To configure REST output for logging or server events, go to Admin > System Admin >
Manager Configuration > Logging > Log to REST or Server Events to REST. This feature
is only supported for Managers, and not Drivers or Engines.

Log Message to REST Configuration

The following properties related to sending log messages to a REST endpoint:

Name Description Default

Enabled If sending log messages to REST
is enabled.

false

Server
URL

The complete URL path of the
location that receives the log
messages. The following
substitution variables are
supported:

• ${hostname} the short
(not fully qualified)
hostname

• ${managerId} the
Manager ID as found on
the Admin section of the
Manager Configuration

Log Message to REST Configuration

TIBCO GridServer® Administration Guide

130 | Administration and Maintenance

Name Description Default

page

• ${dateFormat:format},
where format specifies a
date according to the
Java SimpleDateFormat
class.

For example,
http://logdb.mycompany.com/d
atasynapse-${hostname}-
${managerId}-
${dateFormat:yyyy-MM-dd}/log

Usernam
e

User name, if using Basic Auth.

Passwor
d

Password, if using Basic Auth.

Max Log
Level

The highest level of messages
that is logged. This can only be
used to restrict what is logged to
the server from the default
settings. Typically this is set to
ALL, unless you want to send
higher level messages to another
logging device but restrict what
is logged to this server.

ALL

Backlog The number of messages that
can be queued for send.

1000

Discard
when
Backlogg
ed

If true, subsequent messages are
discarded when the backlog is
reached. Otherwise, the caller is
blocked.

false

Timesta The format of the 'timestamp' yyyy-MM-dd'T'HH:mm:ss.SSSZZ

TIBCO GridServer® Administration Guide

131 | Administration and Maintenance

Name Description Default

mp
format

property

Time
Zone

The time zone of the time stamp,
currently only GMT and default
time zone is supported.

Excluded
LogRecor
d
Propertie
s

A comma-delimited list of
properties of the Java LogRecord
class that is excluded. By default,
the following are excluded:
sourceClassName,
sourceMethodName because they
can impact performance; millis
because a formatted timestamp
is often preferred;
sequenceNumber because it might
not be useful.

millis,sequenceNumber,sourceClassName,s
ourceMethodName

HTTP
Timeout

The connect and read HTTP
timeouts, in milliseconds

5000

Server Event to REST Configuration

The following properties related to sending server events to a REST endpoint

Property Description Default

Enabled If sending server events to REST is enabled. false

Server URL The complete URL path of the location that
receives the log messages. The following
substitution variables are supported:

• ${hostname} the short (not fully
qualified) hostname.

Server Event to REST Configuration

TIBCO GridServer® Administration Guide

132 | Administration and Maintenance

Property Description Default

• ${managerId} the Manager ID as found
on the Admin section of the Manager
Configuration page.

• ${dateFormat:format}, where format
specifies a date according to the Java
SimpleDateFormat class.

For example,
http://logdb.mycompany.com/datasynapse-
${hostname}-${managerId}-
${dateFormat:yyyy-MM-dd}/log

Username User name, if using Basic Auth.

Password Password, if using Basic Auth.

Backlog The number of messages that can be queued
for send.

1000

Discard when
Backlogged

If true, subsequent messages are discarded
when the backlog is hit. Otherwise, the caller
blocks.

false

Timestamp
format

The format of the 'timestamp' property yyyy-MM-
dd'T'HH:mm:ss.SSSZZ

Time Zone The time zone of the time stamp, currently
only GMT and default time zone is supported.

Excluded
Events

A comma-delimited list of integer event types
that are excluded.

Include Type If true, the integer event type is included in the
message.

true

Include Name If true, the event name is included. For
example, TASK_SUBMITTED.

false

TIBCO GridServer® Administration Guide

133 | Administration and Maintenance

Property Description Default

HTTP
Timeout

The connect and read HTTP timeouts, in
milliseconds

5000

Message Format
Each log message is JSON formatted, and includes the following:

• timestamp — when the event occurred (not when it was sent.)

• type — The integer type, from the ServerEvent class in the API.

• name — The name, from the ServerEvent class.

• properties — The properties map for that event.

For example:

{
"timestamp":"2014-04-29T17:45:18.512-0400",
"type":28,
"name":"TASK_SUBMITTED",
"properties":{

"ServiceSessionID":"21837468246",
"ServiceInvocationID":"3".
...

}
}

Database Maintenance
Each GridServer Manager contains an embedded database running on each Director. This
internal, or admin database stores administrative data, such as User, Engine, Driver, and
Broker information. You can also configure GridServer to use an external reporting
database to log events and statistics. GridServer does not include a reporting database;
you must use your own enterprise-grade database.

TIBCO GridServer® Administration Guide

134 | Administration and Maintenance

Database Types
There are two databases used by the GridServer Manager, each of which are described
below.

The Reporting Database

The external reporting database is optionally used to store events and statistics. Depending
on configuration settings, this database can grow quickly. Using a robust external database
is recommended if you plan to make use of the reporting capabilities. The specific types of
data that are stored in the reporting database are configurable in the Administration Tool
at Admin > System Admin > Manager Configuration > Database. Install the external
database on any machine reachable from the Broker over a standard network connection.

If a grid is deployed across a large WAN on which latencies can be large, it’s best not to
have all Brokers write to the same reporting database, especially if the database is in a
remote location. You can override a Director’s reporting database settings with a Broker-
specific database setting. To do so, go to Admin > System Admin > Manager
Configuration > Database, and set Override Primary Director setting to True. When True,
it uses the given values, otherwise it gets the values from the Director.

For information about installing an external database for the reporting database, the
GridServer Installation Guide.

The Internal Database

GridServer’s internal database stores admin data such as User, Engine, Driver, and Broker
information. In typical cases, the internal database is read at Manager startup, and only
written to thereafter if user-driven admin events occur, such as adding a user, Engine, or
Manager. The internal database is required to start the Manager. This database is an
embedded component of the GridServer software.

Internal Database Reset
If for any reason you must reset the internal database to its original state as initially
installed, you can use the following procedure.

TIBCO GridServer® Administration Guide

135 | Administration and Maintenance

Warning
This procedure removes all administrative data!

To reset the internal database:

1. Shut down the Director.

2. Delete the contents of the DS_DATA/db directory.

3. Open the DS_DATA/conf/installation.properties file, and set
DSConfigureOnStartup=true

4. Start the Director.

5. Go to the Administration Tool. You are presented with the installation page.
Complete the installation, and restart.

Internal Database Backup
The internal database used by GridServer is automatically backed up at a regular interval.
A copy of Internal.properties and Internal.script is made and stored in DS_
DATA/db/backup. If a Secondary Director is installed, the internal database is replicated to
the Secondary Director at the same time, and when the Secondary Director logs in.

Internal database backup is configured at Admin > System Admin > Manager
Configuration > Database, under the Admin Database Configuration heading. The
Backup Cron property dictates when backups are made, using the cron format described
above. By default, it is set to back up the database at 3:00 AM daily. The Backup property
is set to enable or disable backup. It is set to enabled by default.

Note
Database backups can be very resource-intensive. Scheduling
them during off-peak hours is recommended.

Performing Reporting Database Maintenance
GridServer Managers do not perform any cleanup of data in the reporting database. This is
considered a database maintenance activity. As such, it is not managed by GridServer.

TIBCO GridServer® Administration Guide

136 | Administration and Maintenance

Consult your database’s documentation for more information about how to perform
database cleanup.

To temporarily disconnect the external reporting database for periodic database
maintenance, you can suspend the database connection. This backlogs all write events
posted to the reporting database until reactivation.

To suspend the database connection, go to Admin > System Admin > Manager
Configuration > Database, and change the Connection Suspended property from False to
True.

While suspended, all write events posted to the reporting database are backlogged until
set back to False. You can also safely stop the database while it is suspended. Set the
backlogs sufficiently high so that events are not discarded while suspended. All events are
backlogged to memory.

The Batch Scheduling Facility
Commands and Services can be scheduled to run on a regular basis using the Batch
Scheduling Facility. A Batch Definition contains instructions in the form of components that
define scheduling and what the Batch executes. When the Batch Definition is scheduled on
the Manager, it creates a Batch Entry, which typically waits until its scheduled time, then
executes, creating a Batch Execution. Services are executed using an embedded Driver on
the Manager.

Using the Administration Tool, you can write a Batch Definition with specific scheduling
instructions. You can specify a Batch Definition to immediately execute when scheduled, or
it can wait until a given time and date. A Batch Definition can be submitted to run at a
specific absolute time, or a relative time, such as every hour. They can also be written to
wait for an event, such as a new, modified, or deleted file.

TIBCO GridServer® Administration Guide

137 | Administration and Maintenance

A Batch Definition consists of Batch Components. When a Batch Definition is scheduled, it creates a Batch Entry
and runs as defined by the Batch Components. When it runs, it creates a Batch Execution file, which then

executes the components according to the definition.

Batch Definitions contain one or more components contained within a batch component. A
Command component contains a program that is run by the Batch Definition. A schedule or
event component specifies when subsequent Command components run.

Terminology
The following terms are used to describe components related to the Batch Scheduling
Facility:

Name Page Description

Batch Definition Batch
Definitions

How a Batch is written. The Batch Definition is edited
from the Batch Definitions editor which contains
components that define the Batch. Once created, you
can manage the Batch from the Batch Definitions
page.

Batch
Component

Batch Registry
editor

When a Batch Definition is created, it consists of a
Batch component, which can contain other
components, such as ServiceCommand components,
Conditional components, and other Batch
Components. The Batch Definitions editor lets you

Batch Terminology

TIBCO GridServer® Administration Guide

138 | Administration and Maintenance

Name Page Description

add, remove, and edit Batch components and other
components it contains.

Batch Entry Batch
Schedule

When a Batch Definition has been instantiated by
being scheduled on the Batch Schedule page, a
Batch Entry is created. The Batch Entry either runs
immediately, or waits to run, depending on what
scheduling components are added to the Batch
Definition.

Batch Execution Batch Admin When a Batch Entry runs, it creates a Batch
Execution, which does whatever was defined in the
Batch Definition. For example, if a Batch Definition
uses the ServiceCommand to start ten Service
Sessions, the Batch Execution does that. The Batch
Execution is managed on the Batch Admin page. Any
actual Service Sessions created can be managed on
the Grid Components > Services > Service Session
Admin page.

Service Runner Service
Runners

Service Runners enable you to define a registered
Service Type with options and init data that can be
used in a Batch Definition.

Editing Batch Definitions
To create a new Batch Definition, go to Services > Batch > Batch Definitions. This page
contains a list of Batch Definitions on the Manager, plus a blank box for entering the name
of a new Batch Definition. When you select a Batch Definition, click the Action list, and you
can select View/Edit Batch Definition to edit a Batch Definition, Rename Batch Definition
to rename a Batch Definition, Copy Batch Definition to copy a Batch Definition, Delete
Batch Definition to remove a Batch Definition, Export Batch Definition to save an XML
file of the Batch Definition, or Schedule Batch Definition to place a Batch Definition in the
Manager’s Batch queue. You can also select Batch View to display a graphical
representation of the Batch Definition in a new window.

TIBCO GridServer® Administration Guide

139 | Administration and Maintenance

The Batch Definition window

To edit a Batch Definition, either select View/Edit Batch Definition from an existing Batch
Definition’s Action list, or type the name of a new Batch Definition in the empty box at the
end of the list and click Add. This opens the Batch Definition window containing
parameters for your new Batch Definition. You can then change the values of parameters,
and click Save to save the values as a Batch Definition on the Manager, or click Cancel to
exit and discard any changes you have made.

The Batch Definition parameters are as follows:

Parameter Description

Batch Component

Name The name of the Batch Definition. If this is a new Batch Definition, this is
the name you initially typed in the blank box prior to selecting Add, and
is not editable. (You can rename a Batch Definition by selecting the
Rename action from the Batch Definitions page.) If an additional Batch
component is added to a Batch Definition, you can set its name.

Description Sets the description of the Batch, that appears on the Batch Manager
page.

Type Determines how a Batch Definition is run, either in serial or parallel. If set
to parallel, all Batch components are executed when the Batch Definition
is scheduled. If set to serial, Batch components are executed in the order
in which they were added. If any of the components fail, it prevents the
Batch from continuing, and the Batch fails. The default is serial.

Batch Definition Parameters

TIBCO GridServer® Administration Guide

140 | Administration and Maintenance

Parameter Description

Schedule Component

Type Sets the type of the Schedule. If Immediate, the Batch Definition runs
when scheduled.When Absolute, the Batch Definition runs once
according to the date set in startTime. If Relative, the Batch Definition
runs after the specified number of minutes in minuteDelay as well as
repeating or executing immediately with respect to repeat and runNow. If
Cron, the Batch Definition runs according to the values set in the cron
entry. (The same cron format is used as in database configuration; see
“Cron Format” for more information.) When set to Manager Startup, the
Batch Definition runs when the Manager first initializes.

Add
component

Adds a component to the Batch Definition. A Batch Definition can contain
one or more components.

Batch Components
The parameters in the Batch Definition editor correspond to components contained in the
Batch Definition. Each Batch Definition can contain one or more Batch components. These
components can be commands, events, or other Batch Definitions. For example, a
LogCommand Component is shown below. To add a component to a Batch Definition,
select a component from the add component list.

A Batch Component

Batch components are processed in a Batch Definition in order when Batch Type, described
above, is set to serial. You can change the order of Batch components by clicking the Move
Up and Move Down buttons in the upper-right corner of each Batch component, to move

TIBCO GridServer® Administration Guide

141 | Administration and Maintenance

that component’s order up or down in the Batch Definition. You can also remove a Batch
component by clicking the Remove button in the upper-right corner.

Each of the types of Batch components that can be added to a Batch Definition are
described below. By default, Extended Help is displayed. Using the help control in the
upper right corner, you can select Help to display only the first sentence of help, or No
Help to suppress the help display.

Name Description

Batch Contains another Batch Definition. This can be used to create a
complex or multi-leveled Batch Definition. For example, a parent
Batch Definition can start each day, starting with two child Batch
Definitions, each with different schedules or conditions.

For each new Batch component, you must set the same
parameters for a Batch Definition as described above. You can
then add additional components to the Batch.

Conditional Provides conditional processing when running Batches. The
component specified by the test is run. If it runs successfully,
the component specified by success is executed. If it fails, the
component specified by failed is executed.

The component specified in test returns success in the following
conditions:

• Command returns Command.SUCCESS

• ServiceCommand creates the Service and submits the
invocation without exception

• ServiceRunnerCommand creates the Service and submits
all invocations without exception

BatchReference Contains a reference to a registered Batch Definition that gets
loaded when scheduled from the Batch Registry.

Command Runs an implemented method in a deployed class. Properties in
Batch commands are based on the Java Beans specification. In a
Java class, you define methods which match a pattern to get
and set property values. For example, if you have a property

Batch Components

TIBCO GridServer® Administration Guide

142 | Administration and Maintenance

Name Description

called MyName, you can define two methods:

Public class MyCommand implements Command {
 public void setMyName(String value) { MyName
= value; }
public String getMyName() { Return MyName; }
public int run()

{
 ; //do stuff
 return Command.SUCCESS;
 }
}

On the Batch Registry page, adding this command to a Batch,
you can then add a property with the name MyName and value
Bob by entering these in the two text fields and clicking Add
property.

ServiceCommand Starts a Service. You can specify a Service type registered on the
Manager and method name to run. You can also specify a
Service reference ID (this enables you to reference the Service
from another Service Command), Service action, and input and
init data for the Service. Data is comma-delimited.

You can add ServiceDescription, ServiceOptions, and
Discriminator components to a Service by using a Service
Runner.

ServiceRunnerReference Loads the specified registered Service Runner. See below for
information about registering a Service Runner.

AdminCommand Executes a command via the GridServer Admin API. For more
information about using the Admin API, see the GridServer
Developer’s Guide.

EmailCommand Sends an email message from a Batch Definition, for notification
or alerts. You can enter a comma-delimited list of email
addresses for recipients, and a message string, used as a subject
and a body.

TIBCO GridServer® Administration Guide

143 | Administration and Maintenance

Name Description

Note that for the batch processor to send email, you must define
an SMTP server and Contact Address in your Manager
Configuration. To do this, go to Admin > Manager
Configuration > Admin, and enter values for SMTP Host and
Contact Address under the Mail heading. Email sent by the
batch processor is sent from the Contact Address.

EmailFilesCommand Sends an email message from a Batch Definition that includes
files as attachments, typically used to send the output of a
previous command by saving that output to a file. You can enter
a subject, a message body string, a comma-delimited list of
email addresses, and a semicolon-delimited list of files, which
are sent as attachments in the message.

The setup rules given above in the description of the
EmailCommand component also apply to the
EmailFileCommand component.

ExecCommand Executes a command from a Batch. This executes a command
from the application server’s root directory. You can set an
input, output, and error file, plus a log file for the command to
be run.

LogCommand Writes a string to the Manager log. This is useful for testing
Batches or indicating when a Batch is starting or stopping.

WaitCommand Halts for a moment before proceeding. The amount of wait time
is specified in seconds. Note that this component is only useful
for generating a wait time when the Batch type is serial.

EngineWeightCommand Sets the Engine distribution weighting relative to other Brokers.
Only Brokers that are part of a Broker/Director Manager
installation are listed.

Event Makes a Batch File wait for an implemented event to take place.
You can use this to pause until a specific condition in a class you
deployed has occurred.

TIBCO GridServer® Administration Guide

144 | Administration and Maintenance

Name Description

FileEvent Makes a Batch wait for a file event to occur to the specified file
before completing the remaining items in the Batch Definition.
Specifically, it enables you to watch a file and wait until it is
created, deleted, or modified before proceeding.

The file specified in FileEvent supports wildcards in the base
filename. Any file matching the wild card rule can trigger the file
event. Wildcards supported include *, to match the rest of the
base filename, and ?, to match one character in the base
filename. The wildcard naming role is the same as what’s
implemented by
org.apache.commons.io.filefilter.WildcardFilter (see
http://jakarta.apache.org/commons/io/api-
release/index.html for more information.)

Service Runners
Service Runners enable you to define a registered Service Type with options and init data
that can be used in a Batch Definition. It can also be used to chain together Service Types
and Discriminators into a single unit that can be used in a Batch Definition.

To create a Service Runner, go to Services > Batch > Service Runners. Type the name of a
Service Runner in the box and click Add. This opens a Service Runner Editor page, where
you can choose a Service Type and enter init data, a description, and method names and
input data for invocations. You can also use the list at the bottom of the page to add
Discriminators, Service input description data, and Service options.

The Service Runners page also lists all Service Runners existing on a Manager. Using the
Actions controls, you can edit, rename, copy, delete, export, or launch each Service
Runner.

Scheduling Batch Definitions
After creating a Batch Definition with the Batch Definition editor page, the Batch is listed
among the other Batch Definitions on the Batch Definition page. However, these Batch
Definitions are not actually running on the Manager yet. To create a Batch from a Batch

TIBCO GridServer® Administration Guide

145 | Administration and Maintenance

Definition, you must first schedule it. This actually instantiates a Batch and inserts it into
the Manager’s batch queue.

To schedule a Batch Definition, go to Services > Batch > Batch Definitions, and find the
Batch Definition in the list. Select Schedule Batch Definition from the Actions control.
This schedules the Batch Definition and opens the Batch Schedule page, displaying the
new Batch Entry.

Note that when you schedule a Batch to run at some point in the future, and then you edit
or change Batch Definitions, the Batch uses the Batch Definitions as they were defined
when the Batch was scheduled, and not the current ones. If you want to change a Batch
Definition for a Batch you have scheduled in the future, you must remove the scheduled
Batch, change the Batch Definition, and reschedule it.

The Batch Schedule Page
Batch Entries on a Manager can be listed and administered on the Batch Schedule page.
To do this, go to Services > Batch > Batch Schedule. All Batch Entries resident on the
Manager are listed. To remove or edit an existing Batch Entry or view logs or Batch
executions, select a command from the Actions control next to the relevant Batch.

Running Batches
Batch Entries automatically run when they reach the scheduled time or conditions defined
in their Batch Definition. When this happens, Batch Executions are created and displayed
on the Services > Batch > Batch Admin page. PDriver Batches (which are also Batch
Executions) are also displayed on this page. From this page, you can monitor Batch
Executions, search for logs, and display the Batch Monitor to view what parts of a Batch
have completed.

Any Services that are run by the Batch Execution are displayed on the Services > Services
> Service Session Admin page. From there, you can cancel Service Sessions, view tasks, or
do any other actions you normally do with a Service. Note that it is possible to have a
Batch Execution run a Service that continues to run, even after the Batch Execution reports
that it is finished.

TIBCO GridServer® Administration Guide

146 | Administration and Maintenance

Deploying Batch Resources
Java Services, Commands, and other resources must be placed in DS_DATA/batch/jar to
be properly loaded by the embedded Driver.

Batch Fault-Tolerance
Batch Schedules that exist on a Manager are persistent, provided the Next Run field is not
never. This provides failover capability in the event of a Manager failure, as the Batch
Schedules still exist when the Manager is restarted.

The following Batch Schedules are persistent:

• Absolute schedules

• Relative schedules with repeat

• Cron schedules

All persistent Batches are restarted when the Manager is restarted, just like they were
scheduled for the first time. Batch runs that were to occur during the time when the
Manager was down are ignored.

TIBCO GridServer® Administration Guide

147 | Optimizing the Grid

Optimizing the Grid
This section provides information about tuning your Grid’s settings for optimal
performance.

Diagnosing Performance Issues
To find bottlenecks in application performance, use GridServer’s Instrumentation feature.
With instrumentation enabled, you can get detailed timings of each request submitted to
the Broker. These timings highlight scheduling overhead, data marshaling time and
network delays.

Note that Instrumentation measures only GridServer-related times. It does not show other
application delays due to, for example, excessive database load.

For information about turning on Instrumentation, see Enabling Enhanced Task
Instrumentation. Also see the GridServer Developer’s Guide.

Tuning Data Movement
Efficient handling of data can often make or break achieving performance gains in a Grid-
enabled application. Instrumentation reveals problems with having too much data per
request: serialization, deserialization and network transport times are high compared to
the actual Engine-side compute time. There are a number of remedies for inefficient data
movement. We survey them here in order from simplest to most complex.

Set Invocations Per Message > 1

By default, the Driver sends one message to the Broker per task submission. For Services
that use the model of ‘Submit Many, Collect Results”, this is not efficient. Any Service that
submits a reasonably large number of tasks at one time must always have the
InvocationsPerMessage option set greater than one. (The optimal number depends on the
environment; 25-50 is a good starting point). After submission, flush must be called on the

TIBCO GridServer® Administration Guide

148 | Optimizing the Grid

Service to send any remaining buffered tasks. (waitUntilInactive and
destroyWhenInactive also implicitly flush.)

Collect After Submit

The default mode of results collection is immediate. As in the previous section, if your
model submits many tasks, then waits for results, this can cause inefficiencies. Specifically,
the collection of results can slow down submission of tasks, resulting in idle Engines that
can be working on your Service. Setting the collection type to AFTER_SUBMIT ensures that
the tasks are worked on as soon as possible. After submission, call waitUntilInactive or
destroyWhenInactive to begin collection.

Stateful Processing

GridServer supports two related mechanisms that link client-side service instances to
Engine-side state, thereby reducing the need to transmit the same data many times. The
two mechanisms are initialization/update data, and Service affinity.

Initialization/Update Data

Making data that is constant across an entire set of task requests into Service initialization
data is recommended. Initialization data is transmitted once per Engine, rather than once
per request. Designing long-lived volume-based applications that typically process
thousands of requests, and compute-intensive applications so that they create many small
requests, rather than few large ones is also recommended, for a variety of reasons. See the
GridServer Developer’s Guide for more information.

If a piece of data is not constant throughout the life of the application, but changes rarely
(relative to the frequency of requests), it can be passed as initialization data and then
changed by using an update method.

The Service Session Size parameter, located on the Grid Components > Engines >
Engine Configurations page under the Service Caches heading, controls how much
initialization data can be stored on an Engine in aggregate. In other words, if the total size
of init data across all loaded service instances exceeds the set value of the parameter, then
the least-recently used Service instances are purged from the cache. If Instrumentation
shows a non-zero time for Engine Download Instance the second or subsequent time an
Engine receives a request from a service, that indicates that the service instance was
purged from the cache. Increasing Service Session Size might then result in improved
performance.

TIBCO GridServer® Administration Guide

149 | Optimizing the Grid

Affinity

The GridServer scheduler uses the fact that an Engine has initialization data and updates
from a particular Service to route subsequent requests to that Service. This feature, called
affinity, further reduces data movement, because unneeded Engines are not recruited into
the Service. (However, if the Service has pending requests, available but uninitialized
Engines are allocated to it.) Affinity can be further exploited by dividing the state of an
application across multiple client-side Service instances, called Service Sessions. The
application then routes requests to the instance with the appropriate data. For example, in
an application dealing with bonds, each Service instance can be initialized with the data
from one or several bonds. When a request comes in for the value of a particular bond, it is
routed to the service instance responsible for that bond. In this way, a request is likely to
arrive on an Engine that already has the bond data loaded, yet no Engine is burdened with
the entire universe of bonds.

The STATE_AFFINITY Service option is a number that controls how strongly the scheduler
uses affinity for this service. The default is 1, so set it to a higher value to give your service
preference when Engines are being allocated by affinity.

The AFFINITY_WAIT Service option controls how long a queued request avoids allocation to
an available Engine that has no affinity, in the hope of later being matched to an Engine
with affinity. Use this option when the initialization time for a service instance is large. For
instance, say it takes five minutes to load a bond. If AFFINITY_WAIT is set to two minutes,
then a queued request is not assigned to an available Engine that lacks affinity for two
minutes from the time the first Engine becomes available. If an Engine that already has
loaded the bond becomes available in those two minutes, then the request is assigned to
that Engine, saving five minutes of startup time.

The AFFINITY_DEPTH Service option is used for invocation-level affinity to determine how
deep into the request queue the affinity score must be calculated between all available
Engines. It must be greater than zero (the default) if adding affinity to tasks. Larger values
can result in longer scheduling episodes, so this number must be chosen wisely.

Affinity can also be set based on Engine Properties instead of state, by using a Property
Affinity Condition. The scheduler then calculates the affinity score based on state, and then
adds a defined number for each satisfied Property Affinity Conditions you have added to
the Service.

Compression

Setting the COMPRESS_DATA Service option to true (in the Service client or on the Services >
Services > Service Type page) causes all transmitted data to be compressed. For large

TIBCO GridServer® Administration Guide

150 | Optimizing the Grid

amounts of data, the transmission time saved more than makes up for the time to do the
compression.

Packing

Packing multiple requests into a single one can improve performance by amortizing the
fixed per-request overhead of GridServer and the application over multiple units of work.
The fixed overhead includes TCP/IP connection setups for multiple transits, GridServer
scheduling, and other possible application initialization steps.

GridServer’s AUTO_PACK_NUM Service option is an easy way to achieve request packing. If its
value is greater than zero, then that many requests are packed into a single request, and
responses are unpacked, transparently to the application. (If the application makes fewer
than AUTO_PACK_NUM requests, then the accumulated requests are transmitted after one
second.) Auto-packing amortizes per-request overhead, but does not factor out common
data.

Direct Data Transfer

By default, GridServer uses Direct Data Transfer (DDT) to transfer inputs and outputs
between Drivers and Engines. When Driver-Engine DDT is enabled, the Driver saves each
request as a file and sends a URL to the Broker. The Engine assigned to the request gets
the URL from the Broker and reads the data directly from the Driver. Engine-Driver DDT
works the same way in the opposite direction. Without DDT, all data must needlessly go
through the Broker.

DDT is efficient for medium to large amounts of data, and prevents the Broker from
becoming a bottleneck. However, if the amount of data read and written is small, disabling
DDT might boost performance.

Disable Driver-Engine DDT in the driver.properties file on the client. Disable Engine-
Driver DDT from the Grid Components > Engines > Engine Configurations page.

Shared Directories and DDT

In some network configurations, it might be more optimal to use a shared directory for
DDT rather than the internal file servers included in the Drivers and Engines. In this case,
the Driver and Engines are configured to read and write requests and results to the same
shared network directory, rather than transferring data over HTTP. All Engines and the
Driver must have read and write permissions on this directory. Shared directories are
configured at the Service level with the SHARED_UNIX_DIR and SHARED_WIN_DIR options. If

TIBCO GridServer® Administration Guide

151 | Optimizing the Grid

using both Windows and UNIX Engines and Drivers, you must configure both options to be
directories that resolve to the same directory location for the respective operating systems.

Caching

Service initialization data is effectively a caching mechanism for data whose lifetime
corresponds to the Service Session. Other caching mechanisms can be used for data with
other lifetimes.

If the data is constant or rarely changing, use GridServer’s resource deployment
mechanism to distribute it to Engine disks before the computation begins. This is the most
efficient form of data transfer, because the transfer occurs before the application starts.

GridCache can also be used to cache data. GridCache data is stored on the Manager and
cached by Engines and other clients. See the GridServer Developer’s Guide for more
information.

Data References

GridServer supports Data References: remote pointers to data. A Data Reference is small,
but can refer to an arbitrary amount of data on another machine. Data References are
helpful in reducing the number of network hops a piece of data needs to make. For
instance, imagine that an Engine has computed a result that another Engine might want to
use. It can write this result to GridCache. But if the result is large, it travels from the writing
Engine to the GridCache repository on the Broker, and then to the reading Engine. If the
first Engine writes a Data Reference instead, the second Engine can read the data directly
from the first Engine. Data References hide this implementation from the programmer,
making network programming much simpler.

The data referenced in a data reference is periodically deleted. By default, this happens
every 168 hours, or 7 days. You can configure this time, either to retain data for a longer
period, or to delete data more frequently and free space on the client and Engine
filesystems. To change this period, go to Admin > System Admin > Manager
Configuration > Services. Under the Data Transfer heading, change the value of File
Time To Live, and click Save.

HTTP Proxy for Engine Data Transfer

In a GridServer deployment where a Broker and its Engines are separated by a WAN, it can
be inefficient to transfer the same data over the WAN to multiple Engines from the Broker
or the Clients. One solution is to use an HTTP proxy server (such as Squid Web Cache) to

TIBCO GridServer® Administration Guide

152 | Optimizing the Grid

cache the session’s init data, which any Engine that works on the session must transfer.
You can specify a proxy server in an Engine configuration, and the proxy server caches the
Service data for other Engines also using the same proxy server.

For more information about using an HTTP proxy for Engine data transfers, see Configuring
a Caching HTTP Proxy Server

TIBCO GridServer® Administration Guide

153 | Diagnosing GridServer Issues

Diagnosing GridServer Issues
This section contains information about how to find information to diagnose GridServer
issues. It contains information about troubleshooting your installation and gathering
information that is helpful if you contact TIBCO for support.

Troubleshooting Overview
When troubleshooting a GridServer installation, first try the following:

1. Ensure that there are no service outages in your environment, such as network or
database changes.

2. Read the log files, as described below.

3. Go through the relevant diagnostic sections below.

Reporting an Issue
To report a GridServer issue, go to the TIBCO Customer Support site at support.tibco.com.

Obtaining Log Files
There are several logs generated by GridServer. Depending on what kind of issue you are
troubleshooting, you might need to examine one or more logs. These include Manager,
Driver, Engine, and Engine Daemon logs.

The current log is always named gridserver.log, driver.log, or engine-
Instance#.TIMESTAMP. When logs reach a configured size, they are “rolled over”, and the
old log is time stamped. Logs are also moved when a non-Driver component first starts,
and are timestamped with the last modification date of the file. Optionally, the process ID
of the component doing the logging can be added to the filenames of the current log file.

http://support.tibco.com/

TIBCO GridServer® Administration Guide

154 | Diagnosing GridServer Issues

Manager Logs
Manager Logs are generated on the console window on Windows machines if the Manager
is not run as a service, or on UNIX machines if the Manager is run in the foreground on the
console. Because GridServer is usually run as a service or in the background, there are
several other ways to view the Manager log:

• In the GridServer Administration Tool, go to Diagnostics > Real Time Log. This
displays new lines of the log as they happen, in a new window. It doesn’t, however,
display any historical information. Click the Snapshot button to open a frozen
duplicate of the current log window.

• Go to Diagnostics > Manager Diagnostics. This page enables you to display the
Manager log, and other information in a specified time period. You can display or
create a .ZIP file of the results.

For example, to view Manager log results, select Manager Log, then select a time
range. You can then display the log on-screen by clicking Display, or save it in a
compressed file by clicking Download.

• The Manager log is available directly at DS_DATA/logs/server/* or the location
specified at Admin > System Admin > Manager Configuration > Logging.

The Manager log can be set to different levels of granularity, ranging from Severe, which
provides the least amount of logging information, to Finest, which logs the most
information. By default, this level is set at Info. For debugging purposes, it might be
necessary to set the level higher, to Finer or Finest.

To change the log level:

1. Go to Admin > System Admin > Manager Configuration > Logging.

2. In Default Debug Level, select a new level.

Configuration options for Manager logs, such as maximum file length and timestamp
format, can also be set on the Manager Configuration page, in the Logging section.

Warning
If you set the log level to Finer or Finest, a large volume of
logs are generated, which can adversely affect performance
and overwhelm your Manager’s file system over time.
Remember to change back the log level after you are done
troubleshooting.

TIBCO GridServer® Administration Guide

155 | Diagnosing GridServer Issues

Engine and Daemon Logs
Each Engine and Engine Daemon generates its own logs. These can be accessed directly on
Engines. However, because Engines are typically installed in several different machines,
there are also methods to view logs remotely from other computers. The following
procedures describe how to read Engine logs.

To directly view log files, look in the following directories in each Engine install directory

• Engine instance logs: install-dir/work/machine name-instance/log/*

• Engine Daemon logs: install-dir/profiles/machine name/logs/engined.log

• Also examine other .log files in the Engine tree

To read a remote Engine log in a scrolling window

Procedure

1. Go to Grid Components > Engines > Engine Admin.

2. Select an Engine.

3. From the Actions list, select Remote Log.

This opens a window that displays the log for the Engine. Logging information is
displayed as it is generated. This does not, however, display any prior logging
history.

To access previous logs remotely

Procedure

1. Go to Engines > Engine Admin.

2. Select an Engine.

3. From the Actions list, select Log Files.

4. A window opens with a list of links for each of the logs residing on that Engine,
listed by date and time. You can do any of the following:

— Select an Engine Daemon or a particular Engine from the list in the upper left.
This shows all of the log files on that Engine Daemon or Engine and their sizes.
You can also type in the list box to quickly filter the list to partial matches.

— Click on a log file name and its content is displayed to the right in the window.

TIBCO GridServer® Administration Guide

156 | Diagnosing GridServer Issues

— Click the links in the upper right to download a ZIP archive of all log files on the
host, a ZIP archive of all log files of an Engine Daemon or Engine instance, or a
particular log file.

The Log Files window

You change the log level for Engines in Engine configurations, in the Log section. You can
also set other logging options in Engine configurations, such as the maximum log size, and
when log files are automatically cleaned.

Application Server Logs
The Tomcat application server used to run the GridServer Manager also generates logs that
can be helpful in diagnosing issues. Logs are maintained in the base directory in the logs
directory.

TIBCO GridServer® Administration Guide

157 | Diagnosing GridServer Issues

Monitoring the Tomcat Application Server
When troubleshooting the Tomcat Application Server, you can use JMX to monitor Tomcat.

For more information about using JMX and Tomcat, see http://tomcat.apache.org/tomcat-
6.0-doc/monitoring.html.

Monitoring Engines Using JMX
JMX can also be used to monitor Engines’ JVMs. You can enable this in an Engine
Configuration, in the Engine JVM section, by setting a command-line argument to start the
JMX server.

A parametrized incremental port is available for passing into Engine JVM arguments. For
example, setting the command-line argument
-Dcom.sun.management.jmxremote.port=${startport:9977} sets the JMX port to 9977
plus the Engine instance number.

Diagnosing Network Issues
A common issue in a GridServer grid is that a misconfiguration in component
communication on a network causes Service failure. This section gives a few common
issues to troubleshoot in this situation. For more information about configuring GridServer
with regard to networks, see the GridServer Installation Guide.

Direct Data Transfer (DDT)

By default, DDT is enabled. When a Service creation or request is initiated on a Driver, the
init data or request argument is kept on the Driver, and only a URL is sent to the Manager.
When an Engine receives the request, it is sent the URL and downloads the data directly
from the Driver. DDT is set in the driver.properties, by setting DSDirectDataTransfer to
true. Also, by default, the Driver downloads the output data directly from the Engine. This
is set in the Engine Configuration by setting the Direct Data Transfer Enabled option to
true. The Driver uses an internal file server by default, at the next available port from the
value of DSWebserverPort, set in the driver.properties file. The Engine listens, by
default, on port 27159. This is set in the Engine configuration.

If the Engine successfully reads the input data these messages in the Engine log appear:

http://tomcat.apache.org/tomcat-6.0-doc/monitoring.html
http://tomcat.apache.org/tomcat-6.0-doc/monitoring.html

TIBCO GridServer® Administration Guide

158 | Diagnosing GridServer Issues

Fine: [TaskExecutor] Reading data from http://192.168.32.137:1420/ds-
7466344146886677638/5.in

In the Driver log a message where the task retrieves the output data appears:

Fine: UrlByteSource Getting data from:
http://10.126.209.12:27159/data//bapa101-0/ddt/ds-
2491378560399007707/0.out

The most common problems with DDT are firewall issues. Use telnet machine:port to
test connections between components. If you are having problems with DDT, try disabling
it and temporarily running in data transfer mode.

Data Transfer

Setting the DSDirectDataTransfer option in driver.properties to false causes the Driver
to upload all input data to the Broker. You must also set Direct Data Transfer Enabled to
false in your Engine configurations, and the Driver downloads the output data from the
Broker. The data transfer settings for the Broker are at Admin > System Admin > Manager
Configuration > Services, under the Data Transfer heading. They are Store Input to Disk
and Store Output to Disk.

Connection Issues

When using data transfer mode, messages like the following mean the Engine has lost
connection to the Director:

Warning: [WebServerBridgePlugin] Failed ping attempt on
http://161.2.27.160:27159/data/ping.html, java.lang.RuntimeException:
java.net.ConnectException: Connection refused: connect

Make sure the Director is running and that the IP address in the log is the IP address of
your Director. From your Engine machine, telnet to port 27159 of the Director. If the
connection is refused, you might have a network problem. When using DDT, telnet between
Driver and Engine to rule out network problems.

Timeout Issues

If you get timeout messages such as the following, you might need to adjust the
configuration for this client:

TIBCO GridServer® Administration Guide

159 | Diagnosing GridServer Issues

04/15/05 09:18:57.964 Warning: [global] Error reading from
http://10.47.117.158:27159/data//2500-dklptt3z-0/ddt/4937299722762820807
/0.out.z: java.io.IOException: Timed out reading
http://10.47.117.158:27159/data//2500-dklptt3z-
0/ddt/4937299722762820807/0.out.z

With Direct Data Transfer (DDT), the settings to adjust are at Admin > System Admin >
Manager Configuration > Communication, under the Data Transfer heading. If the Driver
is timing out attempting to read the output file from the Engine, increase the values under
Driver Data Transfer. Also check that you can access the Engine’s file server port 27159
using telnet.

If you are not using DDT for Engines, or if you are using the .NET Driver, the relevant
settings are under the HTTP Connections heading of the page above. For example, you
might want to increase the Read Timeout setting.

Diagnosing Engine Issues
The following section gives some information about reading logs related to Engines, and
solutions to some common issues.

If problems occur with one particular Engine on the grid and the cause is not immediately
obvious, it might be easier to reinstall the Engine rather than go on a long troubleshooting
exercise. If the problem persists after reinstallation of the Engine, then investigate for
issues with the network, application, or machine setup.

For information about managing Engines, see Managing Engines

Engine Logins, Restarts, and Failures

After GridServer starts, Engine Daemons and Engines log on to the Manager. In the Manager
log, messages similar to the following appears when this happens:

Info: [EngineEvent] EngineDaemon:S08048-10.103.8.48:Added
Info: [EngineEvent] Engine:Joe-0:Added

The Broker sends periodic heartbeats to the Engine. If these heartbeats fail, you see
messages similar to the following:

TIBCO GridServer® Administration Guide

160 | Diagnosing GridServer Issues

Info: [ProxyMonitorPlugin] Killing proxy S08049-10.103.8.49 on
EngineDaemonServicePlugin
Info: [EngineEvent] Engine:S08048-0:Logoff:Killed by the proxy monitor
Warning: [EmploymentOfficePlugin] Engine:S08048-0:Died

If the Engine cannot perform a heartbeat with the Broker then after 3 retries you see
message:

Warning: HeartbeatPlugin Couldn't send a heart beat to the Manager
failure to process HTTP request in POST: Connect failed, so the client
logs off.

If the Engine Daemon fails you see the following message:

Warning: [EngineDaemonServicePlugin] Engine Daemon:S08049-
10.103.8.49:Died

You can lengthen the period between heartbeats at Admin > System Admin > Manager
Configuration > Communication.

If the Engine fails, by default it restarts and tries to log in again. Failure messages in the
Manager log look similar to the following:

Info: [Scheduler] Engine:NCSILS9027B1GRD-0:Logoff:Ping failed on local
webserver, restarting instance in one minute
Fine: [EngineProxy] Logging off: NCSILS9027B1GRD-0
Fine: [EngineLoginManagerPlugin] Logging off proxy + NCSILS9027B1GRD-0
code=3
reason=Ping failed on local webserver, restarting instance in one minute
Info: [EngineEvent] Engine:NCSILS9027B1GRD-0:Removed

The Engine Daemon log reports the following.

Info: [Scheduler] Engine:nldn8347dww-
0:NotifyKillTask:1208119245372388313-1208119245372388313-0
Info: [Scheduler] Engine:nldn8347dww-0:TaskDied:1208119245372388313-
1208119245372388313-0
Info: [Scheduler] Engine:nldn8347dww-0:Logoff:Killed by the proxy
monitor
Warning: [EngineEvent] Engine:nldn8347dww-0:Died
Info: [EngineEvent] Engine:nldn8347dww-0:Removed

TIBCO GridServer® Administration Guide

161 | Diagnosing GridServer Issues

JVM Issues

If there are messages similar to the following in the Manager log, the JVM might be running
out of memory:

Severe: [HeartbeatPlugin] while sending heartbeat
java.lang.OutOfMemoryError: unable to create new native thread

You can increase the Engine JVM maximum heap size in the Engine configurations.

If an Engine fails, or the logs on an Engine end abruptly, the cause might be a Java failure.
Check for Java HotSpot compiler error logs in the Engine root directory; they have names
like hs_err_pidXXXX.log, and contain information about problems in native code. The
information can be used for a web search to see if it is a known problem. You must also
check if any native C code is being called by the application that fails.

Connection and Firewall Problems

A common problem is that Drivers or Engines are not connecting to the Director or Broker.
This is typically due to Firewall or DNS issues. Correct DNS configuration is essential in
GridServer installations. Use the telnet command to test connections from the Manager to
the Engine and vice versa.

All supported Windows versions enable the Windows Firewall by default. This automatically
blocks any incoming traffic. To make sure your Engine can properly communicate, the
inbound port for the Engine’s File Server must be open to traffic. By default, this port is set
to 27159; it can be changed in the Engine Configuration. Configure your Windows Firewall
to enable use of this port by your Driver machines.

Another possibility is that one of the components is assigning ephemeral ports outside of
the range that can be opened. Sometimes systems assign ports outside the range of 49152-
65535. You can check this by using netstat -a.

Engine Daemon Cannot Log On to Manager

If an Engine Daemon won’t connect to a Manager, check the URL in the intranet.dat file
in the root of the Engine installation directory and see if you can make a connection to it
from the Engine machine.

TIBCO GridServer® Administration Guide

162 | Diagnosing GridServer Issues

Thread Dumps on Engines

To get thread dumps on Engines, use the java Visual VM tool. It is available at
https://visualvm.github.io/.

Using Fusion to Debug .NET Assembly Load Failures

With C# code, a runtime library load failure can take a number of forms (such as a
FileLoadException) and might be difficult to debug, The notification is only that the
assembly load failed, but not why it failed.

To obtain more detailed debugging information about assembly load / bind failures, use
the Microsoft Fusion logging system, included in Visual Studio .NET:

1. Start FUSLOGVW.EXE before launching your application.

2. Launch your application.

3. After the failure has occurred, click the Refresh button in the Fusion logging
window. An entry related to the process you just ran must appear.

4. Highlight this entry and click View Log to get a detailed report of the .NET
Framework’s attempts to load your assemblies.

Diagnosing Driver Issues
The following section gives some information about reading logs related to Drivers, and
solutions to some common issues.

Driver Cannot Log In to Manager

When a Driver cannot log in to a Manager, messages similar to the following appears in the
Manager log:

LoginPlugin Can't log in to PrivateBrokerConnection
LoginPlugin Failed login on
http://162.60.27.152:8000/livecluster/director/PublicDriverChannel so
trying next. Error:
File not found:
http://162.60.27.152:8000/livecluster/director/PublicDriverChannel

When this happens, try the following:

https://visualvm.github.io/

TIBCO GridServer® Administration Guide

163 | Diagnosing GridServer Issues

• Ping and telnet to the Manager and port number to test network connectivity.

• Check the user name, password, and Director values in the driver.properties file
(or values coded in application).

• If using SSL, make sure the certificate is valid.

Client Timeout Issues

You might see timeout error messages in the Driver log similar to the following:

java.io.IOException: Unexpected exception while reading data from
http://172.24.68.49:1667/ds-6353115010724789381/job.tasklet:
com.livecluster.util.threadpool.TimeoutException: Thread DefaultPool-6:
http://172.24.68.49:1667/ds-6353115010724 789381/job.tasklet timed out

The Client Timeout setting allows for the Driver to log back in after logging off due to
temporary network issues, without interrupting Services. Go to Admin > System Admin >
Manager Configuration > Communication; under the HTTP Connections heading, you
can increase read and write timeout values for Drivers.

Also, the Driver must not failover to another Broker too quickly. This is set in
DSBrokerTimeout in the driver.properties file. The default is 300 seconds, or five
minutes.

To ensure your tasks are not lost in the event of Broker failure, set Engine Timeout
Minutes (at Admin > System Admin > Manager Configuration > Engines and Clients,
under the Engine Login heading) for a period of time longer than the Client Timeout
Minutes on the same page, under the Client Management heading. For example, if Client
Timeout Minutes is set to five minutes, a good number for Engine Timeout Minutes is
eight minutes. Note that changes to this value are only applied at the next Engine Login.

Manager Turning Away Clients

By default, Drivers are turned away if there is a version mismatch between Client and
Manager. A message similar to the following appears in the Manager log:

[BrokerLoginManager] Turning away client: Client module version
mismatch: ClientJavaVersion version: 7.0.0: should be 7.1.0.

TIBCO GridServer® Administration Guide

164 | Diagnosing GridServer Issues

To override this, go to Admin > System Admin > Manager Configuration > Admin, and
under the Version Management heading, set Allow Driver Version Mismatch to true until
the Client can be upgraded.

Diagnosing Manager Issues
The following section gives some information about reading logs related to Managers, and
solutions to some common issues.

Manager Port Issues
If your Broker does not log in to the Director, check the Manager logs for a message similar
to the following:

BindException while attempting to create a ServerSocket at
myaddress:5635

This means another process is using port 5635, which is used for communication between
the Broker and Director. If it is another Director, or another process that cannot be
stopped, that port number must be changed on the Director and Brokers to another port.
Use netstat –a command to check port usage.

Out of Memory Issues
If your Manager appears to run out of memory, and an out of memory error is printed to
the Manager log, you might need to increase the Java heap size. This typically only
happens if the Manager is running many Services with many inputs.

The Java maximum heap size is set in the server.sh or server.bat file, and is 4096 MB by
default. It can be increased by changing the environment variable MAX_HEAP.

Deployment Issues
The GridServer Manager is responsible for deploying application resources to Engines. The
Manager periodically generates a checksum list of every file in its resources area. If any

TIBCO GridServer® Administration Guide

165 | Diagnosing GridServer Issues

checksums have changed (or have been deleted or added) since the last time the list was
generated, it notifies the Engines.

Don’t deploy resource files that only differ by case in UNIX. Resource files names must be
different. If you deploy different files named hello.zip and Hello.zip, they collide on
Windows machines. Also, you can’t deploy files that contain # or end in .tmp.

For more information about resource deployment and Grid Libraries, see Deploying
Services.

Grid Library Issues

If you have a GridLibraryException failure when deploying a Grid Library, check your
grid-library.xml for incorrect file names; also ensure that files and file reference in grid-
library.xml are of the correct case. Also check that the jar-path, lib-path, assembly-
path, and command-path are correctly specified.

.Net GridLib - DLL Missing

When deploying a .NET assembly, all DLL libraries in win32/lib and all other directories
specified in Engine Configuration are not used. Put all related DLL files into the same Grid
Library, or another Grid Library that this Grid Library depends on. A missing DLL causes a
log message similar to the following:

INFO DSForward Message DD7C5440-D3B9-42D6-9201-F7E7CE3AE847 submitted
DSHandler Service invocation 0 failed for DD7C5440-D3B9-42D6-9201-
F7E7CE3AE847
Exception: DataSynapse.GridServer.Client.ServiceInvocationException
Message: spri12d10052
Source: GridServerNETClient

Service Failures

If a Service is not defined in the Services > Services > Service Types page, a message
similar to the following is produced in the Driver log:

Service Type not found in the Service Type Registry: JavaCalculator

If the JAR file containing the class of the Service has not been loaded into the correct
library, a message in the Driver log is produced:

TIBCO GridServer® Administration Guide

166 | Diagnosing GridServer Issues

Info: [TaskDispatcher$DispatcherJob] Canceling due to task failure and
AutoCancel.LIBRARY_LOAD, Exception type:
java.lang.ClassNotFoundException

If a Service fails, an error is returned to the Callback method; check your code for errors.

Info: [ServiceEvent] SubmittedTask:3393405147689298243-
3393405147689298243-1
CalculatorCallback::handleResponse : Result for task [B@c713d2
Info: [ServiceEvent] CompletedTask:3393405147689298243-
3393405147689298243-0:Total:2
CalculatorCallback ::handleError : Id = 1, Exception :
java.lang.Exception: service failed [java.lang.Exception: service failed

If a Service fails to run even if there are available Engines, check that Service or Engine
discrimination is not preventing the Service task from running. Also check for usage of
dependencies in the application. The Service or task might be waiting for a Service or task
it is dependent on.

GridCache Issues
GridCache is a repository on the Broker that is cached by Drivers and Engines (This is the
GridCache Global mode). The Driver or Engine writes to the GridCache and then the Broker
caches them automatically to the Server and propagates the changes so the file appears
local to Drivers and Engines. When the cache is changed, the Manager sends invalidation
messages in the heartbeat messages to the Engines and Drivers.

For more information about GridCache, see the GridServer Developer’s Guide.

Timeout Issues

Messages similar to the following are caused by timeouts accessing GridCache:

com.livecluster.util.threadpool.TimeoutException: Thread DefaultPool-91:
sun.net.www.protocol.http.HttpURLConnection:http://chialseg45:8000/livec
luster/gridcache/?query=1/

You can increase GridCache client read and write timeout at Admin > System Admin >
Manager Configuration > Cache.

TIBCO GridServer® Administration Guide

167 | Diagnosing GridServer Issues

Eviction of Cache Entries

There is an eviction process which removes entries from the cache when they expire. A
message similar to the following appears in logs:

Finer: [GridCache] Evicting stale entries from the cache

A Time To Live value is configured in the cache schema; the default is -1, meaning entries
never expire. In the case of a Global Cache, if an entry has expired, it is removed, and
hence removed from all of the locally cached copies. Note that when a schema changes,
the changes only apply to regions created after that schema change. The changes do not
affect existing regions using the schema.

In addition, there is also a Keep Alive time associated with the cache, set in the cache
schema. This specifies how long the locally cached copies of the region remain on the
client once there are no longer any local references to the cache. References are
decremented when you call close() on the cache or the Cache reference is garbage
collected. The default is 60 seconds.

Client Runs Out of GridCache Space

If the in-memory cache size is exceeded, information is pushed to disk (except for .NET
Drivers or CPP Drivers, which do not support disk-based cache.) If the disk cache size is
exceeded, older entries from the disk cache are removed to make way for new entries.

For example, if the Engine has run out of space for the GridCache messages similar to the
following appear:

Fine: [GridCache] Pushing GridCacheRegion::trade_10985 out of the cache

To prevent this, you can increase the cache sizes. For Engines, the Disk Cache Size and
Memory Cache Size settings are in the Engine Configuration. For Drivers, they are the
DSCacheMaxMemInMB and DSCacheMaxDiskInMB properties in the driver.properties file.

Database Issues
GridServer has two databases: an internal database, only used internally by the Manager;
and an optional external database for reporting. For information about installing the
reporting database, see the GridServer Installation Guide. For a complete description of the
reporting database schema, see Reporting Database Tables.

TIBCO GridServer® Administration Guide

168 | Diagnosing GridServer Issues

Connection Problems

If GridServer loses connection to a database, you see a message in the Manager log similar
to this:

Warning: [DirectorReportingPlugin] Database is unavailable:
java.sql.SQLException: while creating new connection to
:jdbc:oracle://rcfdsp01.com:9158/, Connection refused

Use a tool like DBVisualizer to access the SQL database using the JDBC URL and Driver JAR
to check if you can connect and access the database.

JDBC Problems

If GridServer cannot find the JDBC driver, a message similar to this appears:

error for postgres:
SQL block processing is ON:

"begin" begins block
"end" ends block
"/" terminates block statement
Overridden newline character separates statements in blocks

Performing Class.forName() on driver org.postgresql.Driver
Driver jar needs to be placed in the classpath
java.lang.ClassNotFoundException: org.postgresql.Driver

at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:355)
at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:264)
at com.datasynapse.commons.sql.CreateDB.validateProperties

(CreateDB.java:112)
at com.datasynapse.commons.sql.CreateDB.<init>(CreateDB.java:52)
at com.datasynapse.commons.sql.CreateDB.main(CreateDB.java:43)

The JDBC JAR needs to be in DS_MANAGER/webapps/livecluster/WEB-INF/lib.

Reporting Database Write Failures

If GridServer cannot write to the reporting database, it starts discarding events and this
message appears:

TIBCO GridServer® Administration Guide

169 | Diagnosing GridServer Issues

[BrokerReportingPlugin] Client Backlog full, event discarded

Also, the Manager might fail to commit a piece of reporting data, and this message
appears:

Severe: [DirectorReportingPlugin] engine stat commit failed

This must not affect operation of the grid, as the reporting features are separate from the
core functionality. If this message occurs once, it is most likely caused by a temporary
connection problem with the reporting database and can safely be ignored. If several
messages like this occur, it indicates that the reporting database parameters need to be
adjusted, especially if reporting data is relied on for statistical data.

Reducing the Transaction Isolation to TRANSACTION_READ_UNCOMMITTED improves the
performance of inserts into the reporting database. Increasing the number of connections
to the database does not help because GridServer has a set number of threads running to
the database from the backlogs. Increasing the size of the backlogs helps deal with peaks
of activity in the Manager. Increasing the commit interval to 30 or 60 seconds also
improves performance. Use of auto commit is not recommended for a production grid.

Troubleshooting Tools
The following tools and utilities can be helpful when troubleshooting a GridServer issue.

Task Admin Page
You can view Service invocation status data on the Task Admin page, which can be helpful
when troubleshooting Service execution. Normally, Service invocation data is purged after
a Service has completed. This can be changed by setting the PURGE_INVOCATION_DATA
Service option. This data is stored in memory on the Broker, so this setting might need to
be modified depending on how the Service is used. The following options are available:

• INVOCATION_COMPLETED — data for each request is purged as soon as the request has
completed. In this case, the data is only available when the request is queued or
being processed. This must be used when the Service might be a long-running open
Service, as each entry requires memory.

TIBCO GridServer® Administration Guide

170 | Diagnosing GridServer Issues

• INVOCATION_COMPLETED_SUCCESSFULLY — data for each request is purged as soon as
it has completed, but only if the request was successfully completed. This is useful
when diagnosing failure of long-running Services.

• SERVICE_COMPLETED — data is purged when the Service instance has completed. As
long as the instance is running, the data is available. This is the default.

• SERVICE_REMOVED — data is removed when the completed Service instance is
removed from the Admin interface. This enables you to view data after an instance
completes, at the cost of memory overhead on the Broker. The instance is removed
either automatically according to the Service Cleanup settings on the Broker, or
when it is manually removed.

Task Queue Dump
You can view a textual representation of the Task Queue, which can be helpful in
debugging. The Task Queue Dump contains information about Service sessions and tasks
including task counts, retries, and conditions.It can be accessed from the Diagnostics >
Manager Diagnostics page, by selecting Task Queues, and requires a Broker on the
Manager.

Enabling Enhanced Task Instrumentation
Normally, a submitted task or remote Service Invocation’s execution time is measured only
from start to finish. But often it is useful to be able to track the time spent in the various
stages of this process, including input serialization, disk writing, task message submission,
task queueing, task fetching, data transport, input deserialization, task processing, output
serialization, output transport, queuing, and so on. This helps you understand the timing
characteristics of distributed computing, optimize the process, and diagnose problems with
greater ease.

To enable enhanced task instrumentation

Procedure

1. Go to Admin > System Admin > Manager Configuration > Services.

2. Under the Instrumentation heading, set Enable to True.

3. Click Save.

TIBCO GridServer® Administration Guide

171 | Diagnosing GridServer Issues

When enabled, task instrumentation applies to all Services on the Manager.

Warning
Task instrumentation slows down the Manager, and also
requires additional disk space, so it is important to disable it
after you finish using it. It is NOT recommended for
production systems.

To view data generated by enhanced task instrumentation

Procedure

1. Go to Services > Service Session Admin.

2. Find the Service you wish to view, and select View Instrumentation from the
Actions menu. Note that this choice only appears after the Service finishes running.

A table appears showing data collected by enhanced task instrumentation for the Service.
For more information about instrumentation, see the GridServer Developer’s Guide.

Process Explorer
Process Explorer is a free Windows utility from sysinternals.com. It provides detailed
information about a process. For a particular process, you can view the DLLs it has loaded
and the resource handles it has open. This is useful when Engines stop responding, wait on
files indefinitely, or DLL issues of applications running on Engines. A Find capability enables
you to track down a process that has a resource opened, such as a file, directory or
Registry key, or to view the list of processes that have a DLL loaded.

Dependency Walker
Dependency Walker is also very useful for troubleshooting system errors related to loading
and executing modules. It detects many common application problems such as missing
modules, invalid modules, import/export mismatches, circular dependency errors,
mismatched machine types of modules, and module initialization failures. From Visual
Studio or from dependencywalker.com, install depends.exe.

TIBCO GridServer® Administration Guide

172 | Event Streaming by Using Apache Kafka

Event Streaming by Using Apache Kafka
Event streaming exposes the internal events that are generated in GridServer so that users
can use the information for purposes such as monitoring. You can stream component-wise
events by using Apache Kafka Message framework.

Configuring Event Streaming
Prerequisites

l You must have Apache Kafka running.

l GridServer Manager must be up and running.

Procedure

1. Log in to the GridServer Administration Tool with an account that has a Security Role
with the Manager Configuration Edit feature enabled.

2. Go to Admin > System Admin > Manager Configuration > Services > Event
Streaming.

3. On the Director, configure the values in the Event Streaming section. You can
configure Kafka settings on the Primary and the Secondary Director.

Manager Configuration

TIBCO GridServer® Administration Guide

173 | Event Streaming by Using Apache Kafka

Refer the following table to configure the Manager:

Property Value

Event
Stream
Enable

Whether to enable event streaming.

If it is set to True, you must also set the Kafka Broker URL, Kafka
Client ID, and Topic Name properties.

Kafka
Broker URL

Kafka Broker URL.

The URL format must be:

Kafka installed Machine HostName:Port Number.

Kafka Client
ID

ID of the Kafka Client

If you use event streaming, the Kafka Client ID value is appended with _
Broker for a Broker and _Director for a Director.

For example, if you enter the Kafka Client ID as Grid_Client, it is
appended as follows:

For Broker: Grid_Client_Broker

For Director: Grid_Client_Director

Topic Name Name of the topic

4. Click Save.

Events Captured by Apache Kafka
The following events are captured by using Apache Kafka for GridServer:

Events Description

Broker Added Broker is added to the Director

Broker Removed Broker is removed from the Director

TIBCO GridServer® Administration Guide

174 | Event Streaming by Using Apache Kafka

Events Description

Driver Added Driver is added to the Broker

Driver Removed Driver is removed from the Broker

Engine Added Engine is added to the Broker

Engine Blacklisted Engine is blacklisted

Engine Daemon Added Engine Daemon is added to the Director

Engine Daemon Removed Engine Daemon is removed from the Director

Engine Died Engine dies (did not log off properly)

Engine Greylisted Engine is greylisted

Engine Removed Engine is removed from the Broker

Memory Warning Server exceeds the configured threshold of memory usage

Service Session Cancelled Service session is cancelled

Service Session Completed Service session is completed

Service Session Started Service session starts

Task Assigned Task is assigned to an Engine

Task Completed Task is completed

Task Error Task fails

Task Submitted Task is submitted to the Broker

TIBCO GridServer® Administration Guide

175 | Event Streaming by Using Apache Kafka

Note:
These events are recorded in the log file generated over Apache Kafka. You can
also specify a custom log directory in the server.properties file of Apache
Kafka. To capture streamed events, write your own consumer code.

TIBCO GridServer® Administration Guide

176 | Reporting Database Tables

Reporting Database Tables
GridServer uses a simple relational database to report grid processing events for historical
analysis. This appendix describes the tables in the reporting database.

Data Type Mapping
The following table lists mappings for data types that vary depending on the database
type.

Data Type MS SQL Oracle PostgreSQL HSQL

bigint bigint int bigint bigint

timestamp datetime timestamp timestamp timestamp

text text clob text longvarchar

varchar varchar varchar2 varchar varchar

identity int not null
identity

int (incl.
sequence+trigger)

serial or
bigserial not
null

int generated by
default as identity
(start with 1) not null

bigidentity bigint not
null
identity

int (incl.
sequence+trigger)

bigint not null
identity

int generated by
default as identity
(start with 1) not null

batches
Batches that have been scheduled or executed.

TIBCO GridServer® Administration Guide

177 | Reporting Database Tables

Column name Data type Description

server varchar(255) The Manager where the Batch resided or ran

batch_id bigint not null The Unique ID number of the Batch Entry

time_stamp timestamp not
null

Timestamp of the event

event int not null Event code

class varchar(255) Class in the Batch

execution_id bigint Unique ID number of the Batch Execution, if
applicable

description text Description of the Batch Event

brokers
information about all Brokers that have participated in this grid.

Primary key: pk_brokers(broker_id)

Column name Data type Description

broker_id int not null Broker ID number

broker_url varchar(255) The Broker’s configured base URL

broker_name varchar(255) The name of the Broker

broker_stats
All statistical reports from Brokers are stored in this table.

Primary key: pk_broker_stats(broker_id, time_stamp)

TIBCO GridServer® Administration Guide

178 | Reporting Database Tables

Column name Data type Description

broker_id int not null The unique ID of the Broker

time_stamp timestamp not
null

Timestamp of the report

num_busy_engines int Number of Engines busy at report time

num_total_engines int Number of Engines logged in at report time

num_drivers int Number of Drivers logged in at report time

uptime_minutes float Time since Broker start in minutes

num_jobs_running int Number of Services running at report time

num_tasks_pending int Number of tasks pending (not yet assigned to
Engines) at report time

driver_events
Reports from Brokers generated when a Driver logs in or out.

Primary key: pk_driver_events(driver_event_id))

Column name Data type Description

driver_event_id identity ID of the Driver event

username varchar(255) Driver user name

hostname varchar(255) The name of the host running the Driver

time_stamp timestamp not null Timestamp of the report

broker_id int The ID of the Broker where the event

TIBCO GridServer® Administration Guide

179 | Reporting Database Tables

Column name Data type Description

occurred

event int 0 for an add, or the reason code for a remove
– reason codes are in the event_codes table

engine_events
Reports from Brokers generated when an Engine is added or removed; for example, when
an Engine logs in or logs out.

Primary key: pk_engine_events(engine_event_id))

Column name Data type Description

engine_event_id identity The ID of the Engine event

engine_id bigint not null The unique ID of the Engine

instance_id int The number of the Engine instance

time_stamp timestamp not null Timestamp of the report

broker_id int The ID of the Broker where the event
occurred

event int 0 for an add, or the reason code for a
remove – reason codes are in the event_
codes table

engine_info
Administrative information for all Engines that have ever logged in to this Director.

Primary key: pk_engine_info(engine_id)

TIBCO GridServer® Administration Guide

180 | Reporting Database Tables

Column name Data type Description

engine_id bigint not null The unique ID of the Engine

username varchar(255) The user name used by the Engine

guid varchar(255) Another unique such as a MAC address

IP varchar(255) The IP address used by the Engine

install_date timestamp When the Engine was installed

engine_stats
Statistic reports from Engine Daemons.

Primary key: pk_engine_stats(engine_id, time_stamp)

Column name Data type Description

engine_id bigint not null The unique ID of the Engine

time_stamp timestamp not null Timestamp of the report

cpu_utilization float %CPU total utilization

ds_cpu_utilization float %CPU used by DataSynapse processes

total_ram_kb bigint Installed RAM reported by the OS in
kilobytes

free_ram_kb bigint Free RAM reported by the OS in kilobytes

disk_mb bigint Free disk reported by the OS in megabytes

num_invokes int The number of Engine processes currently
running

TIBCO GridServer® Administration Guide

181 | Reporting Database Tables

event_codes
Mappings of event codes to descriptive text.

Primary key: pk_event_codes(code)

Column name Data type Description

code int not null Number of the code

name varchar(255) Description of the code

jobs
Historical information about all Services that have been run by GridServer.

Primary key: pk_jobs(job_id, start_time)

Column
name

Data type Description

bigint not
null

The Service ID

service_
type_name

varchar
(255)

The Service Type used for the Service

job_class varchar
(255)

The Service class being executed. For example:

Java: examples.calculator.service.JavaCalculator
Dynamic Library: Calculator
.NET:
NETCalculatorService.dll:DataSynapse.Examples.Services.NE
TCalculator
Command: ls

start_time timestamp
not null

When the Service was started

TIBCO GridServer® Administration Guide

182 | Reporting Database Tables

Column
name

Data type Description

end_time timestamp When the Service finished

job_status int Service status (see job_status_codes table)

num_tasks int Number of tasks in the Service

task_time_
std

float Standard deviation of task completion time, in seconds

task_time_
avg

float Mean task completion time, in seconds

priority int Service priority when submitted

end_
priority

int Service priority when complete

driver_
username

varchar
(255)

Submitting Driver user name

driver_
hostname

varchar
(255)

Submitting Driver hostname

job_name varchar
(255)

Optional descriptive Service name from Description

app_name varchar
(255)

Optional descriptive application name from Description

description varchar
(255)

Optional description from Description

dept_name varchar
(255)

Optional descriptive department name from Description

group_ varchar Optional descriptive group name from Description

TIBCO GridServer® Administration Guide

183 | Reporting Database Tables

Column
name

Data type Description

name (255)

indiv_
name

varchar
(255)

Optional descriptive individual name from Description

broker_id int ID of Broker that ran the Service

task_time_
min

bigint Minimum task time, in milliseconds

task_time_
max

bigint Maximum task time, in milliseconds

session_
size

bigint Service Session size in kilobytes

input_size_
total

bigint Sum of task input size in kilobytes

output_
size_total

bigint Sum of task output size in kilobytes

gridlibrary varchar
(255)

The Grid Library used for this Service instance

gridlibrar
y_version

varchar
(255)

The Grid Library version

job_status_codes
Mappings of event codes to descriptive text.

Primary key: pk_job_scodes(code)

TIBCO GridServer® Administration Guide

184 | Reporting Database Tables

Column name Data type Description

code int not null Number of the code

name varchar(255) Description of the code

roles
Contains user roles.

Primary key: pk_roles(name)

Column name Data type Description

name varchar(255) Name of the role

description text Description of the role

features text Features within the role

managers text Managers assigned to the role

ldapgroup varchar(255) LDAP group of the role

driver_info text Driver info for the role

tasks
Historical information about all tasks that have been run by GridServer.

Primary key: pk_tasks(task_rec_id)

TIBCO GridServer® Administration Guide

185 | Reporting Database Tables

Column name Data type Description

task_rec_id bigidentity

job_id bigint not null Service ID

task_id int not null Task ID

engine_id bigint Engine that eventually ran the task

start_time timestamp When the task was started, or 1970-01-01
00:00:00.0 (UNIX epoch) if the task was
never started

end_time timestamp When the task finished

task_status int Task status (see task_status_codes
table).

num_reschedules int Number of times the task was retried

engine_instance int Number of Engine instance that ran the
task

task_info varchar(255) Task information

broker_id int The Broker that handled the task

description varchar(255) Description of the task

input_size bigint Size of the Task’s input in kilobytes

output_size bigint Size of the task’s output in kilobytes

submit_time timestamp When the task was submitted

task_status_codes
Contains mapping of event codes to descriptive text.

TIBCO GridServer® Administration Guide

186 | Reporting Database Tables

Primary key: pk_task_scodes(code)

Column name Data type Description

code int not null Number of the code

name varchar(255) Description of the code

user_events
Historical user events.

Primary key: pk_user_events(user_event_id)

Column name Data type Description

user_event_id identity The ID of the event

server varchar(255) The Server where the event occurred

username varchar(255) The user recording the event

IP varchar(255) IP address of the user that caused the event

time_stamp timestamp not null When the event occurred

handler varchar(255) The Internal handler class that recorded the event

event text A description of the event

users
GridServer user accounts.

Primary key: pk_users(user_id)

TIBCO GridServer® Administration Guide

187 | Reporting Database Tables

Column name Data type Description

user_id identity The ID of the user

username varchar(255) The user name

user_access int The account’s user access

user_info text The account’s user info

personalization text Stores information about table and UI personalization

roles text Roles assigned to the user

TIBCO GridServer® Administration Guide

188 | Scheduler Instrumentation Database Table

Scheduler Instrumentation Database Table
GridServer uses a simple relational database to report operations of GridServer Scheduler.
The scheduler_info table is described here.

Scheduler Instrumentation Database Schema Data Type Mapping

The following table lists mappings for the data types that vary depending on the database
type:

Data Type MS SQL Oracle PostgreSQL

varchar varchar varchar varying

bigint bigint number bigint

scheduler_info

Column name Data Type Description

type varchar(20) It has various types
such as - Start-
Episode, End-
Episode,
matchItems,
Checkpoints,
Waiting Job List,
and Waiting Engine
List

time bigint Timestamp

TIBCO GridServer® Administration Guide

189 | Scheduler Instrumentation Database Table

Column name Data Type Description

value varchar(2048) It contains value in
JSON format

TIBCO GridServer® Administration Guide

190 | Engine Instrumentation Database Table

Engine Instrumentation Database Table
GridServer uses a simple relational database to report the Engine Balancing process. The
engine_ins table is described here.

Engine Instrumentation Database Schema Data Type Mapping

The following table lists mappings for the data types that vary depending on the database
type:

Data Type MS SQL Oracle PostgreSQL

varchar varchar varchar varying

bigint bigint number bigint

engine_ins

Column name Data Type Description

type varchar(20) It has various types
such as - Engine
Disallowed, Engine
Selected, Engine to
Broker, Engine
Logoff, and Director
Balancing

time bigint Time stamp

value varchar(2048) It has a different
value stored as per
the type

TIBCO GridServer® Administration Guide

191 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than
any other documentation included with the product.

Product-Specific Documentation

Documentation for TIBCO GridServer® is available on the TIBCO GridServer® Product
Documentation page.

The following documents for this product can be found in the TIBCO Documentation site:

l TIBCO GridServer® Release Notes

l TIBCO GridServer® Installation

l TIBCO GridServer® Introducing TIBCO GridServer®

l TIBCO GridServer® Administration

l TIBCO GridServer® Developer's Guide

l TIBCO GridServer® Upgrade

l TIBCO GridServer® Security

l TIBCO GridServer® COM Integration Tutorial

l TIBCO GridServer® PDriver Tutorial

l TIBCO GridServer® Speedlink

l TIBCO GridServer® Service-Oriented Integration Tutorial

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-datasynapse-gridserver-manager
https://docs.tibco.com/products/tibco-datasynapse-gridserver-manager

TIBCO GridServer® Administration Guide

192 | TIBCO Documentation and Support Services

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

l For accessing the Support Knowledge Base and getting personalized content about
products you are interested in, visit the TIBCO Support website.

l For creating a Support case, you must have a valid maintenance or support contract
with TIBCO. You also need a user name and password to log in to TIBCO Support
website. If you do not have a user name, you can request one by clicking Register on
the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

http://www.tibco.com/services/support
http://www.tibco.com/services/support
http://www.tibco.com/services/support
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO GridServer® Administration Guide

193 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT,
OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT
WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR
CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF
THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE
SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, GridServer, FabricServer, GridClient, FabricBroker,
LiveCluster, and SpeedLink are either registered trademarks or trademarks of TIBCO Software Inc. in
the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.

https://scripts.sil.org/OFL

TIBCO GridServer® Administration Guide

194 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY
TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2001-2022. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Typographical Conventions
	Introduction
	Before You Begin

	The GridServer Administration Tool
	Overview
	Getting Started
	Navigating the Administration Tool

	User Accounts and Role-Based Access Control
	Managing Users
	About Authentication and Authorization
	Types of Users
	Role-Based Access Control

	Using GridServer Built-In Authentication
	Using GridServer Built-In Authorization
	Creating User Accounts
	Resetting User Accounts From the Command Line

	Using LDAP Authentication and Authorization
	Configuring GridServer for LDAP Authentication or Authorization
	Authentication Schemes Supported in Comparison Mode
	Security Notes
	LDAP Configuration Example

	Using Windows Authentication and Authorization
	Configuring Windows Authentication
	Configuring Windows Authorization

	Using Pure Kerberos Authentication
	Configuring Pure Kerberos Authentication
	Configuring Pure Kerberos Authorization

	Managing Multiple Brokers with Grid Single Sign-On (SSO)
	Grid SSO Configuration
	Constraints and Limitations

	Client Routing
	Routing Clients With Roles
	Routing Clients On The Broker Routing Page
	Routing Clients With The Driver API

	Managing Services
	Deploying Services
	About Grid Libraries
	Using Grid Libraries from a Service
	Super Grid Libraries
	Deployment
	Disabling Resource Deployment
	Bridges
	JREs
	Packaging Grid Libraries
	Distributing Grid Libraries
	Grid Library Filters
	JAR Ordering File
	Uploading and Deploying with the Admin API

	Running Services
	Registering a Service Type
	Service Run-As
	compressData
	encryptionEnabled
	Using Run-As

	Scheduling
	Reschedules and Retries
	The Scheduler
	Common Scheduler Features

	Managing Engines
	Engine Routing and Balancing
	Balancing and Service Discriminators
	Engine Weight-Based Balancer
	Home/Shared Balancer
	Engine Balancer Configuration
	Engine Upper and Lower Bounds

	Failover Brokers
	Example Use Cases
	N+1 Failover with Weighting
	Engine Localization with Sharing

	Engine Configuration
	Editing an Engine Configuration
	Creating a New Engine Configuration
	Copying an Engine Configuration
	Setting the Engine Configuration Used by Engines
	Setting the Director Used by Engines
	Configuring Engines With Multiple Network Adapters
	Configuring Engine Daemons to Use SNAT
	Using the System Classloader on an Engine

	Configuring a Global Shared Grid Library Directory
	Configuring When Engines Run
	Manual Mode
	Auto Mode

	Configuring How Many Engines Run
	Running Engines in Multiplexed Mode
	Communication and Task Scheduling
	Configuration

	Configuring 64-bit Engine Daemons to run 32-bit Services
	Configuration
	Specifying that a Service is win32
	Routing 32-bit Tasks to 64-bit Engines

	Configuring a Caching HTTP Proxy Server
	Configuring an External Engine Daemon Admin Tool
	Quarantine Brokers
	Quarantine Broker Concepts
	Quarantine Status on Engines
	Requirements
	Configuring a Quarantine Broker
	Setting Quarantine Status on Engines
	Quarantine Broker Constraints

	Grid Fault-Tolerance and Failover
	The Fault-tolerant GridServer Deployment
	Heartbeats and Failure Detection
	Manager Stability Features
	Engine Failure
	Driver Timeout and Failure
	Director Failure
	Broker Failure
	Failover Brokers
	Task Fault Tolerance
	Batch Fault-Tolerance
	GridCache and PDriver Fault-Tolerance

	Administration and Maintenance
	Configuration Issues
	Installation on Machines With Multiple Network Adapters
	Using UNC Paths in a driver.properties File
	Renaming a Broker
	Moving a Manager

	GridServer Manager Administration Procedures
	Backup / Restore
	Importing and Exporting Manager Configuration
	Setting the SMTP Host
	Configuring the Timeout Period for the Administration Tool
	Reconfiguring Managers when Installing a Secondary Director
	Reconfiguring the Engine Communication Port
	Promoting a Secondary Director to Primary Director
	Configuring SNMP

	LogLogic Integration
	Configuration
	Logging Message Format
	Output

	Elasticsearch Integration
	Configuration
	Message Format

	Database Maintenance
	Database Types
	Internal Database Reset
	Internal Database Backup
	Performing Reporting Database Maintenance

	The Batch Scheduling Facility
	Terminology
	Editing Batch Definitions
	Batch Components
	Service Runners
	Scheduling Batch Definitions
	The Batch Schedule Page
	Running Batches
	Deploying Batch Resources
	Batch Fault-Tolerance

	Optimizing the Grid
	Diagnosing Performance Issues
	Tuning Data Movement

	Diagnosing GridServer Issues
	Troubleshooting Overview
	Reporting an Issue
	Obtaining Log Files
	Manager Logs
	Engine and Daemon Logs
	Application Server Logs
	Monitoring the Tomcat Application Server
	Monitoring Engines Using JMX

	Diagnosing Network Issues
	Diagnosing Engine Issues
	Diagnosing Driver Issues
	Diagnosing Manager Issues
	Manager Port Issues
	Out of Memory Issues
	Deployment Issues
	GridCache Issues
	Database Issues

	Troubleshooting Tools
	Task Admin Page
	Task Queue Dump
	Enabling Enhanced Task Instrumentation
	Process Explorer
	Dependency Walker

	Event Streaming by Using Apache Kafka
	Configuring Event Streaming
	Events Captured by Apache Kafka

	Reporting Database Tables
	Data Type Mapping
	batches
	brokers
	broker_stats
	driver_events
	engine_events
	engine_info
	engine_stats
	event_codes
	jobs
	job_status_codes
	roles
	tasks
	task_status_codes
	user_events
	users

	Scheduler Instrumentation Database Table
	scheduler_info

	Engine Instrumentation Database Table
	engine_ins

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

