
TIBCO DataSynapse GridServer®
Manager
COM Integration Tutorial
Version 7.1.0
July 2022

Copyright © 2001-2022. TIBCO Software Inc. All Rights Reserved.

TIBCO GridServer® COM Integration Tutorial

2 | Contents

Contents
Contents 2

Accessing a Service from Visual Basic 3
Getting Started 3
Installing the GridServer SDK 3

Setting up the Service 3

Referencing COMDriver in the Visual Basic Editor 4

Client-side Code 4
Creating a Service Instance 5

Submitting Requests Synchronously 6

Submitting Requests Asynchronously 7

Collecting Results During Asynchronous Execution 7

Stateful Service Operations 8

Discriminators 9

Setting Driver Properties 10

Destroying Service Instances 11

Excel Demo 12
Getting Started 12

Enabling Macros in Excel 12

Deploying Resources 12

Registering the Service Type 13

Executing the Demo 13

The Visual Basic Code 13

TIBCO Documentation and Support Services 16

Legal and Third-Party Notices 18

TIBCO GridServer® COM Integration Tutorial

3 | Accessing a Service from Visual Basic

Accessing a Service from Visual Basic
This guide is your reference for developing COM applications that utilize TIBCO
GridServer® installations. It is divided into several sections covering the fundamentals of
how to use the GridServer COM API.

In this section, we demonstrate how to access a Service from a client application written in
Visual Basic, using COMDriver. The example shows how a Visual Basic client can call
COMDriver APIs to create and destroy a Service instance, execute the Service
synchronously or asynchronously, and update the state of the Service. Although the
Service in this example is a Java Service, client applications using COMDriver can access
Services written in any server-side compatible language, provided that Service methods
use strings for arguments and return values.

Getting Started

Installing the GridServer SDK
Before you begin, you must download and install the GridServer SDK, which is available
from your Manager in the GridServer Administration Tool. The SDK includes the
COMDriver. For more information about installing the SDK, see the TIBCO GridServer®
Developer’s Guide.

Setting up the Service
The Service in this example simulates a simple calculator, with functions for the four
operators, plus a memory function. The Java source code is available in the GridServer
SDK, in /GridServerSDK-win32/examples/service/calculator/service/java/.

The JavaCalculator class has a floating-point field called memory, and the following
methods:

TIBCO GridServer® COM Integration Tutorial

4 | Accessing a Service from Visual Basic

• add, subtract, multiply, divide — each takes two strings representing floating-
point numbers, and returns a string representing the result of the arithmetic
operation.

• addToMemory — takes in one string argument representing a floating-point number,
and stores the sum of the input and memory values back in memory.

• setMemory — takes in one string argument representing a floating-point number
and sets the memory field equal to it.

• getMemory — takes in a string argument, and returns the value of memory. (The
argument is unused, but is required by the Services API.)

Before the client can access the Service, we have to register a Service Type and deploy the
Service resources. Make sure the Service Type is registered under the name
JavaCalculatorExample in the GridServer Service Type Registry; this is how we reference
the Service from the client. The Service is automatically registered when GridServer is
installed.

If the Grid Library has not been deployed, build and deploy it from GridServerSDK-
win32/examples/service/calculator/ by running build-and-deploy.bat.

To find out more about writing, registering, and deploying a Service, see the TIBCO
GridServer® Service-Oriented Integration Tutorial.

Referencing COMDriver in the Visual Basic Editor
The COMDriver library has to be referenced in the Visual Basic client application. With the
client application opened in Microsoft Visual Basic Editor, go to the References dialog box.
Make sure that the reference to DataSynapse Driver 1.0 Type Library is checked. It must
be referenced to [COMDriver installation]\DSCOMDriver.exe.

Client-side Code
Now that the Service has been registered and deployed, we can access it from the client
through COMDriver. Let’s start by creating an instance of the Service.

TIBCO GridServer® COM Integration Tutorial

5 | Accessing a Service from Visual Basic

Creating a Service Instance
To create an instance of the Service JavaCalculatorExample using COMDriver, use the
createService function in the DSCOMDRIVERLib package.

Dim csfactory As New DSCOMDRIVERLib.ServiceFactory
Dim service As DSCOMDRIVERLib.service
Set service = csfactory.createService("JavaCalculatorExample", "0",
Nothing, Nothing)

The first line creates an instance of ServiceFactory. This is used to create TIBCO
GridServer® Service instances. ServiceFactory is defined in the DSCOMDRIVERLib library,
which resolves in DSCOMDriver.exe.

The second line declares a variable called service that holds the Service instance. This
variable must be visible to any other part of the code that wishes to interface with the
Service. You can see that the rest of the code in this section references this variable.

The third line calls the createService method, which takes four arguments:

• serviceName — The name of the registered Service (String).

• initData — The state initializing data for the Service (String).

• options — Service options; see the Options class in the Service JavaDoc for
available options.

• description — Service descriptions; see the Description class in the Service
Javadoc for available description options.

The third and fourth arguments are of type Properties, which is a set of name-value
pairs. Consult the COMDriver documentation for details.

The method returns the created Service interface. In our example, an instance of the
JavaCalculatorExample Service is initialized with the value 0, with no options and
description.

If the supplied Service name is not registered on TIBCO GridServer®, the application fails
with a runtime error: Service: servicename.csdd not found.

TIBCO GridServer® COM Integration Tutorial

6 | Accessing a Service from Visual Basic

Submitting Requests Synchronously
Work requests can be submitted to a Service synchronously or asynchronously. Let us go
through submitting a request synchronously first. Depending on the number of input
arguments you have for the Service function, you can use the execute or
executeWithArray function.

Both execute functions take in three arguments:

1. methodName — the name of the method to invoke.

2. data — the input data.

3. discriminator — the discriminator used for this request; discriminators are
discussed in a later section.

Both return the output data as a string. The input and output arguments are restricted to
strings, for reasons of network serialization, and better interoperability between clients
and Services of different languages.

The only difference between the two functions is that executeWithArray accepts an array
of strings as the input data argument, whereas execute accepts a single string.

For example:

Dim numInMemory As String
numInMemory = service.execute("getMemory", "", Nothing)
Dim sum As String
Dim args(1) As String
args(0) = "25"
args(1) = "75"
sum = service.executeWithArray("add", args, Nothing)

If the Engine-side function being executed takes one or no arguments, it is more
convenient to use execute; otherwise, place your arguments in an array, and pass them
into executeWithArray. If the function takes no arguments, like the getMemory function,
use execute with an empty string.

The execute functions do not return until the Service completes the request and returns
the result. To have the function return immediately, use the submit function to submit
requests asynchronously, as described below.

TIBCO GridServer® COM Integration Tutorial

7 | Accessing a Service from Visual Basic

Submitting Requests Asynchronously
To submit requests to the Service asynchronously, use the submit functions. They follow
the same format as execute. One of the two functions is more suitable depending on the
number of input arguments the Service function takes: submit for zero or one argument,
and submitWithArray for more than one argument.

The submit functions return immediately, with the invocation ID (a Long integer) as the
output argument. The ID increments sequentially and starts at 0; it can be used to identify
results when they are later collected.

Dim ID1 As Long
ID1 = service.submit ("getMemory ", "", Nothing)
Dim ID2 As Long
Dim args(1) As String
args(0) = "25"
args(1) = "75"
ID2 = service.submitWithArray("add", args, Nothing)

The results are collected by calling the collectNext function.

Collecting Results During Asynchronous Execution
Since Visual Basic is not multithreaded, there are no callbacks for results collection. The
collectNext function is used for collecting results during asynchronous calls. The
function returns one of the available results from the Service; if none are available, it waits
for the number of milliseconds supplied as an input argument before returning. The
timeout prevents a client application from waiting indefinitely on a Service.

collectNext returns the result as a ServiceData type, which includes the following
properties:

• Id — The Service invocation ID, which can be used to match the result with the
corresponding submission.

• IsError — A Boolean that signifies whether the execution resulted in an error; if so,
the data property contains the error message.

• Data — The result (Service function returns value or error).

For the same reason as execution and submit functions, all output arguments are pure
strings.

TIBCO GridServer® COM Integration Tutorial

8 | Accessing a Service from Visual Basic

To make collecting multiple results easier, the InvocationCount parameter of a Service is
equal to the number of outstanding invocations.

The following code demonstrates how one can implement results collection. It repeatedly
checks a Service for available results. If there are results, one result is collected; the code
checks to see if the result is an error, and prints out the result data accordingly. If there
are no results, it waits for 1 second, and then loops. The loop ends when all the results
have been collected.

While service.InvocationCount > 0
 Dim sd As ServiceData
 Set sd = service.collectNext(1000)
 If Not sd Is Nothing Then
 If sd.IsError Then
 Debug.Print "collected " & sd.Id & " error: " & sd.Data
 Else
 Debug.Print "collected " & sd.Id & ": " & sd.Data
 End If
 End If
Wend
Debug.Print "done collecting"

Stateful Service Operations
To better understand how to manage state from the client side, let us take a quick look at
how Services on TIBCO GridServer® manage it. Let’s consider our JavaCalculatorExample
Service.

The state maintained by the Service is a field called memory. There are two methods that
are responsible for updating the state:

• addToMemory

• setMemory

Although both methods update the state, TIBCO GridServer® has to handle them
differently to ensure that the state is properly maintained. addToMemory refers to the
previous value of memory, whereas setMemory does not. TIBCO GridServer® denotes the
first type of method as an appendStateMethod, and the second type as setStateMethod.

When a Service instance is created on an Engine, the Engine replays all state-changing
methods from the last setStateMethod, or from the beginning if there have been no
setStateMethods. Depending on the duration of the request, it might be worthwhile to

TIBCO GridServer® COM Integration Tutorial

9 | Accessing a Service from Visual Basic

follow appendStateMethods with setStateMethods periodically, to save memory on the
Manager.

These special state-changing methods have to be identified when the Service is registered
in TIBCO GridServer®. Within the Service configuration of the JavaCalculatorExample,
under the section ContainerBinding, these method names must be included in the fields
titled appendStateMethods and setStateMethods.

Once the methods have been registered on the Service, a client can only access them
through the updateState functions. These functions behave in a similar way to execute
functions. They take three input arguments:

• methodName — the name of the method to invoke;

• data — the input data;

• append — a Boolean signifying whether it is an appendStateMethod and updates the
state accordingly.

These functions do not return output arguments.

In the same manner as execute and submit, one of two updateState methods are more
suitable depending on the number of input arguments that the Service function takes.
These functions are: updateState and updateStateWithArray.

The following Visual Basic code updates the memory of the JavaCalculatorExample:

service.updateState "setToMemory", "25", False
service.updateState "addToMemory", "75", True

The resultant value of memory is 100.

Discriminators
Discriminators allow Service requests to be performed only on Engines that meet the
discriminator’s requirements. To construct a discriminator, use the COM types
PropertyDiscriminator and PropertyComparator. A PropertyDiscriminator is a collection
of PropertyComparators, each of which expresses one requirement on Engines that must
evaluate to true in order for the engine to qualify. See the COMDriver API reference for a
full list of comparators and machine properties; it is located at [COMDriver
installation]/docs/COMDriver/DSCOMDriverRef.doc.

TIBCO GridServer® COM Integration Tutorial

10 | Accessing a Service from Visual Basic

The following Visual Basic code creates a new PropertyDiscriminator, which limits
operation to machines with more than 200MB of free disk space, and the custom property
foo equal to the value bar. It then submits a request to the add function with the
PropertyDiscriminator.

Dim discrim As New PropertyDiscriminator
Dim pc As New PropertyComparator
pc.Init FREE_DISK_MB, "200", GREATER_THAN_EQ, False
discrim.Add pc
pc.Init "foo", "bar", EQUALS, False
discrim.Add pc
Dim args(1) As String
args(0) = "25"
args(1) = "75"
ID2 = service.submitWithArray("add", args, discrim)

The Init function of PropertyComparator initializes the comparator as comparison with a
predefined Engine property, and takes four arguments:

• name — A string representing the name of the Engine property.

• value — A string representing the value of the Engine property.

• op — The comparison method, from the enumeration DSComparatorType.

• nullCompare — The result of the comparison when the value of the property is not
defined on the Engine.

For more information about initializing PropertyComparator, see the COMDriver API
reference ([COMDriver install dir]\docs). For more information about custom
properties for Engines, refer to the “Using Conditions” topic of the TIBCO GridServer®
Developer’s Guide.

Setting Driver Properties
COMDriver obtains its configuration from a file called driver.properties. It is possible to
override the values in driver.properties programmatically, using the DriverManager
class. This ability is most commonly used to set a user name and password for
authentication to the Grid. Setting these values in the code allows different users to
reference the same driver.properties file, and avoids having a cleartext password in the
file. To set the user name and password in your code, place the following lines before any
other use of COMDriver. This code assumes that user and password are variables that have
been set to the desired user name and password.

TIBCO GridServer® COM Integration Tutorial

11 | Accessing a Service from Visual Basic

Dim dm As New DSCOMDRIVERLib.DriverManager
dm.setProperty DSUSERNAME, user
dm.setProperty DSPASSWORD, password

Destroying Service Instances
When clients have completed submitting requests to a Service instance, it is responsible
for destroying the instance to free resources on the server. To do so, simply call the
destroy function on the Service. Any outstanding invocations are canceled.

TIBCO GridServer® COM Integration Tutorial

12 | Excel Demo

Excel Demo
This section details an example of how Windows applications can interface with TIBCO
GridServer® Services through COMDriver and Visual Basic. The client application is a
Portfolio Valuation calculation in Microsoft Excel, and provides two ways of performing the
calculation: locally in Visual Basic, or as a Java Service on TIBCO GridServer® using
COMDriver.

The example is available from the COMDriver installation, and is located in [DSCOMDriver
installation]/examples/exceldemo.

Getting Started
Before running the demo, you must enable Macros in Microsoft Excel, deploy the
resources to TIBCO GridServer®, and register the Service Type.

Enabling Macros in Excel
By default, macros are not enabled in Excel spreadsheets. Enable them as follows:

1. Start Excel.

2. In Excel, choose Tools > Macros > Security.

3. Select Medium Security.

Deploying Resources
To deploy the resources used by the spreadsheet to your Engines, in the COMDriver
installation, upload the Grid Library ZIP file in examples/exceldemo/service/ directory in
the GridServer Administration Tool on the Grid Components > Services > Grid Libraries
page.

TIBCO GridServer® COM Integration Tutorial

13 | Excel Demo

Registering the Service Type
After deploying the Excel demo, you must register the Service Type as follows:

1. Go to Services > Services > Service Types.

2. In the empty box at the bottom of the table, enter “exceldemo” and select java for
the implementation. A new window appears with options for registering a Service.

3. In className, enter exceldemo.TradeValuationService.

4. In Options, set the following:

a. Set autoPackNum to 5.

b. Set gridLibrary to exceldemo.

c. Set gridLibraryVersion to 1.0.0.1.

5. Click Save.

Executing the Demo
Open the Excel file OptionValuationDemo.xls, and when prompted, enable Macros. After
several seconds, a message appears that says: GridServer connection established. Click
OK. If this does not occur, make sure the Manager is running and visible from your
machine, and that you supplied the Manager name and port when you installed
COMDriver.

To run the demo, either select Use Local Spreadsheet to run it locally, or Use
DataSynapse Grid, to enable Excel to access the Java Service on GridServer, and then click
Value Portfolio.

Note that the calculation completes faster if you select the Use DataSynapse Grid option,
because calculations in Visual Basic are much slower than in Java.

The Visual Basic Code
To see the Visual Basic code within the Excel file, from the Tools menu, select the Macro
menu, then click Visual Basic Editor. This opens up a Visual Basic Editor; select Sheet1 in
the Project Explorer to see the source code.

TIBCO GridServer® COM Integration Tutorial

14 | Excel Demo

The code must be familiar to you if you read through the last Visual Basic example. On
loading the Excel file, the InitializeLC() function is performed. It instantiates
ServiceFactory, and creates an instance of the Service exceldemo.

Public Service As DSCOMDRIVERLib.Service
Sub InitializeLC()
 Dim f As New DSCOMDRIVERLib.ServiceFactory
 On Error GoTo iError
 If (Service Is Nothing) Then
 Set Service = f.createService("exceldemo", "", Nothing, Nothing)
 End If
 MsgBox ("GridServer connection established.")
 GoTo iEnd
iError: MsgBox ("GridServer Service not found: " & "(" &
Err.Description & ".)")
iEnd:
End Sub

The Visual Basic function that executes the calculation on GridServer is called
runLiveCluster. It calls the Java function valueTrade of the Service asynchronously using
the Submit function in COMDriver, sequentially from the first to the last row. The function
takes one string argument: all the values on the row of the deal, concatenated into one
string, delimited by spaces.

The code correctly assumes that Invocation IDs returned by the submit function are
sequential. The invocation ID of the last call is written to the variable result. This value is
important for indexing the results later on.

For rwIndex = begRow To endRow
Dim a As String
a = Cells(rwIndex, 2).Value & " " & Cells(rwIndex, 3).Value & " " _
& "0.05 " & Cells(rwIndex, 4).Value & " " & Cells(rwIndex, 5).Value & " "
_
 & Cells(rwIndex, 6).Value & " " & Cells(rwIndex, 7).Value & "
" & sims
Dim result
result = Service.submit("valueTrade", a, Nothing)
Next rwIndex

Since submit is an asynchronous call, the results are collected separately. The code calls
the collectNext function repeatedly until the number of results collected is equal to the
number of rows. Alternatively, it can use Service.InvocationCount, to determine if there
are still pending results. See the previous example for an implementation of this.

The row number is calculated by offsetting the invocation IDs by the variable result:

TIBCO GridServer® COM Integration Tutorial

15 | Excel Demo

' now collect
Dim count As Integer
While count < endRow - begRow + 1
Dim data As ServiceData
Set data = Service.collectNext(100)
If Not (data Is Nothing) Then
Cells(data.ID + begRow - (result - (endRow - begRow)), 7).Value =
data.data
count = count + 1
End If
Call updateProgress(count * 100# / (endRow - begRow + 1))
Wend

TIBCO GridServer® COM Integration Tutorial

16 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current
than any other documentation included with the product.

Product-Specific Documentation

Documentation for TIBCO GridServer® is available on the TIBCO GridServer® Product
Documentation page.

The following documents for this product can be found in the TIBCO Documentation site:

 l TIBCO GridServer® Release Notes

 l TIBCO GridServer® Installation

 l TIBCO GridServer® Introducing TIBCO GridServer®

 l TIBCO GridServer® Administration

 l TIBCO GridServer® Developer's Guide

 l TIBCO GridServer® Upgrade

 l TIBCO GridServer® Security

 l TIBCO GridServer® COM Integration Tutorial

 l TIBCO GridServer® PDriver Tutorial

 l TIBCO GridServer® Speedlink

 l TIBCO GridServer® Service-Oriented Integration Tutorial

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-datasynapse-gridserver-manager
https://docs.tibco.com/products/tibco-datasynapse-gridserver-manager

TIBCO GridServer® COM Integration Tutorial

17 | TIBCO Documentation and Support Services

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

 l For accessing the Support Knowledge Base and getting personalized content about
products you are interested in, visit the TIBCO Support website.

 l For creating a Support case, you must have a valid maintenance or support contract
with TIBCO. You also need a user name and password to log in to TIBCO Support
website. If you do not have a user name, you can request one by clicking Register
on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

http://www.tibco.com/services/support
http://www.tibco.com/services/support
http://www.tibco.com/services/support
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO GridServer® COM Integration Tutorial

18 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN
THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, GridServer, FabricServer, GridClient, FabricBroker,
LiveCluster, and SpeedLink are either registered trademarks or trademarks of TIBCO Software Inc. in
the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which
is available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.

https://scripts.sil.org/OFL

TIBCO GridServer® COM Integration Tutorial

19 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer
to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2001-2022. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Accessing a Service from Visual Basic
	Getting Started
	Installing the GridServer SDK
	Setting up the Service
	Referencing COMDriver in the Visual Basic Editor

	Client-side Code
	Creating a Service Instance
	Submitting Requests Synchronously
	Submitting Requests Asynchronously
	Collecting Results During Asynchronous Execution
	Stateful Service Operations
	Discriminators
	Setting Driver Properties
	Destroying Service Instances

	Excel Demo
	Getting Started
	Enabling Macros in Excel
	Deploying Resources
	Registering the Service Type
	Executing the Demo
	The Visual Basic Code

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

