
TIBCO DataSynapse GridServer®
Manager
Developer's Guide
Version 7.1.0
July 2022

Document Updated: September 2022

Copyright © 2001-2022. TIBCO Software Inc. All Rights Reserved.

TIBCO GridServer® Developer's Guide

2 | Contents

Contents
Contents 2

Typographical Conventions 16

TIBCO GridServer® Application Development 17
TIBCO GridServer® Programming Options 17
Services 17

PDriver 18

Python 18

Resource Deployment 18

Logging and Debugging 19
Logging Overview 19

Viewing Engine Logs 20

Writing to Logs 23

Debugging Engines 26

Creating a Native Stack Trace in Linux 27

Notes for Java Developers 28
Stop Java Client by using a property 28

HTTP Connection Parameters 28

Notes for C++ Developers 30

Changing the C++ Compiler Used with CPPDriver 30
C++ Multithreading Requirement 31

Using Global Statics in C++ Service Code 31

Running both 32-bit and 64-bit Services on 64-bit Windows Daemons 31

Running Examples on Visual Studio 31

Other C++ Notes 32

Notes for .NET Developers 33
.NET Driver Upgrades 33

TIBCO GridServer® Developer's Guide

3 | Contents

Notes for Python Developers 35

Driver Installation 36
GridServer SDK Installation 36
The Java Driver (JDriver) 36

The C++ Driver (CPPDriver) 37

The Parametric Job Driver (PDriver) 37

The Python Driver (PyDriver) 37

The .NET Driver 39

The COM Driver 39

The R Driver 40

Driver Configuration 43
Configuring Multi-Interfaced Drivers 43

Driver Cleaner Configuration 44

Multiple Driver Instances 44

Creating Services 46
Overview 46

Steps in Using a Service 46

Service Method Compliance 47
Java/.NET Services 47

C++ Services 48

Command Services 48

R Services 49

Python Services 49

Client Calling Conventions 49
Java/.NET Client 49

C++ Client 50

R Client 50

Python Client 50

Registering a Service Type 51
Container Binding 51

TIBCO GridServer® Developer's Guide

4 | Contents

.NET AppDomains 53

.NET Framework Versions 53

Language Interoperability 54
Strings and Byte Arrays 54

Object Conversion from Strings and Byte Arrays 55

XML Serialization for Java, .NET, and R 56

Interoperable Types for XML Serialization 56

R Interoperability 59

Python Interoperability 62

Maintaining State 62

Initialization 63

Cancellation 63

Destruction 63

Service Instance Caching 64

Invocation Variables 64

Accessing Services 66
Services 66

Proxy Generation 66

Service Options 67

Service Invocation Context 67
Setting Task Description 68

Shared Services 68
Creating a Shared Service 68

Limitations to Shared Services 68

Ending a Shared Service 69

Shared Services and Failover 69

Broker Spanning Services 69
Enabling Broker Spanning on a Driver 70

Admin API Usage 70

Scheduling and Task Expiration 71

Administration 72

TIBCO GridServer® Developer's Guide

5 | Contents

Broker Spanning Service Limitations 72

Service Groups 73

Data References 73
C++ Data References 74

Python Data References 74

Service Collection 74
Collect After Submit 75

Deferred Collection (Collect Later) 76

No Collection (Collect Never) 79

Engine Pinning 80

Running a Driver from an Engine Service 81

PDriver 83
Overview 83

Installing PDriver 83
Resource Deployment 84

PDriver Commands 84
The pdriver Command 84

The bsub Command 86

The bcoll Command 87

The bstatus Command 88

The bcancel Command 89

About PDS Scripts 89
PDS Basics 90

PDS Structure 90

The Depends Statement 92

The Include Statement 92

Lifecycle Blocks 93

The Options Block 94

The Discriminator Block 100

The Schedule Block 101

Variables, Types, and Expressions 102

TIBCO GridServer® Developer's Guide

6 | Contents

Basics 102
Scoping 102

Variable Substitution 103

Expressions 104

Arrays 104

Built-in Variables 106

Statements 108

Built-in Commands 108
The If Statement 109

The For and Foreach Statement 110

Shell Directives in Heterogeneous Environments 111

Example 112

Creating Grid Libraries 113
Overview 113

Grid Library Format 113
Variable Substitution 118

Versioning 119

Dependencies 121

Conflicts 122

Grid Library Loading 122
State Preservation 123

Task Reservation 124

Environment Variables and System Properties 124

Using Grid Libraries from a Service 124

Super Grid Libraries 125

C++ Bridges 125

JREs 125

R Grid Libraries 126
Building TERR Runtime Grid Libraries 127

Python Bridges 128

Python Grid Libraries 128

TIBCO GridServer® Developer's Guide

7 | Contents

Windows Application Deployment 129

Grid Library Example 131

GridCache 134
Overview 134

General Capabilities 135
API 135

Modes 135

Cache Configuration and Access 136

Data Storage 136

Attributes 136

Consistency/Synchronization 137

Cache Loaders 137

Cache Loader Write-through and Bulk Operations 138

Notification 139

Disk/Memory Caching 139

Cache Region Scope 140

Data Conversion Matrix 140

Using The GridCache API 141

Fault Tolerance and GridCache 142

GridServer Design Guidelines 143
Data Movement 143
Principles of Data Movement 143

Data Movement Mechanisms 144

Data Movement Examples 146

Service or Task Duration 149
Engine Interruption and Smoothing 150

Summary 151

The Admin API 152
Documentation for the GridServer Admin API 152

Using the Admin API over SOAP 153

TIBCO GridServer® Developer's Guide

8 | Contents

Using Server Hooks 153

Using JMX 154

Using Conditions 155
Conditions 155

Discriminator Conditions 156
Setting Discriminators in the Administration Tool 156

Setting Discriminators Programmatically 157

PDriver Discriminators 158

Affinity Conditions 158
Setting Affinity Conditions Programmatically 159

Setting Affinity Conditions in the Administration Tool 159

Task Affinity 159

Custom Discriminator and Affinity Conditions 160

Dependency Conditions 161
Creating Dependencies 161

Administering Task Dependencies 162

Queue Jump Conditions 162

Descriptor Conditions 163

EXTRAConditions 163
Using the EXTRACondition REST Interface 163

Setting EXTRAConditions 166

Condition Sets 166
AND set 167

OR Set 167

Service Set 167

Engine Properties 168
Intrinsic Engine Properties 168

Custom Engine Properties 168

Engine Session Properties 169

GPU Services Engine Properties 169

MIC Processor Engine Properties 170

TIBCO GridServer® Developer's Guide

9 | Contents

NUMA Engine Properties and Configuration 172

Extending GridServer 174
Manager Hooks 174

Engine Hooks 175
Engine Hook Example 175

Implementing Engine Hooks as a Grid Library 178

Task Instrumentation 180
Overview 180

Syntax 180
Client 180

Action 181

Object 181

Phases 182
Driver-side 182

Engine-side 183

Broker-side 184

DDT file write 185

Native 186

Example Phases in a Service Execution 186

The grid-library.dtd 189
The grid-library.dtd 189

REST API Reference 192
BatchAdmin 192
batch-definition 195

batch-definition 196

all-batch-execution-info 197

all-batch-info 198

batch-count 198

batch-definition 199

TIBCO GridServer® Developer's Guide

10 | Contents

batch-definition-names 200

batch-execution-count 200

batch-execution-ids 201

batch-execution-info 201

batch-execution-info-by-batch-id 202

batch-ids 203

batch-info 204

running-batch-execution-count 205

scheduled-batch-count 205

selected-batch-execution-info 205

selected-batch-info 206

available 208

batch 209

batch-execution 209

finished-batch-executions 210

finished-batches 210

resume-batch 211

schedule-batch-definitions 212

suspend-all-batches 212

suspend-batch 213

BrokerAdmin 213
service-discriminator 215

service-discriminator 217

all-broker-info 217

broker-count 218

broker-info 219

engine-router 220

service-discriminator 221

service-discriminator-names 223

shared-brokers 223

available 224

driver-weight 224

TIBCO GridServer® Developer's Guide

11 | Contents

engine-router 225

engine-weight 226

maximum-engines 227

min-idle-home-engines 228

minimum-engines 229

shared-brokers 230

DriverAdmin 230
all-driver-info 231

driver-count 232

driver-info 233

available 234

EngineAdmin 234
all-engine-info 236

busy-engine-count 241

engine-count 241

engine-ids 242

engine-info 242

engine-info-by-properties 248

log-url-list 254

selected-engine-info 256

available 261

kill-all-engines 261

kill-engine 262

park-engines 263

unpark-engines 263

parked-engines 264

EngineDaemonAdmin 265
all-engine-daemon-info 267

default-properties 270

engine-daemon-count 271

engine-daemon-ids 271

engine-daemon-info 272

TIBCO GridServer® Developer's Guide

12 | Contents

engine-daemon-info-by-properties 275

log-url-list 282

selected-engine-daemon-info 283

available 289

default-property 289

property 290

property-by-properties 291

restart-engine-daemon 292

restart-engine-daemon-by-properties 293

all-enabled 294

all-start-mode 295

configuration 296

configuration-by-properties 297

default-property 298

directors 299

directors-by-properties 300

enabled 301

enabled-by-properties 301

instances 303

instances-by-properties 303

property 305

property-by-properties 305

start-mode 307

start-mode-by-properties 307

DriverManager 309
broker-url 309

ManagerAdmin 309
broker-id 312

broker-name 312

broker-url 312

build-version 313

busy-engine-count 313

TIBCO GridServer® Developer's Guide

13 | Contents

category 313

category-names 320

director-id 321

engine-configuration-names 321

engine-count 322

events 322

finished-service-count 323

license-info 323

manager-value 325

pending-invocation-count 326

running-invocation-count 327

running-service-count 327

service-count 328

subscriber-events 328

subscribers 329

value 329

version 330

available 330

manager-value 331

value 332

subscribe 333

unsubscribe 334

ServiceAdmin 335
all-services 338

invocation 338

service 339

resources 340

deploy-resources 341

all-service-info 342

blacklisted-engines 345

completed-service-invocation-count 345

finished-service-count 346

TIBCO GridServer® Developer's Guide

14 | Contents

invocation-count 346

invocation-info 347

pending-invocation-count 348

pending-service-invocation-count 348

registered-services 349

running-invocation-count 350

running-service-count 350

running-service-invocation-count 351

selected-invocation-info 351

selected-service-info 353

service-binding 356

service-count 358

service-ids 358

service-info 358

service-info-by-properties 362

service-invocation-count 368

task-expiration-event-count 369

available 369

list-resources 370

register-service 371

all-finished-services 373

finished-service 374

resource-exists 374

expires 375

priority 376

unregister-service 377

UserAdmin 377
user 378

role 379

user 380

all-roles 381

all-users 383

TIBCO GridServer® Developer's Guide

15 | Contents

role 384

user 385

available 386

role 386

user 387

Version 388
version-release-name 389

build-version 389

TIBCO Documentation and Support Services 390

Legal and Third-Party Notices 392

TIBCO GridServer® Developer's Guide

16 | Typographical Conventions

Typographical Conventions
The following table lists the typographical conventions used in this guide:

Convention Use

TIBCO_HOME Many TIBCO products must be installed within the same home directory.
This directory is referenced in the documentation as TIBCO_HOME. The default
value of TIBCO_HOME depends on the operating system. For example, on
Windows systems, the default value is C:\tibco.

DS_INSTALL TIBCO GridServer® installs into a directory within TIBCO_HOME named
datasynapse. This directory is referenced in the documentation as DS_
INSTALL. The default value of DS_INSTALL depends on the operating system.
For example, on Windows systems, the default installation directory is
C:\tibco\datasynapse.

DS_MANAGER The Manager directory contains the read-only software files; by default, it is a
directory within DS_INSTALL named manager, and is referred to as DS_
MANAGER. For example, on Windows systems, the default Manager directory is
C:\tibco\datasynapse\manager.

DS_DATA The data directory is the location of all volatile files used by the application
Server such as server properties and configuration. By default, it is a
directory within DS_INSTALL named manager-data, and is referred to as DS_
DATA. For example, on Windows systems, the default data directory is
C:\tibco\datasynapse\manager-data.

TIBCO GridServer® Developer's Guide

17 | TIBCO GridServer® Application Development

TIBCO GridServer® Application Development
This section is your starting point for developing applications that use your GridServer
installation. The document is divided into several sections to help you understand the
principles of the GridServer system, and how to program applications utilizing GridServer.

TIBCO GridServer® Programming Options
There are several options available to you when you adapt your applications to use
GridServer. The following sections describe how to use each of them.

Services
Services provide for remote execution of code in a way that is scalable, fault-tolerant,
dynamic and language-independent. Services can be written in a variety of languages and
do not need to be compiled or linked with DataSynapse code. There are client-side APIs to
create Service Sessions using Java, C++, COM, R, and .NET. A Service object on a client can
create and use a Service implemented in the same or another language. In the Service
model, requests on the client are routed over the network, ultimately resulting in
invocations on a remote machine, and response values make the reverse trip.

With GridServer, Services are virtualized; rather than send a request directly to the remote
machine hosting the Service Session, a client request is sent to the GridServer Manager,
which enqueues it until an appropriate Engine is available. The Manager selects which
Engine services a request. The first Engine to dequeue the request hosts the Service
Session. Subsequent requests can be routed to the same Engine or can result in a second
Engine running the Service concurrently. For information about how this decision is made
see the TIBCO GridServer® Administration. If an Engine hosting a Service Session becomes
unavailable, another takes its place. This mechanism, in which a single virtual Service
Session is implemented by one or more physical Sessions (Engine processes) provides for
fault tolerance and essentially unlimited scalability.

See Creating Services for details how to implement Services; Accessing Services explains
how to use Services in your application.

TIBCO GridServer® Developer's Guide

18 | TIBCO GridServer® Application Development

PDriver
The Parametric Job Driver, or PDriver, is a Driver that can execute command-line programs
as a parallel processing service using the GridServer environment. This enables you to write
a simple script to run a program on several Engines, and return the results to a central
location.

PDriver scripts, which are written in the PDS scripting language, enable you to run the
same program on Engines several times with different parameters. A script is used to
define how these parameters change.

One way PDriver scripts can achieve parallelism is to iteratively change the value of
variables that are passed to successive tasks as parameters. A script can step through a
range of numbers and use each value as a parameter for each task that is created. Or, a
variable can be defined containing a list of parameters.

For more information see PDriver.

Python
The Python Driver, or PyDriver, is a Driver that can submit Python scripts for execution in
the GridServer environment. This enables you to create Python scripts to run on multiple
Engines and return the results to a central location. You can achieve parallelism by
iteratively changing the script that is passed to successive tasks.

Resource Deployment
Service resource files that are used by Engines are centrally managed, starting at the
Director. The centrally located resources on the Director are then synchronized to
Managers, which then synchronize them with Engines.

Grid Libraries are the method of deploying resources to Engines. They are an archive
containing a set of resources and properties necessary to run a Service, along with
configuration information that describes how those resources are to be used. Grid Libraries
can contain Java classes and JARs, native libraries, .NET assemblies, configuration files,
Java system properties, Engine hooks, and alternate JREs needed to run a Service. They
can also contain references to other Grid Libraries as dependencies. A Service Session can
use a Grid Library by setting the appropriate options for the Service Type used by the
session.

TIBCO GridServer® Developer's Guide

19 | TIBCO GridServer® Application Development

The build directory of the SDK includes an example ANT build script that can be used to
build Grid Libraries. The examples in the SDK can be automatically packaged as Grid
Libraries by using this script and included configuration files. Each Service example
contains grid-library.xml and build.properties files. The build directory contains
build.xml, deploy.bat, and deploy.sh, which parse the grid-library-build-properties
files to create Grid Libraries.

For more information about packaging Grid Libraries, see Creating Grid Libraries. For
information about deploying Grid Libraries, see the TIBCO GridServer® Administration.

Logging and Debugging
GridServer contains comprehensive logging facilities on Engines. This can be used to
diagnose problems with Services running on Engines, and your application can write
information to these logs. This section contains an overview of GridServer’s log facility, plus
information about using it from your application, and how to attach a debugger to an
Engine if needed.

Logging Overview
GridServer uses the java.util.logging package for its internal logging, to provide
diagnostic messages to the console and to file. This section covers how to access these
logs, and how to interface with the loggers.

The logger uses the following log levels, in order:

Level Description

Severe Indicates serious failures

Warning Indicates potential problems

Info Displays informational messages

Config Displays static configuration messages

TIBCO GridServer® Developer's Guide

20 | TIBCO GridServer® Application Development

Level Description

Fine Provides tracing information

Finer Indicates a fairly detailed tracing message

Finest Indicates a highly detailed tracing message

Typically, the Info level is sufficient for most purposes and is best to use on a busy grid. In
some cases, you might need to log at Fine level to diagnose certain issues. For example,
you must set the log level to at least Fine to log JMX statistics.

Finer or Finest levels must not be used unless you are debugging a detailed issue and you
are directed to do so by TIBCO support, as they might degrade performance and introduce
unnecessary logging that can make it more difficult for diagnosing problems. If you must
use Finest or Finer on the Manager, consider only increasing the component level.

The log format is: {timestamp} {level}: [{component}] {message}

Only messages that are at or above the current log level are logged.

Note
It’s considered unsafe to set all logging at a level below Info.

An example of a log message:

09/20/13 19:19:10.423 Info: [BrokerServicePlugin] Broker:Total:1

Viewing Engine Logs
There are several ways of viewing the logs. The most straightforward is to view the actual
log files using the Log Files feature in the GridServer Administration Tool.

To view an Engine log:

1. In the Administration Tool, go to Grid Components > Engines > Engine Admin.

2. Select the Engine for which you want to view a log.

TIBCO GridServer® Developer's Guide

21 | TIBCO GridServer® Application Development

3. Click the Actions list, and select Log Files.

4. A window opens with a list of links for each of the logs residing on that Engine,
listed by date and time. You can do any of the following:

— Select an Engine Daemon or a particular Engine from the list in the upper left.
This shows all of the log files on that Engine Daemon or Engine and their sizes.
You can also type in the list box to quickly filter the list to partial matches.

— Click on a log file name and its content is displayed to the right in the window.

— Click the links in the upper right to download a ZIP archive of all log files on the
host, a ZIP archive of all log files of an Engine Daemon or Engine instance, or a
particular log file.

The Log Files window

You might also wish to view the logs in real time. You can do this with the remote log
feature.

TIBCO GridServer® Developer's Guide

22 | TIBCO GridServer® Application Development

To view the remote log

Procedure

1. Go to Grid Components > Engines > Engine Admin.

2. Select the Engine for which you want to view a log.

3. Click the Actions list, click Remote Log.

4. A window opens, displaying the log on the Engine as events occur. You can click
Clear to clear the log, or Snapshot to capture a screen of the log in a new window.

You can also run the Engine in console mode; typically, this is only done during
development.

Windows

You can run the Engine from a command line with the command engine.exe -console.
This starts the Engine in console mode and logging information scrolls in the command
window in which you start it.

UNIX

You can run the Engine from a command line with the command engine.sh startfg. This
starts the Engine in the foreground and the logging information scrolls in the terminal in
which you start it. Note that this is only suitable for debugging purposes.

The Engine Log Search page enables you to search for all Severe-level Engine logs for a
Service ID across all Engines, and optionally search those results for a keyword. Results are
shown with a summary of each matching log for each Engine, with links to corresponding
URLs to logs with excerpts. First, logs are searched for the given Service ID; then they are
searched for the regular expression “.*Severe.*”, then they are optionally searched for a
given keyword.

To search Engine logs

Procedure

1. Go to Diagnostics > Service Diagnostics.

2. Enter a Service Session ID in the Service Session ID box, or click a name in the
Service Name list. The list of Service Names is provided from the Service Admin list,
which is the in-memory list of all Services recently run.

TIBCO GridServer® Developer's Guide

23 | TIBCO GridServer® Application Development

3. Enter a keyword in the Keyword box, or leave it blank to return all entries.

4. Click Search.

Results are shown with a summary of each matching log for each Engine, with links to
corresponding URLs to logs.

Writing to Logs
Your Service also logs messages, and you can direct the messages to the DataSynapse
logger.

Java

GridServer uses the Java logger, so any messages logged by using a Java Logger object are
written to the Engine or Driver log file. For example:

Logger mylog = Logger.getLogger("com.mycompany.myproduct.MyClass");

The level of logs can be increased on a per-class and package level, to help in isolating
issues. For example, you could do the following:

LogManager.getLogManager().getLogger
("com.livecluster.admin.servlet.AdminControllerServlet").setLevel
(Level.INFO);

Both Drivers and Engines capture stdout and stderr, so typically no changes are required
to existing implementations to capture logs.

Additionally, the DataSynapse logger is registered as the Apache Commons Logging default
handler. If your implementation uses this interface, your messages are logged
automatically. The following is a map of levels to DataSynapse levels:

Commons DataSynapse

fatal Severe

error Severe

TIBCO GridServer® Developer's Guide

24 | TIBCO GridServer® Application Development

Commons DataSynapse

warn Warning

info Info

debug Fine

trace Finer

The Java Driver log manager can be completely disabled so that all Driver log messages are
logged according to your configuration of the Java Logging Framework, rather than
according to the Driver properties. For example, if the Driver is a part of a large client
application that uses a number of Java libraries whose logs are all managed by the Java
Logging Framework configuration, you would disable this so that the Driver logs are
managed the same way. There is a Driver property, DSLogUseJavaConfig, that enables this
behavior when set to true.

.NET

The .NET System.Diagnostics.Trace facility is used for logging; the DataSynapse logger is
simply a Trace listener. The DataSynapse logger captures any messages written to the
Trace facility. This includes .NET Services; any trace message written by the Service is
logged to the Engine log.

C++

The UtilFactory::log function is the preferred method of logging to the DataSynapse log.
You can use it on both the Engine and Driver.

Note
For logging to become effective, it is necessary to instantiate the
Driver message server first — for instance, by creating a Service
object, or by calling DriverManager::connect.

TIBCO GridServer® Developer's Guide

25 | TIBCO GridServer® Application Development

R

The included rlogger package contains a log method for logging. For example, the
following logging is used in the Pi tutorial included in the SDK:

library("rdriver")
library("rlogger")
...
RDPI <- function(N, K) {
rlogger.log(list("RDPI(", N, ", ", K, ") = ", pi), rlogger.FINE)

PDriver

The PDS script language provides redirection of stdout and stderr to a file, via the stdout
and stderr clauses in the execute statement. For example:

 execute
 stdout="$DSWORKDIR/pijob.$DSTASKID.out"
 stderr="$DSWORKDIR/error.$DSTASKID"
 ".\resources\win64\lib\PdriverPiCalc.exe $seed $iterations"

Writing to the Log directory

The Engine’s log directory is [work directory]/log. You can view files written to this
directory with the Log Files feature. You can write log messages to your own files, and view
them with the Administration Tool.

The work directory is available as follows:

• Java: The system property ds.WorkDir

• .NET: The System.AppDomain.CurrentDomain data value ds.WorkDir

• C++, Command Service: The environment variable ds_WorkDir

• PDriver: The variable $DSWORKDIR

C++/.NET Native stdout/stderr

Aside from the logging methods described above, it is possible to write native stdout and
stderr to files that are managed by the Engine. Enable this with the Logging for Native
Streams settings in the Engine Configuration. The log files are created in the Engine
instance log directory, typically install-dir/work/machine name-instance/log/*. The file names

TIBCO GridServer® Developer's Guide

26 | TIBCO GridServer® Application Development

are engine-stdout-PID.log, engine-stderr-PID.log. The files roll when they exceed the
maximum size configured in the Engine Configuration.

This affects only native standard output / standard error for C++ and .NET. Java writes to
System.out/err go to the regular invoke log file, as do writes from C++ or .NET that use
the documented logging facilities.

Debugging Engines
This section covers the basics on how to attach a debugger to an Engine.

Java

The Java Platform Debugger Architecture (JPDA) enables the connection of a debugger to
the Engine via a socket. You can set the socket used for debugging in the Engine
Configuration. Create a new Engine Configuration or modify an existing one, and change
the value of Debug Start Port. If you have a single Engine per Engine Daemon, set this
value to the port you wish to use on each Engine. If you have more than one Engine per
Engine Daemon, the value given in Debug Start Port is the port used for the first Engine
instance, and the port is incremented for each additional Engine Instance. You can also set
Debug Suspend to true, which keeps the Engine suspended until a debugger is attached.

.NET, Windows DLL

Microsoft Visual Studio comes with a remote debugging facility. To debug, you must first
make sure that you build with debug symbols, and deploy the symbols (PDB) file with the
DLL. Once the Engine has logged in, you attach the debugger to the invoke.exe process
via the Processes dialog on the Debug menu.

CPPDriver and Linux

GDB can be used to debug native code in CPPDriver or JNI in Linux. Also, GDB can be
useful in identifying unusual problems with the Linux JVM. However, there are some subtle
issues when trying to use GDB on a JVM, as is the case with the GridServer Engine.

When attaching GDB to the Engine, you must specify the LD_LIBRARY_PATH to both the
Engine components and the JVM components.

TIBCO GridServer® Developer's Guide

27 | TIBCO GridServer® Application Development

LD_LIBRARY_PATH=lib:jre/lib/i386:jre/lib/i386/native_
threads:jre/lib/i386/server:resources/lib/linux

You must also obtain the process ID of a running invoke (or invokeGCC34) process from the
ps command. It's also easier if you run GDB from the base directory of the Engine install
(typically DSEngine). The GDB command used is similar to this:

gdb bin/invoke $INVOKEPID

Replace bin/invoke with bin/invokeGCC34 when using GCC34.

One difficulty with debugging C++ code is that your application shared objects are loaded
only when the Service is instantiated, so it becomes difficult to set a breakpoint in the
application shared object. (However, more recent versions of GDB feature deferred symbol
resolution, which makes this possible.) A technique that works in this instance is to have
your application Service method include some conditional code to enter a loop checking
some variable value that is never changed by the application code, effectively creating an
infinite loop. When you need to attach GDB, trigger the conditional that causes the loop to
be entered on the next invocation. Then attach GDB as above. You’ll see that the invoke
process is stopped while running in the loop. At that point, you can change the loop
evaluation value so that the infinite loop is exited, and the code continues to your
breakpoint where you can continue debugging.

Creating a Native Stack Trace in Linux
Sometimes when you are troubleshooting native C/C++ code on Linux, you want to
generate a stack trace, for example when a SIGSEGV is thrown. Since the JVM on the
Engine already traps SIGSEGV and prints out a Java (not native) stack trace, you must
override the actions of the JVM and install your own SIGSEGV handler for debugging. The
backtrace_fd() and backtrace_symbols_fd() methods from glibc can be used for this
purpose.

To install your own SIGSEGV handler for debugging, add code to your Service initialization
method similar to this:

#include <execinfo.h>
#include <stdio.h>
#include <signal.h>
#define TRACE_DEPTH 50
void MyService::segv_handler(int signum) {

TIBCO GridServer® Developer's Guide

28 | TIBCO GridServer® Application Development

void *trace[TRACE_DEPTH];
int depth;
FILE *fp;
depth = backtrace(trace, TRACE_DEPTH);
fp = fopen("trace.log", "w");
backtrace_symbols_fd(trace, depth, fileno(fp));
fclose(fp);
abort();

}
void MyService::init() {

signal(SIGSEGV, segv_handler);
signal(SIGBUS, segv_handler);

}

Notes for Java Developers
Here are some notes for Java developers.

Stop Java Client by using a property
Unlike C++ and .NET clients, a Java client does not stop automatically. It remains pending
after submitting Services and collecting results. Instead of calling System.exit() to stop
the client, you can set a property to change this behavior. Add this line to your code:

DriverManager.setProperty(DriverManager.IS_DAEMON, Boolean.TRUE.toString
());

You can also enable this by setting DSIsDaemon=true in the driver.properties file.

When this property is set to true, all client threads are daemon threads, meaning that they
allow the process to shut down when all threads have shut down.

HTTP Connection Parameters
The following parameters are specific for Java Drivers:

TIBCO GridServer® Developer's Guide

29 | TIBCO GridServer® Application Development

Parameter Default value Description

DSHttpMaxCon
nectionTotal

500 It controls how many maximum
concurrent connections the Driver
application can have at any given time.

To change the default value, you can
specify -DDSHttpMaxConnectionTotal=800
as JAVA OPTION (as one of the System
properties) or specify the following
parameter:

DSHttpMaxConnectionTotal=

DSHttpMaxPer
Route

80 It controls how many maximum
concurrent connections per Route the
Driver application can have at any given
time.

To change the default value, you can
specify -DDSHttpMaxPerRoute=100 as
JAVA OPTION or specify the following
parameter: DSHttpMaxPerRoute=

DSHttpDDTKee
palive

True It controls whether to keep the HTTP
connection alive for DDT requests.

To change the default value, you can
specify -DDSHttpDDTKeepalive=false as
JAVA OPTION or specify the following
parameter: DSHttpDDTKeepalive=

DSHttpSubmis
sionKeepaliv
e

True It controls whether to keep the HTTP
connection alive for tasks submission
requests.

To change the default value, you can
specify -
DDSHttpSubmissionKeepalive=false as
JAVA OPTION or specify the following
parameter: DSHttpSubmissionKeepalive=

TIBCO GridServer® Developer's Guide

30 | TIBCO GridServer® Application Development

Parameter Default value Description

DSHttpImplem
entation

com.livecluster.util.http.A
pacheHttpClientSupportFacto
ry

It controls which HTTP communication
implementation is applied. The default is
Apache HttpClient.

To change the default value to JRE HTTP
Connection implementation, you can
specify -
Dds.DSHttpImplementation=com.liveclu
ster.util.http.JavaHttpSupportFactor
y as JAVA OPTION (System property) or
specify the following parameter:
DSHttpImplementation=

Notes for C++ Developers

Changing the C++ Compiler Used with
CPPDriver
The CPPDriver and Service bridge libraries are built for nearly all standard compilers used
on Windows and Linux. You must link your client application and/or Service
implementation with the appropriate libraries for the compiler.

You must also run any C++ Services against the proper C++ bridge libraries. This is done
using Grid Libraries, in that any C++ Grid Library must include the proper bridge Grid
Library as a dependency These libraries come already deployed in the DS_
DATA/deploy/resources/gridlib directory.

Also, because different Linux releases support different compilers which use incompatible
versions of the STL, the GCC Version property in the Engine Configuration dictates which
compiler version of the bridge is supported by the Engine.

You can run Linux C++ Services built against unsupported STL implementations, using an
Engine built with no STL conflicts. To use this:

1. Download the Engine installation, and locate the invokeGCC file.

TIBCO GridServer® Developer's Guide

31 | TIBCO GridServer® Application Development

2. Make a copy of invokeGCC, called invokeGCC34.

3. Replace this file in the appropriate engineUpdate subdirectory on your Managers.

C++ Multithreading Requirement
Note that you must compile all UNIX C++ code multithreaded. This includes both Service
code and Engine or Driver code.

Using Global Statics in C++ Service Code
By default, the Linux C++ Driver loads application libraries with RTLD_LOCAL, which only
makes statics available within an object. This is done primarily to ensure that statics
defined in a Service Session is unique.

However, this can cause issues in your application, such as when using dynamic cast with
RTTI. Instead, you can use RTLD_GLOBAL, which makes statics available by any object in a
process. There is an Engine Configuration option to set RTLD_GLOBAL to true to handle such
cases.

Running both 32-bit and 64-bit Services on 64-bit
Windows Daemons
The 64-bit Windows Engine Daemon can be configured to allow the execution of 32-bit
Services. For more information, see "Configuring 64-bit Engine Daemons to run 32-bit
Services" in the TIBCO GridServer® Administration.

Running Examples on Visual Studio
To run the Calculator client in windows using any Visual Studio version other than Visual
Studio 2013:

1. Open the CPPCalculator solution file in Visual Studio.

2. Set the configuration to "Release" and Platform as "x64".

TIBCO GridServer® Developer's Guide

32 | TIBCO GridServer® Application Development

3. Right-click "Calculator", select Properties > Configuration Properties > General >
Platform Toolset, and select your version of Visual Studio. Do the same for
"CalculatorClient".

4. Right-click "Calculator", select Properties > Linker > General, and replace "Output
File" with the value for your version of Visual Studio. (For example
..\..\target\o\win64\vc12\Calculator.dll)

5. Right-click "CalculatorClient" select Properties > Linker > General, and replace
"Additional Library Directories" with the value for your version of Visual Studio (For
example ..\..\..\..\..\cppdriver\lib\vc12\x64;%
(AdditionalLibraryDirectories))

6. Right-click "CalculatorClient", select Properties > Linker > Input, and replace
"Additional Library Directories" with the value for your version of Visual Studio (For
example DSDriverVC12.lib;DSUtilVC12.lib;odbc32.lib;odbccp32.lib;%
(AdditionalDependencies))

7. Modify env.bat for your version of Visual Studio. For example:
set dsos=win64

set dscompiler=vc12

set dsbridgename=win64-vc12

set devenvpath="%VS120COMNTOOLS%\..\IDE\devenv.exe"

8. Edit driver.properties as needed.

9. Run the build-and-deploy.bat script. The Grid Library is deployed with the correct
calculator.dll file packaged in it.

Other C++ Notes
Microsoft Visual Studio 2013, 2015, 2017, and 2019 redistributables are installed when the
Windows Engine is installed with the installer program. Engine updates from the Manager
to pre-existing Engines do not install the runtimes.

When using existing Grid Libraries that use JNI on Windows systems, you must enable the
Restart on lib-path change property in the Engine Configuration.

TIBCO GridServer® Developer's Guide

33 | TIBCO GridServer® Application Development

Notes for .NET Developers
The GridServerNetClient.dll references GridServerNetBridge, which isn’t needed for
clients. This causes a build warning about GridServerNetBridge, but can safely be ignored.

To throw a custom exception from a .NET Service and retain all data when the exception
reaches the .NET client, the exception must implement ISerializable. For more
information, consult MSDN.

Parts of the BatchInfo, ServiceInfo, Options, and Discriminator classes use variable /
constant names that are not CLS compliant, and might not be usable from non-C#
Framework languages. If this is an issue, contact DataSynapse technical support for a
possible workaround.

.NET cache loaders for GridCache must be packaged as a Super Grid Library. For more
information about using Super Grid Libraries, see the TIBCO GridServer® Administration.

For .NET5 users

For .NET5 users, .NET5 version 5.0.404 for Windows and Linux is supported. The example of
.NET5 is under examples\service\net5 directory and the client assemblies are in the
NET5Driver directory. For the NET5 service, you must configure Service Type as NET5.

If you are running .NET5 service on Linux, you must change the GCC build version to
gcc49 in the Engine Configuration.

If your system does not support globalization and you get the following error:

Couldn't find a valid ICU package installed on the system,

add the following environment variable before running NET5: DOTNET_SYSTEM_
GLOBALIZATION_INVARIANT=true

.NET Driver Upgrades
The .NET Driver (GridServerNETClient.dll) is strongly named. This means that when a
new major version of the .NET Driver is released in an update, steps might need to be
taken for existing clients to allow the assembly to be loaded. For example, that version
changed from 5.1.x to 6.0; however, it has remained the same for all 6.x versions.

There are two ways of doing this:

• Rebuild the .NET application with the new GridServerNETClient.dll.

TIBCO GridServer® Developer's Guide

34 | TIBCO GridServer® Application Development

or

• Configure the application to allow the new version.

You can do this in various ways, depending on your .NET policy; that is, whether the
assembly is deployed into the GAC or used locally.

An example of how to do this when the GridServerNETClient.dll is used locally is as
follows:

Method 1: Using the Microsoft .NET Framework Configuration tool:
1. Select Start > Control Panel > Administrative Tools > Microsoft .NET Framework

x.y Configuration, where x.y is the version of .NET.

Note that the tool is no longer included with Windows or in the .NET runtime; you
must install the .NET Framework SDK to obtain the file.

2. Select Applications > Add an Application To Configure.

3. If your application is in the list, click it; otherwise, find it using the Other… button.

4. Your application is now in the Applications list. Expand your application, and select
Assembly Dependencies.

5. Drag the GridServerNETClient, noting the version number, to the Configured
Assemblies icon.

6. Click the Configured Assemblies icon. Double-click GridServerNETClient, and
select Binding Policy.

7. Under Requested Version, enter the version you noted in step 5. This is the version
with which you built your application. Under New Version, enter the new version of
the GridServerNETClient.dll that you just installed. This enables your application
to bind with the new version even though you built it with a previous version.

Method 2: Directly creating the file

In Method 1, the .NET tool creates an Application Configuration file in the directory of the
application. However, you can create this file yourself.

Procedure

1. Create a file next to your application executable called my.exe.config, where
my.exe is the name of your executable.

2. Add the following as the file’s content:

TIBCO GridServer® Developer's Guide

35 | TIBCO GridServer® Application Development

<?xml version="1.0"?>
<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="GridServerNETClient"
 publicKeyToken="42129437978483df" />

<bindingRedirect oldVersion="5.0.0.1-5.1.2.30"
 newVersion="6.0.0.1" />

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

Note that the oldVersion is the version you built your application with, and the
newVersion is the version of the new assembly. In this example, oldVersion is a range of
versions. If your applications already have a configuration file, edit the configuration file
appropriately.

If you have a .NET Service implementation that links to the GridServerNETClient.dll, you
do not need to perform either of these steps. An invoke.exe.config file is included in any
.NET upgrade that manages this for you. However, you can rebuild your implementation if
you wish.

Notes for Python Developers
The Python client wraps the 64-bit VC14 version of the C++ Driver on Windows, so the 64-
bit C++ Driver and Python (3.7.0) need to be in the path and the VC14 Runtime needs to be
installed.

TIBCO GridServer® Developer's Guide

36 | Driver Installation

Driver Installation
This section describes how to install the GridServer SDK and Drivers and configure the
Drivers.

The Driver is the component that maintains a connection between the GridServer Manager
and the client application. The GridServer SDK, available for Windows and Linux, provides
the Drivers.

GridServer SDK Installation
This section describes the GridServer SDK installation. To understand your complete
installation procedure, read the SDK instructions and the instructions for each Driver you
plan to install.

To install the GridServer SDK:

1. In the GridServer Administration Tool, go to the top navigation bar, and click the
Downloads icon.

2. Click the SDK for your platform to download it.

3. Unzip or unarchive the SDK.

4. Read the following sections for directions on installing Drivers.

The Java Driver (JDriver)
The Java Driver, also known as JDriver, consists of a JAR file used with your Java
application code.

To use JDriver:

1. Ensure that you installed the Java SE SDK (also commonly referred to as the JDK).
You can download it from Oracle.

2. Define an environment variable JAVA_HOME that contains the location of the JDK.

TIBCO GridServer® Developer's Guide

37 | Driver Installation

Each of the Java examples in the examples directory of the GridServer SDK includes env,
build, and run scripts. The examples demonstrate how to properly set classpaths and
environment variables to run a Java application using JDriver.

To use the Driver, add the DSDriver.jar file and the config directory of the GridServer
SDK to your classpath when running your application. Additionally, a DSDriverNoDeps.jar
is included, which contains only DataSynapse classes and no third-party dependencies,
allowing you to upgrade these dependencies if and when necessary.

The C++ Driver (CPPDriver)
The C++ Driver, also known as CPPDriver, consists of libraries and include files that are
linked with your GridServer application.

To use the C++ Driver:

1. Set the environment variable DSDRIVER_DIR to the path of the config directory in
the SDK.

2. For Windows, add the applicable directory for your compiler to the PATH
environment variable.

3. For UNIX, set the LD_LIBRARY_PATH environment variable to include the applicable
directory in the lib directory.

The Parametric Job Driver (PDriver)
PDriver, or the Parametric Job Driver, is a Driver that can execute command-line programs
as a parallel processing job using the GridServer environment. This enables you to take a
single program, run it on several Engines, and return the results to a central location,
without writing any new code.

The Python Driver (PyDriver)
To use PyDriver:

1. Add the 64-bit C++ Driver directory to the PATH environment variable.

2. Make certain the Python 3.7.0 directory is in the PATH environment variable.

TIBCO GridServer® Developer's Guide

38 | Driver Installation

3. For Windows, make certain the VC14 runtime is installed.

Windows Installation

To install PDriver on Windows systems, run the PDriverInstaller.msi installer in the
pdriver directory of the SDK download. By default, this installs PDriver to the
c:\TIBCO\datasynapse\PDriver directory.

This also installs the VC runtime if it is needed, and associates .PDS files with PDriver.

The installer sets the DS_PDRIVER_CONF environment variable, which specifies the location
of the driver.properties file, to the installation directory. Verify that the
driver.properties file contains the correct Manager and authentication settings so that
the Driver points to your local Manager.

UNIX Installation

To install PDriver on UNIX systems

Procedure

1. Copy the files in the SDK directory to your machine and set your path to include
pdriver/bin.

2. Set the environment variable DSDRIVER_DIR to the path of the config directory in
the SDK.

3. Set the LD_LIBRARY_PATH environment variable to include the cppdriver/lib and
pdriver/lib directories.

Note:
Note that only Pdriver linux64-gcc34 is supported from GridServer version 7.1.0
onwards.

Using PDriver

To run a PDriver script file, invoke the PDriver binary and pass the PDriver script file as the
first argument. For example, on UNIX systems:

pdriver examples/example.pds

Running pdriver or PDriver.exe without a PDS argument provides a usage message.

TIBCO GridServer® Developer's Guide

39 | Driver Installation

The examples directory contains several example PDriver script files.

The .NET Driver
The .NET Driver consists of an assembly that includes classes for creating and managing
Services from .NET. The .NET Driver is available only for Windows.

Perform the following steps to use the .NET Driver:

1. Find the GridServerNETClient.dll in the NETDriver directory and link this
assembly to your application.

2. Set the environment variable DSDRIVER_DIR to the path of the config directory in
the SDK.

.NET5 is also supported and is available for Windows and Linux. To use .NET5:

l Locate the GridServerNET5Client.dll file that is bundled in the SDK's NET5Driver
directory and link this assembly to your application.

The COM Driver
The COM Driver enables an application using the Component Object Model architecture to
access GridServer, enabling distributed parallel execution of the application on a Grid of
Engines. The Driver includes an example, an Option Evaluation spreadsheet in Excel that
uses GridServer for its calculations. The COM Driver is available only for Windows.

Perform the following steps to install the COM Driver:

1. In the COMDriver directory of the SDK, double-click the setup.exe to start the
installer.

2. After the installer welcome screen appears, click Next.

3. Click Browse to select a location for the COM Driver. The default location is
C:\TIBCO\DataSynapse\DSCOMDriver. Click Next.

4. Enter the address of the primary and secondary Directors, in the form
hostname:port. For example, http://server1.example.com:8000. You can proceed
without filling in any values, but you must later specify your Directors by editing the
driver.properties file. Click Next.

5. Click Finish.

TIBCO GridServer® Developer's Guide

40 | Driver Installation

The R Driver
The R Driver enables you to write Services in R, and access them from R or from
applications in other languages such as Java, C++, or .NET. Applications written in R can
also access Services deployed in GridServer.

Prerequisites
• Install and start the TIBCO GridServer® Manager.

• Install and start an Engine (Windows or UNIX).

• Download and extract the TIBCO GridServer® SDK for Windows or UNIX.

• Set the environment variable DSDRIVER_DIR to the path of the config directory in the
SDK.

— For Windows:

set DSDRIVER_DIR=GRIDSERVERSDK-Windows\config

— For UNIX:

export DSDRIVER_DIR=GridServerSDK-Linux/config/

• Install TERR 6.0.

• Set TERR_HOME and R_HOME to the TERR install folder.

— For Windows:

set TERR_HOME=C:\TIBCO\terr60

set R_HOME=C:\TIBCO\terr60

— For UNIX:

export TERR_HOME=/opt/qa/TIBCO/terr60

export R_HOME=/opt/qa/TIBCO/terr60

• Install Ant 1.9 or later and set ANT_HOME to the Ant install folder.

• Add %TERR_HOME%\bin and %ANT_HOME%\bin to the system path.

— For Windows:

set PATH=%PATH%;%TERR_HOME%\bin

set PATH=%PATH%;%ANT_HOME%\bin

TIBCO GridServer® Developer's Guide

41 | Driver Installation

— For UNIX:

export PATH=$TERR_HOME/bin:$PATH

export PATH=$ANT_HOME/bin:$PATH

l For Windows, add the directory cppdriver/bin/vc15 to the PATH environment
variable:

set PATH=%PATH%;GridServerSDK-Windows\cppdriver\bin\vc15\x64

l For UNIX, set the LD_LIBRARY_PATH environment variable to include the applicable
directory in the lib directory.

For example, to use GCC3.4 libraries, set the variable to cppdriver/lib/gcc34:

export LD_LIBRARY_PATH=GridServerSDK-
Linux/cppdriver/lib/linux64/gcc34/

Installation
1. Run the following command to build and upload Grid libraries:

— For Windows, go to GridServerSDK-Windows/tools/bin and run
createTERRGL.bat:

createTERRGL.bat --terrHome=%TERR HOME%--64 --complete

— For UNIX, go to GridServerSDK-Linux/tools/bin and run ./createTERRGL.sh:

./createTERRGL.sh --terrHome=$TERR_HOME --64 --complete

TIBCO GridServer® Developer's Guide

42 | Driver Installation

2. Install rdriver and rlogger:

— For Windows:
TERR.exe CMD INSTALL ".\GridServerSDK-Windows\rdriver\rdriver"

TERR.exe CMD INSTALL ".\GridServerSDK-Windows\rdriver\rlogger"

— For UNIX:
$TERR_HOME/bin/TERR CMD INSTALL $SDK/rdriver/rdriver

$TERR_HOME/bin/TERR CMD INSTALL $SDK/rdriver/rlogger

3. Change directories to

— For Windows:

GridServerSDK-Windows/examples/service/r/pscl

— For UNIX:

GridServerSDK-Linux/examples/service/r/pscl

4. Modify the build.xml to change /bin/Rscript to /bin/TERRscript.

5. Edit the build.properties in the pscl folder. Set the dsos property to Win64, save
the file. Run ant. This builds the Win64 version of the Rextras and Rpscl Grid
Libraries.

6. Repeat the step 5 and set the dsos value to linux64. This builds the Linux64 version
of the Rextras and Rpscl Grid Libraries.

7. Upload the four Grid Libraries, created earlier, (two Rextras and two Rpscl) to the
Manager and deploy them. Deploy the Rextras first, then Rpscl.

8. Change directories to

— For Windows:

GridServerSDK-Windows/examples/service/r/picalculator

— For UNIX:

GridServerSDK-Linux/examples/service/r/picalculator

9. Run ant to build and deploy the Rcalculator Grid Library.

10.Run runTERR.bat. (This is only for Windows.)

11.Edit Service Type registry RPICalculatorExample on the UI and select
functionInterface as UNWRAP_RETURN.

12. For Windows, run runJava.bat and for UNIX, run runJava.sh.

TIBCO GridServer® Developer's Guide

43 | Driver Installation

Driver Configuration
Driver configurations reside in the driver.properties file, which is included in the
GridServer SDK. When you install the Manager, the driver.properties file contains
hostnames for the primary and secondary Director. To change the default values, edit the
driver.properties file. For example, edit this file to add a username and password for
authentication, change the primary and secondary Director, change the Broker Timeout,
and so on.

You can move the driver.properties file to another directory. For Java, add the new
directory to your classpath. For C++, .NET, R, and the UNIX PDriver, the DSDRIVER_DIR
environment variable must be set to the location of this directory. For Windows PDriver,
the DS_PDRIVER_CONF environment variable must be set to the location of this directory.

If you use the following characters in properties in the driver.properties file, precede
each with a backslash: #, !, # =, \, and :

Backslash characters in hostname or directory properties receive special handling on
Windows Drivers. The first backslash, indicating the root directory, translates as the current
Windows drive. Other backslashes are ignored. Forward slashes translate as backslashes.

For example, to set a directory to c:\sdk\log, use /sdk/login the driver.properties file.
To use a UNC path such as \\homer\job1-dir, use //homer/job1-dir in the
driver.properties file.

You can also set Driver properties programmatically with the API. When you do this, the
driver.properties file is unnecessary. You must at least set DSPrimaryDirector,
DSSecondaryDirector (set them both to the same hostname when using a single Director),
DSUsername, and DSPassword (unless using Windows or Kerberos authentication).

If your username or password is non-ASCII, you must express it in Unicode converted
format rather than as the Unicode characters. For example:

DSUsername=\u6B21\u306E\u30E6\u30FC

Configuring Multi-Interfaced Drivers
In some network configurations, on a PC with more than one network interface, a Driver
might default to using the incorrect interface, resulting in the Engines using the incorrect IP
address for the Driver's file server. To configure the Driver to use a different network

TIBCO GridServer® Developer's Guide

44 | Driver Installation

interface, set the DSLocalIPAddress property to the IP number of the correct interface. For
example:

DSLocalIPAddress=192.168.12.1

Driver Cleaner Configuration
When Direct Data Transfer (DDT) is enabled and data is transferred directly to the Engines
from this Driver, DDT files are persisted for a configurable amount of time, and then
deleted by a file cleaner process. The file cleaner deletes files and directories when they
are no longer needed, such as files left over by a Service that did not complete normally.
Files used by a currently executing Service are not deleted regardless of the files’ age or
the Driver’s configuration.

There are four properties in the driver.properties that control the cleaner:

• DSDataTransferFileExpirationHours: The amount of time DDT files persist before
being deleted. By default, this is set to 120 hours.

• DSDataTransferFileExpirationFrequency: The number of times per day that the
Driver checks for and cleans expired DDT files. By default, this is set to 6 times. To
disable the file cleaner, set this to 0.

• DSDataReferenceFileExpirationHours: The amount of time Data Reference files
persist before being deleted. By default, this is set to 120 hours.

• DSDataReferenceFileExpirationFrequency: The number of times per day that the
Driver checks for and cleans expired Data Reference files. By default, this is set to 24
times. To disable the file cleaner, set this to 0.

Multiple Driver Instances
Services can fail if you enable Direct Data Transfer and write a script that instantiates
multiple Drivers from the same driver.properties file with the same port number. The
first Driver opens a web server listening to the defined socket. Subsequent Drivers do not
open another web server as long as the first Service is running, but can continue running
by using the first Service’s server for direct data. However, when the first Service
completes, its server ends, causing subsequent Services to fail.

TIBCO GridServer® Developer's Guide

45 | Driver Installation

You can avoid this problem by writing a shell script to create Services, each with its own
Driver running from its own Java VM. Your script must provide a different port number for
the DSWebserverPort property normally set in the driver.properties file. To write a shell
script for this situation, you can remove the DSWebserverPort property from the
driver.properties file and assign a unique port number for each iteration.

More than one Driver can share the same directory. However, if you do so you must set a
unique DSCacheRootDirectory for each Driver if using GridCache. Also, if using long-
running Services, you must set a unique DSWebServerDir property so that one Driver’s file
cleaner does not clean another session’s initialization data.

TIBCO GridServer® Developer's Guide

46 | Creating Services

Creating Services
This section provides information about how to create Services.

Overview
Services enable remote, parallel execution of code in a way that is scalable, fault-tolerant,
dynamic, and language-independent. You can write Services in a variety of languages and
do not need to compile or link them with DataSynapse libraries. There are client-side APIs
in Java, C++, COM, R, Python, and .NET. A client written in one language can invoke a
Service written in another.

The Service execution model is the same as that of other distributed programming
solutions: method calls on the client are routed over the network, resulting in method calls
on a remote machine, and return values make the reverse trip. We prefer the term request
to call or invocation, partly because the operation can be either synchronous or
asynchronous.

Use Services to implement parallel processing solutions in which a single computation is
split into multiple, independent pieces whose results are combined. To split the
computation, divide the problem, submit the individual requests asynchronously, then
combine the results as they arrive. Services also work well for executing multiple, unrelated
serial computations in parallel.

Steps in Using a Service
Using a Service involves the following steps:

1. Write the Service, or adapt existing implementations. A Service can be virtually
any type of implementation: a library (DLL or .so), a .NET assembly, a Java class, an
R function, a command, script or executable, or even an Excel spreadsheet. You do
not need to link a Service with any DataSynapse libraries, but make sure that the
remotely callable methods of the Service follow conventions that enable cross-
language execution and support stateful Services. For details, see Client Calling
Conventions.

TIBCO GridServer® Developer's Guide

47 | Creating Services

For examples of code using Services, see the GridServer SDK and the GridServer
Service-Oriented Integration Tutorial.

2. Deploy the Service. Make the implementation and other resources required for the
Service accessible from all Engines. Do this through GridServer’s mechanism of
resource deployment.

3. Register the Service Type. Make the Service visible to clients by registering it as a
Service Type in the GridServer Administration Tool.

4. Create a Service Session from a Client. Develop a Client Application that accesses
the registered Service Type and creates a Service Session. Each Service Session has
its own state that is client-specific.

5. Make requests. The Client Application calls the methods of a Service
Implementation either synchronously or asynchronously.

6. Destroying the Service Session. Client Applications destroy Service Sessions when
they are done with them.

This section describes how to develop a Service Implementation that runs on an Engine.
Accessing Services describes how to use this Service Implementation from a Client
Application.

Service Method Compliance
Although Service methods do not link to DataSynapse libraries, they must comply with the
rules in the following sections.

Java/.NET Services
Java/.NET Services must comply with these rules:

• Make the Service class public, and make all methods called by the client public.

• A method can take any number of arguments and can have a return type of void.
The return values of state methods are ignored, and a Service method with a void
return type returns a null.

• If you plan to use the Service cross-language, the arguments and return values must
conform to the rules of interoperability, as described in the section Interoperable
Types for XML Serialization.

TIBCO GridServer® Developer's Guide

48 | Creating Services

• If only a client of the same language uses the Service, you can use any serializable
object for arguments and return values.

• Overloaded methods are prohibited.

• Methods can throw exceptions within a Service, which captures and includes stack
trace data and nested exception data when available.

C++ Services
C++ Services must comply with these rules:

• Export all service methods in the shared library.

• The Service method must either take a char*, or a char** for multiple arguments.
Alternatively, if using the macro it can take a std::string or a vector of
std::strings.

• The method returns data through a char** argument, which is set to the returned
data. Alternatively, if using the macro it returns a std::string.

• Overloaded methods cannot be used.

Command Services
Command Services must comply with these rules:

• The name of the method that is called is appended to the command line.

• Argument values are sent to stdin or an input file. If there is more than one
argument, the data is separated by the argDelimiter, which can be registered on
the Service.

• You can append argument values to the command line instead, if the option is
selected. In this case, the client passes the argument values in as strings.

• If your command spawns subprocesses, it must cancel them if the main command is
canceled.

TIBCO GridServer® Developer's Guide

49 | Creating Services

R Services
R Services must comply with these rules:

• All functions visible in the R runtime environment can be used as a Service.

• These include all functions defined in any .R script files defined in the R/ directory in
the Grid Library and any function exported by third-party libraries.

• Functions exported by libraries can only be accessed when using
functionInterface as NATIVE_R. The functionInterface setting is described in R
Interoperability.

Python Services
Your Python libraries not only need to be added to the grid-library.xml for the Python
bridge but also the PIP install needs to be done in your code. Your Python libraries need to
use the Python Service Type to ensure that the proper Python script is executed.

You must carefully handle type conversion since the Python driver wraps the C++ Driver
and the data is being implicitly converted to a string before being transmitted, and then it
is implicitly converted from the string in the Grid Library unless explicit conversion is used.

Client Calling Conventions
Clients must comply with the following rules when calling methods in a Service.

Java/.NET Client
Java/.NET Clients must comply with the following rules when calling methods in a Service:

• Pass arguments into calls as Object[], which corresponds to the arguments of the
method. Note that you must use exactly the type Object[]. For instance, a set of
strings cannot be passed in as a String[]. The array length must match the number
of arguments.

TIBCO GridServer® Developer's Guide

50 | Creating Services

• For convenience, if the method takes only a single argument, you pass it directly
into the call. It is the equivalent of passing in an Object[1] with the 0th element
being the object.

• If a method takes no arguments, you can call it only with zero-length Object[] or a
null object.

• Autoboxing is used for primitive types. For example, a Service method that returns a
Double on the client.

C++ Client
C++ Clients must comply with the following rules when calling methods in a Service:

• Pass arguments into calls as char**. Alternatively, if using the macro found in
DynamicLibraryFunctions.h, it can be a vector of std::string.

• If a method takes no arguments, you can call it only with a NULL or zero-length
char* or string.

R Client
See R Interoperability for more information.

Python Client
When setting parameters with the Python client, you must initialize the input parameters
using driver.init_input_parameter(n) where n is the number of parameters to initialize.
Each parameter is then set with a call to driver.set_input_parameter(parameter name or
literal). Here is an example from python_client_example.py:

driver.create_services(b'PythonExample')
driver.init_input_parameter(2)
driver.set_input_parameter(b"8.23")
driver.set_input_parameter(b"1.25")
driver.submit(b"add")

TIBCO GridServer® Developer's Guide

51 | Creating Services

In the above example, the literal values are expressed as 'b"8.23"' and 'b"1.25"'. These
are expressions specific to Python. Refer to Python documentation if you have questions
on them.

Registering a Service Type
Service Types are registered in the GridServer Administration Tool. On the primary Director,
go to Services > Services > Service Types. Service Types registered on the Director are
then replicated to Brokers. A list of existing Service Types appears on that page, along with
a line for adding a new Service Type. Enter the Service Type name on the blank line. Select
a Service Implementation, then click Add.

In the window that appears after clicking the Add button, enter any name, property or
option values for the Service Type.

Container Binding
When you register a Service Type, an associated Container Binding is created. The
Container Binding binds the Service implementation (the library or command) to the
Container of the Service (the Engine). The Container Binding describes how to use the
implementation.

The binding contains the following fields:

Field Description

initMethod Called when a Service Session is first used on an Engine. It is called
prior to any requests or updates.

destroyMethod Called when a Service Session is destroyed.

cancelMethod Called when the Service is canceled if KILL_CANCELLED_TASKS is
false for this Service. Use this field to interrupt the request if the
user does not want the Engine to restart on a cancel.

Container Binding Fields

TIBCO GridServer® Developer's Guide

52 | Creating Services

Field Description

serviceMethods Methods that perform a request and return a response. These are
the actual methods that perform the calculations. Use the *
character to denote all methods that are not bound to any other
action.

appendStateMethods Updates state, appending to previous updates.

setStateMethods Updates state, and flushes the list of previous updates.

You must bind all methods used to one of these methods. All methods are optional except
serviceMethods.

The binding also contains the following fields, only applicable to Java, .NET, and R:

Field Description

xmlSerialization Whether to use XML serialization to serialize objects. See Interoperable
Types for XML Serialization for more details.

TargetPackage The package (Java) or namespace (.NET) into which the generated
proxy classes are placed. If not set, the default is the name of the
Service. This is only necessary when using generated proxies. In this
case, if not set, serialization errors might occur.

Note: When you do not set the targetPackage name in the Service
Types page and use a generated proxy, deserialization errors occur.
To remedy this, edit the Service Type on the Service Types page of
the GridServer Administration Tool and assign a value for the
targetPackage property.

Additional Container Binding Fields For Java, .NET, and R

The binding for R contains the functionInterface field, which is described in R
Interoperability.

Python Services need to use the Python Service type. The only other critical step is making
certain to set the pythonModule which is the name of the Python file that contains the
implementation, without the file extension.

TIBCO GridServer® Developer's Guide

53 | Creating Services

.NET AppDomains
Services implemented in .NET have full access to .NET’s AppDomain functionality. You can
manage multiple persistent AppDomains across Service invocations while still having
access to the entire DataSynapse Engine-side API. You can specify an AppDomain as part of
a Grid Library deployment, and the Engine sets up and manages it automatically.

The Provider section in the Service Type Registry for .NET Services supports an
appDomainName value. Set the appDomainName value to specify a unique AppDomain for
Services created from this Service Type. If you do not specify an AppDomain for a Service,
the Service receives a new anonymous AppDomain with a randomized name. The Service
does not run in the Default Domain as it did in previous versions of GridServer. If you
create a Service that uses legacy Default Resources rather than a Grid Library, the Service
runs in an auxiliary AppDomain. All resources-backed Services use this same auxiliary
AppDomain for the lifetime of the Engine.

When you specify an AppDomain as part of a Service Type definition and an Engine creates
the Service for the first time, the Assembly search paths used for the AppDomain depend
on how you deploy resources:

• When a Service uses a Grid Library, the assembly-path path elements for that Grid
Library (and any dependent Grid Libraries) are the Assembly search paths for the
AppDomain.

• When a Service does not use a Grid Library, the default Assembly search path is
used.

The Engine searches the Assembly search path for a valid AppDomain Configuration File,
which has the same name as the AppDomain, plus the .config suffix.

An Engine restarts if it needs to load a Grid Library to run a Service in an AppDomain that
has an Assembly search path that conflicts with the new Grid Library’s search path. This is
different behavior from previous versions of GridServer.

Use the unloadAppDomain property in the Service Type to specify what to do with Grid
Library-backed AppDomains after the Service Sessions using them are destroyed. Select
true to unload AppDomains no longer in use.

.NET Framework Versions
In the Provider section of the Service Type Registry is a frameworkVersion value. Set this
value to the .NET Framework version required by Service. This prevents Services that

TIBCO GridServer® Developer's Guide

54 | Creating Services

specify a Framework version from executing on Engines without that framework version
installed.

To determine which Engines have a version of the Framework installed, go to Grid
Components > Engines > Engine Admin, select the Engine Details action, and look for
the NETFrameWorkVersion and NETFramework Engine Properties. The NETFramework
property is false if a Framework is not installed or if it is an unsupported version (such as
1.0).

.NET5 Core

For .NET5 users, select NET5 from the Service Type drop-down list.

Language Interoperability
Services provide various levels of interoperability among languages. To provide this
interoperability, GridServer can perform conversions on arguments sent to objects. The
following sections describe the conversion of arguments between Service Implementations.

Strings and Byte Arrays
All Services can use byte arrays (byte[]s) interchangeably with Strings as arguments.
Conversions use UTF-8 encoding. For example, if an argument is of type String, and the
client passes in a byte[], the byte[] is UTF-8 encoded and passed into the method as a
String.

Because a C++ Service always returns a string/char*, you must convert the returned type
of an invocation to a String or byte[]. The first argument to the invocation determines
the type of conversion:

• A string first argument returns a string.

• An argument of byte[] returns a byte[].

• If you pass no arguments to the invocation, it returns a byte[].

This is most relevant for a .NET, as string I/O must be ASCII. If you are returning binary
data, make sure that the first argument is a byte[].

A Command Service converts the output data to a String only if the first argument is a
String and the appendArgsToCommandline option is false.

TIBCO GridServer® Developer's Guide

55 | Creating Services

Java and .NET Services do not convert return values if they are Strings or byte[]s.

In the case where a parameterType value is specified, GridServer converts to the specified
value. For example, if parameterType is set as string, GridServer returns strings. If set to
byte[], GridServer converts the return value to byte[]. This applies to both the C++
Service and the Command Service. You can specify the parameterType value for
DynamicLibrary and Command Services on the Service Type Registry page.

Object Conversion from Strings and Byte Arrays
Java and .NET Services automatically attempt to convert String/byte[]s to and from
Objects when necessary. This is useful when calling these Services from a different
language, or when using Service Runners from Batches.

If an argument is not a String or byte[], and it is passed in as such, an attempt is made
to convert it. If the data is a byte[], it is first converted to a String. Then the String is
converted to the Object as follows:

Input Argument String Argument-to-Object Conversion

Primitives The primitive wrapper class’s parse method

Date, Calendar (Java) DateFormat.getDateTimeInstance().parse

DateTime (.NET) DateTime.Parse

org.w3c.dom.Document
(Java)

Uses the parse method from the DocumentBuilder given by
DocumentBuilderFactory.newInstance().newDocumentBuilder()

XmlDocument (.NET) XmlDocument.loadXml

Other If the class has a constructor that takes a single String as an
argument, it uses that constructor.

String Argument to Object Conversion

If the return value is not a String/byte[], and the client is not of the same language as
the Service, the returned value is converted to a String, as follows:

TIBCO GridServer® Developer's Guide

56 | Creating Services

Return Type Returned Object-to-String Conversion

Primitives The object-equivalent toString() method

Date, Calendar (Java) DateFormat.getDateTimeInstance().format

DateTime (.NET) date.ToUniversalTime().ToString("r",
DateTimeFormatInfo.InvariantInfo)

org.w3c.dom.Document
(Java)

The transform method from the Transformer given by
TransformerFactory.newInstance().newTransformer()

XmlDocument (.NET) doc.WriteTo(XmlTextWriter)

Other The toString method

Returned Object to String Conversion

XML Serialization for Java, .NET, and R
XML serialization provides the following features:

• Java, .NET, and R can use rich objects as arguments and return values with each
other.

• A client can use a Service with such objects, without needing the original
implementation classes. This is because client-side proxy classes are generated.

To use XML serialization, enable it on the Service Type. Note that when you enable this, the
other interoperability conversions are no longer used. Additionally, the client must use the
proxy that is generated using the Service Type Registry, which contains all user-defined
types.

You must use Interoperable Types for the arguments and return values on such Services, as
discussed in the following section.

Interoperable Types for XML Serialization
When you use XML Serialization, you must use interoperable, or interop, parameters and
return types, as follows:

TIBCO GridServer® Developer's Guide

57 | Creating Services

Type Description

Primitives bool, byte(Java), sbyte (.NET), byte[], double, float, short, int, long,
string.

Calendar
(Java) or
DateTime
(.NET)

Interoperability between Calendar and DateTime in a mixed Java/.NET setup
does not support time zones. .NET's DateTime structure does not support the
concept of timezone so that information is not maintained. You must send
that information separately. The timezone itself is not preserved across
serialization so all Calendar objects are created with local timezones. .NET has
an additional limitation in that it assumes that all date time data is in its local
timezone. Therefore, serialization of XML not in that local timezone produces
an incorrect time. If you cannot determine the .NET deserializer's local
timezone from Java to set in the Calendar, pass the Calendar data as a String
instead.

Arrays The type can be an array of any interop type.

User-Defined
Types

User-defined types can be used, as long as they follow the standard “bean”
pattern. For both languages, use interoperable types (including other user-
defined types) for all data. For Java, all data must be Java Bean properties;
that is, each must have public get/set methods. For .NET, all data must be
public fields. When generating a proxy for this Service type, user-defined types
result in generated classes. You can have other data and methods in the type,
such as private non-interop fields, but they are ignored and not reflected in
the generated class. Also, user-defined types must be concrete; abstract
classes and interfaces are not allowed.

Data
References
(Java and
.NET)

This type can be used as an argument, return type, or GridCache object, and
is interoperable whether XML Serialization is on or off. When generating a
proxy for a Service type using Data References, it does not include all
methods of the Data References. Normally, the data in a Data Reference is
stored and served in the file server on the GridServer component that created
it.

C++ Data References are not interoperable with Java or .NET.

For more information, see Data References.

Interoperable Types

The following is an example of a Java Interop type:

TIBCO GridServer® Developer's Guide

58 | Creating Services

public class Valuation {
 private java.util.Calendar valuationDate;
 private double value;
 private MarketData data;
 private String[] names;
 public Valuation() {}
 public java.util.Calendar getValuationDate() {
 return valuationDate;
 }
 public void setValuationDate(java.util.Calendar
 valuationDate) {
 this.valuationDate = valuationDate;
 }
 public double getValue() {
 return value;
 }
 public void setValue(double value) {
 this.value = value;
 }
 public String[] getNames() {
 return names;
 }
 public String getNames(int index) {
 return names[index];
 }
 public void setNames(String[] names) {
 this.names = names;
 }
 public void setNames(int index, String name) {
 this.names[index] = name;
 }
}
 public void setValuationDate(java.util.Calendar valuationDate) {
 this.valuationDate = valuationDate;
 }
 public double getValue() {
 return value;
 }
 public void setValue(double value) {
 this.value = value;
 }
}

The following is an example of a .NET Interop type:

[Serializable]
public class Valuation {

TIBCO GridServer® Developer's Guide

59 | Creating Services

public DateTime valuationDate;
public double value;

}

R Interoperability
Before you create an R Service, you must decide which types of clients you intend to
support. There are restrictions to the input and return types depending on the client that is
used.

There are three main issues to address for each client type:

• Input and return value types

• ServiceType definition

• init method interface

Input/return Values and the functionInterface Setting

The functionInterface setting in the Service Type determines the conversion scheme that
is applied to incoming input arguments and the outgoing return value.

There are three possible settings:

• RAW (default) - Input arguments and return values are not converted at all.

• UNWRAP_RETURN - Input arguments are not converted at all. However, if an R function
returns a vector with a single element, the single element in the vector is returned
instead. This is convenient for Java and .NET Drivers and a requirement for C++
Drivers. This setting has no effect if the returned value has more than one value.

• NATIVE_R - Input arguments and return values are native R types. Therefore they are
not subject to any conversion.

Below are examples of how to create R Services depending on the client that has access to
it.

Supporting C++ Clients

The C++ client is the most restrictive client to support.

TIBCO GridServer® Developer's Guide

60 | Creating Services

Input and return type

C++ clients only support strings as input arguments and return values. Therefore, if your
Service is accessed by a C++ client, all R functions exposed in the Service must only take
strings and return a single string value.

ServiceType

Set functionInterface to UNWRAP_RETURN for C++ clients.

init method

If your Service has an init method, it must take at least one argument. For example:

init <- function(unused) {

}

The init method requires at least one argument even when
ServiceFactory::createService(const std::string &serviceName) is used.

The init method can have multiple string arguments and the precise number of parameters
must be provided as initData when creating a Service. Otherwise, Service initialization
fails.

Supporting Java/.NET Clients

Java and .NET clients are less restrictive than the C++ client.

Input and return type

Java and .NET clients support their respective native types, and these types can be used as
input arguments and return values.

ServiceType

functionInterface can be unset, or set to UNWRAP_RETURN depending your preference.

TIBCO GridServer® Developer's Guide

61 | Creating Services

init method

The init method can have multiple arguments and the precise number of parameters must
be provided as initData when creating a Service. Otherwise, Service initialization fails.

Supporting R Clients in R mode

R clients can access Services exposed using the C++ like Service interface and Services
implemented in R and exposed as NATIVE_R.

R clients can call Services with the C++ like interface and Services exposed as NATIVE_R
concurrently. Keep in mind that you cannot expose some functions with the C++ like
interface and others as NATIVE_R in the same Service Type.

Input and return type

R clients can use native R types as arguments and return values. Refer to the list of
supported types below.

ServiceType

functionInterface can be set to NATIVE_R.

init method

The init method can have multiple arguments and the precise number of parameters
must be provided as initData when creating a Service. Otherwise, Service initialization
fails.

Supported R Types

Supported R types are:

• logical

• integer

• real

• raw

• complex

TIBCO GridServer® Developer's Guide

62 | Creating Services

• nil (NULL value)

• string

• vector

vector can contain any combination of the above types and vector itself.

Python Interoperability
You must carefully handle type conversion since the Python Driver wraps the C++ Driver
and the data is being implicitly converted to string before being transmitted, and then it is
implicitly converted from string in the Grid Library unless explicit conversion is used.

Maintaining State
To maintain state on a non-virtualized Service, you typically use a field or set of fields in
your object to maintain that state. (For C++ or Command Services, state is saved in a
slightly different manner.) Because a Service Session can be virtualized on a number of
Engines, adjusting a field’s value using a Service request adjusts only that value on the
Engine that processed that request. Instead, you must declare the appropriate class
method as a stateful method in the Service Type Registry and use the updateState method
to guarantee that all Engines update the state. Register all methods used to update the
state as such on the Service type, either as one of the setStateMethods or
appendStateMethods.

When an Engine processes a Service request, it first processes all update state calls that it
has not yet processed, in the order in which they were called on the Service instance.
These calls are made prior to the execution of the request. The append value determines
whether to make previous update calls. If append is false (a set), all previous update calls
are ignored. If append is true, all calls starting from the last set call are performed.
Typically, then, append calls update a subset of the state, whereas set calls refresh the
entire state. If you intend your Service instance to be a long running state with frequent
updates, use a set call on a regular basis so that Engines just coming online do not need to
perform a long set of updates the first time they work on this Service instance.

In the case of a task retry when appending state, a task is appended until the correct
update state required by the task is reached. Note that this does not occur when using
multiplexed Engines — the task receives the most current state.

TIBCO GridServer® Developer's Guide

63 | Creating Services

Initialization
Use the initMethod, one of the container binding fields defined above, to initialize the
state on a Service that maintains state. You can also use it for other purposes, such as
establishing a database connection. The initMethod is called with the initialization data
the first time an Engine processes a request on a Service instance. It is also called prior to
an updateState call if it has not already been called.

Cancellation
A request can be canceled for a number of reasons. The Admin API or Administration Tool
can directly cancel requests. Canceling a Service Session cancels a request. If the
killCancelledTasks option is true for this Service, the Engine process exits and the Engine
restarts. (By default, the killCancelledTasks option is true, except for .NET Services,
where it is false by default.) However, in many cases, it is not necessary to do so, and you
would prefer to interrupt the calculation so that the Engine becomes immediately
available.

In this case, set the killCancelledTasks option to false, implement a cancelMethod, and
register it on the Service type. This method must interrupt any Service method that is in
process. It is also possible to call cancelMethod after the Service method finishes
processing, so the implementer must take this into account.

Note
Use the cancelMethod to interrupt the task execution only. Do
not use cancelMethod for cleanup of any sort. Use the
destroyMethod for cleanup.

A typical use case is a calculation that periodically checks a cancel flag. The cancel method
would set that flag, interrupting the calculation.

Destruction
Often, a Service needs to perform cleanup operations on the Engine when the instance is
destroyed, such as closing a database connection. If so, implement and register a
destroyMethod on the Service type. This method is called whenever a Service instance is

TIBCO GridServer® Developer's Guide

64 | Creating Services

destroyed. It is called on any active Service Sessions on an Engine whenever an Engine
shuts down.

Service Instance Caching
Engines maintain a cache of all Engine Service Instances that are currently active on that
Engine, set by the Engine Configuration. If an Engine is working on too many Sessions,
Engine Service Instances can get dropped from the cache. When this happens, the
destroyMethod is called, and work that began on that Service is discarded. If an Engine
processes a subsequent request, it restarts working on that Service from scratch.

Invocation Variables
While you can implement a Service that is independent of DataSynapse libraries, on certain
occasions you might need to refer to properties within the environment of the Engine. This
can be accomplished without using additional code with variables that are retrieved in
various ways depending on the type of Service:

• Java System properties

• DynamicLibrary Environment variables, with the same name as Java variables,
except with dots replaced with underscores. You can also use symbolic constants
provided by DynamicLibraryFunctions.h.

• .NET System.AppDomain.CurrentDomain data values; for example:
System.AppDomain.CurrentDomain.GetData("ds.ServiceSessionID")

• Command Environment variables, with the same name as Java variables, except
with the dots replaced with underscores.

The Engine provides the following variables:

Variable Description

ds.ServiceSessionID The unique identifier for the Service Session being invoked.

Engine Variables

TIBCO GridServer® Developer's Guide

65 | Creating Services

Variable Description

ds.ServiceInvocationID A number uniquely identifying the invocation (task) of the
Service instance.

ds.ServiceCheckpointDir The absolute path to the directory that the Service uses for
reading and writing of checkpoint data, if checkpointing is
enabled for the Service.

ds.ServiceInfo If this variable is set in an invocation, the value is displayed in
the Administration Tool on completion of the invocation.

ds.WorkDir The work directory for the Engine. This variable is set to the
directory from which the Service is executed. By default, it is
the absolute path to the Engine installation directory, where
machinename is the name of the machine running the Engine,
and instance is the number of the Engine instance. For
example, a single Engine machine has a machinename-0
directory; one with two Engine instances also has a
machinename-1 directory. Each Engine instance directory has
a log directory containing Engine logs and a tmp directory.

Note that the tmp directory is periodically deleted by the
Engine. The Temp File Time-to-Live (hours) setting in each
Engine Configuration controls the frequency with which the
Engine cleans this directory.

ds.DataDir The data directory for the Engine, which is the absolute path
directory in which DDT (Direct Data Transfer) data is stored.
The cleanup frequency is also controlled by the Engine
Configuration.

ds.GridLibraryPath A list of paths, the contents of which are absolute paths to
the root directories of all the expanded and loaded Grid
Libraries.

In addition, any environment variables available on the Engine are also available in the
Engine Service Instance. Note that any environment variables use absolute paths.

TIBCO GridServer® Developer's Guide

66 | Accessing Services

Accessing Services
This section describes how to access and use Services with GridServer.

Services
You can use the GridServer API in Java, C++, .NET, COM, or Python to develop an
application that accesses Services. The Java, C++, .NET, and COM Drivers contain API
documentation describing how to do this. For example, when you use Java, refer to the
Javadocs found in the GridServer Administration Tool, for the package
com.datasynapse.gridserver.client. Use the Service class to access the Service either
synchronously or asynchronously.

For examples of developing applications using the GridServer APIs, see the GridServer
Service-Oriented Integration Tutorial.

Proxy Generation
Proxy Generation is the automatic generation of a client proxy class that mirrors the
registered Service type.

Think of the Service as a binding to a virtualized Web Service that can process
asynchronous requests in parallel. Additionally, because the proxy does not expose any
DataSynapse classes, it provides a standards-compliant approach to integrating
applications in a vendor non-specific way.

The following rules apply to the generated proxy:

• The use of the proxy class is completely independent of the DataSynapse API. Client
code that uses the proxy class does not need to import or reference any
DataSynapse classes.

• If the Service has an initMethod, the proxy constructor takes any arguments to that
method.

TIBCO GridServer® Developer's Guide

67 | Accessing Services

• All Service methods produce synchronous and asynchronous versions of the method
on the proxy.

• Each update method has a corresponding update method on the proxy.

• The cancelMethod and destroyMethod are called implicitly and thus do not generate
methods on the proxy.

• The targetPackage field identifies the package (in Java) or namespace (in .NET) in
which to place the generated classes. Its default value is the name of the Service.

• If you use xmlSerialization, classes are generated for all non-primitive types, which
must be interop types. If you do not use xmlSerialization, classes can be any
serializable type, they are not generated, and the client must have access to those
same classes (by a JAR/Assembly.)

• When generating proxies, a Java Calendar object is represented by a DateTime
object in a .NET proxy, and vice-versa.

The proxy is generated using the Services > Services > Service Types page. The proxy is
generated on an Engine, so successful proxy generation requires an available idle Engine.

Service Options
Each Service has an Options object that contains configuration parameters and settings.
For example, some commonly used options include PRIORITY and GRID_LIBRARY. To see
the options for the Options object, refer to the API reference documentation.

Service Options can be set in two ways: on the Service Types page, or when you create
the Service Session with the client. If an option is set in the registry, the client cannot
override it. If it is left as [not set] in the registry, and it is not set by the client, Service
Options has the default value.

Service Invocation Context
The ServiceInvocationContext class provides an interface for interacting with an
invocation, such as getting the session and task IDs, while it is running on an Engine. This
is an alternative to using, for example, the system properties when running a Java Service.
Using this class enables immediate updating of invocation information. In contrast, setting
the INVOCATION_INFO system property only updates at the end of the invocation.

TIBCO GridServer® Developer's Guide

68 | Accessing Services

The ServiceInvocationContext object can be reused; the method calls always apply to
the currently executing Service Session and invocation. Make all method calls by a
service, update, or init method; if not, the method call might throw an
IllegalStateException or return invalid data. Note that you cannot call this method from
a different thread; it fails if it is not called from the main thread.

Setting Task Description
An example use case of the ServiceInvocationContext class is how to change the task
info field.

You can use the ServiceInvocationContext.updateInfo() method on the Engine to set
the info, and can be updated a number of times while the task is running to provide real-
time info on the task state.

Shared Services
A Shared Service is a Service instance that multiple Clients executing on different processes
or machines can attach to. State is maintained across the Service instance, and there is
only one instance at any given time of a particular Shared Service running on a Broker. For
example, you might use a Shared Service when GridServer Service invocation requests are
delivered on an Enterprise Service Bus to a middle-tier client. If this middle-tier client is
load-balanced across multiple systems, using a Shared Service lets the Broker reaggregate
these related Service invocations.

Creating a Shared Service
To create a Shared Service, specify the SHARED_SERVICE_NAME option when creating the
Service. Once the Shared Service exists, any client of the same type attempting to create a
Service with the same name and the same SHARED_SERVICE_NAME attaches to the already
existing Service. All clients sharing the instance also share the same Service ID.

Limitations to Shared Services
There are certain limitations to Shared Services, listed below:

TIBCO GridServer® Developer's Guide

69 | Accessing Services

• If there is an init method, it cannot take any arguments.

• Service options are set when the Service Instance is created initially; you cannot
override these Service options on subsequent attaches.

• Clients that share Services must be the same type. For example, a Java Driver
cannot share a Service created with CPPDriver.

Warning
Never use the same Shared Service from within the same process,
or launch multiple Drivers with the same data/log directories.
Shared Services are not designed for such situations and there is no
benefit or reason to do so. Doing so can result in premature task
data deletion and poor performance.

Ending a Shared Service
To cancel an entire Shared Service, use the Administration tool (at Services > Servides >
Service Session Admin) or the Web Service Admin interface. When a client cancels a
Shared Service instance, it cancels only the tasks it submitted; other clients' tasks
continue. The Shared Service becomes inactive when the last client detaches from the
Service. The inactive Service closes after waiting for the amount of time specified by
SHARED_SERVICE_INACTIVITY_KEEP_ALIVE_TIME. If this variable is not set or has a value of
0, the Service closes immediately.

Shared Services and Failover
Do not depend upon Engine state for a Shared Service being maintained through failover.
Engine update information can reside on several Drivers running the Shared Service. If,
after failover, all of these Drivers are not available or not running the Service, Engine state
is indeterminate.

Broker Spanning Services
A normal Service runs on a single Broker and is available to the Engines connected to that
Broker. Using Broker Spanning, a single Service can take advantage of all Engines on an

TIBCO GridServer® Developer's Guide

70 | Accessing Services

entire grid across all of the grid’s Brokers. When Broker Spanning is enabled on a Driver,
the Driver concurrently maintains connections to a user-defined set of Brokers, and tasks
for Services are submitted to all of those Brokers.

Enabling Broker Spanning on a Driver
Broker Spanning is enabled at the Driver level. When enabled, all Services are panned over
all Brokers. To enable Broker Spanning on a Driver, set DSBrokerList to a semicolon-
delimited string of Broker names for all the Brokers you want to span.

For example:

DSBrokerList=London1;London2;Cambridge

Note that you must allow the Driver on all Brokers in the list.

You can also set DSBrokerList to the wildcard character of *. This sets the list to all
Brokers on which the Driver has the Execute Services permission. This includes offline
Brokers.

When Broker Spanning is enabled, the Driver submits an independent Service for each of
the Brokers specified in DSBrokerList. The Services submitted to each of the Brokers are
separate entities, but for the convenience of the user, have the same Service ID. This allows
the user to reference the Services easily across the Brokers when using the Dashboard.
While Service IDs for the Broker Spanning Services are the same across all spanned
Brokers, the Task IDs for the spanned Service are unique across all spanned Brokers and
the Task ID is maintained if the task is moved across spanned Brokers.

Admin API Usage
For the purposes of Broker Spanning, the Admin API provides a way to specify which
Manager the Admin API is acting on. AdminManager.setManager() takes the name of the
Manager it acts on as a string parameter. Admin API components retrieved act only on the
Manager most recently specified by AdminManager.setManager(). To perform Admin API
operations on multiple Managers at the same time, prepare collections of Admin API
component objects retrieved after each AdminManager.setManager() call. For example, if
you want to get all EngineInfos for all spanned Managers, call AdminManager.setManager
() followed by a call to AdminManager.getEngineAdmin() for the Manager last specified by
AdminManager.setManager(). This must be done for each of the Managers. Each of the

TIBCO GridServer® Developer's Guide

71 | Accessing Services

EngineAdmins can now be used to call EngineAdmin.getAllEngineInfo() to retrieve all
the EngineInfos associated with that EngineAdmin’s Manager. See The Admin API for
more information.

Scheduling and Task Expiration
When Broker Spanning is enabled, the Driver continuously attempts to maintain
connections to all Brokers. It assigns tasks to Brokers using a simple algorithm that
attempts to balance the workload. If a connection times out on any Broker, the Driver does
Driver-side expiration and resubmits any outstanding tasks to the remaining Brokers. In the
event of a Broker failure, long-running tasks continue to run on Engines; when they log in
to the Director, they are directed to whichever Broker that has ended up with the expired
task.

After submitting a large number of tasks, some Brokers might contain tasks in the queue to
execute whereas other Brokers might not. When Task Expiration is enabled, tasks expire on
the Broker if they are not scheduled to any Engine after a specified period of time after
submission. Task Expiration alleviates the problem of unbalanced Broker queues. Upon
expiration, tasks are automatically assigned to the next appropriate Broker. Task Expiration
is available for Broker Spanning Services only.

To activate Task Expiration, set the following Service options:

• PENDING_TASK_TIMEOUT — To enable Task Expiration, set this to a value indicating
the number of minutes to wait before reassigning tasks to another Broker.

• TASK_EXPIRATION_START_OFFSET — Optionally enables you to delay the start of Task
Expiration by a specified number of minutes. This offset represents a one-time delay
in starting the timer to check for Task Expiration. For example, if the value of
PENDING_TASK_TIMEOUT is set to 5 and TASK_EXPIRATION_START_OFFSET is set to 60,
the first task to be expired is 65 minutes after the Service was submitted to the
Broker. Additional task expiration would happen every 5 minutes after the first
expiration event. The Broker first waited for TASK_EXPIRATION_START_OFFSET to pass
(60 minutes) before starting the PENDING_TASK_TIMEOUT timer (5 minutes) for a total
of 65 minutes. The default value for TASK_EXPIRATION_START_OFFSET is 0.

You can also tune Task Expiration on the Broker by specifying the following values in the
Administration Tool at Admin > System Config > Manager Configuration > Services:

• Minimum Tasks to Expire — You can require that a certain number of tasks expire
regardless of the Percentage of Tasks to Expire (Given that there are eligible tasks to
expire).

TIBCO GridServer® Developer's Guide

72 | Accessing Services

• Percentage of Tasks To Expire — You can expire only a percentage of tasks of
those eligible for expiration every minute.

• Idle Broker Only Task Expiration Enabled — When enabled (the default), this
setting prevents tasks from expiring if there is not an idle Broker available.

Administration
Broker Spanning Services can be viewed and administered in the GridServer Administration
Tool, at Dashboard > Spanned Services. This page is only viewable on Directors. By
default, this page shows no Services; you must first perform a search using the Search tool.
Administrators can dynamically change Pending Task Timeout and Task Expiration Start
Offset on each Service from this page.

Broker Spanning Service Limitations
Broker Spanning Service limitations are as follows:

• Shared Services is not supported. Shared Service functionality conflicts with Broker
Spanning Services.

• GridCache is not supported. Since a Service’s cache is local to a Broker, the tasks
from other Brokers cannot access each other’s caches.

• Task Dependencies are not supported. Task Dependency is Broker-scope and
therefore cannot work across Brokers.

• Service dependencies are not supported. Service Dependency is Broker-scope and
therefore cannot work across Brokers.

• AutoPack is not supported.

• PDriver is not supported.

• The number of priority levels, which is set at Admin > System Admin > Manager
Configuration > Services > Scheduling, must be the same on all Brokers. If you
change this value on a Broker, you must restart the Broker.

• Engine Timeout Minutes > 0 is not supported. That is, if an Engine logs off while
working on a Task, it does not continue to work on that while attempting to log
back in to a Broker.

TIBCO GridServer® Developer's Guide

73 | Accessing Services

Service Groups
Service Sessions can be collected together in a group to aid in administrative tasks. A
convenience class called ServiceGroup is provided in the API, which enables you to create
a Service Group and later create new Service Sessions within the Service Group. Each new
Service Session created within a Service Group is automatically assigned
Description.SERVICE_GROUP_ID, a generated random unique ID for that group.

To view and maintain Service Groups, select Services > Services > Service Group Admin.
The Service Group Admin page enables you to take actions on an entire group of Services
at once, similar to the way you can act on Services on the Services > Services > Service
Session Admin Page. For example, you could cancel a Service Group, which would cancel
all of the Service Sessions within that Service Group.

Data References
Data References are a convenient programming interface for passing lightweight references
to data across the network. A Grid client or Service can create Data References, pass them
over the network, but leave the data where it created the original Data Reference. If any
Grid client or Grid node actually needs the data, it can de-reference the object and the data
is automatically downloaded from the original source.

You can use this abstraction for generalizing Grid workflows. A Grid client can receive the
results of a particular Service as a reference, and then send another request to the Grid
with that reference. The GridServer Engine that services the request de-references the data
object, loading it from the original Grid node that produced the data. This is equivalent to
passing pointers across the network.

A DataReference is an Object that you can pass interoperably if you use it as an argument,
return type, or a GridCache object. Note that to work interoperably, it must be the actual
object passed; it can’t be part of another object.

To create a DataReference, use a DataReferenceFactory. You cannot create Data
References with a null source. To retrieve the actual data, use the fetch methods. The data
is not cached after a fetch, that is, each fetch retrieves data. After a reference expires, a
fetch throws a FileNotFound exception. A downed Client throws a Connect exception,
although in some cases, refused connections are due to other causes, such as socket
backlog limitations.

TIBCO GridServer® Developer's Guide

74 | Accessing Services

When an object is transmitted over the network, it is serialized on the sending side and
then reconstituted completely in memory on the receiving side. The larger the object, the
more memory it occupies. In situations with large DataReference objects, you must use
DataReferenceOutputStream instead. Streaming the data can reduce the memory that
would otherwise be necessary to reconstitute it in its entirety. As an added benefit,
streaming also saves the time it would have taken to reconstruct the entire object.

C++ Data References
Because there is no inherent serialization support in C++, functionality is added to convert
a Data Reference to a byte[] (and the reverse) so that it can be sent to another client and
used by that client.

Because reflection is not available in C++, object Data References are not available from
the C++ API.

Python Data References
As a result of Python wrapping the C++ Driver, object Data References are not available
from the Python API.

Service Collection
By default, the Driver Service Instance collects results as soon as they are available. In
some cases, you want to collect results at a later time, or never collect them. Service
collection can be defined with the Service Option COLLECTION_TYPE. Possible values for
COLLECTION_TYPE include IMMEDIATELY, LATER, NEVER, and AFTER_SUBMIT.Values used with
COLLECTION_TYPE are as follows:

Value Description

AFTER_SUBMIT Collection does not begin until all tasks have been submitted. See Collect
After Submit for more information. This enables optimal submission without

Service Collection Values

TIBCO GridServer® Developer's Guide

75 | Accessing Services

Value Description

network competition from the collection when the Service follows the
“submit all, collect results” pattern.

IMMEDIATELY Task outputs are collected as soon as they are ready. This is the default.

LATER Task outputs are not collected in this Service. Another Service collects them
later. See Deferred Collection (Collect Later) for more information. This is
not available from a Service proxy.

NEVER Task outputs are not collected. See No Collection (Collect Never) for more
information. This can be used, for example, in the case where a Service
write data directly to a database. This is not available from a Service proxy.

The LATER and NEVER collection modes are not for long-running Services. Use them only for
batch submissions that finish quickly. If you use them for Services with indefinite duration,
there is no way to clean up the inputs.

Collect After Submit
A common Service pattern is to submit all of your requests, then wait for the results. When
using this pattern, the AFTER_SUBMIT collection mode must be used. This enables optimal
submission without network competition from the collection.

When this mode is used, the collection of the results begins when either
Service.waitUntilInactive(long) or Service.destroyWhenInactive() is called.

Also, when using this mode or even when using some hybrid pattern that submits many
requests at a time, Options.INVOCATIONS_PER_MESSAGE must always be set greater than
one, to speed submission time.

Calling Service.execute(String methodname, Object data) does not work with this
collection type; an instance of ServiceException is thrown.

The following is an example of using the AFTER_SUBMIT collection mode:

Properties props = new Properties();
props.setProperty(Options.COLLECTION_TYPE,
 Options.Collection.AFTER_SUBMIT);
props.setProperty(Options.INVOCATIONS_PER_MESSAGE, "20");

TIBCO GridServer® Developer's Guide

76 | Accessing Services

Service s = ServiceFactory.getInstance().createService(serviceType,
null, props, null);
// submit all the work
for (int i = 0; i < numInputs; i++) {
 s.submit("myMethod", getData(i), handler);
 }
s.waitUntilInactive();

Fault Tolerance

In the event of a Driver failure, the Broker automatically cancels the Service after the
interval specified by the Client Timeout setting. It is possible to collect tasks from a failed
client application for Services of type Collection.AFTER_SUBMIT and
Collection.IMMEDIATELY if cancelslation has not yet occurred. To do this, you must collect
and pass in the Driver session ID, in the same fashion as the collection of a
Collection.LATER Service, as described in Deferred Collection (Collect Later).

Note that for fault tolerance to work, the collecting Driver must be the same platform as
the original submitting Driver. That is, if the Service was created with Java Driver, it must
also be collected with Java Driver.

Deferred Collection (Collect Later)
The LATER mode indicates that the client can submit and update data to the Service
Session. It does not collect the results, however, as another instance attaches to the
Service Session to collect the results. None of the results are removed from the Service
Session until it is destroyed by the collector. The LATER mode cannot be used from a
Service proxy.

There are two reasons to use this method:

1. The architecture requires different applications for submission and results
processing.

2. To recover from a failure in the application that embeds the Driver. Since results are
not removed until the Session is destroyed, if the application undergoes a failure it
can recollect the results when it restarts.

Deferred collection Services require that the submitting Driver call destroy on the Service
to indicate that submission is complete. If you are using the submitting Driver in such a
way that it exits after submitting the tasks and calling destroy, do not call System.exit or

TIBCO GridServer® Developer's Guide

77 | Accessing Services

exit from the ServiceLifecycleHandler, as this stops the destroy message from getting
to the Broker. Also note that if you are exiting the submitting Driver immediately, you must
set DirectDataTransfer to false in the driver.properties file.

After creating a Service with the deferred collection, use ServiceFactory.getService() to
retrieve results. After you collect all results, call destroy to indicate to the Broker:

• that the instance has collected all outputs and

• to destroy the Session

You can create multiple collectors, but keep in mind that if a collector calls destroy(), the
Service is destroyed and no other collectors can finish collecting outputs.

The following is an example of how to use the LATER mode with recovery:

// Creates a new Session and submits requests to the Session
// @param serviceType The type
// @param methods The list of methods
// @param args The list of arguments
// @return The id of the Session
// @throws Exception on error.
private String submitService(String serviceType, String methods[],
Object[][] args) throws Exception {
 // create the session as a Collection.LATER type
 Properties props = new Properties();
 props.setProperty(Options.COLLECTION_TYPE,
Options.Collection.LATER);
 Service cs = ServiceFactory.getInstance().createService(serviceType,
 null, props, null);
 // Submit all requests.
 // Note that the handler must be null because this Instance cannot
collect.
 for (int i = 0; i < args.length; i++) {
 cs.submit(methods[i], args[i], null);
 }
 String id = cs.getId();
 // destroy to indicate that submission is complete, and to free
local
 // resources
 cs.destroy();
 // save this ID to a file, for recovery purposes
 saveServiceForRecovery(id);
 return id;
}
// Starts collection of results from a Collection.LATER Session
// @param id The id of the session
// @param handler The invocation handler
// @throws Exception on error.

TIBCO GridServer® Developer's Guide

78 | Accessing Services

private void collectService(final String id, ServiceInvocationHandler
handler) throws Exception {
 // create a handler that removes this Service ID from the list in
the file
 // when it is finished
 ServiceLifecycleHandler slc = new ServiceLifecycleHandler() {
 public void destroyed() {
 removeServiceFromRecovery(id);
 }
 public void destroyed(ServiceException e) {
 removeServiceFromRecovery(id);
 }
 };
 // get an instance of the session, which starts collecting results
 Service cs = ServiceFactory.getInstance().getService(id, handler,
slc);
 // set the Service to be destroyed when it finishes collecting all
output
 cs.destroyWhenInactive();
}
// Runs a Service by first creating a Collection.LATER Session,
submitting all
// requests, then getting the collection instance to collect the
results.
// @param serviceType The type
// @param methods The list of methods
// @param args The list of arguments
// @param handler The invocation handler
// @throws Exception on error.
private void runService(String serviceType, String methods[], Object[][]
args, ServiceInvocationHandler handler) throws Exception{
 String id = submitService(serviceType, methods, args);
 collectService(id, handler);
}
// Recovers from an application failure by starting collection of
Sessions that
// did not complete collection prior to failure
// @param handler The invocation handler
// @throws Exception on error.
//
private void recoverAll(ServiceInvocationHandler handler) throws
Exception {
 String[] recovered = getAllRecoveryServices();
 for (int i = 0; i < recovered.length; i++) {
 collectService(recovered[i], handler);
 }
}

TIBCO GridServer® Developer's Guide

79 | Accessing Services

Deferred Collection Failover

While other Sessions manage failover by resubmitting all outstanding tasks to a Failover
Broker, in this case the submitting Session has already been destroyed, and the Driver
might even be offline. So, to handle failover in this case, you must do the following:

Procedure

1. Every standard Broker must have one Failover Broker associated with it.

2. Configure a shared filesystem that can be accessed from each Broker pair.

3. Go to Admin > System Admin > Manager Configuration > Services, and under the
DataTransfer heading, change the DataTransfer Base Directory to the location of
the shared file system for each pair. Each pair must have its own directory.

4. If the submitting Driver does not use an external web server and it disconnects after
submission, disable DDT. The data is then served by the Broker from the shared file
system.

5. Since the collecting Driver cannot auto-resubmit when the results cannot be
collected from a Daemon that is offline, it’s recommended that DDT is also disabled
on Engines.

6. The submitting and collecting Drivers must be allowed to log in to both Brokers in
the pair.

If a Broker fails while the Service is running, the Failover Broker takes over by recreating
the task queues. If the original Broker comes back up, the Failover relinquishes control and
the original recreates the task queues.

When the collecting Driver starts to collect, if the original is down, it collects results from
the Failover. If that then comes up, it migrates to the original and continues.

No Collection (Collect Never)
The NEVER collection mode enables a Service to submit tasks and not collect them. Such a
Service, for example, writes results to a database. Services created with NEVER collection
can only submit and update. Calls to execute throw an Exception. This collection mode is
not available when using a Service proxy. To create a NEVER collection Service, set the
CollectionType option to NEVER.

Calling destroy releases resources locally on the Driver, and indicates that the Instance is
finished with submission. If the Driver is shut down and times out, the session is

TIBCO GridServer® Developer's Guide

80 | Accessing Services

considered to be done submitting, just as if the Driver called destroy. After the session
finishes submitting due to one of the two prior events, and all tasks complete or fail, the
session automatically closes.

No Collection Failover

There are no special issues with failover on No Collection Services, and as many Brokers as
you want can be used to recover any running Services. You would, however, need to
ensure that any database to which you are sending results has its own failover or
redundancy configuration in case of failure.

Engine Pinning
Engine Pinning enables a Service Session to specify that once an Engine has worked on a
Service Session, it cannot work on any other Service Sessions as long as that session is in
progress. This enables you to quickly replicate 1-to-1 architectures, or if for legacy reasons
or lack of availability to source code to maintain massive amounts of expensive-to-replay
state on an Engine.

Typically, you use Engine Pinning in conjunction with Max Engines to limit one or a set of
Engines to work solely on a Service.

Engine Pinning is available for any type of Service. It is exposed as two Engine-side
methods, pinToService() and unpinFromService(). If an Engine calls pinToService()
while working on a task for a Service, it is marked as pinned to the session when it
completes the task, regardless of whether the task succeeded. From this point, the Engine
takes tasks only from this Service. Once the session finishes, or when the Engine calls
unpinFromService(), the Engine is no longer pinned and can work on other Services.

Engines that are pinned are unpinned automatically in the following circumstances:

• If the Broker loses its connection with the Engine for any reason (such as loss of
heartbeat)

• If the Engine process ends for any reason

• If an Engine performs a soft log off due to Engine Sharing

• If a task fails due to an error in DataSynapse code (such as reading input)

• If the session is destroyed

TIBCO GridServer® Developer's Guide

81 | Accessing Services

Exceptions issued by user code that result in task failure do not cause an Engine to be
unpinned unless the exception specifies Engine restart, in which case the above
requirement applies.

You can configure Engine balancing so pinned Engines are always reported as busy by
Brokers. This prevents the Engine from being shared with other Brokers. This can be
configured at Admin > System Admin > Manager Configuration > Engines and Clients,
under the Engine Balancing heading, with the Treat Pinned Engines as Busy parameter.
This is false by default.

You can implement other pin/unpin strategies—for instance, unpinning after a certain
amount of idle time, or when the Broker queue is empty—as a separate Engine thread that
polls for a given condition and unpins as necessary.

Running a Driver from an Engine Service
It’s possible to run a recursive Service, which is a Service that runs a Driver on the Engine
to call a Service. To do this, you must deploy the Driver packaged in a Grid Library.

To run a Driver from an Engine Service:

1. In the GridServer Administration Tool, go to the top navigation bar, and click the
Downloads icon.

2. Click the SDK for your platform to download it.

3. Package the driver.properties file in a Grid Library. (For more information about
creating Grid Libraries, see Creating Grid Libraries.) In the grid-library.xml, set the
environment variable DSDRIVER_DIR to the value $ds.GridLibraryRoot$. Also, set
the jar-path element to $ds.GridLibraryRoot$. The grid-library.xml must look
similar to the following code:

 <?xml version="1.0" encoding="UTF-8"?>
 <grid-library>
 <grid-library-name>
 driver-properties
 </grid-library-name>
 <grid-library-version>7.1</grid-library-version>
 <environment-variables>
 <property>
 <name>DSDRIVER_DIR</name>
 <value>$ds.GridLibraryRoot$</value>
 </property>

TIBCO GridServer® Developer's Guide

82 | Accessing Services

 </environment-variables>
 <jar-path>
 <pathelement>
 $ds.GridLibraryRoot$
 </pathelement>
 </jar-path>
 </grid-library>

4. Create a Grid Library that contains all of the DLLs or JAR required to run the Driver.
For example, to run CPPDriver for VC14, you would need to create a Grid Library that
contained all of the DLLs from the cppdriver/bin/vc14 directory of the SDK in a
bin/vc14 directory inside the Grid Library. Make this Grid Library dependent on the
driver-properties Grid Library, and set the lib-path to the location of the DLLs.
The grid-library.xml must look similar to the following code:

 <?xml version="1.0" encoding="UTF-8"?>
 <grid-library os="win64">
 <grid-library-name>
 cppdriver-win64-vc14
 </grid-library-name>
 <grid-library-version>7.1</grid-library-version>
 <dependency>
 <grid-library-name>
 driver-properties
 </grid-library-name>
 </dependency>
 <lib-path>
 <pathelement>.\bin\vc14</pathelement>
 </lib-path>
 </grid-library>

5. Upload and deploy both Grid Libraries on the Services > Services > Grid Libraries
page.

TIBCO GridServer® Developer's Guide

83 | PDriver

PDriver
The PDriver, or Parametric Job Driver, can execute command-line programs as a parallel
processing service using the GridServer environment. This driver enables you to run a
single program on several Engines and return the results to a central location, without
writing a program in Java, C++, or .NET.

Overview
The PDriver, or Parametric Job Driver, can execute command-line programs as a parallel
processing service using the GridServer environment. This driver enables you to run a
single program on several Engines and return the results to a central location, without
writing a program in Java, C++, or .NET.

PDriver achieves parallelism by running the same program on Engines several times with
different parameters. A script defines how these parameters change. For example, a
distributed search mechanism using the grep command can search a network-attached file
system, giving each task in the Service a different directory or piece of the file system to
search. Scripts can iteratively change the value of variables that are passed to successive
tasks as parameters, step through a range of numbers, and use each value as a parameter
for each task that is created, or define variables containing lists of parameters.

PDriver uses its scripting language, called PDS, to define Services. You can also use these
scripts to set options for a PDriver Service, such as remote logging and exit-code checking.

Installing PDriver
PDriver comes with the GridServer SDK. For installation details, see The Parametric Job
Driver (PDriver).

To use PDriver with SSL, you must configure your Manager to use SSL for all connections.
For directions, see the TIBCO GridServer® Installation.

TIBCO GridServer® Developer's Guide

84 | PDriver

Resource Deployment
If you plan to run any custom executables using PDriver, deploy them to Engines using
GridServer’s application resource deployment feature, described in the TIBCO GridServer®
Administration. Deploy resources in the deploy/resources/platform/lib directory or in
another directory referenced by the execute command.

PDriver Commands
Use the following commands to run, batch, and cancel PDriver Services on UNIX and
Windows systems.

Command Description

pdriver Starts PDriver, and runs a PDS script.

bsub Starts a one-time Service batch submission.

bcoll Collect a batch job on a one-time basis.

bstatus Lists status on pending batch jobs.

bcancel Cancels a pending batch job.

PDriver Commands

The pdriver Command
Start PDriver with the pdriver command:

pdriver [-bsub | -bcoll batchid | -parallel] [-RA] [-noprompt] [-user
driverusername] [-pass driveruserpassword] [-domain windowsdomain] script

The pdriver command runs the script specified with script. The following table describes
the arguments you can use:

TIBCO GridServer® Developer's Guide

85 | PDriver

Argument Description

bsub and bcoll Use bsub and bcoll for batch submission and collection. Use them to

• Submit long-running Services without tying up the Driver.
Submitting a Service using bsub creates a Batch Execution with
a Batch ID that you can use to run the Service unattended and
collect the outputs later. The Batch Executions created are of
the same type as those from the Batch scheduling facility. For
more information about Batches, see the TIBCO GridServer®
Administration.

• Run multiple tasks and or prejob/postjob tasks that the PDS
script defines.

parallel When you run a single PDS that contains multiple job blocks, this
option runs the blocks in parallel.

RA RA specifies a Run-as job—a job that runs as the current user and with
the current Windows domain. PDriver prompts for a password and
passes it with the user and domain for authentication. If you run
PDriver on a UNIX machine, you must use the domain argument to pass
a domain, as shown below.

For more information about Run-As, including how to configure your
Engines, the TIBCO GridServer® Administration.

noprompt noprompt turns off the password prompt and sends no password when
authenticating for Run-as; this is useful only when you use the RA
argument and Service RA authentication is disabled on the Broker.

user name and pass
password

When you use the RA argument and run PDriver on a Windows machine,
you can use user and pass to pass a Driver user and password (as
defined in the GridServer Administration Tool) to PDriver.

-domain
<windowsdomain>

When you are using the RA argument and running PDriver on a UNIX
machine, you can use the domain argument to specify a win32 domain
for Windows Engines to use when authenticating.

PDriver Command Arguments

TIBCO GridServer® Developer's Guide

86 | PDriver

The bsub Command
You can also run a one-time Service batch submission with the bsub command:

bsub [-name name] [-priority val] [-disc setting] [-mail address] [-
stdin file] [-stdout file] [-stderr file] [-nfs] [-RA] [-domain
windowsdomain] [-noprompt] app [args...]

This submits a single Service, defined by app [args...], to be scheduled and run on the
Grid. The arguments are as follows:

Argument Description

name Name of the Service.

priority Priority of the Service.

disc Indicates a name comparator value discriminator expression that must be
satisfied to assign a Service or task to a node. For example, valid settings
include os==win32 or cpuNo>=4. You can use this switch multiple times. Put
quotes around parameters containing a greater-than or less-than symbol.

mail Email address to send a confirmation message to when the Service is
completed.

stdin File to use as input for the Service. This setting is variable based on the -nfs
switch, described below.

stdout File to use as output when -nfs is enabled.

stderr File to use as error output when -nfs is enabled.

nfs Indicates whether inputs and outputs are available on a shared file system or
whether you must stage them on the Manager. When enabled, -stdin, -
stdout, and -stderr function as absolute locators for these files. When not
enabled, -stdout and -stderr are ignored, and files designated as
jobname.out and jobname.err are placed in the staging directory. When not
enabled, -stdin refers to a file on the Driver file system which is to be staged

bsub Command Arguments

TIBCO GridServer® Developer's Guide

87 | PDriver

Argument Description

on the Manager and retrieved by the Engine performing the Service.

RA Runs the job on Engines as the current desktop user with the current Windows
domain. PDriver first prompts for a password.

domain Lets you specify a Windows Domain for Windows Engines to use when
authenticating. This applies only when running PDriver from a UNIX machine.

noprompt noprompt turns off the password prompt; this is useful only when Service RA
auth is disabled on the Broker.

<app>
[args...]

The application to run, and any optional arguments. The application is a
binary or script on the Engine and found in the Engine’s path. args are any
arguments passed to the application.

When you submit the Service, a batch ID is reported to the console. Use this ID when
collecting outputs (when using the staging directory for input and output rather than NFS
mounts.)

The bcoll Command
To collect batch jobs on a one-time basis, use the bcoll command:

bcoll batchid

This is a convenient utility for retrieving the jobname.out and jobname.err files generated
by bsub with nfs mode off. The argument is the batch ID indicated when bsub is finished
submitting.

To check the status of a Batch Job, you must be running PDriver with a Driver user that has
the appropriate Security Role on the Manager. To do this, create a Driver user mapped to a
role with access to the Batch Admin View feature (such as the default Manage role), and
set DSUsername and DSPassword in the driver.properties file to this username.

TIBCO GridServer® Developer's Guide

88 | PDriver

The bstatus Command
To get status on batch jobs, use the bstatus command:

bstatus [-jobs] [-engines] [-stagedir id] [-canceljob id] [-
batches]

bstatus accepts the following arguments:

Argument Description

jobs Lists all jobs on the Manager. This does not include pending batch jobs. The
output displays name, jobid, tasks, priority, and status for each job. If there
are no jobs, only the four rows of heading lines are returned.

engines Lists all Engines connected to the Manager. The output displays name, ID, OS,
and status of each Engine. If there are no jobs, only the four rows of heading
lines are returned.

stagedir Lists all files living on the staging directory for the given job ID or batchjob ID.

canceljob Cancels a job. This only works for job IDs, not batch IDs, and the Driver must
have appropriate permissions for this operation.

batches Lists all Batch jobs on the Manager and their status. The output displays
name, batchid, and status of each Batch. If there are no batches, no output is
returned.

bstatus Arguments

The bstatus command prints its output interspersed with Manager log output on stderr.
To view only the bstatus output on a UNIX system, you can redirect stderr to null, for
example, with bstatus -jobs 2>/dev/null. Windows users can use the syntax bstatus -
jobs 2>&0.

To check the status of a Batch Job, you must be running PDriver with a Driver user that has
the appropriate Security Role on the Manager. To do this, create a Driver user mapped to a
role with access to the Batch Admin View feature (such as the default Manage role), and
set DSUsername and DSPassword in the driver.properties file to this username.

TIBCO GridServer® Developer's Guide

89 | PDriver

The bcancel Command
To cancel a batch job pending on the Manager, use bcancel:

bcancel batchid

The argument is the batch ID returned by bsub or pdriver in bsub mode.

There is an important distinction between batch IDs and Service IDs. A batch ID refers to a
Service that is pending execution in the batch queue but has not been handed over to the
scheduler. Once that Service is scheduled, a Service with a separate Service ID is launched.
The -canceljob switch in bstatus only works for Service IDs. To remove a pending batch
job, bcancel must be used. This is unavoidable since running Services and pending batch
jobs are separate entities and are tracked differently. Likewise, to perform output
collection and to see the contents of the staging directory, the batch ID must be used. This
is due to the fact that at batch submission, only the batch ID is known since the Service ID
is not generated until run-time. Therefore the batch ID is used as a key for the staging
directory.

About PDS Scripts
PDriver uses scripts written in the PDS syntax to define how a Service operates. Aside from
defining what programs are run during a Service, PDS scripts enable you to define what
happens before and after a task or Service. It also enables you to schedule Services to run
in the future, add conditional structure to a Service, and pass custom parameters to a
Service or task.

The PDriver script (hereafter referred to as PDS) language enables the expression of
distributed computations that are composed of executable programs. It is designed so that
typical computations are easy to describe, while providing for advanced features such as
conditional execution, iteration, scheduling, and discriminators.

This section is a reference for the PDS language. For sample PDriver scripts, see the
examples/pdriver directory of the GridServer SDK.

TIBCO GridServer® Developer's Guide

90 | PDriver

PDS Basics
A single PDS file corresponds to a single GridServer Service. The computation represented
by the Service usually does the following:

1. Split up the input data into several pieces, one for each task.

2. Run the tasks in parallel on the Engines.

3. Collect and combine the results.

If the data is too large to be passed as command-line arguments to the program running
on the Engine, then place it into files. You can locate these files in a shared directory, or
copy them to the Engine and copy back the result files.

The PDS language contains constructs for carrying out various statements, such as running
executables and copying files, at each point in the lifetime of a Service.

A few words about the lexical structure of PDS: whitespace is not significant, but the case
is. All text from the “#” character to the end of the line is a comment and is ignored.

PDS Structure
A PDS file begins with the keyword job (a synonym for Service) and ends with the keyword
end. Supply a name after job to identify the Service. Two types of elements can occur in
between job and end: parameter declarations, which assign values to variables, and blocks,
which describe features or statements of the Service. The options, schedule, and
discriminator blocks describe various facets of the Service, such as when to run it and
which Engines can accept its tasks. The other five blocks describe statements to be
executed at different phases of the Service. All blocks are optional except for the task
block. Multiple job blocks are also defined in a single PDS file, and they run sequentially by
default. You can also run the pdriver command with the -parallel flag to run multiple
jobs in one PDS file in parallel.

TIBCO GridServer® Developer's Guide

91 | PDriver

Structure of a PDS file

Details of the structure of a PDS file:

job jobname
options
 onerror (fail | retry | ignore)
 maxFailedTaskRetries = val (default: 3)
 enableBlacklisting = true|false
 jobPriority = <val> (default: 5)
 autoCancelMode = "always" | "never" | "libloadfailure"
 jobOption "key" "val"
 jobDescription "key" "val"
end
<variable assignment>
schedule

properties
[email = "address"]

end
discriminator

[affects
properties

TIBCO GridServer® Developer's Guide

92 | PDriver

end]
properties

end
prejob

statements
end
pretask

statements
end
task taskcount

statements
end
posttask

statements
end
postjob

statements
end
end

The Depends Statement
Multiple job blocks can be included in a single translation unit (a PDS file and any included
PDS files), and by default, they run sequentially. It is also possible to define jobs that run
based on the completion or failure of other jobs using the depends statement within a job
block. For example, the job containing the following code runs if firstjob succeeds, if
secondjob fails, and following thirdjob in either case:

depends
 firstjob succeeds
 secondjob fails
 thirdjob succeeds or fails
end

The Include Statement
You can include another PDS script within a PDS script by using the include statement. For
example:

TIBCO GridServer® Developer's Guide

93 | PDriver

include "filename"

This includes a PDS script contained within filename. The filename can be declared with
any string type. The filename is relative to the working directory from which you run
PDriver, and can contain a relative or absolute path to a PDS file. The PDS file must contain
a full job, and you can use it only outside the top-level job block. For example, a single
PDS file can contain three include statements, each one including a job block stored in
another file.

Lifecycle Blocks
Lifecycle blocks include statements that execute during the life of a Service. The following
sections describe the lifecycle blocks.

Other blocks include the options block, discriminator block, and schedule block.

prejob

The prejob lifecycle block executes once at the very beginning of the job before any tasks
are submitted to the Manager. These commands execute on the Driver.

pretask

The pretask lifecycle block executes once on every Engine that processes tasks for the job
before any tasks are processed. Use this block for generic initialization such as obtaining
input files common to all tasks.

task

Commands in the task lifecycle block execute once per task. The number of tasks in the
Service is determined by the expression following the task keyword. Array variables
referenced in the task block are indexed by the task ID, as explained in more detail in the
Arrays section, below.

Since the same Engine can take more than one task, the statements in the task block run
many times on the same Engine. The statements in the pretask and posttask blocks run
only once per Engine.

TIBCO GridServer® Developer's Guide

94 | PDriver

The task block is the only required block in a PDS file. Thus a computation that only
required executing a program ten times could be expressed by the PDS program:

job simple
 task 10
 execute "myprog"
 end
end

posttask

The posttask lifecycle block executes once on every Engine at some point after the job
finishes. Place Engine cleanup tasks here. Note that the Engine’s file cleaner automatically
cleans all files in the DSWORKDIR directory. The posttask block typically executes after the
postjob block executes on the Driver side, although it is not guaranteed to execute then.
Execution order of the blocks in a PDS file is typically prejob, pretask, task, postjob, and
posttask, but this is not guaranteed.

postjob

The postjob lifecycle block executes once on the Driver after all tasks finish. Use this block
to obtain outputs from the staging directory, run post-processing scripts, and so on.

The Options Block
Use the options block to set Service options and description information.

Use the following directives for features specific to PDriver jobs:

Keyword Argument Description

onerror ignore, retry or
fail

The default way to handle errors. See
“Builtin Commands” below for details.

maxFailedTaskRetries A numeric
expression

The number of times to resubmit a failed
task.

Options Block Keywords and Arguments

TIBCO GridServer® Developer's Guide

95 | PDriver

Keyword Argument Description

autoCancelMode never, always or
libloadfailure

Whether to cancel the entire job when a
single task fails. The default is
libloadfailure, which cancels the job if a
task fails due to the inability to load a
library on the Engine side. You can set this
standard option with jobOption, but the
autoCancelMode directive enables you to
use mnemonic strings, rather than
numbers, as arguments.

enableBlacklisting An expression
evaluating to true
or false

This argument is the same as
engineBlacklisting for other Services. The
default value is false.

Set standard options (described in the C++ API reference documentation for the Options
object) with the jobOption directive:

jobOption "engineBlacklisting" "true"
jobOption "priority" "8"

Set elements of the job description with the jobDescription directive:

 jobDescription "serviceName" "Distributed Grep"

Each argument to jobOption or jobDescription must be a string or an expression that
evaluates to a string. Literal numbers are not allowed.

The following jobOption directives are common to both PDriver and CPPDriver:

Keyword Argument Description

email string An email address that is notified when a Service
is completed.

priority integer The priority of this Service. The default value is
5.

jobOption Directive Keywords and Arguments

TIBCO GridServer® Developer's Guide

96 | PDriver

Keyword Argument Description

taskMaxTime integer If a running task exceeds this amount of time in
seconds, the task is rescheduled or retried based
on the setting of rescheduleOnTimeout. The task
is rescheduled or retried when the rescheduler
checks for expired tasks after each poll period.
This poll period is 60 seconds by default; it can
be changed at Admin > System Admin >
Manager Configuration > Services, under the
Service Rescheduler heading, with the Poll
Period property. The default value of
taskMaxTime is infinite.

autoCancel 0, 1, or 2 Whether to automatically cancel the Service on a
task failure. Possible values include 0 (AUTO_
CANCEL_NEVER), 1 (AUTO_CANCEL_LIBRARY_LOAD),
or 2 (AUTO_CANCEL_ALWAYS). The default value is
1 (AUTO_CANCEL_LIBRARY_LOAD).

compressData true or
false

Whether to compress the task, input, and output
data. Compression time is minimal and
recommended for data sizes greater than 10K for
each input or output. The default is false.

killCancelledTasks true or
false

Whether to kill and restart an Engine if a task is
canceled. If false, the canceled method is called
rather than killing the Engine, to provide user-
defined interruption of the task and any
necessary cleanup. The default value is true.

Tasks are canceled when canceled in the
Administration Tool, when a Service is canceled,
and when another Engine completes the task
due to redundant rescheduling.

tasksPerMessage integer The maximum number of tasks for each
submission or retrieval message. Regardless of
this number, messages do not exceed 100 KB.

TIBCO GridServer® Developer's Guide

97 | PDriver

Keyword Argument Description

The default is 100.

autoPackNum integer The number of tasks in an auto-packed task. In
this mode, a tasklet processes multiple task
inputs in one Service routine by packing task
inputs into a single task and calling your Service
routine on all inputs. Use this mode when there
are more inputs than Engines, or tasks are of
short duration, to maximize efficient use of
memory and Engine processing power.

If inputs are added outside of
createTaskInputs, the Service checks every
second if there are any unsubmitted tasks and
submits them in a package even if there are
fewer than the number requested, to ensure that
all tasks are submitted.

Task IDs in the Administration Tool are the IDs of
the task packages, so they do not directly
correspond to the task ID from the Driver and
Engine’s point of view.

TaskletException auto-resubmission and task-
level discrimination are not supported for this
mode, and are ignored. Autopack is also not
supported on multiplexed Engines.

The default value is 0.

sharedUnixDir string A directory in which the Driver and UNIX Engines
exchange data. This directory must be an NFS
mounted directory to which all UNIX Engines
working on this job have read/write access. This
overrides use of the file servers on the Driver
and Engines, and is optimally a directory local to
this Driver for minimum network bandwidth.

If set and using Windows Engines, the Windows

TIBCO GridServer® Developer's Guide

98 | PDriver

Keyword Argument Description

shared directory must also be set to the
equivalent of this directory.

sharedWinDir string A directory in which the Driver and Engines
exchange data. This directory must be a
Windows shared directory to which all Windows
Engines working on this job have read/write
access. This overrides use of the file servers on
the Driver and Engines, and is optimally a
directory local to this Driver for minimum
network bandwidth. Typically, the share is
Windows UNC format, such as \\server\data.

If set and using UNIX Engines, the UNIX shared
directory must also be set to the equivalent of
this directory.

checkpoint true or
false

Enables checkpointing for this Service. The
default value is false.

maxEngines integer The maximum number of Engines that can be
working on a task at a time. The default value is
infinite.

statusExpires true or
false

Whether the status of the job in the Services >
Services > Service Session Admin page expires.
If false, the status must be manually removed.
The default value is true.

engineBlacklisting true or
false

Whether to prevent Engines that fail at a task
from taking other tasks from that Service. The
default value is false.

unloadNativeLibrary true or
false

Whether to unload the native library once the
Service finishes. Set the value to false for
sharing global objects in the library. The default
value is true.

TIBCO GridServer® Developer's Guide

99 | PDriver

Keyword Argument Description

deleteInvocationData 1 or 2 When to purge Service invocation data from
display in the Administration Tool. The default
value is 1 (SERVICE_COMPLETED), to purge when
a Service completes. Set to 2 (SERVICE_
REMOVED), to purge when a Service is removed
from the Administration Tool.

maxTaskRetries integer The maximum number of retries allowed for any
task that fails. A retry occurs if the task failed
and serviceFailRetry is true, or if the task
exceed the taskMaxTime and
maxTaskReschedules is false. The default value is
3.

maxTaskReschedules integer The maximum number of redundant reschedules
allowed for any task, if any of the rescheduler
strategies are in effect on the Broker. The default
value is 3.

rescheduleOnTimeout true or
false

How a task is dealt with if it exceeds the
taskMaxTime. If true, the request is rescheduled,
and the current one continues. If false, the
Engine running the task is killed, and the task is
retried. The default is false.

serviceFailRestart true or
false

Whether an Engine restarts itself on a Service
invocation failure. The default is false.

serviceFailRetry true or
false

Whether a Service request is retried on a failure.
If true, it is retried up to the maximum number
of times, as set by maxTaskRetries. The default
is false.

gridLibrary string A Grid Library that is used for this Service. The
string argument specifies the name of the Grid
Library.

TIBCO GridServer® Developer's Guide

100 | PDriver

Keyword Argument Description

gridLibraryVersion string The version of the Grid Library that is used for
this Service. The string argument specifies the
version of the Grid Library.

JobDescriptions

All Services have a JobDescription object created upon instantiation, with default settings.
Predefined properties are stored in the database. You can define any other properties. The
following JobDescriptions properties are set by default:

Property Description

appName The application name.

appDescription The application description.

deptName A department name associated with the Service.

groupName A group name associated with the Service.

individualName An individual’s name associated with the Service.

serviceName The name of the Service. By default, this is the Service ID.

class The name of the class in the Service.

serviceType The type of Service.

JobDescription Properties

The Discriminator Block
This block specifies either a job-level or task-level discriminator for the job. A discriminator
without the affects clause is considered a job-level discriminator. You can declare only
one job-level discriminator. The affects clause specifies conditions that must be met for
the discriminator to be applied to a particular task. You can use multiple discriminator
blocks with affects clauses.

TIBCO GridServer® Developer's Guide

101 | PDriver

Discriminator declarations consist of a property name, a comparator, and a value:

param-name ==|!=|<|>|<=|>= param-value

The property name refers to Engine properties. A predefined set of properties is assigned to
all Engines by default. The administrator can assign additional properties to Engines at
Engine Properties and Engine Property List. To see an Engine’s properties, select Engines >
Engine Admin, and from the Actions list, click Engine Details. Property names are case
sensitive in PDS scripts. For example, the following discriminates against Engines with a
value of less than 350 in the cpuMHz Engine property:

cpuMHz > 350

This example shows the format of the affects clause:

discriminator
 affects
 $DSTASKID #variable
 < #comparator
 10 #numeric or string
end

The variable can be any array type or built-in variable. $DSTASKID is the number of the
current task, starting with zero. The comparator and numeric or string match against the
literal to determine if the discriminator applies against this task. The example above
applies a discriminator to the first ten tasks in a job.

The Schedule Block
Parameters in this block have an effect only if the job is submitted asynchronously with
bsub. You can use these schedule declarations:

relative

type = relative
minuteDelay = val

TIBCO GridServer® Developer's Guide

102 | PDriver

absolute

type = absolute
startTime = "mm/dd/yy hh:mm AM|PM"

With either type, declaring email="string" in the Schedule block sends an email to the
address given in the string when the job is complete.

Variables, Types, and Expressions

Basics
PDS has two primitive types, string, and floating-point number, with the usual notations.
You need not declare variables. Variables can take on values of different types over time.
To dereference a variable, precede its name with a dollar sign. Values are converted to the
appropriate type depending on context. For instance, a string is converted to a number
when it appears in an arithmetic expression. The grammar forbids certain combinations of
expressions to catch common mistakes. Some examples:

a = 5.2
b = "2.5"
c = $a + $b # succeeds, value is 7.7
d = 5.2 + "2.5" # disallowed by the grammar

Scoping
Variables assigned outside of any block are global and visible to all blocks. A variable
assigned within a block is visible only within that block.

Inside a block, you can assign a variable as a global variable, which is visible within other
related blocks. Use the following syntax:

global a = 5.2

The following table describes what blocks are related with respect to scope:

TIBCO GridServer® Developer's Guide

103 | PDriver

Global variable set in Effective in

outside of the lifecycle blocks all blocks

the prejob block all blocks

the pretask block pretask, task and posttask

the task block task and posttask

the posttask and postjob blocks that block

Note that assigning a variable with the same name as a previously defined global variable
does not change the value of the global variable. Instead, it creates a new local variable in
the block, and that local variable has local scope and does not change the value of the
global variable.

Variable Substitution
Variable references are expanded within quoted strings in all contexts. For example, after

a = "foo"
b = "$a fighters"

the value of b is "foo fighters". Use curly braces to separate a variable name from the
adjacent non-whitespace text:

b = "${a}bar" # b contains "foobar"

Inside quotation marks, represent a quote by escaping it with another quotation mark.
Also, inside quotation marks, represent the dollar sign character by escaping it with
another dollar sign. For example:

a = """hello""" # a contains "hello"
b = "$$100" # b contains $100

The backquote can also be used to assign the output of a shell command to a variable. For
example:

TIBCO GridServer® Developer's Guide

104 | PDriver

datetime = ‘date‘

Expressions
PDS supports the usual arithmetic operators (+, -, *, /) with standard precedence. All
arithmetic operations use double-precision floating-point values.

PDS also supports the standard C-style comparison operators (==, !=, >, <, >=, <=). These
operators perform numeric comparison if both arguments are valid numbers; otherwise,
they perform string comparison. They evaluate to zero if the comparison is false and to a
non-zero value if it is true.

PDS does not support the relational operators and, or, and not.

Backquote expressions

A string enclosed in backquotes (‘such as this‘) has variable substitution performed on
it, and the result is evaluated in a subshell. The standard output of the command is
collected, newlines and linefeed characters are replaced by spaces, and trailing whitespace
is removed. The result is the value of the expression.

Arrays
Arrays are fundamental to achieving parametric parallelism in PDS, because an array
variable is implicitly indexed in the task block.

Construction

You can construct arrays of primitive values in several ways. Write a literal value as follows:

a = [1, 2, 3, 4, 5]

You can construct an array with autorange expressions. The expression

begin n end m step k

TIBCO GridServer® Developer's Guide

105 | PDriver

constructs an array starting with n and proceeding in increments of k until m is reached.
More precisely, it constructs

[n, n+k, n+2k, ..., n+rk]

where r is the largest integer such that n+rk<= m.

The expression

begin n count c step k

constructs an array of c elements beginning with n and proceeding in increments of k, that
is,

[n, n+k, n+2k, ..., n+(c-1)k].

For example,

begin 10 end 15 step 2

and

begin 10 count 3 step 2

both construct the array

[10, 12, 14].

The third way to construct an array is to use the split function, which divides a string into
array elements at whitespace. Quoted elements keep embedded whitespace and strip the
quotes upon placement into the array. For example, on UNIX machines:

split(‘ls‘)

returns an array of the files in the current directory.

Indexing

In most contexts, when a variable containing an array is referenced, the first element is
returned. However, in the task block, the element corresponding to the ID of the currently

TIBCO GridServer® Developer's Guide

106 | PDriver

running task is returned. (If the task ID exceeds the array size, the last element of the array
is returned.) This feature makes it easy to write the most common kinds of distributed
computations. For example, you can set up an array of values and run a command on each
one in parallel with the following PDS script:

args = begin 100 end 200 step 5
task sizeof($args)
 execute "doit $args"
end

The $args in the execute statement expands to 100 for the first task, 105 for the second,
and so on.

Another exception to the first element being returned from an array is that inside a for
loop, the variable containing the array returns the value at the current iteration of the loop.
This is redundant with the loop variable. For example, in for i in $args log "$i" log
"$arg" end, $i and $arg are the same every time; the loop variable $i is there only for
convenience.

Explicit array indexing is unsupported: To obtain an array element other than the first, use
one of the following:

• Implicit indexing in the task block

• The for statement

Even within those contexts, assignment to the variable holding the array changes the entire
variable value, not the current element.

Other Features

An array that includes both string and numeric values is legal. Arrays of arrays are not
allowed.

You can use the sizeof function to determine the number of elements in an array, as
shown in the argument to the task block in the above example.

You can use the for statement to iterate over the elements of an array. See The For and
Foreach Statement, for more information.

Built-in Variables
In addition to user-defined parameters, you can use the following built-in variables:

TIBCO GridServer® Developer's Guide

107 | PDriver

Variable Description

DSTASKID ID of the current task (meaningless if not in task block)

DSJOBID ID of the current job. If submitted using the bsub switch, this indicates the
batch ID.

DSWORKDIR The temporary directory for job files. This is an Engine-side variable. This
directory is in the Engine installation directory, typically
./work/machinename-i/tmp/session-ID, where machinename is the
name of the Engine host; i is the instance, starting with 0; and session-ID is
the Service Session ID for the PDriver Job.

The Engine periodically deletes the tmp directory. To set the frequency of
deletion, set Temp File Time-to-Live (hours) in each Engine
Configuration.

DSENGINEHOME The Engine home. This is an Engine-side variable.

DSSTAGEDIR The Alias for the Manager staging directory. You can use this as a source or
destination directory for the copy command. Files in this directory are
automatically deleted periodically.

DSOS The OS of the current system (for example, “linux”, “win32”, “plinux”)

Built-in Variables

It is important to put any temporary files in the DSWORKDIR directory. If you put them
elsewhere and a task is interrupted, the files stay on the computer and are never
automatically removed.

You can use automatic variables such as $1, $2, $3, and so on to reference arguments to
the PDriver command that follow the script file name. You can use the automatic variable
$* to reference these automatic variables collectively as a string. To create an array of all
command-line arguments, use split($*).

Arguments to the PDriver command that follow the script file name be referenced with the
automatic variables $1, $2, $3 ... These variables also be referenced collectively as a
string using the automatic variable $*. To create an array of all command-line arguments,
use split($*).

$? contains the execution status of the last execute command.

TIBCO GridServer® Developer's Guide

108 | PDriver

Statements

Built-in Commands
You can use the following built-in commands inside any lifecycle block (with the exception
of onerror and throw). These commands are operating-system independent.

Command Description

mkdir "dir-name" Creates a directory.

copy "src-file" "dest-
file"

Copies a file. Typically, the prejob block is used to copy input files
from the Driver machine to the staging directory on the Manager,
which can be referenced as $DSSTAGEDIR. In the task or pretask
block, the input file is copied from the staging directory to the
Engine’s local filesystem. Output files are copied in the reverse
direction.

rmdir "dir-name" Removes a directory. The directory must be empty.

delete "file" Deletes a file. Supports the * wildcard.

log "log-message" Writes a message to the Driver log (in prejob or postjob lifecycle
blocks) or the Engine log (in pretask, task, or posttask lifecycle
blocks).

execute
[stdin="stdin=file"]
[stdout="stdout-file"]
[stderr="stderr-file"]
"command-to-execute"

Executes a command on the local machine using the shell
specified with the shell command. A subshell is spawned for the
command unless specified otherwise with the shell command.
The subshell has the path available on the Engine (as set in the
Library Path property of the Engine Configuration) or Driver.

Before running custom executables, deploy those executables to
Engines using GridServer’s application resource deployment
feature. See Resource Deployment for more details.

Built-in Commands

TIBCO GridServer® Developer's Guide

109 | PDriver

Command Description

shell "shell-type" Specifies the shell to spawn for commands run by the execute
command. The defaults are /bin/bash for Linux and cmd.exe for
Windows. If you set this to none, no shell is spawned.

env (variable) Returns the value of the specified environment variable. If the
variable is a string literal, enclose it in quotes. Returns an empty
string for nonexistent variables.

onerror
<ignore|retry|fail>

Indicates what happens when an execute command returns with
a nonzero exit code. ignore takes no action; retry reschedules
the task on another Engine; and fail returns an exception back
to the Driver. The default is fail. When used with retry, you can
use onerror only within the job or task blocks.

throw "message" Causes the task to fail and throws an exception. The message is
displayed on the Driver and written into the Driver log. This
cannot be used in the posttask lifecycle block.

Enclose arguments to all statements in quotes, except for arguments to onerror. If you
include a linebreak in a quoted argument, escape it with a backslash.

The mkdir, copy, delete, and rmdir commands are not dependent on the operating
system. Pathnames automatically translate to work on the appropriate platform. For
example, mkdir "sample/log1" creates sample\log1 on Windows systems.

The If Statement
The syntax of the if statement is

if expression comparisonOperator expression then
statements

end

PDS also supports elsif and else clauses. You can use the if statement inside a lifecycle
block (prejob, pretask, task, posttask, postjob) to conditionally execute statements. One
typical use is to execute different commands depending on the Engine’s operating system:

TIBCO GridServer® Developer's Guide

110 | PDriver

if $DSOS == "win32" then
 cmd = "dir"
else
 cmd = "ls"
end
execute "$cmd"

An if statement can also appear at the top level of a PDS script, to include or exclude
global assignments or entire blocks. An example is

if $1 == "alwaysCancel" then
 options
 autoCancelMode "always"
 end
end

The if statement is not legal in the options, schedule, or discriminator blocks.

The For and Foreach Statement
Explicit looping over an array is not often needed. If you need explicit looping, use the for
statement:

for variable in expression
statements

end

The expression must evaluate to an array. The variable takes on successive elements of the
array on each iteration of the loop. Assignment to the loop variable is legal but has an
effect only for the remainder of that iteration. It does not alter the array.

Inside a for loop, the variable containing the array returns the value at the current
iteration of the loop. This is redundant with the loop variable. For example, in

for i in $args log "$i" log "$args" end

the $i and $args are both equal for each iteration. The loop variable $i is there only for
convenience.

The foreach statement lets you implicitly index an array, without the loop variable:

TIBCO GridServer® Developer's Guide

111 | PDriver

foreach expression
statements

end

Shell Directives in Heterogeneous Environments
It is the PDS script writer’s responsibility to declare a shell directive that is appropriate to
the executing node’s platform. For jobs in heterogeneous environments, you can specify
different directives within an if-then-else block. For example,

if $DSOS == "win32" then shell "cmd.exe" else shell "/bin/bash" end

You can specify the argument “none”, in which case all following execute tasks spawn
directly and not in a subshell.

It is also possible to use the bash shell with Windows by utilizing Cygwin, the UNIX
environment for Windows.

To use bash and Cygwin on Windows machines:

1. Install Cygwin on another machine. You can get it at www.cygwin.com.

2. From the Cygwin installation, copy bash.exe and cygwin1.dll into the Engine’s
path. This is either in a directory within the %PATH% on the Engine or the replication
directory <engine_home>/resources/win32/bin. Also, copy any other Cygwin
executables you use from the bash shell.

3. If bash is already in the path for the Engine, use the following syntax in the PDS
script:

task
 shell "bash.exe"
 ...
end

or

task
 shell "none"
 execute stdout="outfile"

"<optional_path>/bash.exe -c ""mycommand.exe"""
end

TIBCO GridServer® Developer's Guide

112 | PDriver

If the path to bash is not set, use the following syntax:

task
 shell "c:\cygwin\bin\bash"
 execute stdout="outfile" "echo hello"
end

The above example also requires that you copy the Cygwin echo.exe to the Engine.

Example
pi.pds performs a distributed Monte Carlo calculation of the value of pi. A picalc
command-line executable resides in the bin/platform directory of the distribution. The
executable is also available on all Engines in your GridServer installation. Running PDriver
distributes calculation of Pi across the network, using autoranged parameters to generate
differing seed values for the program’s pseudorandom number generator. The postjob
block runs a script that derives an average of all the values returned.

TIBCO GridServer® Developer's Guide

113 | Creating Grid Libraries

Creating Grid Libraries
This section provides information about creating Grid Libraries, which are versioned sets of
resources that might be used by multiple Services.

Overview
A Grid Library provides a solution to the problem of managing versioned sets of resources
that might be used by multiple Services. A Grid Library is a set of resources and properties
necessary to run a Grid Service, along with configuration information that describes to the
GridServer environment how those resources are to be used. For example, a Grid Library
can contain JARs, native libraries, configuration files, environment variables, hooks, and
other resources.

Grid Libraries are identified by name and version. All Grid Libraries must have a name and
typically have a version. The version is used to detect conflicts between a required library
and a library that has already been loaded; it also provides for automatic selection of the
latest version of a library. A GridServer Service can specify that it is implemented by a
particular Grid Library by specifying the gridLibrary and gridLibraryVersion Service
Options or Service Type Registry Options.

Grid Libraries can specify that they depend on other Grid Libraries; like the Service Option,
such dependencies can be specified by the name, and optionally the version. Also, nearly
all aspects of a Grid Library can be specified to be valid only for a specific operating
system. This means that the same Grid Library can specify distinct paths and properties for
Windows and Linux, but only the appropriate set of package options is applied at run-time.

Grid Library Format
The Grid Library can be an archive file in ZIP (.zip) or gzipped TAR format (.tgz or
.tar.gz), with a grid-library.xml file in the root. It might also contain any number of
directories that contain resources. Although the filename has no inherent meaning, the
following format is strongly encouraged:

TIBCO GridServer® Developer's Guide

114 | Creating Grid Libraries

library_name-library_version.[zip|tar.gz|tgz]

If a Grid Library has the OS attribute set, the following format must be used:

library_name-library_version-os.[zip|tar.gz|tgz]

To reduce Engine restarts when you deploy a new version, always include the version in
the filename, as overwriting existing libraries requires a restart, whereas a new library does
not.

The directory structure is completely up to you since the configuration file is used to
specify where resources are found within the Grid Library.

The configuration file must be a well-formed XML file named grid-library.xml, and be in
the root of the Grid Library.

The GridServer SDKs include a grid-library.dtd file that can be used to validate the XML
file. They also include an example Apache Ant build.xml file that can be used to validate
and build Grid Libraries. This DTD can also be found in The grid-library.dtd.

Following is a table that specifies all elements and attributes of the grid-library.dtd file.
It uses the XML schema notation for elements and attributes, such as:

[no tag] (Required)

? (Optional)

* (Optional and Repeatable)

Element Description Elements and
Attributes

grid-library The root element. Note that attributes affect
deployment; Engines only download Grid
Libraries whose attributes match their own
properties and ignore those with non-matching
attributes. If no attributes are specified in this
element for a particular Grid Library, all Engines
download this Grid Library.

ELEMENTS

• grid-library-
name

• grid-library-
version?

• arguments?

• dependency*

Grid Library DTD Elements and Attributes

TIBCO GridServer® Developer's Guide

115 | Creating Grid Libraries

Element Description Elements and
Attributes

• conflict*

• jar-path*

• lib-path*

• assembly-path*

• command-path*

• hooks-path*

• environment-
variables*

• java-system-
properties*

ATTRIBUTES

• jre

• bridge?

• super?

• os?

• compiler?

grid-library-
name

The library name. All libraries must be named.

grid-library-
version

The version. If not specified, 0 is implied. If in
comparable format as defined below, it can be
used to determine the latest version.

dependency A library dependency. If the version is not
specified, the latest version is chosen at
runtime.

ELEMENTS

• grid-library-
name*

• grid-library-
version?

TIBCO GridServer® Developer's Guide

116 | Creating Grid Libraries

Element Description Elements and
Attributes

ELEMENTS

• os?

• compiler?

conflict Indicates that this library conflicts with the
given library. If this Grid Library is NOT a
dependency, and grid-library-name="*", then
it indicates that this Grid Library conflicts with
all other Grid Libraries (aside from its
dependencies).

ELEMENTS

• grid-library-
name*

pathelement An element containing a relative path, typically
set to a directory. This element must be in the
proper format for the OS.

jar-path The JAR path. If specified, all JARs and classes
in the path are loaded.

ELEMENTS

• pathelement*

ATTRIBUTES

• os?

• compiler?

lib-path The native library search path. ELEMENTS

• pathelement*

ATTRIBUTES

• os?

• compiler?

assembly-path The .NET assembly search path. Absolute
assembly paths, mapped drives, and UNC paths
do not work.

ELEMENTS

• pathelement*

• os?

TIBCO GridServer® Developer's Guide

117 | Creating Grid Libraries

Element Description Elements and
Attributes

• compiler?

command-path The path in which the Engine searches for
Command Service executables.

ELEMENTS

• pathelement*

ATTRIBUTES

• os?

• compiler?

hooks-path Path to Engine Hook XML files. Engine Hooks are
initialized at the time the containing Grid Library
is loaded.

ELEMENTS

• pathelement*

ATTRIBUTES

• os?

• compiler?

name The name of a property

value The value of a property

property A name/value pair, used by environment
variables and Java System properties.

ELEMENTS

• name, value

environment-
variables

Environment variables to set. ELEMENTS

• property

ATTRIBUTES

• os?

• compiler?

java-system-
properties

Java system properties, which are set
immediately prior to executing a task using this
library.

ELEMENTS

• property

TIBCO GridServer® Developer's Guide

118 | Creating Grid Libraries

Element Description Elements and
Attributes

ATTRIBUTES

• os?

• compiler?

The following is a list of attributes used above. Valid values can be found in the About
page in the Administration Tool:

Attribute Description

os The os attribute specifies that it is only applied to this OS. If the attribute is not
this operating system (OS), the containing element and its children and content
are ignored.

compiler If the attribute is not this compiler, the containing element and its children and
content are ignored.

super If set to true, the Grid Library is a Super Grid Library, meaning, it is always
loaded when the Engine starts up. See Super Grid Libraries for more
information.

Grid Library Attributes

Variable Substitution
You can use placeholder variables in a grid-library.xml file, which are then substituted
with their value as defined in a properties file or in an OS environment variable. This
enables quick changes in properties in the grid-library.xml file without redeploying the
Grid Library.

If the grid-library.xml file contains a property with a value contained with the $
character, such as $mydir$, it is substituted with the value in one of three places, in this
order:

• A default properties file in your Grid Library named grid-library.properties. This
can provide baseline values for your variables.

TIBCO GridServer® Developer's Guide

119 | Creating Grid Libraries

• An external properties file, named with the same name as the Grid Library archive,
with the extension .properties, in the Grid Library deployment directory. Values in
an external properties file replace those defined in the default properties file within
the Grid Library.

• A defined OS environment variable. This value replaces the value defined in either
properties file.

Note
If the substitution is not found in the file, the empty string, "", is
substituted.

Substitutions are allowed anywhere in a string within the content of property value
elements and pathelements. Multiple substitutions per string are allowed. $ characters can
be treated as literals by escaping them with another $ character. Windows paths that are
specified in the [library].properties file must escape the \ character with another \.

The implicit property ds.GridLibraryRoot can be used in the grid-library.xml file. This
is useful for including a driver.properties file in a Grid Library, and setting the DSDRIVER_
DIR to the location of the file in the library. This can be done in a C++ or .NET Grid Library
as follows:

<environment-variables>
<property >
<name>DSDRIVER_DIR</name>
<value>$ds.GridLibraryRoot$</value>
</property>
</environment-variables>

The following would be done in a Java Grid Library:

<jar-path>
<pathelement>$ds.GridLibraryRoot$</pathelement>

</jar-path>

Versioning
Versioning provides the following functionality:

TIBCO GridServer® Developer's Guide

120 | Creating Grid Libraries

• It enables deployment of new versions of libraries and deletion of old versions
without interrupting currently executing Service Sessions.

• It provides for specifying conflicts, or libraries that cannot coexist with each other.

• It enables a Service Session or dependency to specify the use of the latest version of
a Grid Library.

• It enables easy management of multiple applications needing different versions of
the same set of libraries.

To use versioning, you must specify the Grid Library version in the configuration file. An
Engine can load only one version of the library with the same name at any time. If the
version is not specified, it is implied to be 0.

The version must be a String that follows the proper comparable version format. It can also
be used to determine the latest version of the library, for automatic loading. This format is

[n1].[n2].[n3]...

where nx is an integer, and there might be one or more version points.

For instance,

4.0.1.1, 4.1, 3

are in the proper comparable version format.

The integer at each version point is evaluated starting at the first point, and continues until
a version point is greater than the other. If a version point does not exist for one, it is
implied as zero.

For instance

4.0.0.1 > 4.0
4.0.0.5 < 4.0.1.1

To specify that a dependency or Service use a particular version of a Grid Library, the
version field is set to that value. To specify that it uses the latest version, the field is left
blank.

If a version is specified it must match exactly. That is, 3.0.0 is not the same as 3; if the
library’s version is 3.0.0 and the Service specifies 3, the Service does not find that library
and subsequently fails.

TIBCO GridServer® Developer's Guide

121 | Creating Grid Libraries

If a version is specified but not in this format, and there are multiple versions of a library,
the “latest version” is undefined. Thus, automatic selection of the latest version is only
possible when all Grid Libraries with the specified name provide a version in the proper
format.

By default, if a Service was set to use the latest version of a Grid Library, all Engines work
on the latest version at the time the Service was started, regardless of whether a newer
library has been deployed. This can be changed by setting the GRID_LIBRARY_STRICT_
VERSIONING Driver option to false. When false, if a newer version of the library is deployed
while the Service is running, Engines that have not yet worked on the Service use the
newer version, while Engines that worked on it prior to deployment continue to use the
older version.

Dependencies
Grid Libraries might specify dependencies on other Grid Libraries. A dependency
specification resolves to a particular Grid Library using two values:

• grid-library-name The name of the Grid Library, as specified in the dependency’s
XML

• grid-library-version The version of the Grid Library, as specified in the
dependency’s XML. OS compatibility is determined by checking the os and compiler
tags for the top-level element in the dependent Grid Library. If not specified, it uses
the latest version supported by the OS.

Note that if a dependency resolves to more than one Grid Library, the dependency used is
undefined.

Two dependent libraries conflict if they have the same library name, but different versions.

It is possible to specify an OS attribute to <dependency> element for ignoring Grid Libraries
that do not apply to an Engine’s particular operating system. For example, if a Grid Library
contains native libraries for multiple platforms, you can specify OS-specific dependencies
on the bridge Grid Libraries such that the Engine only loads the bridge corresponding to its
operating system.

Note that if a dependency is missing, the Engine logs a warning. Rather than the current
task failing, the Engine attempts to continue loading all necessary libraries to run the task.

TIBCO GridServer® Developer's Guide

122 | Creating Grid Libraries

Conflicts
A conflict between two Grid Libraries means that these libraries cannot be loaded
concurrently. When there is a conflict between a loaded Grid Library and a Grid Library
required by a Service, the Engine must restart to unload the current libraries and load the
requested library.

The following circumstances result in a conflict:

• Version Conflict The most common conflict arises via versioning, and typically
when upgrading versions or using more than one version of the same library
concurrently. This conflict arises when a Grid Library with the same grid-library-
name as the requested Grid Library, but a different version, is loaded.

• Explicit Conflict There can be situations in which different Grid Libraries can
conflict with each other due to conflicting native libraries, different versions of Java
classes, and so on. Because the Engine cannot determine these implicitly, the
conflict element can be used to specify Grid Libraries that are known to conflict
with this Grid Library.

Additionally, the value of the grid-library-name can be set to "*". This means that
this Grid Library can conflict with all other Grid Libraries (aside from its
dependencies), and it is guaranteed that no other Grid Libraries load concurrently
with this Grid Library. Note that this is only allowed if the Grid Library is not a
dependency; if the "*" is used as a conflict in a Grid Library that is a dependency, a
verification error occurs.

• Dynamic Version Conflict A Grid Library conflict occurs if dynamic versioning is
used, and the latest version of a Grid Library or Grid Library dependency has
changed due to an addition or removal of a dependency since the Grid Library has
been loaded.

• Variable Substitution Conflict A Grid Library conflict occurs if its variable
substitution file has changed since it has been loaded.

Grid Library Loading
When a Service Session is set to use a Grid Library, that library is loaded. Loading is the
process of setting up all resources in the Grid Library for use by the Service. A library is
loaded only once per Engine session.

TIBCO GridServer® Developer's Guide

123 | Creating Grid Libraries

First, the library loads itself, and then it loads all dependencies. The library loader uses the
depth-first, or preorder traversal algorithm when loading libraries. When there are a
number of dependencies in a Grid Library, the order in the XML is considered left-to-right
with respect to the algorithm. The library search order for lib-path and jar-path is
determined by their respective lists. Certain aspects of a load might require a restart, and
possibly re-initialization of the state. The following steps are performed by a load of the
root library and all dependencies:

1. Checks for conflicts with currently loaded Grid Libraries. If so, it restarts with the
requested Grid Library and clears out the current state of any loaded libraries.

2. If new lib-paths have been added for its OS, they append to the current list of lib-
paths. The state of loaded libraries includes all libraries already loaded, plus the
requested library. Note that specifying a JRE dependency has this effect.

3. If new jar-paths have been added for its OS, the jars and classes are added to the
classloader.

4. If new assembly-paths have been added, it adds them to the .NET search path.

5. If new command-paths have been added for its OS, it is added to the search path for
Command tasks.

6. If new hooks-paths have been added, any hooks in the path are initialized.

7. If the default is current and a Grid Library is requested, the Engine restarts.

State Preservation
Under most cases, when an Engine shuts down, it preserves the current state of which Grid
Libraries it has loaded. When it starts back up, it loads all Grid Libraries that were loaded
when it shut down. As Grid Libraries are loaded, the pathelements they contain are added
to a ‘master’ list of paths for that type of pathelement. For example, if a Grid Library
contains a lib-path specification, that lib-path is appended to the list of lib-path values
obtained from already-loaded Grid Libraries.

Note that this means that it is up to the creator of the Grid Libraries deployed on the grid
to ensure that the ordering of library paths does not lead to loading the wrong library. For
example, if two different Grid Libraries each provide DLLs in their lib-paths that share the
same name, because of OS-specific library load conventions, the one used is the first one in
the aggregate lib-path from across all loaded Grid Libraries. Likewise for Java classes,
when more than one copy of the same class is in the classloader, it is undefined which

TIBCO GridServer® Developer's Guide

124 | Creating Grid Libraries

class loads. Therefore it is important to either subdivide Grid Libraries appropriately when
such conflicts arise or to use the conflict element to explicitly state conflicts.

Grid Library and RunAs State information persists on normal Engine shutdowns, which
includes task failures aside from crashes. If the Engine does not shut down normally, such
as if it crashes, or if the Daemon kills the process due to it exceeding the shutdown
timeout, the state is reset.

If an Engine shuts down due to a conflict, it clears the current state and sets up for only
the requested Grid Library upon restart. This is referred to as preloading. If an Engine shuts
down due to internal library inconsistencies or a crash, the state is not saved. State is also
cleared on all instances when a Daemon is disabled and reenabled.

Task Reservation
If an Engine requires a restart to load a Grid Library, the task is reserved on the Broker for
that Engine. The Engine is instructed to log back into the same Broker, and takes that task
upon login. The timeout for this is configurable at Admin > System Admin > Manager
Configuration > Services.

Environment Variables and System Properties
All Environment variables and Java System properties for a Grid Library and all
dependencies are set each time a task is taken from a particular Service that specified that
Grid Library. (They are not cleared after the task is finished.) Environment variables are set
via JNI so that they can be used by native libraries or .NET assemblies, and they are also
passed into Command Services. Note that environment variables such as PATH and LD_
LIBRARY_PATH must not be changed through this mechanism. Rather, library-path and
command-path are reserved for manipulating these variables.

Using Grid Libraries from a Service
Services can specify a Grid Library to use by setting the GRID_LIBRARY and optionally the
GRID_LIBRARY_VERSION Service Options. This would typically be set by Service Type in the
Service Types page, although it can be set programmatically on the Session. Services can
specify a Grid Library to use by setting the corresponding Service Option values. If the
version is not set, a Service uses the latest version of a Grid Library.

TIBCO GridServer® Developer's Guide

125 | Creating Grid Libraries

If a Service needs to find resources in a Grid Library, it can use the Grid Library Path. This
value is a path value that includes the root directories of all Grid Libraries currently loaded.
For Java, .NET, and C++, the path is EngineProperties.GRID_LIBRARY_DIR; for command
Services, it is the environment variable ds_GridLibraryPath.

Super Grid Libraries
A Grid Library can be declared as a Super Grid Library. This means that it is always loaded
when the Engine starts up. The typical use case for this is to have an EngineHook that
queries the system for some information, which is used to set EngineSession properties
prior to the Engine running any tasks.

To specify that a Grid Library is a Super Grid Library, set the super attribute in the grid-
library element. For example, <grid-library ... super="true" /> . Super Grid
Libraries also cannot have conflicts or dependencies. Other libraries cannot depend on or
conflict with them.

Super Grid Libraries are loaded upon startup before anything else. They are ignored on
conflict checks for * (all).

If a new Super Grid Library is deployed while an Engine is running, it is loaded. If a new
version of an existing Super Grid Library is deployed while an Engine is running, the Engine
restarts.

C++ Bridges
C++ Bridges are the native bridges that allow Engines to execute native Services. They are
packaged as Grid Libraries, named cppbridge-[os]-[compiler]-[M]-[m], where M and m
are the GridServer major and minor version numbers. All C++ Bridges are pre-packaged and
deployed in the Grid Library replication directory upon GridServer Manager installation or
upgrade.

JREs
In the rare event that a particular service cannot use the default JRE that is deployed to
the Engines, a JRE can be packaged as a Grid Library. The Service’s top-level Grid Library

TIBCO GridServer® Developer's Guide

126 | Creating Grid Libraries

would then declare it as a dependency. When an Engine takes a Task, it then restarts using
this JRE. Note that the JRE must be a supported version.

JREs are packaged as jre_name-version.gz or jre_name-version.zip where, jre_name
includes jre-os. The version is the JRE version, for example, 1.8.0.331. The os is the
platform, such as linux64, win64, linux, or win32.

For example, for linux 64: jre-linux64-1.8.0.331.tar.gz.

To package a JRE Grid Library, create a Grid Library that contains the JRE in a directory in
the root of the Grid Library. Then, set the jre attribute in the grid-library element. For
example, <grid-library ... jre="true" />

For a JRE Grid Library, you can optionally specify JVM arguments in the XML. To do so, add
an <arguments> element to the root element. It can take any number of <property>
elements, each containing a <name> element and an optional <value> element.

If the property has a value, the argument name=value is added. Otherwise, just the name
argument is added.

If the same argument is set in the Engine Configuration and the Grid Library, the Grid
Library overrides the Engine Configuration.

Note
Specifying the JVM debug port inside a Grid Library results in
unpredictable behavior and is not supported. Set this functionality with
the Debug Start Port setting on the Grid Components > Engines >
Engine Configurations page.

For an example of how to package a JRE Grid Library, see the "Deploying Services" section
of the TIBCO GridServer® Administration.

R Grid Libraries
Grid libraries with Services implemented in R must contain a top-level directory named R.
This means the following Grid Library structure is used:

 /
 /grid-library.xml
 /R/

TIBCO GridServer® Developer's Guide

127 | Creating Grid Libraries

The R directory is required unless the Grid Library contains only R packages. All files ending
in .R are sourced. The order that the R files are sourced is not guaranteed.

Grid libraries with R Services must depend on the rbridge-platform Grid Library. That
dependency can be direct or indirect.

Grid Libraries can also contain R packages in non-source form. Packages root directory
within the Grid Library is defined using the lib-path element.

The following is an example grid-library.xml with R packages:

<?xml version="1.0" encoding="UTF-8"?>
<grid-library os="win64">

<grid-library-name>Rpscl-win64</grid-library-name>
<grid-library-version>3.0.3</grid-library-version>
<lib-path>

<pathelement>library</pathelement>
</lib-path>
<dependency os="win64">

<grid-library-name>rbridge-win64</grid-library-name>
</dependency>
<dependency os="win64">

<grid-library-name>Rextras-win64</grid-library-name>
</dependency>

</grid-library>

Building TERR Runtime Grid Libraries
A tool to create a TERR runtime Grid Library is provided in the SDK’s $SDK_HOME/tools/bin
directory.

The createTERRGL.bat and createTERRGL.sh scripts are a wrapper for the Java
implementation. Therefore, Windows and Linux versions take the same parameters:

Option Description

--terrHome=${TERR_
HOME}

Specify the TERR_HOME directory. Required.

--version=${gl
version}

Override the version information deduced from ${TERR_
HOME}/bin/TERR --version.

TIBCO GridServer® Developer's Guide

128 | Creating Grid Libraries

Option Description

--32|--64 Generate 32-bit or 64-bit Grid Library. By default, Windows generates a
32-bit runtime, and Linux generates a 64-bit runtime.

--complete Generate Grid Library with all files. By default, smaller Grid Libraries
are generated without some unused files.

--no-build-info Generate Grid Library without build information. By default, build
information is in the Grid Library descriptor.

--verbose Generate more output.

--help Show a list of all options.

Python Bridges
Python Bridges are the native bridges that enable Engines to execute Python scripts using
the packaged Python runtime. They are packaged as Grid Libraries, named pybridge-os-
compiler-M.m, where M and m are the GridServer major and minor version numbers. All
Python Bridges are pre-packaged and deployed in the Grid Library replication directory
upon GridServer Manager installation or upgrade.

Python Grid Libraries
Grid Libraries with Services implemented in Python must contain a top-level folder where
the individual .py files are stored. In the example below, this folder is named commands. In
the grid-library.xml, you must reference this folder in a lib-path element.

The Grid Library must either contain the binary ("pybridge-win64-vc14" for Windows or
"pybridge-linux64-gcc34" for Linux) or reference a dependent grid-library containing it.

Lastly, it is necessary to set an environment variable ds.PYTHON_USER_FILE_PATH which
references the folder containing the .py files set above. The value of this environment
variable must be $ds.GridLibraryRoot$/folder-name where folder-name is the folder
containing the .py files.

Here is an example of a grid-library.xml for Python:

TIBCO GridServer® Developer's Guide

129 | Creating Grid Libraries

<?xml version="1.0" encoding="UTF-8"?>
<grid-library>

<grid-library-name>Python-example</grid-library-name>
<grid-library-version>1.0.0</grid-library-version>

<lib-path>
<pathelement>commands</pathelement>

</lib-path>
<dependency os="win64">

<grid-library-name>pybridge-win64-vc14</grid-library-name>
<grid-library-version>7.1</grid-library-version>

</dependency>
<dependency os="linux64">

<grid-library-name>pybridge-linux64-gcc34</grid-library-name>
<grid-library-version>7.1</grid-library-version>

</dependency>
<environment-variables>
<property>

<name>ds.PYTHON_USER_FILE_PATH</name>
<value>$ds.GridLibraryRoot$/commands</value>
</property>

</environment-variables>

</grid-library>

Windows Application Deployment
The Windows Deployment Scripting Language provides a mechanism by which programs
can be executed in conjunction with file updating on Windows Engines. This can be used
for such purposes as registering COM DLLs and .NET assemblies, running Microsoft Installer
packages, and so on. It runs an installation command when the script is added, and when
any dependent files are modified. It can also run an uninstallation command when the
script is removed.

A deployment script is a file named dsinstall.conf. This is a reserved filename, and the
Engine Daemon interprets any file with this name as a deployment script. The script is a
properties file, with name and value pairs that govern the command execution.

The script is placed, with associated files, in its own subdirectory of a Grid Library. This is
referred to as the installation directory. In situations where a remote application
installation must take place when the Engine is first started, it can be packaged in a Super
Grid Library.

The following properties are provided:

TIBCO GridServer® Developer's Guide

130 | Creating Grid Libraries

Property Description

install_cmd The installation command. The command must be in the current directory;
you can also specify the full path to a command. This command is run when
the dsinstall.conf file is added, modified, and when any dependency is
modified.

Note that the Engine’s PATH environment variable is not set within the
installation command. You must set the path to use some commands, such
as ping or find.

workdir Working directory from which the commands are launched. The directory is
relative to the installation directory.

uninstall_
cmd

Optional. The uninstall command. This is executed when the script is
deleted, or prior to subsequent runs of the install command if uninstall_
first is true. Supporting files for the uninstall script might be deleted along
with the script; the command is executed prior to local deletion of the files.
Typically an uninstall is performed by simply removing the entire installation
directory.

Note that the path is not set within the uninstall command. You must set the
path to use some commands, such as ping or find.

waittime Number of seconds to wait for the install/uninstall command to finish. The
default is 30 seconds. If this time is exceeded, the process running the
command is killed.

uninstall_
first

Optional. If true, the uninstall command always runs prior to the install
command, except for the first time the install command is run. This is for
situations in which you need to uninstall software prior to reinstallation.

success_
exit_codes

Optional. Comma-delimited list of exit code values that indicate successful
command execution. If the exit code does not match any value, an error logs
with the failure code, and the next time the Daemon restarts it retries the
installation. If this property is not set, exit codes are ignored.

disable_on_
fail

If an Engine Daemon disables itself on the failure of an install. The default is
false if not specified in the conf file. When the value is true, the Engine

Deployment Script Properties

TIBCO GridServer® Developer's Guide

131 | Creating Grid Libraries

Property Description

Daemon disables itself if the installation returned exit code is not in the
success exit codes.

The : and \ characters must be escaped with a backslash (\) character in the
dsinstall.conf file. Also, you must not rename the dsinstall.conf file.

The following code is an example of a script that installs a Microsoft Installer package:

workdir=.
waittime=30
uninstall_first=true
install_cmd=install.bat
uninstall_cmd=uninstall.bat
success_exit_codes=0
install.bat:
%SystemRoot%\system32\msiexec /q /i mypackage.msi ALLUSERS=1
uninstall.bat:
%SystemRoot%\system32\msiexec /q /x mypackage.msi ALLUSERS=1

These three files, plus the mypackage.msi file, are all placed in a Grid Library. Note that the
uninstall_first property is used to uninstall the previous version of the software
whenever the package is changed. To uninstall the software, simply undeploy the Grid
Library; the uninstallation is performed prior to deleting the files.

Grid Library Example
The following example grid-library.xml is for a mixed Java/C++ application that runs on
Windows, and both gcc and gcc34 for Linux:

<?xml version="1.0" encoding="UTF-8"?>
<grid-library>
 <grid-library-name>MyLib</grid-library-name>
 <grid-library-version>1.0.0.1</grid-library-version>

<!-- Example of how to use both gcc and gcc34 libraries -->
 <lib-path os="linux" compiler="gcc">
 <pathelement>lib/gcc</pathelement>
 </lib-path>
 <lib-path os="linux" compiler="gcc34">
 <pathelement>lib/gcc34</pathelement>

TIBCO GridServer® Developer's Guide

132 | Creating Grid Libraries

 </lib-path>
<!-- All three C++ bridges are included here -->
 <dependency>
 <grid-library-name>cppbridge-vc14</grid-library-name>
 </dependency>
 <dependency>
 <grid-library-name>cppbridge-gcc</grid-library-name>
 </dependency>
 <dependency>
 <grid-library-name>cppbridge-gcc34</grid-library-name>
 </dependency>
<!-- Specifies that win32 use this JRE Grid Library, others use default
-->
 <dependency>
 <grid-library-name>jre-win32</grid-library-name>
 <grid-library-version>1.8.0.161</grid-library-version>
 </dependency>
<!-- Specifies JVM options in a JRE Grid Library -->
 <arguments>
 <property>
 <name>-Xdebug</name>
 </property>
 <property>
 <name>-Xmx512m</name>
 </property>
 <property>
 <name>-Dfoo</name>
 <value>bar</value>
 </property>
 </arguments>
<!-- Example of linking to another of my Grid Libraries-->
 <dependency>
 <grid-library-name>MyCalculator</grid-library-name>
 </dependency>
 <hooks-path>
 <pathelement>hooks</pathelement>
 </hooks-path>
<!-- Example of multiple jar paths -->
 <jar-path>
 <pathelement>jars</pathelement>
 <pathelement>morejars</pathelement>
 </jar-path>
<!-- Example of a lib path with absolute dir -->
 <lib-path os="win32">
 <pathelement>lib\win</pathelement>
 </lib-path>
<!-- Example of OS-dependent env vars, using a property sub -->
 <environment-variables os="win32">

TIBCO GridServer® Developer's Guide

133 | Creating Grid Libraries

 <property >
 <name>MY_WIN_VAR</name>
 <value>$WinVar$</value>
 </property>
 </environment-variables>
 <environment-variables os="linux" compiler="gcc">
 <property >
 <name>MY_GCC_VAR</name>
 <value>$LinuxDriverDir$</value>
 </property>
 </environment-variables>
 <java-system-properties>
 <property>
 <name>foo</name>
 <value>bar</value>
 </property>
 </java-system-properties>
</grid-library>

TIBCO GridServer® Developer's Guide

134 | GridCache

GridCache
This section provides information about using GridCache, a dynamically updateable
distributed object cache that any GridServer Driver or Engine can use to store data for later
retrieval by other GridServer components.

Overview
GridCache is a dynamically updateable distributed object cache that any GridServer Driver
or Engine can use to store data for later retrieval by other GridServer components. While
GridServer extensively uses object caches internally, applications can access the GridCache
object cache directly through an API, to reduce the load on backend datastores and
decrease access time to data. GridCache is similar to the proposed JSR-107 JCache, with a
similar interface and a subset of features.

A typical GridCache implementation

GridCache meets the requirements of many informational market data systems, where a
consistent view of object state is extremely important but it is not necessary to guarantee
that all participants process every individual state change (for instance, every individual
quote move) as a transaction.

TIBCO GridServer® Developer's Guide

135 | GridCache

General Capabilities
GridCache is a general distributed cache that provides a consistent view of data to all
clients (Drivers and Engines) in the Grid. Data resides in unique regions of the cache. Data
can be serializable Java objects, .NET objects, strings, and byte arrays for C++. The global
cache of data can be arbitrarily large, limited only by the amount of disk space on the
Manager. Each component locally caches only the data requested by users on that
component. The local cache of each client, designed to speed up access to frequently used
data, is in-memory with the option in Java Drivers and Engines to spool to disk. The size of
the local cache is configurable through the Engine distribution configuration or the Driver
properties file.

API
You can access GridCache through a client API available on Drivers and Engines. The API
follows the JCache specification where appropriate. The API is available in Java, .NET, and
C++, and provides cross-platform access to data where appropriate. That is, C++ and Java
applications can share XML documents (strings), but have little use for sharing Java or .NET
objects. You can also use Data References across different platforms to support streaming
very large objects. See Data References for more information.

Modes
GridCache operates in one of the following modes:

• Local This mode lets you cache data locally by putting elements into the cache.
This mode does not synchronize clients that are accessing local cache regions with
the same name. This is similar to having a local hashtable with LRU and eviction
based on time-to-live from creation time.

• Local with loader This mode lets you load data into the local cache using a loader
specified at create time. Puts (cache writes) are not allowed in this mode. Users can
manually synchronize clients’ local caches using clear and invalidate methods.

• Global Data that users put into the cache is then available globally. Full automatic
synchronization occurs in this mode. All components have access to a synchronized
view of all entries.

TIBCO GridServer® Developer's Guide

136 | GridCache

• Global with loader Users can use a global loader to load data into the cache. Full
automatic synchronization occurs in this mode.

Cache Configuration and Access
To configure cache regions, use the GridServer Administration Tool at Services > Services
> Cache Regions. Define the region names or regular expressions with a set of attributes.
The getRegion method in CacheFactory provides access to the region if it already exists or
creates the region with the mapped attributes. A region name throws an exception when it
matches multiple regular expressions from different schemas. A second Cache access
method is available and takes the schema name to provide a dynamic mapping of regions
to attribute schemas.

When you configure Local and Global loaders, the class name of the loader and the type
are arguments to the constructor. Users can define bean properties for loaders. Loaders are
available only in Java and .NET, but can be used by the C++ API. JNI, or managed C++ can
be used to implement loaders to access native resources. Each schema that requires a
loader defines the loader within the configuration page.

Changes to the cache configuration take effect the next time you create regions with that
cache configuration. Pre-existing regions that require configuration changes must be
manually destroyed and recreated.

Data Storage
All data put to a global cache is stored in a persistent backend datastore on the Broker’s
file system. You can limit the size of the Broker’s file cache. The default is that there is no
limit. If the Broker’s file cache is size limited and full, the Broker silently removes data to
make room for the incoming data. If the cache entry is too big, it first goes to the memory
cache, and if it cannot fit there it goes to the disk cache. If it is too big for the disk cache
too, then it is dropped. There is no global resilience when using a memory-based cache;
however, you can use a loader for that purpose.

Attributes
Define the GridCache Configuration Attributes in schemas. Then, apply the attributes to
newly created regions. You can define the following types of attributes:

TIBCO GridServer® Developer's Guide

137 | GridCache

• TimeToLive Regions can define a time-to-live attribute. Data that is stored in the
cache for longer than the time-to-live attribute is evicted, and you must reload that
data from the backend datastore. Data in local caches is evicted locally. Data for
distributed regions is evicted from the distributed cache, and the Broker and all
clients delete that data if they have cached it locally.

• Local/GlobalLoader Loads data from a backend datastore. See Cache Loaders,
below.

• KeepAlive Specifies how long the client keeps the region and its keys in its local
cache after the last reference to the region goes away.

Consistency/Synchronization
The cache synchronizes by propagating update notifications to all clients listening on a
region. These notifications occur any time the region changes. Specifically, they occur on a
put (when an element already exists), clear, remove, or invalidate. This applies to different
region types differently:

• Engines GridCache guarantees that all Engines receive all update notifications by
the time they take the next task or Service request.

• Drivers There are no synchronization guarantees for the Driver. The Driver receives
notification messages the next time it performs a request, polls the server for
results, or sends a heartbeat.

Cache Loaders
Loaders provide an optional mechanism for loading data into the cache from a backend
datastore, such as a relational database. Users can implement and associate Cache
Loaders with a region of the cache. These Cache Loaders can be installed locally on the
client (Driver or Engine) or globally, in the GridServer Broker.

Global

Use a Global Cache Loader for synchronized regions from which all clients can access data.

• Global loaders are defined and configured in the schemas.

TIBCO GridServer® Developer's Guide

138 | GridCache

• When other clients get access to that region, they automatically are using that
loader.

• A client can specifically pre-load data into the cache by explicitly calling the load
method with a single key or a list of keys.

• If a get does not find data, the loader then attempts to load for that key by calling
the loader’s load method.

• Puts are not allowed on regions with loaders.

• Global loaders are written in Java, but can be bridged to native or .NET code
through JNI.

• Global CacheLoader JAR files are deployed to the lib directory in the cache
directory. By default, the cache directory is DS_DATA/cache. Configure the cache
directory in the Cache section of the Manager Configuration page in the
Administration Tool.

Local

Use a local loader to cache data locally from an external database. Clients do not share
local loaders.

• Puts (writes) are not allowed, as it is a local cache, and data is not propagated to
other clients or regions.

• Removing an item is not allowed. Instead, invalidate the item. Invalidating causes
the item to be removed from other clients' caches.

• Local loaders can only be .NET or Java. You can adapt CPP loaders through JNI or
managed C++.

Cache Loader Write-through and Bulk Operations
To simplify using backend datastores with GridCache, it’s sometimes desirable to add a
means for supporting the store and remove methods on the loader rather than just
supporting it purely as a data fetching mechanism. It’s also sometimes desirable to be able
to use such methods in a batch form, such that a cache can be “primed” with entries
through a bulk load method, or that multiple objects can be stored, removed, and
invalidated with a single method to cut down on per-store operation overhead.

TIBCO GridServer® Developer's Guide

139 | GridCache

Loaders can inherit from two interfaces that support methods for supporting the store and
remove methods on the loader:

• The preload methods are exposed in the BulkCacheLoader interface.

• The store, remove, and clear methods are exposed in another interface, CacheStore,
and can be used by the underlying cache mechanism for modifying the content of
cache puts and removals on the backend datastore. The cache mechanism can then
invalidate the corresponding entry or entries for all other caches listening on that
region, if applicable.

It is possible that the backend store gets updated without sending an invalidation message
to all other clients. If this scenario is detected, it throws an exception indicating a loss of
synchronization, but the cache client must handle recovery from that point on.

The caching system in GridServer does not provide a mechanism to auto-update data in
the cache when it changes in the backend, if done so by a mechanism other than those
offered by the CacheStore interface.

Support is available for datastore write-through, bulk write-through, remove, bulk remove
and bulk load, on both global and local loaders, in Java and .NET.

Notification
GridCache provides an optional mechanism whereby you can implement a class that listens
for update notifications. An update is defined to be either an invalidation call on a loaded
object or on a put call on a key that exists in the cache already. You can then take any
action desired such as updating local copies of the object or data to the new version or
ignoring the update completely. The next time that the data is requested from the cache,
GridCache fetches and locally caches the most current version of that data.

Disk/Memory Caching
When the cache is full, cache puts (or writes) push the oldest element out of the cache.
Elements are then put into the backing disk cache or removed entirely. This makes the
caches LRU caches. You can configure the size of the local cache and the size of the
backing disk cache:

• In the driver.properties file, for Drivers.

• In the Engine configuration, for Engines.

TIBCO GridServer® Developer's Guide

140 | GridCache

If you configure disk caching, then any puts into the memory cache when the memory
cache is full force the oldest element out of the memory cache into the disk cache. Any
access to a cache element that has to get the element from the disk cache brings the
element into the memory cache. CPP Drivers do not have disk-backed cache.

Cache Region Scope
Global cache regions exist until they are destroyed through the destroy method regardless
of whether any client has a reference to that region. Unnecessary global cache regions
impact eviction performance, so it is important to destroy global regions when they are no
longer needed.

After all references to a cache region on a client go out of scope, local cache regions persist
on clients until their keepalive timeout. At that point, the region is swept from the cache.
Use the close() method to explicitly release a reference to a region. If you do not use the
close method, garbage collection handles decrementing references to the region. However,
garbage collection is never guaranteed so the keepalive timeout is not a guaranteed
timeout. Using the close method is recommended.

Data Conversion Matrix
The following table outlines the results of putting a data type into GridCache and then
getting it with a different Driver.

Input .NET Output Java Output C++ Output

String String String std::string

Java or .NET byte[] byte[] byte[] std::string

.NET Object Object undefined undefined

Java Object undefined Object undefined

DataReference DataReference DataReference DataReference

TIBCO GridServer® Developer's Guide

141 | GridCache

Using The GridCache API
Details about the GridCache API are in the GridServer API JavaDoc, which is available from
the Documentation page of the Administration tool. Documentation for the Cache interface
covers the use of GridCache.

The GridCache API supports the following seven primitives:

GridCache constructor with CacheFactory

To create a new GridCache instance, use the CacheFactory to get a reference to a particular
region. On a particular client component, you can construct multiple instances of a
GridCache with the same region, but each exposed instance with the same region shares
the same underlying implementation. This lets multiple Sessions share the same view of a
cache without having to duplicate the storage or the code.

Put and Get

The put method writes to the cache a new entry for a key and object. The get method
returns the object stored in the cache, for a given key. If you use the get method on a key
that does not exist and the region has an associated loader, the loader attempts to load
the data for that key. A second get method, when given a mapping of keys, bulk-gets a
mapping of keys and their objects. Bulk get methods use a single HTTP request for each
map, which can lower transaction overhead.

Region

Region names are any printable low ASCII character (32-126), except for characters
prohibited in XML attribute values (', ", &, <).

Keys

A Key is a string that refers to an object in the cache. The keys method gets:

• For a global region type, a list of all keys currently stored on the Manager for this
cache.

• For a local region type, a list of locally cached keys.

TIBCO GridServer® Developer's Guide

142 | GridCache

Remove

Removes this object from the region, from the Manager, and from all distributed caches.

Clear

Clears all objects from the region, the Manager, and regions on other components.

Invalidation handlers

By default, GridCache implements a lazy invalidation mechanism where callers are told
only that their version of an object is out-of-date when they make a fresh “get” call for the
object. The invalidation handler interface lets the caller register or deregister to receive
asynchronous notification that a get, put, remove, or clear has invalidated the caller’s local
copy of an object.

Note that .NET cache loaders for GridCache must be packaged as a Super Grid Library. For
more information about using Super Grid Libraries, see the TIBCO GridServer®
Administration.

Fault Tolerance and GridCache
GridCache supports fault-tolerance. For details, see the TIBCO GridServer® Administration.

TIBCO GridServer® Developer's Guide

143 | GridServer Design Guidelines

GridServer Design Guidelines
This section discusses two important aspects to consider when designing an application to
run on GridServer: data movement, and task or Service request duration. There are a
variety of ways to move data among the machines involved in an application; the first
section considers their characteristics and suggests which to choose under various
circumstances. When you divide a problem into a set of tasks or Service requests, you can
usually select how many to use, or equivalently, how much time each one can take. The
second section discusses factors that can influence this decision.

Data Movement
Every distributed computation ultimately executes as a local computation—a single
computing process. You must move every piece of input data across the network from
wherever it resides to the machine that needs to process it, and every piece of output data
must travel over the network from the machine that produced it to its ultimate destination.
Additionally, you can use caching to optimize data movement, providing a strategy for
lowering the amount of data transfer. Moving large amounts of data over a network
efficiently is a crucial aspect in the design of most distributed applications. Efficient data
movement can often make a dramatic difference in performance.

Principles of Data Movement
Good data movement design can be summarized in two principles:

• Move each piece of data over the network as few times as possible—preferably just
once.

The less that data is moved, the less time it takes to move it. But the many layers of
abstraction offered by modern computer systems can hide data movement, making
it harder to see the bottlenecks. Network file systems are a good example: there is
no way to tell from reading the code whether a file is being read from the local disk
or over a network, but the performance difference can be significant.

• Move data as early as possible—preferably before the computation starts.

TIBCO GridServer® Developer's Guide

144 | GridServer Design Guidelines

Doing so improves the performance of the computation because the stopwatch that
times the computation is started after the data movement has already occurred. But
this is more than a mere accounting trick. Consider a nightly report that must run
after 5 PM to avoid conflicting with daytime Services. If the data for the report is
available at 4 PM, it can be distributed to Engines in the hour before the report runs.

Data Movement Mechanisms
The GridServer software uses the following data movement mechanisms:

• Service Request Argument and Return Value

• Service Session State

• Shared Directories and Direct Data Transfer

• Resource Update

• GridCache

• Data References

Service Request Argument and Return Value

The most direct way to transmit data between a Grid client and an Engine is through:

• The argument to a Service request and

• The return value from the Service request.

If you enable Direct Data Transfer, the data travels directly between Driver and Engine.

Each request is handled efficiently, but the aggregate data transfer across hundreds of
requests adds up significantly. Therefore, factor data common to all requests into session
state or init data, or distribute it by another mechanism.

Service Session State

Any Service Session can have an associated state. As described in the Services sections,
this state resides on the Driver as well as on each Engine hosting the instance, so it is fault-
tolerant with respect to Engine failure.

TIBCO GridServer® Developer's Guide

145 | GridServer Design Guidelines

Service Session state is ideal for data that is specific to a session. Service Session state is
easy to work with because it fits the standard object-oriented programming model; it is
downloaded once per Engine.

Transmission of the Service Session state from Driver to Engine is peer to peer and is
GridServer’s Direct Data Transfer (DDT) feature. DDT is enabled by default. When DDT is
enabled and a Service creation or Service request is initiated on a Driver, the initialization
data or request argument resides on the Driver, sending only a URL (and not data) to the
Manager. When an Engine receives the request, it downloads the data directly from the
Driver rather than the Manager. This mechanism saves one network trip for the data and
can result in significant performance improvements when the data is much larger than the
URL that points to it, as is usually the case. It also greatly reduces the load on the Manager,
improving Manager throughput and robustness.

Shared Directories and DDT

Some network configurations are more efficient using a shared directory for DDT rather
than the internal file servers included in the Drivers and Engines. In this case, configure the
Driver and Engines to read and write requests and results to the same shared network
directory, rather than to transfer data over HTTP. All Engines and the Driver must have
read and write permissions on this directory. Configure shared directories at the Service
level with the SHARED_UNIX_DIR and SHARED_WIN_DIR options. If you use both Windows and
UNIX Engines and Drivers, configure both options to be directories that resolve to the same
directory location for the respective operating systems.

Resource Update

GridServer’s Resource Update mechanism replicates Grid Libraries, or archives of versioned
sets of resources, with Engines. It also replicates the contents of a directory on the
Manager to a corresponding directory on each Engine. When you use Resource Update, use
the Services > Services > Grid Libraries page in the GridServer Administration Tool to
upload files to the Manager. After all currently running Services finish, the Engines
download the new files. For more on Resource Update, see the TIBCO GridServer®
Administration.

Resource Update is the best way to guarantee that the same file is on the disk of every
Engine in your Grid. File Update is ideal for distributing application code, but it is also a
good way to deliver configuration files or static data to Engines before your computation
starts. Any kind of data that changes infrequently, like historical data, is a good candidate
for distribution in this fashion.

TIBCO GridServer® Developer's Guide

146 | GridServer Design Guidelines

GridCache

GridServer’s GridCache feature is a repository on the Manager that is aggressively cached
by components (Drivers and Engines). The repository comprises a set of regions, each of
which is a map from string keys to arbitrary values. The GridCache API supports reads,
writes, removing key-value pairs, and getting a list of all keys in a catalog. For more
information about GridCache, see GridCache.

A GridCache component caches every value that it gets or puts. If a component changes a
key’s value or removes it, the Manager asks all components to invalidate their cached copy
of that key’s value.

GridCache is fault-tolerant with respect to Engine failure because the data is stored on the
Manager. When an Engine fails, its cached data is lost and its task is rescheduled. The
Engine that picks up the rescheduled task gradually builds up its cache as it gets data from
the Manager.

GridCache is a flexible and efficient way for Engines and Drivers to share data. Like File
Update, an Engine needs only a single download to obtain a piece of constant data. Unlike
File Update, GridCache supports data that changes over the life of a computation.

You can use GridCache for having Engines post results. This is generally only useful if those
results are to be used as inputs to subsequent computations.

Data References

GridServer Data References are objects that represent data existing on a GridServer client.
You can use them to pass lightweight data from one client to another so that only the
destination needing the data performs the data transfer. Typically, one client filesystem
stores the data and another client’s file server serves the data.

Data Movement Examples
As an example of using the data movement mechanisms discussed above, consider the
problem of determining the value of a financial instrument. This example uses a
computation method named value. The value method takes two arguments: a deal and a
pricing scenario. The deal argument contains all information specific to a financial
instrument needed to determine its value, such as coupon and maturity date. The pricing
scenario argument contains all other determinants of the deal’s value, such as interest
rates and prices of underlying instruments. The output of the value function is a single
number representing the value of the deal under the given pricing scenario.

TIBCO GridServer® Developer's Guide

147 | GridServer Design Guidelines

Typical applications require the value of many deals over one or several pricing scenarios.
To distribute and parallelize this computation, we execute the value function
simultaneously on many Engines. We assume the code for the value function is available to
each Engine (whether by Resource Update or over a network file system). We also assume
that the numbers returned by the value function make their way back to the client through
the standard Service return value mechanism. The question we want to consider is how to
get the deal and pricing scenario information to the Engines.

Database Access

We first look at the deal information itself, stored in a database or data server somewhere
on the network. Compare the two scenarios in Figure 8-1. In the first diagram, on the left,
the Driver loads the deal information from the data server and sends it to the Engines. In
the second diagram, on the right, the Driver sends just the unique identifier and has each
Engine access the data server on its own.

Data flow between a Driver, two Engines, and a Data Server

The second choice is better because it requiresfewer data moves across the network to
accomplish the same result. In the first choice, the data moves across the network twice,
once from the data server to the Driver and second from the Driver to the Engine. In the
second choice, the data moves across the network only once from the data server to the
Engine. Also, the data needs marshaling and unmarshaling only once.

The second choice also increases parallelism at the data server. In the first choice, only the
Driver is attempting to load data from the data server. In the second, multiple Engines

TIBCO GridServer® Developer's Guide

148 | GridServer Design Guidelines

attempt to load data concurrently. Assuming that the data server can handle the load, the
second choice increases parallelism.

Single Pricing Scenario

We now consider the case in which you use a single pricing scenario to evaluate many
deals. Here is one (suboptimal) way to organize this computation. We assume throughout
that you already deployed and registered a Service containing the value function.

Algorithm 1 (suboptimal):
1. Create a Service Session of the value Service.

2. For each deal, submit the deal identifier and the pricing scenario as an
asynchronous request to the Service Session.

3. Wait for results.

Although this algorithm gets the job done, it needlessly sends the same pricing scenario
multiple times.

This is an ideal application of Service Session state:

Algorithm 2:

Procedure

1. Create a Service Session of the value Service, initialized with the pricing scenario.

2. For each deal, submit the deal identifier as an asynchronous request to the Service
Session.

3. Wait for results.

By making the pricing scenario be part of the session’s state, it is transmitted only as many
times as there are Engines that implement the session, rather than once per request.
GridServer never allocates more Engines to a Service session than there are requests for
that instance, so Algorithm 2 never moves more data than Algorithm 1. And in the likely
event that there are many more requests than Engines (we argue below in the Task
Duration section why this is a good idea), Algorithm 2 moves much less data than
Algorithm 1.

TIBCO GridServer® Developer's Guide

149 | GridServer Design Guidelines

Several Pricing Scenarios

What if the application needs to value the portfolio of deals for more than one pricing
scenario? One approach is simply to repeat Algorithm 2 several times, creating a new
Service session for each pricing scenario. It is also possible to use a single session and
employ the updateState method of the Service client API to transmit each successive
pricing scenario to the Engines running the session. If the differences between pricing
scenarios are small and they are used to perform the update instead of the pricing
scenarios themselves, then using updateState can result in considerable data movement
savings; even if the pricing scenarios themselves are used as updates, this approach is still
likely to be superior to using separate instances.

Multiple Pricing Scenarios Available Early

Now let us add the following wrinkle: we still want to compute the value of many deals
over many pricing scenarios, but the pricing scenarios are available to us sometime before
we can run the application. For instance, pricing scenario information is available at 4 PM,
but we cannot start the nightly report until 5:30 PM, to avoid interfering with daily work. In
this situation, we can exploit the time gap to push information to the Engines before the
computation starts. One approach would be to use File Update to put all the pricing
scenario data on all the Engines. Another would be to put the pricing scenario data into
GridCache and run a “primer” Service that copies the data to the Engines. The trade-offs
between these two approaches were discussed above under Data Movement Mechanisms.

Deal-Pricing Scenario Symmetry

Finally, we point out that deals and pricing scenarios are for the most part symmetric in
these examples (the main difference being that pricing scenarios are less likely to be
indexed by primary key in a database, so the discussion of deal identifiers versus deal data
does not apply to them). For instance, if deals are available to you early, you can use File
Update or GridCache to push deal information to Engines before your application starts.

Service or Task Duration
Service or Task duration has an important impact on the performance of distributed
computations. Recall that a task corresponds to a single Service request when using
Services. Make tasks long enough to compensate for communication overhead, but not so
long that their interruption seriously delays the overall computation. Dividing the work into

TIBCO GridServer® Developer's Guide

150 | GridServer Design Guidelines

more tasks, each of which takes less time, can also mitigate the performance degradation
that can arise from having tasks of different sizes. We discuss these issues in detail in the
following sections.

As a running example, we use the deal valuation problem discussed in the previous section
on data movement. There we assumed that each task was responsible for pricing a single
deal. But this is unlikely to be efficient for most types of deals; instead, group several deals
together in a single task.

Engine Interruption and Smoothing
If an Engine is interrupted or fails during a task, that task must run again from the
beginning. Therefore, divide work into tasks with short execution times. The shorter the
task, the less work you lose when an Engine fails.

Additionally, shorter tasks result in better performance. This is because you are reducing
the variability of task durations in a computation.

For example, suppose that you divide the work of computation so that 10 Engines each
have one task. You expect that this minimizes communication overhead and that Engines
do not fail. However, what if you wrongly estimate one task and it takes twice as long as
the others? Since all tasks must finish for the computation to be complete, the longest task
determines the computation time. If you have nine one-minute tasks and one two-minute
task on 10 Engines, the computation takes two minutes, with the last minute consisting of
nine idle Engines and one Engine still working on the two-minute task. With exactly as
many tasks as Engines, your program runs as long as the longest task. (This section
simplifies this discussion by ignoring communication time.)

Suppose you use twice as many tasks as Engines. This significantly improves the expected
running time. To understand why, continue the above example. If you divide each of the 10
tasks in two, you have 20 tasks for 10 Engines: 18 30-second tasks, and two one-minute
tasks. Each Engine takes two tasks at random. The chance of the same Engine receiving
both long tasks is fairly small, so this program is likely to take one and a half minutes most
of the time.

Similarly, more, shorter tasks smooth out the effect of different processor speeds. Assume
that all tasks take the same time, but that one Engine is slower than the others. With
exactly one task per Engine, the slow Engine determines the computation time. With many
short tasks, the slow Engine takes fewer tasks than the other Engines, and all Engines
finish at close to the same time, minimizing the time for the whole computation.

TIBCO GridServer® Developer's Guide

151 | GridServer Design Guidelines

Summary
Communication overhead dictates using long tasks, but the possibility of Engine failure and
the opportunity to smooth over differences in task durations and processor speeds suggest
using many quick tasks. The best compromise is to choose a task running time between 30
seconds and several minutes and to choose a number of tasks that is three or four times
the number of available Engines.

These are just a few examples of how to improve the performance of your Services. For a
more complete list, see the Performance and Tuning section of the TIBCO GridServer®
Administration.

TIBCO GridServer® Developer's Guide

152 | The Admin API

The Admin API
The GridServer Admin API offers programmatic access to administrative tasks or
information normally performed or presented in the web-based GridServer Administration
Tool. The API is available through Java, C++, and .NET Drivers and Services, on Managers
through a Server Hook, from a SOAP Web Service, with JMX, and REST.

Documentation for the GridServer Admin API
Detailed documentation on GridServer Admin API is in the API documentation. The WSDL is
available in the GridServer Administration Tool at Grid Components > Drivers > Web
Services.

The following components are defined:

• BatchAdmin

• BrokerAdmin

• DriverAdmin

• DriverManager

• EngineAdmin

• EngineDaemonAdmin

• ManagerAdmin

• ServiceAdmin

• UserAdmin

• Version

The methods allowed are based on the Security Roles of the user. When called in a Service,
the user is considered to be the user that created the Service Session. When called in a
Server Hook, all methods are available. Note that methods return null if there is no output,
as opposed to returning a zero-length array. For example, EngineAdmin.getAllEngineInfo
() returns null if there are no Engines currently logged in to the Broker.

TIBCO GridServer® Developer's Guide

153 | The Admin API

See the Admin > User Admin > Role Admin page on the Administration Tool for a list of
all permissions.

Using the Admin API over SOAP
The following example uses the Admin API over SOAP with Java:

1. Locate the WSDL for the Service from the Manager’s Web Service List. For example,
for the EngineDamonAdmin class use,
http://example:8080/livecluster/webservices/EngineDaemonAdmin?wsdl

2. Generate Java Stubs for the Service. For example, using Axis:

 org.apache.axis.wsdl.WSDL2Java
 http://example:8080/livecluster/webservices/EngineDaemonAdmin?
wsdl

3. Use the Stubs. For example:

 // Get the interface to the Admin Service
 EngineDaemonAdmin server = (new
 EngineDaemonAdminServiceLocator()).getEngineDaemonAdmin();
 // Required when Driver authentication is enabled

((Stub)server).setUsername("admin");
((Stub)server).setPassword("admin");

 // Maintain the session ID for each request
((Stub)server).setMaintainSession(true);

 // Query the Admin Service
 EngineDaemonInfo[] info = server.getAllEngineDaemonInfo();

Using Server Hooks
The entire Java Admin API is available within a Server Hook. For details about
implementing Server Hooks, see the JavaDoc documentation for the ServerHook class.

TIBCO GridServer® Developer's Guide

154 | The Admin API

Using JMX
The Java Admin API is also available using JMX. Most API components are exposed as
MBeans within the com.datasynapse.gridserver.admin tree. See the JavaDoc
documentation for the com.datasynapse.gridserver.admin package for more information
about each object.

TIBCO GridServer® Developer's Guide

155 | Using Conditions

Using Conditions
In a typical Grid environment, machines are not all identical. Some machines are slower, or
have less RAM; other machines are faster but work to capacity during the day. Depending
on the Services you have and the general demographics of your computing environment,
the scheduling of Services to Engines might not be clearly deterministic. And sometimes, a
specific Service might require special handling to ensure that optimal resources are
available for it.

Conditions
Conditions are a feature of GridServer. Conditions affect how Service Sessions and tasks are
scheduled to Engines. Conditions enable you to use Engines selectively based on their
properties.

GridServer provides the following types of Conditions:

• Discriminator Conditions specify a subset of Engine that can work on a task or
Session, typically based on Engine properties.

• Affinity Conditions enable you to set an affinity for tasks or Sessions for Engines,
based on Service state and typically properties. Unlike Discriminators, they do not
prevent tasks from going to any Engine, it only attempts the best match.

• Dependency Conditions enable submitting workflows to a Broker without an active
Grid client to manage Dependencies (wait for completed tasks, submit more based
on a successful outcome, and so on).

• QueueJump Conditions enable the Driver to specify that a Task is placed at the
front of the waiting queue, rather than at the back.

• Descriptor Conditions set descriptive information about an Invocation request.

• EXTRAConditions prevent Engines from taking Tasks when a necessary resource,
such a database connection, is not available. The current resource counts are
updated with a simple REST API.

TIBCO GridServer® Developer's Guide

156 | Using Conditions

Discriminator Conditions
Use Discriminator Conditions to select Engines for particular Services based on Engine
properties. Discriminators have many uses:

• Limit a Service to run only on Engines whose usernames come from a specified set,
to confine the Service to machines under your jurisdiction.

• Limit a resource-intensive task to run only on Engines whose processors are faster
than a certain threshold, or that have more than a specified amount of memory or
disk space.

• Direct a task that requires operating-system-specific resources to Engines that run
that operating system.

Discriminator Conditions can be dynamically attached to a Service based on the Service
Description on the Manager or set programmatically with the Driver.

Setting Discriminators in the Administration Tool
You can also attach Discriminators to Services in the GridServer Administration Tool, at
Services > Services > Service Conditions. This page enables you to create Discriminators
by entering three defining factors: the Services that the Discriminator affects, the types of
Engines that can run on those Services, and optionally, if an EXTRACondition must be met.
(See EXTRAConditions for more information about EXTRAConditions.) This differs from
programmatic Discriminators because they aren’t explicitly attached to a Service at its
creation; instead, a group of Services is defined as being attached to that Discriminator, by
Service name, application name, department name, or wildcards on that or other criteria.

By default, changes made to Discriminators in the GridServer Administration Tool are
applied to Services immediately. This can be changed so that Discriminator changes only
apply to subsequently created Services. To change this behavior, go to Admin > System
Admin > Manager Configuration > Services, and under the Scheduling heading, change
the value of Apply Condition Admin Changes Immediately.

TIBCO GridServer® Developer's Guide

157 | Using Conditions

Setting Discriminators Programmatically
You can use the GridServer API to set Discriminators for a Service or task. Create
Discriminators with the SchedulingConditionFactory. In Java, this is located in
com.datasynapse.gridserver.client. You can use the factory to create several
Conditions. The method to use to create Discriminators is createPropertyDiscriminator.

The following example in Java code creates a SchedulingConditionFactory, which you
then use to create a Discriminator Condition to run a Service or task only on Engines where
the operating system is Linux:

SchedulingConditionFactory schedFactory =
SchedulingConditionFactory.getInstance();
Condition isLinux = schedFactory.createPropertyDiscriminator
(EngineProperties.OS, SchedulingConditionFactory.CONTAINS, "Linux",
false);

The createPropertyDiscriminator method takes four parameters:

• The first parameter is the name of an Engine property.

• The second parameter is a comparator used to compare the Engine property to the
property value. You can use several comparators to compare numbers or strings.
(See details in the SchedulingConditionFactory API documentation.) For example,
the CONTAINS comparator is true if an Engine property matches any one of a comma-
delimited list of properties. MATCHES compares against a Java regular expression;
EQUAL checks if parsed numerical values are equal.

• The third parameter is a property value.

• The fourth parameter defines what happens if the property is not set on an Engine.
In this case, the Engine is not considered. In some situations, you might want the
opposite behavior, such as when you are using a Discriminator to exclude a subset
of Engines with a specific property, but allowing any other Engines.

After you create a Condition such as a Discriminator, you can use it when creating or
submitting Services. The following example in Java code creates a Discriminator and sets it
in a Service:

SchedulingConditionFactory schedFactory =
SchedulingConditionFactory.getInstance();
//Only run on Linux Engines
Condition isLinux = schedFactory.createPropertyDiscriminator

TIBCO GridServer® Developer's Guide

158 | Using Conditions

(EngineProperties.OS, SchedulingConditionFactory.CONTAINS, "Linux",
false);
Service s = ServiceFactory.getInstance().createService("MyService",
null, null, null, isLinux);

If you change the properties of Engines, the changes take effect during the execution of a
Service. For example, if you configure a Discriminator attached to a running Service to look
for a certain Engine property, changing this property can change what Engines work on
that Service.

Discriminators are, however, attached to a Service at Service creation, so changes you
make to the Discriminator affect only subsequently submitted Services, not Services that
are already running.

PDriver Discriminators
When writing a PDS script, you can create job-level or task-level Discriminators to limit
which Engines work on a PDriver job or task. The discriminator block specifies either a
job-level or task-level Discriminator for a job.

For more information about PDriver Discriminators, see The Discriminator Block.

Affinity Conditions
When a Broker is assigning tasks to Engines, one of the methods used to make optimal
matches is affinity, or the degree to which an Engine has initialization data and updates
from a particular Service. If there are a number of possible matches at a point in the
scheduling decision, the Broker assigns tasks to the match with the highest affinity score.
Affinity is a number that is calculated between an Engine and a Service Session. By default,
the affinity number is based on the amount of state the Engine has for the session,
whether it has loaded its Grid libraries, and whether it is on a Home Broker.

It is possible to use Affinity Condition to add affinity, typically based on Engine properties.
This Condition is similar to a Discriminator Condition, except when it is satisfied, it adds a
defined number to the affinity score.

If you plan to use affinity, aside from Affinity Conditions, you also need to tune how and
how much the scheduler uses affinity. For more information see the TIBCO GridServer®
Administration.

TIBCO GridServer® Developer's Guide

159 | Using Conditions

Setting Affinity Conditions Programmatically
Create Property Affinity Conditions with the SchedulingConditionFactory, using the
createPropertyAffinity method.

The following example in Java code creates a SchedulingConditionFactory, which is then
used to create a Property Affinity Condition that would add four to the affinity of any
Engine-Service pairing where the Engine has two CPUs:

SchedulingConditionFactory schedFactory =
 SchedulingConditionFactory.getInstance();
Condition dualAffinity =
 schedFactory.createPropertyAffinity(EngineProperties.CPU_NO,
 SchedulingConditionFactory.EQUALS, "2", 4.0);

Setting Affinity Conditions in the Administration
Tool
You can also attach Property Affinity Conditions to Services in the GridServer
Administration Tool. Go to Services > Services > Service Conditions. This page enables
you to create Affinity Conditions by entering two defining factors: the Services that the
Condition affects, and the affinity change that occurs based on an Engine’s properties.

Task Affinity
Task Affinity provides the ability to run a set of Tasks on the same Engine or set of Engines.
It is primarily used for data awareness and locality. For example, you might have a large
dataset, and have Tasks that work on subsets of that dataset, so you would prefer that an
Engine works on Tasks from the same subset.

Create Task Affinity Conditions with the SchedulingConditionFactory, using the
createTaskAffinity method.

When set on a Task, it specifies that this Task must run only on an Engine that has already
worked on a Task with the same TaskAffinity as specified by a tag.

TIBCO GridServer® Developer's Guide

160 | Using Conditions

The wait value indicates how long it must wait for an Engine with affinity before being
allowed on any Engine. This wait countdown starts the first time that the task becomes
available for scheduling, and only if it is the next task to be assigned to this set.

The first TaskAffinity for a given tag must be assigned a wait value of 0 so that it is
immediately assigned to an Engine. Typically the remaining in the set would use the same
value, for example, 10000 for a wait of 10s. An Engine retains the affinity for the duration of
the Service Session but not beyond.

The tag is not guaranteed to be unique among all Services, so you would typically append
a unique value to the tag, such as the Service ID. This is left to the caller, since there might
be a unique string shorter than the Service ID which results in quicker string comparisons.

TaskAffinity can be used in a ConditionSet. For example, you can use this along with a
PropertyDiscriminator and a Descriptor using an AND ConditionSet.

Custom Discriminator and Affinity Conditions
In addition to Conditions based on Engine Properties, you can implement your own custom
Conditions. For example, you might have a number of Services that require a connection to
a database and might have more Engines working on those Services than available
connections. You could write a Server Hook that keeps track of how many tasks are
currently running, and write a Custom Discriminator to prevent all Engines from taking a
Task if all connections are in use by other Tasks.

To write a Custom Condition:

1. Implement the CustomDiscriminator or CustomAffinity interface in
SchedulingConditionFactory.

2. Package your classes into a JAR file, and for each Broker on which this is used, place
that file in DS_MANAGER/webapps/livecluster/WEB-INF/lib.

3. At Service creation time, create it using the
SchedulingConditionFactory.createCustom[Affinity/Discriminator] call. Note
that it is not necessary to have the JAR in a Java Driver classpath; likewise, this is
also available for C++ and .NET Services, since the class is only used on Brokers.

TIBCO GridServer® Developer's Guide

161 | Using Conditions

Dependency Conditions
Dependency Conditions allow you to submit workflows to a Broker without an active Grid
client to manage Dependencies (wait for completed tasks, submit more based on a
successful outcome, and so on). When you submit a Session, you can require one or more
tasks or entire Services to complete before the scheduled Service. These Dependencies can
be Sessions or tasks already submitted, or ones that have not yet been created. This way,
multiple tasks in different Services can be submitted, but they are not eligible for
scheduling until certain conditions are met—namely the successful completion of specific
tasks or Sessions.

Creating Dependencies
Dependencies are Conditions that are applied to a Service or a Task. This Condition has
methods for adding Dependencies in the form of a Session ID, and for an optional Task ID.
Dependencies also allow a Boolean operation that dictates whether to cancel an entire
Task/Service when a dependent Task/Service fails.

You can create a forward Dependency for a Session, and optional Task ID, that does not yet
exist. To create a forward Dependency, generate a reference ID to a Session, and then use
that ID when creating the Session.

In Java, you use com.datasynapse.gridserver.client.DependencyFactory to create
Dependency Conditions. You can assign more than one Dependency by using a
ConditionSet. C++ and .NET APIs are similar. See the GridServer API documentation for
more details.

If there is no session with the dependent Service ID on the Broker when the Session or task
with Dependencies is added, it is automatically canceled because the Dependency does not
exist. If it is a forward Dependency, no such cancellation is made.

You can specify that a Session or task be canceled if it has a Dependency that fails.

If a non-forward Dependency is made, and the session does not exist, the task is always
canceled.

TIBCO GridServer® Developer's Guide

162 | Using Conditions

Administering Task Dependencies
You can view Dependencies in the GridServer Administration Tool. Select Services >
Services > Service Sessions, or from the Task Admin page, available from the Actions list
on the Service Session Admin page. On either page, select Service Session Details or Task
Details from the Actions list. View the details for a list of Dependencies showing which are
pending and which are complete.

You can remove Dependencies from a task or Service with the Remove Dependencies
action on the Actions list on the Task Admin page. This removes the entire Dependency
object, which removes all pending Dependencies; there is no a way to remove a single
Dependency from the Administration Tool.

Note
Task Dependencies are Broker-scope, and rely on Service and
task events on a Broker. They do not work across Brokers.

Because the default for the PURGE_INVOCATION_DATA option is SERVICE_COMPLETED, task
information can be lost on a Service, making a dependent Service unavailable to find the
information. In this situation, you can set PURGE_INVOCATION_DATA to SERVICE_REMOVED
instead.

Queue Jump Conditions
The Queue Jump Condition is used to specify that a Task is placed at the front of the
waiting queue, rather than at the back. It cannot be set on a Session. A typical use case is a
Service that submits some work, waits for results, and submits more work based on earlier
results. If an early task fails and you need to resubmit it, you use this condition to make
sure it is executed as soon as possible instead of waiting for all other work to be complete.

Queue Jump Conditions are created programmatically using the
SchedulingConditionFactory class. For more information about using this class, see
Setting Discriminators Programmatically

TIBCO GridServer® Developer's Guide

163 | Using Conditions

Descriptor Conditions
Use Descriptor Conditions to display descriptive information about an invocation request.

Descriptive information about an invocation request is also available on the Task Admin
page and Admin API. Also, the Descriptor name is part of any log message for a task with a
Descriptor Condition.

Create Descriptors with the DescriptorFactory. For example:

DescriptorFactory descFactory = DescriptorFactory.getInstance();
descFactory.create("C++ Driver Linux Build");

You cannot create a Condition Set of Descriptors. A Descriptor Condition can be only a sole
Condition in a Service or Service Set.

EXTRAConditions
An EXTRACondition is an External Resource Advisory Condition, and is used to prevent
Engines from taking Tasks when a necessary external resource, such as a database
connection, is not available. When using EXTRAConditions, the scheduler ensures that a
task’s required resources are available before assigning it to an Engine.

There are two parts involved in using EXTRAConditions: defining the Service Condition, and
maintaining the EXTRACondition count. Like other Conditions, this type of Condition is
defined on the Service Conditions page, and consists of one or more named resources with
a numerical comparison. The current resource counts are then updated with a simple REST
API.

Using the EXTRACondition REST Interface
Each EXTRACondition consists of a key and value pair that specifies a resource count. To
use an EXTRACondition, you must create a key and then periodically update its count as
the resource count changes.

Resource counts for EXTRAConditions are created and updated with a REST API.

The EXTRACondition REST Interface root is:

TIBCO GridServer® Developer's Guide

164 | Using Conditions

http://host:port/livecluster/restadmin/extracondition-admin/

The REST interface resides on the Primary Director. Values are backed up to the Secondary
Director but updates to the Secondary Director are not replicated back if the Primary
Director comes back up. In the event of a Primary Director failure, you must use the
Secondary Director’s URL to update the EXTRACondition values until the Primary Director
comes back up.

The API includes the following resources:

• extracondition — for operations on a single EXTRACondition

• extraconditions — for operations on all EXTRAConditions.

REST requests use basic authentication.

Creating and Updating an EXTRACondition

HTTP PUT requests are used to create and modify an EXTRAConditon. The following syntax
is used:

/restadmin/extracondition-admin/extracondition/key

The value for the key must be passed in the body of the request. The request returns the
value of the EXTRACondition as a string with an HTTP Response code of 201 upon success.
Any other server-side error returns exception text with an HTTP Response code of 500.

For example, the following PUT request, when made with a value in the body of the
request, creates a new EXTRACondition for the key db.connections, or updates the existing
db.connections EXTRACondition:

/restadmin/extracondition-admin/extracondition/db.connections

Getting an Existing EXTRACondition

An HTTP GET request can be used to retrieve the value of an EXTRACondition. The following
syntax is used:

/restadmin/extracondition-admin/extracondition/key

TIBCO GridServer® Developer's Guide

165 | Using Conditions

If the EXTRACondition is not found, an HTTP Response code of 404 is returned. Any other
server-side error returns exception text with an HTTP Response code of 500.

For example, the following GET request returns the value of the EXTRACondition of the key
db.connections as a string with an HTTP Response code of 200 upon success:

/restadmin/extracondition-admin/extracondition/db.connections

Deleting an existing EXTRACondition

An HTTP DELETE request can be used to remove an EXTRACondition. The following syntax
is used:

/restadmin/extracondition-admin/extracondition/key

The request returns with an HTTP Response code of 200 even if the key does not exist. It
only returns an exception text with an HTTP Response code of 500 for other server errors
or an existing EXTRACondition was not able to be deleted.

For example, the following DELETE request deletes the EXTRACondition with the key
db.connections.

/restadmin/extracondition-admin/extracondition/db.connections

Batch Operations

There is also an extraconditions resource that enables you to make an HTTP GET to
retrieve all EXTRAConditions. The following syntax is used

/restadmin/extracondition-admin/extraconditions

The request returns a JSON array of key-value pairs formatted like the following:

{
 "Boston.BigFatDB.Connections":600,
 "SF.BigFatDB.Connections":500,
 "NYC.BigFatDB.Connections":1000
}

TIBCO GridServer® Developer's Guide

166 | Using Conditions

Similarly, an HTTP PUT with the same JSON in the body of the request updates or creates
all pairs in the list.

To batch delete EXTRAConditions, you must use an HTTP PUT using the following syntax:

/restadmin/extracondition-admin/extraconditions/delete

The keys being deleted must be passed in the body of the request, like the following:

{
 "Boston.BigFatDB.Connections",
 "SF.BigFatDB.Connections",
 "NYC.BigFatDB.Connections"
}

Batch operation requests return with an HTTP Response code of 200 upon success. Any
other server-side error returns exception text with an HTTP Response code of 500.

Setting EXTRAConditions
EXTRAConditions can be specified in Discriminators, which are attached to Services in the
GridServer Administration Tool at Services > Services > Service Conditions. You can
specify that one or more comparisons of EXTRACondition to resource criteria must be true,
or the Task is not given to an Engine.

When creating a Discriminator using an EXTRACondition, there is a modifier column for
each Condition, which you can set to a positive or negative number. When a Task is
assigned to an Engine, the scheduler modifies the EXTRACondition’s external resource
value by adding the modifier value. Note that the external resource value is not
automatically changed when a Task completes; you must script this using the REST
interface, as described above.

Condition Sets
In addition to using a single Condition, you can also combine Conditions. A Condition Set is
a set of one or more Conditions; the set is treated as a single Condition.

Create Condition Sets with ConditionSetFactory. (In Java, this is
com.datasynapse.gridserver.client.ConditionSetFactory.) After you create a Condition

TIBCO GridServer® Developer's Guide

167 | Using Conditions

Set, use its add method to add Conditions to it. There are three types of Condition Sets,
described below, which dictate how the Conditions are evaluated, and what Conditions can
be added.

AND set
The AND set creates a set of ANDed Conditions. Two possible combinations of Conditions
are legal in an AND set:

• An AND set can contain Discriminators, Dependencies, or both. If all the Conditions
in the set are true, the Condition Set is true.

• Or, an AND set can contain Property Affinity Conditions. If all Affinity Conditions are
true, the scores that match are added to the affinity score.

You cannot mix Discriminators, Dependencies, and Property Affinity Conditions in one AND
set. Note that you cannot add Descriptor Conditions to an AND set.

OR Set
The OR set creates a set of Conditions for which any Condition can be true for the set to be
true. The OR set can contain only Discriminators, Dependencies, and sets of either or both.

Service Set
The Service Set creates a Condition Set for adding different Condition types to an
Invocation or Session. You can add this set only to ServiceFactory.createService(...),
Service.execute(...), and Service.execute(...). You can add only one Condition of
each type (Discriminator/Dependency, Affinity, Descriptor, and QueueJump).

You can, however, add a Condition Set containing only one type of Condition. For example,
a Service Set could include a Condition Set of Discriminators and Dependencies, a
Condition Set of Property Affinity Conditions, and a Descriptor. (You cannot create a set of
Descriptor Conditions.)

TIBCO GridServer® Developer's Guide

168 | Using Conditions

Engine Properties
Within GridServer, each Engine has a set of properties. GridServer sets some Engine
properties automatically, such as the Engine’s operating system and the estimated speed
of the Engine’s processor. You can also create custom properties for Engines.

Intrinsic Engine Properties
An Engine has a number of properties that reflect machine-specific information, such as
OS, hostname, free memory, and so on. For information about these properties, see
EngineProperties in the com.datasynapse.gridserver.engine package of the API
documentation.

Custom Engine Properties
You can create your own custom Engine properties, and give them values using the
GridServer Administration Tool. To do so, first, create the property on the Manager, and
then give it a value for each Engine, either from the GridServer Administration Tool or
programmatically with the Admin API.

To create new custom Engine properties and give them values with the Administration
Tool:

1. In the GridServer Administration Tool, go to Grid Components > Engines > Engine
Properties.

2. In the upper right corner, click Add.

3. Enter a property name and a brief description, then click Add. You can now set a
value to this property on any Engine.

4. Go to Grid Components > Engines > Daemon Admin and select Set Property for
Daemons on Page or Set Property for All Daemons from the Global Actions list.
This displays the user-defined properties you can set on Engines started by a
Daemon.

5. Select one or more Engine Daemons from the list, then select a predefined property
and enter a value, or enter a new property name and assign a value.

Instead of 3-4, you can also use the Admin API on a Driver to programmatically set them.

TIBCO GridServer® Developer's Guide

169 | Using Conditions

Engine Session Properties
Session Properties are properties that last for the duration of an Engine session on the
Manager. They are set on an Engine when it logs in and reset when the Engine logs off.

This example sets a Session Property:

public void init() {
 // initialize some static data for use by another service
 EngineSession.setProperty("inited", "true");
 // this property can now be used by the Discriminator
 // of the other Service
}

See the API documentation for the EngineSession class for more information.

GPU Services Engine Properties
One set of intrinsic Engine properties is the CUDA GPU Engine properties set. On Windows
and Linux systems, the Engine Daemon detects the presence and characteristics of GPU
processors with the CUDA runtime library and provides those characteristics as Engine
properties. This allows for the development of Services that can take advantage of
machines that have GPU cards.

If the Engine Daemon detects a CUDA GPU, it sets the following Engine properties:

• CUDA_DEVICES – The number of CUDA devices detected on an Engine.

• CUDA_FIRST_GPU_NAME – The name of the first CUDA device.

• CUDA_GLOBAL_MEMORY – The amount of CUDA global memory supported. If there is
more than one device, this is the minimum amount supported.

• CUDA_VERSION – The CUDA capability version. If there is more than one device, this is
the minimum version.

• CUDA_PROCESSORS – The number of CUDA processors supported. If there is more than
one device, this is the minimum number of processors.

Note that on 64-bit Windows machines, CUDA properties are only detected when the
Engine Daemon is started on the physical console. Engine Daemons started via RDP do not
detect any GPUs.

TIBCO GridServer® Developer's Guide

170 | Using Conditions

On Linux machines, you must ensure that the device files /dev/nvidia* exist and have
read/write file permissions for the user running the Engine. This can be done by creating a
startup script to load the driver kernel module and create the entries at boot time. For
more information, see the Linux documentation at the NVIDIA support site.

See the CUDA example in the GridServer SDK for more information.

CUDA detection was tested on the GeForce 210 device with 3.0 drivers, GeForce 9800 GT
device with 3.10 drivers, the Quadro NVS 295 with 3.0 and 3.20 drivers, and the Quadro FX
380 with 3.10 drivers.

MIC Processor Engine Properties
TIBCO GridServer® supports Intel Many Integrated Cores (MIC) coprocessors. This includes
MIC detection and Engine properties that provide information that can be used for
discrimination.

Intel MIC coprocessors, such as the Xeon PHI, are a multi-core processor architecture
capable of running a large number of tasks in parallel due to a large number of physical
cores available in the card. MIC coprocessors support two execution models: native, where
programs are executed directly in the co-processor; and offload, where programs are
executed in the host machine and some parts are executed in the coprocessor. Support for
the MIC coprocessor in GridServer is restricted to the offload model.

Requirements

Support for MIC coprocessors requires the following:

• Linux on X86_64

The following compilers are supported:

• Intel Composer XE 13

MIC support has the following limitations:

• The Engine requires a pre-load of shared libraries to run Services with offload code.

• Services with offload code share global objects across Service instances. This is a
limitation due to how Intel handles shared libraries with offload code.

• The availability of the MIC coprocessor is determined at Engine Daemon startup
time. Changes to the status of coprocessors are not visible to the Engines.

TIBCO GridServer® Developer's Guide

171 | Using Conditions

Properties

If the Engine Daemon detects a MIC device, it sets the following Engine properties:

• MICDevices – The number of MIC devices enabled at the Engine Daemon startup
time.

• MICModel – The identifier of the coprocessor model. This information is based on
information from the cpuid opcode.

• MICCores – The number of logical cores.

• MICMemory – The amount of memory in bytes.

MICModel, MICCores, and MICMemory refer to the oldest co-processor available in the host
machine. Oldest is defined based on this information from the cpuid opcode.

Configuration

To use MIC in your Service, you must do the following:

Engine Configuration

To preload the required shared libraries:

1. In the TIBCO GridServer® Administration Tool, go to Grid Components > Engines>
Engine Configurations and select the appropriate Engine configuration.

2. Set this value under Engine Daemon and Instance Process Settings: Environment
Variables:

 LD_PRELOAD=libjsig.so liboffload.so.5

libjsig.so is part of the JRE and liboffload.so.5 is part of the Intel runtime
libraries.

Service Type

Services with offload code require unloadNativeLibrary set to false in the Service Type
registry.

TIBCO GridServer® Developer's Guide

172 | Using Conditions

Grid Libraries

Services with the above Service Type setting share global objects across Services. Use the
<conflict> setting in your grid-library.xml to avoid sharing of global objects with other
Services:

<?xml version="1.0" encoding="UTF-8"?>
<grid-library>
 ...
 <conflict>
 <grid-library-name>[name of grid-library that shares global
objects]</grid-library-name>
 </conflict>
 ...
</grid-library>

See the MIC example in the GridServer SDK for more information.

NUMA Engine Properties and Configuration
Non-uniform memory access (NUMA) can increase processor speed without increasing the
load on the processor bus. In a NUMA system, CPUs are arranged in smaller systems called
nodes. A node has its own processors and memory and is connected to the larger system.
The system attempts to improve performance by scheduling processes on processors that
are in the same node as the memory being used.

Requirements

NUMA is only supported on Windows Engines.

Windows 7 and Windows 2008 R2 require the following hotfix:
http://support.microsoft.com/kb/2417038

32-bit Engine installations in 64-bit Windows are only able to address processors #0
through #31 in any given processor group.

Properties

The following Engine properties are related to NUMA support:

• HIGHEST_NUMA_NODE – The highest NUMA node available in the system. 0 is reported
in non-NUMA systems.

TIBCO GridServer® Developer's Guide

173 | Using Conditions

• PROCESS_SCHEDULING_POLICY – The process scheduling policy in effect. The possible
values are described below.

Configuration

To change the process scheduling policy to use NUMA:

1. In the TIBCO GridServer® Administration Tool, go to Grid Components > Engines>
Engine Configurations and select the appropriate Engine configuration.

2. Change the Process Scheduling Policy to the desired value, which is described
below.

There are three possible process scheduling policy settings in the Engine Configuration:

• Native (the default) uses the process scheduling as assigned by Windows.

• Balanced makes the best effort to balance the number of Engine processes and
processors. The Engine process is allowed to run in all processors in a given
processor group. Engines can run in processors from different NUMA nodes.

• NUMA makes the best effort to assign Engine processes to the ideal NUMA node.
This option is implicitly 'balanced'. An Engine process is only allowed to run in
processors in the ideal NUMA node.

Balanced Versus Native Policies

Windows assigns processes to processor groups at creation time in a round-robin fashion.
This might be undesirable when you have an unbalanced number of logical processors in
processor groups. Processor groups with fewer logical processors might end up with the
same number of Engines as processor groups with more logical processors.

The balanced policy attempts to assign Engines proportionally to the number of logical
processors in the processor groups. The processor group with more logical processors is
assigned more Engines.

The native policy is preferred when the number of logical processors in processor groups is
balanced.

Balanced and native policies behave identically in machines with at most one processor
group or no support for processor groups.

TIBCO GridServer® Developer's Guide

174 | Extending GridServer

Extending GridServer
You can extend the GridServer Manager and Engine with Manager and Engine Hooks. A
Manager Hook enables you to interface your own Java object directly with the Manager’s
event processing mechanism and interact with any Server Event. An Engine Hook can
perform user-defined operations on Engine startup or termination, or before or after
Service invocation.

A Hook consists of two parts: the class implementation of the Hook, and the Hook
registration. Register Manager Hooks on the Hook Admin page. Register Engine Hooks with
an XML file that is deployed to Engines.

Manager Hooks
You can create Manager Hooks on the Broker or the Director. Depending on where the
hook resides, it receives a different subset of the Server Events broadcast by the Manager.
See the ServerEvents class JavaDoc for available events and the components for which
they are relevant. For example, a hook that needs to see the addition or removal of an
Engine must run on the Broker, because the ENGINE_ADDED and ENGINE_REMOVED events are
Broker specific.

For details on Manager Hook implementation, see the JavaDoc documentation for the
ServerHook class. After implementing a Manager Hook, contain its class definition in a JAR
file in the shared classes directory (hooks/component, where component is either broker or
director).

To register a Manager Hook in the GridServer Administration Tool, go to Admin > System
Admin > Manager Hooks. The Hook Admin page enables you to edit, enable, or disable
hooks on the Manager. To add a new hook, select Create New Hook from the Global
Actions list. This opens a Hook Editor in a new window. Enter a filename for the hook XML
file, and select whether to apply the hook to the Director or Broker. Enter the name of a
class in the hooks directory and click Update Properties to display an updateable property
list. After you enter properties, click Save to edit the hook or Cancel to revert to the last
saved version of the hook.

From the Actions control of each hook, you can Enable, Disable, Edit, or Delete an existing
hook. Note that you do not need to restart the Manager after deploying the JAR file.

TIBCO GridServer® Developer's Guide

175 | Extending GridServer

However, if you redeploy a JAR file, you must remove and re-add the hook for any new
changes to take effect.

Engine Hooks
Engine Hooks are implemented to perform operations on an Engine:

• On library initialization

• Before or after Service invocation

• On Engine termination

Engine Hooks are useful for performing AOP operations such as setting up a global
environment, administering a database or other external component, or collecting metrics
on performance or utilization without requiring Services to call a library on their own. You
can also use them to do things like restart an Engine after a certain number of invocations.

Engine Hook implementation details are in the JavaDoc documentation for the EngineHook
class.

Add Engine Hooks by adding the XML and JAR file containing the class definition to a Grid
Library. In order for an Engine Hook to always be loaded at Engine startup, you can define
it as a Super Grid Library. For more information about Super Grid Libraries, see the TIBCO
GridServer® Administration. You can use multiple XML files in Grid Libraries (as opposed to
the method of having a single hooks.xml file, used in previous releases). Note that if you
are using Grid Libraries, hooks in the deploy directory do not work. For an example of the
XML format to use for your Hook, see the EngineHook JavaDoc.

Engine Hook Example
The following example initializes a JDBC database.

package examples.hook;
import com.datasynapse.gridserver.engine.*;
import java.sql.*;
import java.util.*;
/*
* This is an example of a hook that initializes data from a database.
* The property "initialized" can be used to discriminate on Services,

TIBCO GridServer® Developer's Guide

176 | Extending GridServer

so that
* only Engines that have initialized the data will take tasks.
*/

public class JDBCHook extends EngineHook {
public void initialized() {

 initializeData();
 EngineSession.setProperty("initialized", "true");
 }
 // static method is used by the task

public static Vector getData() {
return vData;

}
private void initializeData() throws ClassNotFoundException {

System.out.println("initializing");
Class cl = Class.forName(getDriver());
System.out.println("Driver class:" + cl);

boolean successful = false;
do {

 try {
 Connection conn = DriverManager.getConnection(getUrl(),
 getUsername(), getPassword());
 PreparedStatement ps = conn.prepareStatement("select *
from
 people");
 ResultSet rs = ps.executeQuery();
 System.out.println("rs:" + rs);
 while (rs.next())
 vData.add(rowToLine(rs));
 successful = true;

} catch (SQLException e) {
System.out.println("JDBCHook: failed to retrieve data,

will try
 again.");

}
if (!successful) {

try { Thread.sleep(getFrequency()); } catch
(InterruptedException ie) { break; }

}
} while (!successful);

}
static String rowToLine(ResultSet input) throws SQLException {

StringBuffer buf = new StringBuffer();
int cols = input.getMetaData().getColumnCount();
for (int i=1; i <= cols; i++) {

buf.append(input.getString(i));
buf.append(' ');

}
buf.append('\n');

TIBCO GridServer® Developer's Guide

177 | Extending GridServer

return buf.toString();
}
public final void setUrl(String url) {

_url = url;
}
public final String getUrl() {

return _url;
}
public final String getDriver() {

return _driver;
}

public final void setDriver(String driver) {
_driver = driver;

}
public final String getUsername() {

return _user;
}
public final void setUsername(String user) {

_user = user;
}
public final String getPassword() {

return _pass;
}

public final void setPassword(String password) {
_pass = password;

}
public final void setFrequency(long frequency) {

_frequency = frequency;
}
public final long getFrequency() {

return _frequency;
}
private String _url;
private String _driver;
private String _user;
private String _pass;
private long _frequency = 5000;
private static Vector vData = new Vector();

}

The following is also an example of the XML to add to the hooks.xml file for the JDBC
example given above.

<hook class="examples.hook.JDBCHook">
<property name="username" value="sa"/>
<property name="password" value=""/>
<property name="url"

TIBCO GridServer® Developer's Guide

178 | Extending GridServer

 value="jdbc:HypersonicSQL:hsql://%server%:2034"/>
<property name="driver" value="org.hsql.jdbcDriver"/>

</hook>

Implementing Engine Hooks as a Grid Library
To implement an Engine Hook as a Grid Library you must create a type of Grid Library
called a Super Grid Library. If you are unfamiliar with implementing a Grid Library, review
Creating Services.

Super Grid Libraries are very similar to regular Grid Libraries. You still need to use a ZIP
archive to contain the code and XML documents just like a regular Grid Library. In the
grid-library.xml, you must add an attribute to the <grid-library> element called super
which is set to true. Additionally, for the code to be used as an Engine Hook, you must
specify a folder where the XML descriptor for the hook is contained. Below is an example of
a grid-library.xml file that has been set up for an Engine Hook:

<?xml version="1.0" encoding="UTF-8"?>
<grid-library super="true">

<grid-library-name>AddPropHook</grid-library-name>
<grid-library-version>1.0</grid-library-version>
<jar-path>

<pathelement>jars</pathelement>
</jar-path>
<hooks-path>

<pathelement>hook</pathelement>
</hooks-path>

</grid-library>

Populating the Super Grid Library is also very similar to a regular Grid Library. The folder
structure includes the folder you specified in the grid-library.xml for the hook's XML
descriptor and the grid-library.xml is placed at the top level of the folder structure
within the Grid Library. For example, the following is the top level folder structure for an
example Engine Hook:

 jars/
 AddPropHook.xml

grid-library.xml

TIBCO GridServer® Developer's Guide

179 | Extending GridServer

Once the Super Grid Library has been constructed, upload it to the Manager in exactly the
same way as a standard Grid Library. After it is deployed, the Engines discover it is a Super
Grid Library and immediately execute the initialized() method.

TIBCO GridServer® Developer's Guide

180 | Task Instrumentation

Task Instrumentation
This Appendix describes the instrumentation phases produced by enabling task
instrumentation.

Overview
This Appendix describes the instrumentation phases produced by enabling task
instrumentation. To enable task instrumentation, see the TIBCO GridServer® Administration.

Warning
Use task instrumentation only for development, not for
production environments. Task instrumentation slows down
the Manager significantly, and also requires additional disk
space, so it is important to disable it after you finish using it.

Syntax
All instrumentation phases have an absolute time marker, which is the time at the start of
the action. Actions also have a relative duration marker, if it is possible to measure the
duration. The times are marked according to the client’s clock.

Instrumentation phases have the following syntax:

[Client] [Action] [Object]

Client
The Client of an instrumentation phase can be one of the following:

• Engine

TIBCO GridServer® Developer's Guide

181 | Task Instrumentation

• Driver

• Broker

Action
The Action of an instrumentation phase can be one of the following:

Action Description

Send A send of a message. The absolute time is the start time of the send, and
there is no duration value.

Receive A receive of a message. The absolute time is the end of the retrieval. There is
no duration value.

Retrieve A receive, with a measurement of the duration. The absolute time is the time
at which the retrieval started.

Serialize The conversion of an in-memory object to its serialized format, for transfer to
another client.

Deserialize The conversion of a serialized object to an in-memory object.

Write The writing of data to a file, typically for DDT (Direct Data Transfer).

Download The downloading of data from another client.

Call A call to a user-implemented method.

Load A native library load.

Instrumentation Phase Actions

Object
The Object of an instrumentation phase can be one of the following

TIBCO GridServer® Developer's Guide

182 | Task Instrumentation

Object Description

Jar The JAR file, which is only used for dynamic class loading.

Instance The instance object, which is either the task or the initialization data.

Input The input data or message.

Output The output data or message.

Update The update data, message, or call.

Checkpoint Checkpoint data, if checkpointing is enabled.

Library A native library.

Initialize The initialization call.

Service The Service call.

Completed The callback on completion.

Failed The callback on failure.

Serialize The call to a user-implemented native serialize method.

Deserialize The call to a user-implemented native deserialize method.

Instrumentation Phase Objects

Phases
The following is the complete list of all phases.

Driver-side
The following are Driver-side phases:

TIBCO GridServer® Developer's Guide

183 | Task Instrumentation

Phase Description

Driver
Serialize Jar

The serialization of the JAR file when the JAR file is set.

Driver
Serialize
Instance

The serialization of the Service instance object.

Driver
Serialize
Input

The serialization of the Service input.

Driver Send
Input

The time the Driver sends the input message to the Broker. Keep in mind that
more than one input can be sent in one message.

Driver Call
Completed

The callback of a successful task.

Driver Call
Failed

The callback of a failed task.

Driver
Download
Output:

The download of output over DDT.

Driver
Deserialize
Output

Driver
Retrieve
Output

The time at which the Driver receives the output message from the Broker.
Keep in mind that more than one output can be retrieved in one message.

Instrumentation Driver-side Phases

Engine-side
The following are Engine-side phases:

TIBCO GridServer® Developer's Guide

184 | Task Instrumentation

Phase Description

Engine Receive Input The time at which the Engine receives the input message from
the Broker.

Engine Deserialize
Instance

The deserialization of the Service instance object.

Engine Call Initialize The initialization call.

Engine Download Update The download of update data.

Engine Deserialize Update The deserialization of update data.

Engine Call Update The update call.

Engine Deserialize Input The conversion of the serialized input to an in-memory object.

Engine Download
Checkpoint

The download of checkpoint data from another Engine.

Engine Call Service The Service call.

Engine Serialize Output The serialization of the output.

Engine Send Output The time at which the Engine sends the output message to the
Broker.

Instrumentation Engine-side Phases

Broker-side
The following are Broker-side phases:

Phase Description

Broker Receive The time at which the Broker received the input from the Driver.

Instrumentation Broker-side Phases

TIBCO GridServer® Developer's Guide

185 | Task Instrumentation

Phase Description

Input

Broker Send
Input

The time at which the Broker sent the input to the Engine.

Broker Receive
Output

The time at which the Broker received the output from the Engine.

Broker Send
Output

The time at which the Broker sent the output to the Driver.

Broker Remove
Output

The time at which the Broker removed the output due to the
acknowledgment from the Driver.

DDT file write
The following are DDT file write phases:

Phase Description

[Client] Write Input: The input file write.

[Client] Write Output: The output file write.

[Client] Write Instance The instance object write.

[Client] Write Jar The JAR file write.

[Client] Write Update The update data write.

DDT File Write Phases

Client can refer to the Engine, Driver, or Broker.

TIBCO GridServer® Developer's Guide

186 | Task Instrumentation

Native
The following are native phases:

Phase Description

Engine Load Library The load of a native dynamic library.

Driver Call Serialize The native object serialize call.

Driver Call Deserialize The native object deserialize call.

Native Phases

Example Phases in a Service Execution
The following is a reference example of a typical list of native Service execution phases.
Not all possible phases are shown.

Phase Description

Driver Serialize
Instance

The serialization of the Service instance object.

Driver Serialize
Input

The serialization of the Service input.

Driver Write
Input

Driver writes input data to the driver machine file system.

Driver Write
Instance

Driver writes task data to the driver machine file system.

Driver Send
Input

Driver sends the input message to the Broker. Keep in mind that more
than one input can be sent in one message.

Example Service Execution Phases

TIBCO GridServer® Developer's Guide

187 | Task Instrumentation

Phase Description

Broker Receive
Input:

Broker receives the new task entry.

Broker Send
Input

Broker sends the input to the Engine.

Engine Receive
Input

Engine receives the input message from the Broker.

Engine
Deserialize
Instance

Engine deserializes task data.

Engine Load
Library

Engine loads all necessary libraries for the task.

Engine Call
Initialize

Engine calls init method.

Engine
Deserialize Input

Engine deserializes input data.

Engine Call
Service

Engine executes the task.

Engine Serialize
Output

Engine serializes output data.

Engine Write
Output

Engine writes output data to disk.

Engine Send
Output

Broker receives the task complete message from Engine.

Broker Receive
Output

Broker marks the task complete.

TIBCO GridServer® Developer's Guide

188 | Task Instrumentation

Phase Description

Broker Send
Output

Broker notifies the driver that the task is ready to collect.

Driver Retrieve
Output

Driver retrieves completed tasks info from Broker.

Driver Download
Output

Driver gets output data from Engine.

Driver
Deserialize
Output

Driver deserializes output data.

Driver Call
Completed

Driver completes the task.

Broker Remove
Output

Broker removes the task from the task entry.

TIBCO GridServer® Developer's Guide

189 | The grid-library.dtd

The grid-library.dtd
The grid-library.xml configuration file in the root of a Grid Library must be a well-
formed XML file. The GridServer SDKs include a grid-library.dtd file that can be used to
validate the XML file. The DTD is also shown in this section

The grid-library.dtd
The following is the grid-library.dtd file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- Copyright 2022 TIBCO Software, Inc. All Rights Reserved. -->
<!-- Grid-Library is in the root of the GL. -->
<!ELEMENT grid-library (grid-library-name, grid-library-version?,
arguments?, dependency*, conflict*, jar-path*, lib-path*,
assembly-path*, command-path*, hooks-path*, environment-variables*,
java-system-properties*)>
<!ATTLIST grid-library jre (true|false) "false">
<!ATTLIST grid-library bridge (true|false) "false">
<!ATTLIST grid-library super (true|false) "false">
<!ATTLIST grid-library os CDATA #IMPLIED >
<!ATTLIST grid-library compiler CDATA #IMPLIED >
<!-- The library name. -->
<!ELEMENT grid-library-name (#PCDATA)>
<!-- The version. If not specified, 0 is implied. -->
<!ELEMENT grid-library-version (#PCDATA)>
<!-- Additional arguments to the JVM. -->
<!ELEMENT arguments (property*)>
<!-- A library dependency. Dependencies can be specified by package name
and
 optional version.
 If the version is not specified, the latest version is chosen at
load time. -->
<!ELEMENT dependency (grid-library-name, grid-library-version?)>
<!-- A library conflict. Indicates that this library conflicts with the
given
 library.
 If this library is NOT a dependency, and grid-library-name="*",
 then it indicates that this library conflicts with all other
libraries

TIBCO GridServer® Developer's Guide

190 | The grid-library.dtd

(aside from its own dependencies). -->
<!ELEMENT conflict (grid-library-name)>
<!-- The JAR path. If specified, all jars and classes in the path are
loaded. -->
<!ELEMENT jar-path (pathelement*)>
<!ATTLIST jar-path os CDATA #IMPLIED>
<!ATTLIST jar-path compiler CDATA #IMPLIED>
<!-- An element of a path, typically a directory. -->
<!ELEMENT pathelement (#PCDATA)>
<!-- Load library path. If not specified, it is assumed that no native
libraries are
 loaded by this GL.
 If this is specified and it the library was not loaded at init
time, the Engine will restart, adding this path to the current
path. -->
<!ELEMENT lib-path (pathelement*)>
<!ATTLIST lib-path os CDATA #IMPLIED>
<!ATTLIST lib-path compiler CDATA #IMPLIED>
<!-- .NET assembly path.
System.AppDomain.CurrentDomain.AppendPrivatePath(path) will be called on
this path,

which add it to the lookup location for assemblies. -->
<!ELEMENT assembly-path (pathelement*)>
<!ATTLIST assembly-path os CDATA #IMPLIED>
<!ATTLIST assembly-path compiler CDATA #IMPLIED>
<!-- The path in which the Engine will search for Command Service
executables. -->
<!ELEMENT command-path (pathelement*)>
<!ATTLIST command-path os CDATA #IMPLIED>
<!ATTLIST command-path compiler CDATA #IMPLIED>
<!-- Engine hooks library path. Hook will be initialized as libraries
are loaded. -->
<!ELEMENT hooks-path (pathelement*)>
<!ATTLIST hooks-path os CDATA #IMPLIED>
<!ATTLIST hooks-path compiler CDATA #IMPLIED>
<!-- Environment variables to set. Environment variables are set via JNI
immediately prior to executing a task using this library. -->
<!ELEMENT environment-variables (property*)>
<!ATTLIST environment-variables os CDATA #IMPLIED>
<!ATTLIST environment-variables compiler CDATA #IMPLIED>
<!-- A property, used by env vars & system props. -->
<!ELEMENT property (name,value)>
<!-- The name for a property element. -->
<!ELEMENT name (#PCDATA)>
<!-- The value for a property element. -->
<!ELEMENT value (#PCDATA)>
<!-- Java system properties, which are set upon load. -->
<!ELEMENT java-system-properties (property*)>

TIBCO GridServer® Developer's Guide

191 | The grid-library.dtd

<!ATTLIST java-system-properties os CDATA #IMPLIED>
<!ATTLIST java-system-properties compiler CDATA #IMPLIED>
<!-- end of grid-library dtd -->

TIBCO GridServer® Developer's Guide

192 | REST API Reference

REST API Reference
Web services that can be used by Grid Server components such as Director, Broker, Engine,
and Driver are explained here. By using these web services, you can perform different types
of operations over the grid components.

APIs for the following classes are available:

l BatchAdmin

l BrokerAdmin

l DriverAdmin

l DriverManager

l EngineAdmin

l EngineDaemonAdmin

l ManagerAdmin

l ServiceAdmin

l UserAdmin

l Version

BatchAdmin
Provides administrative access to the Batches and Batch executions on a Broker. Methods
in class BatchAdmin are listed in the following table:

Method Method
Type

Description

batch-definition POST Stores the XML contents to a Batch definition on the

TIBCO GridServer® Developer's Guide

193 | REST API Reference

Method Method
Type

Description

Broker.

batch-definition DELETE Removes a Batch definition stored on the Broker.

all-batch-execution-
info

GET Retrieves all the Batch execution information stored on
the Broker.

all-batch-info GET Retrieves information about all the Batch entries on the
Broker.

batch-count GET Retrieves the total number of Batch entries stored on the
Broker.

batch-definition GET Retrieves XML contents of the Batch definition.

batch-definition-
names

GET Retrieves the Batch definition names stored on the
Broker.

batch-execution-
count

GET Retrieves the total number of Batch executions stored on
the Broker.

batch-execution-ids GET Retrieves the list of Batch execution IDs stored on the
Broker.

batch-execution-
info

GET Retrieves information about a given Batch execution ID
stored on the Broker.

batch-execution-
info-by-batch-id

GET Retrieves all the Batch execution information about a
given Batch entry stored on the Manager.

batch-ids GET Retrieves the list of Batch entry IDs stored on the Broker.

batch-info GET Retrieves the Batch entry information about a given Batch
entry ID stored on the Broker.

running-batch- GET Retrieves the total number of running batch executions

TIBCO GridServer® Developer's Guide

194 | REST API Reference

Method Method
Type

Description

execution-count stored on the Broker.

scheduled-batch-
count

GET Retrieves the total number of scheduled Batch entries on
the Broker.

selected-batch-
execution-info

POST Retrieves information about given Batch execution IDs
stored on the Broker.

selected-batch-info POST Retrieves information about given Batch entry IDs stored
on the Broker.

available GET Retrieves whether methods are available.

batch DELETE Removes the information about a finished or suspended
Batch entry.

batch-execution DELETE Removes the information about a finished or failed Batch
execution.

finished-batch-
executions

DELETE Removes the information about all finished Batch
executions on the Broker.

finished-batches DELETE Removes the information about all finished Batch entries
on the Broker.

resume-batch PUT Resumes a suspended Batch entry.

schedule-batch-
definitions

GET Runs the specified Batch definition.

suspend-all-batches PUT Suspends all Batch entries running on the Broker.

suspend-batch PUT Suspends a scheduled Batch entry.

TIBCO GridServer® Developer's Guide

195 | REST API Reference

batch-definition
Stores the XML contents to a Batch definition on the Broker.

Example Request

POST http://example.com:8080/livecluster/rest/batch/batch-definition

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

name
String Name of

Batch
definition

NewCalculatorServiceExample

contents
String XML

contents of
Batch
definition

<?xml version="1.0"
encoding="UTF-8"?>
<Batch class="com.datasynapse.
gridserver.batch.Batch">
<property name="name"
value="CalculatorServiceExample"
/>
<property name="description"
value="Batch Example that runs
the Calculator Service" />
<property name="type"
value="serial" />
<Schedule class="com.datasynapse.
gridserver.batch.Schedule">
<property name="type"
value="Immediate" />
</Schedule>
<Command class="com.datasynapse.
gridserver.batch.command.

TIBCO GridServer® Developer's Guide

196 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

LogCommand"><property
name="message" value="Starting
Java Calculator Service Example"
/>
</Command>
<ServiceRunnerReference
class="com.datasynapse.
gridserver.batch.
ServiceRunnerReference"><property
name="name"
value="JavaCalculatorRunnerExampl
e" />
</ServiceRunnerReference>
<Command class="com.datasynapse.
gridserver.batch.command.
LogCommand"><property
name="message" value="Done
running Java Calculator Service
Example" />
</Command>
</Batch>

Example Response
204 no content

Result: The Batch definition is added to the Broker.

batch-definition
Removes a Batch definition stored on the Broker.

Example Request

DELETE http://example.com:8080/livecluster/rest/batch/batch-definition

TIBCO GridServer® Developer's Guide

197 | REST API Reference

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

name
String Name of batch

definition
whose
definition
needs to be
removed from
the Broker

CalculatorServiceExample

Example Response
204 no content

Result: Batch definition is removed from the Broker.

all-batch-execution-info
Retrieves all the Batch execution information stored on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/batch/all-batch-execution-
info

Example Response

[
{
"name": "CalculatorServiceExample",
"startTime": 1578568486582,
"status": "Failed",
"batchId": 4562207508471809452,

TIBCO GridServer® Developer's Guide

198 | REST API Reference

"batchExecutionId": 6976777355170490963
}

]

all-batch-info
Retrieves information about all the Batch entries on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/batch/all-batch-info

Example Response

[
{
"name": "CalculatorServiceExample",
"type": "serial",
"definition": "CalculatorServiceExample.xml",
"description": "Batch Example that runs the Calculator Service",
"suspended": false,
"status": "Finished",
"batchId": 4562207508471809452,
"nextRuntime": null,
"scheduleType": "Immediate",
"localFileName": "CalculatorServiceExample.xml",
"submitTime": 1578568485925
}

]

batch-count
Retrieves the total number of Batch entries stored on the Broker.

TIBCO GridServer® Developer's Guide

199 | REST API Reference

Example Request

GET http://example.com:8080/livecluster/rest/batch/batch-count

Example Response

0

batch-definition
Retrieves XML contents of the Batch definition.

Example Request

GET http://example.com:8080/livecluster/rest/batch/batch-definition

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

name
String Name of batch

definition
whose XML
content needs
to be retrieved

CalculatorServiceExample

Example Response

<?xml version="1.0" encoding="UTF-8"?>
<Batch class="com.datasynapse.gridserver.batch.Batch">
<property name="name" value="CalculatorServiceExample" />
<property name="description" value="Batch Example that runs the

TIBCO GridServer® Developer's Guide

200 | REST API Reference

Calculator Service" />
<property name="type" value="serial" />
<Schedule class="com.datasynapse.gridserver.batch.Schedule"><property
name="type" value="Immediate" />
</Schedule>
<Command
class="com.datasynapse.gridserver.batch.command.LogCommand"><property
name="message" value="Starting Java Calculator Service Example" />
</Command>
<ServiceRunnerReference
class="com.datasynapse.gridserver.batch.ServiceRunnerReference"><propert
y name="name" value="JavaCalculatorRunnerExample"
/></ServiceRunnerReference>
<Command
class="com.datasynapse.gridserver.batch.command.LogCommand"><property
name="message" value="Done running Java Calculator Service Example" />
</Command>
</Batch>

batch-definition-names
Retrieves the Batch definition names stored on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/batch/batch-definition-
names

Example Response

[
"CalculatorServiceExample.xml"

]

batch-execution-count
Retrieves the total number of Batch executions stored on the Broker.

TIBCO GridServer® Developer's Guide

201 | REST API Reference

Example Request

GET http://example.com:8080/livecluster/rest/batch/batch-execution-count

Example Response

0

batch-execution-ids
Retrieves the list of Batch execution IDs stored on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/batch/batch-execution-ids

Example Response

[
6976777355170490963

]

batch-execution-info
Retrieves information about a given Batch execution ID stored on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/batch/batch-execution-info

Example Input

Parameters

TIBCO GridServer® Developer's Guide

202 | REST API Reference

Parameter Name Data
Type

Description Sample Value

instanceId
Long Batch

execution ID of
the Batch
whose
information
needs to be
retrieved

4534714832987845913

Example Response

{
"name": "CalculatorServiceExample",
"startTime": 1578902422107,
"batchExecutionId": 4534714832987845913,
"status": "Finished",
"batchId": 7270548312726024832

}

batch-execution-info-by-batch-id
Retrieves all the Batch execution information about a given Batch entry stored on the
Manager.

Example Request

GET http://example.com:8080/livecluster/rest/batch/batch-execution-info-
by-batch-id

Example Input

Parameters

TIBCO GridServer® Developer's Guide

203 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

batchId
Long Batch entry ID

of the Batch
whose
execution
information
needs to the
retrieved

4562207508471809452

Example Response

[
{

"name": "CalculatorServiceExample",
"startTime": 1578568486582,
"status": "Failed",
"batchId": 4562207508471809452,
"batchExecutionId": 6976777355170490963

}
]

batch-ids
Retrieves the list of Batch entry IDs stored on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/batch/batch-ids

Example Response

[
4562207508471809452

]

TIBCO GridServer® Developer's Guide

204 | REST API Reference

batch-info
Retrieves the Batch entry information about a given Batch entry ID stored on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/batch/batch-info

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

batchId
Long Batch entry ID

of the Batch
whose batch
entry
information
needs to the
retrieved

4562207508471809452

Example Response

{
"name": "CalculatorServiceExample",
"type": "serial",
"definition": "CalculatorServiceExample.xml",
"description": "Batch Example that runs the Calculator Service",
"suspended": false,
"status": "Finished",
"batchId": 4562207508471809452,
"nextRuntime": null,
"scheduleType": "Immediate",
"localFileName": "CalculatorServiceExample.xml",
"submitTime": 1578568485925

}

TIBCO GridServer® Developer's Guide

205 | REST API Reference

running-batch-execution-count
Retrieves the total number of running batch executions stored on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/batch/running-batch-
execution-count

Example Response

0

scheduled-batch-count
Retrieves the total number of scheduled Batch entries on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/batch/scheduled-batch-count

Example Response

0

selected-batch-execution-info
Retrieves information about given Batch execution IDs stored on the Broker.

Example Request

POST http://example.com:8080/livecluster/rest/batch/selected-batch-
execution-info

TIBCO GridServer® Developer's Guide

206 | REST API Reference

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Array of Batch
Execution IDs
whose
information
needs to be
retrieved

[
39333184909810832,
4534714832987845913

]

Example Response

[
{

"name": "CalculatorServiceExample",
"startTime": 1578900113522,
"batchExecutionId": 39333184909810832,
"status": "Finished",
"batchId": 5838911030065021273

},
{

"name": "CalculatorServiceExample",
"startTime": 1578902422107,
"batchExecutionId": 4534714832987845913,
"status": "Finished",
"batchId": 7270548312726024832

}
]

selected-batch-info
Retrieves information about given Batch entry IDs stored on the Broker.

TIBCO GridServer® Developer's Guide

207 | REST API Reference

Example Request

POST http://example.com:8080/livecluster/rest/batch/selected-batch-info

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Array of Batch
Entry IDs
whose
information
needs to be
retrieved

[
5838911030065021273,
7270548312726024832

]

TIBCO GridServer® Developer's Guide

208 | REST API Reference

Example Response

[
{

"name": "CalculatorServiceExample",
"type": "serial",
"definition": "CalculatorServiceExample.xml",
"suspended": false,
"description": "Batch Example that runs the Calculator Service",
"status": "Finished",
"submitTime": 1578900113129,
"batchId": 5838911030065021273,
"nextRuntime": null,
"scheduleType": "Immediate",
"localFileName": "CalculatorServiceExample.xml"

},
{

"name": "CalculatorServiceExample",
"type": "serial",
"definition": "CalculatorServiceExample.xml",
"suspended": false,
"description": "Batch Example that runs the Calculator Service",
"status": "Finished",
"submitTime": 1578902422059,
"batchId": 7270548312726024832,
"nextRuntime": null,
"scheduleType": "Immediate",
"localFileName": "CalculatorServiceExample.xml"

}
]

available
Retrieves whether methods are available.

Example Request

GET http://example.com:8080/livecluster/rest/batch/available

Example Response

True or False

TIBCO GridServer® Developer's Guide

209 | REST API Reference

batch
Removes the information about a finished or suspended Batch entry.

Example Request

DELETE http://example.com:8080/livecluster/rest/batch/batch

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

batchIds
Long Batch Entry ID

of Batch
whose
information
needs to be
removed

926167698331434208

Example Response
204 no content

Result: Information about the finished or suspended Batch entry is removed.

batch-execution
Removes the information about a finished or failed Batch execution.

Example Request

DELETE http://example.com:8080/livecluster/rest/batch/batch-execution

TIBCO GridServer® Developer's Guide

210 | REST API Reference

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

instanceId
Long Execution ID of

Batch whose
information
needs to be
removed

39333184909810832

Example Response
204 no content

Result: Information about the finished or failed Batch execution is removed.

finished-batch-executions
Removes the information about all finished Batch executions on the Broker.

Example Request

DELETE http://example.com:8080/livecluster/rest/batch/finished-batch-
executions

Example Response
204 no content

Result: Information about all finished Batch executions is removed from the Broker.

finished-batches
Removes the information about all finished Batch entries on the Broker.

TIBCO GridServer® Developer's Guide

211 | REST API Reference

Example Request

DELETE http://example.com:8080/livecluster/rest/batch/finished-batches

Example Response
204 no content

Result: Information about all finished Batch entries on the Broker is removed.

resume-batch
Resumes a suspended Batch entry.

Example Request

PUT http://example.com:8080/livecluster/rest/batch/resume-batch

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

bacthId
Long Batch Entry ID

of the Batch
that needs to
be resumed

5838911030065021273

Example Response
204 no content

Result: The suspended Batch entry is resumed.

TIBCO GridServer® Developer's Guide

212 | REST API Reference

schedule-batch-definitions
Runs the specified Batch definition.

Example Request

GET http://example.com:8080/livecluster/rest/batch/schedule-batch-
definition

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

name
String Name of the

batch
definition that
must be run

CalculatorServiceExample

Example Response

3668132062277102496.

Result: The running Batch Definition ID is returned.

suspend-all-batches
Suspends all Batch entries running on the Broker.

Example Request

PUT http://example.com:8080/livecluster/rest/batch/suspend-all-batches

TIBCO GridServer® Developer's Guide

213 | REST API Reference

Example Response
204 no content

Result: All Batch entries running on the Broker are suspended.

suspend-batch
Suspends a scheduled Batch entry.

Example Request

PUT http://example.com:8080/livecluster/rest/batch/suspend-batch

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

batchId
Long Batch entry ID

of the Batch
that needs to
be suspended

5838911030065021273

Example Response
204 no content

Result: The scheduled Batch entry is suspended.

BrokerAdmin
BrokerAdmin APIs provide administrative access to Brokers on a Director. They are listed in
the following table:

TIBCO GridServer® Developer's Guide

214 | REST API Reference

Method Method
Type

Description

service-
discriminator

POST Adds the service discriminator.

service-
discriminator

DELETE Deletes the Service Discriminator.

all-broker-info GET Retrieves information about all Brokers logged in to the
Director.

broker-count GET Retrieves the total number of Brokers logged in to the
Director.

broker-info GET Retrieves information about a given Broker.

engine-router GET Retrieves the Engine Router assigned to this Broker.

service-
discriminator

GET Retrieves the PropertyConditionSet used by the Service
Discriminator.

service-
discriminator-
names

GET Retrieves the names of all Service Discriminators.

shared-brokers GET Retrieves Broker sharing.

available GET Retrieves whether the methods are available.

driver-weight PUT Sets the Driver distribution weighing relative to other
Brokers.

engine-router POST Sets an Engine router for a given Broker.

engine-weight PUT Sets the Engine distribution weighting relative to other
Brokers.

maximum-engines PUT Sets the maximum number of Engines the Broker can

TIBCO GridServer® Developer's Guide

215 | REST API Reference

Method Method
Type

Description

manage.

min-idle-home-
engines

PUT Sets the minimum number of Idle Home Machines that the
Broker is left to manage.

minimum-engines PUT Sets the minimum number of Engines the Broker is left to
manage.

shared-brokers PUT Sets the Broker sharing.

service-discriminator
Adds the service discriminator.

Example Request

POST http://example.com:8080/livecluster/rest/broker/service-
discriminator

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

name
String Name of the Service

Discriminator that needs to
be added

TestDiscriminatorNew

TIBCO GridServer® Developer's Guide

216 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

— JSON Data of Service
Discriminator that needs to
be added

{

"descriptionCondition":{
"sets": [],
"conditions": [

{
"name":

"serviceName",

"comparison": 1,
"value":

"Lin",

"nullCompare": false
}

],
"type": 0

},

"engineCondition":{
"sets": [],
"conditions": [

{
"name":

"os",

"comparison": 3,
"value":

"linux64",

"nullCompare": false
}

],
"type": 0

}
}

Example Response
204 no content

Result: A new Service Discriminator is added.

TIBCO GridServer® Developer's Guide

217 | REST API Reference

service-discriminator
Deletes the Service Discriminator.

Example Request

DELETE http://example.com:8080/livecluster/rest/broker/service-
discriminator

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

name
String Name of the

Service
Discriminator
that needs to
be deleted

TestDiscriminatorNew

Example Response
204 no content

Result: The specified Service Discriminator is deleted.

all-broker-info
Retrieves information about all Brokers logged in to the Director.

Example Request

GET http://example.com:8080/livecluster/rest/broker/all-broker-info

TIBCO GridServer® Developer's Guide

218 | REST API Reference

Example Response

[
{

"minIdleHomeEngines": 0,
"name": "abcd",
"baseUrl": "http://win64vm091:8000/livecluster",
"engineWeight": 1.0,
"driverWeight": 1.0,
"maxEngines": 2500,
"minEngines": 0,
"brokerId": 899860077,
"driverCount": 1,
"failover": false,
"engineCount": 0,
"busyEngineCount": 0,
"engineRoutingConditions": [

{
"name": "AMIAvailZone",
"comparison": 1,
"value": "fvszgvsa",
"nullCompare": false

}
],
"engineRoutingComparators": [

{
"methodNum": 0,
"value": "fvszgvsa",
"name": "AMIAvailZone",
"nullComparison": false

}
],
"driverRoutingComparators": null,
"driverRoutingConditions": null,
"hostname": "http://win64vm091:8000/livecluster"

}
]

broker-count
Retrieves the total number of Brokers logged in to the Director.

TIBCO GridServer® Developer's Guide

219 | REST API Reference

Example Request

GET http://example.com:8080/livecluster/rest/broker/broker-count

Example Response

1.

broker-info
Retrieves information about a given Broker.

Example Request

GET http://example.com:8080/livecluster/rest/broker/broker-info

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

id
Long Broker ID of

Broker whose
information
needs to be
retrieved

899860077

Example Response

{
"minIdleHomeEngines": 0,

"name": "abcd",
"baseUrl": "http://win64vm091:8000/livecluster",

TIBCO GridServer® Developer's Guide

220 | REST API Reference

"engineWeight": 1.0,
"driverWeight": 1.0,
"maxEngines": 2500,
"minEngines": 0,
"brokerId": 899860077,
"driverCount": 1,
"failover": false,
"engineCount": 0,
"busyEngineCount": 0,
"engineRoutingConditions": [

{
"name": "AMIAvailZone",
"comparison": 1,
"value": "fvszgvsa",
"nullCompare": false

}
],
"engineRoutingComparators": [

{
"methodNum": 0,
"value": "fvszgvsa",
"name": "AMIAvailZone",
"nullComparison": false

}
],
"driverRoutingComparators": null,
"driverRoutingConditions": null,
"hostname": "http://win64vm091:8000/livecluster"

}

engine-router
Retrieves the Engine Router assigned to this Broker.

Example Request

GET http://example.com:8080/livecluster/rest/broker/engine-router

Example Input

Parameters

TIBCO GridServer® Developer's Guide

221 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

id
Long Broker ID of

Broker for
which
information of
assigned
Engine Router
needs to be
retrieved

899860077

Example Response

{
"sets": null,
"conditions": [

{
"name": "AMIAvailZone",
"comparison": 1,
"value": "fvszgvsa",
"nullCompare": false

}
],
"type": 0

}

service-discriminator
Retrieves the PropertyConditionSet used by the Service Discriminator.

Example Request

GET http://example.com:8080/livecluster/rest/broker/service-
discriminator

TIBCO GridServer® Developer's Guide

222 | REST API Reference

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

name
String Name of Service

Discriminator for which
PropertyConditionSet
needs to be retrieved

TestDiscriminator

Example Response

[
{

"sets": [],
"conditions": [

{
"name": "serviceName",
"comparison": 1,
"value": "Lin",
"nullCompare": false

}
],
"type": 0

},
{

"sets": [],
"conditions": [

{
"name": "os",
"comparison": 3,
"value": "linux64",
"nullCompare": false

}
],
"type": 0

},
{

"sets": [],
"conditions": [],
"type": 0

TIBCO GridServer® Developer's Guide

223 | REST API Reference

}
]

service-discriminator-names
Retrieves the names of all Service Discriminators.

Example Request

GET http://example.com:8080/livecluster/rest/broker/service-
discriminator-names

Example Response

[
"testdiscriminator"

]

shared-brokers
Retrieves Broker sharing.

Example Request

GET http://example.com:8080/livecluster/rest/broker/shared-brokers

Example Input

Parameters

TIBCO GridServer® Developer's Guide

224 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

id
Long Broker ID of

Broker for
which Broker
sharing needs
to be retrieved

899860077

Example Response
1

available
Retrieves whether the methods are available.

Example Request

GET http://example.com:8080/livecluster/rest/broker/available

Example Response

True or False

driver-weight
Sets the Driver distribution weighing relative to other Brokers.

Example Request

PUT http://example.com:8080/livecluster/rest/broker/driver-weight

TIBCO GridServer® Developer's Guide

225 | REST API Reference

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

id
Long Broker ID of Broker for which Driver

distribution weighting needs to be set
1961263499

weight
Double Driver weight

2

Example Response
204 no content

Result: The driver-weight value is updated for the corresponding Broker.

engine-router
Sets an Engine router for a given Broker.

Example Request

POST http://example.com:8080/livecluster/rest/broker/engine-router

Example Input

Parameters

TIBCO GridServer® Developer's Guide

226 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

id
Long Broker ID of

Broker for
which Engine
Router needs
to be set

1580108171

— JSON Engine Router
data

{
"sets": null,
"conditions": [

{
"name": "os",
"comparison": 1,
"value": "win64",
"nullCompare": false

},
{

"name": "osName",
"comparison": 1,
"value": "WIN2K12",
"nullCompare": false

}
],
"type": 0

}

Example Response
204 no content

Result: Engine router is set for the specified Broker.

engine-weight
Sets the Engine distribution weighting relative to other Brokers.

TIBCO GridServer® Developer's Guide

227 | REST API Reference

Example Request

PUT http://example.com:8080/livecluster/rest/broker/engine-weight

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

id
Long Broker ID of Broker for which Engine

Distribution weighting needs to be set
1961263499

weight
Double Engine weight

2

Example Response
207 no content

Result: Engine weight is updated for the specified Broker.

maximum-engines
Sets the maximum number of Engines the Broker can manage.

Example Request

PUT http://example.com:8080/livecluster/rest/broker/maximum-engines

Example Input

Parameters

TIBCO GridServer® Developer's Guide

228 | REST API Reference

Parameter Name Data
Type

Description Sample Value

id
Long Broker ID of Broker

1580108171

maxEngines
Int Maximum number of Engines that the

given Broker can manage
6

Example Response
207 no content

Result: The maximum number of Engines that the Broker can Manage is set.

min-idle-home-engines
Sets the minimum number of Idle Home Machines that the Broker is left to manage.

Example Request

PUT http://example.com:8080/livecluster/rest/broker/min-idle-home-
engines

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

id
Long Broker ID of Broker

1580108171

minEngines
Int Minimum number of Idle Home

Engines on the given Broker
1

TIBCO GridServer® Developer's Guide

229 | REST API Reference

Example Response
204 no content

Result: The minimum number of Idle Home Engines for the Broker is set.

minimum-engines
Sets the minimum number of Engines the Broker is left to manage.

Example Request

PUT http://example.com:8080/livecluster/rest/broker/minimum-engines

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

id
Long Broker ID of

Broker
1580108171

minEngines
Int Minimum

number of
Engines that
the given
Broker can
manage

5

Example Response
204 no content

Result: The minimum number of Engines for the Broker is set.

TIBCO GridServer® Developer's Guide

230 | REST API Reference

shared-brokers
Sets the Broker sharing.

Example Input

PUT http://example.com:8080/livecluster/rest/broker/shared-brokers

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

id
Long Broker ID of Broker

1580108171

brokerSharing
String Broker ID that needs to be

shared
1961263499

Example Response
204 no content

Result: Broker sharing is set.

DriverAdmin
Provides administrative access to the Drivers on a Broker. Methods in class DriverAdmin are
listed in the following table:

TIBCO GridServer® Developer's Guide

231 | REST API Reference

Method Method
Type

Description

all-driver-
info

GET Retrieves information about all Drivers logged in to the
Broker.

driver-count GET Retrieves the total number of Drivers logged in to the Broker.

driver-info GET Retrieves information about Drivers with a given hostname.

available GET Retrieves whether the methods are available.

all-driver-info
Retrieves information about all Drivers logged in to the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/driver/all-driver-info

Example Response

{
"properties": [

{
"name": "Username",
"value": "internal"

},
{

"name": "maxPriority",
"value": "None"

},
{

"name": "Hostname",
"value": "10.128.88.91"

},
{

"name": "roles",

TIBCO GridServer® Developer's Guide

232 | REST API Reference

"value": "internal"
},
{

"name": "logToSystem",
"value": "true"

},
{

"name": "baseDir",
"value": "F:/datasynapse/manager-data"

},
{

"name": "ClientJavaVersion",
"value": "7.1.0.172681"

},
{

"name": "Version",
"value": "7.1.0.172681"

}
],
"username": "internal",
"serviceCount": 0,
"loginDate": 1578562190177,
"hostname": "10.128.88.91"

}

driver-count
Retrieves the total number of Drivers logged in to the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/driver/driver-count

Example Response
1

TIBCO GridServer® Developer's Guide

233 | REST API Reference

driver-info
Retrieves information about Drivers with a given hostname.

Example Request

GET http://example.com:8080/livecluster/rest/driver/driver-info

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

hostname
String Name of the host whose driver

information needs to be retrieved
10.128.88.91

Example Response

{
"properties": [

{
"name": "Username",
"value": "internal"

},
{

"name": "maxPriority",
"value": "None"

},
{

"name": "Hostname",
"value": "10.128.88.91"

},
{

"name": "roles",
"value": "internal"

},
{

"name": "logToSystem",

TIBCO GridServer® Developer's Guide

234 | REST API Reference

"value": "true"
},
{

"name": "baseDir",
"value": "F:/datasynapse/manager-data"

},
{

"name": "ClientJavaVersion",
"value": "7.1.0.172681"

}
{

"name": "Version",
"value": "7.1.0.172681"

}
],
"username": "internal",
"serviceCount": 0,
"loginDate": 1578562190177,
"hostname": "10.128.88.91"

}

available
Retrieves whether the methods are available.

Example Request

GET http://example.com:8080/livecluster/rest/driver/available

Example Response

True or False

EngineAdmin
EngineAdmin APIs provide administrative access to Engines on a Broker. They are listed in
the following table:

TIBCO GridServer® Developer's Guide

235 | REST API Reference

Method Method
Type

Description

all-engine-
info

GET Retrieves information about all Engines logged in to the Broker.

busy-engine-
count

GET Retrieves the total number of Engines logged in to the Broker
and are currently executing a task.

engine-count GET Retrieves the total number of Engines logged in to the Broker.

engine-ids GET Retrieves the list of Engine IDs logged in to the Broker.

engine-info GET Retrieves information about a given Engine.

engine-info-
by-properties

POST Retrieves information about Engines logged in to the Broker
that match the Engine Condition.

log-url-list GET Retrieves the log file URLs on a given Engine when the Engine
logging is enabled on the Server.

selected-
engine-info

POST Retrieves information, which includes all instances for the given
IDs, about given Engines logged in to the Broker.

available GET Retrieves whether the methods are available.

kill-all-
engines

PUT Logs out all the Engines from the Broker.

kill-engine PUT Logs out a given Engine from the Broker.

park-engines POST Sets Engine's parked flag to true for passed Engine IDs.

unpark-
engines

POST Sets Engine's parked flag to false for passed Engine IDs.

parked-
engines

GET Retrieves the list of Engine IDs that have the parked flag set to
true.

TIBCO GridServer® Developer's Guide

236 | REST API Reference

all-engine-info
Retrieves information about all Engines logged in to the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/engine/all-engine-info

Example Response

{
"instance": "0",
"properties": [

{
"name": "AMIProductCode",
"value": "null"

},
{

"name": "dataDir",
"value":

"C:\\TIBCO\\DataSynapse\\Engine\\data\\win64vm091-0\\ddt"
},
{

"name": "availableDiskInMB",
"value": "12503261184"

},
{

"name": "cpuIdString",
"value": "GenuineIntel"

},
{

"name": "osVersion",
"value": "6.1"

},
{

"name": "workUrl",
"value":

"http://10.128.88.91:27159/work/win64vm091-0"
},
{

"name": "QuarantineStatus",
"value": "New Engine"

},

TIBCO GridServer® Developer's Guide

237 | REST API Reference

{
"name": "CUDAGlobalMemory",
"value": "null"

},
{

"name": "osUsername",
"value": "SYSTEM"

},
{

"name": "CUDAProcessors",
"value": "null"

},
{

"name": "CUDAFirstGPUName",
"value": "null"

},
{

"name": "dataUrl",
"value":

"http://10.128.88.91:27159/data//win64vm091-0/ddt/"
},
{

"name": "additionalPlatforms",
"value": "null"

},
{

"name": "MICMemory",
"value": "null"

},
{

"name": "ClientJavaVersion",
"value": "7.1.0.172681"

},
{

"name": "homeBrokers",
"value": ""

},
{

"name": "configurationName",
"value": "win64:default"

},
{

"name": "AMIInstanceId",
"value": "null"

},
{

"name": "cpuSocketCount",

TIBCO GridServer® Developer's Guide

238 | REST API Reference

"value": "1"
},
{

"name": "IP",
"value": "10.128.88.91"

},
{

"name": "totalMemInKB",
"value": "2096696"

},
{

"name": "lastUpdated",
"value": "Mon Jan 06 06:54:35 PST 2020"

},
{

"name": "guid",
"value": "deadbeef8091"

},
{

"name": "RTLDGlobal",
"value": "null"

},
{

"name": "CUDADevices",
"value": "0"

},
{

"name": "GridLibs",
"value": "python-win64-

vc14,3.7.0;SpeedLink,7.0.0.165519;pybridge-win64-vc14,7.1"
},
{

"name": "multicore",
"value": "false"

},
{

"name": "os",
"value": "win64"

},
{

"name": "MICModel",
"value": "null"

},
{

"name": "NETFrameworkVersions",
"value": "4.5,4.5FullProfile"

},

TIBCO GridServer® Developer's Guide

239 | REST API Reference

{
"name": "MICCores",
"value": "null"

},
{

"name": "username",
"value": "win64vm091"

},
{

"name": "GridLibUpdateTime",
"value": "1578322476609"

},
{

"name": "id",
"value": "4848394891525229394"

},
{

"name": "freeMemInKB",
"value": "163244"

},
{

"name": "cpuNo",
"value": "1"

},
{

"name": "pid",
"value": "792"

},
{

"name": "cpuCoreCount",
"value": "1"

},
{

"name": "AMIAvailZone",
"value": "null"

},
{

"name": "cpuMHz",
"value": "2597.0"

},
{

"name": "CUDAVersion",
"value": "null"

},
{

"name": "cpuTotal",
"value": "2794.447000"

TIBCO GridServer® Developer's Guide

240 | REST API Reference

},
{

"name": "Version",
"value": "7.1.0.172681"

},
{

"name": "freeDiskInMB",
"value": "12503261184"

},
{

"name": "MICDevices",
"value": "null"

},
{

"name": "instance",
"value": "0"

},
{

"name": "crtVersions",
"value": "VC12,VC14,VC15,VC16"

},
{

"name": "HighestNumaNode",
"value": "0"

},
{

"name": "homeDir",
"value": "C:\\TIBCO\\DataSynapse\\Engine"

},
{

"name": "ProcessSchedulingPolicy",
"value": "native"

},
{

"name": "NETFramework",
"value": "true"

},
{

"name": "gridLibrary",
"value": "null"

},
{

"name": "cpuThreadCount",
"value": "1"

},
{

"name": "osName",

TIBCO GridServer® Developer's Guide

241 | REST API Reference

"value": "WIN2K12"
}

],
"username": "win64vm091",
"engineId": 4848394891525229394,
"serviceId": -1,
"invocationId": -1,
"busy": false,
"elapsedTime": -1

}

busy-engine-count
Retrieves the total number of Engines logged in to the Broker and are currently executing a
task.

Example Request

GET http://example.com:8080/livecluster/rest/engine/busy-engine-count

Example Response

1.

Result: The number of Engines that are busy is returned.

engine-count
Retrieves the total number of Engines logged in to the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/engine/engine-count

TIBCO GridServer® Developer's Guide

242 | REST API Reference

Example Response

1.

Result: The total number of Engines that are logged in to the Broker is returned.

engine-ids
Retrieves the list of Engine IDs logged in to the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/engines/engine-ids

Example Response

[
4848394891525229394,
4848394891525229394,
4848394891525229394,
4848394891525229394,
4848394891525229394,
4848394891525229394,
4848394891525229394,
4848394891525229394,
4848394891525229394,
4848394891525229394

]

engine-info
Retrieves information about a given Engine.

Example Request

GET http://example.com:8080/livecluster/rest/engine/engine-info

TIBCO GridServer® Developer's Guide

243 | REST API Reference

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

id
Long ID of Engine whose

information needs to be
retrieved

4848394891525229394

instance
String Engine instance whose

information needs to be
retrieved

1

Example Response

{
"instance": "0",
"properties": [

{
"name": "AMIProductCode",
"value": "null"

},
{

"name": "dataDir",
"value": "C:\\TIBCO\\DataSynapse\\Engine\\data\\win64vm091-

0\\ddt"
},
{

"name": "availableDiskInMB",
"value": "11030"

},
{

"name": "cpuIdString",
"value": "GenuineIntel"

},
{

"name": "osVersion",
"value": "6.1"

},
{

"name": "workUrl",
"value": "http://10.128.88.91:27159/work/win64vm091-0"

TIBCO GridServer® Developer's Guide

244 | REST API Reference

},
{

"name": "QuarantineStatus",
"value": "New Engine"

},
{

"name": "CUDAGlobalMemory",
"value": "null"

},
{

"name": "osUsername",
"value": "SYSTEM"

},
{

"name": "CUDAProcessors",
"value": "null"

},
{

"name": "CUDAFirstGPUName",
"value": "null"

},
{

"name": "dataUrl",
"value": "http://10.128.88.91:27159/data//win64vm091-0/ddt/"

},
{

"name": "additionalPlatforms",
"value": "null"

},
{

"name": "MICMemory",
"value": "null"

},
{

"name": "ClientJavaVersion",
"value": "7.1.0.172681"

},
{

"name": "homeBrokers",
"value": ""

},
{

"name": "configurationName",
"value": "win64:default"

},
{

"name": "AMIInstanceId",
"value": "null"

TIBCO GridServer® Developer's Guide

245 | REST API Reference

},
{

"name": "cpuSocketCount",
"value": "1"

},
{

"name": "IP",
"value": "10.128.88.91"

},
{

"name": "totalMemInKB",
"value": "2096696"

},
{

"name": "lastUpdated",
"value": "Wed Jan 08 23:08:10 PST 2020"

},
{

"name": "guid",
"value": "deadbeef8091"

},
{

"name": "RTLDGlobal",
"value": "null"

},
{

"name": "CUDADevices",
"value": "0"

},
{

"name": "GridLibs",
"value": "python-win64-

vc14,3.7.0;SpeedLink,7.0.0.165519;pybridge-win64-vc14,7.1"
},
{

"name": "multicore",
"value": "false"

},
{

"name": "os",
"value": "win64"

},
{

"name": "MICModel",
"value": "null"

},
{

"name": "NETFrameworkVersions",

TIBCO GridServer® Developer's Guide

246 | REST API Reference

"value": "4.5,4.5FullProfile"
},
{

"name": "MICCores",
"value": "null"

},
{

"name": "username",
"value": "win64vm091"

},
{

"name": "GridLibUpdateTime",
"value": "1578553692407"

},
{

"name": "id",
"value": "4848394891525229394"

},
{

"name": "freeMemInKB",
"value": "1019692"

},
{

"name": "cpuNo",
"value": "1"

},
{

"name": "pid",
"value": "5012"

},
{

"name": "cpuCoreCount",
"value": "1"

},
{

"name": "AMIAvailZone",
"value": "null"

},
{

"name": "cpuMHz",
"value": "2597.0"

},
{

"name": "CUDAVersion",
"value": "null"

},
{

"name": "cpuTotal",

TIBCO GridServer® Developer's Guide

247 | REST API Reference

"value": "1676.7"
},
{

"name": "Version",
"value": "7.1.0.172681"

},
{

"name": "freeDiskInMB",
"value": "11030"

},
{

"name": "MICDevices",
"value": "null"

},
{

"name": "instance",
"value": "0"

},
{

"name": "crtVersions",
"value": "VC12,VC14,VC15,VC16"

},
{

"name": "HighestNumaNode",
"value": "0"

},
{

"name": "homeDir",
"value": "C:\\TIBCO\\DataSynapse\\Engine"

},
{

"name": "ProcessSchedulingPolicy",
"value": "native"

},
{

"name": "NETFramework",
"value": "true"

},
{

"name": "gridLibrary",
"value": "null"

},
{

"name": "cpuThreadCount",
"value": "1"

},
{

"name": "osName",

TIBCO GridServer® Developer's Guide

248 | REST API Reference

"value": "WIN2K12"
}

],
"username": "win64vm091",
"engineId": 4848394891525229394,
"serviceId": -1,
"invocationId": -1,
"busy": false,
"elapsedTime": -1

}

engine-info-by-properties
Retrieves information about Engines logged in to the Broker that match the Engine
Condition.

Example Request

POST http://example.com:8080/livecluster/rest/engine/engine-info-by-
properties

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Engine condition data depending on
which Engines are retrieved

{
"sets": null,
"conditions":

[
{

"name": "IP",

TIBCO GridServer® Developer's Guide

249 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

"comparison": 1,

"value":
"10.128.88.142",

"nullCompare":
false

},
{

"name": "os",

"comparison": 1,

"value": "win64",

"nullCompare":
false

}
],
"type": 0

}

Example Response

[
{

"instance": "0",
"properties": [

{
"name": "AMIProductCode",
"value": "null"

},
{

"name": "dataDir",
"value":

"C:\\TIBCO\\DataSynapse\\Engine\\data\\win64vm142-0\\ddt"
},
{

"name": "availableDiskInMB",

TIBCO GridServer® Developer's Guide

250 | REST API Reference

"value": "13793"
},
{

"name": "cpuIdString",
"value": "GenuineIntel"

},
{

"name": "osVersion",
"value": "6.1"

},
{

"name": "workUrl",
"value": "http://10.128.88.142:27159/work/win64vm142-0"

},
{

"name": "QuarantineStatus",
"value": "New Engine"

},
{

"name": "CUDAGlobalMemory",
"value": "null"

},
{

"name": "osUsername",
"value": "SYSTEM"

},
{

"name": "CUDAProcessors",
"value": "null"

},
{

"name": "CUDAFirstGPUName",
"value": "null"

},
{

"name": "dataUrl",
"value": "http://10.128.88.142:27159/data//win64vm142-

0/ddt/"
},
{

"name": "additionalPlatforms",
"value": "null"

},
{

"name": "MICMemory",
"value": "null"

},
{

TIBCO GridServer® Developer's Guide

251 | REST API Reference

"name": "ClientJavaVersion",
"value": "7.1.0.172681"

},
{

"name": "homeBrokers",
"value": ""

},
{

"name": "configurationName",
"value": "win64:default"

},
{

"name": "AMIInstanceId",
"value": "null"

},
{

"name": "cpuSocketCount",
"value": "1"

},
{

"name": "IP",
"value": "10.128.88.142"

},
{

"name": "totalMemInKB",
"value": "2096696"

},
{

"name": "lastUpdated",
"value": "Tue Jan 14 05:37:32 EST 2020"

},
{

"name": "guid",
"value": "deadbeef8142"

},
{

"name": "RTLDGlobal",
"value": "null"

},
{

"name": "CUDADevices",
"value": "0"

},
{

"name": "GridLibs",
"value": "calculator,1.0.0.1;python-win64-

vc14,3.7.0;SpeedLink,7.0.0.165519;pybridge-win64-vc14,7.1"
},

TIBCO GridServer® Developer's Guide

252 | REST API Reference

{
"name": "multicore",
"value": "false"

},
{

"name": "os",
"value": "win64"

},
{

"name": "MICModel",
"value": "null"

},
{

"name": "NETFrameworkVersions",
"value": "3.5,3.5SP1,4,4FullProfile"

},
{

"name": "MICCores",
"value": "null"

},
{

"name": "username",
"value": "win64vm142"

},
{

"name": "GridLibUpdateTime",
"value": "1578998255589"

},
{

"name": "id",
"value": "6153431282294490153"

},
{

"name": "freeMemInKB",
"value": "1356648"

},
{

"name": "cpuNo",
"value": "1"

},
{

"name": "pid",
"value": "2072"

},
{

"name": "cpuCoreCount",
"value": "1"

},

TIBCO GridServer® Developer's Guide

253 | REST API Reference

{
"name": "AMIAvailZone",
"value": "null"

},
{

"name": "cpuMHz",
"value": "2597.0"

},
{

"name": "CUDAVersion",
"value": "null"

},
{

"name": "cpuTotal",
"value": "2704.3"

},
{

"name": "Version",
"value": "7.1.0.172681"

},
{

"name": "freeDiskInMB",
"value": "13793"

},
{

"name": "MICDevices",
"value": "null"

},
{

"name": "instance",
"value": "0"

},
{

"name": "crtVersions",
"value": "VC12,VC14,VC15,VC16"

},
{

"name": "HighestNumaNode",
"value": "0"

},
{

"name": "homeDir",
"value": "C:\\TIBCO\\DataSynapse\\Engine"

},
{

"name": "ProcessSchedulingPolicy",
"value": "native"

},

TIBCO GridServer® Developer's Guide

254 | REST API Reference

{
"name": "NETFramework",
"value": "true"

},
{

"name": "gridLibrary",
"value": "null"

},
{

"name": "cpuThreadCount",
"value": "1"

},
{

"name": "osName",
"value": "WIN2K12"

}
],
"username": "win64vm142",
"engineId": 6153431282294490153,
"serviceId": -1,
"invocationId": -1,
"busy": false,
"elapsedTime": -1

}

log-url-list
Retrieves the log file URLs on a given Engine when the Engine logging must is enabled on
the Server.

Example Request

GET http://example.com:8080/livecluster/rest/engine/log-url-list

Example Input

Parameters

TIBCO GridServer® Developer's Guide

255 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

id
Long Engine ID for which logs need

to be retrieved
4848394891525229394

instance
String Instance ID for corresponding

Engine ID
0

Example Response

[
"http://10.128.88.91:27159/work/win64vm091-0/log/engine-

0.01.08.2020-23.08.11.log",
"http://10.128.88.91:27159/work/win64vm091-0/log/engine-

0.01.06.2020-06.54.36.log",
"http://10.128.88.91:27159/work/win64vm091-0/log/engine-

0.01.06.2020-06.54.18.log",
"http://10.128.88.91:27159/work/win64vm091-0/log/engine-

0.01.06.2020-06.54.02.log",
"http://10.128.88.91:27159/work/win64vm091-0/log/engine-

0.01.06.2020-06.53.42.log",
"http://10.128.88.91:27159/work/win64vm091-1/log/engine-

1.01.08.2020-22.54.01.log",
"http://10.128.88.91:27159/work/win64vm091-2/log/engine-

2.01.08.2020-22.54.02.log",
"http://10.128.88.91:27159/work/win64vm091-3/log/engine-

3.01.08.2020-22.53.52.log",
"http://10.128.88.91:27159/work/win64vm091-4/log/engine-

4.01.08.2020-22.54.01.log",
"http://10.128.88.91:27159/work/win64vm091-5/log/engine-

5.01.08.2020-22.53.52.log",
"http://10.128.88.91:27159/work/win64vm091-6/log/engine-

6.01.08.2020-22.54.02.log",
"http://10.128.88.91:27159/work/win64vm091-7/log/engine-

7.01.08.2020-22.54.01.log",
"http://10.128.88.91:27159/work/win64vm091-8/log/engine-

8.01.08.2020-22.53.55.log",
"http://10.128.88.91:27159/work/win64vm091-9/log/engine-

9.01.08.2020-22.53.52.log"
]

TIBCO GridServer® Developer's Guide

256 | REST API Reference

selected-engine-info
Retrieves information, which includes all instances for the given IDs, about given Engines
logged in to the Broker.

Example Request

POST http://example.com:8080/livecluster/rest/engine/selected-engine-
info

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Engine IDs of
Engines that
are logged in
to the Broker

[4848394891525229394,484839489152522939
4]

Example response

{
"instance": "0",
"properties": [

{
"name": "AMIProductCode",
"value": "null"

},
{

"name": "dataDir",
"value":

"C:\\TIBCO\\DataSynapse\\Engine\\data\\win64vm091-0\\ddt"
},
{

"name": "availableDiskInMB",
"value": "11566219264"

},

TIBCO GridServer® Developer's Guide

257 | REST API Reference

{
"name": "cpuIdString",
"value": "GenuineIntel"

},
{

"name": "osVersion",
"value": "6.1"

},
{

"name": "workUrl",
"value": "http://10.128.88.91:27159/work/win64vm091-0"

},
{

"name": "QuarantineStatus",
"value": "New Engine"

},
{

"name": "CUDAGlobalMemory",
"value": "null"

},
{

"name": "osUsername",
"value": "SYSTEM"

},
{

"name": "CUDAProcessors",
"value": "null"

},
{

"name": "CUDAFirstGPUName",
"value": "null"

},
{

"name": "dataUrl",
"value": "http://10.128.88.91:27159/data//win64vm091-

0/ddt/"
},
{

"name": "additionalPlatforms",
"value": "null"

},
{

"name": "MICMemory",
"value": "null"

},
{

"name": "ClientJavaVersion",
"value": "7.1.0.172681"

TIBCO GridServer® Developer's Guide

258 | REST API Reference

},
{

"name": "homeBrokers",
"value": ""

},
{

"name": "configurationName",
"value": "win64:default"

},
{

"name": "AMIInstanceId",
"value": "null"

},
{

"name": "cpuSocketCount",
"value": "1"

},
{

"name": "IP",
"value": "10.128.88.91"

},
{

"name": "totalMemInKB",
"value": "2096696"

},
{

"name": "lastUpdated",
"value": "Wed Jan 08 23:08:10 PST 2020"

},
{

"name": "guid",
"value": "deadbeef8091"

},
{

"name": "RTLDGlobal",
"value": "null"

},
{

"name": "CUDADevices",
"value": "0"

},
{

"name": "GridLibs",
"value": "python-win64-

vc14,3.7.0;SpeedLink,7.0.0.165519;pybridge-win64-vc14,7.1"
},
{

"name": "multicore",

TIBCO GridServer® Developer's Guide

259 | REST API Reference

"value": "false"
},
{

"name": "os",
"value": "win64"

},
{

"name": "MICModel",
"value": "null"

},
{

"name": "NETFrameworkVersions",
"value": "4.5,4.5FullProfile"

},
{

"name": "MICCores",
"value": "null"

},
{

"name": "username",
"value": "win64vm091"

},
{

"name": "GridLibUpdateTime",
"value": "1578553692407"

},
{

"name": "id",
"value": "4848394891525229394"

},
{

"name": "freeMemInKB",
"value": "1019692"

},
{

"name": "cpuNo",
"value": "1"

},
{

"name": "pid",
"value": "5012"

},
{

"name": "cpuCoreCount",
"value": "1"

},
{

"name": "AMIAvailZone",

TIBCO GridServer® Developer's Guide

260 | REST API Reference

"value": "null"
},
{

"name": "cpuMHz",
"value": "2597.0"

},
{

"name": "CUDAVersion",
"value": "null"

},
{

"name": "cpuTotal",
"value": "1676.7"

},
{

"name": "Version",
"value": "7.1.0.172681"

},
{

"name": "freeDiskInMB",
"value": "11566219264"

},
{

"name": "MICDevices",
"value": "null"

},
{

"name": "instance",
"value": "0"

},
{

"name": "crtVersions",
"value": "VC12,VC14,VC15,VC16"

},
{

"name": "HighestNumaNode",
"value": "0"

},
{

"name": "homeDir",
"value": "C:\\TIBCO\\DataSynapse\\Engine"

},
{

"name": "ProcessSchedulingPolicy",
"value": "native"

},
{

"name": "NETFramework",

TIBCO GridServer® Developer's Guide

261 | REST API Reference

"value": "true"
},
{

"name": "gridLibrary",
"value": "null"

},
{

"name": "cpuThreadCount",
"value": "1"

},
{

"name": "osName",
"value": "WIN2K12"

}
],

"username": "win64vm091",
"engineId": 4848394891525229394,
"serviceId": -1,
"invocationId": -1,
"busy": false,
"elapsedTime": -1

}

available
Retrieves whether the methods are available.

Example Request

GET http://example.com:8080/livecluster/rest/engine/available

Example Response

True or False

kill-all-engines
Logs out all the Engines from the Broker.

TIBCO GridServer® Developer's Guide

262 | REST API Reference

Example Request

PUT http://example.com:8080/livecluster/rest/engine/kill-all-engines

Example Response
204 no content

Result: All Engines are logged out of the Broker.

kill-engine
Logs out a given Engine from the Broker.

Example Request

PUT http://example.com:8080/livecluster/rest/engine/kill-engine

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

id
Long ID of the Engine that needs

to be logged out
4848394891525229394

instance
String Engine instance that needs to

be logged out
0

Example Response
204 no content

Result: The specified Engine is logged out of the Broker.

TIBCO GridServer® Developer's Guide

263 | REST API Reference

park-engines
Sets Engine's parked flag to true for passed Engine IDs.

Example Request

POST http://example.com:8080/livecluster/rest/engine/park-engines

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Array of Engine Daemon IDs for
which the parked flag needs to
be set to true

[

6153431282294490153,
3574664343712327623
]

Example Response
204 no content

Result: Specified Engine Daemons are parked.

unpark-engines
Sets Engine's parked flag to false for passed Engine IDs.

Example Request

POST http://example.com:8080/livecluster/rest/engine/unpark-engines

TIBCO GridServer® Developer's Guide

264 | REST API Reference

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Array of Engine Daemon IDs for
which the parked flag needs to
be set to false

[

6153431282294490153
]

Example Response
204 no content

Result: Specified Engine Daemons are unparked.

parked-engines
Retrieves the list of Engine IDs that have the parked flag set to true.

Example Request

GET http://example.com:8080/livecluster/rest/engine/parked-engines

Example Response

[
"9007929106493580894"

]

TIBCO GridServer® Developer's Guide

265 | REST API Reference

EngineDaemonAdmin
EngineDaemonAdmin APIs provide administrative access to the Engine Daemons on a
Director. They are listed in the following table:

Method Method
Type

Description

all-engine-
daemon-info

GET Retrieves information about all the Engine Daemons logged
in to the Director.

default-
properties

GET Retrieves the names and descriptions from the default Engine
property list.

engine-daemon-
count

GET Retrieves the total number of Engine Daemons logged in to
the Director.

engine-daemon-
ids

GET Retrieves the list of Engine Daemon IDs logged in to the
Director.

engine-daemon-
info

GET Retrieves information about the given Engine Daemon logged
in to the Director.

engine-daemon-
info-by-
properties

POST Retrieves information about all the Engine Daemons logged
in to the Director that match the Engine Condition.

log-url-list GET Retrieves the log file URLs from the given Engine Daemon
when Engine Logging is enabled on the Server.

selected-engine-
daemon-info

POST Retrieves information about a given Engine Daemon logged
in to the Director.

available GET Retrieves whether the methods are available.

default-property DELETE Removes the default property.

property DELETE Removes a property from the Engine Daemon.

TIBCO GridServer® Developer's Guide

266 | REST API Reference

Method Method
Type

Description

property-by-
properties

DELETE Removes a property from selected Engine Daemons that
match the Engine Condition.

restart-engine-
daemon

PUT Forces the Engine Daemon to log off and restart.

restart-engine-
daemon-by-
properties

POST Forces those Engine Daemons that match the Engine
Condition to log off and restart.

all-enabled PUT Sets whether all Engine Daemons can run Engines.

all-start-mode PUT Sets whether all Engines have to be started manually or
automatically.

configuration PUT Sets the configuration to run on the Engines.

configuration-
by-properties

POST Sets the configuration to run on the Engines that match the
Engine Condition.

default-property PUT Creates a new default Engine Property and its description.

directors PUT Sets the primary and secondary Directors for the Daemons,
overriding the values in the configuration.

directors-by-
properties

POST Sets the primary and secondary Directors on the Daemons
for the Daemons that match the Engine condition, overriding
the values in the configuration.

enabled PUT Sets whether the Engine Daemon can run Engines.

enabled-by-
properties

POST Sets whether the Engine Daemon that matches the Engine
Condition can run Engines.

instances PUT Sets the number of Engine instances to run, overriding the
value in the configuration.

TIBCO GridServer® Developer's Guide

267 | REST API Reference

Method Method
Type

Description

instances-by-
properties

POST Sets the number of Engine instances to run, overriding the
value in the configuration for Engines that match the Engine
Conditions.

property PUT Sets a property on the Engine Daemon.

property-by-
properties

POST Sets a property on selected Engine Daemons that match the
Engine Condition.

start-mode PUT Sets whether the Engines have to be started manually or
automatically.

start-mode-by-
properties

POST Sets whether the Engines that match the Engine Condition
have to be started manually or automatically.

all-engine-daemon-info
Retrieves information about all the Engine Daemons logged in to the Director.

Example Request

GET http://example.com:8080/livecluster/rest/engineDaemon/all-engine-
daemon-info

Example Response

{
"properties": [

{
"name": "ClientPlatform",
"value": "win64"

},
{

"name": "cpuCoreCount",

TIBCO GridServer® Developer's Guide

268 | REST API Reference

"value": "1"
},
{

"name": "availableDiskInMB",
"value": "10965"

},
{

"name": "IP",
"value": "10.128.88.91"

},
{

"name": "numInstances",
"value": "10"

},
{

"name": "QuarantineStatus",
"value": "New Engine"

},
{

"name": "username",
"value": "win64vm091"

},
{

"name": "workUrl",
"value": "http://10.128.88.91:27159/work"

},
{

"name": "freeMemInKB",
"value": "125520"

},
{

"name": "ClientEngineDaemonVersion",
"value": "7.1.0.172681"

},
{

"name": "Version",
"value": "7.1.0.172681"

},
{

"name": "os",
"value": "win64"

},
{

"name": "timeStamp",
"value": "1578558278135"

},
{

TIBCO GridServer® Developer's Guide

269 | REST API Reference

"name": "cpuUtilization",
"value": "98"

},
{

"name": "cpuSocketCount",
"value": "1"

},
{

"name": "id",
"value": "4848394891525229394"

},
{

"name": "freeDiskInMB",
"value": "10965"

},
{

"name": "dsCpuUtilization",
"value": "2"

},
{

"name": "cpuNo",
"value": "1"

},
{

"name": "guid",
"value": "deadbeef8091"

},
{

"name": "totalMemInKB",
"value": "2096696"

},
{

"name": "cpuThreadCount",
"value": "1"

},
{

"name": "Timestamp",
"value": "1578553686304"

},
{

"name": "osName",
"value": "WIN2K12"

},
{

"name": "cpuTotal",
"value": "1676.7"

},

TIBCO GridServer® Developer's Guide

270 | REST API Reference

{
"name": "instance",
"value": "0"

},
{

"name": "osUsername",
"value": "SYSTEM"

}
],
"enabled": true,
"engineId": 4848394891525229394,
"instances": 10,
"lastLoginDate": "Jan 8, 2020 11:08:06 PM",
"installDate": "2020-01-06 06:53:25.803",
"autoStart": false,
"manualStart": true,
"lastFileUpdate": "Jan 8, 2020 11:07:44 PM",
"primaryDirector": null,
"secondaryDirector": null,
"configuration": "default"

}

default-properties
Retrieves the names and descriptions from the default Engine property list.

Example Request

GET http://example.com:8080/livecluster/rest/engineDaemon/default-
properties

Example Response

[
{

"name": "Location",
"value": "machine location"

},
{

"name": "Group",
"value": "work group to attach engine"

TIBCO GridServer® Developer's Guide

271 | REST API Reference

},
{

"name": "QuarantineStatus",
"value": "quarantine status of the engine"

},
{

"name": "Description",
"value": "brief description of machine"

}
]

engine-daemon-count
Retrieves the total number of Engine Daemons logged in to the Director.

Example Request

GET http://example.com:8080/livecluster/rest/engineDaemon/engine-daemon-
count

Example Response

1.

Result: The count of Engine Daemons logged in to the Director is returned.

engine-daemon-ids
Retrieves the list of Engine Daemon IDs logged in to the Director.

Example Request

GET http://example.com:8080/livecluster/rest/engineDaemon/engine-daemon-
ids

TIBCO GridServer® Developer's Guide

272 | REST API Reference

Example Response

[
4848394891525229394

]

engine-daemon-info
Retrieves information about the given Engine Daemon logged in to the Director.

Example Request

GET http://example.com:8080/livecluster/rest/engineDaemon/engine-daemon-
info

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

id
Long Engine daemon ID of the Engine

Daemon whose information
needs to be retrieved

6153431282294490153

Example Response

"{
"properties": [

{
"name": "ClientPlatform",
"value": "win64"

},
{

"name": "cpuCoreCount",
"value": "1"

TIBCO GridServer® Developer's Guide

273 | REST API Reference

},
{

"name": "availableDiskInMB",
"value": "13788"

},
{

"name": "IP",
"value": "10.128.88.142"

},
{

"name": "numInstances",
"value": "0"

},
{

"name": "QuarantineStatus",
"value": "New Engine"

},
{

"name": "username",
"value": "win64vm142"

},
{

"name": "workUrl",
"value": "http://10.128.88.142:27159/work"

},
{

"name": "freeMemInKB",
"value": "1324600"

},
{

"name": "ClientEngineDaemonVersion",
"value": "7.1.0.172681"

},
{

"name": "Version",
"value": "7.1.0.172681"

},
{

"name": "os",
"value": "win64"

},
{

"name": "timeStamp",
"value": "1579081956825"

},
{

"name": "cpuUtilization",
"value": "1"

TIBCO GridServer® Developer's Guide

274 | REST API Reference

},
{

"name": "cpuSocketCount",
"value": "1"

},
{

"name": "id",
"value": "6153431282294490153"

},
{

"name": "freeDiskInMB",
"value": "13788"

},
{

"name": "dsCpuUtilization",
"value": "1"

},
{

"name": "cpuNo",
"value": "1"

},
{

"name": "guid",
"value": "deadbeef8142"

},
{

"name": "totalMemInKB",
"value": "2096696"

},
{

"name": "cpuThreadCount",
"value": "1"

},
{

"name": "Timestamp",
"value": "1579005517350"

},
{

"name": "osName",
"value": "WIN2K12"

},
{

"name": "cpuTotal",
"value": "2704.3"

},
{

"name": "instance",
"value": "0"

TIBCO GridServer® Developer's Guide

275 | REST API Reference

},
{

"name": "osUsername",
"value": "SYSTEM"

}
],
"enabled": true,
"lastFileUpdate": "N/A",
"primaryDirector": null,
"secondaryDirector": null,
"configuration": "default",
"instances": -2,
"engineId": 6153431282294490153,
"installDate": "2020-01-14 00:31:17.682",
"lastLoginDate": "Jan 14, 2020 4:38:37 AM",
"autoStart": false,
"manualStart": true

}"

engine-daemon-info-by-properties
Retrieves information about all the Engine Daemons logged in to the Director that match
the Engine Condition.

Example Request

POST http://example.com:8080/livecluster/rest/engineDaemon/engine-
daemon-info-by-properties

Example Input

Parameters

TIBCO GridServer® Developer's Guide

276 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

— JSON Engine Daemon condition data
based on which the Engines need to
be retrieved

{
"sets": null,
"conditions":

[
{

"name": "IP",

"comparison": 1,

"value":
"10.128.88.142",

"nullCompare":
false

},
{

"name": "os",

"comparison": 1,

"value": "win64",

"nullCompare":
false

}
],
"type": 0

}

Example Response

[
{

"properties": [
{

"name": "ClientPlatform",
"value": "win64"

TIBCO GridServer® Developer's Guide

277 | REST API Reference

},
{

"name": "cpuCoreCount",
"value": "1"

},
{

"name": "availableDiskInMB",
"value": "13792"

},
{

"name": "IP",
"value": "10.128.88.142"

},
{

"name": "numInstances",
"value": "1"

},
{

"name": "QuarantineStatus",
"value": "New Engine"

},
{

"name": "username",
"value": "win64vm142"

},
{

"name": "workUrl",
"value": "http://10.128.88.142:27159/work"

},
{

"name": "freeMemInKB",
"value": "1263052"

},
{

"name": "ClientEngineDaemonVersion",
"value": "7.1.0.172681"

},
{

"name": "Version",
"value": "7.1.0.172681"

},
{

"name": "os",
"value": "win64"

},
{

"name": "timeStamp",
"value": "1578998880502"

TIBCO GridServer® Developer's Guide

278 | REST API Reference

},
{

"name": "cpuUtilization",
"value": "1"

},
{

"name": "cpuSocketCount",
"value": "1"

},
{

"name": "id",
"value": "6153431282294490153"

},
{

"name": "freeDiskInMB",
"value": "13792"

},
{

"name": "dsCpuUtilization",
"value": "1"

},
{

"name": "cpuNo",
"value": "1"

},
{

"name": "guid",
"value": "deadbeef8142"

},
{

"name": "totalMemInKB",
"value": "2096696"

},
{

"name": "cpuThreadCount",
"value": "1"

},
{

"name": "Timestamp",
"value": "1578997789590"

},
{

"name": "osName",
"value": "WIN2K12"

},
{

"name": "cpuTotal",
"value": "2704.3"

TIBCO GridServer® Developer's Guide

279 | REST API Reference

},
{

"name": "instance",
"value": "0"

},
{

"name": "osUsername",
"value": "SYSTEM"

}
],
"enabled": true,
"lastFileUpdate": "N/A",
"primaryDirector": null,
"secondaryDirector": null,
"configuration": "default",
"instances": -2,
"engineId": 6153431282294490153,
"installDate": "2020-01-14 00:31:17.682",
"lastLoginDate": "Jan 14, 2020 2:29:49 AM",
"autoStart": false,
"manualStart": true

},
{

"properties": [
{

"name": "ClientPlatform",
"value": "win64"

},
{

"name": "cpuCoreCount",
"value": "1"

},
{

"name": "availableDiskInMB",
"value": "14090"

},
{

"name": "IP",
"value": "10.128.88.108"

},
{

"name": "numInstances",
"value": "1"

},
{

"name": "QuarantineStatus",
"value": "New Engine"

},

TIBCO GridServer® Developer's Guide

280 | REST API Reference

{
"name": "username",
"value": "win64vm108"

},
{

"name": "workUrl",
"value": "http://10.128.88.108:27159/work"

},
{

"name": "freeMemInKB",
"value": "7412"

},
{

"name": "ClientEngineDaemonVersion",
"value": "7.1.0.172681"

},
{

"name": "Version",
"value": "7.1.0.172681"

},
{

"name": "os",
"value": "win64"

},
{

"name": "timeStamp",
"value": "1578998850072"

},
{

"name": "cpuUtilization",
"value": "7"

},
{

"name": "cpuSocketCount",
"value": "1"

},
{

"name": "id",
"value": "9007929106493580894"

},
{

"name": "freeDiskInMB",
"value": "14090"

},
{

"name": "dsCpuUtilization",
"value": "0"

},

TIBCO GridServer® Developer's Guide

281 | REST API Reference

{
"name": "cpuNo",
"value": "1"

},
{

"name": "guid",
"value": "deadbeef8108"

},
{

"name": "totalMemInKB",
"value": "2096696"

},
{

"name": "cpuThreadCount",
"value": "1"

},
{

"name": "Timestamp",
"value": "1578974352009"

},
{

"name": "osName",
"value": "WIN2K12"

},
{

"name": "cpuTotal",
"value": "2794.4"

},
{

"name": "instance",
"value": "0"

},
{

"name": "osUsername",
"value": "SYSTEM"

}
],
"enabled": true,
"lastFileUpdate": "N/A",
"primaryDirector": null,
"secondaryDirector": null,
"configuration": "default",
"instances": -2,
"engineId": 9007929106493580894,
"installDate": "2020-01-12 22:55:40.340",
"lastLoginDate": "Jan 13, 2020 7:59:12 PM",
"autoStart": false,
"manualStart": true

TIBCO GridServer® Developer's Guide

282 | REST API Reference

}
]

log-url-list
Retrieves the log file URLs from the given Engine Daemon when Engine Logging is enabled
on the Server.

Example Request

GET http://example.com:8080/livecluster/rest/engineDaemon/log-url-list

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

id
Long Engine Daemon ID for which the

log file URLs need to be retrieved
4848394891525229394

Example Response

[
"http://10.128.88.91:27159/work/win64vm091-0/log/engine-

0.01.08.2020-23.08.11.log",
"http://10.128.88.91:27159/work/win64vm091-0/log/engine-

0.01.06.2020-06.54.36.log",
"http://10.128.88.91:27159/work/win64vm091-0/log/engine-

0.01.06.2020-06.54.18.log",
"http://10.128.88.91:27159/work/win64vm091-0/log/engine-

0.01.06.2020-06.54.02.log",
"http://10.128.88.91:27159/work/win64vm091-0/log/engine-

0.01.06.2020-06.53.42.log",
"http://10.128.88.91:27159/work/win64vm091-1/log/engine-

TIBCO GridServer® Developer's Guide

283 | REST API Reference

1.01.08.2020-22.54.01.log",
"http://10.128.88.91:27159/work/win64vm091-2/log/engine-

2.01.08.2020-22.54.02.log",
"http://10.128.88.91:27159/work/win64vm091-3/log/engine-

3.01.08.2020-22.53.52.log",
"http://10.128.88.91:27159/work/win64vm091-4/log/engine-

4.01.08.2020-22.54.01.log",
"http://10.128.88.91:27159/work/win64vm091-5/log/engine-

5.01.08.2020-22.53.52.log",
"http://10.128.88.91:27159/work/win64vm091-6/log/engine-

6.01.08.2020-22.54.02.log",
"http://10.128.88.91:27159/work/win64vm091-7/log/engine-

7.01.08.2020-22.54.01.log",
"http://10.128.88.91:27159/work/win64vm091-8/log/engine-

8.01.08.2020-22.53.55.log",
"http://10.128.88.91:27159/work/win64vm091-9/log/engine-

9.01.08.2020-22.53.52.log"
]

selected-engine-daemon-info
Retrieves information about a given Engine Daemon logged in to the Director.

Example Request

POST http://example.com:8080/livecluster/rest/engineDaemon/selected-
engine-daemon-info

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Array of Engine Daemon IDs
whose information needs to be
retrieved

[

TIBCO GridServer® Developer's Guide

284 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

6153431282294490153,

9007929106493580894
]

Example response

[
{

"properties": [
{

"name": "ClientPlatform",
"value": "win64"

},
{

"name": "cpuCoreCount",
"value": "1"

},
{

"name": "availableDiskInMB",
"value": "13793"

},
{

"name": "IP",
"value": "10.128.88.142"

},
{

"name": "numInstances",
"value": "0"

},
{

"name": "QuarantineStatus",
"value": "New Engine"

},
{

"name": "username",
"value": "win64vm142"

},
{

"name": "workUrl",
"value": "http://10.128.88.142:27159/work"

TIBCO GridServer® Developer's Guide

285 | REST API Reference

},
{

"name": "freeMemInKB",
"value": "1355704"

},
{

"name": "ClientEngineDaemonVersion",
"value": "7.1.0.172681"

},
{

"name": "Version",
"value": "7.1.0.172681"

},
{

"name": "os",
"value": "win64"

},
{

"name": "timeStamp",
"value": "1578999181503"

},
{

"name": "cpuUtilization",
"value": "0"

},
{

"name": "cpuSocketCount",
"value": "1"

},
{

"name": "id",
"value": "6153431282294490153"

},
{

"name": "freeDiskInMB",
"value": "13793"

},
{

"name": "dsCpuUtilization",
"value": "0"

},
{

"name": "cpuNo",
"value": "1"

},
{

"name": "guid",
"value": "deadbeef8142"

TIBCO GridServer® Developer's Guide

286 | REST API Reference

},
{

"name": "totalMemInKB",
"value": "2096696"

},
{

"name": "cpuThreadCount",
"value": "1"

},
{

"name": "Timestamp",
"value": "1578997789590"

},
{

"name": "osName",
"value": "WIN2K12"

},
{

"name": "cpuTotal",
"value": "2704.3"

},
{

"name": "instance",
"value": "0"

},
{

"name": "osUsername",
"value": "SYSTEM"

}
],
"enabled": true,
"lastFileUpdate": "N/A",
"primaryDirector": null,
"secondaryDirector": null,
"configuration": "default",
"instances": -2,
"engineId": 6153431282294490153,
"installDate": "2020-01-14 00:31:17.682",
"lastLoginDate": "Jan 14, 2020 2:29:49 AM",
"autoStart": false,
"manualStart": true

},
{

"properties": [
{

"name": "ClientPlatform",
"value": "win64"

},

TIBCO GridServer® Developer's Guide

287 | REST API Reference

{
"name": "cpuCoreCount",
"value": "1"

},
{

"name": "availableDiskInMB",
"value": "14090"

},
{

"name": "IP",
"value": "10.128.88.108"

},
{

"name": "numInstances",
"value": "1"

},
{

"name": "QuarantineStatus",
"value": "New Engine"

},
{

"name": "username",
"value": "win64vm108"

},
{

"name": "workUrl",
"value": "http://10.128.88.108:27159/work"

},
{

"name": "freeMemInKB",
"value": "53068"

},
{

"name": "ClientEngineDaemonVersion",
"value": "7.1.0.172681"

},
{

"name": "Version",
"value": "7.1.0.172681"

},
{

"name": "os",
"value": "win64"

},
{

"name": "timeStamp",
"value": "1578999461332"

},

TIBCO GridServer® Developer's Guide

288 | REST API Reference

{
"name": "cpuUtilization",
"value": "6"

},
{

"name": "cpuSocketCount",
"value": "1"

},
{

"name": "id",
"value": "9007929106493580894"

},
{

"name": "freeDiskInMB",
"value": "14090"

},
{

"name": "dsCpuUtilization",
"value": "0"

},
{

"name": "cpuNo",
"value": "1"

},
{

"name": "guid",
"value": "deadbeef8108"

},
{

"name": "totalMemInKB",
"value": "2096696"

},
{

"name": "cpuThreadCount",
"value": "1"

},
{

"name": "Timestamp",
"value": "1578974352009"

},
{

"name": "osName",
"value": "WIN2K12"

},
{

"name": "cpuTotal",
"value": "2794.4"

},

TIBCO GridServer® Developer's Guide

289 | REST API Reference

{
"name": "instance",
"value": "0"

},
{

"name": "osUsername",
"value": "SYSTEM"

}
],
"enabled": true,
"lastFileUpdate": "N/A",
"primaryDirector": null,
"secondaryDirector": null,
"configuration": "default",
"instances": -2,
"engineId": 9007929106493580894,
"installDate": "2020-01-12 22:55:40.340",
"lastLoginDate": "Jan 13, 2020 7:59:12 PM",
"autoStart": false,
"manualStart": true

}
]

available
Retrieves whether the methods are available.

Example Request

GET http://example.com:8080/livecluster/rest/engineDaemon/available

Example Response

True or False

default-property
Removes the default property.

TIBCO GridServer® Developer's Guide

290 | REST API Reference

Example Request

DELETE http://example.com:8080/livecluster/rest/engineDaemon/default-
property

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

property
String Default property that needs to be

removed
NewProp

Example Response
new property description

Result: The description of the removed property is returned.

property
Removes a property from the Engine Daemon.

Example Request

DELETE http://example.com:8080/livecluster/rest/engineDaemon/property

Example Input

Parameters

TIBCO GridServer® Developer's Guide

291 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

id
Long Engine Daemon ID whose

property needs to be removed
6153431282294490153

key
String Key of the property that needs

to be removed
Location

Example Response
machine location

Result: The description of the removed property is returned.

property-by-properties
Removes a property from selected Engine Daemons that match the Engine Condition.

Example Request

DELETE http://example.com:8080/livecluster/rest/engineDaemon/property-
by-properties

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Engine Condition data depending on
which engines are selected

{
"sets":

TIBCO GridServer® Developer's Guide

292 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

null,

"conditions": [
{

"name":
"osName",

"comparison": 1,

"value":
"RHEL6",

"nullCompare":
false

}
],
"type": 0

}

key
String Key of the property that needs to be

removed
NewProp

Example Response
1

Result: Returns 1 if there is no exception.

restart-engine-daemon
Forces the Engine Daemon to log off and restart.

TIBCO GridServer® Developer's Guide

293 | REST API Reference

Example Request

PUT http://example.com:8080/livecluster/rest/engineDaemon/restart-
engine-daemon

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

id
Long Engine Daemon ID of Engine

Daemon that is forced to log off
and restart

4848394891525229394

Example Response
204 no content

Result: Engine Daemon is restarted.

restart-engine-daemon-by-properties
Forces those Engine Daemons that match the Engine Condition to log off and restart.

Example Request

POST http://example.com:8080/livecluster/rest/engineDaemon/restart-
engine-daemon-by-properties

Example Input

Parameters

TIBCO GridServer® Developer's Guide

294 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

— JSON Engine Condition data depending on
which engines need to be selected for
log off

{
"sets":

null,

"conditions": [
{

"name":
"osName",

"comparison": 1,

"value":
"RHEL6",

"nullCompare":
false

}
],
"type": 0

}

Example Response
204 no content

Result: The Engine Daemon matching the specified condition is restarted.

all-enabled
Sets whether all Engine Daemons can run Engines.

Example Request

PUT http://example.com:8080/livecluster/rest/engineDaemon/all-enabled

TIBCO GridServer® Developer's Guide

295 | REST API Reference

Example Input

Parameters

Parameter
Name

Data Type Description Sample
Value

enable
Boolean True or false depending on which it is decided

whether all Engine Daemons can run the
Engines or not

true

Example Response
204 no content

Result: All Engine Daemons are enabled or disabled.

all-start-mode
Sets whether all Engines have to be started manually or automatically.

Example Request

PUT http://example.com:8080/livecluster/rest/engineDaemon/all-start-mode

Example Input

Parameters

Parameter
Name

Data Type Description Sample
Value

start
Boolean True or false. True states manual start and false

states automatic start.
true

TIBCO GridServer® Developer's Guide

296 | REST API Reference

Example Response
204 no content

Result: The manual start property of all Engine Daemons is set to true or false, depending
on what you have specified.

configuration
Sets the configuration to run on the Engines.

Example Request

PUT http://example.com:8080/livecluster/rest/engineDaemon/configuration

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

id
Long Engine ID for which

configuration needs to be
changed

3574664343712327623

config
String The configuration which needs

to be updated
testlin64

Example Response
204 no content

Result: Configuration of the specified Engine Daemon is updated.

TIBCO GridServer® Developer's Guide

297 | REST API Reference

configuration-by-properties
Sets the configuration to run on the Engines that match the Engine Condition.

Example Request

POST
http://example.com:8080/livecluster/rest/engineDaemon/configuration-by-
properties

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Engine condition data depending on
which engines need to be selected

{
"sets":

null,

"conditions": [

{

"name": "os",

"comparison": 1,

"value":
"linux64",

"nullCompare":
false

}
],
"type": 0

}

config
String Configuration which needs to be

updated
testlin64

TIBCO GridServer® Developer's Guide

298 | REST API Reference

Example Response
204 no content

Result: Configuration of the Engine Daemons matching the given condition is updated.

default-property
Creates a new default Engine Property and its description.

Example Request

PUT http://example.com:8080/livecluster/rest/engineDaemon/default-
property

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

property
String Name of the new default Engine

property that needs to be created
NewProp

description
String Description on the new default

Engine property
New Property
description

Example Response
204 no content

Result: A new default property is added.

TIBCO GridServer® Developer's Guide

299 | REST API Reference

directors
Sets the primary and secondary Directors for the Daemons, overriding the values in the
configuration.

Example Request

PUT http://example.com:8080/livecluster/rest/engineDaemon/directors

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

id
Long Engine Daemon ID

whose Primary and
Secondary Directors
whose primary and
secondary Directors
need to be overridden

3574664343712327623

primary
String Name of the Primary

Director
http://example.com:8080

secondary
String Name of Secondary

Director
http://win64vm218.rofa.
tibco.com:8080

Example Response
204 no content

Result: The primary and secondary Directors for the specified Engine Daemon are set.

TIBCO GridServer® Developer's Guide

300 | REST API Reference

directors-by-properties
Sets the primary and secondary Directors on the Daemons for the Daemons that match the
Engine condition, overriding the values in the configuration.

Example Request

POST http://example.com:8080/livecluster/rest/engineDaemon/directors-by-
properties

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

— JSON Engine condition data
depending on which
Engines you select

http://example.com:
8080

primary
String Name of the Primary

Director
http://example.com:
8080

secondary
String Name of the Secondary

Director
http://example.com:
8080

Example Response
204 no content

Result: The primary and secondary Directors are set for the Engine Daemons matching the
given condition.

TIBCO GridServer® Developer's Guide

301 | REST API Reference

enabled
Sets whether the Engine Daemon can run Engines.

Example Request

PUT http://example.com:8080/livecluster/rest/engineDaemon/enabled

Example Input

Parameters

Parameter
Name

Data Type Description Sample Value

id
Long Engine Daemon ID

6153431282294490153

enable
Boolean Engine Daemon enabled

flag
False

Example Response
204 no content

Result: The specified Engine Daemon is enabled or disabled.

enabled-by-properties
Sets whether the Engine Daemon that matches the Engine Condition can run Engines.

Example Request

POST http://example.com:8080/livecluster/rest/engineDaemon/enabled-by-
properties

TIBCO GridServer® Developer's Guide

302 | REST API Reference

Example Input

Parameters

Parameter
Name

Data Type Description Sample Value

— JSON Engine condition data
depending on which
engines are selected

{
"sets": null,
"conditions": [

{
"name":

"os",

"comparison": 1,
"value":

"win64",

"nullCompare": false
},
{

"name":
"id",

"comparison": 1,
"value":

"9007929106493580894",

"nullCompare": false
}

],
"type": 0

}

enable
Boolean Engine Daemon enabled

flag. True or false.
true

Example Response
204 no content

Result: The Engine Daemons matching condition are enabled or disabled.

TIBCO GridServer® Developer's Guide

303 | REST API Reference

instances
Sets the number of Engine instances to run, overriding the value in the configuration.

Example Request

PUT http://example.com:8080/livecluster/rest/engineDaemon/instances

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

id
Long Engine Daemon ID for which

the number of instances
need to be updated

6153431282294490153

instances
Int Number of instances that

need to be overridden
2

Example Response
204 no content

Result: The number of Engine instances to run for Engine Daemons is set.

instances-by-properties
Sets the number of Engine instances to run, overriding the value in the configuration for
Engines that match the Engine Conditions.

TIBCO GridServer® Developer's Guide

304 | REST API Reference

Example Request

POST http://example.com:8080/livecluster/rest/engineDaemon/instances-by-
properties

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

— JSON Engine
Condition data
depending on
which Engines
need to be
selected

{
"sets": null,
"conditions": [

{
"name": "os",
"comparison": 1,
"value":

"linux64",
"nullCompare":

false
}

],
"type": 0

}

instances
Int Number of

instances
which need to
be overridden

3

Example Response
204 no content

Result: The number of Engine instances to run is set for Engine Daemons matching the
condition.

TIBCO GridServer® Developer's Guide

305 | REST API Reference

property
Sets a property on the Engine Daemon.

Example Request

PUT http://example.com:8080/livecluster/rest/engineDaemon/property

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

id
Long Engine Daemon ID for which a

new property needs to be set
9007929106493580894

key
String Key of the new property that

needs to be added
instances

value
String Value of the new property that

needs to be added
4

Example Response
204 no content

Result: A new property of the Engine Daemon is set.

property-by-properties
Sets a property on selected Engine Daemons that match the Engine Condition.

TIBCO GridServer® Developer's Guide

306 | REST API Reference

Example Request

POST http://example.com:8080/livecluster/rest/engineDaemon/property-by-
properties

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Engine
Condition data
depending on
which engines
need to be
selected

{
"sets": null,
"conditions": [

{
"name": "osName",
"comparison": 1,
"value": "RHEL6",
"nullCompare": false

}
],
"type": 0

}

key
String Key of the

new property
that needs to
be added

New Prop

value
String Value of the

new property
that needs to
be added

New Prop Value

Example Response
204 no content

Result: A property is set for the selected Engine Daemons that match the Engine condition.

TIBCO GridServer® Developer's Guide

307 | REST API Reference

start-mode
Sets whether the Engines have to be started manually or automatically.

Example Request

PUT http://example.com:8080/livecluster/rest/engineDaemon/start-mode

Example Input

Parameters

Parameter
Name

Data Type Description Sample Value

id
Long Engine Daemon ID for which

start mode needs to be set
9007929106493580894

start
Boolean True or False. True states

manual start and false states
automatic start.

true

Example Response
204 no content

Result: The property of all the specified Engine Daemons to start manually is set to true or
false.

start-mode-by-properties
Sets whether the Engines that match the Engine Condition have to be started manually or
automatically.

TIBCO GridServer® Developer's Guide

308 | REST API Reference

Example Request

POST http://example.com:8080/livecluster/rest/engineDaemon/start-mode-
by-properties

Example Input

Parameters

Parameter
Name

Data Type Description Sample Value

— JSON Engine
Condition data
depending on
which engines
need to be
selected

{
"sets": null,
"conditions": [

{
"name": "os",
"comparison": 1,
"value":

"linux64",
"nullCompare":

false
}

],
"type": 0

}

manual
Boolean Manual

startup flag.
True or false.

true

Example Response
204 no content

Result: The property to start manually for Engine Daemons that match the condition is set
to true or false.

TIBCO GridServer® Developer's Guide

309 | REST API Reference

DriverManager
DirverManager API provides a method to retrieve the base context URL. The method is
listed in the following table:

Method Method Type Description

broker-url GET Retrieves the base context URL of the Brokers

broker-url
Retrieves the base context URL of the Brokers

Example Request

GET http://example.com:8080/livecluster/rest/driverManager/broker-url

Example Response
http://example.com:8080/livecluster/.

Result: All the base context URLs of the Brokers are returned.

ManagerAdmin
Provides administrative access to the Manager. Methods in class ManagerAdmin are listed
in the following table:

Method Method
Type

Description

broker-id GET Retrieves the Broker ID if it exists else returns -1.

TIBCO GridServer® Developer's Guide

310 | REST API Reference

Method Method
Type

Description

broker-name GET Retrieves the Broker name if it exists else returns null.

broker-url GET Retrieves the Broker URL; returns null if the Manager does
not contain a Broker.

build-version GET Retrieves the full Manager version including the build
number.

busy-engine-
count

GET Retrieves the total number of busy Engines from all the
Brokers logged in to the Director.

category GET Retrieves the specified configuration category.

category-names GET Retrieves the Manager configuration category names.

director-id GET Gets the Director ID if it exists else returns -1.

engine-
configuration-
names

GET Retrieves a list of names of the Engine configuration profiles
available on the specified Manager.

engine-count GET Retrieves the total number of Engines from all the Brokers
logged in to the Director.

events GET Retrieves the available subscription events.

finished-service-
count

GET Retrieves the total number of finished Services from all the
Brokers logged in to the Director.

license-info GET Retrieves the Manager license information.

manager-value GET Retrieves a Manager property value specified by category
name, property group name, and property name on the
specified manager.

pending- GET Retrieves the total number of pending Service invocations

TIBCO GridServer® Developer's Guide

311 | REST API Reference

Method Method
Type

Description

invocation-count from all the Brokers logged in to the Director.

running-
invocation-count

GET Retrieves the total number of running Service invocations
from all the Brokers logged in to the Director.

running-service-
count

GET Retrieves the total number of running Services from all the
Brokers logged in to the Director.

service-count GET Retrieves the total number of Services from all the Brokers
logged in to the Director.

subscriber-
events

POST Retrieves the events that the given subscriber is registered to
receive.

subscribers GET Retrieves the registered event subscribers.

value GET Gets a Manager property value specified by the category
name, property group name, and property name.

version GET Retrieves the Manager version in M.m format.

available GET Retrieves whether the methods are available.

manager-value PUT Sets a Manager property value specified by the category
name, property group name, and property name on the
specified manager.

value PUT Sets a Manager property value specified by the category
name, property group name, and property name.

subscribe POST Subscribes to the given events.

unsubscribe POST Unsubscribes from the given events.

TIBCO GridServer® Developer's Guide

312 | REST API Reference

broker-id
Retrieves the Broker ID if it exists else returns -1.

Example Request

GET http://example.com:8080/livecluster/rest/manager/broker-id

Example Response
899860077

broker-name
Retrieves the Broker name if it exists else returns null.

Example Request

GET http://example.com:8080/livecluster/rest/manager/broker-name

Example Response

800860077.

Result: The name of the Broker is returned.

broker-url
Retrieves the Broker URL; returns null if the Manager does not contain a Broker.

Example Request

GET http://example.com:8080/livecluster/rest/manager/broker-url

TIBCO GridServer® Developer's Guide

313 | REST API Reference

Example Response
http: //<hostname>:8000/livecluster

build-version
Retrieves the full Manager version including the build number.

Example Request

GET http://example.com:8080/livecluster/rest/manager/build-version

Example Response
7.1.0.172681

busy-engine-count
Retrieves the total number of busy Engines from all the Brokers logged in to the Director.

Example Request

GET http://example.com:8080/livecluster/rest/manager/busy-engine-count

Example Response
0

category
Retrieves the specified configuration category.

TIBCO GridServer® Developer's Guide

314 | REST API Reference

Example Request

GET http://example.com:8080/livecluster/rest/manager/category

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

name
String Name of the category depending on which

configuration needs to be retrieved
Logging

Example Response

{
"name": "Logging",
"groups": [

{
"name": "General",
"properties": [

{
"name": "Default Debug Level",
"value": "INFO"

},
{

"name": "Use the Fully Qualified Class Name",
"value": "false"

},
{

"name": "Log Level List",
"value": ""

}
]

},
{

"name": "File",
"properties": [

{
"name": "Stack Trace",

TIBCO GridServer® Developer's Guide

315 | REST API Reference

"value": "true"
},
{

"name": "Log To File",
"value": "true"

},
{

"name": "Max File Length",
"value": "1000000"

},
{

"name": "Log File Directory",
"value": "F:/datasynapse/manager-data/logs/server"

},
{

"name": "Max Log Level",
"value": "ALL"

},
{

"name": "Time Zone",
"value": ""

}
]

},
{

"name": "Log to REST",
"properties": [

{
"name": "Server URL",
"value": ""

},
{

"name": "Enabled",
"value": "false"

},
{

"name": "Username",
"value": ""

},
{

"name": "Password",
"value": null

},
{

"name": "Max Log Level",
"value": "ALL"

},

TIBCO GridServer® Developer's Guide

316 | REST API Reference

{
"name": "Backlog",
"value": "100"

},
{

"name": "Discard when Backlogged",
"value": "true"

},
{

"name": "Timestamp format",
"value": "yyyy-MM-dd'T'HH:mm:ss.SSSZZ"

},
{

"name": "Excluded LogRecord Properties",
"value":

"millis,sequenceNumber,sourceClassName,sourceMethodName"
},
{

"name": "HTTP Timeout",
"value": "5000"

}
]

},
{

"name": "Server Events to REST",
"properties": [

{
"name": "Enabled",
"value": "false"

},
{

"name": "Server URL",
"value": ""

},
{

"name": "Username",
"value": ""

},
{

"name": "Password",
"value": null

},
{

"name": "Backlog",
"value": "1000"

},
{

TIBCO GridServer® Developer's Guide

317 | REST API Reference

"name": "Discard when Backlogged",
"value": "false"

},
{

"name": "Timestamp format",
"value": "yyyy-MM-dd'T'HH:mm:ss.SSSZZ"

},
{

"name": "Excluded Events",
"value": ""

},
{

"name": "HTTP Timeout",
"value": "5000"

},
{

"name": "Include name",
"value": "false"

},
{

"name": "Include type",
"value": "true"

}
]

},
{

"name": "Syslog",
"properties": [

{
"name": "Enabled",
"value": "false"

},
{

"name": "Time Zone",
"value": ""

},
{

"name": "Syslog Server Address",
"value": ""

},
{

"name": "Syslog Server Port",
"value": "514"

},
{

"name": "Components",
"value": "*"

TIBCO GridServer® Developer's Guide

318 | REST API Reference

},
{

"name": "Max Log Level",
"value": "ALL"

},
{

"name": "Tag",
"value": "GridServerManager"

},
{

"name": "Facility Level",
"value": "1"

}
]

},
{

"name": "Component-level Logging",
"properties": [

{
"name": "Engine Events",
"value": "DEFAULT"

},
{

"name": "Driver Events",
"value": "DEFAULT"

},
{

"name": "Service Events",
"value": "DEFAULT"

},
{

"name": "Scheduler",
"value": "DEFAULT"

},
{

"name": "Engine Sharing",
"value": "DEFAULT"

},
{

"name": "GridCache",
"value": "DEFAULT"

},
{

"name": "Batch Events",
"value": "DEFAULT"

},
{

TIBCO GridServer® Developer's Guide

319 | REST API Reference

"name": "Web Services",
"value": "DEFAULT"

}
]

},
{

"name": "Log File Cleaner",
"properties": [

{
"name": "File Cleaner Timeout",
"value": "0"

},
{

"name": "Cleaner Cron Expression",
"value": "0 50 3 * * ?"

},
{

"name": "File Time To Live",
"value": "120.0"

},
{

"name": "File Cleaner Enabled",
"value": "true"

}
]

},
{

"name": "Tomcat Log File Cleaner",
"properties": [

{
"name": "File Cleaner Timeout",
"value": "0"

},
{

"name": "Cleaner Cron Expression",
"value": "0 0 * * * ?"

},
{

"name": "File Time To Live",
"value": "120.0"

},
{

"name": "File Cleaner Enabled",
"value": "true"

}
]

},

TIBCO GridServer® Developer's Guide

320 | REST API Reference

{
"name": "Memory Logging",
"properties": [

{
"name": "Log Period",
"value": "1.0"

},
{

"name": "Warning Threshold",
"value": "80"

},
{

"name": "Total Allocated Heap",
"value": "192"

},
{

"name": "Free Heap",
"value": "52"

},
{

"name": "Maximum Heap",
"value": "1015"

}
]

}
]

}

category-names
Retrieves the Manager configuration category names.

Example Request

GET http://example.com:8080/livecluster/rest/manager/category-names

Example Response

[
"Logging",

TIBCO GridServer® Developer's Guide

321 | REST API Reference

"Services",
"Engines and Clients",
"Admin",
"Database",
"Resource Deployment",
"Cache",
"Security",
"Communication",
"Hotfixes"

]

director-id
Gets the Director ID if it exists else returns -1.

Example Request

GET http://example.com:8080/livecluster/rest/manager/director-id

Example Response
899860077

engine-configuration-names
Retrieves a list of names of the Engine configuration profiles available on the specified
Manager.

Example Request

GET http://example.com:8080/livecluster/rest/manager/engine-
configuration-names

TIBCO GridServer® Developer's Guide

322 | REST API Reference

Example Response

[

"linux64:default",
"win64:default",
"win32:default",
"linux:default"

]

engine-count
Retrieves the total number of Engines from all the Brokers logged in to the Director.

Example Request

GET http://example.com:8080/livecluster/rest/manager/engine-count

Example Response
10

events
Retrieves the available subscription events.

Example Request

GET http://example.com:8080/livecluster/rest/manager/events

Example Response

[
"ServiceEvent",

TIBCO GridServer® Developer's Guide

323 | REST API Reference

"ServicePriorityChangedEvent",
"EngineDiedEvent",
"EngineAddedEvent",
"EngineRemovedEvent",
"EngineBlacklistedEvent",
"EngineGreylistedEvent",
"EngineDaemonAddedEvent",
"EngineDaemonRemovedEvent",
"DriverAddedEvent",
"DriverRemovedEvent",
"BrokerAddedEvent",
"BrokerRemovedEvent",
"LicenseEvent",
"ServerInitializedEvent",
"MemoryWarningEvent"

]

finished-service-count
Retrieves the total number of finished Services from all the Brokers logged in to the
Director.

Example Request

GET http://example.com:8080/livecluster/rest/manager/finished-service-
count

Example Response
3

license-info
Retrieves the Manager license information.

TIBCO GridServer® Developer's Guide

324 | REST API Reference

Example Request

GET http://example.com:8080/livecluster/rest/manager/license-info

Example Response

{
"properties": [

{
"name": "licenseVersion",
"value": "5.0"

},
{

"name": "maxDaemons",
"value": "632000"

},
{

"name": "productname",
"value": "GridServer"

},
{

"name": "maxBrokers",
"value": "632000"

},
{

"name": "maxCpuThreadNo",
"value": "632000"

},
{

"name": "maxCpuCoreNo",
"value": "632000"

},
{

"name": "maxEngines",
"value": "632000"

},
{

"name": "maxCpuSocketNo",
"value": "632000"

},
{

"name": "maxCpuNo",
"value": "632000"

}
],

TIBCO GridServer® Developer's Guide

325 | REST API Reference

"errorMessage": null,
"customerName": null,
"allowedHostnames": [

"*:*"
],
"expirationDate": 1787447752000,
"featureSets": [

{
"name": "drivers",
"value": "jdriver pdriver cppdriver NETdriver SOAPdriver

DWSdriver COMdriver"
},
{

"name": "serviceTypes",
"value": "*"

},
{

"name": "schedulers",
"value": "SLA"

},
{

"name": "engineOS",
"value": "*"

},
{

"name": "serverOS",
"value": "*"

}
]

}

manager-value
Retrieves a Manager property value specified by category name, property group name, and
property name on the specified manager.

Example Request

GET http://example.com:8080/livecluster/rest/manager/manager-value

TIBCO GridServer® Developer's Guide

326 | REST API Reference

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

manager
String Manger ID for which property

needs to be retrieved
1580108171

category
String Name of category

Logging

propertyGroup
String Name of property group

General

name
String Name of property

Default
debug level

Example Response
INFO

Result: The corresponding value of the property is returned.

pending-invocation-count
Retrieves the total number of pending Service invocations from all the Brokers logged in to
the Director.

Example Request

GET http://example.com:8080/livecluster/rest/manager/pending-invocation-
count

TIBCO GridServer® Developer's Guide

327 | REST API Reference

Example Response
0

running-invocation-count
Retrieves the total number of running Service invocations from all the Brokers logged in to
the Director.

Example Request

GET http://example.com:8080/livecluster/rest/manager/running-invocation-
count

Example Response
0

running-service-count
Retrieves the total number of running Services from all the Brokers logged in to the
Director.

Example Request

GET http://example.com:8080/livecluster/rest/manager/running-service-
count

Example Response
0

TIBCO GridServer® Developer's Guide

328 | REST API Reference

service-count
Retrieves the total number of Services from all the Brokers logged in to the Director.

Example Request

GET http://example.com:8080/livecluster/rest/manager/service-count

Example Response
2

subscriber-events
Retrieves the events that the given subscriber is registered to receive.

Example Request

POST http://example.com:8080/livecluster/rest/manager/subscriber-events

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Subscriber
data
depending on
which events
need to be
retrieved

{
"filter": "pqr",
"email": "test@tibco.com"

}

TIBCO GridServer® Developer's Guide

329 | REST API Reference

Example Response

[
"ServiceEvent",
"ServicePriorityChangedEvent"

]

subscribers
Retrieves the registered event subscribers.

Example Request

GET http://example.com:8080/livecluster/rest/manager/subscribers

Example Response

[
{

"filter": null,
"email": "test"

}
]

value
Gets a Manager property value specified by the category name, property group name, and
property name.

Example Request

GET http://example.com:8080/livecluster/rest/manager/value

TIBCO GridServer® Developer's Guide

330 | REST API Reference

Example Input

Parameters

Parameter Name Data Type Description Sample Value

category
String Name of the category

Logging

propertyGroup
String Name of the property group

General

name
String Name of the property

Default Debug
Level

Example Response
INFO

version
Retrieves the Manager version in M.m format.

Example Request

GET http://example.com:8080/livecluster/rest/manager/version

Example Response
7.1

available
Retrieves whether the methods are available.

TIBCO GridServer® Developer's Guide

331 | REST API Reference

Example Request

GET http://example.com:8080/livecluster/rest/manager/available

Example Response

True or False

manager-value
Sets a Manager property value specified by the category name, property group name, and
property name on the specified manager.

Example Request

PUT http://example.com:8080/livecluster/rest/manager/manager-value

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

manager
String Manager ID for which property

needs to be retrieved
1580108171

category
String Name of the category

Logging

propertyGroup
String Name of the property group

General

TIBCO GridServer® Developer's Guide

332 | REST API Reference

Parameter Name Data
Type

Description Sample Value

name
String Name of the property

Default
Debug Level

value
String Value of the property

FINE

Example Response
204 no content

Result: Property value is updated correctly.

value
Sets a Manager property value specified by the category name, property group name, and
property name.

Example Request

PUT http://example.com:8080/livecluster/rest/manager/value

Example Input

Parameters

Parameter Name Data Type Description Sample Value

category
String Name of the category

Logging

TIBCO GridServer® Developer's Guide

333 | REST API Reference

Parameter Name Data Type Description Sample Value

propertyGroup
String Name of the property group

General

name
String Name of the property

Default Debug
Level

value
String Value of the category

FINE

Example Response
204 no content

Result: Property value is updated correctly.

subscribe
Subscribes to the given events.

Example Request

POST http://example.com:8080/livecluster/rest/manager/subscribe

Example Input

Parameters

TIBCO GridServer® Developer's Guide

334 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

— JSON Subscriber data that
subscribes to given
events

{
"subscriber": {

"filter": "xyz",
"email":

"test@example.com"
},
"events": [

"ServiceEvent",

"ServicePriorityChangedEvent"
]

}

Example Response
204 no content

Result: Subscribed to given event.

unsubscribe
Unsubscribes from the given events.

Example Request

POST http://example.com:8080/livecluster/rest/manager/unsubscribe

Example Input

Parameters

TIBCO GridServer® Developer's Guide

335 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

— JSON Subscriber data that
unsubscribes from
given events

{
"subscriber": {

"filter": "xyz",
"email":

"test@example.com"
},
"events": [

"ServiceEvent",

"ServicePriorityChangedEvent"
]

}

Example Response
204 no content

Result: Unsubscribed from given event.

ServiceAdmin
ServiceAdmin APIs provide administrative access to the Services on a Broker. They are
listed in the following table:

Method Method
Type

Description

all-services PUT Cancels all active Services on the Broker.

invocation PUT Cancels a specific invocation specified by the given Service
ID and Invocation ID.

TIBCO GridServer® Developer's Guide

336 | REST API Reference

Method Method
Type

Description

service PUT Cancels the Service specified by the given Service ID.

resources DELETE Removes resource files from both the staging and
deployed areas.

deploy-resources POST Deploys resources.

all-service-info GET Retrieves Service information of all the Services on the
Broker.

blacklisted-engines GET Retrieves a list of IDs of Engines that have been blacklisted
for a specified Service.

completed-service-
invocation-count

GET Retrieves the number of completed invocations of the
specified Service.

finished-service-
count

GET Retrieves the total number of finished Services on the
Broker.

invocation-count GET Retrieves the total number of pending and running
invocations on the Broker.

invocation-info GET Retrieves the information about a particular invocation of
a Service, for the given Service ID and Invocation ID.

pending-
invocation-count

GET Retrieves the number of pending invocations on the
Broker.

pending-service-
invocation-count

GET Retrieves the number of pending invocations of the
specified Service.

registered-services GET Retrieves a list of all registered Services; returns null if no
Services are registered.

running-
invocation-count

GET Retrieves the number of invocations currently executed by
Engines on the Broker.

TIBCO GridServer® Developer's Guide

337 | REST API Reference

Method Method
Type

Description

running-service-
count

GET Retrieves the total number of active Services on the
Broker.

running-service-
invocation-count

GET Retrieves the number of invocations currently executed by
Engines of the specified Service.

selected-
invocation-info

POST Retrieves information of the given Service and invocation
IDs.

selected-service-
info

POST Retrieves information of the given Service IDs running on
the Broker.

service-binding GET Retrieves the binding of the specified Service.

service-count GET Retrieves the total number of Services on the Broker.

service-ids GET Retrieves the list of all Service IDs on the Broker.

service-info GET Retrieves the Service information of the given Service ID.

service-info-by-
properties

POST Retrieves the Service information of all Services on the
Broker that match the description condition.

service-invocation-
count

GET Retrieves the total number of invocations of the specified
Service.

task-expiration-
event-count

GET Retrieves the total number of task expiration events of the
specified Service.

available GET Retrieves whether the methods are available.

list-resources GET Lists resources on the Server.

register-service POST Registers the binding in the Service Registry; this must be
done on the Primary Director.

TIBCO GridServer® Developer's Guide

338 | REST API Reference

Method Method
Type

Description

all-finished-
services

DELETE Removes the information of all finished Services from the
Broker.

finished-service DELETE Removes the information of finished Services from the
Broker.

resource-exists GET Checks whether a file exists in the designated area.

expires PUT Sets whether Service information is removed during
Service cleanup.

priority PUT Sets the priority of the specified Service.

unregister-service DELETE Unregisters the binding in the Service Registry; this must
be done on the Primary Director.

all-services
Cancels all active Services on the Broker.

Example Request

PUT http://example.com:8080/livecluster/rest/service/all-services

Example Response
204 no content

Result: All active services on the broker are canceled.

invocation
Cancels a specific invocation specified by the given Service ID and Invocation ID.

TIBCO GridServer® Developer's Guide

339 | REST API Reference

Example Request

PUT http://example.com:8080/livecluster/rest/service/invocation

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

jobId
Long Service ID of the Service that

needs to be canceled
4697058754240048269

taskId
Long Invocation ID of the Service that

needs to be canceled
5

Example Response
204 no content

Result: Specific invocation for given service ID and Invocation ID is canceled.

service
Cancels the Service specified by the given Service ID.

Example Request

PUT http://example.com:8080/livecluster/rest/service/service

Example Input

Parameters

TIBCO GridServer® Developer's Guide

340 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

jobId
Long Service ID of the Service that

needs to be canceled
6344484810359622656

Example Response
204 no content

Result: Service specified by the given Service ID is canceled.

resources
Removes resource files from both the staging and deployed areas.

Example Request

DELETE http://example.com:8080/livecluster/rest/service/resources

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Array of resource names that needs
to be removed.

["calculator-
1.0.0.1.tar.gz"]

Example Response
204 no content

Result: Corresponding resources are deleted.

TIBCO GridServer® Developer's Guide

341 | REST API Reference

deploy-resources
Deploys resources.

Example Request

POST http://example.com:8080/livecluster/rest/service/deploy-resources

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

— JSON Array of
resource
names that
need to be
deployed

["calculator-
1.0.0.1.tar.gz"]

verifyGridLibraryStructure
Boolean Grid library

structure
flag. True or
false.

True or False

verifyGridLibraryDependencie
s

Boolean Grid library
dependency
flag. True or
false.

True or False

verifyGridLibraryNaming
Boolean Grid library

naming flag.
True or false.

True or False

Example Response
204 no content

TIBCO GridServer® Developer's Guide

342 | REST API Reference

Result: Corresponding resources are deployed.

all-service-info
Retrieves Service information of all Services on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/service/all-service-info

Example Response

[
{

"finishTime": -1,
"pendingCount": 2,
"runningCount": 8,
"completedCount": 0,
"totalCount": 10,
"serviceName": "Linpack Test",
"cancelled": false,
"description": [

{
"name": "appName",
"value": "DataSynapse Job/Service Test"

},
{

"name": "serviceTypeName",
"value": "LinpackServiceTest"

},
{

"name": "serviceName",
"value": "Linpack Test"

},
{

"name": "class",
"value": "java:examples.linpack.LinpackService"

},
{

"name": "serviceType",
"value": "Service"

TIBCO GridServer® Developer's Guide

343 | REST API Reference

},
{

"name": "slaGroupName",
"value": ""

},
{

"name": "providerType",
"value": "JavaProvider"

},
{

"name": "username",
"value": "internal"

}
],
"finished": false,
"status": "Running",
"options": [

{
"name": "autoPackMode",
"value": "0"

},
{

"name": "compressData",
"value": "true"

},
{

"name": "resultsPerMessage",
"value": "100"

},
{

"name": "resubmitOnDDTFailure",
"value": "true"

},
{

"name": "statusExpires",
"value": "true"

},
{

"name": "tasksPerMessage",
"value": "20"

},
{

"name": "deleteInvocationData",
"value": "2"

},
{

"name": "maxEngines",

TIBCO GridServer® Developer's Guide

344 | REST API Reference

"value": "2147483647"
},
{

"name": "taskMaxTime",
"value": "9223372036854775807"

},
{

"name": "priority",
"value": "5"

},
{

"name": "killCancelledTasks",
"value": "true"

},
{

"name": "checkpoint",
"value": "false"

},
{

"name": "unloadNativeLibrary",
"value": "true"

},
{

"name": "autoCancel",
"value": "1"

},
{

"name": "autoPackNum",
"value": "0"

},
{

"name": "collectionType",
"value": "1"

}
],
"invocationInfo": [],
"submitTime": 1643633925014,
"driverHostname": "TIBCO-PF379VJL",
"driverUsername": "internal",
"resultProperties": null,
"serviceId": 565597320224386901,
"completed": false

}
]

Result: Information about all Services is returned.

TIBCO GridServer® Developer's Guide

345 | REST API Reference

blacklisted-engines
Retrieves a list of IDs of Engines that have been blacklisted for a specified Service.

Example Request

GET http://example.com:8080/livecluster/rest/service/blacklisted-engines

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

serviceId
Long Service ID for which black-

listed Engine IDs need to be
retrieved

7655032223441706693

Example Response

[
4848394891525229394

]

Result: IDs of blacklisted Engines are returned.

completed-service-invocation-count
Retrieves the number of completed invocations of the specified Service.

Example Request

GET http://example.com:8080/livecluster/rest/service/completed-service-
invocation-count

TIBCO GridServer® Developer's Guide

346 | REST API Reference

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

serviceId
Long Service ID for which

completed Service
invocation count needs to be
retrieved

7655032223441706693

Example response
0

finished-service-count
Retrieves the total number of finished Services on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/service/finished-service-
count

Example Response
1

invocation-count
Retrieves the total number of pending and running invocations on the Broker.

TIBCO GridServer® Developer's Guide

347 | REST API Reference

Example Request

GET http://example.com:8080/livecluster/rest/service/invocation-count

Example Response
0

invocation-info
Retrieves the information about a particular invocation of a Service, for the given Service ID
and Invocation ID.

Example Request

Get http://example.com:8080/livecluster/rest/service/invocation-info

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

jobId
Long Service ID of the Service whose

information needs to be
retrieved

4697058754240048269

taskId
Long Invocation ID of the Service

whose information needs to be
retrieved

5

TIBCO GridServer® Developer's Guide

348 | REST API Reference

Example Response

{
"description": null,
"engine": null,
"startTime": 0,
"elapsedTime": 0,
"submitTime": 1578912618068,
"exception": 0,
"id": 5,
"info": null,
"status": "Submitted",
"computationalTime": 0,
"inputSize": 533,
"outputSize": 0,
"reschedules": 0,
"retries": 0

}

pending-invocation-count
Retrieves the number of pending invocations on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/service/pending-invocation-
count

Example Response
0

pending-service-invocation-count
Retrieves the number of pending invocations of the specified Service.

TIBCO GridServer® Developer's Guide

349 | REST API Reference

Example Request

GET http://example.com:8080/livecluster/rest/service/pending-service-
invocation-count

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

serviceId
Long Service ID for which Service

invocation count needs to be
retrieved

7655032223441706693

Example Response
0

registered-services
Retrieves a list of all registered Services; returns null if no Services are registered.

Example Request

GET http://example.com:8080/livecluster/rest/service/registered-services

Example Response

[
"CPPCalculatorExample",
"CUDAExample",
"JavaAdderExample",
"JavaCalculatorExample",
"MICExample",

TIBCO GridServer® Developer's Guide

350 | REST API Reference

"NETCalculatorExample",
"NETSpeedLink",
"PythonExample",
"RadhocExample",
"RCalculatorExample",
"RPICalculatorExample",
"SpeedLink"

]

running-invocation-count
Retrieves the number of invocations currently executed by Engines on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/service/running-invocation-
count

Example Response
0

running-service-count
Retrieves the total number of active Services on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/service/running-service-
count

Example Response
0

TIBCO GridServer® Developer's Guide

351 | REST API Reference

running-service-invocation-count
Retrieves the number of invocations currently executed by Engines of the specified Service.

Example Request

GET http://example.com:8080/livecluster/rest/service/running-service-
invocation-count

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

serviceId
Long Service ID for which running

Service invocation count
needs to be retrieved

7655032223441706693

Example Response
10

selected-invocation-info
Retrieves information of the given Service and invocation IDs.

Example Request

POST http://example.com:8080/livecluster/rest/service/selected-
invocation-info

TIBCO GridServer® Developer's Guide

352 | REST API Reference

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

serviceId
Long Service ID for which

information needs to be
retrieved

4625254489192920053

— JSON Invocation IDs for which
information needs to be
retrieved

[1,5]

Example Response

[
{

"description": null,
"engine": {

"instance": "0",
"properties": null,
"username": "win64vm108",
"engineId": 9007929106493580894,
"serviceId": -1,
"invocationId": -1,
"busy": false,
"elapsedTime": -1

},
"startTime": 1578911378974,
"elapsedTime": 10131,
"submitTime": 1578911368704,
"exception": 0,
"id": 1,
"info": "2,572.13 MFlops",
"status": "Completed",
"computationalTime": 10033,
"inputSize": 533,
"outputSize": 328,
"reschedules": 0,
"retries": 0

},
{

TIBCO GridServer® Developer's Guide

353 | REST API Reference

"description": null,
"engine": {

"instance": "0",
"properties": null,
"username": "win64vm108",
"engineId": 9007929106493580894,
"serviceId": -1,
"invocationId": -1,
"busy": false,
"elapsedTime": -1

},
"startTime": 1578911419455,
"elapsedTime": 10082,
"submitTime": 1578911368799,
"exception": 0,
"id": 5,
"info": "2,180.66 MFlops",
"status": "Completed",
"computationalTime": 10065,
"inputSize": 533,
"outputSize": 328,
"reschedules": 0,
"retries": 0

}
]

selected-service-info
Retrieves information of the given Service IDs running on the Broker.

Example Request

POST http://example.com:8080/livecluster/rest/service/selected-service-
info

Example Input

Parameters

TIBCO GridServer® Developer's Guide

354 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

— JSON List of Service IDs for which
information needs to be retrieved

8640091942181654218

Example Response

[
{

"finishTime": -1,
"pendingCount": 5,
"runningCount": 0,
"completedCount": 0,
"totalCount": 5,
"cancelled": false,
"serviceName": "Linpack Test",
"description": [

{
"name": "appName",
"value": "DataSynapse Job/Service Test"

},
{

"name": "serviceTypeName",
"value": "LinpackServiceTest"

},
{

"name": "serviceName",
"value": "Linpack Test"

},
{

"name": "class",
"value": "java:examples.linpack.LinpackService"

},
{

"name": "serviceType",
"value": "Service"

},
{

"name": "slaGroupName",
"value": ""

},
{

"name": "providerType",
"value": "JavaProvider"

TIBCO GridServer® Developer's Guide

355 | REST API Reference

},
{

"name": "username",
"value": "internal"

}
],
"status": "Running",
"options": [

{
"name": "autoPackMode",
"value": "0"

},
{

"name": "compressData",
"value": "true"

},
{

"name": "resultsPerMessage",
"value": "100"

},
{

"name": "resubmitOnDDTFailure",
"value": "true"

},
{

"name": "statusExpires",
"value": "true"

},
{

"name": "tasksPerMessage",
"value": "20"

},
{

"name": "deleteInvocationData",
"value": "2"

},
{

"name": "maxEngines",
"value": "2147483647"

},
{

"name": "taskMaxTime",
"value": "9223372036854775807"

},
{

"name": "priority",
"value": "5"

},

TIBCO GridServer® Developer's Guide

356 | REST API Reference

{
"name": "killCancelledTasks",
"value": "true"

},
{

"name": "checkpoint",
"value": "false"

},
{

"name": "unloadNativeLibrary",
"value": "true"

},
{

"name": "autoCancel",
"value": "1"

},
{

"name": "autoPackNum",
"value": "0"

},
{

"name": "collectionType",
"value": "1"

}
],
"finished": false,
"resultProperties": null,
"invocationInfo": [],
"completed": false,
"submitTime": 1578909679845,
"serviceId": 8640091942181654218,
"driverHostname": "mkamdar-p50.apac.tibco.com",
"driverUsername": "internal"

}
]

service-binding
Retrieves the binding of the specified Service.

Example Request

GET http://example.com:8080/livecluster/rest/service/service-binding

TIBCO GridServer® Developer's Guide

357 | REST API Reference

Example Input

Parameters

Parameter Name Data Type Description Sample Value

name
String Name of the Service

LinpackServiceTest

Example Response

{
"parameters": [

{
"name": "className",
"value": "examples.linpack.LinpackService"

}
],
"options": null,
"description": [

{
"name": "serviceTypeName",
"value": "LinpackServiceTest"

},
{

"name": "providerType",
"value": "JavaProvider"

}
],
"name": "LinpackServiceTest",
"uidescription": "",
"type": "java",
"containerBinding": [

{
"name": "serviceMethods",
"value": "*"

}
]

}

TIBCO GridServer® Developer's Guide

358 | REST API Reference

service-count
Retrieves the total number of Services on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/service/service-count

Example Response
1

service-ids
Retrieves the list of all Service IDs on the Broker.

Example Request

GET http://example.com:8080/livecluster/rest/service/service-ids

Example Response

A list of Service IDs on the Broker is returned.

[
4371703018904140926

]

service-info
Retrieves Service information of the given Service ID.

TIBCO GridServer® Developer's Guide

359 | REST API Reference

Example Request

GET http://example.com:8080/livecluster/rest/service/service-info

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

jobId
Long Service ID of the Service whose

information needs to be retrieved
8656732499466570974

Example Response

{
"finishTime": 1641820932754,
"pendingCount": 0,
"runningCount": 0,
"completedCount": 10,
"totalCount": 10,
"serviceName": "Linpack Test",
"cancelled": false,
"description": [

{
"name": "appName",
"value": "DataSynapse Job/Service Test"

},
{

"name": "serviceTypeName",
"value": "LinpackServiceTest"

},
{

"name": "serviceName",
"value": "Linpack Test"

},
{

"name": "class",
"value": "java:examples.linpack.LinpackService"

},

TIBCO GridServer® Developer's Guide

360 | REST API Reference

{
"name": "serviceType",
"value": "Service"

},
{

"name": "slaGroupName",
"value": ""

},
{

"name": "providerType",
"value": "JavaProvider"

},
{

"name": "username",
"value": "internal"

}
],
"status": "Finished",
"finished": true,
"options": [

{
"name": "autoPackMode",
"value": "0"

},
{

"name": "compressData",
"value": "true"

},
{

"name": "resultsPerMessage",
"value": "100"

},
{

"name": "resubmitOnDDTFailure",
"value": "true"

},
{

"name": "statusExpires",
"value": "true"

},
{

"name": "tasksPerMessage",
"value": "20"

},
{

"name": "deleteInvocationData",
"value": "2"

TIBCO GridServer® Developer's Guide

361 | REST API Reference

},
{

"name": "maxEngines",
"value": "2147483647"

},
{

"name": "taskMaxTime",
"value": "9223372036854775807"

},
{

"name": "priority",
"value": "5"

},
{

"name": "killCancelledTasks",
"value": "true"

},
{

"name": "checkpoint",
"value": "false"

},
{

"name": "unloadNativeLibrary",
"value": "true"

},
{

"name": "autoCancel",
"value": "1"

},
{

"name": "autoPackNum",
"value": "0"

},
{

"name": "collectionType",
"value": "1"

}
],
"invocationInfo": [],
"completed": true,
"serviceId": 4371703018904140926,
"resultProperties": null,
"driverHostname": "TIBCO-PF379VJL",
"driverUsername": "internal",
"submitTime": 1641820912300

}

TIBCO GridServer® Developer's Guide

362 | REST API Reference

service-info-by-properties
Retrieves the Service information of all Services on the Broker that match the description
condition.

Example Request

POST http://example.com:8080/livecluster/rest/service/service-info-by-
properties

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Description condition data
depending on information of
which Services need to be
retrieved

{
"sets": null,
"conditions": [

{
"name":

"serviceType",

"comparison": 1,
"value":

"Service",

"nullCompare": false
},
{

"name":
"serviceTypeName",

"comparison": 1,
"value":

"LinpackServiceTest",

"nullCompare": false
}

TIBCO GridServer® Developer's Guide

363 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

],
"type": 0

}

Example Response

"[
{

"finishTime": 1578980454833,
"pendingCount": 0,
"runningCount": 0,
"completedCount": 100,
"totalCount": 100,
"cancelled": false,
"serviceName": "Linpack Test",
"description": [

{
"name": "appName",
"value": "DataSynapse Job/Service Test"

},
{

"name": "serviceTypeName",
"value": "LinpackServiceTest"

},
{

"name": "serviceName",
"value": "Linpack Test"

},
{

"name": "class",
"value": "java:examples.linpack.LinpackService"

},
{

"name": "serviceType",
"value": "Service"

},
{

"name": "slaGroupName",
"value": ""

},

TIBCO GridServer® Developer's Guide

364 | REST API Reference

{
"name": "providerType",
"value": "JavaProvider"

},
{

"name": "username",
"value": "internal"

}
],
"status": "Finished, Task Errors",
"options": [

{
"name": "autoPackMode",
"value": "0"

},
{

"name": "compressData",
"value": "true"

},
{

"name": "resultsPerMessage",
"value": "100"

},
{

"name": "resubmitOnDDTFailure",
"value": "true"

},
{

"name": "statusExpires",
"value": "true"

},
{

"name": "tasksPerMessage",
"value": "20"

},
{

"name": "deleteInvocationData",
"value": "2"

},
{

"name": "maxEngines",
"value": "2147483647"

},
{

"name": "taskMaxTime",
"value": "9223372036854775807"

},

TIBCO GridServer® Developer's Guide

365 | REST API Reference

{
"name": "priority",
"value": "5"

},
{

"name": "killCancelledTasks",
"value": "true"

},
{

"name": "checkpoint",
"value": "false"

},
{

"name": "unloadNativeLibrary",
"value": "true"

},
{

"name": "autoCancel",
"value": "1"

},
{

"name": "autoPackNum",
"value": "0"

},
{

"name": "collectionType",
"value": "1"

}
],
"finished": true,
"resultProperties": null,
"driverUsername": "internal",
"driverHostname": "10.128.88.108",
"invocationInfo": [],
"serviceId": 1185560448718947021,
"completed": true,
"submitTime": 1578979437654

},
{

"finishTime": 1578980058243,
"pendingCount": 0,
"runningCount": 0,
"completedCount": 1,
"totalCount": 1,
"cancelled": false,
"serviceName": "Linpack Test",
"description": [

TIBCO GridServer® Developer's Guide

366 | REST API Reference

{
"name": "appName",
"value": "DataSynapse Job/Service Test"

},
{

"name": "serviceTypeName",
"value": "LinpackServiceTest"

},
{

"name": "serviceName",
"value": "Linpack Test"

},
{

"name": "class",
"value": "java:examples.linpack.LinpackService"

},
{

"name": "serviceType",
"value": "Service"

},
{

"name": "slaGroupName",
"value": ""

},
{

"name": "providerType",
"value": "JavaProvider"

},
{

"name": "username",
"value": "internal"

}
],
"status": "Finished",
"options": [

{
"name": "autoPackMode",
"value": "0"

},
{

"name": "compressData",
"value": "true"

},
{

"name": "resultsPerMessage",
"value": "100"

},

TIBCO GridServer® Developer's Guide

367 | REST API Reference

{
"name": "resubmitOnDDTFailure",
"value": "true"

},
{

"name": "statusExpires",
"value": "true"

},
{

"name": "tasksPerMessage",
"value": "20"

},
{

"name": "deleteInvocationData",
"value": "2"

},
{

"name": "maxEngines",
"value": "2147483647"

},
{

"name": "taskMaxTime",
"value": "9223372036854775807"

},
{

"name": "priority",
"value": "5"

},
{

"name": "killCancelledTasks",
"value": "true"

},
{

"name": "checkpoint",
"value": "false"

},
{

"name": "unloadNativeLibrary",
"value": "true"

},
{

"name": "autoCancel",
"value": "1"

},
{

"name": "autoPackNum",
"value": "0"

TIBCO GridServer® Developer's Guide

368 | REST API Reference

},
{

"name": "collectionType",
"value": "1"

}
],
"finished": true,
"resultProperties": null,
"driverUsername": "internal",
"driverHostname": "10.128.88.108",
"invocationInfo": [],
"serviceId": 4863259086811987322,
"completed": true,
"submitTime": 1578980045220

}
]"

service-invocation-count
Retrieves the total number of invocations of the specified Service.

Example Request

GET http://example.com:8080/livecluster/rest/service/service-invocation-
count

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

serviceId
Long Service ID for which Service

invocation count needs to be
retrieved

3801168623022738886

TIBCO GridServer® Developer's Guide

369 | REST API Reference

Example Response
10

task-expiration-event-count
Retrieves the total number of task expiration events of the specified Service.

Example Request

GET http://example.com:8080/livecluster/rest/service/task-expiration-
event-count

Example Input

Parameters

Parameter Name Data
Type

Description Sample Value

serviceId
Long Service ID for which total

number of task expiration
events need to be retrieved

3801168623022738886

Example Response
0

available
Retrieves whether the methods are available.

Example Request

GET http://example.com:8080/livecluster/rest/service/available

TIBCO GridServer® Developer's Guide

370 | REST API Reference

Example Response

True or False

list-resources
Lists resources on the Server.

Example Request

GET http://example.com:8080/livecluster/rest/service/list-resources

Example Input

Parameters

Parameter Name Data Type Description Sample Value

staged
Boolean Staged flag. Can be true or false.

False

Example Response

[
"calculator-1.0.0.1.tar.gz",
"cppbridge-linux-gcc34-7.1.zip",
"cppbridge-linux64-gcc34-7.1.zip",
"cppbridge-linux64-gcc49-7.1.zip",
"cppbridge-linux64-gcc83-7.1.zip",
"cppbridge-win32-vc12-7.1.zip",
"cppbridge-win32-vc14-7.1.zip",
"cppbridge-win64-vc12-7.1.zip",
"cppbridge-win64-vc14-7.1.zip",
"cppbridge-win64-vc15-7.1.zip",
"cppbridge-win64-vc16-7.1.zip",
"jre-linux-1.8.0.311.tar.gz",
"jre-linux64-1.8.0.311.tar.gz",
"jre-win32-1.8.0.311.zip",

TIBCO GridServer® Developer's Guide

371 | REST API Reference

"jre-win64-1.8.0.311.zip",
"net5bridge-linux64-gcc49-7.1.zip",
"net5bridge-win64-7.1.zip",
"netbridge-7.1.zip",
"netbridge-win64-7.1.zip",
"pybridge-linux64-gcc34-7.1.tar.gz",
"pybridge-win64-vc14-7.1.tar.gz",
"python-linux64-3.7.0.zip",
"python-win64-3.7.0.zip",
"rbridge-linux64-7.1.tar.gz",
"rbridge-win64-7.1.tar.gz",
"SpeedLink-7.1.0.179676.tar.gz"

]

register-service
Registers the binding in the Service Registry; this must be done on the Primary Director.

Example Request

POST http://example.com:8080/livecluster/rest/service/register-service

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Service binding
date that needs
to be registered

{ "parameters": [
{

"name": "className",
"value":

"examples.calculator.service.

TIBCO GridServer® Developer's Guide

372 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

JavaCalculator"
}

],
"options": [

{
"name": "gridLibrary",
"value": "calculator"

}
],
"description": [

{
"name":

"serviceTypeName",
"value":

"JavaCalculatorExample"
},
{

"name": "serviceName",
"value": "Java

Calculator Example"
},
{

"name": "providerType",
"value": "JavaProvider"

}
],
"name":

"JavaCalculatorExample",
"uidescription": "Cross-

language Java Service example that
performs basic calculator
operations on strings",

"type": "java",
"containerBinding": [

{
"name":

"targetPackage",
"value":

"examples.calculator.client" },
{

TIBCO GridServer® Developer's Guide

373 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

"name":
"xmlSerialization",

"value": "false" },
{

"name":
"serviceMethods",

"value": "*" },
{

"name":
"setStateMethods",

"value": "setMemory" },
{

"name":
"appendStateMethods",

"value": "addToMemory"
}

]
}"

Example Response
204 no content

Result: Service type is created.

all-finished-services
Removes the information of all finished Services from the Broker.

Example Request

DELETE http://example.com:8080/livecluster/rest/service/all-finished-
services

TIBCO GridServer® Developer's Guide

374 | REST API Reference

Example Response
204 no content

Result: All finished services are removed.

finished-service
Removes the information of finished Services from the Broker.

Example Request

DELETE http://example.com:8080/livecluster/rest/service/finished-service

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

jobId
Long Service ID for which finished

Service needs to be removed
3801168623022738886

Example Response
204 no content

Result: Service with the specified ID is deleted.

resource-exists
Checks whether a file exists in the designated area.

TIBCO GridServer® Developer's Guide

375 | REST API Reference

Example Request

GET http://example.com:8080/livecluster/rest/service/resource-exists

Example Input

Parameters

Parameter
Name

Data Type Description Sample Value

name
String Name of the resource that needs to

be checked
calculator-
1.0.0.1.tar.gz

staged
Boolean Staged flag. True or false.

false

Example Response

True or False.

expires
Sets whether Service information is removed during Service cleanup.

Example Request

PUT http://example.com:8080/livecluster/rest/service/expires

Example Input

Parameters

TIBCO GridServer® Developer's Guide

376 | REST API Reference

Parameter
Name

Data Type Description Sample Value

jobId
Long Job ID for which the

expiration flag needs to be
updated

3001310211432770499

expires
Boolean Expired flag. True or false

true

Example Response
204 no content

Result: Service information is removed during Service cleanup when set to true.

priority
Sets the priority of the specified Service.

Example Request

PUT http://example.com:8080/livecluster/rest/service/priority

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

jobId
Long Service ID whose priority

needs to be set
3001310211432770499

priority
Int Priority for the Service.

2

TIBCO GridServer® Developer's Guide

377 | REST API Reference

Example Response
204 no content

Result: Service priority is set to the specified value.

unregister-service
Unregisters the binding in the Service Registry; this must be done on the Primary Director.

Example Request

DELETE http://example.com:8080/livecluster/rest/service/unregister-
service

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

name
String Name of the Service that

needs to be unregistered
JavaCalculatorExample

Example Response
204 no content

Result: Service is removed from Service Types.

UserAdmin
UserAdmin APIs provide administrative access to the Users and Roles on a Manager. They
are listed in the following table:

TIBCO GridServer® Developer's Guide

378 | REST API Reference

Method Method Type Description

user POST Creates a new user with an initial password.

role DELETE Deletes the named role.

user DELETE Deletes the user with the given username.

all-roles GET Retrieves all roles.

all-users GET Retrieves all users.

role GET Retrieves the named role.

user GET Retrieves the user with the given username.

available GET Retrieves whether the methods are available.

role POST Adds or updates a role.

user PUT Updates the user.

user
Creates a new user with an initial password.

Example Request

POST http://example.com:8080/livecluster/rest/user/user

Example Input

Parameters

TIBCO GridServer® Developer's Guide

379 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

— JSON User data that needs to be
created

{
"username":

"admin1",
"firstName":

"",
"lastName":

"",
"email": "",
"roles":

"Configure"
}

password
String Password for the user.

admin1

Example Response
204 no content

Result: User is created.

role
Deletes the named role.

Example Request

DELETE http://example.com:8080/livecluster/rest/user/role

Example Input

Parameters

TIBCO GridServer® Developer's Guide

380 | REST API Reference

Parameter Name Data Type Description Sample Value

name
String Name of the role you want to delete

test

Example Response
204 no content

Result: The specified role is deleted.

user
Deletes the user with the given username.

Example Request

DELETE http://example.com:8080/livecluster/rest/user/user

Example Input

Parameters

Parameter Name Data Type Description Sample Value

name
String Name of the user to be deleted.

admin1

Example Response
204 no content

Result: The specified user is deleted.

TIBCO GridServer® Developer's Guide

381 | REST API Reference

all-roles
Retrieves all roles.

Example Request

GET http://example.com:8080/livecluster/rest/user/all-roles

Example Response

"[
{

"name": "Configure",
"description": "The Configure role, all permissions.",
"managerAccess": "*",
"ldapGroup": "",
"maxPriority": -1,
"permissions": "Batch Manage,Batch Admin View,Batch Definition

View,Batch Registry View,Batch Definition Edit,Batch Schedule
View,Broker Admin View,Broker Admin Manage,Broker Configuration
View,Broker Configuration Manage,Broker Monitor,Broker Reports,Broker
Routing Manage,Broker Routing View,Credential Repository View,Credential
Repository Edit,Current Log,Diagnostics,Service Condition View,Service
Condition Edit,ExtraCondition Modify,Documentation,Driver View,Driver
Admin,Driver Download,Driver Events,Engine View,Engine Manage,Engine
Configuration View,Engine Configuration Edit,Engine Daemon View,Engine
Daemon Manage,Engine Events,Engine Install,Engine Log Files,Engine
Properties View,Engine Properties Edit,Engine Properties List
View,Engine Properties List Edit,Engine Daemon Reports,Event
Subscription View,Event Subscription Edit,Resource Deployment
View,Resource Deployment Maker,Resource Deployment Checker,GridCache
View,GridCache Manage,GridCache Schema View,GridCache Schema Edit,Grid
Monitor,Server Hook View,Server Hook Manage,Server Hook Edit,Import
Export,Service Session View,Service Session View Group,Service Session
Manage,Service Session Manage Group,Service Reports,License View,License
Upload,Manager Reconfigure,Manager Configuration View,Manager
Configuration Edit,Service Group View,Service Group Manage,Service Type
List,Service Type Manage,Service Type Edit,Service Type View,Service
Runner View,Service Runner Manage,SNMP View,SNMP Edit,Task Reports,Test
Job,User Manage,User View,User Events,Role View,Role Edit,Auth View,Auth
Edit,Service Access to All Users,Dashboard View,Dashboard Grid
View,Dashboard Services View,Dashboard Brokers View,Dashboard Drivers
View,Dashboard Daemons View,Dashboard Engines View,Web Services List

TIBCO GridServer® Developer's Guide

382 | REST API Reference

View,Specify Additional RunAs User,Execute Services,Quarantine
Engine,Service Diagnostics"

},
{

"name": "Manage",
"description": "Management of all services and other

components",
"managerAccess": "*",
"ldapGroup": "",
"maxPriority": -1,
"permissions": "Batch Manage,Batch Admin View,Batch Schedule

View,Broker Admin View,Broker Admin Manage,Broker Configuration
View,Broker Configuration Manage,Broker Monitor,Broker Reports,Broker
Routing Manage,Broker Routing View,Current Log,Diagnostics,Service
Condition View,Service Condition Edit,ExtraCondition
Modify,Documentation,Driver View,Driver Admin,Driver Download,Driver
Events,Engine View,Engine Manage,Engine Configuration View,Engine Daemon
View,Engine Daemon Manage,Engine Events,Engine Install,Engine Log
Files,Engine Properties View,Engine Properties Edit,Engine Properties
List View,Engine Properties List Edit,Engine Daemon Reports,Event
Subscription View,Resource Deployment View,Resource Deployment
Maker,Resource Deployment Checker,GridCache View,GridCache
Manage,GridCache Schema View,GridCache Schema Edit,Grid Monitor,Server
Hook View,Service Session View,Service Session View Group,Service
Session Manage,Service Session Manage Group,Service Reports,License
View,Service Group View,Service Group Manage,Service Type List,Service
Type Manage,Service Type View,SNMP View,Task Reports,Test Job,User
View,User Events,Role View,Auth View,Dashboard View,Dashboard Grid
View,Dashboard Services View,Dashboard Brokers View,Dashboard Drivers
View,Dashboard Daemons View,Dashboard Engines View,Web Services List
View,Execute Services,Quarantine Engine,Service Diagnostics"

},
{

"name": "Service",
"description": "View plus management of own services",
"managerAccess": "*",
"ldapGroup": "",
"maxPriority": -1,
"permissions": "Broker Admin View,Broker Configuration

View,Broker Monitor,Broker Routing View,Diagnostics,Service Condition
View,Documentation,Driver View,Driver Download,Engine View,Engine
Configuration View,Engine Daemon View,Engine Install,Engine Log
Files,Engine Properties View,Engine Properties List View,Resource
Deployment View,GridCache View,GridCache Schema View,Grid
Monitor,Service Session View,Service Session View Group,Service Session
Manage,Service Session Manage Group,License View,Service Group
View,Service Type List,Service Type View,Test Job,User View,Role

TIBCO GridServer® Developer's Guide

383 | REST API Reference

View,Auth View,Dashboard View,Dashboard Grid View,Dashboard Services
View,Dashboard Brokers View,Dashboard Drivers View,Dashboard Daemons
View,Dashboard Engines View,Web Services List View,Execute
Services,Quarantine Engine,Service Diagnostics"

},
{

"name": "View",
"description": "Default View Role",
"managerAccess": "*",
"ldapGroup": "",
"maxPriority": -1,
"permissions": "Broker Admin View,Broker Configuration

View,Broker Monitor,Broker Routing View,Service Condition
View,Documentation,Driver View,Engine View,Engine Configuration
View,Engine Daemon View,Engine Install,GridCache View,Grid
Monitor,Service Session View,Service Session View Group,License
View,Service Group View,Service Type List,User View,Role View,Auth
View,Dashboard View,Dashboard Grid View,Dashboard Services
View,Dashboard Brokers View,Dashboard Drivers View,Dashboard Daemons
View,Dashboard Engines View"

}
]"

all-users
Retrieves all users.

Example Request

GET http://example.com:8080/livecluster/rest/users/all-users

Example Response

[
{

"username": "admin",
"firstName": "",
"lastName": "",
"email": "",
"roles": "Configure"

TIBCO GridServer® Developer's Guide

384 | REST API Reference

}
]

role
Retrieves the named role.

Example Request

GET http://example.com:8080/livecluster/rest/user/role

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

name
String Name of the role whose information needs to

be retrieved
Service

Example Response

{
"name": "Service",
"description": "View plus management of own services",
"managerAccess": "*",
"ldapGroup": "",
"maxPriority": -1,
"permissions": "Broker Admin View,Broker Configuration View,Broker

Monitor,Broker Routing View,Diagnostics,Service Condition
View,Documentation,Driver View,Driver Download,Engine View,Engine
Configuration View,Engine Daemon View,Engine Install,Engine Log
Files,Engine Properties View,Engine Properties List View,Resource
Deployment View,GridCache View,GridCache Schema View,Grid
Monitor,Service Session View,Service Session View Group,Service Session

TIBCO GridServer® Developer's Guide

385 | REST API Reference

Manage,Service Session Manage Group,License View,Service Group
View,Service Type List,Service Type View,Test Job,User View,Role
View,Auth View,Dashboard View,Dashboard Grid View,Dashboard Services
View,Dashboard Brokers View,Dashboard Drivers View,Dashboard Daemons
View,Dashboard Engines View,Web Services List View,Execute
Services,Quarantine Engine,Service Diagnostics"
}

user
Retrieves the user with the given username.

Example Request

GET http://example.com:8080/livecluster/rest/user/user

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample
Value

name
String Name of the user whose information you want

to retrieve
admin

Example Response

{
"username": "admin",
"firstName": "",
"lastName": "",
"email": "",
"roles": "Configure"

}

TIBCO GridServer® Developer's Guide

386 | REST API Reference

available
Retrieves whether the methods are available.

Example Request

GET http://example.com:8080/livecluster/rest/user/available

Example response

True or False

role
Adds or updates a role.

Example Request

POST http://example.com:8080/livecluster/rest/user/role

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Role data that
needs to be
added or
updated

{
"name": "Service1234",
"description": "View plus

management of own services",
"managerAccess": "*",

TIBCO GridServer® Developer's Guide

387 | REST API Reference

Parameter
Name

Data
Type

Description Sample Value

"ldapGroup": "",
"maxPriority": -1,
"permissions": "Broker Admin

View,Broker Configuration View,Broker
Monitor,Broker Routing
View,Diagnostics,Service Condition
View,Documentation,Driver View,Driver
Download,Engine View,Engine
Configuration View,Engine Daemon
View,Engine Install,Engine Log
Files,Engine Properties View,Engine
Properties List View,Resource
Deployment View,GridCache
View,GridCache Schema View,Grid
Monitor,Service Session View,Service
Session View Group,Service Session
Manage,Service Session Manage
Group,License View,Service Group
View,Service Type List,Service Type
View,Test Job,User View,Role
View,Auth View,Dashboard
View,Dashboard Grid View,Dashboard
Services View,Dashboard Brokers
View,Dashboard Drivers View,Dashboard
Daemons View,Dashboard Engines
View,Web Services List View,Execute
Services,Quarantine Engine,Service
Diagnostics"
}

Example Response

New role is created.

user
Updates the user.

TIBCO GridServer® Developer's Guide

388 | REST API Reference

Example Request

PUT http://example.com:8080/livecluster/rest/user/user

Example Input

Parameters

Parameter
Name

Data
Type

Description Sample Value

— JSON Role data that needs to be
updated

{
"username":

"admin",
"firstName": "",
"lastName": "",
"email":

"xyz@like.com",
"roles":

"Configure"
}

Example Response

User data is updated successfully.

Version
Version APIs provide release version information. They are listed in the following table:

Method Method Type Description

version-release-name GET Retrieves release version.

build-version GET Retrieves build version.

TIBCO GridServer® Developer's Guide

389 | REST API Reference

version-release-name
Retrieves release version.

Example Request

GET http://example.com:8080/livecluster/rest/version/version-release-
name

Example Response
7.1.0

build-version
Retrieves build version.

Example Request

GET http://example.com:8080/livecluster/rest/version/build-version

Example Response
7.1.0.172681

TIBCO GridServer® Developer's Guide

390 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than
any other documentation included with the product.

Product-Specific Documentation

Documentation for TIBCO GridServer® is available on the TIBCO GridServer® Product
Documentation page.

The following documents for this product can be found in the TIBCO Documentation site:

l TIBCO GridServer® Release Notes

l TIBCO GridServer® Installation

l TIBCO GridServer® Introducing TIBCO GridServer®

l TIBCO GridServer® Administration

l TIBCO GridServer® Developer's Guide

l TIBCO GridServer® Upgrade

l TIBCO GridServer® Security

l TIBCO GridServer® COM Integration Tutorial

l TIBCO GridServer® PDriver Tutorial

l TIBCO GridServer® Speedlink

l TIBCO GridServer® Service-Oriented Integration Tutorial

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-datasynapse-gridserver-manager
https://docs.tibco.com/products/tibco-datasynapse-gridserver-manager

TIBCO GridServer® Developer's Guide

391 | TIBCO Documentation and Support Services

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

l For accessing the Support Knowledge Base and getting personalized content about
products you are interested in, visit the TIBCO Support website.

l For creating a Support case, you must have a valid maintenance or support contract
with TIBCO. You also need a user name and password to log in to TIBCO Support
website. If you do not have a user name, you can request one by clicking Register on
the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

http://www.tibco.com/services/support
http://www.tibco.com/services/support
http://www.tibco.com/services/support
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO GridServer® Developer's Guide

392 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT,
OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT
WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR
CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF
THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE
SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, GridServer, FabricServer, GridClient, FabricBroker,
LiveCluster, and SpeedLink are either registered trademarks or trademarks of TIBCO Software Inc. in
the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.

https://scripts.sil.org/OFL

TIBCO GridServer® Developer's Guide

393 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY
TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2001-2022. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Typographical Conventions
	TIBCO GridServer® Application Development
	TIBCO GridServer® Programming Options
	Services
	PDriver
	Python

	Resource Deployment
	Logging and Debugging
	Logging Overview
	Viewing Engine Logs
	Writing to Logs
	Debugging Engines
	Creating a Native Stack Trace in Linux

	Notes for Java Developers
	Stop Java Client by using a property
	HTTP Connection Parameters

	Notes for C++ Developers
	Changing the C++ Compiler Used with CPPDriver
	C++ Multithreading Requirement
	Using Global Statics in C++ Service Code
	Running both 32-bit and 64-bit Services on 64-bit Windows Daemons
	Running Examples on Visual Studio
	Other C++ Notes

	Notes for .NET Developers
	.NET Driver Upgrades

	Notes for Python Developers

	Driver Installation
	GridServer SDK Installation
	The Java Driver (JDriver)
	The C++ Driver (CPPDriver)
	The Parametric Job Driver (PDriver)
	The Python Driver (PyDriver)
	The .NET Driver
	The COM Driver
	The R Driver
	Prerequisites
	Installation

	Driver Configuration
	Configuring Multi-Interfaced Drivers
	Driver Cleaner Configuration
	Multiple Driver Instances

	Creating Services
	Overview
	Steps in Using a Service
	Service Method Compliance
	Java/.NET Services
	C++ Services
	Command Services
	R Services
	Python Services

	Client Calling Conventions
	Java/.NET Client
	C++ Client
	R Client
	Python Client

	Registering a Service Type
	Container Binding
	.NET AppDomains
	.NET Framework Versions

	Language Interoperability
	Strings and Byte Arrays
	Object Conversion from Strings and Byte Arrays
	XML Serialization for Java, .NET, and R
	Interoperable Types for XML Serialization
	R Interoperability
	Python Interoperability

	Maintaining State
	Initialization
	Cancellation
	Destruction
	Service Instance Caching
	Invocation Variables

	Accessing Services
	Services
	Proxy Generation
	Service Options
	Service Invocation Context
	Setting Task Description

	Shared Services
	Creating a Shared Service
	Limitations to Shared Services
	Ending a Shared Service
	Shared Services and Failover

	Broker Spanning Services
	Enabling Broker Spanning on a Driver
	Admin API Usage
	Scheduling and Task Expiration
	Administration
	Broker Spanning Service Limitations

	Service Groups
	Data References
	C++ Data References
	Python Data References

	Service Collection
	Collect After Submit
	Deferred Collection (Collect Later)
	No Collection (Collect Never)

	Engine Pinning
	Running a Driver from an Engine Service

	PDriver
	Overview
	Installing PDriver
	Resource Deployment

	PDriver Commands
	The pdriver Command
	The bsub Command
	The bcoll Command
	The bstatus Command
	The bcancel Command

	About PDS Scripts
	PDS Basics
	PDS Structure
	The Depends Statement
	The Include Statement
	Lifecycle Blocks
	The Options Block
	The Discriminator Block
	The Schedule Block

	Variables, Types, and Expressions
	Basics
	Scoping
	Variable Substitution
	Expressions
	Arrays
	Built-in Variables

	Statements
	Built-in Commands
	The If Statement
	The For and Foreach Statement
	Shell Directives in Heterogeneous Environments

	Example

	Creating Grid Libraries
	Overview
	Grid Library Format
	Variable Substitution
	Versioning
	Dependencies
	Conflicts

	Grid Library Loading
	State Preservation
	Task Reservation
	Environment Variables and System Properties

	Using Grid Libraries from a Service
	Super Grid Libraries
	C++ Bridges
	JREs
	R Grid Libraries
	Building TERR Runtime Grid Libraries

	Python Bridges
	Python Grid Libraries
	Windows Application Deployment
	Grid Library Example

	GridCache
	Overview
	General Capabilities
	API
	Modes
	Cache Configuration and Access
	Data Storage
	Attributes
	Consistency/Synchronization
	Cache Loaders
	Cache Loader Write-through and Bulk Operations
	Notification
	Disk/Memory Caching
	Cache Region Scope
	Data Conversion Matrix

	Using The GridCache API
	Fault Tolerance and GridCache

	GridServer Design Guidelines
	Data Movement
	Principles of Data Movement
	Data Movement Mechanisms
	Data Movement Examples

	Service or Task Duration
	Engine Interruption and Smoothing
	Summary

	The Admin API
	Documentation for the GridServer Admin API
	Using the Admin API over SOAP
	Using Server Hooks
	Using JMX

	Using Conditions
	Conditions
	Discriminator Conditions
	Setting Discriminators in the Administration Tool
	Setting Discriminators Programmatically
	PDriver Discriminators

	Affinity Conditions
	Setting Affinity Conditions Programmatically
	Setting Affinity Conditions in the Administration Tool
	Task Affinity

	Custom Discriminator and Affinity Conditions
	Dependency Conditions
	Creating Dependencies
	Administering Task Dependencies

	Queue Jump Conditions
	Descriptor Conditions
	EXTRAConditions
	Using the EXTRACondition REST Interface
	Setting EXTRAConditions

	Condition Sets
	AND set
	OR Set
	Service Set

	Engine Properties
	Intrinsic Engine Properties
	Custom Engine Properties
	Engine Session Properties
	GPU Services Engine Properties
	MIC Processor Engine Properties
	NUMA Engine Properties and Configuration

	Extending GridServer
	Manager Hooks
	Engine Hooks
	Engine Hook Example
	Implementing Engine Hooks as a Grid Library

	Task Instrumentation
	Overview
	Syntax
	Client
	Action
	Object

	Phases
	Driver-side
	Engine-side
	Broker-side
	DDT file write
	Native

	Example Phases in a Service Execution

	The grid-library.dtd
	The grid-library.dtd

	REST API Reference
	BatchAdmin
	batch-definition
	batch-definition
	all-batch-execution-info
	all-batch-info
	batch-count
	batch-definition
	batch-definition-names
	batch-execution-count
	batch-execution-ids
	batch-execution-info
	batch-execution-info-by-batch-id
	batch-ids
	batch-info
	running-batch-execution-count
	scheduled-batch-count
	selected-batch-execution-info
	selected-batch-info
	available
	batch
	batch-execution
	finished-batch-executions
	finished-batches
	resume-batch
	schedule-batch-definitions
	suspend-all-batches
	suspend-batch

	BrokerAdmin
	service-discriminator
	service-discriminator
	all-broker-info
	broker-count
	broker-info
	engine-router
	service-discriminator
	service-discriminator-names
	shared-brokers
	available
	driver-weight
	engine-router
	engine-weight
	maximum-engines
	min-idle-home-engines
	minimum-engines
	shared-brokers

	DriverAdmin
	all-driver-info
	driver-count
	driver-info
	available

	EngineAdmin
	all-engine-info
	busy-engine-count
	engine-count
	engine-ids
	engine-info
	engine-info-by-properties
	log-url-list
	selected-engine-info
	available
	kill-all-engines
	kill-engine
	park-engines
	unpark-engines
	parked-engines

	EngineDaemonAdmin
	all-engine-daemon-info
	default-properties
	engine-daemon-count
	engine-daemon-ids
	engine-daemon-info
	engine-daemon-info-by-properties
	log-url-list
	selected-engine-daemon-info
	available
	default-property
	property
	property-by-properties
	restart-engine-daemon
	restart-engine-daemon-by-properties
	all-enabled
	all-start-mode
	configuration
	configuration-by-properties
	default-property
	directors
	directors-by-properties
	enabled
	enabled-by-properties
	instances
	instances-by-properties
	property
	property-by-properties
	start-mode
	start-mode-by-properties

	DriverManager
	broker-url

	ManagerAdmin
	broker-id
	broker-name
	broker-url
	build-version
	busy-engine-count
	category
	category-names
	director-id
	engine-configuration-names
	engine-count
	events
	finished-service-count
	license-info
	manager-value
	pending-invocation-count
	running-invocation-count
	running-service-count
	service-count
	subscriber-events
	subscribers
	value
	version
	available
	manager-value
	value
	subscribe
	unsubscribe

	ServiceAdmin
	all-services
	invocation
	service
	resources
	deploy-resources
	all-service-info
	blacklisted-engines
	completed-service-invocation-count
	finished-service-count
	invocation-count
	invocation-info
	pending-invocation-count
	pending-service-invocation-count
	registered-services
	running-invocation-count
	running-service-count
	running-service-invocation-count
	selected-invocation-info
	selected-service-info
	service-binding
	service-count
	service-ids
	service-info
	service-info-by-properties
	service-invocation-count
	task-expiration-event-count
	available
	list-resources
	register-service
	all-finished-services
	finished-service
	resource-exists
	expires
	priority
	unregister-service

	UserAdmin
	user
	role
	user
	all-roles
	all-users
	role
	user
	available
	role
	user

	Version
	version-release-name
	build-version

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

