
TIBCO DataSynapse GridServer®
Manager
Service-Oriented Integration Tutorial
Version 7.1.0
July 2022

Copyright © 2001-2022. TIBCO Software Inc. All Rights Reserved.

TIBCO GridServer® Service-Oriented Integration Tutorial

2 | Contents

Contents
Contents 2

Introduction 3
Overview 3
The Integration Process 4
Argument Types 5

A Simple Service in Java 6
The Service Implementation 6
Deployment and Grid Libraries 6
Registering a Service Type 7
The Client Application 8
Asynchronous and Parallel Processing Requests 9
Using a GridServer-Generated Proxy 11

Container Bindings and Service State 13
About State 13
Container-managed Lifecycle 13
Cancel Method 14
Stateful Service Operations 15
Summary 16

TIBCO Documentation and Support Services 17

Legal and Third-Party Notices 19

TIBCO GridServer® Service-Oriented Integration Tutorial

3 | Introduction

Introduction
This tutorial explains the basic features of the GridServer Services-oriented integration
approach by means of several sample programs. The code for the tutorial programs is
available from the GridServer SDK, which can be downloaded from the Download
Components panel in the top navigation bar of the Administration Tool.

Overview

GridServer hosts Services in an automatically scalable, load balanced, and fault-tolerant
environment. Services can be written in a variety of languages and do not need to be
compiled or linked with DataSynapse code.

Service implementations can be constructed using any of the following options:

• Arbitrary Java classes

• Arbitrary .NET classes

• Dynamic Libraries (.so, .dll) with methods that conform to a simple input-output
string interface

• R functions

• Commands, such as a script or binary

These Services can be accessed in one of two ways:

• Service API — a client-side API in Java, COM, C++, R, or .NET

• Service Proxy — GridServer-generated C# or Java client stubs

The basic Service execution model is the same as that of other distributed programming
solutions: method calls on the client are routed over the network, ultimately resulting in
method calls on a remote machine, and return values make the reverse trip.

The chief benefit of hosting Services on GridServer over other approaches is that it
virtualizes the Service. Rather than send a request directly to the remote machine hosting
the Service, a client request is sent to the GridServer Manager, which enqueues it until an

TIBCO GridServer® Service-Oriented Integration Tutorial

4 | Introduction

Engine is available. The first Engine to dequeue the request hosts the Service. Subsequent
requests might be routed to the same Engine or might result in a second Engine running
the Service concurrently. This decision is based on the Service’s priority, the amount of
resources the Service has received in comparison with other Services, and how much state
related to the Service resides on the first Engine. If an Engine hosting a Service fails,
another takes its place. This mechanism, in which a single virtual Service instance (the
client-side object) is implemented by one or more physical instances (Engine processes)
provides for fault tolerance and essentially unlimited scalability.

The Integration Process
Using the Service-Oriented integration approach involves six steps:

1. Writing the Service, or adapting existing code. A Service can be virtually any type
of implementation: a library (DLL or .so), a .NET assembly, a Java class, an R
function, even an executable. No DataSynapse libraries need be linked, but the
remotely callable methods of the Service might have to follow certain conventions.
These conventions are described later.

2. Deploying the Service. The implementation files and other resources required by a
Service must be accessible from all Engines. This can be accomplished with a
shared file system or GridServer’s file update mechanism.

3. Registering the Service Type. To make the Service Type visible to clients, it must be
registered, using the Administration Tool.

4. Creating a Service Session. The client creates or gets access to a Service before
using it — no discovery or binding is required. Each Service Session might have its
own state. Because of virtualization, a single Service Session can correspond to
more than one physical instance of the Service, such as more than one Engine
running the Service’s code. Multiple asynchronous calls to a Service usually result in
more than one Engine creating and accessing those Services.

5. Making requests. The methods or functions of a Service can be called remotely
either synchronously or asynchronously.

6. Destroying the instance. Clients must destroy a Service Session when they are done
with it, to free resources.

TIBCO GridServer® Service-Oriented Integration Tutorial

5 | Introduction

Argument Types
Almost any public Java or .NET class with a public, no-argument constructor can be made
into a Service with little or no modification. Each public method of the class can be
accessed remotely through a Service operation. The input and output arguments must be
either Serializable objects, support setter-getter interfaces in Java (beans) or public data
members in .NET, or be pure strings — accessible as String in Java, string in .NET,
std::string in C++, or (char*, int) in C. A dynamic library can be made into a Service if
the functions exported as Service operations follow a simple string interface convention.
The characteristics of each argument calling type are:

• Serializable — Services can use rich objects with serialization being accomplished
through .NET and Java-specific data protocols. This is the simplest and most
efficient way of exchanging data, but disallows interoperability between languages;
for example, Java clients can only use Java Services and .NET clients can only use
.NET Services.

• XML Serializable — .NET and Java objects can be written in such a way that they
can be used with each other by converting them to XML.

• Strings — This approach allows for maximum interoperability among clients and
Services implemented in different languages. For example, .NET clients can talk to
Java or C++/C Services, and so on. Also, automatic string conversion allows Java
and .NET Services with non-string arguments to be called using String arguments.

TIBCO GridServer® Service-Oriented Integration Tutorial

6 | A Simple Service in Java

A Simple Service in Java
This section describes how to create and access a simple Service in Java.

The Service Implementation
In this section, let us create a simple Service in Java. The implementation’s class is called
JavaAdder and has one method, add, that takes two doubles. The method returns a double
that is the sum of its arguments.

package examples.adder.service.JavaAdder;
public class JavaAdder {
 public double add(double a, double b) {
 return a + b;
 }
}

Deployment and Grid Libraries
Once the class is written and compiled, it must be deployed as a Grid Library.

Grid Libraries are the method of deploying resources to Engines. They are an archive
containing a set of resources and properties necessary to run a Grid Service, along with
configuration information that describes how those resources are to be used.

To create and deploy a Grid Library:

1. Create a JAR file containing the necessary class file (JavaAdder.class).

2. Create a grid-library.xml file, like the one below:

<?xml version="1.0" encoding="UTF-8"?>
<grid-library>
 <grid-library-name>adder</grid-library-name>
 <grid-library-version>1.0.0.1</grid-library-version>
 <jar-path>

TIBCO GridServer® Service-Oriented Integration Tutorial

7 | A Simple Service in Java

 <pathelement>jars</pathelement>
 </jar-path>
</grid-library>

3. Create an adder directory in a temporary location, and place the grid-library.xml
file in it.

4. Create a jars directory within the adder directory, and place the JAR file containing
the class in it.

5. Zip all contents under adder directory, making sure the directory adder is not
included in the ZIP archive, to create an adder-1.0.0.1.zip Grid Library. If you’re
using UNIX, you can also create a tar.gz file of the directory instead (such as
adder-1.0.0.1.tar.gz or adder-1.0.0.1.tgz).

6. Log in to the GridServer Administration Tool and go to Services > Services > Grid
Libraries.

7. At the top right corner of the page, click Upload Grid Library, browse to and select
your Grid Library file, then click Upload.

8. Select your Grid Library in the list and click Deploy.

More information about Grid Libraries and the deployment process is described the TIBCO
GridServer® Administration and the TIBCO GridServer® Developer's Guide.

Registering a Service Type
Service Types must be registered from the Administration Tool, at Services > Services >
Service Types.

TIBCO GridServer® Service-Oriented Integration Tutorial

8 | A Simple Service in Java

A list of existing Service Types appears on that page, along with a line for adding a new
Service Type. Enter the Service Type name on the blank line. Let us name the Service Type
JavaAdderExample. Now select Java as the Service implementation, then click Add.

In the window that appears after clicking the Add button, enter the fully qualified class
name for the Service Type, which in this case is examples.adder.service.JavaAdder. The
window also allows you to enter options for the Service Type. Enter a * in the
serviceMethods field, indicating that all public methods might be called as Service Type
methods.

Note
You must set the Grid Library’s name in the Service Type’s
gridLibrary field.

The Client Application
Having deployed and registered the Service Type, we are now ready to use it. There are
two different techniques we can use to access this Service from a client:

• The Service API

• GridServer-generated proxy

Let us first demonstrate accessing the Service using the Service API in Java. Refer to the
Javadocs on the Documentation panel in the top navigation bar of the Administration
Tool. The Service class is used to access the Service either synchronously or

TIBCO GridServer® Service-Oriented Integration Tutorial

9 | A Simple Service in Java

asynchronously. This section consists largely of small code snippets. All of the code can be
found in a single class, example.adder.client.AdderClient.

Only a few lines of code are needed to use the JavaAdder Service:

// Create a Service instance of JavaAdderExample
Service s = ServiceFactory.getInstance().createService
("JavaAdderExample");
// Perform Synchronous add
Object[] arguments = new Object[] { new Double(5), new Double(6) };
Double sum = (Double)s.execute("add", arguments);
System.out.println("Result of add: " + sum);

The first line gets an instance of the ServiceFactory class and calls its createService
method to create a Service instance for the Service. If you try to create a Service Type
whose name was not registered, createService throws a GridServerException.

The second line prepares the arguments to be submitted to the Service, two Doubles (note
the use of the primitive wrapper object). The third line executes the add method with the
given argument list and blocks until the method completes and its return value makes its
way back to the client. If the remote method throws an exception, or an error occurs in
the course of processing the request, an exception is thrown. GridServerException might
wrap another exception; use its getCause method to obtain the wrapped exception.

A Java client does not terminate automatically, and pends after submitting Services and
collecting results. Instead of calling System.exit() to terminate the client, you can set a
property to change this behavior. Add this to your code:

DriverManager.setProperty(DriverManager.IS_DAEMON,
 Boolean.TRUE.toString());

When this property is set to true, all client threads are daemon threads, meaning that the
allow the process to shut down when all threads have shut down.

Asynchronous and Parallel Processing
Requests
A client can use the submit method instead of the execute method of Service to perform
a remote invocation without waiting for the result. This allows the caller to make many
asynchronous requests in parallel — with these requests being executed in parallel if the

TIBCO GridServer® Service-Oriented Integration Tutorial

10 | A Simple Service in Java

resources are available to do so. In addition to the method name and argument, the
submit method takes a callback object that implements the ServiceInvocationHandler
interface. This interface has a handleResponse method that is called with the method’s
return value in the event of a normal response, and a handleError message that is called
if an error occurs. The submit method returns an integer that uniquely identifies the
particular call; this unique ID is passed as the second argument to the
ServiceInvocationHandler methods, so that you can match the response with the request
if need be.

To use the submit method, we first require a class implementing
ServiceInvocationHandler. The handleResponse method displays the response and adds
it to a total.

// Handler for Service Clients
static class AdderHandler implements ServiceInvocationHandler {
 public void handleError(ServiceInvocationException e, int id) {
 System.out.println("Error from " + id + ": " + e);
 }
 public void handleResponse(Serializable response, int id) {
 System.out.println("Response from " + id + ": " + response);
 _total += ((Double)response).doubleValue();
 }
 public double getTotal() {
 return _total;
 }
 private double _total = 0;
}

Now we can invoke the submit method:

// Perform Asynchronous adds
AdderHandler handler = new AdderHandler();
for (int i=0; i < 10; i++) {
 s.submit("add", new Object[] { new Double(i), new Double(i) },
handler);
}
// Wait until all the invocations have returned
s.waitUntilInactive(0);
System.out.println("Total: " + handler.getTotal());

This code first creates a ServiceInvocationHandler, and then it calls submit several times.
In order to wait for all the responses to arrive, the call to waitUntilInactive causes the
current thread to wait until all outstanding requests have finished. The argument is a
timeout value in milliseconds; an argument of zero means wait indefinitely.

TIBCO GridServer® Service-Oriented Integration Tutorial

11 | A Simple Service in Java

Using a GridServer-Generated Proxy
Using the Service API is easy and flexible, but there is an easier way to access Service
implementations you write and deploy on GridServer. After registering the Service Type
using the Administration Tool, a menu action becomes available on the Services >
Services > Service Types page for creating client-side access proxies in either Java or C#.

There are several advantages to using proxies:

• No manual coding required — the proxy code itself does the argument passing and
return value casting. It’s a lot easier to use a class that looks like your Service!

• Type-safe — Argument and return types are checked at compile-time, instead of on
the Engine at runtime.

• Vendor Neutral — Application code does not need to have compile-time
dependency with any DataSynapse-specific libraries if the proxies are used. The
proxies themselves make use of DataSynapse libraries, but do not expose this
dependency to your application.

The following code demonstrates calling the add method on the proxy object:

// Create an instance of the Service Proxy
JavaAdderProxy adder = new JavaAdderProxy();
// Perform Synchronous add
double sum = adder.add(8.0, 10.0);
System.out.println("Result of Add: " + sum);

So what’s going on behind the scenes? Here is a look at the JavaAdderProxy code for the
method add:

public double add(double in0, double in1) throws Exception {
 return ((java.lang.Double) execute("add", new Object[] {new
java.lang.Double(in0), new java.lang.Double(in1)})).doubleValue();
}

If you want to call this method asynchronously (possibly to have many requests done in
parallel) you can create a callback class that implements an interface found in the proxy.
The callback interface defined in the proxy is found below:

public interface Callback extends ServiceBindingStub.AsyncCallback {
 public void handleResponse(Object response, int id);

TIBCO GridServer® Service-Oriented Integration Tutorial

12 | A Simple Service in Java

 public void handleError(Exception e, int id);
}

Use this class in a fashion similar to that of example 3.3. Instead of implementing the
ServiceInvocationHandler class you must implement the JavaAdderProxy.Callback class.
The benefit to this approach, however, is that the code you write for this callback does not
have to import any DataSynapse classes. All you need to do is import your proxy and use
it.

When using a GridServer-generated proxy, asynchronous calls are performed by invoking
an overloaded method that has the same name and arguments as the synchronous
version, but adds an additional argument for the callback. The proxy also has a
waitUntilInactive method to pause the current thread until all outstanding
asynchronous calls have completed. The following example illustrates this:

// Perform Asynchronous adds
AdderCallback callback = new AdderCallback();
for (int i=0; i < 10; i++) {
 adder.add(i, i, callback);
}
// Wait until all the invocations have returned
adder.waitUntilInactive();
System.out.println("Total: " + callback.getTotal());

TIBCO GridServer® Service-Oriented Integration Tutorial

13 | Container Bindings and Service State

Container Bindings and Service State
In this section we discuss the relationship between the container (GridServer Engine), the
Service implementation (class or library), and operations that are exposed by the Service.

About State
The GridServer technology allows Services to have a state—per-client or global—that is
preserved by the container and is consistent across all physical Service instances, that is,
all Engine-side instantiations of a client-side Service instance. The latter concept is
important to understand: since many GridServer Engines can perform Service requests in
parallel, the Service deployer must inform GridServer which methods are responsible for
state and which are not. This way, GridServer can ensure that the object’s state is up-to-
date prior to servicing the next request. In addition to the state, the container must know
which methods to expose as Service operations and which methods to call for
initialization and destruction of the Service implementations in memory.

Container-managed Lifecycle
Services hosted in the GridServer environment are virtualized—provisioned dynamically on
Engines at the behest of the GridServer Manager to satisfy demand. In this model, Service
initialization and destruction happens automatically, but proper start-up and clean-up
operations can be performed on the Service by registering the right methods to call on the
Service to accomplish these tasks. The following simple class demonstrates a Service that
connects to a hypothetical database:

public class DBCalculator {
 public void initDBConnection(Properties connProps, int someVal) {
 _connection = new Connection(Properties props);
 }
 public Example calculate(String arg1, …) { … }
 public void close() {
 if (_connection != null) _connection.close();
 }

TIBCO GridServer® Service-Oriented Integration Tutorial

14 | Container Bindings and Service State

 private Connection _connection;
}

When a class is registered as a Service Type, it is possible to specify in the
ContainerBinding section of the registry page which methods are used for initialization
and destruction of the Service. In this example, initDBConnection is specified as the
“initMethod” field and close is specified in the “destroyMethod” field. Since
initDBConnection takes two arguments, a Properties object and an int, the client-side
proxy class has a constructor with the same argument list:

public class DBCalculatorProxy {
 public DBCalculatorProxy(Properties connProps, int someVal) { … }
 …
}

The “close” method is listed as the destroyMethod, and is exposed on the client-side proxy
as a method named “destroy.”

Cancel Method
If a Service is canceled by the user or a Service request (task) is canceled, the managing
container receives a message and calls a specified operation on the Service automatically.
For a given Service, a method can be assigned to be called by the container under this
cancellation event. Here’s a simple example:

public class DBCalculator {
 …
 public void stop() {
 _isStopped = true;
 }
 public Bar calculate(String arg1, …) {
 while (_isStopped != null) {
 // iterate over looping variable
 }
 }
 private volatile boolean _isStopped = false;
}

In this example, the stop method must be registered as the “cancelMethod”. If it is not
possible to stop the operation in this way, GridServer allows cancelled Service operations

TIBCO GridServer® Service-Oriented Integration Tutorial

15 | Container Bindings and Service State

to cause the entire Engine process to be killed and restarted automatically. The Service
option is called KILL_ENGINE_ON_CANCEL and takes the value true or false.

Stateful Service Operations
Now let us demonstrate how to manage state in the Service instances and how to instruct
GridServer to behave properly under these operating conditions. First, let’s consider the
following bond calculator class that holds state:

public class BondValuationService {
 public void addBonds(String[] bondIds) {…}
 public void setBonds (String[] bondIds) {…}
 public ValuationResults valueAllBonds(Scenario s) {…}
}

Both the addBonds and setBonds methods take a list of bond IDs. We assume that in these
methods the actual object representations are constructed and the bond data is fetched
from an appropriate source and loaded into the object representations. We further
assume that there is a fair amount of latency and computation involved in these object
constructions—this is why the writer of this Service is interested in keeping this stateful
data present in the Service. There is also a stateless computing method that computes the
valuations for these financial instruments under different market conditions or scenarios.

In this example, we see that there are two stateful methods—addBonds and setBonds. But
their behavior is different: if addBonds is called, the new bonds are added to the existing
collection, while the setBonds method replaces the existing collection. One can capture
this distinction and ensure proper behavior of the GridServer deployment by setting the
appropriate fields in the ContainerBinding section of the Service Types page. There is a
field called appendStateMethods that can be set to the value addBonds and a field called
setStateMethods that can be set to the value setBonds. More than one method can be
listed, separating them by commas.

The client-side proxy class generated by GridServer looks quite similar to the actual
Service:

public class BondValuationServiceProxy {
 public void addBonds(String[] bondIds) {…}
 public void setBonds (String[] bondIds) {…}
 public ValuationResults valueAllBonds(Scenario s) {…}
}

TIBCO GridServer® Service-Oriented Integration Tutorial

16 | Container Bindings and Service State

However, if you are using the Service API, you have to make the distinction in the API calls
themselves. Notice the following use of the method updateState:

Service service = ServiceFactory.getInstance().createService
("bondCalculator");
service.updateState("addBonds", new Object[] { bondIds }, false);
// or
service.updateState("setBonds", new Object[] { bondIds }, true);

The last argument to the updateState method is a Boolean that indicates whether this
state must replace the current state (true) or append the current state (false).

Summary
• You can initialize and destroy Service state by writing methods in your Service that

perform the required actions, and setting the initMethod and destroyMethod
options to the names of the methods.

• The client-side proxy creates a constructor with the same method argument types
as the initMethod that was specified in the Service Type Registry.

• The client-side proxy contains a destroy method that calls the method specified as
the destroyMethod in the Service Type.

• The Service deployer must also specify which Service methods change state, and
whether they append or set the state. These methods are called normally from a
proxy, and via updateState using the Service API.

TIBCO GridServer® Service-Oriented Integration Tutorial

17 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current
than any other documentation included with the product.

Product-Specific Documentation

Documentation for TIBCO GridServer® is available on the TIBCO GridServer® Product
Documentation page.

The following documents for this product can be found in the TIBCO Documentation site:

 l TIBCO GridServer® Release Notes

 l TIBCO GridServer® Installation

 l TIBCO GridServer® Introducing TIBCO GridServer®

 l TIBCO GridServer® Administration

 l TIBCO GridServer® Developer's Guide

 l TIBCO GridServer® Upgrade

 l TIBCO GridServer® Security

 l TIBCO GridServer® COM Integration Tutorial

 l TIBCO GridServer® PDriver Tutorial

 l TIBCO GridServer® Speedlink

 l TIBCO GridServer® Service-Oriented Integration Tutorial

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-datasynapse-gridserver-manager
https://docs.tibco.com/products/tibco-datasynapse-gridserver-manager

TIBCO GridServer® Service-Oriented Integration Tutorial

18 | TIBCO Documentation and Support Services

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

 l For accessing the Support Knowledge Base and getting personalized content about
products you are interested in, visit the TIBCO Support website.

 l For creating a Support case, you must have a valid maintenance or support contract
with TIBCO. You also need a user name and password to log in to TIBCO Support
website. If you do not have a user name, you can request one by clicking Register
on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

http://www.tibco.com/services/support
http://www.tibco.com/services/support
http://www.tibco.com/services/support
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO GridServer® Service-Oriented Integration Tutorial

19 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN
THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, GridServer, FabricServer, GridClient, FabricBroker,
LiveCluster, and SpeedLink are either registered trademarks or trademarks of TIBCO Software Inc. in
the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which
is available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.

https://scripts.sil.org/OFL

TIBCO GridServer® Service-Oriented Integration Tutorial

20 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer
to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2001-2022. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Introduction
	Overview
	The Integration Process
	Argument Types

	A Simple Service in Java
	The Service Implementation
	Deployment and Grid Libraries
	Registering a Service Type
	The Client Application
	Asynchronous and Parallel Processing Requests
	Using a GridServer-Generated Proxy

	Container Bindings and Service State
	About State
	Container-managed Lifecycle
	Cancel Method
	Stateful Service Operations
	Summary

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

