
TIBCO EBX® Rules Portfolio Add-
on Documentation
Version 1.7.9
January 2023

Important Information
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR
IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE
AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE.
USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE
HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE
SAME.
ANY SOFTWARE ITEM IDENTIFIED AS THIRD PARTY LIBRARY IS AVAILABLE UNDER
SEPARATE SOFTWARE LICENSE TERMS AND IS NOT PART OF A TIBCO PRODUCT. AS SUCH,
THESE SOFTWARE ITEMS ARE NOT COVERED BY THE TERMS OF YOUR AGREEMENT WITH
TIBCO, INCLUDING ANY TERMS CONCERNING SUPPORT, MAINTENANCE, WARRANTIES, AND
INDEMNITIES. DOWNLOAD AND USE OF THESE ITEMS IS SOLELY AT YOUR OWN DISCRETION
AND SUBJECT TO THE LICENSE TERMS APPLICABLE TO THEM. BY PROCEEDING TO
DOWNLOAD, INSTALL OR USE ANY OF THESE ITEMS, YOU ACKNOWLEDGE THE FOREGOING
DISTINCTIONS BETWEEN THESE ITEMS AND TIBCO PRODUCTS.
This document is subject to U.S. and international copyright laws and treaties. No part of this document may
be reproduced in any form without the written authorization of TIBCO Software Inc.
TIBCO and TIBCO EBX are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
This software may be available on multiple operating systems. However, not all operating system platforms
for a specific software version are released at the same time. Please see the readme.txt file for the availability
of this software version on a specific operating system platform.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY
OR INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.
Copyright 2006-2023. TIBCO Software Inc. All rights reserved.

TIBCO EBX® Rules Portfolio Add-on Documentation 5

Table of contents
User Guide

1. Overview... 10
2. Categories and types of rules..11
3. Key concepts... 21
4. Data model configuration..27
5. Rules configuration... 33
6. TIBCO EBX® Rules Portfolio Add-on - Production...63
7. Use case...71
8. Quick rules configuration..107
9. Rules execution traceability.. 127
10. API for declaring rules..139
11. Migration... 141
12. Appendix... 143

TIBCO EBX® Rules Portfolio Add-on Documentation 6

Scripting Language
13. JavaScript-based language.. 172
14. Predefined objects... 173
15. Using the script editor...185
16. Appendix... 191

TIBCO EBX® Rules Portfolio Add-on Documentation 7

Release Notes
17. Version 1.7.9..198
18. All release notes..201

TIBCO EBX® Rules Portfolio Add-on Documentation 8

TIBCO EBX® Rules Portfolio Add-on Documentation 9

User Guide

Documentation > User Guide > Overview

TIBCO EBX® Rules Portfolio Add-on Documentation 10

CHAPTER 1
Overview

You can declare and configure business and permission rules in the MDM repository with the TIBCO
EBX® Rules Portfolio Add-on. Instead of having to hard-code rules, they are managed through meta
data. This approach improves the quality and traceability of data use.

Special notation key

Important recommendation for use of the add-on.

This feature is not yet available in the current release.

Documentation > User Guide > Categories and types of rules

TIBCO EBX® Rules Portfolio Add-on Documentation 11

CHAPTER 2
Categories and types of rules

This chapter contains the following topics:

1. Managed rule categories

2. Business rules

3. Permission rule

2.1 Managed rule categories
The add-on manages two rule categories:

• 'Business rules' are used to validate data and are executed using triggers or the data validation
service.

• 'Permission rules' are used to manage user permissions and are implemented in compliance with
the permission scheme applied to data and services.

2.2 Business rules
There are four types of 'Business rules':

• An 'Automated rule' can modify user data. This type of rule uses triggers set in tables to initiate
execution and throws an error if it fails.

• A 'Validation rule' cannot modify user data. This type of rule uses triggers or constraints set on
tables to initiate execution and throws an error (when executed via triggers or constraints) or
a warning (only when executed via constraints) if it fails. Depending on the configuration of
constraint classes, record modification may be blocked if it fails.

• A 'Manual validation rule' cannot modify user data. This type of rule is manually executed through
the validation service. Depending on the success level, it validates, raises an error, or a warning.

Documentation > User Guide > Categories and types of rules

TIBCO EBX® Rules Portfolio Add-on Documentation 12

• A 'Table set rule' can modify user data. This type of rule is manually executed using the 'Execute
rules' service.

Automated rule
An automated rule can modify data. The output value is Boolean and depends on whether the rule
executed successfully or failed. This type of rule executes when triggered by the creation, modification
or deletion of a record.
If the automated rule raises an error:

• The trigger is interrupted.

• An error message displays.

• The transaction is aborted.

Validation rule
A validation rule is an assertion without any impact on the system and outputs a Boolean value
depending on whether execution succeeded or failed. This type of rule can execute upon record
creation, deletion or modification using a trigger or constraint on a field.
When the validation rule is executed by a trigger and raises an error:

• The trigger is interrupted.

• An error message displays.

Documentation > User Guide > Categories and types of rules

TIBCO EBX® Rules Portfolio Add-on Documentation 13

• The transaction is aborted.

When the validation rule executes via a constraint and raises an error, or warning:

• An error message displays.

Documentation > User Guide > Categories and types of rules

TIBCO EBX® Rules Portfolio Add-on Documentation 14

• Depending on the constraint class configuration, record modification may be blocked.

Manual validation rule
A manual validation rule is an assertion without any impact on the system and outputs a Boolean
value depending on whether execution succeeded or failed. This type of rule can be executed at the
data set or table level.
Depending on the set level of execution, the standard validation service executes this type of rule in
the following ways:

Documentation > User Guide > Categories and types of rules

TIBCO EBX® Rules Portfolio Add-on Documentation 15

• Execution at the data set level: the add-on executes all manual validation rules configured on each
table included in the data set.

Documentation > User Guide > Categories and types of rules

TIBCO EBX® Rules Portfolio Add-on Documentation 16

• Execution at the table level: the add-on performs all manual validation rules applied to the selected
table.

Documentation > User Guide > Categories and types of rules

TIBCO EBX® Rules Portfolio Add-on Documentation 17

Any error and warning messages that are generated display in the standard validation report.

Documentation > User Guide > Categories and types of rules

TIBCO EBX® Rules Portfolio Add-on Documentation 18

Table set rule
A table set rule can create, modify or delete data. Additionally, it can be an assertion without any
impact on the data value. These rules return a Boolean value that indicates success or failure of rule
logic execution.
You must execute table set rules manually using the 'Execute rules' service located in the 'Actions'
menu of a data set, or table. Running the service at the data set level executes rules applied to all tables
in the data set. When run at the table level, execution includes only rules applied to the current table.
Note that if a rule is not designated as mandatory, you will have the option to include, or exclude it
from this execution. The steps below briefly outline this process:

• Run the 'Execute rules' service at the data set level.

• Choose which rules you want to execute. Notice in the image below that the Name cannot be null
rule's checkbox is grayed out. This indicates execution of the rule is mandatory. This behavior
can be set in each table set rule's configuration options using the 'Mandatory' property.

Documentation > User Guide > Categories and types of rules

TIBCO EBX® Rules Portfolio Add-on Documentation 19

• After clicking 'Execute' a report shows the execution result including any errors or warnings.

2.3 Permission rule
There are two types of permission rules:

• An 'Access permission rule' manages user permissions on data sets, tables or fields.

• An 'Action permission rule' determines whether or not a user has permission to use the specified
service.

Documentation > User Guide > Categories and types of rules

TIBCO EBX® Rules Portfolio Add-on Documentation 20

These rules are called by the SchemaExtension class and the ServicePermission class. They are
unknown at the trigger level.

Access permission rule
An 'Access permission rule' manages user permissions on a node, namely a data set, table or field. This
type of rule determines whether or not the node is Hidden, Read-Only or Read-Write for a given user.

Action permission rule
An 'Action permission rule' manages service permissions. This type of rule controls whether or not
the given service can be used in the current context.

Documentation > User Guide > Key concepts

TIBCO EBX® Rules Portfolio Add-on Documentation 21

CHAPTER 3
Key concepts

This chapter contains the following topics:

1. Concepts overview

2. Global architecture

3. Online quick view

4. How context expressions and rule definitions interact

3.1 Concepts overview
The add-on manages rules as real assets. This enables a better understanding of which rules are
executed on which tables. Additionally, time and effort is saved by eliminating the need for the IT
department to hand-code rules. At the same time the ability to apply business audit operations is
enforced. Overall, MDM agility and transparency are greatly increased.
The add-on manages both business rules and permission rules. The portfolio of rules automatically
displays through a Java introspection of the rules implementation layer (refer to the Java doc to apply
the standard Rule Interface when deploying a new rule). After selecting a rule in the portfolio, you
can configure and adapt its behavior to meet your specific needs. To achieve optimal configuration,
a metadata set are available such as: period of activation (from date to date), user messages, input
parameters, contexts of execution, etc.
You can configure a rule to execute on a type of business object such as a table. This table is identified
with the generic term 'Data Element Concept' (D.E.C.). A D.E.C. type is not limited to a table; it can
be any asset, such as a table, a field, a workflow, a data space, a data set or a service. This is an ISO-
IEC 11179 concept already used in the TIBCO EBX® Information Governance Add-on and TIBCO
EBX® Insight Add-on for the management of data quality indicators.

Special notation

The scripting language included in the add-on should be used in two situations due to the response time:

• Inline validation rules and not mass validation treatments

• During the prototyping of your data model with business users to make clear the specification, then translation into
Java language when needed. This Java implementation can be done within the add-on to benefit from the context
management such as the on-off rules, staging, loose coupling, etc.

Documentation > User Guide > Key concepts

TIBCO EBX® Rules Portfolio Add-on Documentation 22

3.2 Global architecture
From an implemented rule (Java implementation) one to many Rule definition(s) are declared in the
add-on. Alternatively, you can use a script to create a rule definition.

Every rule definition configures a metadata set, including the parameters published by the rule
implementation, the user message in case of error, etc.
The rule definition is attached to a Table on which this rule must be executed. A permission rule type
can be applied to other D.E.C.(s). such as a field, a service, a data space or a data set.
A Rule execution can be configured and declares the conditions that must be met before a rule can be
executed. For example, conditions that must be met can include: an event such as "on demand" (user
activation), the creation of a record, a validity date, etc.
In earlier versions of the add-on, you could configure a Simple expression when complex business
conditions beyond an event or record creation are required for rule execution. However, from version
1.3.0, you use a Java implementation or a script to define business conditions for rule execution instead
of using a simple expression.

Documentation > User Guide > Key concepts

TIBCO EBX® Rules Portfolio Add-on Documentation 23

3.3 Online quick view
During the process of creating rules, it can be helpful to view reminders of key concepts used in their
configuration. To show these reminders, it includes the 'quick view' icon on the top-right of the tabular
view. The icon 'quick view' is located at the top-right of the tabular view as illustrated below.

3.4 How context expressions and rule definitions interact
The following figure outlines how a context expression and rule definition work. The rule executes
if the context expression returns 'True'. You can configure the context expression and the rule using

Documentation > User Guide > Key concepts

TIBCO EBX® Rules Portfolio Add-on Documentation 24

a Java implementation or by writing a script. For the rule definition, you can use a predefined rule
provided with the add-on, or implement your own bespoke rule using Java or a script.

In the example below, a context expression declares that a 'Name' must start with an uppercase letter.
This expression can be implemented using Java or a script.
If a name starts with an uppercase:

• According to the assertion this would be not 'False'.

• The 'Rule definition' is bypassed.

• No error is raised.

If a name does not start with an uppercase:

• According to the assertion this would be a not 'True' scenario.

• The rule executes.

Documentation > User Guide > Key concepts

TIBCO EBX® Rules Portfolio Add-on Documentation 25

• A value of 'False' is returned.

Documentation > User Guide > Key concepts

TIBCO EBX® Rules Portfolio Add-on Documentation 26

Documentation > User Guide > Data model configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 27

CHAPTER 4
Data model configuration

Before using the add-on you have to configure the data model by adding classes to it that call the add-
on. The default classes you have to add depend on how you plan on configuring rules. The Use Case
section in this document provides some example configurations. From version 1.4.0. of the add-on
you can add classes automatically through schema compilation, or manually. This section provides
the steps to configure your data model.
This chapter contains the following topics:

1. Adding default classes manually

2. Automatically adding default classes

4.1 Adding default classes manually
When you add classes manually, you can make use of all rule types. Keep in mind that you have to
repeat this process each time you update an existing rule, or create a new rule that does not rely on a
default class already part of the data model's component library.
To manually add the classes:

Documentation > User Guide > Data model configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 28

• Open your data model and navigate to 'Configuration' → 'Component library'.

Documentation > User Guide > Data model configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 29

• Add a new component by clicking on the '+' icon.

• After providing a name and optional label, enter one of the following classes in the 'Configuration'
field.

• com.orchestranetworks.addon.rpfl.DefaultSchemaExtension → allows you to use the access
permission rules.

• com.orchestranetworks.addon.rpfl.DefaultTableTrigger → allows you to use the validation
rules and automated rules.

• com.orchestranetworks.addon.rpfl.DefaultConstraintOnTable → allows you to use the
manual validation rules.

• com.orchestranetworks.addon.rpfl.DefaultConstraint → allows you to apply the validation
rules on fields.

• com.orchestranetworks.addon.rpfl.DefaultConstraintOnNull → allows you to apply the
validation rules on fields.

Documentation > User Guide > Data model configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 30

• com.orchestranetworks.addon.rpfl.DefaultRulesSchemaServicePermission → allows you to
use the action permission rules. This default class is applied on the service that you want to
set permission to.

• After saving and closing, the class you added displays in the 'Component library' table. You can
repeat this process as needed to add the necessary classes to your data model.

4.2 Automatically adding default classes
From version 1.4.0 of the add-on, you can add classes to a data model by simply activating the add-
on in the model. Thus, alleviating the need to manually add classes one at a time. When you publish
your Rules Portfolio the add-on automatically adds the required classes, triggers and constraints to
the data model based on rules configured for this model. However, the following limitations exist:

• Action permission rules are not supported. You have to manually add these using the method
described in the 'Adding default classes manually' section above.

• Default classes - available to be added - automatically include the default schema extension.
However, one data model can only have one schema extension. If you have your own schema
extension in the data model, and you want to use a default class, you have to first remove your
own schema extension from the data model. To reuse your programmatic access rules, you have to
invoke them into the add-on using the method described in the appendix. See the 'Classic access
rule declaration' section for more information.

• You must keep your D.E.C.'s current. This is especially true if you add or remove the mandatory
attribute from a data model field. To ensure successful rule operation, update the D.E.C.
configuration before publishing the data model. For instance, if you update a 'Short label' field to
a mandatory field, then you have to find the D.E.C. field corresponding to the updated field and
set the 'Mandatory' field to 'Yes' and vice versa.

The following steps show you how to configure your data model to automatically add default classes:

Documentation > User Guide > Data model configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 31

• Open the data model and navigate to 'Configuration' → 'Add-ons'.

• Click '+' to create a new record and select the Rules Portfolio.

Documentation > User Guide > Data model configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 32

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 33

CHAPTER 5
Rules configuration

This chapter contains the following topics:

1. Administration domain

2. D.E.C. Definition

3. 'Business rules' group

4. 'Business rules execution' group

5. Logging level

6. 'Permission rules' group

7. 'Permission rules execution' group

8. Reference data

9. Deleting contexts and simple expressions

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 34

5.1 Administration domain
The 'TIBCO EBX® Rules Portfolio Add-on' data space is located in the Administration tab and allows
you to configure rules and how they execute.

• The 'D.E.C. definition' group contains tables to declare the Data Element Concept (D.E.C.). The
D.E.C. is an ISO-IEC 11179 concept that is used in other add-ons such as EBX® Information
Governance Add-on and EBX® Insight Add-on. Rules can be executed on a D.E.C. which can
be either a table, a field, a service, etc.

• The 'Business rules' group contains the business rules definitions and their packaging in the form
of 'Rules set content' and 'Rules classification'.

• The 'Business rules execution' group contains all tables defining the context for rules set
execution.

• The 'Permission rules' group contains all tables defining permission rules, permission rules set
and permission rule classification.

• The 'Permission rules execution' group contains all tables defining contexts to execute a
permission rule or a permission rules set.

• The 'Logging level' group contains the configuration for the logging mechanism.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 35

• The 'Reference data' group contains the reference tables' definition.

Special Notation

Rules do not execute through add-on configuration. They execute on a publication of the rule configuration. Before
executing rules, you have to run the 'Publish rule portfolio' service to publish the current configuration.

5.2 D.E.C. Definition
The 'D.E.C. definition' group contains tables that declare a Data Element Concept (D.E.C.). The
D.E.C. is an ISO-IEC 11179 concept that is used in other EBX® add-ons such as EBX® Information
Governance Add-on and EBX® Insight Add-on. Rules can be executed on a D.E.C. which can be
either a table, a field, a service, etc.

D.E.C. (Data Element Concept)
A Data Element Concept (D.E.C.) is a generic term defining any type of data asset that can be
associated with rules. The primary D.E.C. used is 'Table'.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 36

You can define the D.E.C. properties shown in the following table:

Property Definition

Code Any naming convention can be used except the prefix '[ON]' which is reserved by the
add-on for predefined Data Element Concepts.

Example: [ON] Account

Business code A business identifier.

Name The D.E.C. name. Any naming convention is valid.

Description The D.E.C. Description. Any naming convention is valid.

Type The list of D.E.C. available types which is supplied by the reference table 'D.E.C.
type' (Service, Data model, Table, Field). Note: After selecting a D.E.C. Type, you
need to validate (Click 'Save') the form to display a type's associated properties.

If 'Type' is set to 'Data model', 'Table' or 'Field', the following properties are available:

Data model The data model to which the Data Element Concept belongs.

If 'Type' is set to 'Table' or 'Field', the following property is available:

Table A list of available tables contained in the selected 'Data model'.

If 'Type' is set to 'Field', the following property is available:

Field A list of available fields contained in the selected 'Table'.

Mandatory If 'Yes': this field is mandatory.

If 'No': it is not.

Computed value If 'Yes': this field is a computed value.

If 'No': it is not.

Multi-valued If 'Yes': this field is a multi-valued or under a multi-valued group.

If 'No': it is not.

If 'Type' is 'Service', the following property is available:

Service A field that allows you to enter a 'Service' name.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 37

D.E.C. creation service
You can automatically create all D.E.C.(s) for a selected data model. The 'D.E.C. creation' service is
available in the D.E.C. table as illustrated below.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 38

In configuration part of 'D.E.C. creation' service, you have to choose data model and table. The 'D.E.C.
creation' service generates D.E.C.s based on your input data.

5.3 'Business rules' group
This group allows you to define business rules and their packaging.

Configuring a business rule
You can base rule configuration on business rules and implement their configuration using a script
or Java. Predefined Java-implemented rules are ready-to-use and require no specific programming
knowledge from end-users. However, using a script requires scripting language knowledge for
implementation and requires end-users to possess at least basic programming knowledge. For more
information about the scripting language see the Scripting Language.
The 'Rule' table contains settings that allow you to define rules. This table's view defaults to a hierarchy
of D.E.C.'s under which associated rules display. You can use the 'View' drop down menu to change
views. The following points outline the rule creation process:

• Choose whether to use a script or Java based rule.

• Name the rule and select the D.E.C. on which the rule executes.

• Specify the rule type and the conditions that must be met for successful execution.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 39

• Document the message displayed when the rule cannot execute successfully.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 40

The following table describes the 'Rule' table's properties that allow you to configure a rule:

Property Definition

Code Any naming convention can be used except the prefix '[ON]' which is reserved by the add-on
for predefined rules.

Example: [ON] Rule 01

Implementation type There are 2 ways to implement a business rule:

-Use script: you use a script to define the rule.

-Use Java implementation: you use Java implementation to define the rule.

Name The rule name. You can use any naming convention.

Description The rule description. You can use any naming convention.

Table The Data Element Concept (D.E.C.) on which the rule executes. By default, this is a data
model table. A control is applied by the add-on to check if the selected table is compliant with
the rule definition.

Field attachment The field on which the rule executes. The field specified by this property is only used if a
constraint prompts execution of a validation rule. When you specify a field, the rule can
only execute from a constraint attached to the specified field in the table selected above.
The system returns either a warning, or an error based on the level of severity chosen. If this
property is set to undefined, the rule can execute via constraint on any field in the selected
table.

The rule can execute via trigger, regardless of the field specified here.

Type A rule's type. This value can be: Validation rule, Manual validation rule, Automated rule or
Table set rule

• A 'Validation rule' is an assertion without any impact on the system and outputs a
Boolean value that indicates whether rule execution succeeded or failed. The 'Validation
rule' executes upon creation, modification or deletion of a record.

• A 'Manual validation' rule is an assertion without any impact on the system and outputs a
Boolean value that indicates whether rule execution succeeded or failed. This type of rule
is executed through an action taken by a user either at the data set or table level using the
standard validation service.

• An 'Automated rule' can modify data and outputs a Boolean value that indicates whether
rule execution succeeded or failed. This type of rule executes upon creation, modification
or deletion action of a record. If the automated rule raises an error, it interrupts the
trigger, displays an error message and aborts the transaction.

• A 'Table set' rule can create, modify or delete data. Alternatively, it can be an assertion
without any impact on the data value. This type of rule is executed through the 'Execute
rules' service either at the level of a data set or a table and outputs a Boolean value that
indicates whether execution succeeded or failed.

Active If set to 'True': the rule can execute.

If set to 'False': the rule is deactivated and cannot execute even if all other execution
conditions are valid (execution context, rule set is active).

Mandatory • The field Mandatory is displayed only if the rule type is "Table set rule".

• The default value of this field is "No".

• If the value is set to "No", user can select/unselect the rule.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 41

Property Definition

• If the value is set to "Yes", the created table set rule is checked automatically and user
cannot edit.

Severity The type of error message displayed, either Warning or Error.

Message The message displayed when an error or warning is raised.

Script You enter the script for your rule here. The Scripting Language used by the add-on is based
on JavaScript and simplifies the rule definition process. However, when running against a
high volume of data, performance may be reduced. So, careful consideration must be put into
the decision on whether to use Java or a script.

Java Implementation

This group field defines:

• The implementation in java

• This implementation's input/output

• This implementation's parameters

Rule name The list of available rules. This list populates automatically through a Java introspection of
the rules implementation (refer to the Java doc).

Object class Business object on which the rule can be applied. This information is for documentation only.
This is not the table name. For example, the "Employee" Object class can be related to several
tables, such as: Employee, Third party, Salaried employee, etc.

Input data Read-only parameters controlled and used by the add-on to execute the rule.

Output data The read-only result data.

Property data These are parameters that can be modified at the configuration level, and used as input data
for rule execution.

Dependency

This group defines all dependencies for this field.

Mode You can choose from three dependency modes:

• Local dependency: In this mode, the current constraint's validation result depends on the
underlying node's local value. Only modification of this local value affects the validation
result.

• Explicit dependencies: In this mode, the current constraint's validation result depends
on source node updates that you explicitly specify. Only local updates and not external
events affect the validation result.

• Unknown dependencies (default mode): In this mode, the current constraint's validation
result depends on unknown sources or events (for example, data stored in an external
system). This is the default mode and enabled if you do not use either of the other
dependency types, or if the element containing this constraint is computed by a value
function.

Explicit dependencies

This group allows you to define explicit dependencies. You can add multiple dependencies by clicking the '+' icon.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 42

Property Definition

Dependency This group is used for defining explicit dependencies only. It displays when you select the
'Explicit dependencies' mode.

Event You can use the following seven events that define an explicit dependency:

• Dependency to modify node: Specifies that the validation result of the current constraint
depends on the value of the specified source node in the same record.

• Dependency to insert and delete record: Specifies that the validation result of the current
constraint depends on the insertions and deletions of the specified table node.

• Dependency to insert delete and modify node: Specifies that the validation result of the
current constraint depends on insertions, modifications and deletions on the specified
node.

• Dependency to insert and delete in other instance: Specifies that the validation result of
the current constraint depends on the insertions and deletions of the specified table node
of a given instance.

• Dependency to insert delete and modify in other instance: Specifies that the validation
result of the current constraint depends on the insertions, modifications and deletions on
the specified node in a given data set.

• Dependency to insert and delete in specific data space: Specifies that the validation result
of the current constraint depends on the insertions and deletions of the specified table
node of a given data set in a specific data space.

• Dependency to insert delete and modify in a specific data space: Specifies that the
validation result of the current constraint depends on the insertions, modifications and
deletions on the specified node in a given data set in a specific data space.

The following four possible fields display depending on the event you select: 'Data space',
'Data set', 'Table' and 'Field'.

Data space If you set the 'Event' field to one of values presented below, this field displays:

• Dependency to insert and delete in other instances

• Dependency to insert, delete and modify in other instances

• Dependency to insert, and delete in a specific data space

• Dependency to insert, delete and modify in a specific data space

Data set If you set the 'Event' field to one of values presented below, this field displays:

• Dependency to insert and delete in other instances

• Dependency to insert, delete and modify in other instances

• Dependency to insert and delete in a specific data space

• Dependency to insert, delete and modify in a specific data space

Table If you set the 'Event' field to one of values presented below, this field displays:

• Dependency to insert and delete record

• Dependency to insert, delete and modify node

• Dependency to insert and delete in other instances

• Dependency to insert, delete and modify in other instances

• Dependency to insert and delete in a specific data space

• Dependency to insert, delete and modify in a specific data space

Field If you set the 'Event' field to one of values presented below, this field displays:

• Dependency to modify node

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 43

Property Definition

• Dependency to insert, delete and modify node

• Dependency to insert, delete and modify in other instances

• Dependency to insert, delete and modify in a specific data space

Classifying business rules
Rules can be organized into a classification scheme making their management easier. A rule can be
associated to one to many domain of rules.

Property Definition

Domain of rules A domain of rules configured in the reference 'Domain of rules' table.

Rule A rule configured in the 'Rule' table. This rule is attached to the domain.

Defining Rules set content
You can group individual rules into a 'Rules set' and execute multiple rules at the same time. The
'Rules set content' lets you define rules contained in a 'Rules set'.

Property Definition

Rules set A reference to a 'Rules set'.

Rule A reference to a rule that is integrated into the 'Rules set'. All rules contained in a
'Rules set' must be attached to the same Data Element Concept (D.E.C.). Therefore,
the list of rule selections is limited to those related to a single D.E.C. The referenced
D.E.C. is determined by the first rule in the list.

Order The order of rules contained in the 'Rules set'. This order manages the rule's execution
sequence. You can rearrange rules using the 'move up', 'move down' and 'move to
position' services in the 'Rule set hierarchy' data hierarchy.

Active rule This property is inherited from the 'Is active' property configured in the 'Rule' table. It
can be overwritten to adapt the property in the context of the rules set content.

If set to 'True': the rule can be executed.

If set to 'False': the rule is deactivated and cannot be executed even if all other
execution conditions are valid (execution context, rule set is active).

5.4 'Business rules execution' group
The tables in the 'Business rules execution' group allow you to define the context for rule execution.

Using the 'Rule execution' table to configure business rule
execution
A record in the 'Rule execution' table applies to either a business rule or multiple rules contained
in a 'Rules set'. You can configure an event that determines when rule execution occurs (Ex. On

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 44

demand, After create, etc.). The D.E.C. on which the rules execute is defined in the rule definition.
The following table lists 'Rule execution' properties and their definitions:

Property Definition

Code Any naming convention can be used except the prefix '[ON]' which is reserved by the
add-on for predefined rule execution.

Example: [ON] Create Account

Table The Data Element Concept (D.E.C.) on which the rule executes.

The value of 'Rule' and 'Rule set' will be filtered accordingly.

Rule The rule to execute. If this property is configured, you cannot define the 'Rules set'
property.

After you select a rule, the 'Event' field's value filters accordingly.

Rules set The 'Rules set' to execute. If this property is configured, you cannot define the 'Rule'
property.

Execution context This field allows you to choose: 'No context', 'Use Script' and 'Use Java
implementation' for the execution context. The value 'Use simple expression' only
pertains to old data and displays after the migration process.

Active If set to 'True': the Rule execution can execute.

If set to 'False': the Rule execution is deactivated and cannot execute, even if all other
execution conditions are valid.

Validity date The first date that the Rule execution can be executed.

Expiry date The date that you can no longer execute the Rule execution, even though its 'Is active'
property is set to 'True'.

Event The event that launches the Rule execution (refer to the reference table 'Event'). These
events are aligned with triggers:

• Before create → HandleBeforeCreate

• Before update → HandleBeforeModify

• Before delete → HandleBeforeDelete

• After create → HandleAfterCreate

• After update → HandleAfterModify

• After delete → HandleAfterDelete

This means that 'before' is used to modify a record before the save, and 'after' is used
to execute operations after the save. But if both are in same transaction and an error is
raised the save is aborted.

In the current version of the add-on, you manually have to select the event. In a future
version, automatic selection of possible events will be available.

To select the event:

• 'After' for the 'Automated rule' rule type. This rule type can modify the record
before it is saved by the system, and any other information beyond the current
record. If the rule raises an error, the save is aborted.

• 'Before' for the 'Validation rule' rule type. This type of rule cannot modify the
record and is executed before the system saves the record. If a validation rule
raises an error, the save is aborted.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 45

Property Definition

• 'On demand' is used with the 'Manual validation rule' and 'Table set rule' rule
types. This event allows you to execute the rules through the ' validation service'
and the 'Execute rules' service, respectively.

• 'On constraint' is used with the 'Validation rule'. This event allows you to execute
validation rules using a constraint set on a field.

Setting 'On demand' on a 'Automated rule' or 'Validation rule' type ensures that this rule
is not automatically executed.

Setting 'After' or 'Before' on a 'Manual validation rule' or 'Table set rule' type ensures
that this rule is not automatically executed.

When rule execution is configured in a rules set that includes different rule types, the
event to select must be prioritized as shown below:

• The 'Event' is selected by the priority first of the 'Automated rule', and then of the
'Validation rule'.

• For example, a rules set can contain all four rule types: 'Manual validation rule',
'Validation rule', 'Automated rule' and 'Table set rule'. If the 'Event' in this case, is
After or Before then only 'Automated rule' and 'Validation rule' are executed. If the
'Event' is 'On demand' then only 'Manual validation rule' and 'Table set rule' are
executed.

Data set execution One to many data sets can be selected as a execution context. This means that rule
execution happens only if the execution is requested in the defined data set(s). It is
possible to use the special tokens '[All data spaces]' and '[All data sets]'.

User profile This property allows you to restrict rule execution for the selected user-profiles. This
is not applied to 'Manual validation' rule types that are executed through the validation
report service.

Script You enter the script for your rule here. The Scripting Language used by the add-on is
based on JavaScript and simplifies the rule definition process. However, when running
against a high volume of data, performance may be reduced. So, careful consideration
must be put into the decision on whether to use Java or a script. See the Scripting
Language for more information.

Java Implementation

This group field defines:

• The implementation in java

• This implementation's input/output

• This implementation's parameters

Rule name The list of available rules. This list populates automatically through a Java
introspection of the rules implementation (refer to the Java doc).

Object class Business object on which the rule can be applied. This information is for
documentation only. This is not the table name. For example, the "Employee" Object
class can be related to several tables, such as: Employee, Third party, Salaried
employee, etc.

Input data Read-only parameters controlled and used by the add-on to execute the rule.

Output data The read-only results data.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 46

Property Definition

Property data You can modify these parameters at the configuration level and use them as input data
for rule execution.

Context
A context is used to associate a Rule execution with one to many Simple expression(s). Only simple
expressions related to the same Data Element Concept as the 'Rule execution' can be selected in the
configuration.

Special Notation

From version 1.3.0. of the add-on, the 'Context' table is only used for backward compatibility. Its permission level is set to
read-only if it previously contained data, if not, it is hidden.

Property Definition

Rule execution A rule execution on which the context is defined.

Simple expression A simple expression that defines a constraint applied to the fields of the Data Element
Concept declared for rule execution.

Logical operator A logical operator used to combine two simple expressions. The logical operator of the
first simple expression is configured to 'Void' or 'Not'.

Order Displays the simple expression order. When more than one simple expression is
configured, their order and associated 'Logical operator' determine flow.

You can manage simple expression order in the data hierarchy view 'Context by D.E.C.
and Rule execution'.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 47

Simple expression
A 'Simple expression' is used by the 'Context' table and defines the conditions under which rules can
be executed.

Special Notation

From version 1.3.0. of the add-on, the 'Simple expression' table is only used for backward compatibility. Its permission
level is set to read-only if it previously contained data, if not, it is hidden.

Property Definition

Code Any naming convention can be used except the prefix '[ON]' which is reserved by the
add-on for predefined simple expressions.

Example: [ON] Age greater than 50

Name Any naming convention.

Table The Data Element Concept on which the simple expression is built. By default, this is
a table.

Field A Data Element Concept field that is used to build the first part of the simple
expression.

Comparison operator A list of comparison operators. The selections populated in the list depend on the
'Field' selected.

Value The 'Value' property can be used to build the second part of the simple expression and
is a predefined value to compare against the 'Field' value. You cannot use the 'Value'
property and the 'Field 2' property in the same simple expression.

Field 2 The 'Field 2' property can be used to build the second part of the simple expression
and compares the value of the 'Field' property with the value specified in 'Field 2'. You
cannot use the 'Value' property and the 'Field 2' property in the same simple expression.

Implementation - Sometimes configuration requirements for a simple expression go beyond using the 'Field', 'Comparison
operator' and 'Field 2' properties. In this type of situation you can configure a rule as a simple expression. The rule's output data
enforces a standard interface (refer to the Java doc).

Rule name The name of the selected rule. This list populates automatically through a Java
introspection of the rules implementation (refer to the Java doc).

Object class Business object on which the rule can be applied. This information is for
documentation only. This is not the table name. For example, the "Employee" Object
class can be related to several tables, such as: Employee, Third party, Salaried
employee, etc.

Input data Read-only parameters used to execute the rule that are under the full control of the add-
on.

Output data Read-only results data.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 48

Property Definition

Property data Modifiable parameters used as input data for rule execution.

5.5 Logging level
This group contains logging mechanism configuration settings and is hidden in the rule portfolio
snapshot (publication of rules' configuration).

Business rules logging
This record contains the properties to configure business rules logging.

Property Definition

Trace activation If set to 'True': Logging is active.

If set to 'False': Logging is not active.

This property's default value is 'False'.

Automatic archive If set to 'True': archives are automatically created when the maximum number of logs
allowed is reached.

If set to 'False': the system will not create automatically archives file after creating the
log data.

This property's default value is 'False'.

Stack trace size (in records) The maximum number of logs allowed before the automatic archive process begins
archiving logs or overwriting older ones.

Permission rules logging
This record contains the properties to configure permission rules logging.

Property Definition

Trace activation If set to 'True': Logging is active.

If set to 'False': Logging is not active.

This property's default value is 'False'.

Automatic archive If set to 'True': archives are automatically created when the maximum number of logs
allowed is reached.

If set to 'False': the system will not create automatically archives file after creating the
log data.

This property's default value is 'False'.

Stack trace size (in records) The maximum number of logs allowed before the automatic archive process begins
archiving logs or overwriting older ones.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 49

5.6 'Permission rules' group
The tables in the 'Permission rules' group allow you to define permission rules, permission rules sets
and permission rule classification.

Configuring a permission rule
You can base rule configuration on permission rules and use Java or a script to implement
the configuration. Predefined Java-implemented rules are ready-to-use and require no specific
programming knowledge from end-users. However, using a script requires Scripting Language
knowledge for implementation and users should possess at least basic programming knowledge. See
the Scripting Language for more information.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 50

A 'Rule' allows you to set Hidden, Read-Only or Read-Write permissions and apply them to a table,
record, field, data set or service.

Property Definition

Code Any naming convention can be used except the prefix '[ON]' which is reserved by the
add-on to provide predefined rules.

Example: [ON] Rule 01

Implementation type There are 3 implementation types:

• Use script: you create the rule using a script.

• Use Java implementation: you use Java implementation to create the rule.

• Use Classic access rule: you use your own programmatic access rule to create a
rule. This type is used to create access permission rule only.

Name A required, editable field that displays the 'Rule' name. You can use any naming
convention.

Description An optional, editable field where you can enter a description for the 'Rule'.

D.E.C. attachment The selected Data Element Concept (D.E.C.) on which the rule executes.

Scope Scope of permission rule.

Type There are 2 supported types for permission rules:

• An 'Access permission rule' manages node permissions, namely a data set, table or
field. This type of rule determines whether or not the node is Hidden, Read-Only
or Read-Write.

• An 'Action permission rule' manages service permissions. This type of rule
controls whether or not a given service can be used in the current context (displays
or hides the service).

Active If set to 'True': the rule can execute.

If set to 'False': the rule cannot execute even if all execution conditions are valid
(execution context, rule set is active).

Script You enter the script for your rule here. The Scripting Language used by the add-on is
based on JavaScript and simplifies the rule definition process. However, when running
against a high volume of data, performance may be reduced. So, careful consideration
must be put into the decision on whether to use Java or a script.

Java Implementation

This group field defines:

• The implementation in java

• This implementation's input/output

• This implementation's parameters

Rule name A list of the available rules. This list populates automatically through a Java
introspection of the rule implementation (refer to the Java doc).

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 51

Property Definition

Object class Displays the name of the business object class on which the rule implementation is
applied. This information is for documentation only. This should not be a specific
name of a table, field, record, data set or service on which the rule is applied, but a
generic identification, namely: Table, Field, Service, etc.

Input data These read-only parameters are used for rule execution and are fully under control of
the add-on.

Output data Read-only result data.

Property data These parameters can be modified at the configuration level and used as input data for
rule execution.

Classic access rule

Enter the class path of the programmatic access rule you want to execute.

Note: Your classic access rule has to satisfy the following conditions:

-It has to implement the AccessRule interface.

-It must have a no-argument constructor.

Access rule Class path of your programmatic access rule.

Rule classification
A rule can be associated with one to many 'Domain of rules'. This enables you to organize rules into
any classification scheme and simplifies their management.

Property Definition

Domain of rules A domain of rules configured in the 'Domain of rules' reference table .

Rule A rule configured in the 'Rule' table. This rule is attached to the 'Domain of rules'.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 52

Rules set content
You can group individual rules into a 'Rules set' which allows multiple rules to execute at the same
time. The 'Rules set content' lets you define the rules contained in a 'Rules set'.

Property Definition

Rules set The name of the referenced 'Rule set'.

Rule The name of the 'Rule' that is added to the rules set.

All rules in a 'Rules set' are attached to the same Data Element Concept (D.E.C.). Therefore, you can
only select rules that are attached to the first listed rule's D.E.C.

Order The order of rules contained in the 'Rules set'. This order manages the rule's execution sequence. You
can rearrange rules using the 'move up', 'move down' and 'move to position' services in the 'Rule set
hierarchy' data hierarchy.

Active rule This property is inherited from the 'Is active' property configured in the 'Rule' table. It can be
overwritten to adapt to the property in the context of the rules set.

If set to 'True': the rule can be executed.

If set to 'False': the rule is deactivated and cannot be executed even if all other execution conditions
are valid (execution context, rule set is active).

5.7 'Permission rules execution' group
The 'Permission rules execution' group allows you to define contexts to execute a permission rule or
a permission rules set.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 53

Using the 'Rule execution' table to configure permission rule
execution
A record in the 'Rule execution' table can be an executable permission rule or a 'Rules set'. The rule
definition determines the D.E.C. on which the rules are executed.

Property Definition

Code Any naming convention can be used except the prefix '[ON]' which is reserved by the
add-on for predefined rule execution.

Example: [ON] Create Account

D.E.C. attachment The Data Element Concept (D.E.C.) on which the rule executes. The value of 'Rule'
and 'Rules set' will be filtered accordingly.

Rule Displays the rule to execute. This property cannot be used in combination with the
'Rules set' property.

Rules set Displays the 'Rules set' to executed. This property cannot be used in combination with
the 'Rule' property.

Execution context This field allows you to choose: 'No context', 'Use Script' and 'Use Java
implementation' for the execution context. The value 'Use simple expression' only
pertains to old data and displays after the migration process.

Active If set to 'True': this configuration can execute.

If set to 'False': this configuration is deactivated and cannot execute even if all other
conditions of the execution are valid.

Validity date The date that you can execute the "Rule execution".

Expiry date The date that you can no longer execute the "Rule execution", even if its 'Is active'
property is set to 'True'.

Data set execution One to many data set(s) can be selected as an execution context. This means that the
rule execution happens only if the execution is requested in the defined data set(s). It is
possible to use the special tokens '[All data spaces]' and '[All data sets]'.

User profile This property allows you to restrict the execution of rules based on the selected user-
profile. This does not apply to 'Manual validation' type rules that are executed through
the validation report service .

Script You enter the script for your rule here. The Scripting Language used by the add-on is
based on JavaScript and simplifies the rule definition process. However, when running
against a high volume of data, performance may be reduced. So, careful consideration
must be put into the decision on whether to use Java or a script. See the Scripting
Language for more information.

Java Implementation

This group field defines:

• The implementation in java

• This implementation's input/output

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 54

Property Definition

• This implementation's parameters

Rule name The list of available rules. This list populates automatically through a Java
introspection of the rules implementation (refer to the Java doc).

Object class Business object on which the rule can be applied. This information is for
documentation only. This is not the table name. For example, the "Employee" Object
class can be related to several tables, such as: Employee, Third party, Salaried
employee, etc.

Input data Read-only parameters controlled and used by the add-on to execute the rule.

Output data The read-only results data.

Property data These parameters that can be modified at the configuration level, and used as input
data for rule execution.

Context
A context is used to associate a Rule execution with one to many Simple expression(s). Only simple
expressions related to the same Data Element Concept as the 'Rule execution' can be selected for
configuration.

Special Notation

From version 1.3.0. of the add-on, the 'Context' table is only used for backward compatibility. Its permission level is set to
read-only if it previously contained data, if not, it is hidden.

Property Definition

Rule execution The rule execution on which the context is defined.

Simple expression The simple expression defining a constraint applied to the fields of the Data Element
Concept that has been declared for rule execution.

Logical operator A logical operator used to combine two simple expressions. The logical operator of the
first simple expression is configured to 'Void' or 'Not'.

Order The order of the simple expression. When many simple expressions are configured,
their flow is defined by the order and the associated 'Logical operator' (refer to the next
property).

The order is managed through the data hierarchy view 'Context by D.E.C. and Rule
execution'. The 'move up', 'move down' and 'move to position' are available from this
view.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 55

Simple expression
A 'Simple expression' is used by the 'Context' table to define the rule execution conditions.

Special Notation

From version 1.3.0. of the add-on, the 'Simple expression' table is only used for backward compatibility. Its permission
level is set to read-only if it previously contained data, if not, it is hidden.

Property Definition

Code Any naming convention can be used except the prefix '[ON]' which is reserved by the
add-on for predefined simple expressions.

Example: [ON] Age greater than 50

Name Any naming convention.

Table The Data Element Concept on which the simple expression is built. By default, this is
a table.

Field The Data Element Concept field used to build the first part of the simple expression.

Comparison operator A list of comparison operators automatically populated depending on the type of
D.E.C. field selected.

Value The 'Value' property is used to build the second part of the simple expression. This is a
predefined value to compare with the 'Field' value. When this property is used then the
'Field 2' property is no longer available.

Field 2 The 'Field 2' property is used to build the second part of the simple expression. The
value of the 'Field' property is compared with the 'Field 2' value. When this property is
used then the 'Value' property is no longer available.

Implementation - Sometimes configuration requirements for a simple expression go beyond using the 'Field', 'Comparison
operator' and 'Field 2' properties. In this type of situation you can configure a rule as a simple expression. The rule's output data
enforces a standard interface (refer to the Java doc).

Rule name A list of the available rules. This list populates automatically through a Java
introspection of the rules implementation (refer to the Java doc).

Object class Business object on which the rule can be applied. This information is for
documentation only. This is not the table name. For example, the "Employee" Object
class can be related to several tables, such as: Employee, Third party, Salaried
employee, etc.

Input data Read-only parameters used for rule execution and are fully controlled by the add-on.

Output data Read-only results data.

Property data These parameters can be modified at the configuration level and used as input data for
rule execution.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 56

5.8 Reference data
The 'Reference data' group contains the reference tables' definition.

Domain of rules
You can make rule management easier by using a 'Domain of rules' to classify rules. A 'Domain of
rules' is differentiated from a 'Rules set' in that it is used only as a classification scheme and not at
run-time to execute multiple rules at the same time.

Property Definition

Code Any naming convention can be used except the prefix '[ON]' which is reserved by the
add-on for predefined 'Domain of rules'.

Example: [ON]Hyperion Account dimension

Name The 'Domain of rules' name. You can use any naming convention.

Domain of rules hierarchy
You can use the 'Domain of rules hierarchy' to arrange 'Domain(s) of rules' and further facilitate
classification.

Property Definition

Parent domain The 'Domain of rules' selected as the parent domain out of the available 'Domains of
rules'.

Child domain The 'Domain of rules' child. When there are many children, a child's position is
configured through the data hierarchy view 'Domain hierarchy view' available on the
'Domain of rules' table. Their position can be adjusted using the 'move up', 'move
down' and 'move to position' services.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 57

Business rules set
A 'Business rules set' is a defined group of rules that can be executed together. 'Business rules set'
content is defined in the 'Rules set content' table.

Property Definition

Code Any naming convention can be used except the prefix '[ON]' which is reserved by the
add-on for predefined rules sets.

Example: [ON] Validate account

Name The name of 'Business rules set'. You can use any naming convention

Description Text defining the 'Business rules set' description. You can use any naming convention.

Active If set to 'True': the rule set is active and the rules are executed if the execution context
is valid.

If set to 'False': the rule set is inactive and cannot be executed even if the execution
context is valid.

Permission rules set
A 'Permission rules set' defines a group of rules that can be executed together. 'Permission rules set'
content is defined in 'Rules set content' table.

Property Definition

Code The name of the 'Rules set code'. Any naming convention can be used except the prefix
'[ON]' which is reserved by the add-on for predefined rules sets.

Example: [ON] Validate account

Name The name of 'Permission rules set'. You can use any naming convention

Description Text defining the 'Permission rules set' description. You can use any naming
convention.

Active If set to 'True': the rule set is active and the rules are executed if the execution context
is valid.

If set to 'False': the rule set is inactive and cannot be executed even if the execution
context is valid.

Restriction mode A property that allows you to combine the results of the rule set's permission rules:

• Most restricted - takes the most restricted result in the rule set.

• Most unrestricted - takes the most unrestricted result in the rule set.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 58

Data set
You can use a data set to limit rule execution. The following table lists data set properties and their
definitions:

Property Definition

Code The data set name. You can use any naming convention.

Data space The data space in which the rules are executed.

This property is used as a context of the rules execution. Refer to the 'Rule execution'
table.

Data set The data set in which the rules are executed. This property is used as a context of the
rules execution. Refer to the 'Rule execution' table.

Description A description of the data set.

Event
An event initiates rule execution. The predefined events provided by the add-on allow you to manage
any type of need. Refer to the 'Rule execution' table to see 'Event' definitions.

Property Definition

Code Any naming convention can be used except the prefix '[ON]' which is reserved by the
add-on for predefined events. Example:[ON] Before create

Name The 'Event' name. You can use any naming convention.

Description Text defining the 'Event' description. You can use any naming convention.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 59

Rule type
Refer to the online help for more information on the 'Rule type' table.

Property Definition

Code Any naming convention can be used except the prefix [ON] that is reserved by the add-on to
provide predefined rule types. You can choose from four predefined rule types:

[ON] Validation rule: executed by a trigger. This type of rule cannot modify data.

[ON] Manual validation rule: executed by the user through the validation service.

[ON] Automated rule: executed by a trigger. This type of rule can modify data.

[ON] Table set rule: executed by the user through the 'Execute rules' service. This type of rule can
modify the data.

[ON] Access permission rule: manages node (data set, table or field) permissions. This type of
rule controls whether or not the node is Hidden, Read-Only or Read-Write.

[ON] Action permission rule: manages service permissions. This type of rule determines whether
or not the given service can be used (displayed or hidden) in the current context.

Name The 'Rule type' name. You can use any naming convention.

Description Text defining the 'Rule type' description. You can use any naming convention.

Severity
The type of error message displayed, either Warning or Error.

Property Definition

Code There are two severity levels:

• Warning: the error message displays as a warning. Only manual validation rules
can rely on this error type.

• Error: the error message displays as an error. Any type of rule can raise an error.

Name You can use any naming convention.

Description You can use any naming convention.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 60

D.E.C. type
This table defines the type of data element concept.

Field Definition

Code Any naming convention can be used except the prefix '[ON]' that is reserved by the
add-on to provide the default D.E.C. types.

Example: [ON] Table

Name Name of the D.E.C. type.

Example: Table

Description Text defining the 'D.E.C. type' description. You can use any naming convention.

Comparison operator
Defines the operator which is used to compare values.

Field Definition

Code Any naming convention can be used except the prefix '[ON]' that is reserved by the
add-on to provide the predefined comparison operators.

Example: [ON] Greater than

Name The 'Comparison operator' name. You can use any naming convention.

Description The 'Comparison operator' description. You can use any naming convention.

Logical operator
Defines the operator that is used to combine the logic value.

Field Definition

Code Any naming convention can be used except the prefix '[ON]' that is reserved by the
add-on to provide predefined logical operators.

Example: [ON] and

Name The 'Logical operator' name. You can use any naming convention.

Description The 'Logical operator' description. You can use any naming convention.

5.9 Deleting contexts and simple expressions
The 'Context' and 'Simple expression' tables remain to ensure backwards compatibility with versions
of the add-on prior to the GA 1.3.0 release. Due to read-only or hidden access permissions, you cannot

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 61

create new records in these tables. However, you can still delete these records as existing contexts
and expressions become obsolete.
To delete a context or simple expression, navigate to the relevant table, open the 'Actions' drop-down
menu, and select either the 'Delete context' or 'Delete simple expression' service.

Documentation > User Guide > Rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 62

Documentation > User Guide > TIBCO EBX® Rules Portfolio Add-on - Production

TIBCO EBX® Rules Portfolio Add-on Documentation 63

CHAPTER 6
TIBCO EBX® Rules Portfolio Add-on

- Production
This chapter contains the following topics:

1. Administration domain

2. The 'Rule publication' table

3. The 'Rule repository' table

4. The 'Publish rules portfolio' service

5. The 'Delete rule publication' and 'Delete rule repository' services

6. The 'Apply publication' service

6.1 Administration domain
You can find the 'TIBCO EBX® Rules Portfolio Add-on - Production' data space under the
'Administration' tab. This data space allows you to make a stable rule configuration environment for
running a rule. From the version 1.3.0 release, all rules run on the snapshot of a rule configuration
instead of running directly on the rule configuration. The 'TIBCO EBX® Rules Portfolio Add-on -
Production' data space stores the snapshot information of rules configuration and the mapping between
the snapshot version and the data space where the rule is applied.

• The 'Rule publication' table stores the published snapshot information.

Documentation > User Guide > TIBCO EBX® Rules Portfolio Add-on - Production

TIBCO EBX® Rules Portfolio Add-on Documentation 64

• The 'Rule repository' table stores the mapping of the data space which is applied by rules and
snapshot version.

6.2 The 'Rule publication' table
The 'Publish rules portfolio' service creates a snapshot of the 'TIBCO EBX® Rules Portfolio Add-
on' data set. One rule publication can be applied to many data spaces (or all data spaces). The rule
publication properties are shown in the following table:

Property Definition

UUID The generated unique id.

Published snapshot The publication of rules configuration. This is a snapshot of the 'TIBCO EBX® Rules
Portfolio Add-on' data set.

Creation user User who publishes the rule configuration.

Name&Description The name and description of rules portfolio publication.

Creation date The date and time when the rules configuration is published.

Documentation > User Guide > TIBCO EBX® Rules Portfolio Add-on - Production

TIBCO EBX® Rules Portfolio Add-on Documentation 65

6.3 The 'Rule repository' table
A rule repository is the mapping between rule publications and data spaces. If the data space does not
have any associated rule publication, the system will use the rule publication which is applied to [All
data spaces]. The rule repository properties are shown in the following table:

Property Definition

Data space If there is an existing publication applied to the current data space, the system uses
this publication to execute rules on this data space; otherwise, the system uses the
publication applied to [All data spaces] to execute rules.

Rule publication The rules portfolio publication which will be applied to the data space.

Creation user Inherited from the Rule publication table.

Creation date Inherited from the Rule publication table.

Documentation > User Guide > TIBCO EBX® Rules Portfolio Add-on - Production

TIBCO EBX® Rules Portfolio Add-on Documentation 66

6.4 The 'Publish rules portfolio' service
As shown below, the 'Publish rules portfolio' service is located in the 'TIBCO EBX® Rules Portfolio
Add-on' data set's 'Actions' menu. This service publishes the current rules portfolio configuration.

Once you have run the service, you can use the publication mode option to either create a new, or
overwrite an existing publication. If creating a new publication, input a name, description, and choose

Documentation > User Guide > TIBCO EBX® Rules Portfolio Add-on - Production

TIBCO EBX® Rules Portfolio Add-on Documentation 67

the data space(s) that this publication applies to. If overwriting an existing publication, specify the
publication to overwrite and the required fields.

Special Notation

"[All data spaces]" is a special value. The rule publication applied to [All data spaces] is only used when there is no
existing publication applied to current data space.

6.5 The 'Delete rule publication' and 'Delete rule
repository' services

The access permission for the 'TIBCO EBX® Rules Portfolio Add-on - Production' data set is read-
only, so it is unable to manually create or delete any record. The 'Publish rule portfolio' service creates
records on both tables in the 'TIBCO EBX® Rules Portfolio Add-on - Production' data set. Records in
the 'Rule publication' table store a snapshot's information and records and the 'Rule repository' table
stores the mapping. The 'Delete rule publication' and 'Delete rule repository' services were created and
activated on their respective tables to enable deletion.

Documentation > User Guide > TIBCO EBX® Rules Portfolio Add-on - Production

TIBCO EBX® Rules Portfolio Add-on Documentation 68

To delete a rule publication, you only need to choose the publication that you want to remove and then
select the 'Delete rule publication' service (shown in the image below). This service deletes not only
the chosen rule publication but also the associated rule repository.

Similar to 'Delete rule publication' service, the 'Delete rule repository' service removes all the chosen
rule repositories.

Documentation > User Guide > TIBCO EBX® Rules Portfolio Add-on - Production

TIBCO EBX® Rules Portfolio Add-on Documentation 69

6.6 The 'Apply publication' service
The 'Apply publication' service is located at the 'Rule publication' table level. This service allows you
to apply existed rule publication to the selected data spaces except for the data spaces that it already
applies.

Documentation > User Guide > TIBCO EBX® Rules Portfolio Add-on - Production

TIBCO EBX® Rules Portfolio Add-on Documentation 70

As shown below, you only need to choose the data space(s) that your existed rule publication applies
to. The data spaces that already be applied by that rule publication will have the blur check box and
the value of that check boxes cannot be changed.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 71

CHAPTER 7
Use case

This chapter contains the following topics:

1. Overview of use cases

2. Use case: Preventing record deletion when relationships exist

3. Use case: Preventing a field from exceeding a value and auto-correcting

4. Use case: Check empty field with predefined assertion rules and the execution condition

5. Use case: Set table permisison for a specific user using predefined assertion rules and execution
conditions

6. Use case: Finding an existing Java implementation

7. Use case: Using the wizard to configure a rule

7.1 Overview of use cases
This section contains use cases that demonstrate how the EBX® Rules Portfolio Add-on can meet the
following business requirements:

• Prevent deletion of records that have a child relationship, or an association to a record from another
table.

• Ensure that a field's value does not exceed a specified number and if it does, auto-correct the value.

The examples in this section do not show the Java code used for rule implementation. However, it
does include add-on specific scripting language examples where applicable. See the add-on's Java API
documentation, if you would like more information on coding your own Java implementation classes.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 72

The diagram below outlines the rule creation process. A 'Rule execution' declares information about
the rule such as the event on which the rule executes, a validity date range or any other context required
for rule execution. A 'Rules set' allows you to declare multiple rules and attach them to a definition.

7.2 Use case: Preventing record deletion when
relationships exist

This use case uses the 'Article' data model (shown below) and demonstrates how you can prevent
users from deleting a record when:

• A record has a child.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 73

• A record has an association to a record in another table.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 74

In this case, the rule's business logic relates to the 'Articles' and 'Strategies' tables.

Configuring the data model
Complete the following steps to prepare the data model for rule execution:

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 75

• Add the classes shown in the following table to the data model's 'Configuration' → 'Component
library'. These classes call the EBX® Rules Portfolio Add-on.

Class Description

com.orchestranetworks.addon.rpfl.DefaultTableTrigger Enables use of validation and automated rules.

com.orchestranetworks.addon.rpfl.DefaultConstraintOnTable Enables manual validation rules.

com.orchestranetworks.addon.rpfl.DefaultSchemaExtension Enables access permission rules.

com.orchestranetworks.addon.rpfl.DefaultRulesSchemaServicePermission Enables action permission rules if the service is
declared in the schema. If the service is declared
in the module.xml file, create a class to extend
DefaultRulesServicePermission and add is to the
module.xml services declaration.

• Navigate to 'Configuration' → 'Data model properties' and add the 'DefaultSchemaExtension' to
the 'Model properties' → 'Special extensions' attribute.

• Select the data model's 'Articles' table and apply the following components:

• On the 'Advanced controls' tab, add the 'DefaultConstraintOnTable' component, as shown
below.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 76

• • On the 'Advanced properties' tab, add the 'DefaultTableTrigger' component, as shown below.

• Use the 'Configuration' → 'Java bindings' to specify what Java types the model generates. This
use case implements the configuration shown in the following image:

• You can publish the data model and create a data set.

The next section describes how to create D.E.C.'s (Data Element Concepts) in the add-on.

Creating the D.E.C.s
A D.E.C. associates a specific business concept, such as a table, or a field with a rule. You can add
each D.E.C. manually, or use the 'D.E.C. creation' service to automatically create them. However,
manual creation can easily lead to duplication and is not a recommended practice.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 77

The following demonstrates using the service to auto-generate the D.E.C.s:

• Navigate to the 'Administration' tab → 'Business rules' → 'TIBCO EBX® Rules Portfolio Add-
on' → 'D.E.C. definition' → 'D.E.C. by type table' view and from the 'Actions' menu select 'D.E.C.
creation'.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 78

• Enter the desired 'Data model' and 'Table' information and click 'Execute'.

Implementing the rule using Java
The requirements for this use case stem from the following two scenarios:

• An user tries to delete a record when it has a child record.

• An user tries to delete a record when it has an associated record.

Each of the above scenarios requires its own validation type business rule, relies on a Java
implementation and applies to the same data model table ('Articles' in this case). Each Java
implementation contains two classes. One class defines the rule and the other defines how the rule
executes. The following table outlines these two classes:

Class Description

The rule definition class This class has to implement the 'BusinessRuleDefinition' interface and defines the
following rule information:

• Label

• Input

• Output

• Properties

• Rule type

• Implementation class

The rule implementation class This class must implement the 'Rule' interface and it contains the logic to execute the
rule.

Note that the following steps only demonstrate creating one of the two rules. Just repeat the same set
of steps to add the second rule.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 79

To create the business rules:

• Navigate to the 'Administration' tab → 'Business rules' → 'TIBCO EBX® Rules Portfolio Add-
on' → 'Business rules' → 'Rule' table and 'Create a record' on the appropriate D.E.C. This table's
view defaults to 'Rules by D.E.C.' and allows you to easily select the D.E.C. to which you want
to add the rule.

• Fill in the required information. Properties of note are:

• 'Implementation type' - Set this property to 'Use Java implementation' to use a Java
implemented rule.

• • 'Type' - This property defines the rule type. For this use case, the type is set to 'Validation rule'.

• 'Severity' - This property should be set to 'Error'.

• 'Message' - Our first rule's message is set to "You cannot delete an article when it is substitute
article." Our second rule's error message says, "You cannot delete an article if it has associated
strategies."

After saving the record, the 'Java implementation' tab displays.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 80

• Click on the 'Java implementation' tab and use the 'Rule name' drop-down to select the first
business rule. The 'Rule name' property only populates with rules that have been registered with
the add-on. See the API documentation for more information.

• To create a rule execution, navigate to 'Business rules execution' → 'Rule execution' and add
a record to the same D.E.C. used for the rule definition. Among other things, a rule execution
determines whether the associated rule is active, a rule validity time period and what type of event
initiates rule execution. Ensure the required fields have values, including the 'Event' field which
should be set to 'Before delete'. The 'Rule' field should be set to the business rule you want to
apply this execution to. Save and close.

Repeat steps one through five to create the second business rule and rule execution. Once both rules
are complete, you can publish the rules portfolio and test the rules.

• To publish the rules portfolio, open the 'Actions' menu at the 'TIBCO EBX® Rules Portfolio Add-
on' data set level and select 'Publish rules portfolio'.

• Give the publication a unique name and be sure to select the data space containing the correct
data model and data set. Click 'Publish'.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 81

The following images show the error messages that display when we attempt to delete an 'Article' that
is a substitute 'Article' and an 'Article' with a related 'Strategies', respectively.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 82

Implementing the rule using a script
This section demonstrates using a script to meet the following requirements for this use case:

• A user tries to delete a record when it has a child record.

• A user tries to delete a record when it has an associated record.

The following steps provide script examples for both rules, but only demonstrate creating one of the
two rules. Just repeat the same set of steps to add the second rule.
To create the business rules:

• Navigate to the 'Administration' tab → 'Business rules' → 'TIBCO EBX® Rules Portfolio Add-
on' → 'Business rules' → 'Rule' table and 'Create a record' on the appropriate D.E.C. This table's
view defaults to 'Rules by D.E.C.' and allows you to easily select the D.E.C. to which you want
to add the rule.

• Fill in the required information. Properties of note are shown below:

• 'Implementation type' - Set this property to 'Use Script'. You can add the script to the 'Script'
tab after saving.

• 'Type' - This property defines the rule type. For this use case, the type is set to 'Validation rule'.

• 'Severity' - This property should be set to 'Error'.

• 'Message' - Our first rule's message is set to "You cannot delete an article when it is substitute
article." Our second rule's error message says, "You cannot delete an entity if it has associated
strategies."

After ensuring the above properties are correct, save the record and the 'Script' tab displays.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 83

• Click on the 'Script' tab and add the appropriate script. The following two images show the script
used for each rule. For a more in-depth explanation of how specific objects work, see the Scripting
Language Guide in the online help.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 84

• To create a rule execution, navigate to 'Business rules execution' → 'Rule execution' and add
a record to the same D.E.C. used for the rule definition. Among other things, a rule execution
determines whether the associated rule is active, a rule validity time period and what type of event
initiates rule execution. Ensure the required fields have values, including the 'Event' field which
should be set to 'Before delete'. The 'Rule' field should be set to the business rule you want to
apply this execution to. Save and close.

Steps one through four are repeated to create the second business rule and rule execution. Once both
rules are complete, you can publish the rules portfolio and test the rules.

• To publish the rules portfolio, open the 'Actions' menu at the 'TIBCO EBX® Rules Portfolio Add-
on' data set level and select 'Publish rules portfolio'.

• Give the publication a unique name and be sure to select the data space containing the correct
data model and data set. Click 'Publish'.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 85

The following images show the error messages that display when we attempt to delete a 'Article' with
a child 'Article' and an 'Article' with a related 'Strategies', respectively.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 86

7.3 Use case: Preventing a field from exceeding a value
and auto-correcting

This use case uses the previously shown 'Article' data model and applies sample rules to the 'Product
managers' table. Data model configuration for add-on compatibility and creation of the D.E.C.s

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 87

followed the same processes as the previous use case. For more information about these processes,
see the above sections 'Configuring the data model' and 'Creating the D.E.C.s'.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 88

The next two topics show how to define a rule using Java and the built-in scripting language. Part
of the rule definition includes a condition for rule execution, or 'Execution context', which defines
rule requirements. When creating your own rules, not all situations require an 'Execution context'. In
these cases you can simply remove the 'Execution context'. This rule enforces the following business
requirement:

• If the 'Login' field's value does not have a default prefix, then the add-on automatically adds a
default prefix when you manually execute the rule.

• Configuring the rule and execution conditions with Java.

Configuring a Java-based rule and execution conditions
When relying on Java implementation, you select from a list of available rules previously registered
with the add-on. These rules already contain programming logic required to analyze data conditions
and pass a result to the add-on. Subsequently, an end-user responsible for 'Rule' and 'Rule execution'
configuration does not need Java-specific programming knowledge to complete his task. If you are
required to create the rules in Java and register them with the add-on, refer to the API documentation
for more information.
The following steps demonstrate 'Rule' and 'Rule execution' configuration based on use case
requirements:

• Navigate to the 'Administration' tab → 'Business rules' → 'TIBCO EBX® Rules Portfolio Add-
on' → 'Business rules' → 'Rule' and create a new record under the 'Product managers' D.E.C.
Note: If you have not set up a data model or created the required D.E.C.s, see the 'Configuring
the data model' and 'Creating the D.E.C.s' sections in the previous use case.

• Enter the required information and click 'Save'. The 'Java implementation' tab displays. Properties
of note:

• 'Implementation type' - Set to 'Use Java implementation' to use a Java implemented rule.

• 'Type' - This property is set to 'Table set rule'. This type of rule allows modifying existing
data-one of the use case requirements. Keep in mind that you need to manually execute a
'Table set rule' rule using the 'Execute rules' service.

• 'Severity' - Set to 'Error'.

• In the 'Java implementation' tab, use the 'Rule name' field to select the appropriate rule class
and click 'Save'. After saving, the tab displays the 'Property data' defined in the Java class.
Note that the 'Value' property, currently set to 'PM', is editable. This function allows you to
simply change the value to reuse this rule for other business requirements-without additional
software development. You can design any type of 'Property data' at the Java implementation

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 89

level and customize the values while configuring a rule. Refer to the Java doc for more
information.

• Navigate to 'Business rules execution' → 'Rule execution' and create a new record under the
'Product managers' table D.E.C. This is where you define when rule execution occurs and the
'Execution context' that specifies conditions for rule execution. Notice the following properties:

• 'Rule' - The 'Business rule' that these execution properties apply to.

• 'Execution context' - This property allows you to specify a condition for rule execution
using either Java, or a script. This example uses Java. However, not all scenarios require an
'Execution context'. In these types of cases you can set this property to 'No context'.

• 'Event' - This property specifies when rule execution takes place. This use case implements
a 'Table set rule' and requires you to run the 'Execute rules' service.

After entering the required information, click 'Save' and the 'Java implementation' tab displays.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 90

• Use the 'Rule name' property to select the desired rule used for this 'Execution context'. 'Save
and close'.

• Open the 'TIBCO EBX® Rules Portfolio Add-on' in 'Actions' drop-down menu and select 'Publish
rules portfolio'. This creates the add-on's configuration snapshot as the execution environment
for your rule. Enter the required information, including snapshot name and description, and the
data space(s) to apply to.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 91

• Return to the data set and from the 'Actions' menu, select 'Rules Portfolio' → 'Execute rules'. The
following image shows the rule execution result.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 92

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 93

Configuring a script-based rule and execution conditions
When you use a script to define rule and execution logic, it requires the end-user to have some
background programming knowledge. However, such a user can rapidly develop and implement rules
by leveraging the add-on's scripting feature. This section observes the same use case conditions as the
previous section, except it uses a script (examples included) to meet the requirements.
To create a rule that checks the 'Login' field value and add prefix automatically if the value does not
have prefix:

• Navigate to the 'Administration' tab → 'Business rules' → 'TIBCO EBX® Rules Portfolio Add-
on' → 'Business rules' → 'Rule' and create a new record under the 'Product managers' D.E.C.
Note: If you have not set up a data model or created the required D.E.C.s, see the 'Configuring
the data model' and 'Creating the D.E.C.s' sections in the previous use case.

• Enter the required information and click 'Save'. The 'Script' tab displays. Properties of note are:

• 'Implementation type' - Set to 'Use Script'.

• 'Type' - This property is set to 'Table set rule'. This type of rule allows modifying existing
data-one of the use case requirements. Keep in mind that you need to manually execute a
'Table set rule' rule using the 'Execute rules' service.

• 'Severity' - Set to 'Error'.

• The following image shows the information entered in the 'Script' tab.

• Navigate to 'Business rules execution' → 'Rule execution' and create a new record under the
'Product managers' table D.E.C. This is where you determine when rule execution occurs and the
'Execution context' that specifies conditions for rule execution. Notice the following properties:

• 'Rule' - The 'Business rule' that these execution properties apply to.

• 'Execution context' - This property allows you to specify a condition for rule execution
using either Java, or a script-as used in this example. However, not all scenarios require an
'Execution context'. In these types of cases you can set this property to 'No context'.

• 'Event' - This property specifies when rule execution takes place. This use case implements
a 'Table set rule' and requires you to run the 'Execute rules' service.

After entering the required information, click 'Save' and the 'Script' tab displays.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 94

• The following image shows the information entered in the 'Script' tab.

• Open the 'TIBCO EBX® Rules Portfolio Add-on' in 'Actions' drop-down menu and select 'Publish
rules portfolio'. This creates the add-on's configuration snapshot as the execution environment
for your rule. Enter the required information, including snapshot name and description, and the
data space(s) to apply to.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 95

• Return to the data set and from the 'Actions' menu, select 'Rules Portfolio' → 'Execute rules'. As
shown below, 'PM' prefix is added automatically in all 'Login' field values.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 96

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 97

7.4 Use case: Check empty field with predefined assertion
rules and the execution condition

Certain situations can lend themselves to using pre-built assertion rules to create new rules. These pre-
built rules are script-based and alleviate the need to hand-code Java. The following lists the available
pre-built assertion rules (business rule):

• [ON] Assertion true (Manual validation rule, Validation rule and Table set rule)

• [ON] Assertion false (Manual validation rule, Validation rule and Table set rule)

For example, to check if field (F) in a table (T) is empty, configure the following rule execution:

• Create a rule definition on (T) with the pre-built assertion rule '[ON] Assertion false (Manual
validation)'. This rule systematically returns a false value.

• Configure a 'Rule execution' with scripting code to check that (F) is empty.

During execution, when the condition of execution is validated (the table field is empty), the rule
executes and returns a value of 'False' which logs an error in the validation report. If the field is not
empty, then the rule is not executed and no error is logged.
You can extend this type of configuration using a script to implement any execution context.

7.5 Use case: Set table permisison for a specific
user using predefined assertion rules and execution
conditions

The predefined assertion rules also allow you to set permisison on a data set, table, field and record.
The available pre-built assertion rules (permission rules):

• [ON] Hidden the data set, table, field, or record.

• [ON] Permission read-only for the data set, table, or field/record.

• [ON] Permission read-write for the data set, table, field, or record.

For example, to set table (T) hidden only for a specific user:

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 98

• Create a rule definition on (T) with the pre-built assertion rule '[ON] Hidden the table'. This rule
systematically hidden the table (T).

• Configure a 'Rule execution' with the value on 'User profile' belong to the user applied by your
rule.

During execution, when the condition of execution is validated (the user profile is correct), the rule
executes and set hidden permission of table (T). If the user profile is not correct, then the rule is not
executed and the user still has read-writer permission on table (T).

7.6 Use case: Finding an existing Java implementation
When you have many Java implementations - whether execution contexts, or rules - it can be difficult
to remember their names. Without the exact name, you may not be able to locate the implementation
of interest. To locate an existing implementation you can search for it by defining criteria in the search
dialog.

• Create a new, or open an existing rule or execution context that uses a Java implementation.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 99

• Next to the 'Rule name' field click 'Search'.

• In the search box that displays, specify the following (note that the options that display in the
search box differ depending on where you start the search):

• Text contained in the implementation name can apply to all searches. If you are not sure of the
name, or when entering a name returns limited results, you can use the type, scope and Object
Class options to expand the search.

• The type of rule option applies to business rules. If you have indicated a value on the rule's home
tab in the 'Type' property, the search will be limited to that type. Otherwise, you will be able to
choose a type to search for.

• The permission scope option applies to permission rules. If you have indicated a value on the
rule's home tab in the 'Scope' property, the search will be limited to that scope. Otherwise, you
will be able to choose a scope to search for.

• The Object Class option is available on all search types. The value specified here searches for
types of business objects this rule can be applied to.

• After entering your search criteria, click 'Execute'.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 100

• The 'Result' heading contains the search results. Click 'Select' next to the implementation you
want to use.

7.7 Use case: Using the wizard to configure a rule
The rule configuration wizard offers an alternative way for you to configure rules. This option is
especially helpful for new users as it eliminates some of the complexity and manual configuration
steps. If you have any questions about a particular option, just open the tooltip for additional
information.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 101

The following outlines the general flow of the wizard:

• Open the wizard from 'Administration' > 'Business rules' > 'TIBCO EBX® Rules Portfolio Add-
on' > 'Actions' > 'Configuration wizard'.

• Select the type of rule you would like to create. Note that as of this release the wizard only supports
creation of a business rule.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 102

• Select the data model and table on which this rule will execute.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 103

• Choose whether to use an execution context. An execution context defines any conditions for rule
execution. If you choose to use a script to define a context, the following screen displays.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 104

• Choose when you want the rule to execute.

• Enter the rule name, specify severity, and an optional message.

• Enter the script that specifies the business logic for the rule. See above the image associated with
step four for tips on using the script.

• You have the following options after entering your script:

• • If you are finished, save the rule and close out of the wizard by clicking 'Finish'. The add-on
will present you with the option to publish the portfolio.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 105

• You can create a new set by entering the set's name in the 'Rule set name' box. You can then
select 'Create more rule(s) for current table' to add additional rules to this set, or click 'Finish'
to exit and close. The add-on presents you with the option to publish the portfolio.

• Select 'Create more rule(s) for current table' to create an additional rule for this table. You
can continue to add rules to a table using this option and just click 'Finish' when done.

• Select 'Create rule for another table' to save the existing rule and restart the wizard.

Documentation > User Guide > Use case

TIBCO EBX® Rules Portfolio Add-on Documentation 106

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 107

CHAPTER 8
Quick rules configuration

This chapter contains the following topics:

1. Rules configuration overview

2. Java implementation without execution conditions

3. Script implementation without execution

4. Rule executed on a data set

5. Java implementation requiring execution conditions

6. Script implementation requiring execution conditions

7. Creating new rules with predefined assertions

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 108

8.1 Rules configuration overview
This section describes how to configure the most common types of rules as highlighted in the table
below. These configurations do not use all properties available to adapt rule behavior just the most
common ones.

Use case Context Data set
execution

Result

Rule implemented using
Java without conditions of
execution

No No The Java-implemented rule executes on any data set
without any conditions.

Rule implemented using a
script without conditions of
execution

No No The script-based rule executes on any data set without any
conditions.

Rule executed on a data set No Yes The rule is executed on a data set only without any
additional conditions.

Rule executed on a data set
with an execution condition
implemented using Java

Yes Yes The rule is executed on a data set only with a condition
of execution. The condition is defined by a rule which is
implemented by Java.

Rule executed on a data set
with an execution condition
implemented using a script

Yes Yes The rule is executed on a data set only with a condition
of execution. The condition is defined by a rule which is
implemented by Script.

8.2 Java implementation without execution conditions
This type of rule executes on any data set without any execution conditions. The rule cannot execute
unless its 'Active' property is set to 'Yes'. The following rule example basically says "One class has
no more than 10 students".

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 109

Step 1: Creation of the "Rule definition" (see screen-shot below).

The 'Code', 'Name' and 'Description' properties describe the rule from a business point of view. While
the 'Implementation type' property specifies how you define the rule. If it is set to 'Use Script', the
'Script' tab displays and you can implement the rule using Scripting Language. If you set the property
to 'Use Java implementation' the 'Java Implementation' tab displays and you can use a predefined rule.
The 'Active' property allows you to deactivate the rule if necessary.
For a Java-implemented rule, you can define an unlimited number of rule definitions with different
configurations. The "Property data" parameter published by the implemented rule makes its adaptation
possible.

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 110

The configuration of a Java implementation is shown below and uses the 'Test 03: One class has no
more than 10 students' rule.

Step 2: Creation of the "Rule execution"
A "Rule execution" declares the conditions that permit a defined rule or set of rules to execute. To
create a "Rule execution":

• Using the 'Table' property, declare the table (or, 'D.E.C. Attachment' for permission rule execution)
this configuration applies to.

• Use the 'Rule' or 'Rules set' properties to specify which rule to use. Only one of these properties
can be set per configuration. These fields are filtered to show only rules applied to the D.E.C.
specified in the 'Table' field.

• From the 'Event' property specify when this configuration executes (after creation, modification
or deletion).

• The 'Execution context' field allows you to choose how you want to construct conditions of
execution ('Use script', 'Use Java implementation' or 'No context'). In the example shown below
no context is needed and the 'Execution context' property is set accordingly. Based on this

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 111

configuration, the rule executes on every data set's 'Class' table upon initiation of the 'On demand'
event.

8.3 Script implementation without execution
This type of rule executes on any data set without any execution condition. The rule cannot execute
unless you set its 'Active' property to 'Yes'. This rule example basically says "One class has no more
than 10 students".

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 112

Step 1: Creation of the "Rule definition" (see screen-shot below).

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 113

The content of script code is shown below:

The Rule definition is based on the script that you enter in the 'Script' tab. In this example, the rule
statement "One class has no more than 10 students" is represented by the scripting code shown above.
Other properties in this rule are the same as properties of first example except the 'Use script' field
is set to 'Yes'.

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 114

Step 2: Creation of the "Rule execution"

Refer to the first example for information on the "Rule execution" creation.

8.4 Rule executed on a data set
This type of rule is executed on a data set only and without any other execution conditions. The 'Active'
property must be set to 'Yes' otherwise it cannot be executed.
The following example states "One class has no more than 10 students".

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 115

Step 1: Creation of the "Rule definition"

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 116

The configuration of Java implementation is shown below:

Refer to the first example for information on creating the "Rule definition".

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 117

Step 2: Creation of the "Rule execution"

A "Rule execution" is created to declare the conditions that allow the defined rule's execution. In this
example, only the 'Data set execution' property is used to limit the rule execution. The 'Execution
context' property is set to 'No context' because there is no condition of execution.

8.5 Java implementation requiring execution conditions
This type of rule executes on any data set if certain execution conditions are valid. The rule's 'Active'
property must be set to 'Yes' otherwise its execution is not permitted.
The following rule example states: "When the score is greater than 100, the system will auto correct
to 100".

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 118

Step 1: Creation of the "Rule definition"

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 119

The configuration of Java implementation is shown below:

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 120

Step 2: Creation of the "Rule execution"

A "Rule execution" declares the conditions that allow the defined rule's execution. In this example, an
execution context and data set execution are defined together to limit the rule execution. Additionally,

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 121

the condition of execution is implemented using Java so the 'Execution context' property is set to 'Use
java implementation'. The image below shows the configuration set in the 'Java implementation' tab.

8.6 Script implementation requiring execution conditions
This type of rule is executed for a specific data set if certain execution conditions are valid. The rule's
'Active' property must be set to 'Yes' otherwise execution is not permitted.
The rule example states "When score is greater than 100, the system will auto correct to 100".

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 122

Step 1: Creation of the "Rule definition"

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 123

The content of Script code is shown below:

Refer to the first example for information on the "Rule definition" creation.

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 124

Step 2: Create the "Rule execution" to declare conditions that allow the rule's execution. In the
example shown below an execution context and data set execution limit rule execution. Additionally,
notice the 'Execution context' property is set to 'Use script'.

The image below shows the configuration in the 'Script tab.

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 125

8.7 Creating new rules with predefined assertions
Certain situations can lend themselves to using pre-built assertion rules to create new rules. These pre-
built rules are script-based and alleviate the need to hand-code Java. The following lists the available
pre-built assertion rules:

• [ON] Assertion true (Manual validation rule, Validation rule and Table set rule).

• [ON] Assertion false (Manual validation rule, Validation rule and Table set rule).

For example, to check if field (F) in a table (T) is empty, configure the following rule execution:

• Create a rule definition on (T) with the pre-built assertion rule '[ON] Assertion false (Manual
validation)'. This rule systematically returns a false value.

• Configure a 'Rule execution' with scripting code to check that (F) is empty.

During execution, when the condition of execution is validated (the table field is empty), the rule
executes and returns a value of 'False' which logs an error in the validation report. If the field is not
empty, then the rule is not executed and no error is logged.
You can extend this type of configuration using a script to implement any execution context.

Documentation > User Guide > Quick rules configuration

TIBCO EBX® Rules Portfolio Add-on Documentation 126

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 127

CHAPTER 9
Rules execution traceability

This chapter contains the following topics:

1. Traceability overview

2. Rules Portfolio - Logging

3. Root log transaction

4. Business rules logging

5. Permission rules logging

6. Archive

7. Localization of the archive files

8. Customization of the logging queue size

9. "Purge root log" service

10."Purge log" service

11."Query log" service

9.1 Traceability overview
'Rules Portfolio - Logging' allows you to keep track of executed rules. An automatic archiving process
records log files that can be loaded on demand.
To apply the archiving process based on the scheduler, the task '[built-in] Rules logging clean-up'
must be used.
Rules execution logging may be required in the case of a business audit, but it is also useful when
you need to debug executed rules.

Special Notation

The execution of the "Rules Portfolio - Logging" is done in asynchronous. A memory queue is used to detach the process
of writing into the logging tables. To configure the size of the memory queue, please refer to 'Customization of the logging
queue size'.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 128

9.2 Rules Portfolio - Logging
You can configure rules logging using the 'Logging level' group in the 'TIBCO EBX® Rules Portfolio
Add-on' data set, located under the Administration tab (see the 'Logging level' section).
Business rules logging is separated from permission rules logging which allows you to activate logging
differently based on a rule's nature.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 129

A second data set 'Rules Portfolio - Logging archive' allows you to collect and manage logging archive
files. This data set relies on the same data structure as 'Rules Portfolio - Logging'.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 130

9.3 Root log transaction
Every time a rule execution starts a "Root log transaction" record is created. Rule execution can begin
when initiated by a table trigger or 'on demand' by initiating the validation report, or the add-on's
'Execute rules' service.

Property Definition

UUID The UUID must be a unique identifier.

Repository identity Identifies the EBX® repository.

User ID Identifies the user who executed the rules.

Note: When rules are executed from the EBX® "Validation report", the user ID is
unknown.

Execution time Shows when the rule execution started.

Rule execution can be initiated by a table trigger or on demand by running the
validation report, or the add-on's 'Execute rules' service.

Date space Data space in which the rules have been executed.

Data set Data set in which the rules have been executed.

Rule publication Saves the information to identify which snapshot is the running rule environment at
execution time.

9.4 Business rules logging
This group of fields contains the properties to configure business rules logging.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 131

Business execution context
This table records the logging data for every business "rule execution".

Property Definition

Root log transaction A link to the related 'Root log transaction'.

Rules execution A link to the related rules execution.

Event A link to the related event in the rules portfolio.

Table A link to the table.

Record A link to the record.

Field A link to the field on which the rules have been executed.

Rule set A link to the rule set in the rules portfolio.

Context result If 'Accepted': the context has been validated and rules have been executed.

If 'Not accepted': the context has not been validated and rules have not been executed.

Rules execution result If 'Yes': all rules have been executed and there are no errors.

If 'No': errors have occurred during rule execution.

Rule result
This table records the logging data for every business rule that has been executed.

Property Definition

Business execution context A link to the related 'Business execution context'.

Rule A link to the rule.

Rule execution result The result of the rule execution:

If 'True': the rule has been executed without error.

If 'False': an error has occurred during rule execution.

Error message The error message that displays if the 'Rule execution result' is 'False'.

Error type A link to the error type.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 132

Simple expression execution
This table records the logging data for every 'simple expression' execution.

Property Definition

Business execution context A link to the related 'Business execution context'.

Simple expression A link to the simple expression.

Context result The simple expression's result:

If 'Accepted': the simple expression was accepted.

If 'Not accepted': the simple expression was not accepted.

Logical operator A link to a logical operator if the execution of many simple expressions is required to
compute the context.

9.5 Permission rules logging
This group of fields contains the properties to configure permission rules logging.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 133

Business execution context
This table records the logging data for every permission "rule execution".

Property Definition

Rule log transaction A link to the related 'Root log transaction'.

Rules execution A link to the related rules execution.

Service A link to the service on which the rules have been executed.

Table A link to the table on which the rules have been executed.

Field A link to the field on which the rules have been executed.

Record A link to the record on which the rules have been executed.

Rule set A link to the rule set in the rules portfolio.

Restriction mode The permission rules set restriction mode:

If 'Most restricted': the most restricted permissions are returned.

If 'Most unrestricted': the most unrestricted permissions are returned.

Context result If 'Accepted': the context has been validated and the rules were executed.

If 'No accepted': the context has not been validated and the rules have not executed.

Rules execution result The result of the permission rule execution.

For access permission:

• 'Hidden': the resource is not displayed.

• 'Read-only': the resource is displayed and can not be modified.

• 'Read-write': the resource is displayed and can be modified.

For action permission:

• 'Hidden': the action is not displayed.

• 'Forbidden': the action is displayed but can not be executed.

• 'Allowed': the action is displayed and can be executed.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 134

Rule result
This table records the logging data for every permission rule that is executed.

Property Definition

Business execution context Link to the related 'Business execution context'.

Rule Link to the rule.

Rule execution result The result of the permission rule:

For access permission:

• 'Hidden': the resource is not displayed.

• 'Read-only': the resource is displayed and can not be modified.

• 'Read-write': the resource is displayed and can be modified.

For action permission:

• 'Hidden': the action is not displayed.

• 'Forbidden': the action is displayed but can not be executed.

• 'Allowed': the action is displayed and can be executed.

Simple expression execution
This table records the logging data for every 'simple expression" execution.

Property Definition

Business execution context Link to the related 'Business execution context'.

Simple expression Link to the simple expression.

Context result Result of the simple expression:

If 'Accepted': the simple expression has been accepted.

If 'No accepted': the simple expression has not been accepted.

Logical operator Link to a logical operator if execution of many simple expressions is required to
compute the context.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 135

9.6 Archive
This table records the archive files that are created automatically.

Property Definition

Creation time Date time of the archive creation.

Archive path Path to the archive. The path is hidden by the button 'Import' to allow the import
operation directly.

9.7 Localization of the archive files
The archive files are stored on the web server (within Tomcat server: %CATALINA_TMPDIR%, in
the specified path for the add-on's : ebx-addon-rpfl\auto_archive\). For example: <temp_dir>\ebx-
addon-rpfl\auto_archive\logRule-archives-1394513868906.zip
The naming convention of the archive file is logRule-archives-<current time milies>

9.8 Customization of the logging queue size
The asynchronous mode used for recording rule execution is based on a memory queue. This queue
is issued by an asynchronous process to persist the data in the logging tables.
By default, the size of this queue is set to 100,000 records. Once the maximum size is reached, then
rules execution has to wait until new space is available in the queue.
You can change this value by configuring a parameter in the java environment variable (refer to the
appendix 'Environment configuration').

9.9 "Purge root log" service
The purge service is located on the 'Rule log transaction' table and allows you to delete all log data
related to a selected root log record.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 136

9.10 "Purge log" service
This service is available at data set level of the 'Rules Portfolio - Logging archive' data set. This
service allows you to delete all imported log data from archive files or imported log data from selected
archive files.

9.11 "Query log" service
This service can be run from the 'Rules Portfolio - Logging' and 'Rules Portfolio - Logging archive'
data sets. This service provides the ability to search log data based on given criteria.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 137

The image below shows the 'Query log' service configuration page. You can use multiple query options
such as data space, data set, table, execution time, type of rule log, etc. The 'Query log' service uses
this input a the log data search criteria.

Documentation > User Guide > Rules execution traceability

TIBCO EBX® Rules Portfolio Add-on Documentation 138

Documentation > User Guide > API for declaring rules

TIBCO EBX® Rules Portfolio Add-on Documentation 139

CHAPTER 10
API for declaring rules

A set of Java APIs allow you to add and manage rules from the add-on. See the Javadoc provided
with the add-on and the next appendixes of this user guide.

Documentation > User Guide > API for declaring rules

TIBCO EBX® Rules Portfolio Add-on Documentation 140

Documentation > User Guide > Migration

TIBCO EBX® Rules Portfolio Add-on Documentation 141

CHAPTER 11
Migration

Version 1.5.0
This version requires you to perform two steps to complete migration. In the first step, a migration
procedure automatically executes when registering the add-on. The second step, requires you to run
the 'Migration' service, located in the 'TIBCO EBX® Rules Portfolio Add-on' data set. Each time you
upgrade to new version, after starting the server, you must run that migration service manually to
ensure that all the rules that are defined by other modules are migrated. If you import an old archive

Documentation > User Guide > Migration

TIBCO EBX® Rules Portfolio Add-on Documentation 142

file (.ebx) into the 'TIBCO EBX® Rules Portfolio Add-on' data set, you must run the migration service
in order to execute the migration procedure.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 143

CHAPTER 12
Appendix

This chapter contains the following topics:

1. Business rule declaration

2. Permission rule declaration

3. Access permission on a data model

4. Classic access rule declaration

5. Business rule on a table

6. Dependency configuration

7. Hierarchy view related to D.E.C.

8. Service permission on a data model

9. Environment configuration

12.1 Business rule declaration
The declaration process is the same for the 'Rule' and the 'Rule context' that is used at the level of a
simple expression context.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 144

Step 1: Creation of the definition class.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 145

Step 2: Creation of the rule class that implements the execution part of the rule.

Step 3: Registration of the rule.

12.2 Permission rule declaration
Step 1: Creation of the definition class.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 146

• For access permission rule:

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 147

• For action permission rule:

Step 2: Creation of the rule class that implements the execution part of the rule.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 148

• For access permission rule:

• For action permission rule:

Step 3: Registration of the rule.

12.3 Access permission on a data model
The following steps describe how to control the access permission on a data model:

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 149

Step 1: Go to Modeling > Data models > Configuration > Component library and create new record:

Step 2: Paste the following class path to Configuration > Rule:
com.orchestranetworks.addon.rpfl.DefaultSchemaExtension

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 150

Step 3: Go to Configuration > Data model properties > Model properties > Special extensions and
select the new component created in step 2.

12.4 Classic access rule declaration
This section describes how to reuse your programmatic access rules.
Step 1: Separate all access rules from your schema extension. Note that your classic access rules have
to satisfy 2 conditions:

• Implement the interface AccessRule.

• Contain a no-argument constructor.

Step 2: If your data model is contained in a module, you only need to put your classic access rule
classes in that module. If your data model is not contained in any module, you have to export all
classic access rules to a .jar file (feel free to use any naming convention) and put in the folder '../_ebx-
eclipse/catalina.base/shared/lib' (that contains "ebx.jar" file). Without this step the add-on cannot load
your classic access rules.
Step 3: Restart the server.
Step 4: Configure your permission rules to use classic access rules. Please follow all steps below:

• Navigate to the 'Administration' tab → 'Business rules' → 'TIBCO EBX® Rules Portfolio Add-
on' → 'Permission rules' → 'Rule' table and 'Create a record' on the appropriate D.E.C. This table's

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 151

view defaults to 'Rules by D.E.C.' and allows you to easily select the D.E.C. to which you want
to add the rule.

• Enter the required information and click 'Save'. The 'Classic access rule' tab displays.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 152

• Set the 'Implementation type' property to 'Use Classic access rule'.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 153

• Click on the 'Classic access rule' tab and add the class path of your classic access rule to the
'Access rule' field.

• To create a rule execution, navigate to 'Permission rules execution' → 'Rule execution' and add a
record to the same D.E.C. used for the rule definition. A rule execution determines the status of
the associated rule (active or inactive) and a rule validity time period. In this case, the 'Rule' field
is set to the permission rule that links to your classic access rule.

12.5 Business rule on a table
The rules are launched by different methods depending on their type:

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 154

• "Automated rule" is called by triggers on a table.

• "Validation rule" is called by triggers on a table or a constraint on field.

• "Manual validation rule" is called by the validation service.

• "Table set rule" is called by the "Execution rules" service.

Step 1: Create a trigger that calls the class RuleController in order to run the "Automated rule"
and "Validation rule" (see more detail in the Java API documentation). Or you can use the class
com.orchestranetworks.addon.rpfl.DefaultTableTrigger which is provided by the add-on.

Step 2: Add this class to the new table in data model as shown in this example:

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 155

Step 3: Create a class that implements the interface ConstraintOnTable and
call the class RuleController in order to run the "Manual validation rule"(see
more detail in the Java API documentation). Or you can use the class
com.orchestranetworks.addon.rpfl.DefaultConstraintOnTable which is provided by the add-on.

Step 4: Add this class to new table as shown in the following example:

The "Execution rules" service is available on the table if at least one configuration for this table exists
in the "TIBCO EBX® Rules Portfolio Add-on" data set.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 156

12.6 Dependency configuration
The add-on allows you to set dependencies on a configured validation rule that applies to a field. This
section focuses on how you include these dependencies in a rule configuration. For more information
on dependencies, see the standard EBX® documentation.

Special Notation

Dependencies on computed values are not allowed. The add-on automatically sets constraints applied on elements defining
a value function to the 'Unknown dependencies' mode. Consequently, if a constraint attempts to specify an explicit
dependency, an error displays. To avoid this error, you must keep your D.E.C.'s current. If you want to change one field on
your data model to computed value or vice versa, you have to follow the steps below:

• Make change on your data model.

• Go to the 'D.E.C. (Data Element Concept)' table in the TIBCO EBX® Rules Portfolio Add-on administration area.

• Find the D.E.C. 'Field' that corresponds to the field changed on your data model.

• Update 'Computed value' field of the corresponding D.E.C.

• Come back to your data model and publish it.

To set a dependency:

• Create a validation rule that applies to a field (and executes by an 'On constraint' event). After
creating and saving the rule, the 'Dependency' tab displays. You can now configure a dependency
based on your needs.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 157

• Choose the dependency mode that best suits your requirements. Refer to the 'configuring a
business rule' section above for more information on each dependency mode.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 158

• As shown below, if you use either the 'Local dependency', or 'Unknown dependencies' modes,
configuration completes after you click 'Save'. However, if you select 'Explicit dependencies',
refer to the following steps to complete configuration.

• In 'Explicit dependencies' mode, you can declare one or more dependencies that suit your needs.
Based on the dependency you choose, fields display that allow you to indicate the node your

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 159

constraint depends on. The remainder of this section describes these options. To add multiple
dependencies, click the '+' icon and repeat the process.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 160

With the 'Dependency to insert and delete record' event, you only need to choose the correct table node.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 161

With the 'Dependency to insert and delete in other instance' and 'Dependency to insert and delete in
specific data space' events, you have to select-in order: Data space → Data set → Table.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 162

With the 'Dependency to insert delete and modify node' event, you have to select-in the following
order: Table → Field.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 163

With the 'Dependency to insert delete and modify in other instance' and 'Dependency to insert delete
and modify in specific data space' events, you have to select-in the following order: Data space →
Data set → Table → Field.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 164

With the 'Dependency to modify node' event, you have to choose one field node.

12.7 Hierarchy view related to D.E.C.
Beginning in release 1.5.0, the add-on provides hierarchy views that show D.E.C.s, rules and rule
execution using the following structure: Data model → Table → Field.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 165

'D.E.C. hierarchy' view
The 'D.E.C. hierarchy' view shows D.E.C.s based on the 'D.E.C. type' value. All D.E.C. types in this
view are graded into a hierarchy view.

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 166

'Rules by D.E.C. hierarchy' view

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 167

'Rules execution by D.E.C. hierarchy' view

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 168

Special notation

The 3 new hierarchy views 'D.E.C. hierarchy', 'Rule by D.E.C. hierarchy', and 'Rule execution by D.E.C. hierarchy'
display are not available on old publication of the add-on. Please read the 'Known limitation' section for more information.

12.8 Service permission on a data model
The add-on sets permission rules on services using an 'Action permission rule'. You can declare a
service on a data model and directly in the 'module.xml' file. You set service permissions based on
how the service is declared.

Declare a service on a data model
Attach the com.orchestranetworks.addon.rpfl.DefaultRulesSchemaServicePermission class to a
service definition on schema, this class specifies in which conditions the service may be executed.
This class must be declared within a service declaration in schema, at attribute class:

Declare a service on module.xml
Create a class that extends DefaultRulesServicePermission. Define the service name by implementing
the abstract method getServiceName()

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 169

Declare this class as service permission for the declared service in the module.xml.

12.9 Environment configuration
This section guides you about some settings of the environment configuration.

Setting logging queue size parameters
By default, the logging queue size is set to 100,000 records. Once the maximum size is reached, rule
execution has to wait until new queue space is available.
You can change the maximum queue size by configuring its parameter in the JAVA_OPTS java
environment variable. To set the logging queue size to '200000':
JAVA_OPTS="-Debx.properties=$EBX_HOME/ebx.properties -Debx.home=$EBX_HOME -
Xmx512m -Drpfl.logging.queuesize=200000"

Setting parallel rules execution parameters
The default number of threads used to run the 'Manual validation rules' in parallel mode is set to up
to '5'.
You can change this value by configuring a parameter in the java environment variable. For example,
to set the number of threads to up to '2', change the variable's parameter as shown below:
JAVA_OPTS="-Debx.properties=$EBX_HOME/ebx.properties -Debx.home=$EBX_HOME -
Xmx512m -Drpfl.max.threadpool=2"
Setting associated queue parameters:
By default, the associated queue is set to 10,000. It is possible to change this value by configuring a
parameter in the java environment variable. For example, to set size of this queue to '100000':
JAVA_OPTS="-Debx.properties=$EBX_HOME/ebx.properties -Debx.home=$EBX_HOME -
Xmx512m -Drpfl.threadpool.queuesize=100000"

Documentation > User Guide > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 170

TIBCO EBX® Rules Portfolio Add-on Documentation 171

Scripting
Language

Documentation > Scripting Language > JavaScript-based language

TIBCO EBX® Rules Portfolio Add-on Documentation 172

CHAPTER 13
JavaScript-based language

JavaScript is a lightweight, interpreted and object-oriented language. The Scripting Language is based
on JavaScript and has the same syntax and library. Additionally, you can use predefined objects
to perform basic EBX®-specific operations. For example, you can query data, create/update/delete
records and write to a log. The following image shows a sample.

This document focuses on the predefined objects provided by the Scripting Language. If you need
help with JavaScript you can easily find reference information on the World Wide Web that discusses
the syntax and other features.
You can use a script to directly return a result. The add-on uses this result as the rule result. For
example, the result could be true/false for a business rule, or a specific permission for a permission
rule.

For example, the result of the following script is 'false' if classes length >10, otherwise this returns
'true'.

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 173

CHAPTER 14
Predefined objects

This section describes the predefined objects used in the Scripting Language. The predefined objects
are highlighted in the editor as default JavaScript reserved words.
This chapter contains the following topics:

1. Accessing the current record's property values

2. Updating the current record

3. Deleting the current record

4. Querying data in the current table

5. Querying data in the current data set

6. Querying data from a data set in the current data space

7. Querying data from a specified data set and data space

8. Creating new records in the current table

9. Writing to the log file

10.Setting a validation message

11.Getting data set information

12.Getting node information

13.Getting session information

14.Predefined permission

14.1 Accessing the current record's property values
In order to access record data, use the 'record' object. The current record is converted to a script bean
object and assigned to the 'record' object. The conversion does as follows:

• A normal field is converted to a property having the same name of 'record'.

• A multiple value field is converted to an array then assigned to a property having the same name
of the 'record'.

• Groups convert to another script bean and are then assigned to a property having the same name
as the 'record'.

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 174

• For a foreign key field, the system looks for the reference record first. If the reference record
exists, it will be converted to another script bean before being assigned to the property of the
'record'.

For example, with the given structure of the 'Strategies' table, the script bean of one record on this
table is presented as follow:

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 175

The following example shows how to access different record properties in the 'Strategies' table.

The Scripting Language supports "navigation" through foreign keys. As shown in the following image,
the 'Strategies' table's script bean presents all foreign keys as objects instead of strings. These objects
contain all associated records and not just the associated records' primary keys.

The following example shows how to access 'article.libelleCourt' object's data.

In order to access to a record attribute whose name contains a dot such as 'loc.code' field in 'Article'
table, you must use the format record.["loc.code"]. The following example shows how to access
'loc.code' field's data.

Even though the foreign key is presented as an object, you only need to assign another associated
primary key value to change its association. So, when you 'get' the foreign key value the script returns
an object containing all of the associated records. When you 'set' the foreign key value, the parameter
is only the primary key of the associated record.

Special Notation

You cannot add a new value to a multi-valued foreign key field. You can only update or delete the old field value.

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 176

14.2 Updating the current record
The script bean is just a copy of the record. Modifications made in the script bean do not have any affect
on the corresponding record until you call the 'save()'method. However, this only works in certain
contexts. For example, only an 'Automated rule', or a 'Table set rule' can modify data. Additionally,
permissions may prevent a rule from executing. If you are using a different type rule, the 'save()'
method returns 'false' and no modifications are committed.
Additionally, you can disable triggers by calling the 'save(isActivated)' method with a 'true' or 'false'
parameter. These enable and disable the trigger, respectively. If you call this method without a
parameter, triggers default to enabled.

14.3 Deleting the current record
You can call the 'del()' method to delete a record. However, just as with the process of updating a
record, you can only modify data in certain contexts. You must have sufficient permission and the
rule type should be either an 'Automated rule' or a 'Table set rule'. If the correct conditions are not
met, the method returns 'false'.
The following example shows how to delete the current employee record:

The 'del()'method returns 'true' if it deletes corresponding record successfully, otherwise it returns
'false'.

14.4 Querying data in the current table
The Scripting Language uses the 'query' object to query data in the current table. It also supports the
'records(XPathPredicate)' function to get a list of records - which, are converted to object beans - in the
current table based on the specified predicate. To get all records in the current table, set the predicate
to 'null' (query.records(null)). If you want to set conditions replace 'null' with an XPath predicate. To
get the number of rules use JavaScript's 'length' property.

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 177

The following example checks the number of records in the current table. If the number of records is
smaller than 5, it returns 'true'. Otherwise, it returns 'false'.

14.5 Querying data in the current data set
When defining a rule that involves querying data in a different table from the same data set you most
likely "navigate" through the foreign keys. To accommodate this process, the Scripting Language
contains the 'getQuery(tablePath)' method.
The script in the following example states, "One article cannot be the substitute article for more than
10 articles."

The following bullet points breakdown the content of the above script:

• The 'pk' variable returns the current record's primary key.

• The 'articleQuery' variable uses the 'getQuerry()' method to query the 'Article' table. Notice that
input parameter uses the table's path.

• The 'articles' variable is a query object that queries the 'Article' table records and uses the
'records(XPathPredicate)' function to return all articles that use the current article as the substitute
article.

• The final statement counts the number of object beans contained by the 'articles' object. If the
number is larger than 10, the rule returns 'true', otherwise it returns 'false'.

14.6 Querying data from a data set in the current data
space

The 'query' object allows you to query data in a table from a specific data set in the current data
space. To accomplish this, the Scripting Language contains the 'getQuery(String datasetName, String
tablePath)' method. The query object returned from this method allows you to modify data on a given
data set in the current data space.

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 178

The following shows an example query:

The following bullet points breakdown the content of the above script:

• The 'otherDatasetQuery' variable uses the 'getQuerry(String datasetName, String tablePath)'
method to query the 'DataType' table from the 'Chart-API' data set in the current data space. Notice
that input parameter uses the data set's unique name and the table's full path.

• The 'dataType' variable is a query object that queries the 'DataType' table records and uses the
'records(XPathPredicate)' function to return all data types that have the 'DateTime' label.

• If the 'dataType' object is not null and contains one or more objects, the rule returns true.
Otherwise, the 'newRecord()' method creates the 'newDataType' variable. After setting the value
for each of the 'newDataType' variable's fields, the 'save()' method commits the new record to
the 'DataType' table.

14.7 Querying data from a specified data set and data
space

You can use the 'query' object to query data in a table from a specific data set and data space. To
support this functionality, the Scripting Language contains the 'getQuery(String homeKey, boolean
isBranch, String datasetName, String tablePath)' method. However, the query object returned by this
method does not allow you to modify data.
The following examples will help you to understand this feature more deeply:

The following bullet points breakdown the content of the above script:

• The 'otherDatasetQuery' variable uses the 'getQuerry(String homeKey, boolean isBranch, String
datasetName, String tablePath)' method to query the 'DataType' table from the 'Chart-API' data
set in the 'TestDataspace' data space. Notice that input parameter uses the data space's identifier,
the data set's unique name and the table's full path.

• The 'dataType' variable is a query object that queries the 'DataType' table records and uses the
'records(XPathPredicate)' function to return all data types that have the 'DateTime' label.

• If the 'dataType' object is not null and contains one or more objects, the rule returns true.
Otherwise, it returns false.

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 179

14.8 Creating new records in the current table
The 'newRecord()' method returns the object bean for a new record on the current table. You can then
assign values to each of the record's fields. As shown below, you must use the 'save()' method to
commit the new record to the current table.

14.9 Writing to the log file
As the complexity of your code increases, keeping track of each line becomes more and more
important. To assist you in this endeavor the Scripting Language provides the 'log' object to write
information to the log file.
The following example shows how to check the current record's name. If the name is not 'null',
this returns 'true'. However, anything that returns a value of 'false' gets added to the log file. Four
methods - 'error(message)', 'info(message)', 'debug(message)' and 'warn(message)' - write messages
to the 'ebx-addon-common.log' file with respective severity levels of 'ERROR', 'INFO', 'DEBUG' and
'WARNING'. You can find that log file in configured logs folder. See section 'Configuring the EBX®
logs' in EBX® document for more detail.

14.10 Setting a validation message
You can use the 'validation' object to change add-on error messages. This object contains one message
that corresponds to the respective severity level.

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 180

The following example shows how to check the current record's name. If this returns a value of 'false',
an error message displays. In this case, 'The name is null'.

The following image shows this error message. The 'validation' object supports other methods, see
the appendix for more information.

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 181

14.11 Getting data set information
You can retrieve information about the current data set using the 'dataset' object. This object
specifically applies to permission rules. The following table shows the relationship between the type
of information and its related method:

Dataset Information Script Method

Owner 'getOwner()'

Adaptation name 'getUniqueName()'

Module name 'getModuleName()'

Schema location 'getDataModel()'

The following example shows how to set permissions by checking the owner. If the owner is
'Beveryone' (B is a specific prefix), permission becomes read-only. Otherwise, it becomes read-write.

14.12 Getting node information
Like 'dataset', the 'node' object only applies to permission rules. This object retrieves information
about the current node and is very useful because nodes are frequently used when creating permission
rules. Information retrieved can be a path in the schema, category and data type using the 'getPath()',
'getCategory()', 'getDataType()' pre-defined methods. Other methods tied to the 'node' object check
whether the current node is a terminal node and whether history is disabled on the current node. These
are 'isTerminalValue()' and 'isHistoryDisabled()', respectively. See the appendix for more information.
Example 1: In this example, the permission rule returns the read-only or read-write access permission
depending on whether the current node is auto-incremented.

Example 2: In this example, a line of code is added to show the node's path in the schema to the log file.

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 182

The image below shows the result.

14.13 Getting session information
When you create a permission rule, a tool to retrieve current session information is extremely useful.
The Scripting Language provides the 'session' object. By using the supported methods, this object can
get the current user id, attribute values by name and check whether the current user is in a specific role.
For example, the following piece of scripting code expresses a permission rule. This permission rule
controls access permission based on the specific role of the current user. If the role is 'developer', the
access permission will be read-only. Otherwise, the access permission will be read-write.

14.14 Predefined permission
The add-on provides some predefined keywords that represent access and action permissions. These
keywords are used in the permission rule to return the permission as the result of the permission rules.
These keywords are listed in the following table:

Keyword Access permission Action permission

HIDDEN Represents the hidden permission Represents the hidden permission

READONLY Represents the read-only permission N/A

READWRITE Represents the read-write permission N/A

ENABLE N/A Represents the enable permission

DISABLE N/A Represents the disable permission

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 183

The following example shows how a permission rule sets read-only permission for the article record
if the internal code is > 1000:

Documentation > Scripting Language > Predefined objects

TIBCO EBX® Rules Portfolio Add-on Documentation 184

Documentation > Scripting Language > Using the script editor

TIBCO EBX® Rules Portfolio Add-on Documentation 185

CHAPTER 15
Using the script editor

This chapter contains the following topics:

1. Overview of the script editor

15.1 Overview of the script editor
To simplify script implementation, the script editor provides an array of useful features. The following
section describes how the editor:

• Checks and highlights the syntax.

• Allows you to search and replace.

• Provides code suggestions.

• Shows the data model's structure.

Checking and highlighting the syntax
When you write your code in the script editor, it displays in different colors based on the category of
terms. This feature improves readability and allows you to distinguish between different contexts.

If your code is syntactically incorrect, the script editor automatically raises alerts. In line three of the
example below a red 'X' indicates a problem. By hovering over the icon, a message alerts you to the

Documentation > Scripting Language > Using the script editor

TIBCO EBX® Rules Portfolio Add-on Documentation 186

missing element. The yellow caution icon indicates a warning that might not break your code, but
really is not a best practice either.

Search and replace.
This basic - yet important function - can greatly assist you in keeping long and complicated code under
control. The script editor supports both finding and replacing code.
You can use the 'Search' function by pressing the 'Ctrl + F' key combination. The search box contains
the following features:

• The up/down arrows highlight the next, or previous occurrence of the search term found.

• The 'All' option closes the search box and highlights every occurrence found with a flashing
cursor.

• The three icons in the lower right of the search box allow you to toggle between using: regular
expression search, case sensitive search and whole word search.

Documentation > Scripting Language > Using the script editor

TIBCO EBX® Rules Portfolio Add-on Documentation 187

Use the key combination of 'Ctrl+H', to display the 'Replace' feature. Enter your replacement text in the
box and click 'Replace' to update individual occurrences, or click 'All' to update all found occurrences.

Code auto-suggest
The script editor's auto-suggestion feature helps speed up the process of coding by reducing typos and
other common mistakes. A main function of this feature is that it provides suggestions about methods
associated to predefined objects.

'Data structure' panel
When using a script implementation, most tasks require you to frequently enter node paths. Correctly
remembering each path in the data model can be very difficult. And, if you type paths incorrectly, the
script will not work. To alleviate this burden, the script editor can display your data structure, allow
you to select a node, and insert its path.
To use the 'Data structure' panel:

Documentation > Scripting Language > Using the script editor

TIBCO EBX® Rules Portfolio Add-on Documentation 188

• While working in the 'Script' tab, click 'Data structure' to open the panel and display a structural
view of your current data model.

Documentation > Scripting Language > Using the script editor

TIBCO EBX® Rules Portfolio Add-on Documentation 189

• To add a node's path to the script, hover your mouse over the node you want to add and click
insert. As shown in the following image, the path inserts at your cursor's current position.

Note that the 'Data structure' panel only displays the model of the data set on which the rule executes.

Documentation > Scripting Language > Using the script editor

TIBCO EBX® Rules Portfolio Add-on Documentation 190

Documentation > Scripting Language > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 191

CHAPTER 16
Appendix

This chapter contains the following topics:

1. List of all predefined objects

Documentation > Scripting Language > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 192

16.1 List of all predefined objects

Object Method Description

An object bean representing the current record.

getPrimaryKey() Returns the record's formatted primary key.

save() This method commits any changes to the current record.
Keep in mind only an 'Automated rule' and a 'Table set
rule' can modify data. If you call this method with any
other type of rule, or have insufficient permissions, it
does nothing.

You can call this method using 'save()' and
'save(isTriggerActive)'. In the first example, the
parameter is not specified and triggers are enabled.
However, in the second example, the trigger depends
on the 'isTriggerActive' boolean value. Setting the input
value to 'true' activates the trigger. Otherwise, the trigger
is inactive.

record

del() This method deletes the current record. Keep in mind
only an 'Automated rule' and a 'Table set rule' can modify
data. If you call this method with any other type of rule,
or have insufficient permissions, it does nothing.

Queries the current table's data.

getQuery(String tablePath) Returns the query object for the specified table using
tablePath.

getQuery(String datasetName, String
tablePath)

Returns the query object for a table from a specific data
set in the current data space.

getQuery(String homeKey, boolean
isBranch, String datasetName, String
tablePath)

Returns the query object for a table from a specific
data set and data space (isBranch = true) or snapshot
(isBranch = false).

newRecord() Returns the object bean for the new record on the current
table.

query

records(xPathPredicate) Returns a list of object beans based on the specified
xPathPredicate.

Writes information to the log file.

error(message) Writes a message to the log file with the severity level of
ERROR.

log

info(message) Writes a message to the log file with the severity level of
INFO.

Documentation > Scripting Language > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 193

Object Method Description

debug(message) Writes a message to the log file with the severity level of
DEBUG.

warn(message) Writes a message to the log file with the severity level of
WARNING.

Sets the validation message.

error() Sets to error.

error(message) Sets to error with message.

info() Sets to info.

info(message) Sets to info with message.

warning() Sets to warning.

warning(message) Sets to warning with message.

setMessage(message) Sets the message.

getMessage() Returns the message.

hasInfo() Returns true if it has info.

hasError() Returns true if it has error.

validation

hasWarning() Returns true if it has warning.

Gets information about the current data set.

getDataModel() Returns the formatted schema location of the current data
set.

getModuleName() Returns the module name of the current data set.

getOwner() Returns the owner of the current data set.

dataset

getUniqueName() Returns the adaptation name of the current data set.

Gets information about the current node.

getPath() Returns the path in the schema of node.

node

getCategory() Returns the current node's category.

Documentation > Scripting Language > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 194

Object Method Description

getDataType() Returns the current node's data type.

isAssociationNode() Returns true if the current node is an association node.

isAutoIncrement() Returns true if the current node is an auto increment.

isComplex() Returns true if the current node is a complex node.

isHistoryDisabled() Returns true if history is disabled on this node.

isSelectNode() Returns true if the current node is a selection node.

isTableNode() Returns true if the current node is a table node.

isTableOccurrenceNode() Returns true if the current node is a table occurrence
node.

isTerminalValue() Returns true if the current node is a terminal node.

isTerminalValueComputed() Returns true if the current node is a terminal computed
node.

isTerminalValueDescendant() Returns true if the current node is a terminal descendant
node.

isValueFunction() Returns true if the current node is a value function node.

Gets information for the current session.

getUserID() Returns the current user id.

getAttribute(String name) Returns the attribute value by name.

isUserInRole(String roleName) Returns true if the current user is in the specified role.
The roleName must start with prefix 'R'

This method is deprecated. Use the
isUserInSpecificRole(String roleName) method instead.

isUserInSpecificRole(String roleName) Returns true if the current user is in the specified role.

isUserInAdminRole() Returns true if the current user is in the admin role.

session

isUserInReadOnlyRole() Returns true if the current user is in the read-only role.

HIDDEN Represents the hidden permission for both Access and
Action permission.

Documentation > Scripting Language > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 195

Object Method Description

READONLY Represents the read-only access permission.

READWRITE Represents the read-write access permission.

DISABLE Represents the disable action permission.

ENABLE Represents the enable action permission.

Documentation > Scripting Language > Appendix

TIBCO EBX® Rules Portfolio Add-on Documentation 196

TIBCO EBX® Rules Portfolio Add-on Documentation 197

Release Notes

Documentation > Release Notes > Version 1.7.9

TIBCO EBX® Rules Portfolio Add-on Documentation 198

CHAPTER 17
Version 1.7.9

Released: October 2022
This chapter contains the following topics:

1. New features

2. Changes in Functionality

3. Changes to third-party libraries

4. Closed issues

5. Known issues

17.1 New features
This release contains no new features.

17.2 Changes in Functionality
This release contains no functionality changes.

17.3 Changes to third-party libraries
This release contains no changes to third-party libraries.

17.4 Closed issues
[RPFL-598] A vulnerability needs to be fixed.

17.5 Known issues
This release contains the following known issues:

• Schema compilation does not support all rule types. If you want to use
action permission rules to set service permissions, you have to add the
'com.orchestranetworks.addon.rpfl.DefaultRulesSchemaServicePermission' class to those
services manually.

Documentation > Release Notes > Version 1.7.9

TIBCO EBX® Rules Portfolio Add-on Documentation 199

• You must keep your D.E.C.'s current. This is especially true if you add or remove the mandatory
attribute, the computed value attribute or maximum number of values attribute from a data model
field.

• Default classes are those available to be added automatically-including the default schema
extension. However, one data model can only have one schema extension. So, if you have your
own schema extension in the data model, you have to remove it from the data model before adding
a default class. To reuse your programmatic access rules, invoke them in the add-on using the
method described in the appendix.

• From version 1.5.0, the add-on provides the following views: 'D.E.C. hierarchy' on D.E.C. table,
'Rule by D.E.C. hierarchy' on Rule table, and 'Rule execution by D.E.C. hierarchy' on the Rule
execution table. However, on the old snapshot of the add-on, new views do not display any data.
In this case, you have to use the default view or the old view.

This release contains the following known issues related to the scripting language:

• The script does not support to 'query' data by the association node.

• The script does not support to modify data on other data spaces. You can modify data on the
current data space only.

• The wizard panel only shows the model of the data set that the rule will execute.

Documentation > Release Notes > Version 1.7.9

TIBCO EBX® Rules Portfolio Add-on Documentation 200

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 201

CHAPTER 18
All release notes

This chapter contains the following topics:

1. Version 1.7.9

2. Version 1.7.8

3. Version 1.7.7

4. Version 1.7.6

5. Version 1.7.5

6. Release Note 1.7.4

7. Release Note 1.7.3

8. Release Note 1.7.2

9. Release Note 1.7.1

10.Release Note 1.7.0

11.Release Note 1.6.1

12.Release Note 1.6.0

13.Release Note 1.5.1

14.Release Note 1.5.0

15.Release Note 1.4.1

16.Release Note 1.4.0

17.Release Note 1.3.5

18.Release Note 1.3.4

19.Release Note 1.3.3

20.Release Note 1.3.2

21.Release Note 1.3.1

22.Release Note 1.3.0

23.Release Note 1.2.0

24.Release Note 1.1.1

25.Release Note 1.1.0

26.Release Note 1.0.0

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 202

18.1 Version 1.7.9
Released: October 2022

New features
This release contains no new features.

Changes in Functionality
This release contains no functionality changes.

Changes to third-party libraries
This release contains no changes to third-party libraries.

Closed issues
[RPFL-598] A vulnerability needs to be fixed.

Known issues
This release contains the following known issues:

• Schema compilation does not support all rule types. If you want to use
action permission rules to set service permissions, you have to add the
'com.orchestranetworks.addon.rpfl.DefaultRulesSchemaServicePermission' class to those
services manually.

• You must keep your D.E.C.'s current. This is especially true if you add or remove the mandatory
attribute, the computed value attribute or maximum number of values attribute from a data model
field.

• Default classes are those available to be added automatically-including the default schema
extension. However, one data model can only have one schema extension. So, if you have your
own schema extension in the data model, you have to remove it from the data model before adding
a default class. To reuse your programmatic access rules, invoke them in the add-on using the
method described in the appendix.

• From version 1.5.0, the add-on provides the following views: 'D.E.C. hierarchy' on D.E.C. table,
'Rule by D.E.C. hierarchy' on Rule table, and 'Rule execution by D.E.C. hierarchy' on the Rule
execution table. However, on the old snapshot of the add-on, new views do not display any data.
In this case, you have to use the default view or the old view.

This release contains the following known issues related to the scripting language:

• The script does not support to 'query' data by the association node.

• The script does not support to modify data on other data spaces. You can modify data on the
current data space only.

• The wizard panel only shows the model of the data set that the rule will execute.

18.2 Version 1.7.8
Released: August 2022

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 203

New features
This release contains no new features.

Changes in Functionality
This release contains no functionality changes.

Changes to third-party libraries
The jQuery UI library was updated to version 1.13.2.

Closed issues
This release contains no closed issues.

Known issues
This release contains the following known issues:

• Schema compilation does not support all rule types. If you want to use
action permission rules to set service permissions, you have to add the
'com.orchestranetworks.addon.rpfl.DefaultRulesSchemaServicePermission' class to those
services manually.

• You must keep your D.E.C.'s current. This is especially true if you add or remove the mandatory
attribute, the computed value attribute or maximum number of values attribute from a data model
field.

• Default classes are those available to be added automatically-including the default schema
extension. However, one data model can only have one schema extension. So, if you have your
own schema extension in the data model, you have to remove it from the data model before adding
a default class. To reuse your programmatic access rules, invoke them in the add-on using the
method described in the appendix.

• From version 1.5.0, the add-on provides the following views: 'D.E.C. hierarchy' on D.E.C. table,
'Rule by D.E.C. hierarchy' on Rule table, and 'Rule execution by D.E.C. hierarchy' on the Rule
execution table. However, on the old snapshot of the add-on, new views do not display any data.
In this case, you have to use the default view or the old view.

This release contains the following known issues related to the scripting language:

• The script does not support to 'query' data by the association node.

• The script does not support to modify data on other data spaces. You can modify data on the
current data space only.

• The wizard panel only shows the model of the data set that the rule will execute.

18.3 Version 1.7.7
Released: March 2022

New features
This release contains no new features.

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 204

Changes in Functionality
This release contains no functionality changes.

Changes to third-party libraries
This release contains the following changes to third-party libraries:

• The jQuery library was updated to version 3.6.0.

• The jQuery UI library was updated to version 1.13.1.

Closed issues
This release contains no closed issues.

Known issues
This release contains the following known issues:

• Schema compilation does not support all rule types. If you want to use
action permission rules to set service permissions, you have to add the
'com.orchestranetworks.addon.rpfl.DefaultRulesSchemaServicePermission' class to those
services manually.

• You must keep your D.E.C.'s current. This is especially true if you add or remove the mandatory
attribute, the computed value attribute or maximum number of values attribute from a data model
field.

• Default classes are those available to be added automatically-including the default schema
extension. However, one data model can only have one schema extension. So, if you have your
own schema extension in the data model, you have to remove it from the data model before adding
a default class. To reuse your programmatic access rules, invoke them in the add-on using the
method described in the appendix.

• From version 1.5.0, the add-on provides the following views: 'D.E.C. hierarchy' on D.E.C. table,
'Rule by D.E.C. hierarchy' on Rule table, and 'Rule execution by D.E.C. hierarchy' on the Rule
execution table. However, on the old snapshot of the add-on, new views do not display any data.
In this case, you have to use the default view or the old view.

This release contains the following known issues related to the scripting language:

• The script does not support to 'query' data by the association node.

• The script does not support to modify data on other data spaces. You can modify data on the
current data space only.

• The wizard panel only shows the model of the data set that the rule will execute.

18.4 Version 1.7.6
Released: December 2021

New features
This release contains no new features.

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 205

Changes in Functionality
This release contains no functionality changes.

Changes to third-party libraries
The jQuery library was updated to version 1.13.0.

Closed issues
This release contains no closed issues.

Known issues
This release contains the following known issues:

• Schema compilation does not support all rule types. If you want to use
action permission rules to set service permissions, you have to add the
'com.orchestranetworks.addon.rpfl.DefaultRulesSchemaServicePermission' class to those
services manually.

• You must keep your D.E.C.'s current. This is especially true if you add or remove the mandatory
attribute, the computed value attribute or maximum number of values attribute from a data model
field.

• Default classes are those available to be added automatically-including the default schema
extension. However, one data model can only have one schema extension. So, if you have your
own schema extension in the data model, you have to remove it from the data model before adding
a default class. To reuse your programmatic access rules, invoke them in the add-on using the
method described in the appendix.

• From version 1.5.0, the add-on provides the following views: 'D.E.C. hierarchy' on D.E.C. table,
'Rule by D.E.C. hierarchy' on Rule table, and 'Rule execution by D.E.C. hierarchy' on the Rule
execution table. However, on the old snapshot of the add-on, new views do not display any data.
In this case, you have to use the default view or the old view.

This release contains the following known issues related to the scripting language:

• The script does not support to 'query' data by the association node.

• The script does not support to modify data on other data spaces. You can modify data on the
current data space only.

• The wizard panel only shows the model of the data set that the rule will execute.

18.5 Version 1.7.5
Released: January 2021

Product updates
The add-on no longer supports the Document Type Definition declaration in XML files. If this causes
an exception, the add-on will inform you that this declaration is not allowed.

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 206

18.6 Release Note 1.7.4
Release Date: September 18, 2020

Product update
• The add-on has been updated to support the OpenJDK8 and OpenJDK11 libraries.

• Libraries were updated to fix some potential issues.

18.7 Release Note 1.7.3
Release Date: June 23, 2020

Product update
The jQuery library has been updated to version 3.4.0.

Bug fixes
[RPFL-563] An add-on description in French is not translated.

18.8 Release Note 1.7.2
Release Date: June 20, 2019

Featured update
The add-on has been updated to ensure compatibility with the TIBCO EBX® 5.9.4 release.

18.9 Release Note 1.7.1
Release Date: February 15, 2019

Bug fixes
[RPFL-550] D.E.C. does not show all tables and fields in the hierarchy view.

18.10 Release Note 1.7.0
Release Date: October 26, 2018

Featured updates
The EBX® Rules Portfolio Add-on has undergone significant updates to ensure compatibility with
the EBX® 5.9.0 GA release.

18.11 Release Note 1.6.1
Release Date: May 19, 2017

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 207

New features
• [26010] A new button is available on the 'Java Implementation' tab to clear your selection when

configuring the 'Property data' type as Boolean.

Bug fixes
• [26011] An exception occurs when deploying on an application server that strictly validates

web.xml.

18.12 Release Note 1.6.0
Release Date: May 9, 2017

New features
• [08337] It is now possible to search for a specific rule implementation when creating new rules.

• [10356] A new UI is available to select which rules execute after launching the 'Execute rules'
service.

• [20490] The 'Publish rules portfolio' service now can be used to override an old publication.

• [19505] [Documentation] The user guide for scripting language needs to be updated.

• [15487] A wizard has been added to facilitate business rule configuration.

API
• BusinessRuleDefinition's API Javadoc has been updated to clearer information.

• It is now possible to get the label of hook in the Hook's API.

18.13 Release Note 1.5.1
Release Date: January 23, 2017

New features
• [23916] The 'Business/Permission rules logging' group has been changed to record in the Logging

Level table.

Optimization
• Permission and validation rules have been optimized so that the overload against a pure Java

EBX® API implementation is insignificant when implementing a Java based rule.

Bug fixes
• [23454] There are always error messages in the log file when starting EBX® Rules Portfolio

Add-on in an empty repository.

• [23788] Portfolio - import XML error.

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 208

18.14 Release Note 1.5.0
Release Date: October 12, 2016

New features
• D.E.C. creation is based on the data model instead of data space and data set.

• The Java implementation post-fix is changed to (A), (V), (M), and (T).

UI improvement
• In the EBX® Rules Portfolio Add-on UI, services have been improved and are more user-friendly.

• The D.E.C. records will now display using the correct structure based on their types and
relationships in the data model.

• On the rule execution table, only the 'Rules' field is displayed instead of the two fields 'Rule' and
'Rules set'. An option is available that allows you to select one or the other.

Service
• You can now apply the existing rule publication to other data spaces instead of creating a new

publication with the same content.

API
• The API's Javadoc has been updated to provide more in-depth information.

Bug fixes
• [21555] Unexpected exception occurs when importing an XML file.

• [21707] User should not be allowed to delete the predefined configuration provided by the add-on.

18.15 Release Note 1.4.1
Release Date: May 19, 2016

New features

Script editor
• With the new wizard displaying on the right of script editor, you can easily insert a record object

property or table path to the script. This wizard will display the full structure of the data model
on which the script will be executed.

• Now all predefined objects and their published methods are available in the script editor's
contextual help.

Script engine
• New methods in the 'session' object check whether the user is in administrator or read-only role.

• New methods in the 'query' object allow users to query data from another data set, or data space.

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 209

18.16 Release Note 1.4.0
Release Date: April 13, 2016
This version is only compatible with EBX® 5.7.0 fix C or higher.

New features

Automatically add EBX® Rules Portfolio Add-on classes to data models
• Previously, to enable the EBX® Rules Portfolio Add-on, you had to manually add default classes

to your data model. Now, schema compilation automatically adds any required classes.

Dependency
• Dependencies limit validation execution to the specific events of interest, such as on node creation

and deletion. It is now possible to set a dependency on a validation rule applied to a field using
the 'Dependencies' tab in the UI. Previously, this functionality was only available via an API in
the context of a constraint and its containing data model.

Ability to execute classic access rules
• It is possible to migrate your old data and improve backward compatibility using classic access

rules.

18.17 Release Note 1.3.5
Release Date: December 11, 2015

Bug fixes
• [18519] Ajax validation using a scripting rule does not take into account a record's updated value.

18.18 Release Note 1.3.4
Release Date: December 2, 2015

Bug fixes
• [18471] A value of 0 is reported as invalid input for the 'Value' field, which is located in the 'Java

implementation' tab's 'Property data' group.

18.19 Release Note 1.3.3
Release Date: November 19, 2015

Bug fixes
• [18129] An exception occurs when executing a scripting rule on a field.

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 210

18.20 Release Note 1.3.2
Release Date: November 3, 2015

Optimization
• Script execution has been optimized.

18.21 Release Note 1.3.1
Release Date: October 9, 2015

Bug fixes
• [17710] An exception occurs when executing a scripting rule on a field.

18.22 Release Note 1.3.0
Release Date: September 16, 2015

New features

Scripting language
• Scripting language is a newly available and significant feature that allows you to define a rule by

writing a script in scripting language. See the Scripting Language for more information.

• You can now define conditions for rule execution by using a script or Java implementation instead
of using 'Context' and 'Simple expression'.

Rule publication
• Rules now execute on publications of rule configurations and no longer execute via the EBX®

Rules Portfolio Add-on configuration. A new data set, 'TIBCO EBX™ Rules Portfolio Add-on -
Production', contains the 'Rule publication' and 'Rule repository' tables. Respectively, these tables
store:

• Published snapshot information.

• Mappings between data spaces and rule publication.

New services
• A new 'Publish rule portfolio' service is available on the 'TIBCO EBX™ Rules Portfolio Add-

on' data set. This service creates the publication of rule configuration and saves all information in
the 'Rule publication' and 'Rule repository' tables, which are located in the 'TIBCO EBX™ Rules
Portfolio Add-on - Production' data set.

• New services are added into 'Context', 'Simple expression', 'Rule publication' and 'Rule repository'
tables which allow users to delete records from these tables.

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 211

18.23 Release Note 1.2.0
Release Date: January 26, 2015

New features
• You can now execute a 'Validation rule' using a constraint set on a field.

• The logging data set is now divided into two data sets in relational mode: 'Rules Portfolio -
Logging' and 'Rules Portfolio - Logging archive'. Logging configuration has been moved to the
'Logging level' group in the 'TIBCO EBX™ Rules Portfolio Add-on' data set.

• A new EBX® task can execute the archive log procedure using the EBX® scheduler.

• A new "Purge log" service is available on the "Rules Portfolio - Logging archive" data set. This
service deletes the log data from imported archives.

• A new "Query log" service searches log data using criteria, such as, User ID, data space, data
set, table, execution time, etc.

API
• New classes DefaultConstraint and DefaultConstraintOnNull execute validation rules via

constraints.

18.24 Release Note 1.1.1
Release Date: June 10, 2014

Parallel rule execution
• In order to improve the rule execution response time, 'Manual validation rules' now execute in

a multi-threaded environment.

Rules configuration
• The rules execution context is extended with a 'User-Profile' property that activates or deactivates

a rule depending on the user/profile combination.

Predefined rules
• The following pre-built rule properties are now configurable:

• 'Is active'

• 'Data set execution'

• 'User profile'

18.25 Release Note 1.1.0
Release Date: April 14, 2014

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 212

New features
The EBX® Rules Portfolio Add-on is extended with a new traceability function to track rules
execution. An automatic archiving process is applied to keep log over time. A purge service is used
to clean up the logs on demand.

18.26 Release Note 1.0.0
Release Date: January 24, 2014

New features
The EBX® Rules Portfolio Add-on manages two categories of rules:

• The 'Business rules' for the data validation that are executed from triggers or through the EBX®
data validation service. They are classified into four types as follows:

• 'Automated rule' can modify the user data. It is executed through triggers on tables and raises
an error in case of failure.

• 'Validation rule' cannot modify the user data. It is executed through triggers on tables and
raises an error in case of failure.

• 'Manual rule' cannot modify the user data. It is executed by a user through the EBX®
validation service, and raises either an error or a warning.

• 'Table set rule' can modify the user data. It is executed by a user through the 'Execute rules'
service.

• The 'Permission rules' for the rights management that is implemented in compliance with the
EBX® permission scheme applied to data and services. They are classified into two types as
follows:

• 'Access permission rule' defines permission for data set, table, field or record.

• 'Action permission rule' defines permission for service.

Every rule is configured through a set of metadata such as:

• 'Property data': Parameters that can be modified at the level of the configuration, and used as input
data for the execution of the rule. These properties are defined through the Java Interface that
allows to publish a rule into the EBX® Rules Portfolio Add-on.

• 'Is active': a rule can be active or inactive (the rule is deactivated). It is not possible to execute the
rule even if the other conditions of the execution are valid.

• 'Validity date': date from which the “Rule execution” can be executed.

• 'Expiry date': date from which the “Rule execution” is impossible to execute even though it is
configured to be active.

• 'Data set execution(s)': one or more data sets can be selected as a context of execution. This means
that the rule execution happens only if the execution is requested in the defined data sets. It is
possible to use the special tokens '[All data spaces]' and '[All data sets]'.

• 'Simple expression': used to define the conditions under which the rules can be executed.

A set of predefined business rules are available to get 'True' or 'False' results directly. By combining
these assertion rules with the 'Simple expression' configurations, it becomes possible to create new
assertion rules based on any field of a table:

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 213

• [ON] Assertion true (Manual validation)

• [ON] Assertion true (Validation)

• [ON] Assertion true (Table set)

• [ON] Assertion false (Manual validation)

• [ON] Assertion false (Validation)

• [ON] Assertion false (Table set)

A set of predefined permission rules are available:

• [ON] Hidden service

• [ON] Disable service

• [ON] Enable service

• [ON] Hidden the data set

• [ON] Permission read-only for the data set

• [ON] Permission read-write for the data set

• [ON] Hidden table

• [ON] Permission read-only for the table

• [ON] Permission read-write for the table

• [ON] Hidden field

• [ON] Permission read-only for the field

• [ON] Permission read-write for the field

• [ON] Hidden record

• [ON] Permission read-only for the record

• [ON] Permission read-write for the record

API
• Java API for declaring rules into the EBX® Rules Portfolio Add-on.

Documentation > Release Notes > All release notes

TIBCO EBX® Rules Portfolio Add-on Documentation 214

	Table of contents
	User Guide
	1. Overview
	2. Categories and types of rules
	3. Key concepts
	4. Data model configuration
	5. Rules configuration
	6. TIBCO EBX® Rules Portfolio Add-on - Production
	7. Use case
	8. Quick rules configuration
	9. Rules execution traceability
	10. API for declaring rules
	11. Migration
	12. Appendix

	Scripting Language
	13. JavaScript-based language
	14. Predefined objects
	15. Using the script editor
	16. Appendix

	Release Notes
	17. Version 1.7.9
	18. All release notes

