
TIBCO EBX®
Product Documentation
Version 5.9.20
August 2022

Important Information
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR
IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE
AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE.
USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE
HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE
SAME.
ANY SOFTWARE ITEM IDENTIFIED AS THIRD PARTY LIBRARY IS AVAILABLE UNDER
SEPARATE SOFTWARE LICENSE TERMS AND IS NOT PART OF A TIBCO PRODUCT. AS SUCH,
THESE SOFTWARE ITEMS ARE NOT COVERED BY THE TERMS OF YOUR AGREEMENT WITH
TIBCO, INCLUDING ANY TERMS CONCERNING SUPPORT, MAINTENANCE, WARRANTIES, AND
INDEMNITIES. DOWNLOAD AND USE OF THESE ITEMS IS SOLELY AT YOUR OWN DISCRETION
AND SUBJECT TO THE LICENSE TERMS APPLICABLE TO THEM. BY PROCEEDING TO
DOWNLOAD, INSTALL OR USE ANY OF THESE ITEMS, YOU ACKNOWLEDGE THE FOREGOING
DISTINCTIONS BETWEEN THESE ITEMS AND TIBCO PRODUCTS.
This document is subject to U.S. and international copyright laws and treaties. No part of this document may
be reproduced in any form without the written authorization of TIBCO Software Inc.
TIBCO and TIBCO EBX are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
This software may be available on multiple operating systems. However, not all operating system platforms
for a specific software version are released at the same time. Please see the readme.txt file for the availability
of this software version on a specific operating system platform.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY
OR INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.
Copyright 2006-2022. TIBCO Software Inc. All rights reserved.

TIBCO EBX® Product Documentation 5.9.20 5

Table of contents
User Guide

Introduction
1. How TIBCO EBX works...13
2. Using the user interface... 17
3. Glossary..23

Data models
4. Introduction to data models... 34

Implementing data models
5. Creating a data model...39
6. Configuring the data model.. 41
7. Implementing the data model structure.. 47
8. Properties of data model elements... 53
9. Data validation controls on elements... 67
10. Toolbars... 75
11. Working with an existing data model...83

Publishing and versioning data models
12. Publishing a data model... 85
13. Versioning an embedded data model..87

Dataspaces
14. Introduction to dataspaces..90
15. Creating a dataspace.. 93
16. Working with existing dataspaces..95
17. Snapshots..103

Datasets
18. Introduction to datasets..108
19. Creating a dataset...111
20. Viewing table data... 113
21. Editing data.. 121
22. Working with existing datasets.. 123
23. Dataset inheritance... 127

Workflow models
24. Introduction to workflow models.. 132
25. Creating and implementing a workflow model... 137
26. Configuring the workflow model.. 149
27. Publishing workflow models... 157

Data workflows
28. Introduction to data workflows..160
29. Using the Data Workflows area user interface..161
30. Work items... 167

TIBCO EBX® Product Documentation 5.9.20 6

Managing data workflows
31. Launching and monitoring data workflows..173
32. Administration of data workflows..175

Data services
33. Introduction to data services..180
34. Generating data service WSDLs..183

TIBCO EBX® Product Documentation 5.9.20 7

Reference Manual
Integration

35. Overview of integration and extension..189
36. Using TIBCO EBX as a Web Component.. 193
37. Built-in user services... 201

File import and export services
38. XML import and export... 215
39. CSV import and export...221

40. Supported XPath syntax...227

Localization
41. Labeling and localization...236
42. Extending TIBCO EBX internationalization... 239

Persistence
43. Overview of persistence...242
44. Relational mode... 245
45. History.. 251
46. Replication..259
47. Data model evolutions... 265

Other
48. Inheritance and value resolution..270
49. Permissions...275
50. Criteria editor... 293
51. Performance guidelines.. 295

TIBCO EBX® Product Documentation 5.9.20 8

Administration Guide
52. Administration overview...306

Installation & configuration
53. Supported environments...310
54. Java EE deployment...317

Installation notes
55. Installation note for JBoss EAP 7.1.x.. 327
56. Installation note for Tomcat 8.x... 331
57. Installation note for WebSphere AS 9..335
58. Installation note for WebLogic 12c R2.. 341

59. TIBCO EBX main configuration file.. 345
60. Initialization and first-launch assistant.. 367
61. Deploying and registering TIBCO EBX add-ons..369

Technical administration
62. Repository administration.. 372
63. UI administration... 383
64. Users and roles directory... 399
65. Data model administration...403
66. Database mapping administration..405
67. Workflow management.. 409
68. Task scheduler..413
69. Audit trail... 419
70. Other... 421

Distributed Data Delivery (D3)
71. Introduction to D3..424
72. D3 broadcasts and delivery dataspaces... 429
73. D3 JMS Configuration...433
74. D3 administration...441

TIBCO EBX® Product Documentation 5.9.20 9

Security Guide
75. Security Best Practices..452

TIBCO EBX® Product Documentation 5.9.20 10

Developer Guide
Introduction

76. Packaging TIBCO EBX modules.. 459
77. Mapping to Java...465
78. Tools for Java developers.. 471
79. Terminology changes... 473

Data model
80. Introduction.. 476
81. Data types...479
82. Tables and relationships...493
83. Constraints, triggers and functions.. 513
84. Labels and messages..531
85. Additional properties..537
86. Data services.. 545
87. Toolbars.. 547

88. Workflow model..549

User interface
89. Interface customization.. 560

User services
90. Overview... 563
91. Quick start...567
92. Implementing a user service...571
93. Declaring a user service... 585

94. Development recommendations... 591

SOAP data services
95. Introduction.. 596
96. WSDL generation...607
97. SOAP operations..615

REST data services
98. Introduction.. 650
99. Built-in RESTful services.. 657
100. JSON format...693

101. REST Toolkit...719

TIBCO EBX® Product Documentation 5.9.20 11

User Guide

Documentation > User Guide

TIBCO EBX® Product Documentation 5.9.20 12

Introduction

Documentation > User Guide > Introduction > How TIBCO EBX works

TIBCO EBX® Product Documentation 5.9.20 13

CHAPTER 1
How TIBCO EBX works

This chapter contains the following topics:

1. Product overview

2. EBX architecture

1.1 Product overview
Master Data Management (MDM) is a way to model, manage and ultimately govern shared data.
When data needs to be shared by various IT systems, as well as different business teams, having a
single governed version of master data is crucial.
With EBX, business and IT users can collaborate on a single, unified solution in order to design data
models and manage master data content.
EBX is an MDM software that allows modeling any type of master data and implementing
governance using the rich features included, such as collaborative workflows, data authoring,
hierarchy management, version control, and role-based security.
An MDM project using EBX starts with the creation of a data model. This is where tables, fields, links
and business rules related to the master data are defined. Examples of modeled data include product
catalogs, financial hierarchies, lists of suppliers or simple reference tables.
The data model can then be published to make it available to datasets, which store the actual master
data based on the structure defined in the data model. Datasets are organized and contained within
dataspaces, containers that isolate updates from one another. Dataspaces allow working on parallel
versions of data without the modifications impacting other versions.
Workflows are an invaluable feature for performing controlled change management or data approval.
They provide the ability to model a step-by-step process involving multiple users, both human and
automated.
Workflow models detail the tasks to be performed, as well as the parties associated with the tasks. Once
a workflow model is published, it can be executed as data workflows. Data workflows can notify users
of relevant events and outstanding work in a collaborative context.

Documentation > User Guide > Introduction > How TIBCO EBX works

TIBCO EBX® Product Documentation 5.9.20 14

Data services help integrate EBX with third-party systems (middleware), by allowing external systems
to access data in the repository, or to manage dataspaces and workflows through web services.

See also

Data modeling [p 24]

Datasets [p 26]

Dataspaces [p 28]

Workflow modeling [p 29]

Data workflows [p 30]

Data services [p 31]

Documentation > User Guide > Introduction > How TIBCO EBX works

TIBCO EBX® Product Documentation 5.9.20 15

1.2 EBX architecture
The following diagram illustrates the EBX architecture.

Documentation > User Guide > Introduction > How TIBCO EBX works

TIBCO EBX® Product Documentation 5.9.20 16

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 5.9.20 17

CHAPTER 2
Using the user interface

This chapter contains the following topics:

1. Overview

2. Advanced perspective

3. Perspectives

4. User pane

5. User interface features

6. Where to find EBX help

2.1 Overview
The general layout of TIBCO EBX workspaces is entirely customizable by a perspective administrator.
If several customized perspectives have been created, the tiles icon 'Select perspective' allows the user
to switch between available perspectives.
The advanced perspective is accessible by default.

See alsoUI administration [p 383]

2.2 Advanced perspective
By default, the EBX advanced perspective is available to all users, but its access can be restricted
to selected profiles. The view is separated into several general areas, referred to as the following in
the documentation:

Note

The advanced perspective is still accessible to users through explicit selection (for
example through a Web component). Unlike other perspectives, it can only be "hidden"
in the user interface so that users cannot apply it themselves.

• Header: Displays the avatar of the user currently logged in and the perspective selector. Clicking
on the user's avatar gives access to the user pane.

• Menu bar: The functional categories accessible to the current user.

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 5.9.20 18

• Navigation pane: Displays context-dependent navigation options. For example: selecting a table
in a dataset, or a work item in a workflow.

• Workspace: Main context-dependent work area of the interface. For example, the table selected
in the navigation pane is displayed in the workspace, or the current work item is executed in the
workspace.

The following functional areas are displayed according to the permissions of the current user: Data,
Dataspaces, Modeling, Data Workflow, Data Services, and Administration.

2.3 Perspectives
The EBX perspectives are highly configurable views with a target audience. Perspectives offer a
simplified user interface to business users and can be assigned to one or more profiles. This view is
split into several general areas, referred to as the following in the documentation:

• Header: Displays the avatar of the user currently logged in and the perspective selector (when
more than one perspective is available). Clicking on the user's avatar gives access to the user pane.

• Navigation pane: Displays the hierarchical menu as configured by the perspective administrator.
It can be expanded or collapsed to access relevant entities and services related to the user's activity.

• Workspace: Main context-dependent work area of the interface.

Perspectives are configured by authorized users. For more information on how to configure a
perspective, see perspective administration [p 384].

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 5.9.20 19

Example of a hierarchical menu:

Favorite perspectives
When more than one perspective is available to a user, it is possible to define one as their favorite
perspective so that, when logging in, this perspective will be applied by default. To do so, an icon is
available in the perspective selector next to each perspective:

• A full star indicates the favorite perspective. A click on it will remove the favorite perspective.

• An empty star indicates that the associated perspective is not the favorite one. A click on it will
set this perspective as the favorite one.

See alsoRecommended perspectives [p 395]

2.4 User pane
General EBX features are grouped in the user pane. It can be accessed by clicking on the avatar (or
user's initials) in the upper right corner of any page.

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 5.9.20 20

The user pane is then displayed with the user avatar and gives access to the profile configuration
(according to the user's rights), language selection, density selection and online documentation.

Attention
The logout button is located on the user pane.

Avatar
An avatar can be defined for each user. The avatar consists in a picture, defined using a URL path;
or in two letters (the user's initials by default). The background color is set automatically and cannot
be modified. Regarding the image that will be used, it has to be a square format but there is no size
limitation.

Note

Avatars appear in the user pane, history and workflow interfaces.

The feature is also available through the Java method UIComponentWriter.addUserAvatarAPI.
The avatar layout can be customized in the 'Ergonomics and layout' section of the 'Administration'
area. It is possible to choose between the display of the avatar only, user name only, or to display both.

Density
Users can now choose their display density mode between 'Compact' and 'Comfortable'. The display
mode can be modified from the user pane.

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 5.9.20 21

2.5 User interface features

Resetting the navigation pane width
After having resized the width of the navigation pane, you can restore it to the default width by
hovering over the border and double-clicking.

2.6 Where to find EBX help
In addition to the full standalone product documentation accessible via the user pane [p 19], help is
accessible in various forms within the interface.

Context-sensitive help
When browsing any workspace in EBX, context-specific help is available by clicking on the question
mark located to the right side of the second header. The corresponding chapter from the product
documentation will be displayed.

Documentation > User Guide > Introduction > Using the user interface

TIBCO EBX® Product Documentation 5.9.20 22

Contextual help on elements
When you hover over an element for which contextual help has been defined, a question mark appears.
Clicking on the question mark opens a panel with information on the element.

When a permalink to the element is available, a link button appears in the upper right corner of the
panel.

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 5.9.20 23

CHAPTER 3
Glossary

This chapter contains the following topics:

1. Governance

2. Data modeling

3. Datasets

4. Data management life cycle

5. History

6. Workflow modeling

7. Data workflows

8. Data services

9. Cross-domain

3.1 Governance

repository
A back-end storage entity containing all the data managed by TIBCO EBX. The repository is
organized into dataspaces.
See also dataspace [p 28].

profile
The generic term for a user or a role. Profiles are used in data workflows and for defining permission
rules.
See also user [p 23], role [p 24].
Related Java API ProfileAPI.

user
An entity created in the repository in order for physical users or external systems to authenticate and
access EBX. Users may be assigned roles and have other account information associated with them.
See also user and roles directory [p 24], profile [p 23].
Related concept User and roles directory [p 399].

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 5.9.20 24

Related Java API UserReferenceAPI.

role
A user classification, used for permission rules and data workflows, which can be assigned to users.
Each user may belong to multiple roles.
Whenever a role profile is specified in EBX, the behavior resulting from that designation is applied
to all users that are members of that role. For example, in a workflow model, a role may be specified
when defining to whom work items are offered. As a result, all users belonging to that role can receive
the same work item offer.
See also user and roles directory [p 24], profile [p 23].
Related concept User and roles directory [p 399].
Related Java API RoleAPI.

administrator
A predefined role that has access to the technical administration and configuration of EBX.

user and roles directory
A directory defining the methods available for authentication when accessing the repository, all
available roles, and the users authorized to access the repository with their role assignments.
See also user [p 23], role [p 24].
Related concept User and roles directory [p 399].
Related Java API DirectoryAPI, DirectoryHandlerAPI.

user session
A repository access context that is associated with a user after being authenticated against the user
and roles directory.
Related concept User and roles directory [p 399].
Related Java API SessionAPI.

3.2 Data modeling
Main documentation section Data models [p 34]

data model
A structural definition of the data to be managed in the EBX repository. A data model includes detailed
descriptions of all included data, in terms of organization, data types, and semantic relationships. The
purpose of data models is to define the structure and characteristics of datasets, which are instances
of data models that contain the data being managed by the repository.
See also dataset [p 26].
Related concept Data models [p 34].

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 5.9.20 25

field
A data model element that is defined with a name and a simple datatype. A field can be included in the
data model directly or as a column of a table. In EBX, fields can be assigned basic constraints, such as
length and size, as well as more complex validation rules involving computations. Automated value
assignment using field inheritance or computations based on other data can also be defined for fields.
Aggregated lists can be created by setting the cardinality of a field to allow multiple values in the
same record. Fields can be arranged into groups to facilitate structural organization in the data model.

By default, fields are denoted by the icon .
See also record [p 26], group [p 25], table (in data model) [p 25], validation rule [p 26],
inheritance [p 27].
Related concepts Structure elements properties [p 53], Controls on data fields [p 67].
Related Java API SchemaNodeAPI.
The former name (prior to version 5) of "field" was "attribute".

primary key
A field or a composition of multiple fields used to uniquely identify the records in a table.

Primary keys are denoted by the icon .
Related concept Tables definition [p 493].

foreign key
A field or a composition of multiple fields in one table whose field values correspond to the primary
keys of another table. Foreign keys are used to reference records in one table from another table.

Foreign keys are denoted by the icon .
See also primary key [p 25].
Related concept Foreign key [p 498].

table (in data model)
A data model element that is comprised of fields and/or groups of fields. Every table must define at
least one field to act as the unique identifier, or primary key, of records. A table in a data model can
be used to create a reusable type based on the table's structure, which can then be used to create other
elements of the same structure in the data model.

Tables are represented by the icon .
See also record [p 26], primary key [p 25], reusable type [p 26].

group
A classification entity used to facilitate the organization of a data model. A group can be used to
collect fields, other groups, and tables. If a group contains tables, the group cannot be included within
another table, as the constraint that tables cannot be nested must be respected. A group can be used to
create a reusable type based on the group's structure, which can then be used to create other elements
of the same structure in the data model.

Groups are represented by the icon .

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 5.9.20 26

See also reusable type [p 26].
Related Java API SchemaNodeAPI.

reusable type
A shared simple or complex type definition that can be used to define other elements in the data model.

validation rule
An acceptance criterion defined on a field or a table. Data is considered invalid if it does not comply
with all imposed validation rules.
The former name (prior to version 5) of "validation rule" was "constraint".

data model assistant (DMA)
The EBX user interface includes a tool that aids the implementation of data models. It allows defining
the structure of data models, creating and editing elements, as well as configuring and publishing data
models.
See also Data models [p 34].

3.3 Datasets
Main documentation section Datasets [p 108]

record
A set of field values in a table, uniquely identified by a primary key. A record is a row in the table.
Each record follows the data structure defined in the data model. The data model drives the data types
and cardinality of the fields found in records.
See also table (in dataset) [p 26], primary key [p 25].
The former name (prior to version 5) of "record" was "occurrence".

table (in dataset)
A set of records (rows) of the same structure containing data. Each record is uniquely identified by
its primary key.

Tables are represented by the icon .
See also record [p 26], primary key [p 25].

dataset
A data-containing instance of a data model. The structure and behavior of a dataset are based upon
the definitions provided by the data model that it is implementing. Depending on its data model, a
dataset contains data in the form of tables, groups, and fields.

Datasets are represented by the icon .
See also table (in dataset) [p 26], field [p 25], group [p 25], views [p 27].
Related concept Datasets [p 108].
The former name (prior to version 5) of "dataset" was "adaptation instance".

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 5.9.20 27

inheritance
A mechanism by which data can be acquired by default by one entity from another entity. In EBX,
there are two types of inheritance: dataset inheritance and field inheritance.
When enabled, dataset inheritance allows a child dataset to acquire default data values from its parent
dataset. This feature can be useful when designing a data model where data declared in a parent scope
will be used with the same value by default in nested child scopes. Values that are inherited from the
parent can be overridden by the child. By default, dataset inheritance is disabled. It can be enabled
during the data model definition.

Inheritance from the parent dataset is represented by the icon .
Field inheritance is defined in the data model to automatically fetch a field value from a record in
another table.

Inherited fields are represented by the icon .
Related concept Inheritance and value resolution [p 270].

views
A customizable display configuration that may be applied to viewing tables. A view can be defined
for a given user or role, in order to specify whether records are displayed in a tabular or hierarchical
format, as well as to set record filtering criteria.
The hierarchical view type offers a tree-based representation of the data in a table. Nodes in the tree can
represent either field values or records. A hierarchical view can be useful for showing the relationships
between the model data. When creating a view that uses the hierarchical format, dimensions can
be selected to determine the structural representation of data. In a hierarchical view, it is possible
to navigate through recursive relationships, as well as between multiple tables using foreign key
relationships.

See also

Views [p 115]

Hierarchies [p 117]

recommended view
A recommended view can be defined by the dataset owner for each target profile. When a user logs
in with no view specified, their recommended view (if any) is applied. Otherwise, the default view
is applied.
The 'Manage recommended views' action allows defining assignment rules for recommended views
depending on users and roles.
Related concept Recommended views [p 118].

favorite view
When displaying a table, the user can choose to define the current as their favorite view through the
'Manage views' sub-menu.
Once it has been set as the favorite, the view will be automatically applied each time this user accesses
the table.
Related concept Manage views [p 119].

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 5.9.20 28

3.4 Data management life cycle
Main documentation section Dataspaces [p 90]

dataspace
A container entity comprised of datasets. It is used to isolate different versions of datasets or to
organize them.
Child dataspaces may be created based on a given parent dataspace, initialized with the state of the
parent. Datasets can then be modified in the child dataspaces in isolation from their parent dataspace
as well as each other. The child dataspaces can later be merged back into their parent dataspace or
compared against other dataspaces.
See also inheritance [p 27], repository [p 23], dataspace merge [p 28].
Related concept Dataspaces [p 90].
The former name (prior to version 5) of "dataspace" was "branch" or "snapshot".

reference dataspace
The root ancestor dataspace of all dataspaces in the EBX repository. As every dataspace merge must
consist of a child merging into its parent, the reference dataspace is never eligible to be merged into
another dataspace.
See also dataspace [p 28], dataspace merge [p 28], repository [p 23].

dataspace merge
The integration of the changes made in a child dataspace since its creation into its parent dataspace.
The child dataspace is closed after the merge has completed successfully. To perform a merge, all the
differences identified between the source dataspace and the target dataspace must be reviewed, and
conflicts must be resolved. For example, if an element has been modified in both the parent and child
dataspace since the creation of the child dataspace, the conflict must be resolved manually by deciding
which version of the element should be kept as the result of the merge.
Related concept Merge [p 98].

snapshot
A static copy of a dataspace that captures its state and all of its content at a given point in time for
reference purposes. A snapshot may be viewed, exported, and compared to other dataspaces, but it
can never be modified directly.

Snapshots are represented by the icon .
Related concept Snapshot [p 103]

The former name (prior to version 5) of "snapshot" was "version" or "home".

3.5 History
Main documentation section History [p 251]

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 5.9.20 29

historization
A mechanism that can be enabled at the table level to track modifications in the repository. Two history
views are available when historization is activated: table history view and transaction history view.
In all history views, most standard features for tables, such as export, comparison, and filtering, are
available.
Activation of historization requires the configuration of a history profile. The historization of tables
is not enabled by default.
See also table history view [p 29], transaction history view [p 29], history profile [p 29].

history profile
A set of preferences that specify which dataspaces should have their modifications recorded in the
table history, and whether transactions should fail if historization is unavailable.
See also history profile [p 29].

table history view
A view containing a trace of all modifications that are made in a given table, including record creations,
updates, and deletions. Each entry includes transactional information, such as a timestamp and the
user performing the action, as well as the data at the conclusion of the transaction. This information
can also be consulted at a record or dataset level.
Related technical reference History [p 251].

transaction history view
A view displaying the technical and authentication data of transactions, either globally at the repository
level, or at the dataspace level. As a single transaction can perform multiple actions and affect multiple
tables in one or more datasets, this view shows all the modifications that have occurred across the
given scope for each transaction.
Related technical reference History [p 251].

3.6 Workflow modeling
Main documentation section Workflow models [p 132]

workflow model
A procedural definition of operations to be performed on data. A workflow model describes the
complete path that the data must follow in order to be processed, including its states and associated
actions to be taken by human users and automated scripts.
Related concept Workflow models [p 132].
The former name (prior to version 5) of "workflow model" was "workflow definition".

Workflow models are represented by the icon .

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 5.9.20 30

script task
A data workflow task performed by an automated process, with no human intervention. Common
script tasks include dataspace creation, dataspace merges, and snapshot creation.

Script tasks are represented by the icon .
See also workflow model [p 29].

user task
A data workflow task that is made up of one or more work items performed concurrently by human
users. User task work items are offered or assigned to users, depending on the workflow model. The
progression of a data workflow beyond a user task depends on the satisfaction of the task termination
criteria defined in the workflow model.

User tasks are represented by the icon .
See also workflow model [p 29].

workflow condition
A decision step in a data workflow. A data workflow condition describes the criteria used to decide
which step will be executed next.

Workflow conditions are represented by the icon .

sub-workflow invocation
A step in a data workflow that pauses the current data workflow and launches one or more other data
workflows. If multiple sub-workflows are invoked by the same sub-workflow invocation step, they
will be executed concurrently, in parallel.

wait task
A step in a data workflow that pauses the current workflow and waits for a specific event. When the
event is received, the workflow is resumed and automatically goes to the next step.

data context
A set of data that may be shared between steps throughout a data workflow to ensure continuity
between steps.

3.7 Data workflows
Main documentation section Data workflows [p 160]

workflow publication
An instance of a workflow model that has been made available for execution to users with the
appropriate permissions.
The former name (prior to version 5) of "workflow publication" was "workflow".

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 5.9.20 31

data workflow
An executed instance of a workflow model, which runs the data processing steps that are defined in
the model, including user tasks, script tasks, and conditions.
See also workflow model [p 29].
Related concept Data workflows [p 160].
The former name (prior to version 5) of "data workflow" was "workflow instance".

work list
A list of all published data workflows that the current user has the permissions to view. Users with
the permissions to launch data workflows do so from their 'Work List'. All outstanding work items
requiring action from the user appear under their published workflows in the work list. Additionally,
if the user is the administrator of data workflows, they are able to view the state of execution of those
data workflows in their 'Work List', and may intervene if necessary.

work item
An action that must be performed by a human user as a part of a user task.

Allocated work items are represented by the icon .
See also user task [p 30].

token
Tokens are used during data workflow management, and are visible to repository administrators.

3.8 Data services
Main documentation section Data services [p 180]

data service
EBX shares master data according to the Service-oriented architecture (SOA) by using XML web
services. Since all data services are generated directly from models or built-in services they can be
used to access part of the features available from the user interface.
Data services offer:

• a WSDL model-driven and built-in generator to build a communication interface. It can be
produced through the user interface or the HTTP(S) connector for a client application. XML
messages are communicated to the EBX entry point.

• a SOAP connector or entry point component for SOAP messages which allows external systems
interacting with the EBX repository. This connector responds to requests coming from the WSDL
produced by EBX. This component accepts all SOAP XML messages corresponding to the EBX
WSDL generator.

• A RESTful connector, or entry point for the select operations, allows external systems
interrogating the EBX repository. After authenticating, it accepts the request defined in the URL
and executes it according to the permissions of the authenticated user.

https://en.wikipedia.org/wiki/Service-oriented_architecture

Documentation > User Guide > Introduction > Glossary

TIBCO EBX® Product Documentation 5.9.20 32

lineage
A mechanism by which access rights profiles are implemented for data services. Access rights profiles
are then used to access data via WSDL interfaces.
Related concept: Generating a WSDL for lineage [p 185].

3.9 Cross-domain

node
A node is an element of a tree view or a graph. In EBX, 'Node' can carry several meanings depending
on the context of use:

• In the workflow model [p 29] context, a node is a workflow step or condition.

• In the data model [p 24] context, a node is a group, a table or a field.

• In the hierarchy [p 27] context, a node represents a value of a dimension.

• In an adaptation tree [p 27], a node is a dataset.

• In a dataset [p 26], a node is the node of the data model evaluated in the context of the dataset
or the record.

Documentation > User Guide

TIBCO EBX® Product Documentation 5.9.20 33

Data models

Documentation > User Guide > Data models > Introduction to data models

TIBCO EBX® Product Documentation 5.9.20 34

CHAPTER 4
Introduction to data models

This chapter contains the following topics:

1. Overview

2. Using the Data Models area user interface

4.1 Overview

What is a data model?
The first step towards managing data in TIBCO EBX is to develop a data model. The purpose of a data
model is to provide the detailed structural definition of the data that will be managed in the repository,
in terms of organization, data types, and semantic relationships.
In order to implement a data model in the repository, you will first create a new data model, then
define the details of the structure of its component table, field, and group elements, as well as their
behavior and properties. When you have completed the entry or import of your data model structure in
the repository, you will publish it to make it available for use by datasets. Once you have a publication
of your data model, you and other users can create datasets based upon it to contain the data that is
managed by the EBX repository.

Basic concepts used in data modeling
A basic understanding of the following terms is necessary to proceed with the creation of data models:

• field [p 25]

• primary key [p 25]

• foreign key [p 25]

• table (in data model) [p 25]

• group [p 25]

• reusable type [p 26]

• validation rule [p 26]

Documentation > User Guide > Data models > Introduction to data models

TIBCO EBX® Product Documentation 5.9.20 35

4.2 Using the Data Models area user interface

Navigating within the Data Model Assistant
Data models can be created, edited or imported, and published in the Data Models area of the user
interface. The EBX data model assistant (DMA) facilitates the development of data models.

Note

This area is available only to authorized users in the 'Advanced perspective'.

Documentation > User Guide > Data models > Introduction to data models

TIBCO EBX® Product Documentation 5.9.20 36

The navigation pane is organized into the following sections:

Configuration The technical configuration of the data model.

 Global properties Defines the global properties of the data model.

 Included data models Defines the data models included in the current model. All
types defined in included data models can be reused in the
current model.

 Java bindings The bindings specify what Java types have to be generated
from the model.

 Component library Defines the Java components available in the model. These
provide programmatic features that will be available for the
model, such as programmatic constraints, functions, and UI
beans.

 Toolbars The toolbars available to use in the data model.

 Ajax components Defines the available Ajax components in the model.

 User services Declares the user services using the API available before
release 5.8.0. From release 5.8.0, it is advised to use the
new UserService API (these services are directly registered
through the Java API, hence no declaration is required for
them in the data model assistant)..

 Add-ons Specifies which add-ons are used by the data model.
These add-ons will have the capacity to enrich the current
data model after the publication by adding properties and
constraints to the elements of the data model.

 Data services Specifies the WSDL operations' suffixes that allow to refer
to a table in the data service operations using a unique name
instead of its path.

 Replications This table defines the replication units of the data model. A
replication unit allows the replication of a source table in
the relational database, so that external systems can access
this data by means of plain SQL requests and views.

Data structure The structure of the data model. Defines the relationship
between the elements of the data model and provides access
to the definition of each element.

Documentation > User Guide > Data models > Introduction to data models

TIBCO EBX® Product Documentation 5.9.20 37

Simple data types Simple reusable types defined in the current data model.

Complex data types Complex reusable types defined in the current data model.

Included simple data types Simple reusable types defined in an included external data
model.

Included complex data types Complex reusable types defined in an included external data
model.

See also

Implementing the data model structure [p 47]

Configuring the data model [p 41]

Reusable types [p 49]

Data model element icons
 field [p 25]

 primary key [p 25]

 foreign key [p 25]

 table [p 25]

 group [p 25]

Related concepts

Dataspaces [p 90]

Datasets [p 108]

Documentation > User Guide > Data models > Introduction to data models

TIBCO EBX® Product Documentation 5.9.20 38

Documentation > User Guide > Data models > Implementing data models > Creating a data model

TIBCO EBX® Product Documentation 5.9.20 39

CHAPTER 5
Creating a data model

This chapter contains the following topics:

1. Creating a new data model

2. Selecting a data model type

5.1 Creating a new data model
To create a new data model, click the Create button in the pop-up, and follow through the wizard.

5.2 Selecting a data model type
If you are a user with the 'Administrator' role, you must choose the type of data model you are creating,
semantic or relational, in the first step of the data model creation wizard.

Semantic models
Semantic models enable the full use of data management features, such as life cycle management
using dataspaces, provided by TIBCO EBX. This is the default type of data model.

Relational models
Relational models are used when the tables created from a data model will eventually be mapped to
a relational database management system (RDBMS). The primary benefit of using a relational model
is the ability to query the tables created from the data model using external SQL requests. However,
employing a relational model results in the loss of functionalities in EBX such as inheritance, multi-
valued fields, and the advanced life cycle management provided by dataspaces.

Note

A relational data model can only be used by a single dataset, and the dataspace containing
the dataset must also be declared as being relational.

See also

Relational mode [p 245]

Dataspaces [p 90]

Documentation > User Guide > Data models > Implementing data models > Creating a data model

TIBCO EBX® Product Documentation 5.9.20 40

Documentation > User Guide > Data models > Implementing data models > Configuring the data model

TIBCO EBX® Product Documentation 5.9.20 41

CHAPTER 6
Configuring the data model

This chapter contains the following topics:

1. Information associated with a data model

2. Permissions

3. Data model properties

4. Included data models

5. Data services

6. Replication of data to relational tables

7. Add-ons used by the data model

6.1 Information associated with a data model
To view and edit the owner and documentation of your data model, select 'Information' from the data
model 'Actions' [p 35] menu for your data model in the navigation pane.

Note

This area is available only to authorized users in the 'Advanced perspective'.

Unique name The unique name of the data model. This name cannot be
modified once the data model has been created.

Owner Specifies the data model owner, who will have permission to
edit the data model's information and define its permissions.

Localized documentation Localized labels and descriptions for the data model.

6.2 Permissions
To define the user permissions on your data model, select 'Permissions' from the data model 'Actions'
[p 35] menu for your data model in the navigation pane.
The configuration of the permissions of a data model are identical to the options for the permissions
of a dataset, as explained in Permissions [p 123].

Documentation > User Guide > Data models > Implementing data models > Configuring the data model

TIBCO EBX® Product Documentation 5.9.20 42

6.3 Data model properties
In the navigation pane, under Configuration > Data model properties, you can access the following
technical properties:

Module name Defines the module that contains the resources that will be
used by this data model. This is also the target module used
by the data model publication if publishing to a module.

Module path Physical location of the module on the server's file system.

Sources locations The source paths used when configuring Java components
in the 'Component library'. If a path is relative, it will be
resolved using the 'Module path' as the base path.

Publication mode Whether to publish the data model as an XML Schema
Document within a module or as a publication completely
embedded in the TIBCO EBX repository. Embedded data
models offer additional functionality such as versioning and
rollback of publications.
See Publication modes [p 85] for more information.
Model path in module: Defines the target file for the data
model generation. It must start with '/'.

Dataset inheritance Specifies whether dataset inheritance is enabled for this data
model. Dataset inheritance is disabled by default.
See Dataset inheritance [p 127] for more information.

Documentation Documentation of the data model defined by a Java class.
This Java class can programmatically specify labels and
descriptions for the elements of the data model. The labels
and descriptions defined in this Java class are displayed in
associated datasets in preference to the ones defined locally
on an element.
See Dynamic labels and descriptions [p 532] for more
information.

Special extensions Access permissions defined by programmatic rules in a Java
class.

Disable auto-increment checks Specifies whether to disable if the check of an auto-
incremented field value in associated datasets regarding to
the "max value" found in the table being updated.
See Auto-incremented values [p 529] for more information.

Documentation > User Guide > Data models > Implementing data models > Configuring the data model

TIBCO EBX® Product Documentation 5.9.20 43

Enable user services (old API) Specifies if user services using the API available before
release 5.8.0 can be declared. If 'No', the section
'Configuration > User services' is not displayed (except if
at least service has been already declared in this section).
From release 5.8.0, it is advised to use the new UserService
Java API (these services are directly registered through the
Java API, hence no declaration is required in the data model
assistant).
See UserServiceDeclarationAPI for more information.

6.4 Included data models
You can use data types in the current model that are defined in another data model by adding an entry
for the other data model in the table under Configuration > Included data models.
When you access the record of an included model in this table, you will find technical information
about the model under the Information tab. As an included data model could eventually have
validation errors, for example, due to deleted Java resources, this view will provide information
regarding those issues.
It is only possible to include data models that have no validation errors and have been defined and
published as an embedded data model or packaged in a module.
The names of data types must be unique across both locally defined and included type definitions.
That is, included data types must not have names that coincide with those of data types defined in the
current data model or other included data models.

See alsoIncluding external data models [p 491]

6.5Data services
It is possible to refer to tables in Data Service operations using unique names instead of their paths
by defining suffixes for WSDL operations. A WSDL suffix is the association between a table path
and a name.
To define a WSDL suffix through the user interface, create a new record in the 'Data services' table
under the data model configuration in the navigation pane. A record of this table defines the following
properties:

Table path Specifies the path of the table in the current data model that
is to be referred by the WSDL operation suffix.

WSDL operation suffix This name is used to suffix all the operation names of the
concerned table. If undefined for a given table, the last
element of the table path is used instead. This name must be
unique in the context of this data model.

See alsoData services [p 545]

Documentation > User Guide > Data models > Implementing data models > Configuring the data model

TIBCO EBX® Product Documentation 5.9.20 44

6.6 Replication of data to relational tables
In any data model, it is possible to define replication units for data in the repository to be mirrored
to dedicated relational tables. These relational tables then enable direct access to the data by SQL
requests and views.
To define a replication unit through the user interface, create a new record in the 'Replications' table
under the data model configuration in the navigation pane. Each replication unit record is associated

Documentation > User Guide > Data models > Implementing data models > Configuring the data model

TIBCO EBX® Product Documentation 5.9.20 45

with a particular dataset in a given dataspace. A single replication unit can cover multiple tables, as
long as they are in the same dataset. A replication unit defines the following information:

Name Name of the replication unit. This name identifies a
replication unit in the current data model. It must be unique.

Dataspace Specifies the dataspace relevant to this replication unit. It
cannot be a snapshot or a relational dataspace.

Dataset Specifies the dataset relevant to this replication unit.

Refresh policy Specifies the data synchronization policy. The possible
policies are:

• On commit: The replicated table content in the
database is always up to date with respect to its source
table. Every transaction that updates the EBX source
table triggers the corresponding insert, update, and
delete statements on the replicated table.

• On demand: The replicated table in the database is
only updated when an explicit refresh operation is
performed.

Tables Specifies the tables in the data model to be replicated in the
database.
Table path: Specifies the path of the table in the current
data model that is to be replicated to the database.
Table name in database: Specifies the name of the table in
the database to which the data will be replicated. This name
must be unique amongst all replications units.

Aggregated lists Specifies the properties of the aggregated lists in the table
that are replicated in the database.
Path: Specifies the path of the aggregated list in the table
that is to be replicated to the database.
Table name in database: Specifies the name of the table
in the database to which the data of the aggregated list
will be replicated. This name must be unique amongst all
replications units.

See alsoReplication [p 259]

Documentation > User Guide > Data models > Implementing data models > Configuring the data model

TIBCO EBX® Product Documentation 5.9.20 46

6.7 Add-ons used by the data model
On any data model, it is possible to specify the add-ons used by the current data model. These add-
ons will have the capacity to enrich the current data model after the publication by adding properties
and constraints to the data model elements.
To define an add-on to be used by the data model through the user interface, create a new record in
the 'Add-ons' table under the data model configuration in the navigation pane. A record of this table
defines the following properties:

Name Add-on public name.

Version Add-on version.

Activated Indicates if the add-on is activated. The add-on must be
activated in order to be used.

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 5.9.20 47

CHAPTER 7
Implementing the data model

structure
To work with the structural definition of your data model, select the data model you are working with
in the navigation pane.
You can then access the structure of your data model in the navigation pane under 'Data structure', to
define the structure of fields, groups, and tables.
This chapter contains the following topics:

1. Common actions and properties

2. Reusable types

3. Data model element creation details

4. Modifying existing elements

7.1 Common actions and properties

Adding elements to the data model
The following elements are available to describe the structure of your data model:

• fields

• groups

• tables

• primary keys

• foreign keys

• associations

Add a new element relative to any existing element in the data structure by clicking the down arrow
to the right of the existing entry, and selecting an element creation option from the menu. Depending
on whether the existing element is a field, group, or table, you have the choice of creating the new

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 5.9.20 48

element as a child of the existing element, or before or after the existing element at the same level.
You can then follow the element creation wizard to create the new element.

Note

The element root is always added upon data model creation. If this element must be
renamed, it can be deleted and recreated with a new name.

Names, labels, descriptions, and information
Whenever you create a new element in your data model, you must provide a name for the field 'Name'
that is unique in its level of the data structure. This name is assigned once the element is created and
cannot be changed subsequently.
You have the option to provide localized user-friendly labels to be displayed in the user interface
instead of the unique name of the element, as well as brief localized descriptions of the element. Unlike
the unique name, the labels and descriptions are modifiable after creation. According to the language
preference of each user, TIBCO EBX will display the corresponding localized label and description
of the element.

Deleting elements of the data model

Any element can be deleted from the data structure using the down arrow corresponding to its
entry.
When deleting a group or table that is not using a reusable type, the deletion is performed recursively,
removing all its nested elements.

Duplicating existing elements

To duplicate an element, click the down arrow corresponding to its entry. You must provide a
name for the duplicated element that is unique at its level of the data structure. All other properties
are copied from the source element.
The duplicated element is added to the data model at the same level as the element from which it was
copied, appended after the existing elements. If you are duplicating a table or group containing other
elements, all nested elements are copied with their original names.

Note

If you duplicate a primary key field, the properties of the field are maintained, but the
new field is not automatically added to the primary key.

Moving elements

To reorder an element within its current level of the data structure, click the down arrow
corresponding to its entry and select 'Move'. Then, select the left-arrow button corresponding to the
field before which you want to move the current element.

Note

It is not possible to move an element to a position outside of its level in the data structure.

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 5.9.20 49

7.2 Reusable types
Reusable types are shared element definitions that are created once and can be reused in different
places in the data model.

Note

If you modify the definition of a reusable type in the 'Simple data types' or 'Complex
data types' section, you will modify the structure of all elements based on that reusable
type. The structure of a groups or table using a reusable type is shown as read-only. To
edit the structure of the associated reusable type, you have to access the type from the
'Simple data types' or 'Complex data types' section.

Defining a reusable type

From the down arrow menu of 'Simple data types' and 'Complex data types' in the navigation pane,
you can define simple and complex reusable types that will be available for creating more elements
which share the same structural definition and properties. Alternatively, you can convert existing tables

and groups into reusable types using their corresponding down arrow menus.
It is possible to see the elements that are using a reusable type by selecting 'References to this type' on
the specific page of each data type, under 'Simple data types' and 'Complex data types' in the navigation
pane. A table then displays all elements that are based on this type. If a data type is not used by any

elements, you can select the 'Delete type' from its down arrow menu to delete the reusable type.

Using a reusable type
The structure of new elements can be defined using reusable types. To do so, select an existing reusable
type in the element creation form. The created element will then share the type definition of the
reusable type.

Including data types defined in other data models
You can also share reusable types between multiple data models. By configuring the inclusion of an
external data model, you can use the data types defined in that data model to create new elements in
the data structure the same way as using locally defined reusable types.

Note

As the names of data types must be unique across all locally defined as well as all included
types, you cannot create new reusable types with the same name as a data type in an
included data model. Similarly, you cannot include an external data model that defines a
data type with the same name as a locally defined reusable type or a data type in another
included data model.

Included data types appear in the sections 'Included simple data types' and 'Included complex data
types' in the navigation panel. You can view the details of these included reusable types; however,
they can only be edited locally in their original data models.
See Included data models [p 43] for more information.

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 5.9.20 50

7.3 Data model element creation details

Creating fields
When creating a new field, you must select its data type, which will define the data type of the values
based upon this field. The data type of the field cannot be changed once the field has been created.
While creating a field, it is also possible to designate it as a foreign key, a mandatory field, and, if
created under a table, a primary key.

Creating tables
While creating a table, you have the option to create the new table based on an existing reusable type.
See Reusable types [p 49] for more information.
Every table requires specifying at least one primary key field, which you can create as a child element
of the table from the navigation pane.

Creating groups
While creating a group, you have the option to create the new group based on an existing reusable
type. See Reusable types [p 49] for more information.

Creating primary key fields
At least one primary key is required for every table. You can create a primary key field for a table by
creating it as a child element under the table's entry in the 'Data structure' tree.
Besides creating a new field directly as a primary key, you can add any existing child field of a table
to the definition of its primary key on the 'Primary key' tab of the table's 'Advanced properties'.

Creating or defining foreign key fields
Foreign key fields have the data type 'String'. You can create a foreign key field for a table by creating
it as a child element under the table's entry in the 'Data structure' tree. You can also convert an existing
field of type 'String' into a foreign key. To convert an existing field of type 'String' into a foreign key,
enable 'Foreign key constraint' in the field's 'Advanced controls' and define the associated parameters.
Whether creating a foreign key directly or from an existing field, you must define the table that
contains the records to be referenced.

Creating associations
An association allows defining semantic links between tables. You can create an association by
creating it as a child element under the table's entry in the 'Data structure' tree and by selecting
'association' in the form for creating a new element. An association can only be defined inside a table.
It is not possible to convert an existing field to an association.
When creating an association, you must specify the type of association. Several options are available:

• Inverse relationship of a foreign key. In this case, the association element is defined in a source
table and refers to a target table. It is the counterpart of the foreign key field, which is defined in
the target table and refers back the source table. You must define the foreign key that references
the parent table of the association.

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 5.9.20 51

• Over a link table. In this case, the association element is defined in a source table and refers
to a target table that is inferred from a link table. This link table defines two foreign keys: one
referring to the source table and another one referring to the target table. The primary key of the
link table must also refer to auto-incremented fields and/or the foreign key to the source or target
table of the association. You must define the link table and these two foreign keys.

• Using an XPath predicate. In this case, the association element is defined in a source table and
refers to a target table that is specified using a path. An XPath expression is also defined to specify
the criteria used to associate a record of the current table to records of the target table. You must
define the target table and an XPath expression.

In all types of association, we call associated records the records in the target table that are
semantically linked to records in the source table.
Once you have created an association, you can specify additional properties. For an association, it is
then possible to:

• Filter associated records by specifying an additional XPath filter. It is only possible to use fields
from the source and the target table when defining an XPath filter. That is, if it is an association
other a link table it is not possible to use fields of the link table in the XPath filter. You can use
the available wizard to select the fields that you want to use in your XPath filter.

• Configure a tabular view to define the fields that must be displayed in the associated table. It is
not possible to configure or modify an existing tabular view if the target table of the association
does not exist. If a tabular view is not defined, all columns that a user is allowed to view according
to the granted access rights are displayed.

• Define how associated records are to be rendered in forms. You can specify that associated records
are to be rendered either directly in the form or in a specific tab. By default, associated records
are rendered in the form at the same position of the association in the parent table.

• Hide/show associated records in data service 'select' operation. By default associated records are
hidden in data service 'select' operation.

• Specify the minimum and maximum numbers of associated records that are required. In associated
datasets, a validation message of the specified severity is added if an association does not comply
with the required minimum or the maximum numbers of associated records. By default, the
required minimum and the maximum numbers of associated records are not restricted.

• Add validation constraints using XPath predicates to restrict associated records. It is only possible
to use fields from the source and the target table when defining an XPath predicate. That is, if
it is an association over a link table it is not possible to use fields of the link table in the XPath
predicate. You can use the available wizard to select the fields that you want to use in your XPath
predicate. In associated datasets, a validation message of the specified severity is added when an
associated record does not comply with the specified constraint.

7.4 Modifying existing elements

Removing a field from the primary key
Any field that belongs to the primary key can be removed from the primary key on the 'Primary key'
tab of the table's 'Advanced properties'.
See primary key [p 25] in the glossary.

Documentation > User Guide > Data models > Implementing data models > Implementing the data model structure

TIBCO EBX® Product Documentation 5.9.20 52

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 53

CHAPTER 8
Properties of data model elements

After the initial creation of an element, you can set additional properties in order to complete its
definition.

See alsoData validation controls on elements [p 67]

This chapter contains the following topics:

1. Basic element properties

2. Advanced element properties

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 54

8.1 Basic element properties

Common basic properties
The following basic properties are shared by several types of elements:

Information Additional non-internationalized information associated
with the element.

Minimum number of values Minimum number of values for an element.
As primary keys cannot be multi-valued, they must have this
property set to '1' or 'undefined'. The minimum number of
values is automatically set to '0' when defining the field as
a selection node.

Maximum number of values Maximum number of values for an element. When set to a
value greater than '1', the element becomes multi-valued.
As primary keys cannot be multi-valued, they must have this
property set to '1' or 'undefined'.
For tables, the maximum number of values is automatically
set to 'unbounded' upon creation. The maximum number of
values is automatically set to '0' when defining the field as
a selection node.

Validation rules This property is available for tables and fields in tables
except Password fields, reusable types, fields in complex
reusable types, and selection nodes. Used to define powerful
and complex validation rules with the help of the provided
XPath 1.0 criteria editor.
See Criteria editor [p 293] for more information.
This can be useful if the validation of the value depends on
complex criteria or on the value of other fields.
It is also possible to indicate that a rule defines a verification
for a value that is mandatory under certain circumstances. In
this case a value is mandatory if the rule is not satisfied. See
Constraint on 'null' values [p 521] for more information.
Using the associated wizard, you can define localized labels
for the validation rule, as well as define a localized message
with severity to be displayed if the criteria is not met.
When defining the severity of the validation message it is
possible to indicate whether an input that would violate a
validation rule will be rejected or not when submitting a
form. The error management policy is only available on
validation rules defined on a field and when the severity is
set to 'error'. If the validation rule must remain valid, then

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 55

any input that would violate the rule will be rejected and the
values will remain unchanged. If errors are allowed, then
any input that would violate the rule will be accepted and
the values will change. If not specified, the validation rule
always blocks errors upon the form submission by default.
If a validation rule is defined on a table, it will be considered
as a 'constraint on table' and each record of the table will be
evaluated against it at runtime. See Constraints on table [p

521] for more information.

Basic properties for fields
The following basic properties are specific to fields:

Default value Default value assigned to this field. In new data creation
forms, the default value appears automatically in the user
input field. The default value must comply with the defined
type of the field.
See Default value [p 537] for more information.

Conversion error message Internationalized messages to display to users when they
enter a value that is invalid for the data type of this field.

Computation rule This property is available for fields in tables, except in
reusable types. Defines a rule for computing the value of the
field using the provided XPath 1.0 editor.
See criteria editor [p 293]

This can be useful if the value depends on other values
in the same record, but does not require a programmatic
computation.
The following limitations exist for computation rules:

• Computation rules can only be defined on simple fields
inside a table.

• Computation rules cannot be defined on fields of type
OResource or Password.

• Computation rules cannot be defined on selection nodes
and primary key fields.

• Computation rules cannot be defined when accessing
an element from the validation report.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 56

8.2 Advanced element properties

Common advanced properties
The following advanced properties are shared by several types of elements:

Default view and tools >
Visibility

Specifies whether or not this element is shown in the default
view of a dataset, in the text search of a dataset or in the data
service "select" operation.

• Model-driven view
Specifies whether or not the current element is shown
in the default tabular view of a table, the default record
form of a table, and in the default view of a dataset
if the current element is a table. Default dataset view,
tabular view and default record form generated from
the structure of the data model. If the current element
is inside a table, then setting the property to 'Hidden'
will hide the element from the default tabular view and
default record form of the table without having to define
specific access permissions. Current element will still
be displayed in the view configuration wizard to be able
to create a custom view that displays this element. If
the current element is a table, then setting the property
to 'Hidden' will hide the table from the default view
of a dataset without having to define specific access
permissions. This property is ignored if it is set on an
element that is neither a table nor in a table.

• All views
Specifies whether or not the current element is shown
in all views of a table in a dataset. Setting the property
to 'Hidden in all views' will hide the element in all
views of the table, whether tabular (default tabular
view included) or hierarchical, without having to define
specific access permissions. The current element will
also be hidden in the view configuration wizard. That
is, it won't be possible to create a custom view that will
display this element. This property is ignored if it is
set on an element that is not in a table. This property
is not applied on forms. That is, setting the property
to 'Hidden in all views' will not hide the element in a
record form but only in views.

• Search tools
Specifies whether or not the current element is shown
in a dataset search tool. Setting the property to 'Hidden
in all searches' will hide the element both in the text and
typed search tools of a dataset. Setting the property to

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 57

'Hidden only in text search' will only hide the element
in the text search tool. If this property is not set, the
element will be displayed in the text search tool by
default. This property is ignored if it is set on an element
that is not in a table.

• Data services
Specifies whether or not the current element is shown
in the data service select operation. Setting the property
to 'Excluded from Data Services' will hide the element
in the data service "select" operation. This property is
ignored if it is set on an element that is not in a table.

See Default view [p 539] in the Developer Guide.

Default view and tools > Widget Defines the widget to be used. A widget is an input
component that is displayed in forms in associated datasets.
If undefined, a default widget is displayed in associated
datasets according to the type and properties of the current
element. It is possible to use a built-in widget or a custom
widget. A custom widget is defined using a Java API to
allow the development of rich user interface components
for fields or groups. Built-in and custom widgets cannot be
defined on a table or an association. It is forbidden to define
both a custom widget and a UI bean. It is forbidden to define
on a foreign key field both a custom widget and a combo-
box selector.
See UIWidgetFactoryAPI for more information.

Default view and tools > Combo-
box selector

Specifies the name of the published view that will be used
in the combo-box selection of the foreign key. A selection
button will be displayed at the bottom right corner of the
drop-down list. When defining a foreign key, this feature
allows accessing an advanced selection view through the
'Selector' button that opens the advanced selection view,
from where sorting and searching options can be used. If no
published view is defined, the advanced selection view will
be disabled. If the path of the referenced table is absolute
then only the published views corresponding to this table
will be displayed. If the path of the referenced table is
relative then all the published views associated with the data
model containing the target table will be displayed. This
property can only be set if no custom widget is defined.
See Defining a view for the combo box selector of a foreign
key [p 541] in the Developer Guide.

UI bean
Attention

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 58

From version TIBCO EBX 5.8.0, it is recommended to
use widgets instead of UI Beans. Widgets provide more
features than UI Beans, and no further evolution will
be made on UI beans. See widget [p 57] for more
information.

This property is available for all elements except tables and
associations. Specifies a Java class to customize the user
interface associated with this element in a dataset. A UI bean
can display the element differently and/or modify its value
by extending the UIBeanEditorAPI class in the Java API.

Transformation on export This property is available for fields and for groups that
are terminal nodes. Specifies a Java class that defines
transformation operations to be performed when exporting
an associated dataset as an archive. The input of the
transformation is the value of this element.
See NodeDataTransformerAPI for more information.

Access properties Defines the access mode for the current element, that is, if
its data can be read and/or written.

• 'Read & Write' corresponds to the mode RW in the data
model XSD.

• 'Read only' corresponds to the mode R- in the data
model XSD.

• 'Not a dataset node' corresponds to the mode CC in the
data model XSD.

• 'Non-terminal node' corresponds to the mode -- in the
data model XSD.

See Access properties [p 537] in the Developer Guide.

Comparison mode Defines the comparison mode associated with the element,
which controls how its differences are detected in a dataset.

• 'Default' means the element is visible when comparing
associated data.

• 'Ignored' implies that no changes will be detected when
comparing two versions of modified content (records
or datasets).
During a merge, the data values of ignored elements
are not merged even if the content has been modified.
However, values of ignored data sets or records being
created during the operation are merged.
During an archive import, values of ignored elements
are not imported when the content has been modified.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 59

However, values of ignored datasets or records being
created during the operation are imported.

See Comparison mode [p 542] in the Developer Guide.

Apply last modifications policy Defines if this element must be excluded from the service
allowing to apply the last modifications that have been
performed on a record to the other records of the same table.

• 'Default' means that the last modification on this
element can be applied to other records.

• 'Ignored' implies that the last modification on this
element cannot be applied to other records. This
element will not be visible in the apply last
modifications service.

See Apply last modifications policy [p 542] in the
Developer Guide.

Node category Defines a category for this element. Categories allow
controlling the visibility of data in a dataset to users. A node
with the category 'Hidden' is hidden by default. Restriction:
category specifications other than 'Hidden' do not apply to
table record nodes.
See Categories [p 543] in the Developer Guide.

Advanced properties for fields
The following advanced properties are specific to fields.

Check null input
Implements the property osd:checkNullInput. This property is used to activate and check a constraint
on null at user input time.
By default, in order to allow for temporarily incomplete input, the check for mandatory elements is not
performed upon user input, but only upon dataset validation. If a mandatory element must be checked
immediately upon user input, set this property to 'true'.

Note

A value is considered mandatory if the 'Minimum number of values' property is set to
'1' or greater. For terminal elements, mandatory values are only checked in activated
datasets. For non-terminal elements, the values are checked regardless of whether the
dataset is activated.

See Constraints, triggers and functions [p 525] in the Developer Guide.

Trim whitespaces
Trim white spaces

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 60

Implements the property osd:trim. This property is used to indicate whether leading and trailing white
spaces must be trimmed upon user input. If this property is not set, leading and trailing white spaces
are removed upon user input.
See Whitespace handling upon user input [p 526] in the Developer Guide.

UI bean
See Common advanced properties [p 57].

Function (computed value)
This property is available for non-primary key fields. Specifies a Java class that computes the value
of this field programmatically. This can be useful if the value of the field depends on other values in
the repository, or if the computation of the value needs to retrieve data from a third-party system.
A function can be created by implementing the ValueFunctionAPI interface.

Disable validation
Specifies if the constraints defined on the field must be disabled. This property can only be defined
on computed fields. If true, cardinalities, simple and advanced constraints defined on the field won't
be checked when validating associated datasets.

Transformation on export
See Common advanced properties [p 58].

Access properties
See Common advanced properties [p 58].

Auto-increment
This property is only available for fields of type 'Integer' that are contained in a table. When set, the
value of the field is automatically calculated when a new record is created. This can be useful for
primary keys, as it generates a unique identifier for each record. Two attributes can be specified:

Start value Value with which to begin the auto-increment. If this
attribute is not specified, the default value is '1'.

Increment step Amount the value is incremented based on the previous
value of the auto-increment. If this attribute is not specified,
the default is value is '1'.

Disable auto-increment checks Specifies whether to disable the check of the auto-
incremented field value in associated datasets against the
maximum value in the table being updated.

Auto-incremented values have the following behavior:

• The computation and allocation of the field value are performed whenever a new record is inserted
and the field value is yet undefined.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 61

• No allocation is performed if a programmatic insertion already specifies a non-null value.
Consequently, the allocation is not performed for a record insertion in occulting or overwriting
modes.

• If an archive import specifies the value, the imported value takes precedence.

• Whenever possible, the newly allocated value is unique in the scope of the repository.
That is, the uniqueness of the allocation spans over all datasets based upon this data model, in any
dataspace in the repository. The uniqueness across different dataspaces facilitates the merging of
child dataspaces parent dataspaces while reasonably avoiding conflicts when a record's primary
key includes the auto-incremented value.
Despite this policy, a specific limitation exists when a mass update transaction assigning specific
values is performed concurrently with a transaction that allocates an auto-incremented value on
the same field. It is possible that the latter transaction will allocate a value that has already been
set in the former transaction, as there is no locking between different dataspaces.

See Auto-incremented values [p 529] in the Developer Guide.

Default view
See Common advanced properties [p 56].

Node category
See Common advanced properties [p 59].

Inherited field
Defines a relationship from the current field to a field in another table in order to automatically fetch
its field value.

Source record A foreign key or white space-separated sequence of foreign
keys that leads from the current element to the record from
which to inherit this field's value. If this property is not
specified, the current record is used as the source record for
the inheritance.

Source element XPath of the element in the source record from which
to inherit this field's value. The source element must be
terminal, belong to the record described by 'Source record',
and its type must match the type of this field. This property
is mandatory when using field inheritance.

See inheritance [p 27] in the glossary.
For more information, see also Inherited fields [p 272].

Advanced properties for tables
The following advanced properties are specific to tables.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 62

Table

Primary key A list of fields in the table that compose the table's primary
key. You can add or remove primary key fields here, as in
the 'Data structure' view.
Each primary key field is denoted by its absolute XPath
notation that starts under the table's root element.
If there are several elements in the primary key, the list is
white-space delimited. For example, "/name /startDate".

Presentation Specifies how records are displayed in the user interface of
this table in a dataset.

Presentation > Record labeling Defines the fields to provide the default and localized labels
for records in the table.
Can also specify a Java class to set the label
programmatically, or set the label in a hierarchy. This
Java class must implement either the UILabelRendererAPI

interface or the UILabelRendererForHierarchyAPI interface.
Attention: Access rights defined on associated datasets
are not applied when displaying record labels. Fields that
are usually hidden due to access rights restrictions will be
displayed in labels.

Presentation > Default rendering
for groups in forms

Specifies the default display rendering mode of the groups
contained in this table. If nothing is defined here, the default
policy set in the Administration area will be used to display
groups.
See Record form: rendering mode for nodes [p 390] in the
Administration Guide.
Enabled rendering for groups
Specifies a display rendering mode to be enabled for
groups in the table in addition to the modes 'expanded'
and 'collapsed', which are always available. Tabs must be
enabled on the table to have the option to display groups as
tabs. Similarly, links must be enabled to have the option to
display groups as links.
Default rendering for groups
Specifies the default display rendering mode to use for the
groups contained in this table. If a group does not specify
a default mode then the default mode defined for this table
will be used. Links must be enabled to define the default
rendering mode as 'Link'. Select a rendering mode according
to network and browser performance. Link mode is lighter

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 63

as its content is not displayed on the same page, whereas the
expanded and collapsed modes are heavier.
Note: When the tabs view is enabled on a table, any groups
that would otherwise have used links are automatically
converted to collapsed mode. This is done to avoid the
inherent display layout complexities that would arise from
links and tabs coexisting in the same user interface.

Presentation > Specific
rendering of forms

Defines a specific rendering for customizing the record form
in a dataset.
See UIFormAPI and UserServiceRecordFormFactoryAPI for
more information.

Toolbars Defines the toolbars to use in this table.
Toolbars can be edited in the Configuration > Toolbars
section.
Tabular view top: Defines the toolbar to use on top of the
default table view.
Tabular view row: Defines the toolbar to use on each row
of the default table view.
Record top: Defines the toolbar to use in the record form.
Hierarchy top: Defines the toolbar to use in the default
hierarchy view of the table.
See Toolbars [p 75] for more information.

History Specifies when historization is to be performed, and the
level of guarantee requested. The available history profiles
can be edited in Administration > History and logs.
See History configuration in the repository [p 251] for more
information.

Indexes Defines the fields to index in the table. Indexing speeds
up table access for requests on the indexed fields. No two
indexes can contain the exact same fields.
Index name: Unique name for this index.
Fields to index: The fields to index, each represented by
an absolute XPath notation starting under the table root
element.

Specific filters Defines record display filters on the table.

Actions Specifies the actions that are allowed on the table in
associated datasets. By default, all actions are allowed
unless specific access rights are defined in a dataset.

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 64

Uniqueness constraints
Indicates which fields or set of fields must be unique across the table.

Triggers
Specifies Java classes that defines methods to be automatically executed when modifications are
performed on the table, such as record creation, updates, deletion, etc.
A built-in trigger for starting data workflows is included by default.
See Triggers [p 528] in the Developer Guide.

Access properties
See Common advanced properties [p 58].

Default view
See Common advanced properties [p 56].

Node category
See Common advanced properties [p 59].

Advanced properties for groups
The following advanced properties are specific to groups.

Value container class (JavaBean)
Specifies a Java class to hold the values of the children of this group. The Java class must conform
to the JavaBean standard protocol. That is, each child of the group must correspond to a JavaBean
property in the class, and all properties must have getter and setter accessors defined.

UI bean
See Common advanced properties [p 57].

Transformation on export
See Common advanced properties [p 58].

Access properties
See Common advanced properties [p 58].

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 65

Default view

Visibility See Common advanced properties [p 56].

Rendering in forms Defines the rendering mode of this group. If this property
is not set, then the default view for groups specified by the
container table will be used. 'Tab' and 'Link' are each only
available when the container table enables it.
Tab position
This attribute specifies the position of the tab with respect
to all the tabs defined in the model. This position is used for
determining tab order. If a position is not specified, the tab
will be displayed according to the position of the group in
the data model.

Node category
See Common advanced properties [p 59].

Related conceptsData validation controls on elements [p 67]

Documentation > User Guide > Data models > Implementing data models > Properties of data model elements

TIBCO EBX® Product Documentation 5.9.20 66

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 5.9.20 67

CHAPTER 9
Data validation controls on elements

After the initial creation of an element, you can set additional controls in order to complete its
definition.

See alsoProperties of data model elements [p 53]

This chapter contains the following topics:

1. Simple content validation

2. Advanced content validation

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 5.9.20 68

9.1 Simple content validation
Using the following static controls on a field, you can establish simple validation rules on its content.
The controls available for a given field are dependent on its data type.

Fixed length The exact number of characters required for this field.

Minimum length The minimum number of characters allowed for this field.

Maximum length The maximum number of characters allowed for this field.

Pattern A regular expression pattern that the value of the field must
match. It is not possible to simultaneously define a pattern
for both a field and its data type.

Decimal places The maximum number of decimal places allowed for this
field.

Maximum number of digits The maximum total number of digits allowed for this integer
or decimal field.

Enumeration Defines a list of predefined possible values for this field. If
enumerations are defined in both a field and its type, then the
enumeration of this field in associated datasets is replaced
by the intersection of these two enumerations.

Greater than [constant] Defines the minimum value allowed for this field.

Less than [constant] Defines the maximum value allowed for this field.

See XML schema supported facets [p 513].

9.2 Advanced content validation
Using the following dynamic and contextual controls on an element, you can establish advanced
validation rules of its content. The controls available for a given element are dependent on the type
of element and its data type, if it has one.

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 5.9.20 69

See alsoDynamic constraints [p 516]

Foreign key constraint

 Table Defines the table referenced by the foreign key. A foreign
key references a table in the same dataset by default. It
can also reference a table in another dataset in the same
dataspace, or a dataset in a different dataspace.

 Mode Location of the table referenced by the foreign key.
'Default': current data model.
'Other dataset': different dataset, in the same dataspace.
'Other dataspace': dataset in a different dataspace.

 Referenced table XPath expression describing the location of the table. For
example, /root/MyTable.

 Referenced dataset Required if the table is located in another dataset. The
unique name of the dataset containing the referenced table.

 Referenced dataspace Required if the table is located in another dataspace. The
unique name of the dataspace containing the referenced
table.

 Label Defines fields to provide the default and localized labels for
records in the table.
Can also specify a Java class to set the label
programmatically if 'XPath expression' is set to 'No'. This
Java class must implement the TableRefDisplayAPI interface
of the Java API.
Attention: Access rights defined on associated datasets
are not applied when displaying record labels. Fields that
are usually hidden due to access rights restrictions will be
displayed in labels.

 Filter Defines a foreign key filter using an XPath expression.
Can also specify a Java class that implements the
TableRefFilterAPI interface of the Java API.

Greater than [dynamic] Defines a field to provide the minimum value allowed for
this field.

Less than [dynamic] Defines a field to provide the maximum value allowed for
this field.

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 5.9.20 70

Fixed length [dynamic] Defines a field to provide the exact number of characters
required for this field.

Minimum length [dynamic] Defines a field to provide the minimum number of
characters allowed for this field.

Maximum length [dynamic] Defines a field to provide the maximum number of
characters allowed for this field.

Excluded values Defines a list of values that are not allowed for this field.

Excluded segment Defines an inclusive range of values that are not allowed for
this field.
Minimum excluded value: Lowest value not allowed for
this field.
Maximum excluded value: Highest value not allowed for
this field.

Specific constraint (component) Specifies one or more Java classes that implement the
ConstraintAPI interface of the Java API. See Programmatic
constraints [p 520] for more information.

Specific enumeration
(component)

Specifies a Java class to define an enumeration. The class
must define an ordered list of values by implementing the
ConstraintEnumerationAPI interface of the Java API.

Enumeration filled by another
node

Defines the possible values of this enumeration using a
reference to another list or enumeration element.

Dataspace set configuration Define the dataspaces that can be referenced by a field
of the type Dataspace identifier (osd:dataspaceKey). If a
configuration is not set, then only opened branches can be
referenced by this field by default.

• Includes
Specifies the dataspaces that can be referenced by this
field.
Pattern: Specifies a pattern that filters dataspaces. The
pattern is checked against the name of the dataspaces.
Type: Specifies the type of dataspaces that can be
referenced by this field. If not defined, this restriction
is applied to branches.
Include descendants: Specifies if children or
descendants of the dataspaces that match the specified
pattern are included in the set. If not defined, this
restriction is not applied to child dataspaces. If "None"

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 5.9.20 71

then neither children nor descendants of the dataspaces
that match the specified pattern are included. If "All
descendants" then all descendants of the dataspaces
that match the specified pattern are included. If "All
descendant branches" then all descendant branches
of the dataspaces that match the specified pattern
are included. If "All descendant snapshots" then all
descendant snapshots of the dataspaces that match the
specified pattern are included. If "Child branches" then
only direct branches of the dataspaces that match the
specified pattern are included. If the current dataspace
is a version, includes the branches that are the direct
children of this version; if the current dataspace is
a branch, includes the branches that are the direct
children of the versions which are children of this
branch. If "Child snapshots" then only direct snapshots
of the dataspaces that match the specified pattern are
included. If the current dataspace is a branch, includes
the snapshots that are the direct children of this branch;
if the current dataspace is a version, includes the
versions that are the direct children of the branches
which are children of this version.

• Excludes
Specifies the dataspaces that cannot be referenced by
this field. Excludes are ignored if no includes are
defined.
Pattern: Specifies a pattern that filters dataspaces. The
pattern is checked against the name of the dataspaces.
Type: Specifies the type of dataspaces that can be
referenced by this field. If not defined, this restriction
is applied to branches.
Include descendants: Specifies if children or
descendants of the dataspaces that match the specified
pattern are included in the set. If not defined, this
restriction is not applied to child dataspaces. If "None"
then neither children nor descendants of the dataspaces
that match the specified pattern are included. If "All
descendants" then all descendants of the dataspaces
that match the specified pattern are included. If "All
descendant branches" then all descendant branches
of the dataspaces that match the specified pattern
are included. If "All descendant snapshots" then all
descendant snapshots of the dataspaces that match the
specified pattern are included. If "Child branches" then
only direct branches of the dataspaces that match the
specified pattern are included. If the current dataspace
is a version, includes the branches that are the direct
children of this version; if the current dataspace is

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 5.9.20 72

a branch, includes the branches that are the direct
children of the versions which are children of this
branch. If "Child snapshots" then only direct snapshots
of the dataspaces that match the specified pattern are
included. If the current dataspace is a branch, includes
the snapshots that are the direct children of this branch;
if the current dataspace is a version, includes the
versions that are the direct children of the branches
which are children of this version.

• Dataspace filter
Specifies a filter to accept or reject dataspaces in the
context of a dataset or a record. This filter is only used
in the dedicated input component that is associated to
this field. That is, this filter is not used when validating
this field. A specific constraint can be used to perform
specific controls on this field. A filter is defined by a
Java class that implements the DataspaceSetFilterAPI

interface of the Java API.

Dataset set configuration Define the datasets that can be referenced by a field of the
type Dataset identifier (osd:datasetName).

• Includes
Specifies the datasets that can be referenced by this
field.
Pattern:Specifies a pattern that filters datasets. The
pattern is checked against the name of the datasets.
Include descendants: Specifies if children or
descendants of the datasets that match the specified
pattern are included in the set.

• Excludes
Specifies the datasets that cannot be referenced by this
field. Excludes are ignored if no includes are defined.
Pattern: Specifies a pattern that filters datasets. The
pattern is checked against the name of the datasets.
Include descendants: Specifies if children or
descendants of the datasets that match the specified
pattern are included in the set.

• Filter
Specifies a filter to accept or reject datasets in the
context of a dataset or record. This filter is only used
in the dedicated input component that is associated to
this field. That is, this filter is not used when validating
this field. A specific constraint can be used to perform
specific controls on this field. A filter is defined by

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 5.9.20 73

a Java class that implements the DatasetSetFilterAPI

interface of the Java API.

Validation properties
Each constraint not using a specific Java class can define localized validation messages with a severity
using the following properties:

Validation Defines a localized validation message with a user-defined
severity level.

 Severity Defines the severity level of the validation message.
Possible values are 'Error', 'Warning', and 'Information'.

 Error management
policy

Specifies the behavior of the constraint when validation
errors occur. It is possible to specify that the constraint
must always remain valid after an operation (dataset update,
record creation, update or deletion), or when a user submits
a form. In this case, any input or operation that would
violate the constraint will be rejected and the values will
remain unchanged. If not specified, the constraint only
blocks errors upon form submission by default, except for
foreign key constraints in relational data models where
errors are prevented for all operations by default. This
option is only available upon static controls, exclude values,
exclude segment and foreign key constraints. On foreign
key constraints the error management policy does not
concern filters. That is, a foreign key constraint is not
blocking if a referenced record exists but does not satisfy
a foreign key filter. In this case updates are not rejected
and a validation error occurs. It is not possible to specify
an error management policy on structural constraints that
are defined in relational data models, when table history or
replication is activated. That is, setting this property on fixed
length, maximum length, maximum number of digits and
decimal place constraints will raise an error at data model
compilation because of the underlying RDBMS blocking
constraints validation policy. This property is ineffective
when importing archives. That is, all blocking constraints,
excepted structural constraints, are always disabled when
importing archives.

 Message Defines the message to display if the value of this field in
a dataset does not comply with this constraint. If specifying
a custom message, you may optionally provide localized
variants.

Documentation > User Guide > Data models > Implementing data models > Data validation controls on elements

TIBCO EBX® Product Documentation 5.9.20 74

Related conceptsProperties of data model elements [p 53]

Documentation > User Guide > Data models > Implementing data models > Toolbars

TIBCO EBX® Product Documentation 5.9.20 75

CHAPTER 10
Toolbars

This chapter contains the following topics:

1. Definition

10.1 Definition
A toolbar allows to customize the buttons and menus that are displayed when viewing tables or records
in a dataset. The customization of toolbars can be performed in the data model via the 'Configuration'
section.

Add a toolbar from the Toolbars section of the navigation pane, by clicking on the arrow located
to the right of [All elements], then selecting the Create toolbar option. Follow the creation wizard
to create a toolbar. A toolbar defines the following information:

Name Toolbar's name. The name of the toolbar must be unique in
the context of the data model. That is, it is not allowed to
create several toolbars with the same name.

Label and description Internationalized labels and descriptions to be displayed to
end users.

Default template Allows to create a toolbar with the structure of a default
toolbar.

Locations Specifies the locations where the toolbar can be used in
associated datasets.

Defining the structure of a toolbar
A toolbar can define the following elements:

• Action button [p 77]

• Menu button [p 78]

• Separator [p 78]

• Menu group [p 79]

Documentation > User Guide > Data models > Implementing data models > Toolbars

TIBCO EBX® Product Documentation 5.9.20 76

• Action menu item [p 80]

• Sub menu item [p 81]

Add one of these elements under a toolbar or to an existing element by clicking on the arrow
located to the right of the existing element, and by selecting a creation option in the menu. Then,
follow the creation wizard to create an element.

Documentation > User Guide > Data models > Implementing data models > Toolbars

TIBCO EBX® Product Documentation 5.9.20 77

Action button
This type of element allows to associate an action to a button in a toolbar. The action will be triggered
when the user clicks on the associated button in one of the toolbars. A Action button type element
defines the following information:

Target Defines if the service is executed in the current context or in
a web component. A service executed in a web component
has no access to the current selection, but it is possible to
specify a selection and specific parameters.

Service Defines the service that will be executed when the user
clicks on the button. It is possible to select a built-in service,
or a user service defined in a module or in the current data
model. If the 'Web component' target is selected, the service
will have to be declared as available as a web component
for toolbars.

See alsoWebComponentDeclarationContext.
setAvailableAsToolbarActionAPI

Modal size Size of the modal window containing the web component.

Resizable Indicates if the modal window can be resized.

Parameters Service parameters. Those can be specified only if the target
is set to 'Web component'.

Label and description Internationalized labels and descriptions to be displayed to
end users.

Layout Defines how this element will be displayed in datasets using
the toolbar. It is possible to display: the icon only, the text
only, text with the icon to the left or text with the icon to
the right.

Icon Icon to display. It is possible to use an icon to choose from
a set of suggested icons, or to refer to an icon using a URL.

Is highlighted Indicates if the button should be highlighted by default.

Note

A Action button type element can only be created under a toolbar type element.

Documentation > User Guide > Data models > Implementing data models > Toolbars

TIBCO EBX® Product Documentation 5.9.20 78

Menu button
This type of element allows to define a menu that will be displayed when the user clicks on the
associated button in a toolbar. An element of the Menu button type defines the following information:

Label and description Internationalized labels and descriptions to be displayed to
end users.

Layout Defines how this element will be displayed in datasets using
the toolbar. It is possible to display: the icon only, the text
only, text with the icon to the left or text with the icon to
the right.

Icon Icon to display. It is possible to use an icon to choose from
a set of suggested icons, or to refer to an icon using a URL.

Is highlighted Indicates if the button should be highlighted by default.

Note

An element of the Menu button type can only be created under an element of the toolbar
type.

Separator
This type of element allows to insert a separator in the form of spacing between two elements of a
toolbar.

Note

An element of the Separator type can only be created under an element of the toolbar
type.

Documentation > User Guide > Data models > Implementing data models > Toolbars

TIBCO EBX® Product Documentation 5.9.20 79

Menu group
This type of element allows to define a group of elements in a menu. An element of the Menu group
type defines the following information:

Label and description Internationalized labels and descriptions to be displayed to
end users.

Group type Specifies the type of menu group to create: - 'Local' allows
to create an empty fully customizable menu group. - 'Service
group' allows to assign an existing service group to this
menu group. - 'Menu builder' allows to assign a predefined
menu content to this menu group. Once created, it is not
possible to change the type of this menu group.

Service group name Specifies an existing group of services to reuse. A group
is declared in a module and can include other groups
of services. All services contained in this group will be
displayed to end users in associated datasets.

Menu builder name Specifies the predefined menu content to assign to this menu
group: - 'Default menu "Actions"' has the same content as
the default toolbar 'Actions' menu. Standard and custom
services are displayed without distinction. - 'Default menu
"Actions" (with separator)' has the same menu content as
above, but displays differently since standard and custom
services are separated (standard services first, then custom
services).

Excluded services Indicates the services to exclude from the group of reused
services. These services will not be displayed to end users
in associated datasets.

Excluded service groups Indicates the groups to exclude from the group of services
to reuse. Services in excluded groups will not be displayed
to end users in associated datasets.

Filtering policy In case of "Smart filtering", services that are configured in
direct access, i.e. via an action button or an action menu
item, will be removed from the automatic generation of this
group.

Note

An element of the Menu group type can only be created under the following elements:

• Menu button

Documentation > User Guide > Data models > Implementing data models > Toolbars

TIBCO EBX® Product Documentation 5.9.20 80

• Sub menu item

Action menu item
This type of element allows to associate an action to a menu item in a toolbar. The action will be
triggered when the user clicks on the corresponding item in a menu. An element of the Action menu
item type defines the following information:

Label and description Internationalized labels and descriptions to be displayed to
end users.

Target Defines if the service is executed in the current context or in
a web component. A service executed in a web component
has no access to the current selection, but it is possible to
specify a selection and specific parameters.

Service Defines the service that will be executed when the user
clicks on the button. It is possible to select a built-in service,
or a user service defined in a module or in the current data
model. If the 'Web component' target is selected, the service
will have to be declared as available as a web component
for toolbars.

See alsoWebComponentDeclarationContext.
setAvailableAsToolbarActionAPI

Modal size Size of the modal window containing the web component.

Resizable Indicates if the modal window can be resized.

Parameters Service parameters. Those can be specified only if the target
is set to 'Web component'.

Note

An element of the Action menu item type can only be created under a Menu group type
element.

Documentation > User Guide > Data models > Implementing data models > Toolbars

TIBCO EBX® Product Documentation 5.9.20 81

Sub menu item
This type of element allows to add a sub menu to a toolbar menu. Un Sub menu item defines the
following information:

Label and description Internationalized labels and descriptions to be displayed to
end users.

Note

An element of the Sub menu item type can only be created under an element of the Menu
group type.

Deleting elements

All the elements of a toolbar can be deleted from it by using the arrow located to the right of the
element to be deleted.
If an element containing other elements is deleted, then the deletion is recursively performed on all
elements located below the deleted element.

Duplicating existing elements

To duplicate an element, click on the arrow located to the right of the element to duplicate. Specify
the name and properties of the duplicated element. All the source element properties are duplicated.
The duplicated element is added on the same level than the original element, in the final position.
When an element containing other elements is duplicated, all the sub-elements are duplicated with
their properties.

Moving elements

In order to move an element, click on the arrow and select the moving option to be used.

Associate with existing tables

To associate a toolbar with existing tables, click on the arrow located to the right of the toolbar
and select the option Associate to tables. This service allows to set the toolbar has the default toolbar
of several tables in one shot. To do so, specify the target locations of the toolbar and select the tables
or complex data types, that define table properties, to be associated with the toolbar.

Documentation > User Guide > Data models > Implementing data models > Toolbars

TIBCO EBX® Product Documentation 5.9.20 82

Exporting the toolbars
It is possible to export the toolbars defined in the model into an XML document. To do so, select
the XML export option available in the Actions menu of the 'Toolbars' section. Follow the wizard to
export the toolbars.

Note

A selection of toolbars can be exported by selecting in the 'Toolbars' section the toolbars
to be exported and then by selecting the XML export option available in the Actions menu.
The toolbars can also be exported by using the data model export service. It can be found
in the Data model 'Actions' [p 35] menu in the navigation pane.

See alsoXML Schema Document (XSD) import and export [p 83]

Importing toolbars
It is possible to import existing toolbars from an XML document. To do so, select the XML import
option available in the Actions menu of the 'Toolbars' section. Then follow the wizard to import the
toolbars.

Note

The toolbars can also be imported by using the data model import service accessible via
the Data model 'Actions' [p 35] menu in the navigation pane.

See alsoXML Schema Document (XSD) import and export [p 83]

See also Use of toolbars [p 63]

Documentation > User Guide > Data models > Implementing data models > Working with an existing data model

TIBCO EBX® Product Documentation 5.9.20 83

CHAPTER 11
Working with an existing data model

Once your data model has been created, you can perform a number of actions that are available from
the data model 'Actions' [p 35] menu in the workspace.
This chapter contains the following topics:

1. Validating a data model

2. XML Schema Document (XSD) import and export

3. Duplicating a data model

4. Deleting a data model

11.1 Validating a data model
To validate a data model at any time, select Actions > Validate from the navigation pane. The
generated report provides the results of the validation. From the validation report, you have the option
to update the reported validation status by clicking the Revalidate button, or to click the Reinitialize
validation report button to clear the current validation report associated with the data model in order
to be able to rerun a full validation from scratch.

Note

The validation process checks basic data model integrity, but more complex checks are
only performed at publication time. More messages may be reported when you try to
publish your data model.

See Validation [p 300] for detailed information on incremental data validation.

11.2 XML Schema Document (XSD) import and export
TIBCO EBX includes built-in data model services to import from and export to XML Schema
Document (XSD) files. XSD imports and exports can be performed from the data model 'Actions' [p
35] menu of the target data model in the navigation pane. An XSD import or export is always performed
in the context of a single data model. That is, during imports, the structure of the target data model is
completely replaced with the content of the imported XSD. Similarly, during exports, the entire data
model is included in the XSD file.
When importing an XSD file, the file must be well-formed and must comply with EBX validation
rules. If this document declares resources that are located in a module, the module must also be
declared in the configuration of the data model. If the module has not been declared, you will not

Documentation > User Guide > Data models > Implementing data models > Working with an existing data model

TIBCO EBX® Product Documentation 5.9.20 84

be able to import the XSD file. See Data model properties [p 42] for more information on declaring
modules.
To perform an import select 'Import XSD' from the data model 'Actions' [p 35] menu of the data model
into which you are importing.
You can import an XML Schema Document (XSD) from the local file system. To do so, click the
'From a local document' button in the import wizard and follow the next step:

• Document name: path on the local file system of the XSD file to import.

You can also import a data model in an XSD that is packaged in a module. The import of a data model
in XSD format from a module uses the following properties:

Module Module in which the data model is packaged.

Module path Path to the module containing the data model.

Source path Path to Java source used to configure business objects and
rules.
This property is required if the data model being imported
defines programmatic elements.

Model The data model in the module to import.

Note

Imported XSD files must be encoded in 'UTF-8'. Exported XSD files are always encoded
in 'UTF-8'.

11.3 Duplicating a data model
To duplicate a data model, select 'Duplicate' from the data model 'Actions' [p 35] menu for that data
model. You must give the new data model a name that is unique in the repository.

11.4 Deleting a data model
To delete a data model, select 'Delete' from the data model 'Actions' [p 35] menu for that data model.
When you delete a data model, all of its existing publications will remain and continue to be accessible
to their associated datasets. If you recreate a new data model with the same name as one that was
previously deleted, the new data model will be reassociated with all the existing publications in the
repository. At publication time of the new data model, you will have the opportunity to confirm the
replacement of an existing publication.

Note

Only an administrator can clean up the publications of deleted data models in the
'Administration' area.

See Publishing data models [p 85] for more information on the publication process.

Documentation > User Guide > Data models > Publishing and versioning data models > Publishing a data model

TIBCO EBX® Product Documentation 5.9.20 85

CHAPTER 12
Publishing a data model

This chapter contains the following topics:

1. About publications

2. Publication modes

3. Embedded publication mode

12.1 About publications
Each dataset based on an embedded data model in the TIBCO EBX repository is associated with a
publication of a data model, rather than directly to the data model itself. The first time you publish
a data model using the Publish button in the navigation pane, a publication is created. Once the
publication exists, datasets can be created based upon it.

Note

The Publish button is only displayed to users who have permission to publish the data
model. See Data model permissions [p 41] for more information.

As datasets are based on publications, any modifications you make to a data model will only take effect
on existing datasets when you republish to the publication associated with those datasets. When you
republish a data model to an existing publication, all existing datasets associated with that particular
publication are updated.

12.2 Publication modes
You can publish a data model using either 'Embedded' mode or 'In module' mode. The 'Embedded'
publication mode generates a publication that is managed and persisted within the EBX repository and
thus has associated versioning and rollback functionality. The 'In module' publication mode creates an
XML Schema Document contained in a module that is not managed or versioned within the repository.
Depending on the configuration of the data model, EBX automatically determines the publication
process to use when you click the Publish button in the navigation pane. When a data model specifies
the publication mode 'In module' and provides a target XSD to be generated, the publication process
generates an XSD file contained in the module defined in the configuration.

Documentation > User Guide > Data models > Publishing and versioning data models > Publishing a data model

TIBCO EBX® Product Documentation 5.9.20 86

12.3 Embedded publication mode
The first time you publish a given embedded data model, a new publication with the same name as
your data model is automatically created in the repository. If more than one publication has already
been created for this model, you will need to select a target publication for this process.
See Viewing and creating publications [p 86] for more information on the use of different
publications.
During the publication process, you have the opportunity to review the structural differences being
introduced by the current publication in a side-by-side comparison view, if the data model has
previously been published.
The publication process also offers the option to create a read-only snapshot of the current state of
the data model for reference purposes. This snapshot can be useful if the data model ever needs to be
rolled back to the current state after other modifications have been made.

Note

Snapshots, which are static archives of the state of the data model, must not be confused
with data model versions, which act instead as parallel evolving branches of the data
model. See Versioning embedded data models [p 87] for more information on data
model versions.

Viewing and creating publications
To access the publications that exist for the current data model, select 'Manage publications' from its
data model 'Actions' [p 35] menu in the navigation pane. From there, you can view the details of the
publications and create new publications.
In certain cases, it may be necessary to employ several publications of the same data model, in order
to allow datasets to be based on different states of that data model. Multiple publications must be
handled carefully, as users will be asked to select an available publications to target when publishing
if more than one exists. The action to create a new publication is only available to users who belong
to the 'Administrator' role.
To create a new publication, select 'Manage publications' from the data model 'Actions' [p 35] menu
of the data model in the navigation pane, then click the Create publication button. The name you
give to the publication must unique in the repository.

Documentation > User Guide > Data models > Publishing and versioning data models > Versioning a data model

TIBCO EBX® Product Documentation 5.9.20 87

CHAPTER 13
Versioning a data model

This chapter contains the following topics:

1. About versions

2. Accessing versions

3. Working with versions

4. Known limitations on data model versioning

13.1 About versions
You can create versions for data models that evolve in parallel. Versions are not to be confused with
data model snapshots, which are taken at publication time and kept strictly for historical read-only
reference.

13.2 Accessing versions
To see the existing versions of your data model, select 'Manage versions' from the data model
'Actions' [p 35] menu of the data model.
The existing versions are represented in a tree format according to their parent-child relationships.
Every data model has a root version by default, with the same name as the data model.

Documentation > User Guide > Data models > Publishing and versioning data models > Versioning a data model

TIBCO EBX® Product Documentation 5.9.20 88

13.3 Working with versions
In the workspace, using the down arrow menu next to each version, you can perform the following
actions:

Access data model version Go to the corresponding version of the data model.

Create version Creates a new version based on the contents of the selected
version. The new version is added as a child of the selected
version, though its contents bear no relation to those of its
parent version after creation.

Set as default version Sets the selected version as the default version opened when
users access the data model.

Export archive Exports the selected data model version to an archive
containing the version's content, including its permissions
and information. The exported archive is located in
the archives directory, which is accessible to repository
administrators. Exporting to an existing archive name will
overwrite the existing file.
See Archives directory [p 376] for more information.

Import archive Imports the content of an archive into the selected version.
The archive to import must contain a data model with the
same name as the data model associated with the version.

A version can be deleted by clicking the X button to the right of its entry. A version cannot be deleted
if it is linked to a publication or if it has child versions. The root version of a data model also cannot
be deleted.
Two versions of the same data model can be compared in the workspace by selecting their checkboxes,
then selecting Actions > Compare selected versions. The side-by-side comparison shows structural
differences between the version of the data model, with the older version on the left and the newer
version on the right.

13.4 Known limitations on data model versioning
• It is not possible to merge two versions of a data model.

• The comparison interface does not display updates on fields, only additions and deletions.

• Versioning of data models packaged in modules is not supported.

• Resources packaged in a module that are used by an embedded data model are not versioned when
a version is created. That is, only the reference of the resources are saved during the creation of
a version, and it is the responsibility of developers to ensure that the content of the referenced
resources are compatible with any versions that may be using them.

Documentation > User Guide

TIBCO EBX® Product Documentation 5.9.20 89

Dataspaces

Documentation > User Guide > Dataspaces > Introduction to dataspaces

TIBCO EBX® Product Documentation 5.9.20 90

CHAPTER 14
Introduction to dataspaces

This chapter contains the following topics:

1. Overview

2. Using the Dataspaces area user interface

14.1 Overview

What is a dataspace?
The life cycle of data can be complex. It may be necessary to manage a current version of data while
working on several concurrent updates that will be integrated in the future, including keeping a trace
of various states along the way. In TIBCO EBX, this is made possible through the use of dataspaces
and snapshots.
A dataspace is a container that isolates different versions of datasets and organizes them. A dataspace
can be branched by creating a child dataspace, which is automatically initialized with the state of
its parent. Thus, modifications can be made in isolation in the child dataspace without impacting its
parent or any other dataspaces. Once modifications in a child dataspace are complete, that dataspace
can be compared with and merged back into the parent dataspace.

Documentation > User Guide > Dataspaces > Introduction to dataspaces

TIBCO EBX® Product Documentation 5.9.20 91

Snapshots, which are static, read-only captures of the state of a dataspace at a given point in time,
can be taken for reference purposes. Snapshots can be used to revert the content of a dataspace later,
if needed.

Basic concepts related to dataspaces
A basic understanding of the following terms is beneficial when working with dataspaces:

• dataspace [p 28]

• snapshot [p 28]

• dataset [p 26]

• dataspace merge [p 28]

• reference dataspace [p 28]

14.2 Using the Dataspaces area user interface
Dataspaces can be created, accessed and modified in the Dataspaces area.

Note

This area is available only to authorized users in the 'Advanced perspective'.

Documentation > User Guide > Dataspaces > Introduction to dataspaces

TIBCO EBX® Product Documentation 5.9.20 92

The navigation pane displays all existing dataspaces, while the workspace displays information about
the selected dataspace and lists its snapshots.

See also

Creating a dataspace [p 93]

Snapshots [p 103]

Related conceptsDatasets [p 108]

Documentation > User Guide > Dataspaces > Creating a dataspace

TIBCO EBX® Product Documentation 5.9.20 93

CHAPTER 15
Creating a dataspace

This chapter contains the following topics:

1. Overview

2. Properties

3. Relational mode

15.1 Overview
By default, dataspaces in TIBCO EBX are in semantic mode. This mode offers full-featured data life
cycle management.
To create a new dataspace in the default semantic mode, select an existing dataspace on which to base
it, then click the Create a dataspace button in the workspace.

Note

This area is available only to authorized users in the 'Advanced perspective'.

The new dataspace will be a child dataspace of the one from which it was created. It will be initialized
with all the content of the parent at the time of creation, and an initial snapshot will be taken of this
state.
Aside from the reference dataspace, which is the root of all semantic dataspaces in the repository,
semantic dataspaces are always a child of another dataspace.

See alsoRelational mode [p 94]

Documentation > User Guide > Dataspaces > Creating a dataspace

TIBCO EBX® Product Documentation 5.9.20 94

15.2 Properties
The following information is required at the creation of a new dataspace:

Identifier Unique identifier for the dataspace.

Owner Owner of the dataspace, who is, by default, allowed to
modify its information and permissions. The owner does not
necessarily have to be the creator of the dataspace.

Label Localized label and description associated with the
dataspace.

Relational mode Whether or not this dataspace is in relational mode. This
option only exists when creating a new dataspace from the
reference dataspace.

15.3 Relational mode
Dataspaces in relational mode can only be created from the reference dataspace. They offer limited
functionality compared to dataspaces in semantic mode. For instance, dataspaces in relational mode
do not handle snapshots or support child dataspaces.
Relational mode indicates that the tables of data in this dataspace are stored directly in an RDBMS.

See alsoRelational mode [p 245]

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 5.9.20 95

CHAPTER 16
Working with existing dataspaces

This chapter contains the following topics:

1. Dataspace information

2. Dataspace permissions

3. Merging a dataspace

4. Comparing a dataspace

5. Validating a dataspace

6. Dataspace archives

7. Closing a dataspace

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 5.9.20 96

16.1 Dataspace information
Certain properties associated with a dataspace can be modified by selecting Actions > Information
from the navigation panel in the Dataspaces area.

Documentation Localized labels and descriptions associated with the
dataspace.

Loading strategy Only administrators can modify this setting.

• On demand loading and unloading: The main
advantage of this strategy is the ability to free memory
when needed. Its disadvantage is the performance cost
associated with a resource being accessed for the first
time since server startup, or accessed after having been
unloaded. This is the default mode.

• Forced loading: This mode is recommended for
dataspaces and snapshots used heavily or demanding in
terms of response time.

• Forced loading and prevalidation: This mode
is recommended for dataspaces and snapshots used
heavily or demanding in terms of response time, and
where the validation process can be time-intensive.

Note: Whenever the loading strategy is changed, you must
restart the server for the new setting to take effect.

Child merge policy This merge policy only applies to user-initiated merge
processes; it does not apply to programmatic merges, for
example, those performed by workflow script tasks.
The available merge policies are:

• Allows validation errors in result: Child dataspaces
can be merged regardless of the validation result. This
is the default policy.

• Pre-validating merge: A child dataspace can only be
merged if the result would be valid.

Current Owner Owner of the dataspace, who is, by default, allowed to
modify its information and permissions. The owner does not
necessarily have to be the creator of the dataspace.

Child dataspace sort policy Defines the display order of child dataspaces in dataspace
trees. If not defined, the policy of the parent dataspace is
applied. Default is 'by label'.

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 5.9.20 97

Change owner Whether the current owner of the dataspace is allowed
to give ownership to another profile by modifying its
'Current owner' property. If the value is 'Forbidden', only an
administrator can modify the owner.

Change permissions Whether the current owner of the dataspace is allowed to
modify its permissions. If the value is 'Forbidden', only an
administrator can modify the permissions of the dataspace.

16.2 Dataspace permissions

General permissions

Dataspace id The dataspace to which the permissions will apply.

Profile selection The profile to which the rule applies.

Restriction policy Whether these permissions restrict the permissions assigned
to a given user through policies defined for other profiles.
See Restriction policy [p 283].

Dataspace access The global access permission on the dataspace.
Read-only

• Can see the dataspace and its snapshots, as well as child
dataspaces, according to their permissions.

• Can see the contents of the dataspace depending on
their permissions; cannot make modifications.

Write

• Can see the dataspace and its snapshots, as well as child
dataspaces, according to their permissions.

• Can modify the contents of the dataspace depending on
their permissions.

Hidden

• Cannot see the dataspace nor its snapshots directly.

• From a child dataspace, the current dataspace can be
seen but not selected.

• Cannot access the contents of the dataspace.

• Cannot perform any actions on the dataspace.

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 5.9.20 98

Allowable actions
Users can be allowed to perform the following actions:

Create a child dataspace Whether the profile can create child dataspaces.

Create a snapshot Whether the profile can create snapshots from the
dataspace.

Initiate merge Whether the profile can merge the dataspace with its parent.

Export archive Whether the profile can perform exports.

Import archive Whether the profile can perform imports.

Close dataspace Whether the profile can close the dataspace.

Close snapshot Whether the profile can close snapshots of the dataspace.

Rights on services Specifies the access permissions for services.

Permissions of child dataspaces
when created

Specifies the default access permissions for child dataspaces
that are created from the current dataspace.

16.3 Merging a dataspace
When the work in a given dataspace is complete, you can perform a one-way merge of the dataspace
back into the dataspace from which it was created. The merge process is as follows:

1. Both the parent and child dataspaces are locked to all users, except the user who initiated the
merge and administrator users. These locks remain for the duration of the merge operation. When
locked, the contents of a dataspace can be read, but they cannot be modified in any way.
Note: This restriction on the parent dataspace means that, in addition to blocking direct
modifications, other child dataspaces cannot be merged until the merge in progress is finished.

2. Changes that were made in the child dataspace since its creation are integrated into its parent
dataspace.

3. The child dataspace is closed.

4. The parent dataspace is unlocked.

Initiating a merge
To merge a dataspace into its parent dataspace:

1. Select that dataspace in the navigation pane of the Dataspaces area.

2. In the workspace, select Merge dataspace from the Actions menu.

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 5.9.20 99

Reviewing and accepting changes
After initiating a dataspace merge, you must review the changes that have been made in the child
(source) dataspace since its creation, to decide which of those changes to apply to the parent (target)
dataspace.

Note

This change set review and acceptance stage is bypassed when performing merges
using data services or programmatically. For automated merges, all changes in the child
dataspace override the data in the parent dataspace.

The change acceptance process uses a side-by-side comparison interface that recapitulates the changes
that require review. Two change set columns are obtained by taking the relevant changes from the
following dataspace state comparisons:

• The current child dataspace compared to its initial snapshot.

• The parent dataspace compared to the initial snapshot of the child dataspace.

By default, all detected changes are selected to be merged. You may deselect any changes that you
want to omit from the merge. You can view the changes relevant to different scopes in your data model
by selecting elements in the navigation pane.
In order to detect conflicts, the merge involves the current dataspace, its initial snapshot and the parent
dataspace, because data is likely to be modified both in the current dataspace and its parent.
The merge process also handles modifications to permissions on tables in the dataspace. As with other
changes, access control changes must be reviewed for inclusion in the merge.
When you have decided which changes to merge for a given scope, you must click the button Mark
difference(s) as reviewed to indicate that you have reviewed all the changes in that scope. All changes
must be reviewed in order to proceed with the merge.

Types of modifications
The merge process considers the following changes as modifications to be reviewed:

• Record and dataset creations

• Any changes to existing data

• Record, dataset, or value deletions

• Any changes to table permissions

Types of conflicts
This review interface also shows conflicts that have been detected. Conflicts may arise when the same
scope contains modifications in both the source and target dataspaces.
Conflicts are categorized as follows:

• A record or a dataset creation conflict

• An entity modification conflict

• A record or dataset deletion conflict

• All other conflicts

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 5.9.20 100

Finalizing a merge
Once you have reviewed all changes and decided which to include in the merge result, click on the
Merge >> button in the navigation pane.
Depending on the child merge policy that is configured on the parent dataspace in your merge, the
subsequent process may differ. By default, merges are finalized even if the result would contain
validation errors. The administrator of the parent dataspace in your merge can set its child merge policy
so that merges of its children are only finalized if the result would not contain any validation errors.
If, however, the administrator of the parent dataspace has set its child merge policy to 'Pre-validating
merge', a dedicated dataspace is first created to hold the result of the merge. When the result is valid,
this dedicated dataspace containing the merge result is automatically merged into the parent dataspace,
and no further action is required.
In the case where validation errors are detected in the dedicated merge dataspace, you only have access
to the original parent dataspace and the dataspace containing the merge result, named "[merge] <
name of child dataspace >". The following options are available to you from the Actions > Merge
in progress menu in the workspace:

• Cancel, which abandons the merge and recuperates the child dataspace in its pre-merge state.

• Continue, which you can use to reattempt the merge after you have made the necessary
corrections to the dedicated merge dataspace.

Setting the child merge policy of a dataspace
As the administrator of a dataspace, you can block the finalization of merges of its child dataspaces
through the user interface when the merges would result in a dataspace with validation errors. To do
so, select Actions > Information from the workspace of the parent dataspace. On the dataspace's
information page, set the Child merge policy to Pre-validating merge. This policy will then be
applied to the merges of all child dataspaces into this parent dataspace.

Note

When the merge is performed through a Web Component, the behavior of the child
merge policy is the same as described; the policy defined in the parent dataspace is
automatically applied when merging a child dataspace. However, this setting is ignored
during programmatic merge, which includes script tasks in data workflows.

See alsoChild merge policy [p 100]

Abandoning a merge
Merges are performed in the context of a user session, and must be completed in a single operation.
If you decide not to proceed with a merge that you have initiated, you can click the Cancel button
to abandon the operation.
If you navigate to another page after initiating a merge, the merge will be abandoned, but the locks
on the parent and child dataspaces will remain until you unlock them in the Dataspaces area.
You may unlock a dataspace by selecting it in the navigation pane, and clicking the Unlock button
in the workspace. Performing the unlock from the child dataspace unlocks both the child and parent
dataspaces. Performing the unlock from the parent dataspace only unlocks the parent dataspace, thus
you need to unlock the child dataspace separately.

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 5.9.20 101

16.4 Comparing a dataspace
You can compare the contents of a dataspace to those of another dataspace or snapshot in the repository.
To perform a comparison, select the dataspace in the navigation pane, then select Actions > Compare
from the workspace.
The comparison wizard prompts you to select the dataspace or snapshot with which to compare the
current dataspace.
For a faster comparison that ignores fields with inherited and computed values, select the filter
'Persisted values only'.

See alsoCompare contents [p 211]

16.5 Validating a dataspace
To perform a global validation of the contents of a dataspace, select that dataspace in the navigation
panel, then select Actions > Validate in the workspace.

Note

This service is only available in the user interface if you have permission to validate
every dataset contained in the current dataspace.

16.6 Dataspace archives
The content of a dataspace can be exported to an archive or imported from an archive.

Exporting
To export a dataspace to an archive, select that dataspace in the navigation panel, then select Actions
> Export in the workspace. Once exported, the archive file is saved to the file system of the server,
where only an administrator can retrieve the file.

Note

See Archives directory [p 376] in the Administration Guide for more information.

Documentation > User Guide > Dataspaces > Working with existing dataspaces

TIBCO EBX® Product Documentation 5.9.20 102

In order to export an archive, the following information must be specified:

Name of the archive to create The name of the exported archive.

Export policy Required.
The default export policy is 'The whole content of the
dataspace', which exports all selected data to the archive.
It may be useful to export only the differences between the
dataspace and its initial snapshot using a change set. There
are two different export options that include a change set:
'The updates with their whole content' and 'The updates
only'. The first option exports all current data and a change
set containing differences between the current state and the
initial snapshot. The second option only exports the change
set. Both options lead to a comparison page, where you
can select the differences to include in this change set.
Differences are detected at the table level.

Datasets to export The datasets to export from this dataspace. For each
dataset, you can export its data values, permissions, and/or
information.

Importing
To import content into a dataspace from an archive, select that dataspace in the navigation panel, then
select Actions > Import in the workspace.
If the selected archive does not include a change set, the current state of the dataspace will be replaced
with the content of the archive.
If the selected archive includes the whole content as well as a change set, you can choose to apply the
change set in order to merge the change set differences with the current state. Applying the change
set leads to a comparison screen, where you can then select the change set differences to merge.
If the selected archive only includes a change set, you can select the change set differences to merge
on a comparison screen.

16.7 Closing a dataspace
If a dataspace is no longer needed, it can be closed. Once it is closed, a dataspace no longer appears
in the Dataspaces area of the user interface, nor can it be accessed.
An administrator can reopen a closed dataspace as long as it has not been cleaned from the repository.
To close a dataspace, select Actions > Close this dataspace .

See alsoClosing unused dataspaces and snapshots [p 378]

Documentation > User Guide > Dataspaces > Snapshots

TIBCO EBX® Product Documentation 5.9.20 103

CHAPTER 17
Snapshots

This chapter contains the following topics:

1. Overview of snapshots

2. Creating a snapshot

3. Viewing snapshot contents

4. Snapshot information

5. Comparing a snapshot

6. Validating a snapshot

7. Export

8. Closing a snapshot

17.1 Overview of snapshots
A snapshot is a read-only copy of a dataspace. Snapshots exist as a record of the state and contents
of a dataspace at a given point in time.

See alsoSnapshot [p 28]

17.2 Creating a snapshot
A snapshot can be created from a dataspace by selecting that dataspace in the navigation pane of the
Dataspaces area, then selecting Actions > Create a Snapshot in the workspace.
The following information is required:

Identifier Unique identifier for the snapshot.

Label Localized labels and descriptions associated with the
snapshot.

Documentation > User Guide > Dataspaces > Snapshots

TIBCO EBX® Product Documentation 5.9.20 104

17.3 Viewing snapshot contents
To view the contents of a snapshot, select the snapshot, then select Actions > View datasets from
the workspace.

17.4 Snapshot information
You can modify the information associated with a snapshot by selecting Actions > Information.

Documentation Localized labels and descriptions associated with the
snapshot.

Loading strategy Only administrators can modify this setting. See Loading
strategy [p 96].

Current Owner Owner of the snapshot, who is, by default, allowed to
modify its information and permissions. The owner does not
necessarily have to be the creator of the snapshot.

Change owner Whether the current owner of the snapshot is allowed
to give ownership to another profile by modifying its
'Current owner' property. If the value is 'Forbidden', only an
administrator can modify the owner.

17.5 Comparing a snapshot
You can compare the contents of a snapshot to those of another snapshot or dataspace in the repository.
To perform a comparison, select the snapshot, then select Actions > Compare from the workspace.
The comparison wizard prompts you to select the dataspace or snapshot with which to compare the
current snapshot.
For a faster comparison that ignores fields with inherited and computed values, select the filter
'Persisted values only'.

See alsoCompare contents [p 211]

17.6 Validating a snapshot
To perform a global validation of the contents of a snapshot, select Actions > Validate in the
workspace.

Note

In order to use this service, you must have permission to validate every dataset contained
in the snapshot.

Documentation > User Guide > Dataspaces > Snapshots

TIBCO EBX® Product Documentation 5.9.20 105

17.7 Export
To export a snapshot to an archive, open that snapshot, then select Actions > Export in the workspace.
Once exported, only an administrator can retrieve the archive.

Note

See Archives directory [p 376] in the Administration Guide for more information.

In order to export an archive, the following information must be specified:

Name of the archive to create The name of the exported archive.

Datasets to export The datasets to export from this snapshot. For each
dataset, you can choose whether to export its data values,
permissions, and information.

17.8 Closing a snapshot
If a snapshot is no longer needed, it can be closed. Once it is closed, a snapshot no longer appears
under its associated dataspace in the Dataspaces area, nor can it be accessed.
An administrator can reopen a closed dataspace as long as it has not been cleaned from the repository.
To close a snapshot, select Actions > Close this snapshot.

See alsoClosing unused dataspaces and snapshots [p 378]

Documentation > User Guide > Dataspaces > Snapshots

TIBCO EBX® Product Documentation 5.9.20 106

Documentation > User Guide

TIBCO EBX® Product Documentation 5.9.20 107

Datasets

Documentation > User Guide > Datasets > Introduction to datasets

TIBCO EBX® Product Documentation 5.9.20 108

CHAPTER 18
Introduction to datasets

This chapter contains the following topics:

1. Overview

2. Using the Data user interface

18.1 Overview

What is a dataset?
A dataset is a container for data that is based on the structural definition provided by its underlying data
model. When a data model has been published, it is possible to create datasets based on its definition. If
that data model is later modified and republished, all its associated datasets are automatically updated
to match.
In a dataset, you can consult actual data values and work with them. The views applied to tables allow
representing data in a way that is most suitable to the nature of the data and how it needs to be accessed.
Searches and filters can also be used to narrow down and find data.
Different permissions can also be accorded to different roles to control access at the dataset level.
Thus, using customized permissions, it would be possible to allow certain users to view and modify
a piece of data, while hiding it from others.

Basic concepts related to datasets
A basic understanding of the following terms is beneficial when working with datasets:

• dataspace [p 28]

• dataset [p 26]

• record [p 26]

• field [p 25]

• primary key [p 25]

• foreign key [p 25]

• table (in dataset) [p 26]

• group [p 25]

Documentation > User Guide > Datasets > Introduction to datasets

TIBCO EBX® Product Documentation 5.9.20 109

18.2 Using the Data user interface
Datasets can be created, accessed and modified in the Data area using the Advanced perspective [p 17]

or from a specifically configured perspective. Only authorized users can access these interfaces.

Select or create a dataset using the 'Select dataset' menu in the navigation pane. The data structure of
the dataset is then displayed in the navigation pane, while record forms and table views are displayed
in the workspace.

When viewing a table of the dataset in the workspace, the button displays searches and filters that
can be applied to narrow down the records that are displayed.
Operations at the dataset level are located in the Actions menu in the navigation pane (services are
available at the bottom of the list).

See also

Creating a dataset [p 111]

Searching and filtering data [p 114]

Working with records in the user interface [p 121]

Inheritance [p 27]

Related concepts

Data model [p 34]

Dataspace [p 90]

Documentation > User Guide > Datasets > Introduction to datasets

TIBCO EBX® Product Documentation 5.9.20 110

Documentation > User Guide > Datasets > Creating a dataset

TIBCO EBX® Product Documentation 5.9.20 111

CHAPTER 19
Creating a dataset

This chapter contains the following topics:

1. Creating a root dataset

2. Creating an inheriting child dataset

19.1 Creating a root dataset
To create a new root dataset, that is, one that does not inherit from a parent dataset, select the 'Select

dataset [p 109]' menu in the navigation pane, click the 'Create a dataset' button in the pop-up, and
follow through the wizard.

Note

This area is available only to authorized users in the 'Advanced perspective' or from a
specifically configured perspective.

The wizard allows you to select one of three data model packaging modes on which to base the new
dataset: packaged, embedded, or external.

• A packaged data model is a data model that is located within a module, which is a web application.

• An embedded data model is a data model that is managed entirely within the TIBCO EBX
repository.

• An external data model is one that is stored outside of the repository and is referenced using its
URI.

After locating the data model on which to base your dataset, you must provide a unique name, without
spaces or special characters. Optionally, you may provide localized labels for the dataset, which will
be displayed to users in the user interface depending on their language preferences.

Attention
Table contents are not copied when duplicating a dataset.

Documentation > User Guide > Datasets > Creating a dataset

TIBCO EBX® Product Documentation 5.9.20 112

19.2 Creating an inheriting child dataset
The inheritance mechanism allows datasets to have parent-child relationships, through which default
values are inherited from ancestors by descendants. In order to be able to create child datasets, dataset
inheritance must be enabled in the underlying data model.

To create a child dataset, select the 'Select dataset [p 109]' menu in the navigation pane, then click
the button next to the desired parent dataset.
As the dataset will automatically be based on the same data model as the parent dataset, the only
information that you need to provide is a unique name, and optionally, localized labels.

See alsoDataset inheritance [p 127]

Documentation > User Guide > Datasets > Viewing table data

TIBCO EBX® Product Documentation 5.9.20 113

CHAPTER 20
Viewing table data

TIBCO EBX offers a customization mechanism for tables via the 'Views' feature. A view allows
specifying which columns should be displayed as well as the display order. Views can be managed by
profile thanks to the recommended views [p 118] concept.
This chapter contains the following topics:

1. 'View' menu

2. Sorting data

3. Searching and filtering data

4. Views

5. Views management

6. Grid edit

7. History

20.1 'View' menu
The 'View' drop-down menu allows accessing all available views and management features.
Views are managed in a dedicated sub-menu: 'Manage views' [p 119].
Views can also be grouped. An administrator has to define groups beforehand in 'Views configuration'
under the 'Groups of views' table. The end-user can then set a view as belonging to a group through
the field 'View group' upon creation or modification of the view. See 'View description' [p 116] for
more information.

20.2 Sorting data
To simply sort a single column in a table, click on the column title. The first click will sort by ascending
order and a second click will reverse the sorting.
Note that the default order is by ascending primary key.
For more advanced sorting, custom sort criteria allow specifying the display order of records.
To define custom sort criteria, click on the 'Select and sort' button in the workspace.
Each sort criterion is defined by a column name and a sort direction, that is, ascending or descending.
Use the 'Move left' or 'Move right' arrows to add or remove a criterion from the 'Sorted' table. When

Documentation > User Guide > Datasets > Viewing table data

TIBCO EBX® Product Documentation 5.9.20 114

a criterion is highlighted, you can set its sort direction by clicking on the 'ASC' or 'DESC' button to
the right.
To change the priority of a sort criterion, highlight it in the list, then use the up and down arrow buttons
to move it.
To remove a custom sort order that is currently applied, select View > Reset.

20.3 Searching and filtering data
The feature for searching and filtering records is accessible via the icon in the workspace.
When criteria are defined for a search or filter, a checkbox appears in the title bar of the pane to apply
the filter. When unchecked, the search or filter is not applied.

Note

Applying a view resets and removes all currently applied searches and filters.

Search
In simple mode, the 'Search' tool allows adding type-contextual search criteria to one or more fields.
Operators relevant to the type of a given field are proposed when adding a criterion.
By enabling the advanced mode, it is possible to build sub-blocks containing criteria for more complex
logical operations to be involved in the search results computation.

Note

In advanced mode, the criteria with operators "matches" or "matches (case sensitive)"
follow the standard regular expression syntax from Java.

See alsoRegex pattern

Text search
The text search is intended for plain-text searches on one or more fields. The text search does not take
into account the types of the fields being searched for.

• If the entered text contains one or more words without wildcard characters (* or ?), matching fields
must contain all specified words. Words between quotes, for example "aa bb", are considered to
be a single word.

• Standard wildcard characters are available: * (any text) or ? (any character). For performance
reasons, only one of these characters can be entered in each search.

• Wildcard characters themselves can be searched for by escaping them with the character '\'. For
example '*' will search for the asterisk character.

Examples:

• aa bb: field contains 'aa' and 'bb'.

• aa "bb cc": field contains 'aa' and 'bb cc'.

• aa*: field label starts with 'aa'.

• *bb: field label ends with 'bb'.

• aa*bb: field label starts with 'aa' and ends with 'bb'.

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Documentation > User Guide > Datasets > Viewing table data

TIBCO EBX® Product Documentation 5.9.20 115

• aa?: field label starts with 'aa' and is 3 chars long.

• ?bb: field label ends with 'bb' and is 3 chars long.

• aa?bb: field label starts with 'aa' and ends with 'bb' and is 5 chars long.

• aa*bb: field contains 'aa*bb' as is.

For large tables, it is recommended to select only one field, and for cases where the field type is not
a string, to try to match the format type. For example:

• boolean: Yes, No

• date: 01/01/2000

• numeric: 100000 or 100,000

• enumerated value: Red, Blue...

The text search can be made case sensitive, that is distinguishing between upper and lower case, by
checking the 'Case sensitive' checkbox.

Validation messages filter
The validation messages filter allows viewing records according to their status as of the last validation
performed. Available levels are: 'Errors', 'Warnings', or 'Information'.

Note

This filter only applies to records of the table that have been validated at least once by
selecting Actions > Validate at the table level from the workspace, or at the dataset level
from the navigation pane.

Custom table searches
Additional custom filters can be specified for each table in the data model.

See alsoSpecifying UI filters on a table [p 190]

20.4 Views
It is possible to customize the display of tables in EBX according to the target user. There are two
types of views: tabular [p 116] and hierarchical [p 117].
A view can be created by selecting View > Create a new view in the workspace. To apply a view,
select it in View > name of the view.
Two types of views can be created:

• 'Simple tabular view': A table view to sort and filter the displayed records.

• 'Hierarchical view': A tree view that links data in different tables based on their relationships.

Documentation > User Guide > Datasets > Viewing table data

TIBCO EBX® Product Documentation 5.9.20 116

View description
When creating or updating a view, the first page allows specifying general information related to the
view.

Documentation Localized label and description associated with the view.

Owner Name of the owner of the view. This user can manage and
modify it. (Only available for administrators and dataset
owners)

Share with Other profiles allowed to use this view from the 'View'
menu.

Note

Requires a permission, see Views permissions
[p 397].

View mode Simple tabular view or hierarchical view.

View group Group to which this view belongs (if any).

Simple tabular views
Simple tabular views offer the possibility to define criteria to filter records and also to select the
columns that will be displayed in the table.

Displayed columns Specifies the columns that will be displayed in the table.

Sorted columns Specifies the sort order of records in the table. See Sorting
data [p 113].

Filter Defines filters for the records to be displayed in the table.
See Criteria editor [p 293].

Pagination limit Forces a limit to the number of visible records.

Grid edit If enabled, users of this view can switch to grid edit, so that
they can edit records directly from the tabular view.

Disable create and duplicate If yes, users of this view cannot create nor duplicate records
from the grid edit.

Documentation > User Guide > Datasets > Viewing table data

TIBCO EBX® Product Documentation 5.9.20 117

Hierarchical views
A hierarchy is a tree-based representation of data that allows emphasizing relationships between
tables. It can be structured on several relationship levels called dimension levels. Furthermore, filter
criteria can be applied in order to define which records will be displayed in the view.

Hierarchy dimension
A dimension defines dependencies in a hierarchy. For example, a dimension can be specified to display
products by category. You can include multiple dimension levels in a single view.

Hierarchical view configuration options
This form allows configuring the hierarchical view options.

Display records in a new window If 'Yes', a new window will be opened with the record.
Otherwise, it will be displayed in a new page of the same
window.

Prune hierarchy If 'Yes', hierarchy nodes that have no children and do not
belong to the target table will not be displayed.

Display orphans If 'Yes', hierarchy nodes without a parent will be displayed.

Display root node If 'No', the root node of the hierarchy will not be displayed
in the view.

Root node label Localized label of the hierarchy root node.

Toolbar on top of hierarchy Allows to set the toolbar on top of the hierarchy.

Display non-matching children In a recursive case, when a search filter is applied, allows
the display of non-matching children of a matching node
during a search.

Remove recursive root leaves In a recursive case, when a search filter is applied or if the
mode is 'pruned', removes from the display the root leaves.

Detect cycle Allow cycle detection and display in a recursive case,
the oldest node record will be chosen as the cycle root.
Limitation: does not work in search or pruned mode.

Labels
For each dimension level that references another table, it is possible to define localized labels for the
corresponding nodes in the hierarchy. The fields from which to derive labels can be selected using
the built-in wizard.
Filter

Documentation > User Guide > Datasets > Viewing table data

TIBCO EBX® Product Documentation 5.9.20 118

The criteria editor allows creating a record filter for the view.

See alsoCriteria editor [p 293]

Ordering field
In order to enable specifying the position of nodes in a hierarchical view, you must designate an
eligible ordering field defined in the table on which the hierarchical view is applied. An ordering field
must have the 'Integer' data type and have a 'Hidden' default view mode in its advanced properties
in the data model definition.
Except when the ordering field is in 'read-only' mode or when the hierarchy is filtered, any field can
be repositioned.
By default, if no ordering field is specified, child nodes are sorted alphabetically by label.

Attention
Do not designate a field that is meant to contain data as an ordering node, as the data will be
overwritten by the hierarchical view.

Actions on hierarchy nodes

Each node in a hierarchical view has a menu containing contextual actions.
Leaf nodes can be dissociated from their parent record using 'Detach from parent'. The record then
becomes an orphan node in the tree, organized under a container "unset" node.
Leaf nodes can also change parent nodes, using 'Attach to another parent'. If, according to the data
model, a node can have relationships to multiple parents, the node will be both under the current
parent and added under the other parent node. Otherwise, the leaf node will be moved under the other
parent node.

View sharing
Users having the 'Share views' permission on a view are able to define which users can display this
view from their 'View' menu.
To do so, simply add profiles to the 'Share with' field of the view's configuration screen.

View publication
Users having the 'Publish views' permission can publish views present in their 'View' menu.
A published view is then available to all users via Web components, workflow user tasks, data services
and perspectives. To publish a view, go to View > Manage views > name of the view > Publish.

20.5 Views management

Manage recommended views
When a user logs in with no view specified, their recommended view (if any) is applied. Otherwise,
the default view is applied. The 'Manage recommended views' action allows defining assignment rules
of recommended views depending on users and roles.

Documentation > User Guide > Datasets > Viewing table data

TIBCO EBX® Product Documentation 5.9.20 119

Available actions on recommended views are: change order of assignment rules, add a rule, edit
existing rule, delete existing rule.
Thus, for a given user, the recommended views are evaluated according to the user's profile: the applied
rule will be the first that matches the user's profile.

Note

The 'Manage recommended view' feature is only available to dataset owners.

Manage views
The 'Manage views' sub-menu offers the following actions:

Define this view as my favorite Only available when the currently displayed view is
NOT the recommended view. The favorite view will be
automatically applied when accessing the table.

Define recommended view as my
favorite

Only available when a favorite view has already been
defined. This will remove the user's current favorite view.
A recommended view, similarly to a favorite view, will be
automatically applied when accessing the table. This menu
item is not displayed if no favorite view has been defined.

20.6 Grid edit
The grid edit feature allows to modify data in a table view. This feature can be accessed by clicking
on the button.
Accessing the grid edit from a table view requires that the feature be previously activated in the view
configuration.

See alsoGrid edit [p 116]

Copy/paste
The copy/paste of one or more cells into another one in the same table can be done through the Edit
menu. It is also possible to use the associated keyboard shortcuts Ctrl+C and Ctrl+V.
This system does not use the operating system clipboard, but an internal mechanism. As a
consequence, copying and pasting a cell in an external file will not work. Conversely, pasting a value
into a table cell won't work either.
All simple type fields using built-in widgets are supported.

20.7 History
The history feature allows tracking changes on master data.
The history feature must have been previously enabled at the data model level. See Advanced
properties for tables [p 61] for more information.
To view the history of a dataset, select Actions > History in the navigation pane.

Documentation > User Guide > Datasets > Viewing table data

TIBCO EBX® Product Documentation 5.9.20 120

To view the history of a table or of a selection of records, select Actions > View history in the
workspace.
Several history modes exist, which allow viewing the history according to different perspectives:

History in current dataspace The table history view displays operations on the current
branch. This is the default mode.

History in current dataspace
and ancestors

The table history view displays operations on the current
branch and on all its ancestors.

History in current dataspace
and merged children

The table history view displays operations on the current
branch and on all its merged children.

History in all dataspaces The table history view displays operations on the whole
branch hierarchy.

In the history view, use the VIEW menu in order to switch to another history mode.

See alsoHistory [p 251]

Documentation > User Guide > Datasets > Editing data

TIBCO EBX® Product Documentation 5.9.20 121

CHAPTER 21
Editing data

This chapter contains the following topics:

1. Working with records in the user interface

2. Importing and exporting data

3. Restore from history

21.1 Working with records in the user interface
Record editing takes place in the workspace portion of the user interface.

Note

This action is available only to authorized users in the 'Advanced perspective' or from
a specifically configured perspective.

Creating a record
In a tabular view, click the button located above the table.
In a hierarchical view, select 'Create a record' from the menu of the parent node under which to create
the new record.
Next, enter the field values in the new record creation form. Mandatory fields are indicated by
asterisks.

Updating an existing record
Double-click the record to update, then edit the field values in the record form.
To discard any changes in progress and restore the fields to their values before editing, click the Revert
button.

Duplicating a record
To duplicate a selected record, select Actions > Duplicate.
A new record creation form pre-populates the field values from the record being duplicated. The
primary key must be given a unique value, unless it is automatically generated (as is the case for auto-
incremented fields).

Documentation > User Guide > Datasets > Editing data

TIBCO EBX® Product Documentation 5.9.20 122

Deleting records
To delete one or more selected records, select Actions > Delete.

Comparing two records
To compare two selected records, select Actions > Compare.

Note

The content of complex terminal nodes, such as aggregated lists and user defined
attributes, are excluded from the comparison process. That is, the compare service
ignores any differences between the values of the complex terminal nodes in the records.

21.2 Importing and exporting data
In a table, records can be exported to or imported from CSV or XML format.
You can either manually select certain records of the table to export, or you can export the whole table.

See also

CSV Services [p 221]

XML Services [p 215]

21.3 Restore from history
When history is enabled on a table, it is possible to restore a record to a previous state, based on its
registered history. If the record (identified by its primary key) still exists in the table, it will be updated
with the historized values to be restored. Otherwise, it will be created.
In order to restore a record to a previous state, select a record in the history table view, and the select
Actions > Restore from history in the workspace. A summary screen is displayed with the details
of the update or creation to be performed.
The restore feature is available only on one record at a time.
If a table trigger must have a specific behavior on restore, different from the one on regular create and
update, the developer can use the method TableTriggerExecutionContext.isHistoryRestoreAPI.

Note

This feature has limitations linked to the limitations of the history feature:

• the 'restore from history' feature is not available on tables containing lists that are not
supported by history. See Data model limitations [p 256].

• computed values, encrypted values and fields on which history has been disabled are
ignored when restoring a record from history, since these fields are not historized.

See alsoHistory [p 251]

Documentation > User Guide > Datasets > Working with existing datasets

TIBCO EBX® Product Documentation 5.9.20 123

CHAPTER 22
Working with existing datasets

This chapter contains the following topics:

1. Validating a dataset

2. Duplicating a dataset

3. Deactivating a dataset

4. Managing dataset permissions

22.1 Validating a dataset
To validate a dataset at any time, select Actions > Validate from the navigation pane. A generated
report provides the results of the validation. From the validation report, you have the option to update
the reported validation status by clicking the Revalidate button, or to click the Reinitialize validation
report button to clear the current validation report associated with the dataset in order to be able to
rerun a full validation from scratch.
Validations of data can also be run at the table level by navigating to the desired table from the
navigation pane, then selecting Actions > Validate from the workspace.
See Validation [p 300] for detailed information about incremental data validation.

22.2 Duplicating a dataset
To duplicate an existing dataset, select it from the 'Select dataset [p 109]' menu in the navigation
pane, then select Actions > Duplicate.

22.3 Deactivating a dataset
When a dataset is activated, it will be subject to validation. That is, all mandatory elements must be
defined in order for the dataset to be valid. If a dataset is active and validated, it can be safely exported
to external systems or to be used by other Java applications.
If a dataset is missing mandatory elements, it can be deactivated by setting the property 'Activated'
to 'No' from Actions > Information.

22.4 Managing dataset permissions
Dataset permissions can be accessed by selecting Actions > Permissions in the navigation pane.

Documentation > User Guide > Datasets > Working with existing datasets

TIBCO EBX® Product Documentation 5.9.20 124

Permissions are defined using profile records. To define a new permissions profile, create a new record
in the 'Access rights by profile' table.

Documentation > User Guide > Datasets > Working with existing datasets

TIBCO EBX® Product Documentation 5.9.20 125

See alsoProfile [p 23]

Profile Defines the profile to which these permissions apply.

Restriction policy If 'Yes', indicates that when the permissions defined here
are more strict than otherwise defined, these permissions
are respected. This is contrary to the default where the most
permissive rights defined take precedence.
See Resolving user-defined rules [p 283].

Dataset actions Specifies the permissions for actions on the dataset.

 Create a child dataset Indicates whether the profile can create a child dataset.
Inheritance also must be activated in the data model.

 Duplicate the dataset Indicates whether the profile can duplicate the dataset.

 Delete the dataset Indicates whether the profile can delete the dataset.

 Activate/deactivate the
dataset

Indicates whether the profile can modify the Activated
property in the dataset information. See Deactivating a
dataset [p 123].

 Create a view Indicates whether the profile can create views and
hierarchies in the dataset.

Tables policy Specifies the default permissions for all tables. Specific
permissions can also be defined for a table by clicking the
'+' button.

 Create a new record Indicates whether the profile can create records in the table.

 Overwrite inherited record Indicates whether the profile can override inherited records
in the table. This permission is useful when using dataset
inheritance.

 Occult inherited record Indicates whether the profile can occult inherited records
in the table. This permission is useful when using dataset
inheritance.

 Delete a record Indicates whether the profile can delete records in the table.

 Values access policy Specifies the default access permissions for all the nodes
of the dataset and allows the definition of permissions for

Documentation > User Guide > Datasets > Working with existing datasets

TIBCO EBX® Product Documentation 5.9.20 126

specific nodes. The default access permissions are used if
no custom permissions have been defined for a node.
The specific policy selector allows granting specific
access permissions for a node. The links "ReadOnly",
"ReadWrite", and "Hidden" set the corresponding access
levels for the selected nodes.
It is possible to remove custom access permissions using the
"(default)" link.

Rights on services This section specifies the access permissions for services. A
service is not accessible to a profile if it is crossed-out.

Documentation > User Guide > Datasets > Dataset inheritance

TIBCO EBX® Product Documentation 5.9.20 127

CHAPTER 23
Dataset inheritance

Using the concept of dataset inheritance, it is possible to create child datasets that branch from a parent
dataset. Child datasets inherit values and properties by default from the parent dataset, which they can
then override if necessary. Multiple levels of inheritance can exist.
An example of using dataset inheritance is to define global default values in a parent dataset, and
create child datasets for specific geographical areas, where those default values can be overridden.

Note

By default, dataset inheritance is disabled. It must be explicitly activated in the
underlying data model.

See alsoData model configuration [p 42]

This chapter contains the following topics:

1. Dataset inheritance structure

2. Value inheritance

23.1 Dataset inheritance structure
Once the root dataset has been created, create a child dataset from it using the button in the dataset
selector in the navigation pane.

Note

• A dataset cannot be deleted if it has child datasets. The child datasets must be deleted first.

• If a child dataset is duplicated, the newly created dataset will be inserted into the existing
dataset tree as a sibling of the duplicated dataset.

23.2 Value inheritance
When a child dataset is created, it inherits all its field values from the parent dataset. A record can
either keep the default inherited value or override it.
In tabular views, inherited values are marked in the top left corner of the cell.

The button can be used to override a value.

Documentation > User Guide > Datasets > Dataset inheritance

TIBCO EBX® Product Documentation 5.9.20 128

Record inheritance
A table in a child dataset inherits the records from the tables of its ancestor datasets. The table in the
child dataset can add, modify, or delete records. Several states are defined to differentiate between
types of records.

Root A root record is a record that was created in the current
dataset and does not exist in the parent dataset. A root record
is inherited by the child datasets of the current dataset.

Inherited An inherited record is one that is defined in an ancestor
dataset of the current dataset.

Overwritten An overwritten record is an inherited record whose values
have been modified in the current dataset. The overwritten
values are inherited by the child datasets of the current
dataset.

Occulted An occulted record is an inherited record which has been
deleted in the current dataset. It will still appear in the
current dataset as a record that is crossed out, but it will not
be inherited in the child datasets of the current dataset.

When the inheritance button is toggled on, it indicates that the record or value is inherited from the
parent dataset. This button can be toggled off to override the record or value. For an occulted record,
toggle the button on to revert it to inheriting.

Documentation > User Guide > Datasets > Dataset inheritance

TIBCO EBX® Product Documentation 5.9.20 129

The following table summarizes the behavior of records when creating, modifying or deleting a record,
depending on its initial state.

State Create Modify value Delete

Root Standard new record creation.
The newly created record will
be inherited in child datasets
of the current dataset.

Standard modification of an
existing record. The modified
values will be inherited in the
child datasets of the current
dataset.

Standard record deletion. The
record will no longer appear
in the current dataset and the
child datasets of the current
dataset.

Inherited If a record is created using
the same primary key as an
existing inherited record, that
record will be overwritten
and its value will be the one
submitted at creation.

An inherited record must first
be marked as overwritten in
order to modify its values.

Deleting an inherited record
changes it state to occulted.

Overwritten Not applicable. Cannot create
a new record if the primary
key is already used in the
current dataset.

An overridden record can be
returned to the inherited state,
but its modified value will be
lost.

Individual values in an
overridden record can be
set to inheriting or can be
modified.

Deleting an overwritten
record changes its state to
occulted.

Occulted If a record is created using
the primary key of an existing
occulted record, the record
state will be changed to
overwritten and its value
modified according to the one
submitted at creation.

Not applicable. An occulted
record cannot be modified.

Not applicable. An occulted
record is already considered
to be deleted.

See alsoRecord lookup mechanism [p 272]

Documentation > User Guide > Datasets > Dataset inheritance

TIBCO EBX® Product Documentation 5.9.20 130

Documentation > User Guide

TIBCO EBX® Product Documentation 5.9.20 131

Workflow models

Documentation > User Guide > Workflow models > Introduction to workflow models

TIBCO EBX® Product Documentation 5.9.20 132

CHAPTER 24
Introduction to workflow models

This chapter contains the following topics:

1. Overview

2. Using the Workflow Models area user interface

3. Generic message templates

4. Limitations of workflows

24.1 Overview

What is a workflow model?
Workflows in TIBCO EBX facilitate the collaborative management of data in the repository. A
workflow can include human actions on data and automated tasks alike, while supporting notifications
on certain events.
The first step of realizing a workflow is to create a workflow model that defines the progression of
steps, responsibilities of users, as well as other behavior related to the workflow.
Once a workflow model has been defined, it can be validated and published as a workflow publication.
Data workflows can then be launched from the workflow publication to execute the steps defined in
the workflow model.

See also

Workflow model (glossary) [p 29]

Data workflow (glossary) [p 31]

Basic concepts related to workflow models
A basic understanding of the following terms is necessary to proceed with the creation of workflow
models:

• script task [p 30]

• user task [p 30]

• work item [p 31]

• workflow condition [p 30]

• sub-workflow invocation [p 30]

Documentation > User Guide > Workflow models > Introduction to workflow models

TIBCO EBX® Product Documentation 5.9.20 133

• wait task [p 30]

• data context [p 30]

24.2 Using the Workflow Models area user interface

Note

This area is available only to authorized users in the 'Advanced perspective'. Only
authorized users can access these interfaces.

24.3 Generic message templates
Notification emails can be sent to inform users of specific events during the execution of data
workflows.
Generic templates can be defined and reused by any workflow model in the repository. To work with
generic templates, select 'Message templates' from the Workflow Models area Actions menu.
These templates, which are shared by all workflow models, are included statically at workflow model
publication. Thus, in order to take template changes into account, you must update your existing
publication by re-publishing the affected models.
Please note that, if you want to export those templates in an archive, you will have to select the dataset
"configuration" as it is the one containing the message templates.
When creating a new template, two fields are required:

• Label & Description: Specifies the localized labels and descriptions associated with the template.

• Message: Specifies the localized subjects and bodies of the message.

Documentation > User Guide > Workflow models > Introduction to workflow models

TIBCO EBX® Product Documentation 5.9.20 134

The message template can include data context variables, such as ${variable.name}, which are
replaced when notifications are sent. System variables that can be used include:

Documentation > User Guide > Workflow models > Introduction to workflow models

TIBCO EBX® Product Documentation 5.9.20 135

system.time System time of the repository.

system.date System date of the repository.

workflow.lastComment Last comment on the previous user task. (Note:
this variable refers to the last user task, not the
current one. Also the current task is the one on
which the workflow is positioned, and it also
includes the completion notification of a user
task).

workflow.lastDecision Last decisions made on the previous user task.
(Note: this variable refers to the last user task,
not the current one. Also the current task is the
one on which the workflow is positioned, and
it also includes the completion notification of a
user task).

user.fullName Full name of the notified user.

user.login Login of the notified user.

workflow.process.label Label of the current workflow.

workflow.process.description Description of the current workflow.

workflow.workItem.label Label of the current work item.

workflow.workItem.description Description of the current work item.

workflow.workItem.offeredTo Role to which the current work item has been
offered.

workflow.workItem.allocatedTo User to whom the current work item has been
allocated.

workflow.workItem.link Link to access the current work item in the work
item inbox, using the Web Component API.
This link can only be computed if a current
work item is defined and if the URL is
configured in Workflow-executions, in the
email configuration.

Documentation > User Guide > Workflow models > Introduction to workflow models

TIBCO EBX® Product Documentation 5.9.20 136

workflow.workItem.link.allocateAndStart Link to access the current work item in the work
item inbox, using the Web Component API. If
the target work item has not yet been started, it
will be automatically allocated to and started by
the user clicking the link.
This link can only be computed if a current
work item is defined and if the URL is
configured in Workflow-executions, in the
email configuration.

workflow.currentStep.label Label of the current step.

workflow.currentStep.description Description of the current step.

Example
Generic template message:
Today at ${system.time}, a new work item was offered to you

Resulting email:
Today at 15:19, a new work item was offered to you

24.4 Limitations of workflows
The following functionality is currently unsupported in EBX:

• Scheduled tasks, task executed as soon as its turn comes, and whose execution cannot be delayed.

• Event tasks, allowing the workflow to move forward upon receiving an event, such as a web
service call.

• Time limitation on a task duration.

Related conceptsData workflows [p 160]

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 137

CHAPTER 25
Creating and implementing a

workflow model
This chapter contains the following topics:

1. Creating a workflow model

2. Implementing the steps

3. User tasks

4. Script tasks

5. Conditions

6. Sub-workflow invocations

7. Wait tasks

8. Visualizing the workflow diagram

25.1 Creating a workflow model
A new workflow model can be created in the Workflow Models area. The only required information
at creation is a name that is unique in the repository.
The steps of the workflow model are initialized with a single transition. In order to fully implement
the workflow model, you must define the sequence of steps beyond this initial transition.

25.2 Implementing the steps
A workflow model defines steps that correspond to different operations that must be performed on
data, and associated conditions. The following types of steps exist:

• User task

• Script task

• Condition

• Sub-workflow invocation

• Wait task

A data context is linked to each data workflow. This data context can be used to define variables that
can be used as input and output variables in the steps of the workflow.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 138

Progress strategy of the next step
For each step type (excluding sub-workflows invocations), a property is available to define which
progress strategy has to be applied for the next step. Upon step completion, this strategy is evaluated
in order to define the navigation when the workflow is executed. By default, the progress strategy is
set to 'Display the work items table'. In that case, after the step has been executed, the work items
table (work items inbox or monitoring > work items) is automatically displayed, in order to select
the following work item.
Another strategy can be selected: 'Automatically open the next step'. This strategy allows the user to
keep working on this workflow and to directly execute the next step. If, following to this execution, a
work item is reached and the connected user can start it, then the work item is automatically opened (if
several work items are reached, the first created is opened). Otherwise, the next step progress strategy
is evaluated. If no work item has been reached, the work items table will be displayed.
This strategy is used to execute several steps in a row without going back to the work items inbox.
There are some limitations that will lead to disregard this strategy. In that case, the work items table
is automatically displayed. This property will be disregarded when: the next step is a sub-workflow;
or the current step is a user task with more than one work item.
In the case of conditions, two other strategies are available: 'If true, automatically open the next step'
and 'If false, automatically open the next step'. These strategies allow choosing which strategy will
be applied according to the condition result.

Hidden in graphical view
For each step type, a property is available to define which steps must be hidden in the workflow
progress view by default.
If this property is enabled, the step will be automatically hidden in the workflow progress view for
non-administrator users (neither built-in administrator nor workflow administrator). Hidden steps can
be displayed on demand.

25.3 User tasks
User tasks are steps that involve actions to be performed by human users. Their labels and descriptions
can be localized.

Mode
For backward compatibility reasons, two user task modes are available: the default mode and the
legacy mode.
By default, a user task generates a single work item. This mode offers more features, such as offering
a work item to a list of profiles or directly displaying the avatars in the workflow progress view.
In the legacy mode, a user task can generate several work items.
By default, the user task creation service is hidden in legacy mode. To display it, a property should
be enabled in the ebx.properties file. For more information, see Disabling user task legacy mode
[p 360].

List of profiles
The definition of the profiles of a user task may vary depending on the user task mode.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 139

[Default] Offered to the following profiles
The defined profiles are the roles or the users to whom the user task is being offered. When executing
the user task, a single work item is generated. If a single user is defined, the work item is automatically
assigned to this user. If a role is defined, the work item is offered to the members of the role. If several
users and roles are defined, the work item is offered simultaneously to these users and to the members
of these roles.

[Legacy mode] Participants
The participants are the roles or the users to whom the user task is intended. By default, when executing
the user task, a work item is generated by profile. If a profile refers to a user instead of a role, the work
item is directly allocated to that user. If a profile is a role, the work item is offered to the members
of the role.

For more information

See alsoExtension [p 141]

Service
TIBCO EBX includes the following built-in services:

• Access a dataspace

• Access data (default service)

• Access the dataspace merge view

• Compare contents

• Create a new record

• Duplicate a record.

• Export data to a CSV file

• Export data to an XML file

• Import data from a CSV file

• Import data from an XML file

• Merge a dataspace

• Validate a dataspace, a snapshot or a dataset

See alsoEBX built-in services [p 201]

Configuration

Main options > Enable reject
By default, only the accept action is offered to the user when saving a decision.
It is possible to also allow users to reject the work item by setting this field to 'Yes'.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 140

Main options > Enable confirmation request
By default, a confirmation request is displayed after user task execution when the user saves the
decision by clicking the 'Accept' or 'Reject' button.
To disable this confirmation prompt, set this field to 'Yes'.

Main options > Enable comments
By default, comments are enabled. When a work item is open, a 'Comments' button is displayed and
allows the user to enter a comment.
It is possible to hide this 'Comments' button by setting this property to No.

Main options > Comments required
By default, it is optional to submit a comment associated with a work item.
It is possible to require the user to enter a comment before saving the decision by setting this field to
the desired validation criteria. Comments can be set to be always required, required only if the work
item has been accepted, or required only if the work item has been rejected.

Main options > Customized labels
When the user task is run, the user can accept or reject the work item by clicking the corresponding
button. In the workflow model, it is possible for a user task to define a customized label and
confirmation message for these two buttons. This can be used to adapt the buttons to a more specific
context.

[Legacy mode] Termination > Task termination criteria
A single user task could be assigned to multiple participants and thus generate multiple work items
during workflow execution. When defining a user task in the workflow model, you can select one of
the predefined methods for determining whether the user task is finished, based on the statuses of its
component work items. When the user task's exit requirement has been satisfied, the data workflow
will move on to the next step defined in its model.
For example, for the case of a user task where a product record needs to be approved, you could
designate three potential participants. The task termination criteria can specify whether the product
record needs to be approved by all three users, or only the first user to respond.
The default user task termination criteria is 'When all work items have been accepted.'

Note

If you specify a service extension overriding the method
UserTask.handleWorkItemCompletion to handle the determination of the user task's
completion, it is up to the developer of the extension to verify from within their code
that the task termination criteria defined through the user interface has been met. See
UserTask.handleWorkItemCompletionAPI in the JavaDoc for more information

[Legacy mode] Termination > Reject tolerance
By default, if a user rejects a work item during workflow execution, the user task is placed into an
error state and the workflow progress is halted. When the user task is in an error state, a workflow
administrator must intervene by replaying the step where the error occurred in order to continue the
workflow execution.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 141

In order to change this default behavior, it is possible to define a certain number of work item
rejections to tolerate. While within the limit of tolerated rejections, no error will occur and it is the
task termination criteria that determines when to end the user task.
The following task termination criteria automatically tolerate all rejections:

• 'When all work items have been either accepted or rejected'

• 'Either when all work items have been accepted, or as soon as one work item has been rejected'

Extension
A custom class can be specified in order for the task to behave dynamically in the context of a given
data workflow. For example, this can be used to create work items or complete user tasks differently
than the default behavior.
The specified rule is a JavaBean that must extend the UserTaskAPI class.

Attention
If a rule is specified and the handleWorkItemCompletion method is overridden, the completion
strategy is no longer automatically checked. The developer must check for completion within this
method.

Notification
A notification email can be sent to users when specific events occur. For each event, you can specify
a content template.
It is possible to define a monitor profile that will receive all emails that are sent in relation to the
user task.

See alsoGeneric message templates [p 133]

Reminder
Reminder emails for outstanding offered or allocated work items can be periodically sent to the
concerned users. The recipients of the reminder are the users to whom the work item is offered or
allocated, as well as the recipients on copy.
The content of the reminder emails is determined by the current state of the work item. That is, if the
work item is offered, the notification will use the "Offered work items" template; if the work item is
allocated, the notification will use the "Allocated work items" template.

Deadline
Each user task can have a completion deadline. If this date passes and associated works items are not
completed, a notification email is sent to the concerned users. This same notification email will then
be sent daily until the task is completed.
There are two deadline types:

• Absolute deadline: A calendar date.

• Relative deadline: A duration in hours, days or months. The duration is evaluated based on the
reference date, which is the beginning of the user task or the beginning of the workflow.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 142

25.4 Script tasks
Script tasks are automatic tasks that are performed without human user involvement.
Two types of script tasks exist, which, once defined, can be used in workflow model steps:

Library script task EBX includes a number of built-in library script tasks,
which can be used as-is.
Any additional library script tasks must be declared in a
module.xml file. A library script task must define its label,
description and parameters. When a user selects a library
script task for a step in a workflow model, its associated
parameters are displayed dynamically.

Specific script task Specifies a Java class that performs custom actions. The
associated class must belong to the same module as
the workflow model. Its labels and descriptions are not
displayed dynamically to users in workflow models.

Packaging TIBCO EBX modules [p 459]

Library script tasks
EBX includes the following built-in library script tasks:

• Create a dataspace

• Create a snapshot

• Merge a dataspace

• Import an archive

• Close a dataspace

• Set a data context variable

• Send an email

• Delete records (Note: this script can remove several records)

Library script tasks are classes that extend the class ScriptTaskBeanAPI. Besides the built-in library
script tasks, additional library script tasks can be defined for use in workflow models. Their labels
and descriptions can be localized.
The method ScriptTaskBean.executeScriptAPI is called when the data workflow reaches the
corresponding step.

Attention
The method ScriptTaskBean.executeScriptAPI must not create any threads because the data
workflow moves on as soon as the method is executed. Each operation in this method must therefore
be synchronous.

See the example [p 550].

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 143

It is possible to dynamically set variables of the library script task if its implementation follows the
Java Bean specification. Variables must be declared as parameters of the bean of the library script task
in module.xml. The workflow data context is not accessible from a Java bean.

Note

Some built-in library script tasks are marked as "deprecated" because they are not
compatible with internationalization. It is recommended to use the new script tasks that
are compatible with internationalization.

Specific script tasks
Specific script tasks are classes that extend the class Sample of ScriptTask [p 550].
The method ScriptTask.executeScriptAPI is called when the data workflow reaches the corresponding
step.

Attention
The method ScriptTask.executeScriptAPI must not create any threads because the data workflow
moves on as soon as the method is executed. Each operation in this method must therefore be
synchronous.

See the example [p 550].
It is not possible to dynamically set the variables of the bean for specific script tasks. However, the
workflow data context is accessible from the Java bean.

25.5 Conditions
Conditions are decision steps in workflows.
Two types of conditions exist, which, once defined, can be used in workflow model steps:

Library condition EBX includes a number of built-in library conditions, which
can be used as-is.
Any additional library script tasks must be declared in a
module.xml file. A library condition must define its label,
description and parameters. When a user selects a library
condition for a step in a workflow model, its associated
parameters are displayed dynamically.

Specific condition Specifies a Java class that implements a custom condition.
The associated class must belong to the same module as
the workflow model. Its labels and descriptions are not
displayed dynamically to users in workflow models.

Packaging TIBCO EBX modules [p 459]

Library conditions
EBX includes the following built-in library conditions:

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 144

• Dataspace modified?

• Data valid?

• Last user task accepted?

• Value null or empty?

• Values equals?

Library conditions are classes that extend the class ConditionBeanAPI. Besides the built-in library
conditions, additional library conditions can be defined for use in workflow models. Their labels and
descriptions can be localized.
See the example [p 553].
It is possible to dynamically set variables of the library condition if its implementation follows the
Java Bean specification. Variables must be declared as parameters of the bean of the library condition
in module.xml. The workflow data context is not accessible from a Java bean.

Specific conditions
Specific conditions are classes that extend the class ConditionAPI.
See the example [p 552].
It is not possible to dynamically set the variables of the bean for specific conditions. However, the
workflow data context is accessible from the Java bean.

25.6 Sub-workflow invocations
Sub-workflow invocation steps in workflow models put the current workflow into a waiting state and
invoke one or more workflows.
It is possible to include another workflow model definition in the current workflow by invoking it
alone in a sub-workflow invocation step.
If multiple sub-workflows are invoked by a single step, they are run concurrently, in parallel. All sub-
workflows must be terminated before the original workflow continues onto the next step. The label
and description of each sub-workflow can be localized.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 145

Two types of sub-workflow invocations exist:

Static Defines one or more sub-workflows to be invoked each
time the step is reached in a data workflow. For each
sub-workflow, it is possible to set its localized labels
and descriptions, as well as the input and output variable
mappings in its data context.
This mode is useful when the sub-workflows to be launched
and the output mappings are predetermined.

Dynamic Specifies a Java class that implements a custom sub-
workflow invocation. All workflows that could be
potentially invoked as sub-workflows by the code must be
declared as dependencies.
The workflow data context is directly accessible from the
Java bean.
Dynamic sub-workflow invocations must be declared in a
module.xml file.
This mode is useful when the launch of sub-workflows is
conditional (for example, if it depends on a data context
variable), or when the output mapping depends on the
execution of the sub-workflows.

25.7 Wait tasks
Wait task steps in workflow models put the current workflow into a waiting state until a specific event
is received.
When a wait task is reached, the workflow engine generates a unique resume identifier associated
with the wait task. This identifier will be required to resume the wait task, and as a consequence the
associated workflow.
A wait task specifies which profile is authorized to resume the wait task; and a Java class that
implements a wait task bean: WaitTaskBeanAPI.
The workflow data context is directly accessible from the Java bean.
Wait task beans must be declared in a module.xml file.
First, the wait task bean is called when the workflow starts waiting. At this time, the generated resume
identifier is available to call a web service for example. Then, the wait task bean is called when the wait
task is resumed. In this way, the data context may be updated according to the received parameters.

Note

The built-in administrator always has the right to resume a workflow.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 146

25.8 Visualizing the workflow diagram

About
Once a workflow model is defined, one can view the model in a BPMN-like diagram.
This service is available with a dedicated button on the toolbar of the hierarchical view. The icon is
the following: .
This service provides a view with limited edition capabilities: it is only possible to modify existing
steps, but links edition and creation of steps still need to be done through the hierarchical view. This
diagram can help modelers have a clear view of the workflow model they are designing.
Please also note that, although the diagram is derived from BPMN standards, it is not a strict
representation of BPMN since EBX workflow concepts are slightly different.

Saving the layout
It is possible to save the modified layout. Please note that this is not a user-based save: it will be
shared by all the users.

Actions

Export as PNG Creates a PNG image.

Export as SVG Creates an SVG image.

Export as PDF Creates a one-page PDF

View

Layout > Default layout Applies the default layout to the diagram.

Grid > Show/Hide grid Shows the grid if the grid is not visible, hides it otherwise.

Buttons

Save layout Saves the current layout.

Save layout and close Saves the current layout and closes the service.

Revert Reverts changes and reloads a previously saved layout.

Close Closes the service.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 147

Additional features
The diagram view offers useful additional features

Undo last action CTRL + Z

Zoom in/Zoom out. Mouse middle button then mouse wheel / CTRL then mouse
wheel.

Multiple selection Click on the nodes or links selected holding down the CTRL
button / Draw a selection rectangle (you will need to hold
down the left click for 1 second before drawing the area).

Customizing links drawing When clicking on a link, you can either move the segments
by dragging the squares which appear on the corners, or
separate a specific segment by moving the circle in the
middle.

Edit a step Double clicking on a step will display an edition form.

Overview A panel is now available with a miniature workflow diagram
view which can be used to navigate within it. This panel
can be collapsed, expanded and dragged inside the area
allocated to the workflow diagram view.

Documentation > User Guide > Workflow models > Creating and implementing a workflow model

TIBCO EBX® Product Documentation 5.9.20 148

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 5.9.20 149

CHAPTER 26
Configuring the workflow model

This chapter contains the following topics:

1. Information associated with a workflow model

2. Workflow model properties

3. Data context

4. Custom workflow execution views

5. Permissions on associated data workflows

6. Workflow model snapshots

7. Deleting a workflow model

26.1 Information associated with a workflow model
To view and edit the owner and documentation of your workflow model, select 'Information' from the
workflow model 'Actions' [p 133] menu for your workflow model in the navigation pane.

Owner Specifies the workflow model owner, who will have the
rights to edit the workflow model's information and define
its permissions.

Localized documentation Localized labels and descriptions for the workflow model.

Activated This property is deprecated. Whether the workflow model
is activated. A workflow model must be activated in order
to be able to be published.

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 5.9.20 150

26.2 Workflow model properties
Configuration for a workflow model is accessible in the navigation pane under 'Workflow model
configuration'.

Module name Module containing specific Java resources (user task
extensions, specific scripts and conditions).

Notification of start The list of profiles to which to send notifications, based on
a template, when a data workflow is launched.
See Generic message templates [p 133].

Notification of completion The list of profiles to which to send notifications, based
on a template, when a data workflow is completed.
The notification is only sent if the workflow has been
completed under normal circumstances, that is, not due to
an administration action.
See Generic message templates [p 133].

Notification of error The list of profiles that will receive notifications, based on
a template, when a data workflow is in error state.
See Generic message templates [p 133].

Priority By default, each workflow associated with this model will
be launched with this priority. Setting a priority is optional.
If no priority is defined here, and a default priority is set for
the repository, the repository default priority will be used
for any associated workflow with no priority assigned. See
Work item priorities [p 171] for more information.
Note: Only users who are defined as workflow
administrators will be able to manually modify the priority
level of any associated data workflows.

Activate quick launch By default, when a workflow is launched, the user is
prompted to enter a documentation for the new workflow
in an intermediate form. This documentation is optional.
Setting the 'Activate quick launch' property to 'Yes' allows
skipping this documentation step and proceeding directly to
the workflow launch.

Automatically open the first step Allows determining the navigation after a workflow is
launched. By default, once a workflow is launched,
the current table (workflow launchers or monitoring >
publications) is automatically displayed.

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 5.9.20 151

Enabling this property will allow the workflow user to
keep working on the launched workflow. If, after the first
workflow step is executed, a work item is reached, and this
work item can be started by the workflow creator, then the
work item is automatically opened (if several work items
are reached, the first created is opened). This will save the
user from selecting the corresponding work item from the
work items inbox.
If no work item has been reached, the next step progress
strategy is evaluated.
If no work item has been opened, the table from which the
workflow has been launched is displayed.
Limitation: This property will be ignored if the first step is
a sub-workflow invocation.

Workflow trigger Component that intercepts the main events of a workflow.
This bean must be declared in a module.xml file. See the
example [p 556].

Permissions Permissions on actions related to the data workflows
associated with the workflow model.
This bean must be declared in a module.xml file. See the
example [p 555].

Programmatic action
permissions

Defines a custom component that handles the permissions
of the workflow. If set, this overrides all permissions defined
in the property 'Permissions'.

26.3 Data context
The data context configuration can be accessed from the navigation pane.
Each workflow has its own data context, thus allowing to have its own local dataspace during its
execution. This gives the possibility to store and to vary values that will direct the workflow execution.

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 5.9.20 152

The data context is defined by a list of variables. Each variable has the following properties:

Name Identifier of the variable.

Default value If defined, the variable will be initialized with this default
value.

Input parameter 'Yes' must be checked in order to define this variable as an
input parameter.

Output parameter 'Yes' must be checked in order to define this variable as an
output parameter. Else, this variable will not be displayed in
the list of output parameters, in the task definition interface.

26.4 Custom workflow execution views
The workflow execution views customization can be accessed from the navigation pane.
The customization allows configuring the specific columns of the work items and workflow views
(inbox, work items monitoring, active workflows monitoring and completed workflows). For each
specific column, it is possible to associate an expression that can contain data context variables that
will be evaluated upon display of the workflow.

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 5.9.20 153

26.5 Permissions on associated data workflows

Workflow administration Defines the profile that is allowed to perform administration
actions on the workflows. The administration actions
include the following: replay a step, resume a
workflow, terminate a workflow, disable a publication
and unpublish. In order to perform these actions, this
profile is automatically granted the "Visualize workflows"
permission. The built-in administrator always has the
workflow administration rights.

Workflow administration >
Replay a step

Defines the profile that is allowed to replay a workflow step.
In order to perform this action, this profile is automatically
granted the "Visualize workflows" permission. A button in
the "Monitoring > Active workflows" section is available to
replay a step. A profile with the "Workflow administration"
permission is automatically allowed to perform this specific
action. The built-in administrator always has the rights to
replay a step.

Workflow administration >
Terminate workflow

Defines the profile that is allowed to terminate and
clean a workflow. In order to perform this action, this
profile is automatically granted the "Visualize workflows"
permission. A button in the "Monitoring > Active
workflows" section is available to terminate and clean an
active workflow. A button in the "Completed workflows"
section is available to delete a completed workflow. A
profile with the "Workflow administration" permission is
automatically allowed to perform this specific action. The
built-in administrator always has the rights to terminate a
workflow.

Workflow administration >
Force a workflow to resume

Defines the profile that is allowed to force resuming a
waiting workflow. In order to perform this action, this
profile is automatically granted the "Visualize workflows"
permission. A button in the "Monitoring > Active
workflows" section is available to resume a workflow. A
profile with the "Workflow administration" permission is
automatically allowed to perform this specific action. The
built-in administrator always has the right to resume a
workflow.

Workflow administration >
Disable a publication

Defines the profile that is allowed to disable a workflow
publication. In order to perform this action, this profile
is automatically granted the "Visualize workflows"
permission. A button in the "Monitoring > Publications"
section is available to disable a publication. It is only

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 5.9.20 154

displayed on active publications. A profile with the
"Workflow administration" permission is automatically
allowed to perform this specific action. The built-in
administrator always has the rights to disable a publication.

Workflow administration >
Unpublish

Defines the profile that is allowed to unpublish a
workflow publication. In order to perform this action, this
profile is automatically granted the "Visualize workflows"
permission. A button in the "Monitoring > Publications"
section is available to unpublish disabled publications only.
A profile with the "Workflow administration" permission is
automatically allowed to perform this specific action. The
built-in administrator always has the unpublish rights.

Allocation management Defines the profile that is allowed to manage work items
allocation. The allocation actions include the following:
allocate work items, reallocate work items and deallocate
work items. In order to perform these actions, this
profile is automatically granted the "Visualize workflows"
permission. The built-in administrator always has the
allocation management rights.

Allocation management >
Allocate work items

Defines the profile that is allowed to allocate work items. In
order to perform these actions, this profile is automatically
granted the "Visualize workflows" permission. A button
in the "Monitoring > Work items" section is available
to allocate a work item. It is only displayed on offered
work items. A profile with the "Allocation management"
permission is automatically allowed to perform this specific
action. The built-in administrator always has the work items
allocation rights.

Allocation management >
Reallocate work items

Defines the profile that is allowed to reallocate work items.
In order to perform this action, this profile is automatically
granted the "Visualize workflows" permission. A button
in the "Monitoring > Work items" section is available to
reallocate a work item. It is only displayed on allocated
work items. A profile with the "Allocation management"
permission is automatically allowed to perform this specific
action. The built-in administrator always has the work items
reallocation rights.

Allocation management >
Deallocate work items

Defines the profile that is allowed to deallocate work items.
In order to perform this action, this profile is automatically
granted the "Visualize workflows" permission. A button
in the "Monitoring > Work items" section is available to
deallocate a work item. It is only displayed on allocated
work items. A profile with the "Allocation management"
permission is automatically allowed to perform this specific

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 5.9.20 155

action. The built-in administrator always has the work items
deallocation rights.

Launch workflows Defines the profile that is allowed to manually launch new
workflows. This permission allows launching workflows
from the active publications of the "Workflow launchers"
section. The built-in administrator always has the launch
workflows rights.

Visualize workflows Defines the profile that is allowed to visualize workflows.
By default, the end-user can only see work items that
have been offered or allocated to him in the "Inbox"
section. This permission also allows visualizing the
publications, workflows and work items associated with
this workflow model in the "Monitoring" and "Completed
workflows" sections. This profile is automatically granted
the "Visualize completed workflows" permission. The built-
in administrator always has the visualize workflows rights.

Visualize workflows > The
workflow creator can visualize it

If enabled, the workflow creator has the permission to
view the workflows he has launched. This restricted
permission grants access to the workflows he launched and
to the associated work items in the "Monitoring > Active
workflows", "Monitoring > Work items" and "Completed
workflows" sections. The default value is 'No'.

Visualize workflows > Visualize
completed workflows

Defines the profile that is allowed to visualize completed
workflows. This permission allows visualizing completed
workflows in the "Completed workflows" section and
accessing their history. A profile with the "Visualize
workflows" permission is automatically allowed to perform
this action. The built-in administrator always has the
visualize completed workflows rights.

Note

A user who has no specific privileges assigned can only see work items associated with
this workflow that are offered or allocated to that user.

See alsoWorkflow administration [p 175]

26.6 Workflow model snapshots
The history of workflow model snapshots can be managed from Actions > History.
The history table displays all snapshots which contain the selected workflow model and indicates if
a workflow model is published. For each snapshot, the Actions button allows you to export or view
the corresponding workflow model.

Documentation > User Guide > Workflow models > Configuring the workflow model

TIBCO EBX® Product Documentation 5.9.20 156

26.7 Deleting a workflow model
Workflow model can be deleted, however any associated publications remain accessible in the Data
Workflows area. If a new workflow model is created with the same name as a deleted workflow model,
publishing will prompt to replace the old publication.

See alsoPublishing workflow models [p 157]

Documentation > User Guide > Workflow models > Publishing workflow models

TIBCO EBX® Product Documentation 5.9.20 157

CHAPTER 27
Publishing workflow models

This chapter contains the following topics:

1. About workflow publications

2. Publishing and workflow model snapshots

3. Sub-workflows in publications

27.1 About workflow publications
Once a workflow model is defined, it must be published in order to enable authorized users to launch
associated data workflows. This is done by clicking the Publish button in the navigation pane.
If no sub-workflow invocation steps are included in the current workflow model, you have the option
of publishing other workflow models at the same time on the publication page. If the current workflow
model contains sub-workflow invocation steps, it must be published alone.
Workflow models can be published several times. A publication is identified by its publication name

27.2 Publishing and workflow model snapshots
When publishing a workflow model, a snapshot is taken of its current state. A label and a description
can be specified for the snapshot to be created. The default snapshot label is the date and time of the
publication. The default description indicates the user who published the workflow model.
For each workflow model being published, the specified publication name must be unique. If a
workflow model has already been published, it is possible to update an existing publication by reusing
the same publication name. The names of existing workflow publications associated with a given
workflow model are available in a drop-down menu. In the case of a publication update, the old version
is no longer available for launching data workflows, however it will be used to terminate existing
workflows. The content of different versions can be viewed in the workflow model snapshot history.

See alsoWorkflow model snapshots [p 155]

27.3 Sub-workflows in publications
When publishing a workflow model containing sub-workflow invocation steps, it is not necessary to
separately publish the models of the sub-workflows. From an administration standpoint, the model
of the main workflow (the one currently published by a user) and the models of the sub-workflows
are published as a single entity.

Documentation > User Guide > Workflow models > Publishing workflow models

TIBCO EBX® Product Documentation 5.9.20 158

The system computes the dependencies to workflow models used as sub-workflows, and automatically
creates one publication for each dependent model. These technical publications are dedicated to the
workflow engine to launch sub-workflows, and are not available in the Workflow Data area.
The multiple publication is not available for a workflow model containing sub-workflow invocation
steps. This is why the first step of the publication (selection of workflow models to publish) is not
offered in this case.
Republishing the main workflow model automatically updates the invoked sub-workflow models.
Although a sub-workflow model can be published separately as a main workflow model, this will not
update the version used by an already published main workflow model using this sub-workflow.

Documentation > User Guide

TIBCO EBX® Product Documentation 5.9.20 159

Data workflows

Documentation > User Guide > Data workflows > Introduction to data workflows

TIBCO EBX® Product Documentation 5.9.20 160

CHAPTER 28
Introduction to data workflows

This chapter contains the following topics:

1. Overview

28.1 Overview
A data workflow is an executed step-by-step data management process, defined using a workflow
model publication. It allows users, as well as automated procedures, to perform actions collaboratively
on a set of data. Once a workflow model has been developed and published, the resulting publication
can be used to launch a data workflow to execute the defined steps.
Depending on the workflow user permissions defined by the workflow model, a user may perform
one or more of the following actions on associated data workflows:

• As a user with default permissions, work on and complete an assigned work item.

• As a user with workflow launching permissions, create a new data workflow from a workflow
model publication.

• As a workflow monitor, follow the progress of ongoing data workflows and consult the history
of completed data workflows.

• As a manager of work item allocation, modify work item allocations manually for other users
and roles.

• As a workflow administrator, perform various administration actions, such as replaying steps,
terminating workflows in progress, or rendering publications unavailable for launching data
workflows.

See also

Work items [p 167]

Launching and monitoring data workflows [p 173]

Administration of data workflows [p 175]

Permissions on associated data workflows [p 153]

Related conceptsWorkflow models [p 132]

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 5.9.20 161

CHAPTER 29
Using the Data Workflows area user

interface
This chapter contains the following topics:

1. Navigating within the interface

2. Navigation rules

3. Custom views

4. Specific columns

5. Filtering items in views

6. Graphical workflow view

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 5.9.20 162

29.1 Navigating within the interface
Data workflow functionality is located in the Data Workflows area of the TIBCO EBX user interface.

Note

This area is available only to authorized users in the 'Advanced perspective' or from a
specifically configured perspective. Only authorized users can access these interfaces.

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 5.9.20 163

The navigation pane is organized into several entries. These entries are displayed according to their
associated global permission. The different entries are:

Work items inbox All work items either allocated or offered to you, for which
you must perform the defined task.

Workflow launchers List of workflow model publications from which you are
allowed to launch data workflows, according to your user
permissions.

Monitoring Monitoring views on the data workflows for which you have
the necessary viewing permissions.

 Publications Publications for which you have the necessary viewing
permissions. If you have additional administrative
permissions, you can also disable the ability to launch data
workflows from specific publications from this view.

 Active workflows Data workflows in the process of execution for which
you have the necessary viewing permissions. If you have
additional administrative permissions, you can also perform
actions such as replaying steps of data workflows, and
terminating the execution of data workflows from this view.

 Work items Work items for which you have the necessary viewing
permissions. If you have additional administrative
permissions, you can also perform actions relevant to
work item administration, such as allocating work items to
specific users or roles from this view.

Completed workflows Data workflows that have completed their execution, for
which you have the necessary viewing permissions. You can
view the history of the executions of the data workflows.
If you have additional administrative permissions, you can
also clean completed workflows from the repository from
this view.

Note

Each section can be accessed through Web Components, for example, for portal integration,
or programatically using the ServiceKey class in the Java API.

See also

Using TIBCO EBX as a Web Component [p 193]

ServiceKeyAPI

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 5.9.20 164

29.2 Navigation rules

Work items inbox
By default, once a work item has been executed, the work items inbox is displayed.
This behavior can be modified according to the next step progress strategy, which can allow to execute
several steps in a row without going back to the work items inbox.
See the progress strategy of a workflow step [p 138] in workflow modeling.

Workflow launchers
By default, once a workflow has been launched, the workflow launchers table is displayed.
This behavior can be modified according to the model configuration, which can allow to directly open
the first step without displaying the workflow launchers table.
See the automatic opening of the first workflow step [p 150] in workflow modeling.

29.3 Custom views
It is possible to define views on workflow tables and to benefit from all associated mechanisms
(publication included).
Permissions to create and manage workflow table views are the same as the permissions for data table
views. It may thus be necessary to change the permissions in the 'Administration' section in order to
benefit from this feature, by selecting Workflow management > Workflows.
See the Views [p 115] for more information.

29.4 Specific columns
By default, specific columns are hidden in the views that can benefit from it (inbox, work items
monitoring, active workflows monitoring and completed workflows).
A custom view should be created and applied in order to display the specific columns. For each
work item or workflow, the matching defined in the associated workflow model is then applied. If an
expression is defined for a column and contains data context variables, these variables are evaluated
upon display. If the expression contains built-in expressions which depend on the locale, the expression
is evaluated in the default locale.

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 5.9.20 165

29.5 Filtering items in views
In certain tables, such as the 'Work item inbox', you can narrow down the entries displayed in the
tables by viewing only the entries of a certain state. In such views, there is a menu from which you
can select a state to see its corresponding items.

29.6 Graphical workflow view
Whether as a user with a work item to perform, or as a data workflow monitor or administrator, you

can view the progress or the history of a data workflow execution by clicking the 'Preview' button
that appears in the 'Data workflow' column of tables throughout the data workflows user interface.
This opens a pop-up displaying an interactive graphical view of the data workflow's execution. In this
view, you can see the overall progress of the execution, as well as click on an individual step to view
the details of its information.
If steps have been defined as hidden in the workflow modeling, they are automatically hidden in the
workflow progress view for non-administrator users (non built-in administrators and non workflow
administrators). A button is available to display hidden steps. The choice of users (show or hide steps)
is saved by user, by publication during the user session.
For user tasks performed using the new mode (single work item), the main information about the
single work item is directly displayed in the workflow progress view, when applicable: the avatar
of the user associated with the work item, and the decision that has been taken for the work item
(accepted or rejected).

Documentation > User Guide > Data workflows > Using the Data Workflows area user interface

TIBCO EBX® Product Documentation 5.9.20 166

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 5.9.20 167

CHAPTER 30
Work items

This chapter contains the following topics:

1. About work items

2. Working on work items as a participant

3. Work item priorities

30.1 About work items
A work item is a unit of work that must be performed by a human user as a part of a user task.
By default, when a workflow model defines a user task, data workflows that are launched from that
model's publications will generate an individual work item for each of the participants listed in the
user task.

See alsoOverview [p 563]

Work item states
When the data workflow spawns a work item for a modelled user task during execution, the work item
passes through several possible states: offered, allocated, started, and completed.

Creation of work items

Default mode
By default, a single work item is generated regardless of the list of defined profiles.
By default, if a single user is defined in the list of profiles, the created work item is in the allocated
state.
By default, in other cases, the created work item is in the offered state.

Note

The default behavior described above can be overridden by a programmatic extension
defined in the user task. In this case, work items may be generated programmatically and
not necessarily based on the user task's list of participants.

Legacy mode
By default, for each user defined as a participant of the user task, the data workflow creates a work
item in the allocated state.

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 5.9.20 168

By default, for each role defined as a participant of the user task, the data workflow creates a work
item in the offered state.

Note

The default behavior described above can be overridden by a programmatic extension
defined in the user task. In this case, work items may be generated programmatically and
not necessarily based on the user task's list of participants.

Variations of the work item states
When the work item is in the allocated state, the defined user can directly start working on the allocated
work item with the 'Take and start' action. The work item's state becomes started.
When the work item is in the offered state, any user or member of the roles to whom the work item is
offered can take the work item with the 'Take and start' action'. The work item's state becomes started.
Before a user has claimed the offered work item, a workflow allocation manager can intervene to
manually assign the work item to a single user, thus moving the work item to the allocated state. Then,
when that user begins work on the work item by performing the action 'Start work item', the work
item progresses to the started state.
Finally, after the user who started the work item has finished the assigned action, the concluding accept
or reject action moves the work item to the completed state. Once a user completes a work item, the
data workflow automatically progresses onto the next step defined in the workflow model.

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 5.9.20 169

Diagram of the work item states

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 5.9.20 170

30.2 Working on work items as a participant
All work items relevant to you as a user (either offered or allocated to you), appear in your work
items inbox. When you begin working on a work item, you can add an associated comment that will
be visible to other participants of the data workflow, as well as administrators and monitors of the
workflow. As long as you are still working on the work item, you can go back and edit this comment.
After you have performed all the necessary actions assigned for the work item, you must signal its
completion by clicking either the Accept or Reject button. The labels of these two buttons may differ
depending on the context of the work item.
To review the current progress of a data workflow for which you have a waiting work item in your

work item inbox, click its 'Preview' button in the 'Data workflow' column of the table. A pop-up
will show an interactive graphical view of the data workflow up until this point and the upcoming
steps. You can view the details of a step by clicking on that step.

Note

If you interrupt the current session in the middle of a started work item, for example by
closing the browser or by logging out, the current work item state is preserved. When
you return to the work item, it continues from the point where you left off.

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 5.9.20 171

30.3 Work item priorities
Work items may carry a priority value, which can be useful for sorting and filtering outstanding work
items. The priority of a work item is set at the level of its data workflow, rather than being specific to
the individual work item itself. Thus, if a data workflow is considered urgent, all its associated open
work items are also considered to be urgent. By default, there are six priority levels ranging from 'Very
low' to 'Urgent', however the visual representation and naming of the available priority levels depend
on the configuration of your TIBCO EBX repository.

See alsouser task (glossary) [p 30]

Related conceptsUser tasks [p 138]

Documentation > User Guide > Data workflows > Work items

TIBCO EBX® Product Documentation 5.9.20 172

Documentation > User Guide > Data workflows > Managing data workflows > Launching and monitoring data workflows

TIBCO EBX® Product Documentation 5.9.20 173

CHAPTER 31
Launching and monitoring data

workflows
This chapter contains the following topics:

1. Launching data workflows

2. Monitoring activities

3. Managing work item allocation

31.1 Launching data workflows
If a workflow model has given you the permissions to launch data workflows from its publications,
you can create new data workflows from the 'Workflow launchers' entry in the navigation pane. To
create a new data workflow from a workflow model publication, click the Launch button in the entry
of the publication.
You can optionally define localized labels and descriptions for the new data workflow you are
launching.

31.2 Monitoring activities
If a workflow model's permissions have configured your user or role for workflow monitoring, you
have the ability to follow the progress of data workflows that are currently executing. You can access
your monitoring views from the 'Monitoring' section of the navigation panel. If you have additional
workflow management permissions, you can also perform the associated actions from these views.
Once the data workflows that you monitor have completed execution, they appear under 'Completed
data workflows', where you can consult their execution history.

31.3 Managing work item allocation
If a workflow model defines special allocation management permissions for you or a role that you
belong to, you have the ability to manually intervene for work item allocations during the execution
of associated data workflows. In this case, you are able to perform one or more of the actions listed
below on work items.

Documentation > User Guide > Data workflows > Managing data workflows > Launching and monitoring data workflows

TIBCO EBX® Product Documentation 5.9.20 174

Select 'Work items' in the 'Monitoring' section of the navigation pane. The actions that you are able
to perform appear in the Actions menu of the work item's entry in the table, depending on the current
state of the work item.

Allocate Allocate a work item to a specific user. This action is
available for work items in the offered state.

Deallocate Reset a work item in the allocated state to the offered state.

Reallocate Modify the user to whom a work item is allocated. This
action is available for work items in the allocated state.

See also

Work items [p 167]

Permissions on associated data workflows [p 153]

Related conceptsWorkflow models [p 132]

Documentation > User Guide > Data workflows > Managing data workflows > Administration of data workflows

TIBCO EBX® Product Documentation 5.9.20 175

CHAPTER 32
Administration of data workflows
If you have been given permissions for administration activities associated with data workflows, any
relevant publications, active data workflows, and work items, will appear under the entries of the
'Monitoring' section in the navigation panel. From these monitoring views, you can directly perform
administrative tasks from the Actions menus of the table entries.

Note

When a workflow model gives you administrative rights, you automatically have
monitoring permissions on all of the relevant aspects of data workflow execution, such
as publications, active data workflows, and work items.

This chapter contains the following topics:

1. Overview of data workflow execution

2. Data workflow administration actions

32.1 Overview of data workflow execution
When a data workflow is launched, a token that marks the step currently being executed is created
and positioned at the start of the workflow. As each step is completed, this token moves on to the next
step as defined in the workflow model on whose publication the data workflow is based.
At any given point during the execution of a data workflow, the token is positioned on one of the
following:

• a script task, which is run automatically and requires no user interaction. The script task is
completed when the defined actions finish running.

• a user task, which spawns one or more work items to be performed manually by users. Each work
item is completed by an explicit 'Accept' or 'Reject' action from a user, and the completion of the
umbrella user task is determined according to the task termination criteria defined for the user
task in the workflow model.

• a condition, which is evaluated automatically in order to determine the next step in the execution
of the data workflow.

• a sub-workflows invocation, which launches associated sub-workflows and waits for the
termination of the launched sub-workflows.

• a wait task, which pauses the workflow until a specific event is received.

The token can be in the following states:

Documentation > User Guide > Data workflows > Managing data workflows > Administration of data workflows

TIBCO EBX® Product Documentation 5.9.20 176

• To execute: The token is the process of progressing to the next step, based on the workflow model.

• Executing: The token is positioned on a script task or a condition that is being processed.

• User: The token is positioned on a user task and is awaiting a user action.

• Waiting for sub-workflows: The token is positioned on a sub-workflow invocation and is
awaiting the termination of all launched sub-workflows.

• Waiting for event: The token is positioned on a wait task and is waiting for a specific event to
be received.

• Finished: The token has reached the end of the data workflow.

• Error: An error has occurred.

See alsoWorkflow management [p 409]

32.2 Data workflow administration actions

Actions on publications

Disabling a workflow publication
To prevent new data workflows from being launched from a given workflow publication, you can
disable it. Select the 'Publications' entry from the navigation pane, then select Actions > Disable in
the entry for the publication you want to disable.
Once disabled, the publication will no longer appear in the 'Workflow launchers' view of users, but
any data workflows already launched that are in progress will continue executing.

Note

Once a publication has been disabled, it cannot be re-enabled from the Data Workflows
area. Only a user with the built-in repository 'Administrator' role can re-enable a disabled
publication from the Administration area, although manually editing technical tables
is not generally recommended, as it is important to ensure the integrity of workflow
operations.

Unpublishing a workflow publication
If a workflow publication is no longer required, you can remove it completely from the views in the
Data Workflows area by unpublishing it. To do so,

1. Disable the workflow publication to prevent users from continuing to launch new data workflows
from it, as described in Disabling a workflow publication [p 176].

2. Unpublish the workflow publication by selecting Actions > Unpublish from the workflow
publication's entry in the same table of publications.

Note

When you choose to unpublish a workflow publication, you will be prompted to confirm
the termination and cleaning of any data workflows in progress that were launched from
this workflow publication, and any associated work items. Any data that is lost as a result
of forcefully terminating a data workflow cannot be recovered.

Documentation > User Guide > Data workflows > Managing data workflows > Administration of data workflows

TIBCO EBX® Product Documentation 5.9.20 177

Actions on data workflows
From the tables of data workflows, it is possible to perform actions from the Actions menu in the
record of a given data workflow.

Replaying a step
In the event of an unexpected failure during a step, for example, an access rights issue or unavailable
resources, you can "replay" the step as a data workflow administrator. Replaying a step cleans the
associated execution environment, including any related work items and sub-workflows, and resets
the token to the beginning of the current step.
To replay the current step in a data workflow, select Actions > Replay the step from the entry of the
workflow in the 'Active workflows' table.

Terminating and cleaning an active data workflow
In order to stop and clean a data workflow that is currently in progress, select Actions > Terminate
and clean from the entry of the workflow in the 'Active workflows' table. This will stop the execution
of the data workflow and clean the data workflow and all associated work items and sub-workflows.

Note

This action is not available on workflows in the 'Executing' state, and on sub-workflows
launched from another workflow.

Note

Workflow history data is not deleted.

Forcing termination of an active data workflow
In order to stop a data workflow that is currently in progress, select Actions > Force termination
from the entry of the workflow in the 'Active workflows' table. This will stop the execution of the
data workflow and clean any associated work items and sub-workflows.

Note

This action is available for sub-workflows, and for workflows in error blocked on the
last step.

Note

Workflow history data is not deleted.

Forcing resumption of a waiting data workflow
In order to resume a data workflow that is currently waiting for an event, select Actions > Force
resumption from the entry of the workflow in the 'Active workflows' table. This will resume the data
workflow. Before doing this action, it is the responsibility of the administrator to update the data
context in order to make sure that the data workflow can execute the next steps.

Note

This action is only available for workflows in the 'waiting for event' state.

Documentation > User Guide > Data workflows > Managing data workflows > Administration of data workflows

TIBCO EBX® Product Documentation 5.9.20 178

Cleaning a completed data workflow
When a data workflow has completed its execution, its history is viewable by monitors and
administrators of that workflow in the view 'Completed workflows'. To remove the completed
workflow, you can perform a clean operation on it. To do so, select Actions > Clean from the entry
of the workflow in the 'Completed workflows' table.
When cleaned a workflow is no longer visible in the view 'Completed workflows' but its history is
still available from the technical administration area.

Note

This action is not available on sub-workflows launched from another workflow.

See alsoWorkflow management [p 409]

Modifying the priority of a data workflow
After a data workflow has been launched, an administrator of the workflow can alter its priority level.
Doing so changes the priority of all existing and future work items created by the data workflow. To
change the priority level of a data workflow, select Actions > Modify priority from the entry of the
workflow in the 'Active workflows' table.

See alsoPermissions on associated data workflows [p 153]

Documentation > User Guide

TIBCO EBX® Product Documentation 5.9.20 179

Data services

Documentation > User Guide > Data services > Introduction to data services

TIBCO EBX® Product Documentation 5.9.20 180

CHAPTER 33
Introduction to data services

This chapter contains the following topics:

1. Overview

2. Using the Data Services area user interface

33.1 Overview

What is a data service?
A data service [p 31] is:

• a standard Web service that interacts with TIBCO EBX.
SOAP data services can be dynamically generated based on data models from the 'Data Services'
area.

• a REST service that allows interrogating the EBX repository.
The built-in RESTful service does not require a service interface, it is self-descriptive through
the returned metadata.

They can be used to access some of the features available through the user interface.

See also

WSDL/SOAP [p 596]

REST [p 650]

Lineage
Lineage [p 32] is used to establish user permission profiles for non-human users, namely data services.
When accessing data using WSDL interfaces, data services use the permission profiles established
through lineage.

Glossary
See alsoData services [p 31]

Documentation > User Guide > Data services > Introduction to data services

TIBCO EBX® Product Documentation 5.9.20 181

33.2 Using the Data Services area user interface

Note

This area is available only to authorized users in the 'Advanced perspective'.

Related concepts

Dataspace [p 90]

Dataset [p 108]

Data workflows [p 160]

Introduction [p 596]

Documentation > User Guide > Data services > Introduction to data services

TIBCO EBX® Product Documentation 5.9.20 182

Documentation > User Guide > Data services > Generating data service WSDLs

TIBCO EBX® Product Documentation 5.9.20 183

CHAPTER 34
Generating data service WSDLs

This chapter contains the following topics:

1. Generating a WSDL for operations on data

2. Generating a WSDL for dataspace operations

3. Generating a WSDL for data workflow operations

4. Generating a WSDL for lineage

5. Generating a WSDL for administration

6. Generating a WSDL to modify the default directory

34.1 Generating a WSDL for operations on data
To generate a WSDL for accessing data, select 'Data' in the navigation panel in the Data Services
area, then follow through the steps of the wizard:

1. Choose whether the WSDL will be for operations at the dataset level or at the table level.

2. Identify the dataspace and dataset on which the operations will be run

3. Select the tables on which the operations are authorized, as well as the operations permitted.

4. Download the generated WSDL file by clicking the button Download WSDL.

Operations on datasets
The following operations can be performed using the WSDL generated for operations at the dataset
level:

• Select dataset content for a dataspace or snapshot.

• Get dataset changes between dataspaces or snapshots

• Replication unit refresh

Operations on tables
The following operations, if selected, can be performed using the WSDL generated for operations at
the table level:

• Insert record(s)

• Select record(s)

Documentation > User Guide > Data services > Generating data service WSDLs

TIBCO EBX® Product Documentation 5.9.20 184

• Update record(s)

• Delete record(s)

• Count record(s)

• Get changes between dataspace or snapshot

• Get credentials

• Run multiple operations on tables in the dataset

See also

WSDL download from HTTP protocol [p 609]

Operations generated from a data model [p 615]

34.2 Generating a WSDL for dataspace operations
To generate a WSDL for dataspace-level operations, selecting 'Dataspace' in the navigation panel
of the Data Services area. The generated WSDL is generic to all dataspaces, thus no additional
information is required.
Download the generated WSDL file by clicking the button Download WSDL.

Operations on dataspaces
The following operations can be performed using the WSDL generated for operations at the dataspace
level:

• Create a dataspace

• Close a dataspace

• Create a snapshot

• Close a snapshot

• Merge a dataspace

• Lock a dataspace

• Unlock a dataspace

• Validate a dataspace or a snapshot

• Validate a dataset

See also

WSDL download from HTTP protocol [p 609]

Operations on datasets and dataspaces [p 636]

34.3 Generating a WSDL for data workflow operations
To generate a WSDL to control data workflows, select 'Data workflow' from the Data Services
area. The generated WSDL is not specific to any particular workflow publication, thus no additional
information is required.
Download the generated WSDL file by clicking the button Download WSDL.

Documentation > User Guide > Data services > Generating data service WSDLs

TIBCO EBX® Product Documentation 5.9.20 185

Operations on data workflows
• Start a data workflow

• Resume a data workflow

• End a data workflow

See also

WSDL download from HTTP protocol [p 609]

Operations on data workflows [p 642]

34.4 Generating a WSDL for lineage
To generate a WSDL for lineage, select 'Lineage' from the Data Services area. It will be based
on authorized profiles that have been defined by an administrator in the 'Lineage' section of the
Administration area.
The operations available for accessing tables are the same as for WSDL for operations on data [p 183].
Steps for generating the WSDL for lineage are as follows:

1. Select the profile whose permissions will be used. The selected user or role must be authorized
for use with lineage by an administrator.

2. Identify the dataspace and dataset on which the operations will be run

3. Select the tables on which the operations are authorized, as well as the operations permitted.

4. Download the generated WSDL file by clicking the button Download WSDL.

See alsoLineage [p 180]

34.5 Generating a WSDL for administration
This action is only available to administrators.
To generate a WSDL for:

• managing the user interface

• getting system information

select 'Administration' from the Data Services area.

Operations for administration
• Close user interface

• Open user interface

• Get system information

See also

WSDL download from HTTP protocol [p 609]

User interface operations [p 646]

System information operation [p 646]

Documentation > User Guide > Data services > Generating data service WSDLs

TIBCO EBX® Product Documentation 5.9.20 186

34.6 Generating a WSDL to modify the default directory
This action is only available to administrators, and only if using the default directory.
To generate a WSDL to update the default directory, select 'Directory' from the Data Services area.

Operations on the default directory
The operations available for accessing tables are the same as for WSDL for operations on data [p 183].

See also

WSDL download from HTTP protocol [p 609]

Directory services [p 645]

TIBCO EBX® Product Documentation 5.9.20 187

Reference
Manual

Documentation > Reference Manual

TIBCO EBX® Product Documentation 5.9.20 188

Integration

Documentation > Reference Manual > Integration > Overview of integration and extension

TIBCO EBX® Product Documentation 5.9.20 189

CHAPTER 35
Overview of integration and

extension
Several service and component APIs allow you to develop custom extensions for TIBCO EBX and
integrate it with other systems.
This chapter contains the following topics:

1. Using EBX as a Web Component

2. User interface customization

3. Data services

4. XML and CSV import/export services

5. Programmatic services

35.1 Using EBX as a Web Component
It is possible to use EBX as a user interface web component, by calling it using the HTTP protocol.
Such EBX Web Components can be integrated into any application that is accessible through a
supported web browser [p 310].
A typical use is to integrate EBX views into an organization's intranet framework. Web Components
can also be invoked from the EBX user interface using User services [p 189].

See alsoUsing EBX as a Web Component [p 193]

35.2 User interface customization

User services
A user service is an extension of EBX that provides a graphical user interface (GUI) allowing users
to access specific or advanced functionalities.

See alsoUser services overview [p 563]

Custom form layout
A presentation layer provides the ability to override the default layout of forms in the user interface
with highly customized form layouts.

Documentation > Reference Manual > Integration > Overview of integration and extension

TIBCO EBX® Product Documentation 5.9.20 190

See alsoForm layout [p 561]

Custom widgets
A custom widget is a graphical component developed specifically to customize the look and feel of
groups and fields in data models or in programmatically defined schemas.

See alsoCustom widgets [p 561]

Ajax
EBX supports Ajax asynchronous exchange of data with the server without refreshing the currently
displayed page.

See also

User service Ajax callbacks [p 560]

Ajax component UIAjaxComponentAPI

Specifying UI filters on a table
In addition to the default filters and search panes in the user interface, it is possible to specify additional
filters dependent on the structure of the table. For that, a specific class must be defined in the definition
of the table and must extend UITableFilter.
See UITableFilterAPI for more information.

35.3 Data services
The data services module provides a means for external systems to interact with EBX using one of
following:

• Web Services Description Language (WSDL/SOAP) standard

• Representational state transfer (REST)

See also

WSDL/SOAP data services [p 596]

REST data services [p 650]

35.4 XML and CSV import/export services
EBX includes built-in services for importing data from and export data to XML and CSV formats.
Imports and exports for XML and CSV can be performed using the user interface, data services, or
the Java API.

See also

XML import and export [p 215]

CSV import and export [p 221]

Documentation > Reference Manual > Integration > Overview of integration and extension

TIBCO EBX® Product Documentation 5.9.20 191

35.5 Programmatic services
Programmatic services allow executing procedures in a well-defined context, for example in a
scheduled task or in a batch.
Some examples of programmatic services include:

• Importing data from an external source,

• Exporting data to multiple systems,

• Data historization, launched by a supervisory system

• Optimizing and refactoring data if EBX built-in optimization services
AdaptationTreeOptimizerSpecAPI are not sufficient.

See alsoProgrammaticServiceAPI

Documentation > Reference Manual > Integration > Overview of integration and extension

TIBCO EBX® Product Documentation 5.9.20 192

Documentation > Reference Manual > Integration > Using TIBCO EBX as a Web Component

TIBCO EBX® Product Documentation 5.9.20 193

CHAPTER 36
Using TIBCO EBX as a Web

Component
This chapter contains the following topics:

1. Overview

2. Integrating EBX Web Components into applications

3. Repository element and scope selection

4. Combined selection

5. Request specifications

6. Example calls to an EBX Web Component

36.1 Overview
EBX can be used as a user interface Web Component, called through the HTTP protocol. An EBX
Web Component can be integrated into any application that is accessible through a supported web
browser. This method of access offers the major benefits of EBX, such as user authentication, data
validation, and automatic user interface generation, while additionally providing the ability to focus
user navigation on specific elements of the repository.
Typical uses of EBX Web Components include integrating them into the intranet frameworks of
organizations or into applications that manage the assignment of specific tasks to users.

See alsoSupported web browsers [p 310]

36.2 Integrating EBX Web Components into applications
A web application that calls an EBX Web Component can be:

1. A non-Java application, the most basic being a static HTML page.
In this case, the application must send an HTTP request that follows the EBX Web Component
request specifications [p 195].

2. A Java application, for example:

• A Java web application running on the same application server instance as the EBX repository
it targets or on a different application server instance.

Documentation > Reference Manual > Integration > Using TIBCO EBX as a Web Component

TIBCO EBX® Product Documentation 5.9.20 194

• An EBX User service [p 189] or a Custom widget [p 190], in which case, the new session will
automatically inherit from the parent EBX session.

Note

In Java, the recommended method for building HTTP requests that call EBX web
components is to use the class UIHttpManagerComponentAPI in the API.

36.3 Repository element and scope selection
When an EBX Web Component is called, the user must first be authenticated in the newly instantiated
HTTP session. The Web Component then selects a repository element and displays it according to the
scope layout parameter defined in the request.
The parameter firstCallDisplay may change this automatic display according to its value.
The repository elements that can be selected are as follows:

• Dataspace or snapshot

• Dataset

• Node

• Table or a published view

• Table record

The scope determines how much of the user interface is displayed to the user, thus defining where the
user is able to navigate in the session. The default scope that the Web component uses is the smallest
possible depending on the entity or service being selected or invoked by the request.

See alsoScope [p 198]

See alsofirstCallDisplay [p 198]

It is also possible to select a specific perspective as well as a perspective action.
By default, the selection of the element is done in the context of the perspective of the user if the
scope is "full".

See alsoPerspective [p 17]

36.4 Combined selection
A URL of a Web component can specify a perspective and an action or an entity (dataspace, dataset,
etc). Thus, for a Web component that has specified in its URL a perspective and an entity (but no
action), if an action of the perspective matches this entity, then this action will be automatically
selected.
Otherwise, if no action matches this entity, no action will be selected but the entity is opened
regardless.
If an action is specified at the same time than an entity, this last is ignored and the action will be
selected.

Documentation > Reference Manual > Integration > Using TIBCO EBX as a Web Component

TIBCO EBX® Product Documentation 5.9.20 195

Specific case
If the target entity is a record and if an action is on the table that contains this record, then this action
will be selected and the record will be opened inside the action.
In the same way, if a workflow work item is targeted by the web component, and if an action on « inbox
» exists in the perspective, then this action will be selected and the work item will be opened inside it.

Known limitations
If the Web component specifies a predicate to filter a table, the perspective action must specify the
exact same predicate to be selected.
In the same way, if the perspective action specifies a predicate to filter a table, the Web component
must specify the exact same predicate to establish the match.

36.5 Request specifications

Base URL
In a default deployment, the base URL must be of the following form:
http://<host>[:<port>]/ebx/

Note

The base URL must refer to the servlet FrontServlet, defined in the deployment
descriptor /WEB-INF/web.xml of the web application ebx.war.

User authentication and session information parameters

Parameter Description Required

login and password,
or a user directory-
specific token

Specifies user authentication properties. If neither a login and password pair nor
a user directory-specific token is provided, user will be required to authenticate
through the repository login page.

See DirectoryAPI for more information.

No

trackingInfo Specifies the tracking information of the new session. Tracking information is
logged in history tables. Additionally, it can be used to programmatically restrict
access permissions.

See AccessRuleAPI for more information.

No

redirect The URL to which the user will be redirected at the end of the component session,
when they click on the button 'Close'. The close button is always displayed for
record selections, but whether or not it is displayed for all other cases must be
specified using the parameter closeButton.

For more information, see Exit policy [p 387].

No

locale Specifies the locale to use. Value is either en-US or fr-FR. No, default
is the locale
registered for
the user.

Documentation > Reference Manual > Integration > Using TIBCO EBX as a Web Component

TIBCO EBX® Product Documentation 5.9.20 196

Entity and service selection parameters

Parameter Description Required

branch Selects the specified dataspace. No

version Selects the specified snapshot. No

instance Selects the specified dataset. The value must be the reference of
a dataset that exists in the selected dataspace or snapshot.

Only if xpath or
viewPublication is
specified.

viewPublication Specifies the publication name of the tabular or hierarchical
view to apply to the selected content.

This publication name is the one declared during the
publication of the view. It can be found in the 'Administration'
area under Views configuration > Views.

All settings of the view, that is, its filters, sort order, and
displayed columns, are applied to the result. A dataspace
and a dataset must be selected in order for this view to be
applied. The target table selection is not necessary, as it can be
automatically determined based on the definition of the view.
This parameter can be combined with the predicate specified in
the xpath parameter as a logical 'AND' operation.

No

xpath Specifies a node selection in the dataset.

Value may be a valid absolute path located in the selected
dataset. The notation must conform to a simplified XPath, with
abbreviated syntax.

It can also be a predicate surrounded by "[" and "]" if a table
can be automatically selected using other Web Component
parameters (for example, viewPublication or workflowView).

For XPath syntax, see XPath supported syntax [p 227]

See UIHttpManagerComponent.setPredicateAPI for more
information.

No

service Specifies the service to access.

For more information on built-in User services, see Built-in
services [p 201].

In the Java API, see ServiceKeyAPI for more information.

No

workflowView Specifies the workflow section to be selected.

See WorkflowViewAPI for more information.

No.

perspectiveName Specifies the name of the perspective to be selected.

If this parameter is specified, the scope parameter can have
only two values: full and data.

Only if
perspectiveActionId or
perspectiveActionName is
specified.

perspectiveActionId Deprecated. Please consider using perspectiveActionName
instead.

Specifies the identifier of the perspective action to be selected.

No.

Documentation > Reference Manual > Integration > Using TIBCO EBX as a Web Component

TIBCO EBX® Product Documentation 5.9.20 197

Parameter Description Required

perspectiveActionName Specifies the unique name of the perspective action to be
selected.

No.

Documentation > Reference Manual > Integration > Using TIBCO EBX as a Web Component

TIBCO EBX® Product Documentation 5.9.20 198

Layout parameters

Parameter Description Required

scope Specifies the scope to be used by the web component. Value can be full, data,
dataspace, dataset or node.

See UIHttpManagerComponent.ScopeAPI for more information.

No, default will
be computed to
be the smallest
possible
according to the
target selection.

firstCallDisplay Specifies which display must be used instead of the one determined by the
combination of selection and scope parameter.

Possible values are:

• auto: The display is automatically set according to the selection.

• view: Forces the display of the tabular view or of the hierarchical view.

• record: If the predicate has at least one record, forces the display of the first
record in the list.

For example,
firstCallDisplay=view

firstCallDisplay=view:hierarchyExpanded

firstCallDisplay=record

firstCallDisplay=record:{predicate}

See UIHttpManagerComponent.setFirstCallDisplayAPI for more information.

See UIHttpManagerComponent.setFirstCallDisplayHierarchyExpandedAPI for
more information.

See UIHttpManagerComponent.setFirstCallDisplayRecordAPI for more
information.

No, default will
be computed
according to the
target selection.

closeButton Specifies how to display the session close button. Value can be logout or cross.

See UIHttpManagerComponent.CloseButtonSpecAPI for more information.

No. If scope
is not full,
no close
button will be
displayed by
default.

dataSetFeatures Specifies which features to display in a UI service at the dataset level or a form
outside of a table.

These options pertain only to features in the workspace. It is recommended to use
this property with the smallest scope possible, namely dataset or node.

Syntax:

<prefix> ":" <feature> ["," <feature>]*

where

• <prefix> is hide or show,

• <feature> is services, title, save, or revert.

For example,
hide:title

show:save,revert

See UIHttpManagerComponent.DataSetFeaturesAPI for more information.

No.

viewFeatures Specifies which features to display in a tabular or a hierarchy view (at the table
level).

No.

Documentation > Reference Manual > Integration > Using TIBCO EBX as a Web Component

TIBCO EBX® Product Documentation 5.9.20 199

Parameter Description Required

These options pertain only to features in the workspace. It is recommended to use
this property with the smallest scope possible, namely dataset or node.

Syntax:

<prefix> ":" <feature> ["," <feature>]*

where

• <prefix> is hide or show,

• <feature> is create, views, selection, filters, services, refresh, title,
or breadcrumb.

For example,
hide:title,selection

show:service,title,breadcrumb

See UIHttpManagerComponent.ViewFeaturesAPI for more information.

recordFeatures Specifies which features must be displayed in a form at the record level.

These options pertain only to features in the workspace. It is recommended to use
this property with the smallest scope possible, namely dataset or node.

Syntax:

<prefix> ":" <feature> ["," <feature>]*

where

• <prefix> is hide or show,

• <feature> is services, title, breadcrumb, save, saveAndClose, close, or
revert.

For example,
hide:title

show:save,saveAndClose,revert

See UIHttpManagerComponent.RecordFeaturesAPI for more information.

No.

pageSize Specifies the number of records that will be displayed per page in a table view
(either tabular or hierarchical).

No.

startWorkItem Specifies a work item must be automatically taken and started. Value can be true or
false.

See ServiceKey.WORKFLOWAPI for more information.

No. Default
value is false,
where the target
work item
state remains
unchanged.

36.6 Example calls to an EBX Web Component
Minimal URI:
http://localhost:8080/ebx/

Logs in as the user 'admin' and selects the 'Reference' dataspace:
http://localhost:8080/ebx/?login=admin&password=admin&branch=Reference

Selects the 'Reference' dataspace and accesses the built-in validation service:
http://localhost:8080/ebx/?
login=admin&password=admin&branch=Reference&service=@validation

Selects the roles table in the default directory:
http://localhost:8080/ebx/?login=admin&password=admin&branch=ebx-
directory&instance=ebx-directory&xpath=/directory/roles

Documentation > Reference Manual > Integration > Using TIBCO EBX as a Web Component

TIBCO EBX® Product Documentation 5.9.20 200

Selects the record 'admin' in the default directory:
http://localhost:8080/ebx/?login=admin&password=admin&branch=ebx-
directory&instance=ebx-directory&xpath=/directory/user[./login="admin"]

Accesses the interface for creating a new user in the default directory:
http://localhost:8080/ebx/?login=admin&password=admin&branch=ebx-
directory&instance=ebx-directory&xpath=/directory/user&service=@creation

Compares the record 'admin' in the default directory with the record 'jSmith':
Compares the record 'R1' in the dataset 'instanceId' in the dataspace 'Reference' with the record 'R0':
http://localhost:8080/ebx/?login=admin&password=admin&branch=ebx-
directory&instance=ebx-directory&xpath=/directory/user[./
login="admin"]&service=@compare&compare.branch=ebx-directory&compare.instance=ebx-
directory&compare.xpath=/directory/user[./login="jSmith"]

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 201

CHAPTER 37
Built-in user services

EBX includes a number of built-in user services. Built-in user services can be used:

• when defining workflow model tasks [p 138]

• when defining perspective action menu items [p 18]

• as extended user services when used with service extensions [p 587]

• when using EBX as a Web Component [p 193]

This reference page describes the built-in user services and their parameters.

This chapter contains the following topics:

1. Access data (default service)

2. Create a new record

3. Duplicate a record

4. Export data to an XML file

5. Export data to a CSV file

6. Import data from an XML file

7. Import data from a CSV file

8. Access a dataspace

9. Validate a dataspace, a snapshot or a dataset

10.Merge a dataspace

11.Access the dataspace merge view

12.Compare contents

13.Data workflows

37.1 Access data (default service)
By default, workflows automatically consider this service as complete. That is, the 'Accept' button
is always available.
This is the default service used if no service is specified.

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 202

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

disableAutoComplete Disable Accept at start By default, the interaction associated
with this service is directly considered as
complete. Therefore, the Accept button
is automatically displayed at the opening
of the work item. This parameter is
useful to disable this behavior. If the
value is 'true', the developer will be in
charge of completing the interaction by
using SessionInteraction in a user service
or a trigger, for example. The default
value is 'false'. Perspectives do not use
this parameter.

firstCallDisplay First call display mode Defines the display mode that must be
used when displaying a filtered table or
a record upon first call. Default (value
= 'auto'): the display is automatically set
according to the selection. View (value =
'view'): forces the display of the tabular
view or of the hierarchical view. Record
(value = 'record'): if the predicate has at
least one record, forces the display of the
record form.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot -
A dataspace is required for this service.

viewPublication View The publication name of the view to
display. The view must be configured for
the selected table.

xpath Dataset node (XPath) The value must be a valid absolute
location path in the selected dataset. The
notation must conform to a simplified
XPath, in its abbreviated syntax.

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 203

37.2 Create a new record
For a workflow, the creation service is considered complete when the first successful submit is
performed (record has been created). If this service is called whereas it is already complete, the created
record is displayed in update or read-only mode (depending on the user rights).
Service name parameter: service=@creation

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
This field is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

xpath Dataset table (XPath) The value must be a valid absolute
location path of a table in the selected
dataset. The notation must conform to
a simplified XPath, in its abbreviated
syntax - This field is required for this
service.

Output parameters

Parameter Label Description

created Created record Contains the XPath of the created record.

37.3 Duplicate a record
For a workflow, the duplicate service is considered complete when the first successful submit is
performed (record has been created). If this service is called whereas it is already complete, the created
record is displayed in update or read-only mode (depending on the user rights).
Service name parameter: service=@duplicate

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 204

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
This field is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

xpath Record to duplicate (XPath) The value must be a valid absolute
location path of an existing record. The
notation must conform to a simplified
XPath, in its abbreviated syntax - This
field is required for this service.

Output parameters

Parameter Label Description

created Created record Contains the XPath of the created record.

37.4 Export data to an XML file
The exportToXML service is considered complete when export is done and file downloaded.
Service name parameter: service=@exportToXML

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 205

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot -
A dataspace is required for this service.

xpath Dataset table to export (XPath) The value must be a valid absolute
location path of a table in the selected
dataset. The notation must conform to
a simplified XPath, in its abbreviated
syntax - This field is required for this
service.

37.5 Export data to a CSV file
Workflows consider the exportToCSV service as complete when export is done and file downloaded.
Service name parameter: service=@exportToCSV

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 206

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot -
A dataspace is required for this service.

xpath Dataset table to export (XPath) The value must be a valid absolute
location path of a table in the selected
dataset. The notation must conform to
a simplified XPath, in its abbreviated
syntax - This field is required for this
service.

37.6 Import data from an XML file
Workflows consider the importFromXML service as complete when import is performed.
Service name parameter: service=@importFromXML

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 207

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

xpath Dataset table to import (XPath) The value must be a valid absolute
location path of a table in the selected
dataset. The notation must conform to
a simplified XPath, in its abbreviated
syntax - This field is required for this
service.

37.7 Import data from a CSV file
Workflows consider the importFromCSV service as complete when import is performed.
Service name parameter: service=@importFromCSV

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 208

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace - This field is required for this
service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

xpath Dataset table to import (XPath) The value must be a valid absolute
location path of a table in the selected
dataset. The notation must conform to
a simplified XPath, in its abbreviated
syntax - This field is required for this
service.

37.8 Access a dataspace
A workflow automatically considers that the dataspace selection service is complete.
Service name parameter: service=@selectDataSpace

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 209

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot -
A dataspace is required for this service.

37.9 Validate a dataspace, a snapshot or a dataset
Workflows automatically consider the validation service as complete.
Service name parameter: service=@validation

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace
- A dataspace or snapshot is required for
this service.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot
- A dataspace or snapshot is required for
this service.

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 210

Output parameters

Parameter Label Description

hasError Found errors Contains 'true' if validation has produced
errors.

hasFatal Found fatal errors Contains 'true' if validation has produced
fatal errors.

hasInfo Found informations Contains 'true' if validation has produced
informations.

hasWarning Found warnings Contains 'true' if validation has produced
warnings.

37.10 Merge a dataspace
Workflows consider the merge service as complete when merger is performed and dataspace is closed.
Service name parameter: service=@merge

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

Output parameters

Parameter Label Description

mergeResult Merge success Contains 'true' if merge succeeded,
otherwise 'false'.

mergeState Merge state Contains the return code of the merge.
It is strongly recommended to parse this
value by using the InteractionMergeState
UIHttpManagerComponentReturnCode.

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 211

37.11 Access the dataspace merge view
The merge.view service is automatically considered complete.
Service name parameter: service=@merge.view

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace is required for this service.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

37.12 Compare contents
Workflows automatically consider the compare service as complete.
Service name parameter: service=@compare

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 212

Input parameters

Parameter Label Description

branch Dataspace The identifier of the specified dataspace -
A dataspace or snapshot and a dataspace
or snapshot to compare to are required
for this service.

compare.branch Dataspace to compare The identifier of the dataspace to
compare - A dataspace or snapshot and a
dataspace or snapshot to compare to are
required for this service.

compare.filter Comparison filter To ignore inheritance and computed
values fields in the comparison
(disable resolved mode), the filter
"persistedValuesOnly" must be specified.
By default, when no filter is defined, the
comparison uses resolved mode.

compare.instance Dataset to compare The value must be the reference of
a dataset that exists in the selected
dataspace to compare.

compare.version Snapshot to compare The identifier of the snapshot to
compare - A dataspace or snapshot and a
dataspace or snapshot to compare to are
required for this service.

compare.xpath Table or record to compare (XPath) The value must be a valid absolute
location path of a table or a record in the
selected dataset to compare. The notation
must conform to a simplified XPath, in
its abbreviated syntax.

instance Dataset The value must be the reference of
a dataset that exists in the selected
dataspace.

scope Scope Defines the scope of the user navigation
for this service, namely, the entities
that the user is able to select during
their session. If left blank, the default
value will be used. For perspectives,
the default value is always 'node'. For
workflows, the default value depends on
the selected entities or service.

trackingInfo Tracking information Tracking information is logged into
'history' logs. It may also be used for
any other purpose like access control or
additional export information.

version Snapshot The identifier of the specified snapshot -
A dataspace or snapshot and a dataspace
or snapshot to compare to are required
for this service.

xpath Table or record (XPath) The value must be a valid absolute
location path of a table or a record in
the selected dataset. The notation must

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 213

Parameter Label Description

conform to a simplified XPath, in its
abbreviated syntax.

37.13 Data workflows
This service provides access to the data workflows user interfaces.
Service name parameter: service=@workflow

Note

This service is for perspectives only.

Input parameters

Parameter Label Description

scope Scope Defines the scope of the user navigation
for this service.

viewPublication View publication Defines the publication name of the view
to apply for this service.

workflowView Workflow view Specifies the workflow view type. Value
can be one of the following: "inbox",
"launcher", "monitoringPublications",
"monitoringWorkflows",
"monitoringWorkItems" or
"completedWorkflows".

xpath Filter (XPath) An optional filter. The syntax should
conform to an XPath predicate
surrounded by "[" and "]".

Documentation > Reference Manual > Integration > Built-in user services

TIBCO EBX® Product Documentation 5.9.20 214

Documentation > Reference Manual > Integration > File import and export services > XML import and export

TIBCO EBX® Product Documentation 5.9.20 215

CHAPTER 38
XML import and export

This chapter contains the following topics:

1. Introduction

2. Imports

3. Exports

4. Handling of field values

5. Known limitations

38.1 Introduction
XML imports and exports can be performed on tables through the user interface using the Actions
menu in the workspace.
Both imports and exports are performed in the context of a dataset.
Imports and exports can also be done programmatically.
Default import and export option values can be set in the Administration area, under User interface
> Graphical interface configuration > Default option values > Import/Export.

38.2 Imports

Attention
Imported XML documents must be encoded in UTF-8 and its structure must conform to the
underlying data model of the target dataset.

Documentation > Reference Manual > Integration > File import and export services > XML import and export

TIBCO EBX® Product Documentation 5.9.20 216

Import mode
When importing an XML file, you must specify one of the following import modes, which will dictate
how the import procedure handles the source records.

Insert mode Only record creations are allowed. If a record exists in
the target table with the same primary key as the source
record, an error is returned and the whole import operation
is cancelled.

Update mode Only modifications of existing records are allowed. If no
record exists in the target table with the same primary key as
the source record, an error is returned and the whole import
operation is cancelled.

Update or insert mode If a record with the same primary key as the source record
already exists in the target table, that record is updated.
Otherwise, a new record is created.

Replace (synchronization) mode If a record with the same primary key as the source record
already exists in the target table, that record is updated.
Otherwise, a new record is created. If a record exists in the
target table but is not present in the source XML file, that
record is deleted from the table.

Insert and update operations
The mode 'by delta' allows ignoring data model elements that are missing from the source XML
document. This mode can be enabled through data services or the Java API. The following table
summarizes the behavior of insert and update operations when elements are not present in the source
document.

Documentation > Reference Manual > Integration > File import and export services > XML import and export

TIBCO EBX® Product Documentation 5.9.20 217

See the data services operations update [p 623] and insert [p 625], as well as ImportSpec.setByDeltaAPI

in the Java API for more information.

State in source XML document Behavior

Element does not exist in the source document If 'by delta' mode is disabled (default):

Target field value is set to one of the following:

• If the element defines a default value, the target field value
is set to that default value.

• If the element is of a type other than a string or list, the
target field value is set to null.

• If the element is an aggregated list, the target field value is
set to an empty list.

• If the element is a string that distinguishes null from an
empty string, the target field value is set to null. If it is a
string that does not distinguish between the two, an empty
string.

• If the element (simple or complex) is hidden in data
services, the target value is not changed.

See alsoHiding a field in Data Services [p 540]

Note: The user performing the import must have the
permissions necessary to create or change the target field value.
Otherwise, the value will remain unchanged.

If 'by delta' mode has been enabled through data services or
the Java API:

• For the update operation, the field value remains
unchanged.

• For the insert operation, the behavior is the same as when
byDelta mode is disabled.

Element exists but is empty (for example, <fieldA/>) • For nodes of type xs:string (or one of its sub-types), the
target field's value is set to null if it distinguishes null
from an empty string. Otherwise, the value is set to empty
string.

• For non-xs:string type nodes, an exception is thrown in
conformance with XML Schema.

See alsoTIBCO EBX whitespace management for data
types [p 525]

Element is present and null (for example, <fieldA
xsi:nil="true"/>)

The target field is always set to null except for lists, for which
it is not supported.

In order to use the xsi:nil="true" attribute, you must
import the namespace declaration xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance".

Set missing values as null
When updating existing records, if a node is missing or empty in the XML file: if this option is "yes",
it will be considered as null. If this option is "no", it will not be modified.

Documentation > Reference Manual > Integration > File import and export services > XML import and export

TIBCO EBX® Product Documentation 5.9.20 218

Ignore extra columns
It may happen that the XML document contains elements that do not exist in the target data model.
By default, in this case, the import procedure will fail. It is possible, however, to allow users to launch
import procedures that will ignore the extra columns defined in the XML files. This can be done in
the configuration parameters of the import wizard for XML. The default value of this parameter can
be configured in the 'User interface' configuration under the 'Administration' area.

Optimistic locking
If the technical attribute ebxd:lastTime exists in the source XML file, the import mechanism
performs a verification to prevent an update operation on a record that may have changed since the
last read. In order to use the ebxd:lastTime attribute, you must import the namespace declaration
xmlns:ebxd="urn:ebx-schemas:deployment_1.0. The timestamp associated with the current record
will be compared to this timestamp. If they are different, the update is rejected.

38.3 Exports
Note

Exported XML documents are always encoded in UTF-8.

When exporting to XML, if the table has filters applied, only the records that correspond to the filter
are included in the exported file.

Documentation > Reference Manual > Integration > File import and export services > XML import and export

TIBCO EBX® Product Documentation 5.9.20 219

The XML export options are as follows:

Download file name Specifies the name of the XML file to be exported. This field
is pre-populated with the name of the table from which the
records are being exported.

User-friendly mode Specifies whether exported values will be represented in
a user-friendly way, or in the standard XML raw format.
For example, in user-friendly mode, dates and numbers are
formatted according to the user's locale, and foreign keys
and enumerated values display their associated labels.
Note: If this option is selected, the exported file will not be
able to be re-imported.

Include technical data Specifies whether internal technical data will be included in
the export.
Note: If this option is selected, the exported file will not be
able to be re-imported.

Is indented Specifies whether the file should be indented to improve its
readability by a human.

Omit XML comment Specifies whether the generated XML comment that
describes the location of data and the date of the export
should be omitted from the file.

38.4 Handling of field values

Date, time & dateTime format
The following date and time formats are supported:

Type Format Example

xs:date yyyy-MM-dd 2007-12-31

xs:time HH:mm:ss or HH:mm:ss.SSS 11:55:00

xs:dateTime yyyy-MM-ddTHH:mm:ss or yyyy-MM-
ddTHH:mm:ss.SSS

2007-12-31T11:55:00

Documentation > Reference Manual > Integration > File import and export services > XML import and export

TIBCO EBX® Product Documentation 5.9.20 220

38.5 Known limitations

Association fields
The XML import and export services do not support association values.
Exporting such fields will not cause any error, however, no value will be exported.
Importing such fields will cause an error, and the import procedure will be aborted.

Selection nodes
The XML import and export services do not support selection values.
Exporting such fields will not cause any error, however, no value will be exported.
Importing such fields will cause an error, and the import procedure will be aborted.

Documentation > Reference Manual > Integration > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 5.9.20 221

CHAPTER 39
CSV import and export

This chapter contains the following topics:

1. Introduction

2. Exports

3. Imports

4. Handling of field values

5. Known limitations

39.1 Introduction
CSV imports and exports can be performed on tables through the user interface using the Actions
menu in the workspace.
Both imports and exports are performed in the context of a dataset.
Imports and exports can also be done programmatically.
Default import and export option values can be set in the Administration area, under User interface
> Graphical interface configuration > Default option values > Import/Export.

See alsoDefault option values [p 391]

39.2 Exports
When exporting to CSV, if the table has filters applied, only the records that correspond to the filter
are included in the exported file.

Documentation > Reference Manual > Integration > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 5.9.20 222

The CSV export options are as follows:

Download file name Specifies the name of the CSV file to be exported. This field
is pre-populated with the name of the table from which the
records are being exported.

File encoding Specifies the character encoding to use for the exported file.
The default is UTF-8.

Enable inheritance In order to consider the inheritance [p 27] during a CSV
export, the option has to be defined in the model.
For more information on inheritance, see Inheritance and
value resolution [p 270].
Specifies if inheritance will be taken into account during a
CSV export.
If inheritance is enabled, resolved values of fields are
exported with the technical data that define the possible
inheritance mode of the record or the field.
If inheritance is disabled, resolved values of fields are
exported and occulted records are ignored.
By default, this option is disabled.
Note: Inheritance is always ignored, if the table dataset has
no parent or if the table has no inherited field.

User-friendly mode Specifies whether exported values will be represented in a
user-friendly way, or in a raw format. For example, in user-
friendly mode, dates and numbers are formatted according
to the user's locale, and foreign keys and enumerated values
display their associated labels.
Note: If this option is selected, the exported file will not be
able to be re-imported.

Include technical data Specifies whether internal technical data will be included in
the export.
Note: If this option is selected, the exported file will not be
able to be re-imported.

Column header Specifies whether or not to include column headers in the
CSV file.

• No header

• Label: For each column in the spreadsheet, the CSV
displays its label. Each label is localized according to
the locale preference of the current session. If no user-

Documentation > Reference Manual > Integration > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 5.9.20 223

friendly label is defined for a node, the technical name
of the node is used.

• XPath: For each column in the spreadsheet, the CSV
displays the path to the node in the table.

Field separator Specifies the field separator to use for exports. The
default separator is comma, it can be modified under
Administration > User interface.

List separator Specifies the separator to use for values lists. The
default separator is line return, it can be modified under
Administration > User interface.

Programmatic CSV exports are performed using the classes ExportSpecAPI and ExportImportCSVSpecAPI

in the Java API.

Documentation > Reference Manual > Integration > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 5.9.20 224

39.3 Imports

Download file name Specifies the name of the CSV file to be imported.

Import mode When importing a CSV file, you must specify one of the
following import modes, which will control the integrity of
operations between the source and the target table.

• Insert mode: Only record creation is allowed. If a
record exists in the target table with the same primary
key as the source record, an error is returned and the
whole import operation is cancelled.

• Update mode: Only modifications of existing records
are allowed. If no record exists in the target table with
the same primary key as the source record, an error is
returned and the whole import operation is cancelled.

• Update or insert mode: If a record with the same
primary key as the source record already exists in the
target table, that record is updated. Otherwise, a new
record is created.

• Replace (synchronization) mode: If a record with the
same primary key as the source record already exists in
the target table, that record is updated. Otherwise, a new
record is created. If a record exists in the target table
but is not present in the source XML file, that record is
deleted from the table.

File encoding Specifies the character encoding to use for the exported file.
The default is UTF-8.

Enable inheritance In order to consider the inheritance [p 27] during a CSV
import, the option has to be defined in the model.
For more information on inheritance, see Inheritance
and value resolution [p 270] and ExportImportCSVSpec.
setInheritanceEnabledAPI.
Specifies whether the inheritance will be taken into account
during a CSV import. If technical data in the CSV file define
an inherit mode, corresponding fields or records are forced
to be inherited. If technical data define an occult mode,
corresponding records are forced to be occulted. Otherwise,
fields are overwritten with values read from the CSV file.
By default, this option is disabled.
Note: Inheritance is always ignored if the dataset of the table
has no parent or if the table has no inherited field.

Documentation > Reference Manual > Integration > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 5.9.20 225

Column header Specifies whether or not to include column headers in the
CSV file.

• No header

• Label: For each column in the spreadsheet, the CSV
displays its label. Each label is localized according to
the locale preference of the current session. If no user-
friendly label is defined for a node, the technical name
of the node is used.

• XPath: For each column in the spreadsheet, the CSV
displays the path to the node in the table.

Field separator Specifies the field separator to use for exports. The
default separator is comma, it can be modified under
Administration > User interface.

List separator Specifies the separator to use for values lists. The
default separator is line return, it can be modified under
Administration > User interface.

Programmatic CSV imports are performed using the classes ImportSpecAPI and ExportImportCSVSpecAPI

in the Java API.

39.4 Handling of field values

Aggregated lists
The CSV import and export services support multi-valued fields, namely aggregated lists. This is only
supported for simple typed lists, such as lists of string, date, or int, and for foreign keys. If a table
reference is linked to a composite primary key, each item in the list is a formatted string, for example,
"true|99". Aggregated lists of groups are not exported.
At export, the items in the list are separated using line separators. In cases where the exported field
already contains a line separator, for example in an osd:html or an osd:text, the code _crnl_ is
inserted in place of the field value's line separators. The same formatting is expected at import, with
the whole field value surrounded by quotes.

Hidden fields
Hidden fields are exported as ebx-csv:hidden strings. An imported hidden string will not modify a
field's content.

'Null' value for strings
Using CSV import and export services, a string with a value set to null is exported as an empty string.
Therefore, a round trip export-import procedure will end up replacing null string values with empty
strings.
Using programmatic services, the specific value ebx-csv:nil can be assigned to strings with values
set to null. If this is done, the null string values will not be replaced by empty strings during round

Documentation > Reference Manual > Integration > File import and export services > CSV import and export

TIBCO EBX® Product Documentation 5.9.20 226

trip export-import procedures. See ExportImportCSVSpec.setNullStringEncodedAPI in the Java API
for more information.

Date, time & dateTime format
The following date and time formats are supported:

Type Format Example

xs:date yyyy-MM-dd 2007-12-31

xs:time HH:mm:ss or HH:mm:ss.SSS 11:55:00

xs:dateTime yyyy-MM-ddTHH:mm:ss or yyyy-MM-
ddTHH:mm:ss.SSS

2007-12-31T11:55:00

39.5 Known limitations

Aggregated lists of groups
The CSV import and export services do not support multi-valued groups, that is, aggregated lists of
complex type elements. Exporting such nodes will not cause any error, however, no value will be
exported.

Terminal groups
In a CSV file, it is impossible to differentiate a created terminal group that contains only empty fields
from a non-created one.
As a consequence, some differences may appear during comparison after performing an export
followed by an import. To ensure the symmetry of import and export, use XML import and export
instead. See XML import and export [p 215].

Column label headers
If two columns share the same label header, an export of the table can be performed successfully, but
exported data cannot later be re-imported.

Association fields
The CSV import and export services do not support association values, i.e. the associated records.
Exporting such fields will not cause any error, however, no value will be exported.
Importing such fields will cause an error and the import procedure will be aborted.

Selection nodes
The CSV import and export services do not support selection values, i.e. the selected records.
Exporting such fields will not cause any error, however, no value will be exported.
Importing such fields will cause an error and the import procedure will be aborted.

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 5.9.20 227

CHAPTER 40
Supported XPath syntax

This chapter contains the following topics:

1. Overview

2. Example expressions

3. Syntax specifications for XPath expressions

4. Java API

40.1 Overview
The XPath notation used in TIBCO EBX must conform to the abbreviated syntax of the XML
Path Language (XPath) Version 1.0 standard, with certain restrictions. This document details the
abbreviated syntax that is supported.

40.2 Example expressions
The general XPath expression is:
path[predicate]

Absolute path
/library/books/

Relative paths
./Author
../Title

Root and descendant paths
//books

Table paths with predicates
../../books/[author_id = 0101 and (publisher = 'harmattan')]
/library/books/[not(publisher = 'dumesnil')]

Complex predicates
starts-with(col3,'xxx') and ends-with(col3,'yyy') and osd:is-not-null(./col3))

https://www.w3.org/TR/xpath-10/
https://www.w3.org/TR/xpath-10/

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 5.9.20 228

contains(col3 ,'xxx') and (not(col1=100) and date-greater-than(col2,'2007-12-30'))

Predicates with parameters
author_id = $param1 and publisher = $param2 where the parameters $param1 and $param2 refer
 respectively to 0101 and 'harmattan'
col1 < $param1 and col4 = $param2 where the parameters $param1 and $param2 refer respectively
 to 100 and 'true'
contains(col3,$param1) and date-greater-than(col2,$param2) where the parameters $param1
 and $param2 refer respectively to 'xxx' and '2007-12-30'

Note

The use of this notation is restricted to the Java API since the parameter values can only
be set by the method Request.setXPathParameterAPI of the Java API.

Predicates on label
osd:label(./delivery_date)='12/30/2014' and ends-with(osd:label(../adress),'Beijing -
 China')

Predicates on record label
osd:contains-record-label('dumesnil') or osd:contains-record-label('harmattan')

Predicates for validation search
osd:has-validation-item()
osd:has-validation-item('error,info')
osd:contains-validation-message('xxx')
osd:contains-validation-message('xxx','info,warning')

Note

• XPath functions for validation search cannot be used on XPath predicates defined on associations
and foreign key filters.

• The predicates osd:label, osd:contains-record-label and osd:contains-validation-message
are localized. The locale can be set by the methods of the Java API Request.setLocaleAPI or
Request.setSessionAPI.

Attention
To ensure that the search is performed on an up-to-date validation report, it is necessary to perform
an explicit validation of the table just before using these predicates.

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 5.9.20 229

40.3 Syntax specifications for XPath expressions

Overview

Expression Format Example

XPath expression <container path>[predicate] /books[title='xxx']

<container path> <absolute path> or <relative path>

<absolute path> /a/b or //b //books

<relative path> ../../b, ./b or b ../../books

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 5.9.20 230

Predicate specification

Expression Format Notes/Example

<predicate> Example: A and (B or not(C)) A,B,C:
<atomic expression>

Composition of: logical operators
parentheses, not() and atomic
expressions.

<atomic expression> <path><comparator><criterion> or
method(<path>,<criterion>)

royalty = 24.5

starts-with(title, 'Johnat')

booleanValue = true

<path> <relative path> or osd:label(<relative
path>)

Relative to the table that contains it:

../authorstitle

<comparator> <boolean comparator>, <numeric
comparator> or <string comparator>

<boolean comparator> = or !=

<numeric comparator> = ,!= ,<, >, <=, or >=

<string comparator> =

<method> <date method>, <string method>,
osd:is-null method or osd:is-not-
null method

<date, time & dateTime method> date-less-than, date-equal or date-
greater-than

<string method> matches, starts-with, ends-with,
contains, osd:is-empty, osd:is-
not-empty, osd:is-empty-or-nil,
osd:is-neither-empty-nor-nil,
osd:is-equal-case-insensitive,
osd:starts-with-case-insensitive,
osd:ends-with-case-insensitive,
osd:contains-case-insensitive, or
osd:contains-record-label

<criterion> <boolean criterion>, <numeric
criterion>, <string criterion>, <date
criterion>, <time criterion>, or
<dateTime criterion>

<boolean criterion> true ,false

<numeric criterion> An integer or a decimal -4.6

<string criterion> Quoted character string 'azerty'

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 5.9.20 231

Expression Format Notes/Example

<date criterion> Quoted and formatted as 'yyyy-MM-dd' '2007-12-31'

<time criterion> Quoted and formatted as 'HH:mm:ss' or
'HH:mm:ss.SSS'

'11:55:00'

<dateTime criterion> Quoted and formatted as 'yyyy-
MM-ddTHH:mm:ss' or 'yyyy-MM-
ddTHH:mm:ss.SSS'

'2007-12-31T11:55:00'

XPath 1.0 formula
It is possible to use an XPath 1.0 formula in the criterion value part of an atomic predicate expression
(right-hand side).
For example, instead of [./a=3], you may use the expression [./a=(floor(./d)+ 2.0)].
Due to the strong dependence of predicates on the data model node and the node type of the criterion,
the path portion of the atomic predicate expression (left-hand side) must be a node path and cannot
be an XPath formula. For example, the expression /table[floor(./a) > ceiling(./d)] is not valid.

Predicate on label
The osd:label() function can be applied to the path portion of the atomic predicate, in order to resolve
the predicate on the label instead of the value. In this case, only string operators and string criteria can
be used, i.e. ends-with(osd:label(./price),'99').
A predicate on label is localized, so the criterion must be expressed in the same
locale as the predicate-filtered request. For example: request.setLocale(Locale.FRENCH);
request.setXPathFilter("osd:label(./delivery_date)='30/12/2014'");

Note

It is forbidden to use the osd:label function if the right part of the predicate is a
contextual value.

Note

If the osd:label function is used in a data model, for example on a selection or in the filter
predicate of a table reference node, the default locale of the data model (as defined in its
module declaration) must be used for the criterion format (even though this is generally
not recommended).

See alsoSchemaNode.displayOccurrenceAPI

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 5.9.20 232

Contextual values
For predicates that are relative to a selected node, the criterion value (that is, the right-hand side of
the predicate) can be replaced with a contextual path using the syntax ${<relative-path>} where
<relative-path> is the location of the element relative to the selected node.

Note

When calling a method, the criterion is the second parameter, and the first parameter
cannot be a relative value.

Aggregated lists
For predicates on aggregated lists, the predicate returns true regardless of the comparator if one of
the list elements verifies the predicate.

Note

Special attention must be paid to the comparator !=. For example, for an aggregated
list, ./list != 'a' is not the same as not(./list = 'a'). Where the list contains the
elements (e1,e2,..), the first predicate is equivalent to e1 != 'a' or e2 != 'a' ...,
while the second is equivalent to e1 != 'a' and e2 != 'a'

'Null' values
Null values must be explicitly treated in a predicate using the operators osd:is-null and osd:is-
not-null.
For example, /root/products[./price<100] or /root/products[./price!=100] will not return any
products whose prices are not set (null). For the latter case to return unset values as well, the predicate
must instead be: /root/products[./price!=100 or osd:is-null(./price)].

How to manage single and double quotes in literal expressions
By default, a literal expression is delimited by single quotes ('). If the literal expression contains single
quotes and no double quotes, the expression must be delimited by double quotes ("). If the literal
expression contains both single and double quotes, the single quotes must be doubled.
The method XPathExpressionHelper.encodeLiteralStringWithDelimitersAPI in the Java API
handles this.
Examples of using encodeLiteralStringWithDelimiters

Value of Literal Expression Result of this method

Coeur 'Coeur'

Coeur d'Alene "Coeur d'Alene"

He said: "They live in Coeur d'Alene". 'He said: "They live in Coeur d''Alene".'

Extraction of foreign keys
In EBX, the foreign keys are grouped into a single field with the osd:tableRef [p 498] declaration.

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 5.9.20 233

The standard XPath syntax has been extended so as to extract the value of any targeted primary key
field.

Example
If the table /root/tableA has an osd:tableRef field named 'fkB' whose target is /root/tableB and the
primary key of tableB has two fields, id of type xs:int and date of type xs:date, then the following
expressions would be valid:

• /root/tableA[fkB = '123|2008-01-21'], where the string "123|2008-01-21" is a representation
of the entire primary key value.
See Syntax of the internal String representation of primary keys PrimaryKey.syntaxAPI for
more information.

• /root/tableA[fkB/id = 123 and date-equal(fkB/date, '2008-01-21')], where this predicate
is a more efficient equivalent to the one in the previous example.

• /root/tableA[fkB/id >= 123], where any number operator could be used, as the targeted
primary key field is of type xs:int.

• /root/tableA[date-greater-than(./fkB/date,'2007-01-01')], where any date operator
could be used, as the targeted primary key field is of type xs:date;

• /root/tableA[fkB = ""] is not valid as the targeted primary key has two columns.

• /root/tableA[osd:is-null(fkB)] checks if a foreign key is null (not defined).

40.4 Java API
Using the XPath in the Java API:
In the Java API, the XPathFilter class allows to define XPath predicates and to execute requests on
them.
The XPathExpressionHelper class provides utilitarian methods to handle XPath predicates and paths.

Documentation > Reference Manual > Integration > Supported XPath syntax

TIBCO EBX® Product Documentation 5.9.20 234

Documentation > Reference Manual

TIBCO EBX® Product Documentation 5.9.20 235

Localization

Documentation > Reference Manual > Localization > Labeling and localization

TIBCO EBX® Product Documentation 5.9.20 236

CHAPTER 41
Labeling and localization

This chapter contains the following topics:

1. Overview

2. Value formatting policies

3. Syntax for locales

41.1 Overview
TIBCO EBX offers the ability to handle the labeling and the internationalization of data models.

Localizing user interactions
In EBX, language preferences can be set for two scopes:

1. Session: Each user can select a default locale from the user pane.

2. The EBX main configuration file, named ebx.properties by default. See Extending TIBCO EBX
internationalization [p 239] for more information.

Textual information
In EBX, most master data entities can have a label and a description, or can correspond to a user
message. For example:

• Dataspaces, snapshots and datasets can have their own label and description. The label is
independent of the unique name, so that it remains localizable and modifiable;

• Any node in the data model can have a static label and description;

• Values can have a static label when they are enumerated;

• Validation messages can be customized, and permission restrictions can provide text explaining
the reason;

• Each record is dynamically displayed according to its content, as well as the context in which it
is being displayed (in a hierarchy, as a foreign key, etc.);

All this textual information can be localized into the locales that are declared in ebx.properties.

See also

Labels and messages [p 531]

Documentation > Reference Manual > Localization > Labeling and localization

TIBCO EBX® Product Documentation 5.9.20 237

Tables declaration [p 493]

Foreign keys declaration [p 498]

41.2 Value formatting policies
When a value is displayed to the user, it is formatted according to its type and the formatting policy
of the current locale. For example, a date will be displayed in some locales as "dd/MM/yyyy" and
"MM/dd/yyyy" in others.
A formatting policy is used to define how to display the values of simple types [p 480].
For each locale declared in ebx.properties, its formatting policy is configured in a file located
at /WEB-INF/ebx/{locale}/frontEndFormattingPolicy.xml. For instance, to define the formatting
policy for Greek (el), the engine looks for the following path in the module:
/WEB-INF/ebx/el/frontEndFormattingPolicy.xml

If the corresponding file does not exist, the formatting policy is looked up in the class-path of EBX.
If the locale-specific formatting policy is not found, the formatting policy of en_US is applied.
The content of the file frontEndFormattingPolicy.xml is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<formattingPolicy xmlns="urn:ebx-schemas:formattingPolicy_1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ebx-schemas:formattingPolicy_1.0 ../schema/ebx-reserved/formattingPolicy_1.0.xsd">
 <date pattern="dd/MM" />
 <time pattern="HH:mm:ss" />
 <dateTime pattern="dd/MM/yyyy HH:mm" />
 <decimal pattern="00,00,00.000" groupingSeparator="|" decimalSeparator="^"/>
 <int pattern="000,000" groupingSeparator=" "/>
</formattingPolicy>

The elements date, dateTime and time are mandatory.
The group and decimal separators that appear in the formatted numbers can be modified by defining
the attributes groupingSeparator and decimalSeparator for the elements decimal and int.

41.3 Syntax for locales
There are two ways to express a locale:

1. The XML recommendation follows the IETF BCP 47 recommendation, which uses a hyphen '-'
as the separator.

2. The Java specification uses an underscore '_' instead of a hyphen.

In any XML file (XSD, formatting policy file, etc.) read by EBX, either syntax is allowed.
For a web path, that is, a path within the web application, only the Java syntax is allowed. Thus,
formatting policy files must be located in directories whose locale names respect the Java syntax.

See alsoExtending TIBCO EBX internationalization [p 239]

https://tools.ietf.org/html/bcp47#page-1-4

Documentation > Reference Manual > Localization > Labeling and localization

TIBCO EBX® Product Documentation 5.9.20 238

Documentation > Reference Manual > Localization > Extending TIBCO EBX internationalization

TIBCO EBX® Product Documentation 5.9.20 239

CHAPTER 42
Extending TIBCO EBX

internationalization
This chapter contains the following topics:

1. Overview of the native EBX localization

2. Extending EBX user interface localization

3. Localized resources resolution

4. Known limitations

42.1 Overview of the native EBX localization
By default, the EBX built-in user interface is provided in English (en-US) and French (fr-FR).
Localization consists of a formatting policy and a set of message files (resource bundle):

• For English, localization is provided by a formatting policy and a set of message files with no
locale defined,

• For French, localization is provided by a formatting policy and a set of message files with locale
set to "fr".

EBX provides an option to add locales in order to extend the localization of the user interface and to
internationalize the documentation of data models and associated services.

42.2 Extending EBX user interface localization
EBX supports the localization of its user interface into any compatible language and region.

Note

Currently, Latin & Cyrillic characters are supported. Locales that use other character sets
may be usable, but are not supported.

Adding a new locale
In order to add a new locale, the following steps must be followed:

• Declare the new locale in the EBX main configuration file. For example:
ebx.locales.available=en-US, fr-FR, xx

Documentation > Reference Manual > Localization > Extending TIBCO EBX internationalization

TIBCO EBX® Product Documentation 5.9.20 240

• The first locale is always considered the default.

• The built-in locales, en-US and fr-FR, can be removed if required.

See Configuring EBX localization [p 349].

• Deploy the following files in the EBX class-path:

• A formatting policy file, named
com.orchestranetworks.i18n.frontEndFormattingPolicy_xx.xml,

• A set of localized message files (*_xx.mxml) in a resource bundle.

Note

The files must be ending with ".mxml".

42.3 Localized resources resolution
Since version 5.7.0, localized resources are resolved on a locale-proximity base, with the following
lookup mechanism:

• resourceName + "_" + language + "_" + country + "_" + variant + ".mxml"

• resourceName + "_" + language + "_" + country + ".mxml"

• resourceName + "_" + language + ".mxml"

• resourceName + ".mxml"

Note

The resolution is done at the localized message level. It is therefore possible to define
one or more files for a locale that only includes messages for which specific localization
is required.

42.4 Known limitations

Non extendable materials
Localization of the following cannot be extended:

• EBX product documentation,

• EBX HTML editor and viewer.

Documentation > Reference Manual

TIBCO EBX® Product Documentation 5.9.20 241

Persistence

Documentation > Reference Manual > Persistence > Overview of persistence

TIBCO EBX® Product Documentation 5.9.20 242

CHAPTER 43
Overview of persistence

This chapter describes how master data, history, and replicated tables are persisted. A given table can
employ any combination of master data persistence mode, historization, and replication.
While all persisted information in TIBCO EBX is ultimately stored as relational tables in the
underlying database, whether it is in a form that is accessible outside of EBX depends on if it is in
mapped mode.

Note

The term mapped mode [p 243] refers to any tables that are stored as-is, and thus whose
contents can be accessed directly in the database.

This chapter contains the following topics:

1. Persistence of managed master data

2. Historization

3. Replication

4. Mapped mode

43.1 Persistence of managed master data
Data that is modeled in and governed by the EBX repository can be persisted in one of two modes,
semantic (default) or relational, as specified in its underlying data model. Distinct tables defined in
either mode can co-exist and collaborate within the same EBX repository.
For a comparison between relational mode and semantic mode, see the chapter Overview of modes
[p 245]

43.2 Historization
Master data tables can activate historization in order to track modifications to their data, regardless of
whether they are persisted in semantic or relational mode, and whether they are replicated.
The history itself is in mapped mode, meaning that it can potentially be consulted directly in the
underlying database.

See alsoHistory [p 251]

Documentation > Reference Manual > Persistence > Overview of persistence

TIBCO EBX® Product Documentation 5.9.20 243

43.3 Replication
Replication enables direct SQL access to tables of master data, by making a copy of data in the
repository to relational table replicas in the database. Replication can be enabled on any table
regardless of whether it is persisted in semantic or relational mode, and whether it has history activated.
The replica tables are persisted in mapped mode, as their primary purpose is to make master data
accessible to direct queries outside of EBX.

See alsoReplication [p 259]

43.4 Mapped mode

Overview of mapped mode
Mapped mode refers to cases where tables are persisted in the underlying relational database in a
format that allows their data to be accessed directly, outside of EBX. Master data modeled in relational
mode, history, and replica tables are all examples of tables in mapped mode.
All cases of mapped mode involve automatic alterations of the database schema (the database tables,
indexes, etc.) when necessary, by automatically executing required DDL statements in the background.
Such procedures are always triggered at data model compilation time and the data model compilation
report notifies of any resulting errors.
Another general consideration regarding mapped modes is that, in most cases, when a data model
entity is removed, its corresponding database object is not deleted immediately. Instead, it is marked
as disabled, which leaves the possibility of later re-enabling the object. In order to definitively drop
the object and its associated data and resources from the database, it must be marked for purge. The
removal then takes place during the next global purge.

See also

Database mapping administration [p 405]

Data model evolutions [p 265]

Data model restrictions due to mapped mode
Due to the nature of persisting directly in the underlying database, some restrictions apply to all tables
stored in mapped mode:

• Limitations of supported databases [p 313]

• Unlimited-length strings: All string fields, except foreign keys, of type xs:string, its derived
types, and xs:anyURI must define a 'maxLength' or 'length' facet. Since a foreign key field is
composed of the final primary key field(s) of its target table(s), this facet requirement applies
to each of those final primary key fields instead of the foreign key field itself. Additionally,
limitations of the underlying database concerning the maximum length of its character types apply,
such as VARCHAR and NVARCHAR2.

• Large lists of columns might not be indexable. Example for Oracle: the database enforces a limit
on the maximum cumulated size of the columns included in an index. For strings, this size also
depends on the character set. If the database server fails to create the index, you should consider
redesigning your indexes, typically by using a shorter length for the concerned columns, or by

Documentation > Reference Manual > Persistence > Overview of persistence

TIBCO EBX® Product Documentation 5.9.20 244

including fewer columns in the index. The reasoning is that an index leading to this situation
would have headers so large that it could not be efficient anyway.

• Fields of type type="osd:password" are ignored.

• Terminal complex types are supported; however, they cannot be globally set to null at record-
level.

More generally, tables in mapped mode are subject to any limitations of the underlying RDBMS.
For example, the maximum number of columns in a table applies (1000 for Oracle 11g R2, 1600 for
PostgreSQL). Note that a history table contains twice as many fields as declared in the schema (one
functional field, plus one generated field for the operation code).
Data model evolutions may also be constrained by the underlying RDBMS, depending on the existing
data model.

See alsoData model evolutions [p 265]

Documentation > Reference Manual > Persistence > Relational mode

TIBCO EBX® Product Documentation 5.9.20 245

CHAPTER 44
Relational mode

This chapter contains the following topics:

1. Overview of modes

2. Enabling relational mode for a data model

3. Validation

4. SQL access to data in relational mode

5. Limitations of relational mode

44.1 Overview of modes

Semantic mode explained
Semantic mode offers all TIBCO EBX advanced features of master data management, in particular,
dataspaces, dataset inheritance, and inherited fields.
Semantic mode is the default mode for persisting the data governed by the EBX repository. Data
models are in semantic mode unless relational mode [p 246] is explicitly specified [p 246].
Internally, the master data managed in semantic mode is represented as standard XML, which
complies with the XML Schema Document of its data model. The XML representation is additionally
compressed and segmented for storage into generic relational database tables. This mode provides
efficient data storage and access, including for:

• Dataspaces: no data is duplicated when creating a child dataspace, and

• Inheritance: no data is duplicated when creating an inherited instance.

Semantic mode also makes it possible to maintain an unlimited number of datasets for each data model,
organized into an unlimited number of dataspaces or snapshots. This can be done with no impact on
the database schema.
As this mode only uses common, generic internal tables, modifications to the structure of the data
model also never impact the database schema. Data model evolutions only impact the content of the
generic database tables.

See also

dataspaces [p 90]

dataset inheritance [p 271]

Documentation > Reference Manual > Persistence > Relational mode

TIBCO EBX® Product Documentation 5.9.20 246

inherited fields [p 272]

Relational mode explained
Relational mode, which is a mapped mode, persists master data directly into the database. The
primary function of relational mode is to be able to benefit from the performance and scalability
capabilities of the underlying relational database. However, relational mode does not support the
advanced governance features offered by semantic mode.
For some cases where the management advantages of semantic mode are not necessary, such as
"current time" tables, or tables that are regularly updated by external systems, the performance gains
offered by relational mode may be more valuable.
Generally, when a dataset is in relational mode, every table in this dataset has a corresponding table
in the database and every field of its data model is mapped to a relational table column.

Direct comparison of semantic and relational modes
This table summarizes the differences between the two persistence modes:

Semantic mode Relational mode

Dataspaces Yes No

Dataset inheritance Yes No

Inherited fields Yes No

Data model All features are supported. Some restrictions, see Data model
restrictions for tables in relational mode
[p 249].

Direct SQL reads No Yes, see SQL reads [p 249].

Direct SQL writes No Yes, but only under precise conditions,
see SQL writes [p 249].

Data validation Yes, enables tolerant mode. Yes, some constraints become blocking,
see Validation [p 247].

Transactions See Concurrency and isolation levels [p

466].
See Concurrency and isolation levels [p

466].

Data model evolutions See Data model evolutions [p 265] in the
Reference Manual.

See Data model evolutions [p 265] in the
Reference Manual.

44.2 Enabling relational mode for a data model
The data model declares that it is in relational mode. Due to the necessary restrictions of relational
mode, such as not having child dataspaces or snapshots, a specific relational dataspace must be
provided, to which the data model will be published. Relational dataspaces do not allow creating sub-
dataspaces or snapshots.

Documentation > Reference Manual > Persistence > Relational mode

TIBCO EBX® Product Documentation 5.9.20 247

Example of a relational mode declaration:
<xs:schema>
 <xs:annotation>
 <xs:appinfo>
 <osd:relationalMode>
 <dataSpace>aDataSpaceKey</dataSpace>
 <dataSet>aDataSetReference</dataSet>
 <tablesPrefix>aPrefixForTablesInRDBMS</tablesPrefix>
 </osd:relationalMode>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:schema>

with the elements:

Element Description Required

dataSpace Specifies the dataspace where the data
model must be published. This dataspace
must itself be in relational mode. No
dataspace or snapshot can be created
from a dataspace declared in such a
mode.

Yes

dataSet Specifies the dataset where the data
model must be published.

Yes

tablesPrefix Specifies the common prefix used for
naming the generated tables in the
database.

Yes

44.3 Validation
This section details the impact of relational mode on data validation.

Structural constraints
Some EBX data model constraints will generate a "structural constraint" on the underlying RDBMS
schema for relational mode and also if table history is activated [p 251]. This concerns the following
facets:

• facets xs:maxLength and xs:length on string elements;

• facets xs:totalDigits and xs:fractionDigits on xs:decimal elements.

Databases do not support as tolerant a validation mode as EBX. Hence, the above constraints become
blocking constraints. A blocking constraint means that updates are rejected if they do not comply.
Additionally, such constraints are no longer checked during validation process, except for foreign key
constraints under some circumstances (see Foreign key blocking mode [p 247]). When a transaction
does not comply with a blocking constraint, it is cancelled and a ConstraintViolationExceptionAPI

is thrown.

See alsoBlocking and non-blocking constraints [p 522]

Foreign key blocking mode
In order to reduce validation time, foreign key constraints are automatically set in blocking mode if:

Documentation > Reference Manual > Persistence > Relational mode

TIBCO EBX® Product Documentation 5.9.20 248

• The foreign key constraints are defined on a table in relational mode,

• The foreign key constraints are defined on a table in semantic or relational mode referencing a
table in relational mode.

For these constraints, blocking mode implies that attempting the following actions will result in a
ConstraintViolationExceptionAPI:

• Deleting a record referenced by a foreign key constraint,

• Deleting an instance referenced by a foreign key constraint,

• Closing a dataspace referenced by a foreign key constraint.

However, it is possible to overwrite this behavior by setting a specific control policy. See Blocking
and non-blocking constraints [p 522] for more information.
In order to ensure the integrity of foreign key constraints after direct SQL writes that bypass the EBX
governance framework, the foreign key constraints will be validated on the following cases:

• On the first explicit validation through the user interface or API,

• On the first explicit validation through the user interface or API after refreshing the schema,

• On the first explicit validation through the user interface or API after resetting the validation
report of a dataset in the user interface.

Important:

• Blocking aspect of the foreign key constraint does not concern filters that may be defined. That
is, a foreign key constraint is non-blocking if a referenced record exists but does not satisfy a
foreign key filter. In this case, updates are not rejected and thus an error will be added to the
validation report.

• Foreign key constraints are not in blocking mode upon archive import. Indeed, all blocking
constraints, excepted structural constraints, are always disabled when importing archives. This
allows flexibility upon archive import where under certain circumstances the import of foreign
keys referencing records that are not yet imported must be tolerant.

Constraints on the whole table
Programmatic constraints ConstraintAPI are checked on each record of the table at validation time.
If the table defines millions of records, this becomes a performance issue. It is then recommended to
define a table-level constraint ConstraintOnTableAPI.
In the case where it is not possible to define such a table-level constraint, it is recommended to at
least define a local or explicit dependency DependenciesDefinitionContext.dependenciesAPI, so as
to reduce the cost of incremental validation.

See alsoConstraintOnTableAPI

44.4 SQL access to data in relational mode
This section describes how to directly access the data in relational mode, through SQL.

See alsoSQL access to history [p 254]

Documentation > Reference Manual > Persistence > Relational mode

TIBCO EBX® Product Documentation 5.9.20 249

Finding the table in the database
For every EBX table in relational mode, a corresponding table is generated in the RDBMS. Using the
EBX user interface, you can find the name of this database table by clicking on the documentation
pane of the table.

SQL reads
Direct SQL reads are possible in well-managed, preferably short-lived transactions. However, for
such accesses, EBX permissions are not taken into account. As a result, applications given allowed to
perform reads must be trusted through other authentication processes and permissions.

SQL writes
Direct SQL writes bypass the governance framework of EBX. Therefore, they must be used with
extreme caution. They could cause the following situations:

• failure to historize EBX tables;

• failure to execute EBX triggers;

• failure to verify EBX permissions and constraints;

• modifications missed by the incremental validation process;

• losing visibility on EBX semantic tables, which might be referenced by foreign keys.

Consequently, direct SQL writes are to be performed if, and only if, all the following conditions are
verified:

• The written tables are not historized and have no EBX triggers.

• The application performing the writes can be fully trusted with the associated permissions, to
ensure the integrity of data. Specifically, the integrity of foreign keys (osd:tableRef) must be
preserved at all times. See Foreign key blocking mode [p 247] for more information.

• The application server running EBX is shut down whenever writes are performed. This is to
ensure that incremental validation does not become out-of-date, which would typically occur in
a batch context.

44.5 Limitations of relational mode
The relational mode feature is fully functional, but has some known limitations, which are listed below.
If using relational mode, it is strongly recommended to read these limitations carefully and to contact
the TIBCO EBX Support team at https://support.tibco.com in case of questions.
See Supported databases [p 313] for the databases on which relational mode is supported.

Data model restrictions for tables in relational mode
Some restrictions apply to data models in relational mode:

• Data model restrictions due to mapped mode [p 243]

• Aggregated lists [p 490] are not supported in relational tables. Such a schema will cause a
compilation error.

• User-defined attributes on relational tables result in data model compilation errors.

https://support.tibco.com

Documentation > Reference Manual > Persistence > Relational mode

TIBCO EBX® Product Documentation 5.9.20 250

• Dataset inheritance [p 271].

• Inherited fields [p 272].

• Programmatic constraints, since the computation cost of validation would be too high. However,
constraints on tables ConstraintOnTableAPI remain available.

Schema evolutions may also be constrained by the underlying RDBMS, depending on the data already
contained in the concerned tables.

See alsoData model evolutions [p 265]

Other limitations of relational mode
• Limitations of mapped mode [p 243]

• From a dataspace containing datasets in relational mode, it is not possible to create child
dataspaces and snapshots.

• For D3, it is not possible to broadcast a dataspace defined in relational mode.

• For very large volumes of data, the validation will show poor performance if the relational table
declares any of these features: osd:function, osd:select, osd:uiFilter, osd:tableRef/filter.
Additionally, a sort cannot be applied on a osd:function column.

• It is not possible to set the AdaptationValue.INHERIT_VALUE to a node belonging to a data model
in relational mode.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 5.9.20 251

CHAPTER 45
History

This chapter contains the following topics:

1. Overview

2. Configuring history

3. History views and permissions

4. SQL access to history

5. Impacts and limitations of historized mode

45.1 Overview
History is a feature allowing to track all data modifications on a table (records creation, update and
deletion).
It is an improvement on the XML audit trail [p 419]. XML audit trail is still activated by default; it
can be safely deactivated if history is enabled for the relevant tables.

See also

History [p 28]

Relational mode [p 245]

Replication [p 259]

Data model evolutions [p 265]

45.2 Configuring history
In order to activate historization for a table, a history profile has to be set for the table in the data
model. This section describes history profiles and the way they are associated with tables.

Configuring history in the repository
A history profile specifies when the historization is to be created. In order to edit history profiles,
select Administration > History and logs.
A history profile is identified by a name and defines the following information:

• An internationalized label.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 5.9.20 252

• A list of dataspaces (branches) for which history is activated. It is possible to specify whether
direct children and/or all descendants should also be concerned.

Some profiles are already created when installing the repository. These profiles can neither be deleted
nor modified.

Profile Id Description

ebx-referenceBranch This profile is activated only on the reference dataspace.

ebx-allBranches This profile is activated on all dataspaces.

ebx-instanceHeaders This profile historizes dataset headers. However, this profile
will only be setup in a future version, given that the internal
data model only defines dataset nodes.

Configuring history in the data model

Activating table history
History can be activated on a table either through the data model assistant, or by editing the underlying
data model.
To activate history by editing the data model, a history profile should be declared on the table using
the historyProfile element.
<osd:table>
 <primaryKeys>/key</primaryKeys>
 <historyProfile>historyProfileForProducts</historyProfile>
</osd:table>

The data model assistant allows you to view the historization profiles defined in the repository.
Historization must be activated for each table separately. See model design [p 476] documentation
for more details.

Disabling history on a specific field or group
For a historized table, the default behavior is to historize all its supported elements (see Impacts and
limitations of historized mode [p 256]).
It is possible to disable history for a given field or group, either through the data model assistant, or
by editing the underlying data model.
To disable the history of a field or group by editing the data model, use the element osd:history with
the attribute disable="true".
<xs:element name="longDescription" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:history disable="true" />
 </xs:appinfo>
 </xs:annotation>
</xs:element>

To disable the history of a field or group through the data model assistant, use the History property
in the Advanced properties of the element.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 5.9.20 253

When this property is defined on a group, history is disabled recursively for all its descendants. Once
a group disables history, it is not possible to specifically re-enable history on a descendant.

Note

If the table containing the field or group is not historized, this property will not have any effect.
It is not possible to disable history for primary key fields.

Integrity
If problems are detected at data model compilation, warning messages or error messages will be added
to the validation report associated with this data model. Furthermore, if any error is detected, each
associated instance (dataset) will be inaccessible. The most common error cases are the following:

• A table references a profile that is not defined in the repository.

• A history profile that is referenced in the data model mentions a non-defined or closed dataspace
in the current repository.

Note

Deploying a data model on a repository that does not have the expected profiles requires
the administrator to add them.

45.3 History views and permissions

Table history view
When the history has been activated on a table in the data model, it is possible to access the history
view from various locations in the user interface: record, selection of records, table and dataset.
The next section explains how permissions are resolved.
For more information, see table history view [p 29] section. To access the table history view from Java,
the method AdaptationTable.getHistoryAPI must be invoked.

Permissions for table history
Data permissions are also applied to data history. History permissions are resolved automatically as
the most restricted permission between data permissions and read-only access right.
This is true for user-defined permission rules and also for programmatic permission rules.
When defining a programmatic rule, it may be required to distinguish between the functional dataset
context and the history view context, either because the expected permissions are not the same, or
because some fields are not present in the history structure. This is the case for dataset fields, computed
values and fields for which history has been disabled [p 252]. The methods Adaptation.isHistoryAPI

and AdaptationTable.getHistoryAPI can then be used in the programmatic rule in order to implement
specific behavior for history.

Transaction history views
The transaction history view gives access to the executed transactions, independently of a table, a
dataset or a data model, directly from the user interface.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 5.9.20 254

To see the 'Transaction history' table, navigate to the Administration area and select 'History and logs'
using the down arrow menu in the navigation pane. Transaction history can also be accessed from the
Dataspaces area by selecting a historized dataspace and using the Actions menu in the workspace.
For more information, see transaction history view [p 29].

45.4 SQL access to history
This section describes how to directly access the history data by means of SQL.

See alsoSQL access to data in relational mode [p 248]

Access restrictions
The database tables must be accessed only in read-only mode. It is up to the database administrator
to forbid write access except for the database user used by TIBCO EBX, as specified in the section
Rules for the database access and user privileges [p 373].

Relational schema overview
Here is a description of the history tables in the database.
The database schema contains (see also the diagram in the next section):

Common and generic tables The main table is HV_TX; each record of this table represents
a transaction. Only transactions that involve at least one
historized table are recorded.
These common tables are all prefixed by "HV".

Specific generated tables For each historized table, a specific history table is
generated. This table contains the history of the data
modifications on the table.
In the EBX user interface, the name of this table in database
can be obtained by clicking on the table documentation pane
(advanced mode). All the specific history tables are prefixed
with "HG".

Example of a generated history table
In the following example, we are historizing a table called product. Let us assume this table declares
three fields in EBX data model:
Product

• productId: int

• price: int

• beginDate: Date

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 5.9.20 255

The diagram below shows the resulting relational schema:

Activating history on this table generates the HG_product table shown in the history schema structure
above. Here is the description of its different fields:

• tx_id: transaction ID.

• instance: instance ID.

• op: operation type - C (create), U (update) or D (delete).

• productId: productId field value.

• OproductId: operation field for productId, see next section.

• price: price field value.

• Oprice: operation field for price, see next section.

• beginDate: date field value.

• ObeginDate: operation field for beginDate, see next section.

Combination of operations
If several operations are combined in the same transaction, the operation field is resolved as follows:

• C + U -> C

D + U -> D

D + C -> U

C + D -> {} (no entry in history)

Values for operation fields
For each functional field, an additional operation field is defined, composed of the field name prefixed
by the character O. This field specifies whether the functional field has been modified. It is set to one
of the following values:

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 5.9.20 256

• null: if the functional field value has not been modified (and its value is not INHERIT).

• M: if the functional field value has been modified (not to INHERIT).

• D: if record has been deleted.

If inheritance [p 270] is enabled, the operation field can have three additional values:

• T: if the functional field value has not been modified and its value is INHERIT.

• I: if the functional field value has been set to INHERIT.

• O: if the record has been set to OCCULTING mode.

45.5 Impacts and limitations of historized mode
The history feature has some impacts and known limitations, which are listed in this section. If
using historized mode, it is strongly recommended to read these limitations carefully and to contact
TIBCO Software Inc. support in case of questions.

Validation
Some EBX data model constraints become blocking constraints when table history is activated. For
more information, see the section Structural constraints [p 247].

Data model restrictions for historized tables
Some restrictions apply to data models containing historized tables:

• Data model restrictions due to mapped mode [p 243]

• Limitations exist for two types of aggregated lists: aggregated lists under another aggregated list,
and aggregated lists under a terminal group. Data models that contain such aggregated lists can
be used, however these lists will be ignored (not historized).

• Computed values are ignored.

• User-defined attributes on historized tables result in data model compilation errors.

Data model evolutions may also be constrained by the underlying RDBMS, depending on the data
already contained in the concerned tables.

See alsoData model evolutions [p 265]

Other limitations of historized mode
• No data copy is performed when a table with existing data is activated for history.

• Global operations on datasets are not historized (create an instance and remove an instance), even
if they declare a historized table.

• Default labels referencing a non-historized field are not supported for historized tables.
As a consequence, default labels referencing a computed field are not supported for historized
tables.
The workaround is to implement the UILabelRenderer interface and adapt the label computation
for history.

• D3: the history can be enabled in the delivery dataspace of a primary node, but in the delivery
dataspace of the replica nodes, the historization features are always disabled.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 5.9.20 257

• Recorded user in history: for some specific operations, the user who performs the last operation
and the one recorded in the corresponding history record may be different.
This is due to the fact that these operations are actually a report of the data status at a previous state:

• Archive import: when importing an archive on a dataspace, the time and user of the last
operation performed in the child dataspace are preserved, while the user recorded in history
is the user who performs the import.

• Programmatic merge: when performing a programmatic merge on a dataspace, the time and
user of the last operation performed in the child dataspace are preserved, while the user
recorded in history is the user who performs the merge.

• D3: for distributed data delivery feature, when a broadcast is performed, the data from the
primary node is reported on the replica node and the time and user of the last operation
performed in the child dataspace are preserved, while the user recorded in history is 'ebx-
systemUser' who performs the report on the replica node upon the broadcast.

Documentation > Reference Manual > Persistence > History

TIBCO EBX® Product Documentation 5.9.20 258

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 5.9.20 259

CHAPTER 46
Replication

This chapter contains the following topics:

1. Overview

2. Configuring replication

3. Accessing a replica table using SQL

4. Requesting an 'onDemand' replication refresh

5. Impact and limitations of replication

46.1 Overview
Data stored in the TIBCO EBX repository can be mirrored to dedicated relational tables to enable
direct access to the data by SQL requests and views.
Like history and relational mode, this data replication is transparent to end-users and client
applications. Certain actions trigger automatic changes to the replica in the database:

• Activating replication at the model-level updates the database schema by automatically executing
the necessary DDL statements.

• Data model evolutions that impact replicated tables, such as creating a new column, also
automatically update the database schema using DDL statements.

• When using the 'onCommit' refresh mode: updating data in the EBX repository triggers the
associated inserts, updates, and deletions on the replica database tables.

See also

Relational mode [p 245]

History [p 251]

Data model evolutions [p 265]

Repository administration [p 372]

Note

replicated table: refers to a primary data table that has been replicated
replica table (or replica): refers to a database table that is the target of the replication

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 5.9.20 260

46.2 Configuring replication

Enabling replication
To define a replication unit on a data model, use the element osd:replication under the elements
annotation/appinfo. Each replication unit specifies tables in a single dataset in a specific dataspace.
The nested elements are as follows:

Element Description Required

name Name of the replication unit. This name identifies a replication
unit in the current data model. It must be unique.

Yes

dataSpace Specifies the dataspace relevant to this replication unit. It
cannot be a snapshot or a relational dataspace.

Yes

dataSet Specifies the dataset relevant to this replication unit. Yes

refresh Specifies the data synchronization policy. The possible policies
are:

• onCommit: The replica table content in the database is
always up to date with respect to its source table. Every
transaction that updates the EBX source table triggers the
corresponding insert, update, and delete statements on the
replica table.

• onDemand: The replication of specified tables is only
done when an explicit refresh operation is performed. See
Requesting an 'onDemand' replication refresh [p 262].

Yes

table/path Specifies the path of the table in the current data model that is
to be replicated to the database.

Yes

table/nameInDatabase Specifies the name of the table in the database to which the
data will be replicated. This name must be unique amongst all
replications units.

Yes

table/element/path Specifies the path of the aggregated list in the table that is to be
replicated to the database.

Yes

table/element/
nameInDatabase

Specifies the name of the table in the database to which the data
of the aggregated list will be replicated. This name must be
unique amongst all replications units.

Yes

For example:
<xs:schema>
 <xs:annotation>
 <xs:appinfo>
 <osd:replication>
 <name>ProductRef</name>
 <dataSpace>ProductReference</dataSpace>
 <dataSet>productCatalog</dataSet>
 <refresh>onCommit</refresh>
 <table>
 <path>/root/domain1/tableA</path>
 <nameInDatabase>PRODUCT_REF_A</nameInDatabase>
 </table>

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 5.9.20 261

 <table>
 <path>/root/domain1/tableB</path>
 <nameInDatabase>PRODUCT_REF_B</nameInDatabase>
 <element>
 <path>/retailers</path>
 <nameInDatabase>PRODUCT_REF_B_RETAILERS</nameInDatabase>
 </element>
 </table>
 </osd:replication>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:schema>

Notes:

• See Data model restrictions for replicated tables [p 262]

• If, at data model compilation, the specified dataset and/or dataspace does not exist in the current
repository, a warning is reported, but the replica table is created in the database. Once the specified
dataspace and dataset are created, the replication becomes active.

• At data model compilation, if a table replication is removed, or if some of the above properties
has changed, the replica table is dropped from the database, and then recreated with the new
definition if needed.

Disabling replication on a specific field or group
For a replicated table, the default behavior is to replicate all its supported elements (see Data model
restrictions for replicated tables [p 262]).
It is possible to disable replication for a specific field or group, either through the data model assistant,
or by editing the underlying data model.
To disable the replication of a field or group by editing the data model, use the element
osd:replication with the attribute disable="true".
<xs:element name="longDescription" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:replication disable="true" />
 </xs:appinfo>
 </xs:annotation>
</xs:element>

To disable the replication of a field or group through the data model assistant, use the Replication
property in the Advanced properties of the element.
When this property is defined on a group, replication is disabled recursively for all its descendents.
Once a group disables replication, it is not possible to specifically re-enable replication on a
descendant.

Note

If the table containing the field or group is not replicated, this property will not have any effect.
It is not possible to disable replication for primary key fields.

46.3 Accessing a replica table using SQL
This section describes how to directly access a replica table using SQL.

See alsoSQL access to history [p 254]

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 5.9.20 262

Finding the replica table in the database
For every replicated EBX table, a corresponding table is generated in the RDBMS. Using the EBX
user interface, you can find the name of this database table by clicking on the documentation pane
of the table.

Access restrictions
The replica database tables must only be directly accessed in read-only mode. It is the responsibility
of the database administrator to block write-access to all database users except the one that EBX uses.

See alsoRules for the database access and user privileges [p 373]

SQL reads
Direct SQL reads are possible in well-managed, preferably short-lived transactions. However, for such
accesses, EBX permissions are not taken into account. As a result, applications given the privilege to
perform reads must be trusted through other authentication processes and permissions.

46.4 Requesting an 'onDemand' replication refresh
The 'onDemand' refresh policy requires an explicit request to refresh the replicated table data.
There are several ways to request a replication refresh:

• User interface: In the dataset actions menu, use the action 'Refresh replicas' under the group
'Replication' to launch the replication refresh wizard.

• Data services: Use the replication refresh data services operation. See Replication refresh [p 642]

for data services for more information.

• Java API: Call the ReplicationUnit.performRefreshAPI methods in the ReplicationUnit API to
launch a refresh of the replication unit.

46.5 Impact and limitations of replication
The replication feature has some known limitations and side-effects, which are listed below.
If using replication, it is strongly recommended to read this section carefully and to contact
TIBCO Software Inc. support in case of questions.
See Supported databases [p 313] for the databases for which replication is supported.

Validation
Some EBX data model constraints become blocking constraints when replication is enabled. For more
information, see Structural constraints [p 247].

Data model restrictions for replicated tables
Some restrictions apply to data models containing tables that are replicated:

• Data model restrictions due to mapped mode [p 243]

• Dataset inheritance is not supported for the 'onCommit' refresh policy if the specified dataset is
not a root dataset or has not yet been created. See dataset inheritance [p 271] for more information.

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 5.9.20 263

• Field inheritance is also only supported for the 'onDemand' refresh policy. This means that, at
data model compilation, an error is reported if the refresh mode is 'onCommit' and the table to be
replicated has an inherited field. See inherited fields [p 272] for more information.

• Computed values are ignored.

• Limitations exist for two types of aggregated lists: aggregated lists under another aggregated list,
and aggregated lists under a terminal group. Data models that contain such aggregated lists can
be used, however these lists will be ignored (not replicated).

• User-defined attributes are not supported. A compilation error is raised if they are included in a
replication unit.

Data model evolutions may also be constrained by the underlying RDBMS, depending on the data
already contained in the concerned tables.

See alsoData model evolutions [p 265]

Database configuration
The refresh operation is optimized to transmit only the rows of the source table that have been modified
(with respect to creation and deletion) since the last refresh. However, depending on the volume of
data exchanged, this can be an intensive operation, requiring large transactions. In particular, the first
refresh operation can concern a large number of rows. It is necessary for the database to be configured
properly to allow such transactions to run under optimal conditions.
For instance, with Oracle:

• It is mandatory for the bulk of all replica tables in a replication unit to fit into the 'UNDO'
tablespace.

• It is recommended to provide enough space in the buffer cache to allow those transactions to run
with minimal disk access.

• It is recommended to provision 'REDO' log groups big enough to avoid those transactions to wait
for the 'db_writer' process.

Distributed data delivery (D3)
Replication is available on both D3 primary and replica delivery dataspaces. On the primary dataspace,
the replication behavior is the same as in a standard semantic dataspace, but on replica dataspaces,
the replicated content is that of the last broadcast snapshot.
In a replica delivery dataspace, some restrictions occur:

• The refresh policy defined in the data model has no influence on the behavior described above:
replication always happens on snapshot.

• The action item Refresh replicas is not available.

• It is not allowed to invoke the ReplicationUnit.performRefreshAPI method.

See alsoD3 overview [p 424]

Other limitations of replication
• Limitations of supported databases [p 313]

Documentation > Reference Manual > Persistence > Replication

TIBCO EBX® Product Documentation 5.9.20 264

• For inheritance, a replica record field cannot hold the "inherit value" flag
(AdaptationValue.INHERIT_VALUE). It only holds the inherited value in such cases. More
generally, it is not possible to distinguish inheriting state from overwriting state.

Documentation > Reference Manual > Persistence > Data model evolutions

TIBCO EBX® Product Documentation 5.9.20 265

CHAPTER 47
Data model evolutions

This chapter describes the modifications that are possible on data models, as well as potential
limitations. The restrictions and/or potential impacts of data model evolutions depend on the
persistence mode. The principles for each mode are the following:

• Semantic mode: flexible and non-blocking. Can lead to a loss of data; for instance, a primary key
definition can freely evolve, but all existing records in any dataspace and snapshot that violate
the primary key constraint will no longer be loaded.

• Any mapped mode: restrictive and thus blocking if data exists and if the evolution would violate
their integrity according to the new data model.

Attention
Whenever the data modeler performs an evolution on the data model, it is important to anticipate
the fact that it could lead to a loss of data. In such cases, if existing data must be preserved in some
ways, a data migration plan must be set up and operated before the new data model is published or
deployed. It can also be noted that data is not destroyed immediately after the data model evolution;
in semantic mode, as long as no update is performed on a table whose definition has evolved, if the
data model is rolled back to its previous state, then the previous data is retrieved.

Note

Certain types of data model evolutions cannot be performed directly in the user interface,
and thus the data model must be exported, modified in XSD format, then re-imported.
For changes to a data model that impact its configuration, not just its structure, the
XSD must be imported into TIBCO EBX from a module. Otherwise, the configuration
modifications are not taken into account.

See alsoMapped mode [p 243]

This chapter contains the following topics:

1. Types of permitted evolutions

2. Limitations/restrictions

47.1 Types of permitted evolutions
This section describes the possible modifications to data models after their creation.

Documentation > Reference Manual > Persistence > Data model evolutions

TIBCO EBX® Product Documentation 5.9.20 266

Model-level evolutions
The following modifications can be made to existing data models:

• A data model in semantic mode can be declared to be in relational mode. Data should be manually
migrated, by exporting then re-importing an XML or archive file.

• Relational mode can be disabled on the data model. Data should be manually migrated, by
exporting then re-importing an XML or archive file.

• Replication units can be added to the data model. If their refresh policy is 'onCommit', the
corresponding replica tables will be created and refreshed on next schema compilation.

• Replication units can be removed from the data model. The corresponding replica tables will be
dropped immediately.

• The data model can be deleted. If it declares replication units, the corresponding replica tables
will be dropped immediately. If it is relational or contains historized tables, this change marks
the associated mapped tables as disabled. See Database mapping [p 405] for the actual removal
of associated database objects.

Table-level evolutions
The following modifications can be made to a data model at the table-level:

• A new table can be added. Upon creation, the table can also declare one or more mapped modes.

• An existing table can be deleted. If it declares replication units, the corresponding replica tables
will be dropped immediately. If it historized or relational, this change marks the mapped table as
disabled. See Database mapping [p 405] for the actual removal of associated database objects.

• An existing table in semantic mode can be declared to be in relational mode. Data should be
manually migrated, by exporting then re-importing an XML or archive file.

• History can be enabled or disabled on a table. History will not take into account the operations
performed while it is disabled.

• A table can be renamed. Data should be manually migrated, by exporting then re-importing an
XML or archive file, because this change is considered to be a combination of deletion and
creation.

Field-level evolutions
The following modifications can be made to a data model at the field-level:

• A new field can be added.

• An existing field can be deleted. In semantic mode, the data of the deleted field will be
removed from each record upon its next update. For a replica table, the corresponding column is
automatically removed. In history or relational mode, the field is marked as disabled.

• A field can be specifically disabled from the history or replication which applies to its containing
table, by using the attribute disable="true". For a replica table, the corresponding column is
automatically removed. For a history table, the column remains but is marked as disabled. See
Disabling history on a specific field or group [p 252] and Disabling replication on a specific field
or group [p 261].

• The facets of a field can be modified, except for the facets listed under Limitations/restrictions
[p 267].

Documentation > Reference Manual > Persistence > Data model evolutions

TIBCO EBX® Product Documentation 5.9.20 267

The above-mentioned changes are accepted, but they can lead to a loss of data. Data should be migrated
manually, by exporting then re-importing an XML or archive file, since these changes are considered
to be a combination of deletion and creation.

• A field can be renamed.

• The type of a field can be changed.

Index-level evolutions
• An index can be added or renamed.

• An index can be modified, by changing or reordering its fields. In mapped mode, the existing
index is deleted and a new one is created.

• An index can be deleted. In mapped mode, a deleted index is also deleted from the database.

47.2 Limitations/restrictions
Note

All limitations listed in this section that affect mapped mode can be worked around by
purging the mapped table database resources. For the procedure to purge mapped table
database resources, see Database mapping [p 405].

Limitations related to primary key evolutions
When a primary key definition is modified:

• In semantic mode, the existing records are only loaded into the cache if they:

• Respect the uniqueness constraint of the primary key,

• Comply with the new structure of the primary key.

• In mapped mode, the underlying RDBMS only accepts a primary key modification if all table
records respect its uniqueness and non-nullity constraints. In particular, if a table already has
existing records:

• Adding a new field to the primary key requires assigning a default value to this field.
Workaround for replicated or relational tables: first add the field, value it for the existing
records, then add the field to the primary key.

• Removing an existing field from the primary key will be rejected if it would cause the existing
records to no longer have a unique primary key (assigning a default value makes no change
in this case).

• It is generally not possible to rename a field of the primary key; more formally, it is only
possible if the field was not needed for making all primary keys unique. Indeed, renaming
a field translates to a combination of deletion and creation; consequently, the operation will
be rejected if it would cause the existing records to no longer have a unique primary key
(assigning a default value makes no change in this case).

Limitations related to foreign key evolutions
• When the declaration of a facet osd:tableRef is added or modified, or the primary key of the

target table of a facet osd:tableRef is modified:

Documentation > Reference Manual > Persistence > Data model evolutions

TIBCO EBX® Product Documentation 5.9.20 268

• In semantic mode, the existing values for this field are only loaded into the cache if they
comply with the new structure of the target primary key.

• In mapped mode, the structure of a foreign key field is set to match that of the target primary
key. A single field declaring an osd:tableRef constraint may then be split into a number of
columns, whose number and types correspond to that of the target primary key. Hence, the
following cases of evolutions will have an impact on the structure of the mapped table:

• declaring a new osd:tableRef constraint on a table field;

• removing an existing osd:tableRef constraint on a table field;

• adding (resp. removing) a column to (resp. from) a primary key referenced by an existing
osd:tableRef constraint;

• modifying the type or path for any column of a primary key referenced by an existing
osd:tableRef constraint.

These cases of evolution will translate to a combination of field deletions and/or creations.
Consequently, the existing data should be migrated manually.

Limitations related to field-level evolutions
• In mapped mode, when a maxLength, length, totalDigits or fractionDigits facet is modified:

Whether or not this modification is accepted depends on the underlying DBMS, as well as the
field type and the contents of the table.
For example, Oracle will accept changing a VARCHAR(20) to a VARCHAR(50), but will only
change a VARCHAR(50) to a VARCHAR(20) if the table does not contain any values over 20
characters long.
PostgreSQL has the same limitations, but additionally, any modification of a field type (including
modifications of its length) will invalidate all related prepared statements, and require restarting
the application server.

• When a cardinality of an element is modified:

• In semantic mode, this change is supported. However, two cases are distinguished:

• When changing a single element to an aggregated list, the previous single value is
preserved and added to the new aggregated list.

• When changing an aggregated list to a single element, only the last value of the
aggregated list is preserved in the single element. Other values are lost.

• In relational mode, aggregated lists are not supported. An error message is added to the
compilation report of the data model if an element is changed to an aggregated list.

• In historized mode, when changing a single element to an aggregated list, the modification
is taken into account, but the previous single value is lost.

Documentation > Reference Manual

TIBCO EBX® Product Documentation 5.9.20 269

Other

Documentation > Reference Manual > Other > Inheritance and value resolution

TIBCO EBX® Product Documentation 5.9.20 270

CHAPTER 48
Inheritance and value resolution

This chapter contains the following topics:

1. Overview

2. Dataset inheritance

3. Inherited fields

4. Optimize & Refactor service

48.1 Overview
The principle of inheritance is to mutualize resources that are shared by multiple contexts or
entities. TIBCO EBX offers mechanisms for defining, factorizing and resolving data values: dataset
inheritance and inherited fields.
Furthermore, functions can be defined to compute values.

Note

Inheritance mechanisms described in this chapter should not be confused with "structural
inheritance", which usually applies to models and is proposed in UML class diagrams
for example.

See alsoInheritance (glossary) [p 27]

Dataset inheritance
Dataset inheritance is particularly useful when data applies to global enterprise contexts, such as
subsidiaries or business partners.
Based on a hierarchy of datasets, it is possible to factorize common data into the root or intermediate
datasets and define specialized data in specific contexts.
The dataset inheritance mechanisms are detailed below in Dataset inheritance [p 271].

Inherited fields
Contrary to dataset inheritance, which exploits global built-in relationships between datasets, inherited
fields exploit finer-grained dependencies that are specific to the data structure. It allows factorizing
and specializing data at the business entities-level.

Documentation > Reference Manual > Other > Inheritance and value resolution

TIBCO EBX® Product Documentation 5.9.20 271

For example, if the model specifies that a 'Product' is associated with a 'FamilyOfProducts', it is
possible that some attributes of 'Product' inherit their values from the attributes defined in its associated
'FamilyOfProducts'.

Note

When using both inheritance in the same dataset, field inheritance has priority over the
dataset one.

Computed values (functions)
In the data model, it is also possible to specify that a node holds a computed value. In this case, the
specified JavaBean function will be executed each time the value is requested.
The function is able to take into account the current context, such as the values of the current record
or computations based on another table, and to send requests to third-party systems.

See alsoComputed values [p 527]

48.2 Dataset inheritance

Dataset inheritance declaration
The dataset inheritance mechanism is declared as follows in a data model:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ebxbnd="urn:ebx-schemas:binding_1.0">
 <xs:annotation>
 <xs:appinfo>
 <osd:inheritance>
 <dataSetInheritance>all</dataSetInheritance>
 </osd:inheritance>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:schema>

The element osd:inheritance defines the property dataSetInheritance to specify the use of
inheritance on datasets based on this data model. The following values can be specified:

• all, indicates that inheritance is enabled for all datasets based on the data model.

• none, indicates that inheritance is disabled for all datasets based on the data model.

If not specified, the inheritance mechanism is disabled.

Value lookup mechanism
The dataset inheritance lookup mechanism for values proceeds as follows:

1. If the value is locally defined, it is returned.
It can be explicitly null.

2. Otherwise, looks up the first locally defined value according to the built-in child-to-parent
relationship of the dataset in the hierarchy of datasets.

3. If no locally defined value is found, the default value is returned.
If no default value is defined, null is returned.
Note: Default values cannot be defined on:

• A single primary key node

Documentation > Reference Manual > Other > Inheritance and value resolution

TIBCO EBX® Product Documentation 5.9.20 272

• Auto-incremented nodes

• Nodes defining a computed value

Record lookup mechanism
Like values, table records can also be inherited as a unit by multiple contexts, but they can also be
partially redefined (overwritten), defined for a specific context (root mode), or be occulted.
Formally, a table record has one of four distinct definition modes:

root record Locally defined in the table and has no parent. This means
that no record with the same primary key exists in the parent
table, or that this parent is an occulting record.

overwriting record Locally defined in the table and has a parent record. This
means that a record with the same primary key exists in the
parent table, and that this parent is not an occulting record.
The overwriting record inherits its values from its parent,
except for the values that it explicitly redefines.

inherited record Not locally defined in the current table and has a parent
record. All values are inherited.
Functions are always resolved in the current record context
and are not inherited.

occulting record Specifies that, if a parent with the same primary key is
defined, this parent will not be visible in table descendants.

See alsoDataset inheritance [p 127]

Defining inheritance behavior at the table level
It is also possible to specify management rules in the declaration of a table in the data model.

See alsoProperties related to dataset inheritance [p 497]

48.3 Inherited fields
The specific inheritance mechanism allows fetching a value of a field according to its relationship
to other tables.

Field inheritance declaration
Specific inheritance must be specified on terminal nodes in the underlying data model and is declared
as follows:
<xs:element name="sampleInheritance" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:inheritance>
 <sourceRecord>
 /root/table1/fkTable2, /root/table2/fkTable3
 </sourceRecord>

Documentation > Reference Manual > Other > Inheritance and value resolution

TIBCO EBX® Product Documentation 5.9.20 273

 <sourceNode>color</sourceNode>
 </osd:inheritance>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

The element sourceRecord is an expression that describes how to look up the record from which the
value is inherited. It is a foreign key, or a sequence of foreign keys, from the current element to the
source table.
If sourceRecord is not defined in the data model, the inherited fields are fetched from the current
record.
The element sourceNode is the path of the node from which to inherit in the source record.
The following conditions must be satisfied for specific inheritance:

• The element sourceNode is mandatory.

• The expression for the path to the source record must be a consistent path of foreign keys, from
the current element to the source record. This expression must involve only one-to-one and zero-
to-one relationships.

• The sourceRecord cannot contain any aggregated list elements.

• Each element of the sourceRecord must be a foreign key.

• If the inherited field is also a foreign key, the sourceRecord cannot refer to itself to get the path
to the source record of the inherited value.

• Every element of the sourceRecord must exist.

• The source node must belong to the table containing the source record.

• The source node must be terminal.

• The source node must be writeable.

• The source node type must be compatible with the current node type.

• The source node cardinalities must be compatible with those of the current node.

• The source node cannot be the same as the inherited field if the fields to inherit from are fetched
into the same record.

Value lookup mechanism
The lookup mechanism for inherited fields values proceeds as follows:

1. If the value is locally defined, it is returned.
It can be explicitly null

2. Otherwise, looks up the source record and value to inherit from, according to the properties that
are defined in the data model.

3. The process is recursive; if the source node does not locally define a value, it is then looked up
according to the inheritance behavior of the source node.

48.4 Optimize & Refactor service
EBX provides a built-in user service for optimizing the dataset inheritance in the hierarchy of datasets.
This service performs the following functions:

Documentation > Reference Manual > Other > Inheritance and value resolution

TIBCO EBX® Product Documentation 5.9.20 274

• Handles duplicated values: Detects and removes all parameter values that are duplicates of the
inherited value.

• Mutualizes common values: Detects and mutualizes the common values among the descendants
of a common ancestor.

Procedure details
Datasets are processed from the bottom up, which means that if the service is run on the dataset at
level N, with N+1 being the level of its children and N+2 being the level of its children's children, the
service will first process the datasets at level N+2 to determine if they can be optimized with respect
to the datasets at level N+1. Next, it would proceed with an optimization of level N+1 against level N.

Note

• These optimization and refactoring functions do not handle default values that are
declared in the data model.

• The highest level considered during the optimization procedure is always the dataset on
which the service is run. This means that optimization and refactoring are not performed
between the target dataset and its own ancestors.

• Table optimization is performed on records with the same primary key.

• Inherited fields are not optimized.

• The optimization and refactoring functions do not modify the resolved view of a dataset,
if it is activated.

Service availability
The 'Optimize & Refactor' service is available on datasets that have child datasets and have the
'Activated' property set to 'No' in their dataset information.
The service is available to any profile with write access on current dataset values. It can be disabled
by setting restrictive access rights on a profile.

Note

For performance reasons, access rights are not verified on every node and table record.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 275

CHAPTER 49
Permissions

Permissions dictate the access each user has to data and actions.
This chapter contains the following topics:

1. Overview

2. Defining user-defined rules

3. Defining programmatic rules

4. Resolving permissions on data

5. Resolving permissions on services

6. Resolving permissions on actions

49.1 Overview
Permissions are related to whether actions are authorized or not. They are also related to access rights,
that is, whether an entity is hidden, read, or read-write. The main entities controlled by permissions are:

• Dataspace

• Dataset

• Table

• Group

• Field

Users, roles and profiles
The definition and resolution of permissions make extensive use of the notion of profiles, which is
the generic term applied to users or roles.
Each user can participate in several roles, and a role can be shared by several users.
These relationships are defined in the user and roles directory. See Users and roles directory [p 399].
Special definitions:

• An administrator is a member of the built-in role 'ADMINISTRATOR'.

• An owner of a dataset is a member of the owner attribute specified in the information of a root
dataset. In this case, the built-in role 'OWNER' is activated when permissions are resolved in the
context of the dataset.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 276

• An owner of a dataspace is a member of the owner attribute specified for a dataspace. In this
case, the built-in role 'OWNER' is activated when permissions are resolved in the context of the
dataspace.

Permission rules
A permission rule defines the authorization granted to a profile for a particular entity.
User-defined permission rules are created through the user interface. See the section Defining user-
defined rules [p 278].
Programmatic permission rules can be created by developers. See the section Defining programmatic
rules [p 282].

Resolution of permissions
Permissions are always resolved in the context of an authenticated user session, thus permissions are
mainly based on the user profiles.
In general, resolution of permissions is performed restrictively between a given level and its parent
level. Thus, at any given level, a user cannot have a higher permission than the one resolved at a
parent level.
Programmatic permissions are always considered to be restrictive.

Note

In the Java API, the class SessionPermissionsAPI provides access to the resolved
permissions.

See also

Resolving permissions on data [p 283]

Resolving permissions on services [p 287]

Resolving permissions on actions [p 289]

Owner and administrator special permissions

On a dataset
An administrator or owner of a dataset can perform the following actions:

• Manage its permissions

• Change its owner, if the dataset is a root dataset

• Change its general information (localized labels and descriptions)

Attention
While the definition of permissions can restrict an administrator or dataset owner's right to view
data or perform certain actions, it remains possible for them to modify their own access, as they will
always have access to permissions management.

On a dataspace
To be a super owner of a dataspace, a user must either:

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 277

• Own the dataspace and be allowed to manage its permissions, or

• Own a dataspace that is an ancestor of the current dataspace and be allowed to manage the
permissions of that ancestor dataspace.

An administrator or super owner of a dataspace can perform the following actions:

• Manage its permissions of dataspace.

• Change its owner

• Lock it or unlock it

• Change its general information (localized labels and descriptions)

Furthermore, in a workflow, when using a "Create a dataspace" or "Create a snapshot" built-in script
task, resolved permissions are computed using the owner defined in the script task's configuration,
rather than the current session. This is because, in these cases, the current session is associated with
a system user.

Attention
While the definition of permissions can restrict an administrator or dataspace owner's right to view
data or perform certain actions, it remains possible for them to modify their own access, as they will
always have access to permissions management.

Impact of merge on permissions
When a dataspace is merged, the permissions of the child dataset are merged with those of the parent
dataspace if and only if the user specifies to do so during the merge process. The permissions of its
parent dataspace are never impacted.
If some elements are hidden for the profile attempting to perform a merge, it will not be possible to
proceed as the impacts of the merge on data will not be fully visible.

Important considerations about permissions
The following statements should be kept in mind while working with permissions:

• Whenever the hidden permission is returned for a session on a table child node, a user could
"guess" sensitive information by filtering or sorting on this node in the following cases:

• When using a RequestAPI on this table with permissions enabled Request.setSessionAPI. To
avoid this, permissions on this node must be checked explicitly before applying the filter or
the sort criteria.

• When defining a custom view on this table in the UI. To avoid this, view definition
permissions should be restricted for such users.

• Resolution of custom display labels for tables ('defaultLabel' property) and relationships ('display'
property) ignores permission, and fields usually hidden due to access rights restrictions will
be displayed in such labels. As a result, these labels should not contain any confidential field.
Otherwise, a permission strategy should also be defined to restrict the display of the whole label.

• When a procedure disables all permission checks by using ProcedureContext.
setAllPrivilegesAPI, the client code must check that the current user session is allowed to run
the procedure.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 278

• When performing actions on a table (create, delete, overwrite or occult) in a procedure, the
current user session access right on the table node is ignored during the permission resolution.
Should this check be performed, the client code must explicitly call SessionPermissions.
getNodeAccessPermissionAPI beforehand in the procedure.

• To optimize the resolution of permissions for both data and user services, a dedicated cache
is implemented at the session level; it only takes user-defined permissions into account, not
programmatic rules (which are not cached since they are contextual and dynamic). The session
cache life cycle depends on the context, as described hereafter:

• In the UI, the cache is cleared for every non-ajax event (i.e on page display, pop-up opening,
etc.).

• In programmatic procedures, the cache lasts until the end of the procedure, unless explicitly
cleared (see below).

Attention
When modifying permissions in a procedure context (by importing an EBX archive or
merging a dataspace programmatically), the session cache must be cleared via a call to
Session.clearCacheAPI. Otherwise, these modifications will not be reflected until the end
of the procedure.

49.2 Defining user-defined rules
Each level has a similar schema, which allows defining permission rules for profiles.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 279

Defining dataspace user-defined rules
For a given dataspace, the allowable permissions for each profile are as follows:

Dataspace access Authorization

Write • Can view the dataspace.

• Can access datasets according to dataset permissions.

Read-only • Can view the dataspace and its snapshots.

• Can view child dataspaces, if allowed by permissions.

• Can view contents of the dataspace, though cannot modify them.

Hidden • Can neither see the dataspace nor its snapshots.

• If allowed to view child dataspace, can see the current dataspace but cannot select it.

• Cannot access the dataspace contents, including datasets.

• Cannot perform any actions on the dataspace.

Restriction policy Indicates whether this dataspace profile-permission
association should have priority over other permissions
rules.

Create a child dataspace Indicates whether the profile can create child dataspaces
from the current dataspace.

Create a child snapshot Indicates whether the profile can create snapshots of the
current dataspace.

Initiate merge Indicates whether the profile can merge the current
dataspace with its parent dataspace.

Export archive Indicates whether the profile can export the current
dataspace as an archive.

Import archive Indicates whether the profile can import an archive into the
current dataspace.

Close a dataspace Indicates whether the profile can close the current
dataspace.

Close a snapshot Indicates whether the profile can close a snapshot of the
current dataspace.

Rights on services Indicates if a profile has the right to execute services on the
dataspace. By default, all dataspace services are allowed.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 280

An administrator or super owner of the current dataspace or
a given user who is allowed to modify permissions on the
current dataspace can modify these permissions to restrict
dataspace services for certain profiles.

Permissions of child dataspace
when created

When a user creates a child dataspace, the permissions
of this new dataspace are automatically assigned to the
profile's owner, based on the permissions defined under
'Permissions of child dataspace when created' in the parent
dataspace. If multiple permissions are defined for the owner
through different roles, the owner's profile behaves like any
other profile and permissions are resolved [p 276] as usual.

Defining dataset user-defined rules
For a given dataset, the allowable permissions for each profile are as follows:

Actions on datasets

Restriction policy Indicates whether this dataset profile-permission
association should have priority over other permissions
rules.

Create a child dataset Indicates whether the profile has the right to create a child
dataset of the current dataset.

Duplicate dataset Indicates whether the profile has the right to duplicate the
current dataset.

Change the dataset parent Indicates whether the profile has the right to change the
parent dataset of a given child dataset.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 281

Actions on tables
The action rights on default tables are defined at the dataset level. It is then possible to override these
default rights for one or more tables. The allowable permissions for each profile are as follows:

Create a new record Indicates whether the profile has the right to create records
in the table.

Overwrite inherited record Indicates whether the profile has the right to overwrite
inherited records in the table.

Occult inherited record Indicates whether the profile has the right to occult inherited
records in the table.

Delete a record Indicates whether the profile has the right to delete records
in the table.

Access rights on node values
Permissions defined on specific terminal nodes override their default access rights.

Read-write Can view and modify node values.

Read Can view nodes, but cannot modify their values.

Hidden Cannot view nodes.

Permissions on services
An administrator or an owner of the current dataspace can modify the service default permission to
either restrict or grant access to certain profiles.

Enabled Grants service access to the current profile.

Disabled Forbids service access to the current profile. It will not
be displayed in menus, nor will it be launchable via web
components.

Default Sets the service permission to enabled or disabled,
according to the default permission defined upon service
declaration.
See ActivationContext.setDefaultPermissionAPI for more
information.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 282

49.3 Defining programmatic rules
Programmatic rules give the possibility to define more precisely the conditions for accessing data or
user services depending on the context.
There are different types of programmatic rules:

• the AccessRuleAPI, described in the section below Defining access rules on data [p 282].

• the ServiceActivationRule [p 282], described in the section below Defining activation rules on
service [p 282].

• the ServicePermissionRuleAPI, described in the section below Defining permission rules on
service [p 283].

Defining access rules on data
AccessRules are rules that programmatically define, depending on the context, the read/write rights
on a data model node or on the records of a table.
The definition of an AccessRule is performed as follows:

1. Creation of a rule in the form of a Java class implementing the AccessRuleAPI or
AccessRuleForCreateAPI interface.

2. Assignment of this rule to concerned nodes in the schema extension: SchemaExtensionsAPI.
According to the rule target (model node(s) or records) and type (AccessRule
or AccessRuleForCreate), several methods such as SchemaExtensionsContext.
setAccessRuleForCreateOnNodeAPI or SchemaExtensionsContext.setAccessRuleOnOccurrenceAPI

can be used.
The rule thus assigned is said to be "local" and is only executed when the target entity is requested.
See Resolving permissions on data [p 283] for more information.

Attention
Only one AccessRule can be defined for each node, dataspace or record. Only one
AccessRuleForCreate can be defined for each table child node. The definition of a new
programmatic rule of one type will lead to the replacement of the existing one.

Defining activation rules on service
The ServiceActivationRules allow to specify if a service is activated or not for a given dataspace or
dataset. A service that has been deactivated through this rule is never available in the entity for which
it is deactivated, regardless of the current profile, for execution or display, even in permission screens.
The definition of a ServiceActivationRule is carried out as follows:

1. Creation of a rule in the form of a Java class implementing the
ServiceActivationRuleForDataspaceAPI interface or ServiceActivationRuleForDatasetAPI,
depending on the service type.

2. Assignment of this rule to the impacted services at their declaration level, depending
on the service type, via the ActivationContextOnDataspace.setActivationRuleAPI or
ActivationContextWithDatasetSet.setActivationRuleAPI methods.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 283

The resulting assigned rule will be evaluated during the service activation evaluation. See
Resolving permissions on services [p 287] for more information.

Defining permission rules on service
The ServicePermissionRules are advanced rules allowing to dynamically define the display and
execution conditions of a service depending on the context (current session, selected entity, etc.). The
service should be activated for the current context beforehand for this type of rule to be triggered.
The definition of a ServicePermissionRule is carried out as follows:

1. Creation of a rule in the form of a Java class implementing the ServicePermissionRuleAPI

interface.

2. Assignment of this rule to the impacted services:

• Either, for new services, at their declaration level via the ActivationContext.
setPermissionRuleAPI method.
The rule thus assigned is said to be "global" and is only executed when the service is activated
for the current context. See Resolving permissions on services [p 287] for more information.

• Or, for existing services, in the schema extension SchemaExtensionsAPI

via the SchemaExtensionsContext.setServicePermissionRuleOnNodeAPI and
SchemaExtensionsContext.setServicePermissionRuleOnNodeAndAllDescendantsAPI

methods. It is thus possible to assign a rule to any service, including standard services
provided by EBX, on one or more data model nodes: a table node, an association node, etc.
The rule thus assigned is said to be "local" and is only executed in the extended schema
context and when the node corresponds to the one specified. See Resolving permissions on
services [p 287] for more information.

Attention
Only one ServicePermissionRule can be defined for each model node. Thus, the definition
of a new programmatic rule will replace the existing one.

49.4 Resolving permissions on data

Resolving user-defined rules
Access rights defined using the user interface are resolved on four levels: dataspace, dataset, record
(if applicable) and node.
If a profile is associated with restrictive access rights at a given level, the minimum of all restrictive
rights defined at that level is resolved. If no restrictions are defined at that level, the maximum of all
access rights defined at that level is resolved.
When a restrictive permission is defined for a profile, it takes precedence over the other permissions
potentially granted by the user's other roles. Generally, for all user-defined permission rules that match
the current user session:

• If some rules with restrictions are defined, the minimum permissions of these restricted rules are
applied.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 284

• If no rules having restrictions are defined, the maximum permissions of all matching rules are
applied.

Examples:
Given two profiles P1 and P2 concerning the same user, the following table lists the possibilities when
resolving that user's permission to a service.

P1 authorization P2 authorization Permission resolution

Enabled Enabled Enabled. Restrictions do not make any difference.

Disabled Disabled Disabled. Restrictions do not make any difference.

Enabled Disabled Enabled, unless P2's authorization is a restriction.

Disabled Enabled Enabled, unless P1's authorization is a restriction.

The same restriction policy is applied for data access rights resolution.
In another example, a dataspace can be hidden from all users by defining a restrictive association
between the built-in profile "Profile.EVERYONE" and the access right "hidden".
At any given level, the most restrictive access rights between those resolved at this level and higher
levels are applied. For instance, if a user's dataset access permissions resolve to read-write access,
but the container dataspace only allows read access, the user will only have read-only access to this
dataset.

Note

The dataset inheritance mechanism applies to both values and access rights. That is,
access rights defined on a dataset will be applied to its child datasets. It is possible to
override these rights in the child dataset.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 285

Access rights resolution example
In this example, there are three users who belong to the following defined roles and profiles:

User Profile

User 1 • user1

• role A

• role B

User 2 • user2

• role A

• role B

• role C

User 3 • user3

• role A

• role C

The access rights of the profiles on a given element are as follows:

Profile Access rights Restriction policy

user1 Hidden Yes

user3 Read No

Role A Read/Write No

Role B Read Yes

Role C Hidden No

After resolution based on the role and profile access rights above, the rights that are applied to each
user are as follows:

User Resolved access rights

User 1 Hidden

User 2 Read

User 3 Read/Write

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 286

Resolving dataspace and snapshot access rights
At dataspace level, access rights are resolved as follows:

• If a user has several rights defined through multiple profiles:

• If the rights include restrictions, the minimum of the restrictive profile-rights associations
is applied.

• Otherwise, the maximum of the profile-rights associations is applied.

• If the user has no rights defined:

• If the user is an administrator or owner of the dataspace, read-write access is given for this
dataspace.

• Otherwise, the dataspace will be hidden.

Resolving dataset access rights
At the dataset level, the same principle applies as at the dataspace level. After resolving the access
rights at the dataset level alone, the final access rights are determined by taking the minimum rights
between the resolved dataspace rights and the resolved dataset rights. For example, if a dataspace is
resolved to be read-only for a user and one of its datasets is resolved to be read-write, the user will
only have read-only access to that dataset.

Resolving node access rights
At the node level, the same principle applies as at the dataspace and dataset levels. After resolving
the access rights at the node level alone, the final access rights are determined by taking the minimum
rights between the resolved dataset rights and the resolved node rights.
Specific access rights can be defined at the node level. If no specific access right is defined, the default
access right is used for the resolution process.

Note

The resolution procedure is slightly different for table and table child nodes.

Special case for table and table child nodes
This describes the resolution process used for a given table node or table record N.
For each user-defined permission rule that matches one of the user's profiles, the access rights for N
are either:

1. The locally defined access rights for N;

2. Inherited from the access rights defined on the table node;

3. Inherited from the default access rights for dataset values.

All matching user-defined permission rules are used to resolve the access rights for N. Resolution is
done according to the restriction policy [p 283].
The final resolved access rights will be the minimum between the dataspace, dataset and the resolved
access right for N.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 287

Resolving programmatic rules
There are three levels of resolution for programmatic access right rules: dataset, record and node.
Since only one programmatic access rule can be set for a given level, the last rule set is the one used
by the resolution procedure.

Rule resolution on dataset
For a dataset, the last rule set is considered as the resolved rule

Rule resolution on record
For a record, the resolved rule is the minimum between the resolved rule set on the dataset and the
rule set on this record.
See SchemaExtensionsContext.setAccessRuleOnOccurrenceAPI for more details.

Rule resolution on node
For a node that is a child node of a record, the resolved rule is the minimum between the resolved
rule on the record and the rule set on this node.
For a child node of a dataset, the resolved rule is the minimum between the resolved rule set on the
dataset and the rule set on this node.
See SchemaExtensionsContext.setAccessRuleOnNodeAPI for more details.

Display policy for foreign key drop-down menus
If a record is hidden due to access rules, it will not appear in foreign key drop-down menus.

Attention
The resolved access rights on a dataset or dataset node is the minimum between the resolved access
rights defined in the user interface and the resolved programmatic rules, if any.

49.5 Resolving permissions on services
User services give the possibility to execute specific and advanced features from the user interface.
Depending on their definition, these services can be called from a menu, as an action in a workflow,
as a perspective item, or can be executed directly from a URL as a Web component [p 196].

See alsoOverview [p 563]

The permissions of a service are resolved as the service is called from the user interface, namely:

• During the execution, just before the service is displayed.
If the permission resolved in the user context is not enabled, a restriction message is displayed
in place of the service.

• During the display of menus if the service is defined as displayable in menus.
If the permission resolved in the context for the user is not enabled, the service will not be
displayed in the menu.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 288

Thus, upon every request the resolution of permissions for a service is carried out as follows, in the
following order and as long as conditions are respected:

1. The service activation has to correspond to the current context. This activation considers:

• the selected entity type (dataset, table, record, etc.);

• static activation rules defined within the UserServiceDeclaration.defineActivationAPI

method;

• the potential dynamic activation rule (ServiceActivationRule [p 282]) also defined within the
UserServiceDeclaration.defineActivationAPI method.

2. When the service is activated for the current context, permissions for the user session will be
evaluated:

• If permissions have been defined via the user interface for the current user (or for their roles),
their resolution must return enabled.
For more information, please refer to the Resolving user-defined rules [p 288] section.

• If a global permission rule [p 283] is defined for the service, it must return enabled for the
context provided (see ServicePermissionRuleContextAPI).

• If a local permission rule [p 283] is defined for the selected node, it must return enabled for
the context provided (see ServicePermissionRuleContextAPI).

Resolving user-defined rules

Example
In this example, there are two users belonging to different roles and profiles:

User Profiles

User 1 • user1

• role A

• role B

User 2 • role C

• role D

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 289

The permissions associated with the roles and profiles defined on the dataset level are as follows:

Profile Built-in
service create
(@creation)

Built-in
service
duplicate
(@duplicate)

Built-in
service
compare
(@compare)

Custom
service 1
(custom1)

Custom
service 2
(custom2)

Restriction
policy

user1 Enabled Disabled Enabled Disabled Enabled No

Role A Enabled Enabled Disabled Enabled Disabled Yes

Role B Enabled Disabled Enabled Enabled Disabled Yes

Role C Enabled Enabled Disabled Disabled Disabled No

Role D Enabled Disabled Disabled Enabled Disabled No

The services available to each user after permission resolution are as follows:

Users Available services

Built-in service create (@creation)User 1

Custom service 1 (custom1)

Built-in service create (@creation)

Built-in service duplicate (@duplicate)

User 2

Custom service 1 (custom1)

See alsoResolving user-defined rules [p 283]

49.6 Resolving permissions on actions
Actions are low-level operations for EBX object manipulation on which it is possible to define
execution rights for a profile. Unlike permissions on user services, which only impact the user
interface, these rights are also applicable when an operation is carried out programmatically (i.e. via
a ProcedureAPI) or indirectly (for example during data import, actions on the table (create, override,
occult and delete) are evaluated).

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 290

Here is the list of actions on which rights can be defined:

Action object Available actions

Create a child dataspace

Create a snapshot

Launch a merge

Export an archive

Import an archive

Close the dataspace

Close the snapshot

Dataspace

Create a dataset

Duplicate the dataset

Delete the dataset

Activate/deactivate the dataset

Dataset

Create a view

Create a new record

Override records

Occult records

Table

Delete records

For the resolution of permissions on actions, only the permissions defined via the user interface for
the current user (or their roles) will be taken into account, the restriction policy being applied as for
any other permission defined via the user interface.
For more information, please refer to the Resolving user-defined rules [p 291] section.

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 291

Resolving user-defined rules

Example
In this example, we have two users belonging to different roles and profiles:

User Profiles

User 1 • user1

• role A

• role B

User 2 • role C

• role D

Rights associated with roles and profiles on the actions of a given table are as follows:

Profile Create a record Override a
record

Occult a record Delete a record Restriction
policy

user1 No Yes No Yes No

Role A Yes No Yes No Yes

Role B No Yes Yes No Yes

Role C Yes No No No No

Role D No No Yes No No

The actions available to each user after resolving the rights are as follows:

Users Available actions

User 1 Occult a record

Create a recordUser 2

Occult a record

See alsoResolving user-defined rules [p 283]

Documentation > Reference Manual > Other > Permissions

TIBCO EBX® Product Documentation 5.9.20 292

Documentation > Reference Manual > Other > Criteria editor

TIBCO EBX® Product Documentation 5.9.20 293

CHAPTER 50
Criteria editor

This chapter contains the following topics:

1. Overview

2. Conditional blocks

3. Atomic criteria

50.1 Overview
The criteria editor is included in several different areas of the user interface. It allows defining table
filters, as well as validation and computation rules on data. This editor is based on the XPath 1.0 W3C
Recommendation.
Two types of criteria exist: atomic criteria and conditional blocks.

See alsoSupported XPath syntax [p 227]

50.2 Conditional blocks
Conditional blocks are made up of atomic criteria and other conditional blocks. They express a
condition based on the criteria. The following types of blocks exist:

• No criteria match: None of the criteria in the block match.

• Not all criteria match: At least one criterion in the block does not match.

• All criteria match: All criteria in the block match.

• At least one criterion matches: One or more of the criteria match.

Documentation > Reference Manual > Other > Criteria editor

TIBCO EBX® Product Documentation 5.9.20 294

50.3 Atomic criteria
An atomic predicate is defined by a field, an operator, and an expression (either a value or an XPath
formula).

Field Specifies the field of the table to which the criterion applies.

Operator Specifies the operator used. Available operators depend on
the data type of the field.

Value Specifies the value or expression. See Expression [p 294]

below.

Code only If checked, specifies searching the underlying values for the
field instead of labels, which are searched by default.

Expression
The expression can either be a fixed value or a formula. When creating a filter, only fixed values are
authorized. During creation of a validation or computation rule, a formula can be created using the
wizard.
Known limitation: The formula field does not validate input values, only the syntax and path are
checked.

Documentation > Reference Manual > Other > Performance guidelines

TIBCO EBX® Product Documentation 5.9.20 295

CHAPTER 51
Performance guidelines

This chapter contains the following topics:

1. Basic performance checklist

2. Checklist for dataspace usage

3. Memory management

4. Validation

5. Mass updates

6. Accessing tables

51.1 Basic performance checklist
While TIBCO EBX is designed to support large volumes of data, several common factors can lead to
poor performance. Addressing the key points discussed in this section will solve the usual performance
bottlenecks.

Expensive programmatic extensions
For reference, the table below details the programmatic extensions that can be implemented.

Use case Programmatic extensions that can be involved

Validation • programmatic constraints ConstraintAPI

• computed values ValueFunctionAPI

Table access • record-level permission rules SchemaExtensionsContext.setAccessRuleOnOccurrenceAPI

• programmatic filters AdaptationFilterAPI

EBX content display • computed values ValueFunctionAPI

• UI Components UIBeanEditorAPI

• node-level permission rules SchemaExtensionsContext.setAccessRuleOnNodeAPI

Data update • triggers Package com.orchestranetworks.schema.triggerAPI

For large volumes of data, cumbersome algorithms have a serious impact on performance. For
example, a constraint algorithm's complexity is O(n 2). If the data size is 100, the resulting cost is

Documentation > Reference Manual > Other > Performance guidelines

TIBCO EBX® Product Documentation 5.9.20 296

proportional to 10 000 (this generally produces an immediate result). However, if the data size is 10
000, the resulting cost will be proportional to 10 000 000.
Another reason for slow performance is calling external resources. Local caching usually solves this
type of problem.
If one of the use cases above displays poor performance, it is recommended to track the problem either
through code analysis or using a Java profiling tool.

Directory integration
Authentication and permissions management involve the user and roles directory [p 399].
If a specific directory implementation is deployed and accesses an external directory, it can be useful
to ensure that local caching is performed. In particular, one of the most frequently called methods is
Directory.isUserInRoleAPI.

Aggregated lists
In a data model, when an element's cardinality constraint maxOccurs is greater than 1 and no osd:table
is declared on this element, it is implemented as a Java List. This type of element is called an
aggregated list [p 490], as opposed to a table.
It is important to consider that there is no specific optimization when accessing aggregated lists in
terms of iterations, user interface display, etc. Besides performance concerns, aggregated lists are
limited with regard to many functionalities that are supported by tables. See tables introduction [p

493] for a list of these features.

Attention
For the reasons stated above, aggregated lists should be used only for small volumes of simple
data (one or two dozen records), with no advanced requirements for their identification, lookups,
permissions, etc. For larger volumes of data (or more advanced functionalities), it is recommended
to use osd:table declarations.

51.2 Checklist for dataspace usage
Dataspaces [p 90] available in semantic mode, are an invaluable tool for managing complex data life
cycles. While this feature brings great flexibility, it also implies a certain overhead cost, which should
be taken into consideration for optimizing usage patterns.

Documentation > Reference Manual > Other > Performance guidelines

TIBCO EBX® Product Documentation 5.9.20 297

This section reviews the most common performance issues that can appear in case of an intensive use
of many dataspaces containing large tables, and how to avoid them.

Note

Sometimes, the use of dataspaces is not strictly needed. As an extreme example, consider the
case where every transaction triggers the following actions:

1. A dataspace is created.

2. The transaction modifies some data.

3. The dataspace is merged, closed, then deleted.

In this case, no future references to the dataspace are needed, so using it to make isolated data
modifications is unnecessary. Thus, using ProcedureAPI already provides sufficient isolation
to avoid conflicts from concurrent operations. It would then be more efficient to directly do
the modifications in the target dataspace, and get rid of the steps which concern branching
and merging.
For a developer-friendly analogy, referring to a source-code management tool (CVS, SVN,
etc.): when you need to perform a simple modification impacting only a few files, it is probably
sufficient to do so directly on the main branch. In fact, it would be neither practical nor
sustainable, with regard to file tagging/copying, if every file modification involved branching
the whole project, modifying the files, then merging the dedicated branch.

Insufficient memory
When a table is in semantic mode (default), the EBX Java memory cache is used. It ensures a much
more efficient access to data when this data is already loaded in the cache. However, if there is not
enough space for working data, swaps between the Java heap space and the underlying database can
heavily degrade overall performance.
This memory swap overhead can only occur for tables in a dataspace with an on-demand loading
strategy [p 299].
Such an issue can be detected by looking at the monitoring log file [p 299]. If it occurs, various actions
can be considered:

• reducing the number of child dataspaces that contain large tables;

• reducing the number of indexes specifically defined for large tables;

• using relational mode instead of semantic mode;

• or (obviously) allocating more memory, or optimizing the memory used by applications for non-
EBX objects.

See also

Memory management [p 298]

Relational mode [p 245]

Transaction cancels
In semantic mode, when a transaction has performed some updates in the current dataspace and then
aborts, loaded indexes of the modified tables are reset. If updates on a large table are often cancelled
and, at the same time, this table is intensively accessed, then the work related to index rebuild will

Documentation > Reference Manual > Other > Performance guidelines

TIBCO EBX® Product Documentation 5.9.20 298

slow down the access to the table; moreover, the induced memory allocation and garbage collection
can reduce the overall performance.

See also

Functional guard and exceptions TableTrigger.guardAndExceptionAPI

ProcedureAPI

Reorganization of database tables
As with any database, inserting and deleting large volumes of data may lead to fragmented data, which
can deteriorate performance over time. To resolve the issue, reorganizing the impacted database tables
is necessary. See Monitoring and cleanup of the relational database [p 377].
A specificity of EBX is that creating dataspaces and snapshots adds new entries to tables HTA and ATB.
When poor performance is experienced, it may be necessary to schedule a reorganization of these
tables, for large repositories in which many dataspaces are created and deleted.

See alsoMonitoring and cleanup of the relational database [p 377]

51.3 Memory management

Loading strategy
The administrator can specify the loading strategy of a dataspace or snapshot in its information. The
default strategy is to load and unload the resources on demand. For resources that are heavily used,
a forced load strategy is usually recommended.

Documentation > Reference Manual > Other > Performance guidelines

TIBCO EBX® Product Documentation 5.9.20 299

The following table details the loading modes which are available in semantic mode. Note that the
application server must be restarted so as to take into account any loading strategy change.

On-demand loading and
unloading

In this default mode, each resource in a dataspace is loaded
or built only when it is needed. The resources of the
dataspace are "soft"-referenced using the standard Java
SoftReference class. This implies that each resource can
be unloaded "at the discretion of the garbage collector in
response to memory demand".
The main advantage of this mode is the ability to free
memory when needed. As a counterpart, this implies a load/
build cost when an accessed resource has not yet been
loaded since the server started up, or if it has been unloaded
since.

Forced loading If the forced loading strategy is enabled for a dataspace or
snapshot, its resources are loaded asynchronously at server
startup. Each resource of the dataspace is maintained in
memory until the server is shut down or the dataspace is
closed.
This mode is particularly recommended for long-living
dataspaces and/or those that are used heavily, namely any
dataspace that serves as a reference.

Forced loading and
prevalidation

This strategy is similar to the forced loading strategy, except
that the content of the loaded dataspace or snapshot will also
be validated upon server startup.

Monitoring
Indications of EBX load activity are provided by monitoring the underlying database, and also by the
'monitoring' logging category [p 351].
If the numbers for cleared and built objects remain high for a long time, this is an indication that
EBX is swapping.

Tuning memory
The maximum size of the memory allocation pool is usually specified using the Java command-line
option -Xmx. As is the case for any intensive process, it is important that the size specified by this
option does not exceed the available physical RAM, so that the Java process does not swap to disk
at the operating-system level.
Tuning the garbage collector can also benefit overall performance. This tuning should be adapted to
the use case and specific Java Runtime Environment used.

Documentation > Reference Manual > Other > Performance guidelines

TIBCO EBX® Product Documentation 5.9.20 300

51.4 Validation
The internal incremental validation framework will optimize the work required when updates occur.
The incremental validation process behaves as follows:

• The first call to a dataset validation report performs a full validation of the dataset. The loading
strategy [p 298] can also specify a dataspace to be prevalidated at server startup.

• Data updates will transparently and asynchronously maintain the validation report, insofar as the
updated nodes specify explicit dependencies. For example, standard and static facets, foreign key
constraints, dynamics facets, selection nodes specify explicit dependencies.

• If a mass update is executed or if there are too many validation messages, the incremental
validation process is stopped. The next call to the validation report will then trigger a full
validation.

• If a transaction is cancelled, the validation state of the updated dataset is reset. The next call to
the validation report will trigger a full validation as well.

Certain nodes are systematically revalidated, however, even if no updates have occurred since the last
validation. These are the nodes with unknown dependencies. A node has unknown dependencies if:

• It specifies a programmatic constraint ConstraintAPI in the default unknown dependencies mode,

• It declares a computed value ValueFunctionAPI, or it declares a dynamic facet that depends on a
node that is itself a computed value ValueFunctionAPI.

• It is an Inherited fields [p 272] or it declares a dynamic facet that depends on a node that is itself
an Inherited fields [p 272].

Consequently, on large tables (beyond the order of 10 5), it is recommended to avoid nodes with
unknown dependencies (or at least to minimize the number of such nodes). For programmatic
constraints, the developer is able to specify two alternative modes that drastically reduce incremental
validation cost: local dependency mode and explicit dependencies. For more information, see
Dependencies and validation DependenciesDefinitionContext.dependenciesAPI.

Note

It is possible for an administrator user to manually reset the validation report of a dataset.
This option is available from the validation report section in EBX.

51.5 Mass updates
Mass updates can involve several hundred thousands of insertions, modifications and deletions.
These updates are usually infrequent (usually initial data imports), or are performed non-interactively
(nightly batches). Thus, performance for these updates is less critical than for frequent or interactive
operations. However, similar to classic batch processing, it has certain specific issues.

Batch mode
For relational tables, the implementation of insertions, updates and deletions relies on the JDBC batch
feature. On large procedures, this can dramatically improve performance by reducing the number of
round-trips between the application server and the database engine.
In order to fully exploit this feature, the batch mode can be activated on large procedures. See
ProcedureContext.setBatchAPI. This disables the explicit check for existence before record insertions,

Documentation > Reference Manual > Other > Performance guidelines

TIBCO EBX® Product Documentation 5.9.20 301

thus reducing the number of queries to the database, and making the batch processing even more
efficient.

Transaction boundaries
It is generally not advised to use a single transaction when the number of atomic updates in the
transaction is beyond the order of 10 4. Large transactions require a lot of resources, in particular,
memory, from EBX and from the underlying database.
To reduce transaction size, it is possible to:

• Specify the property ebx.manager.import.commit.threshold [p 360]. However, this property is
only used for interactive archive imports performed from the EBX user interface.

• Explicitly specify a commit threshold ProcedureContext.setCommitThresholdAPI inside the
batch procedure.

• Structurally limit the transaction scope by implementing ProcedureAPI for a part of the task and
executing it as many times as necessary.

On the other hand, specifying a very small transaction size can also hinder performance, due to the
persistent tasks that need to be done for each commit.

Note

If intermediate commits are a problem because transactional atomicity is no longer
guaranteed, it is recommended to execute the mass update inside a dedicated dataspace.
This dataspace will be created just before the mass update. If the update does not
complete successfully, the dataspace must be closed, and the update reattempted after
correcting the reason for the initial failure. If it succeeds, the dataspace can be safely
merged into the original dataspace.

Triggers
If required, triggers can be deactivated using the method ProcedureContext.setTriggerActivationAPI.

51.6 Accessing tables

Functionalities
Tables are commonly accessed through EBX and also through the RequestAPI API and data services.
This access involves a unique set of functions, including a dynamic resolution process. This process
behaves as follows:

• Inheritance: Inheritance in the dataset tree takes into account records and values that are defined
in the parent dataset, using a recursive process. Also, in a root dataset, a record can inherit some
of its values from the data model default values, defined by the xs:default attribute.

• Value computation: A node declared as an osd:function is always computed on the fly when
the value is accessed. See ValueFunction.getValueAPI.

• Filtering: An XPath predicate [p 227], a programmatic filter AdaptationFilterAPI, or a record-
level permission rule SchemaExtensionsContext.setAccessRuleOnOccurrenceAPI requires a
selection of records.

• Sort: A sort of the resulting records can be performed.

Documentation > Reference Manual > Other > Performance guidelines

TIBCO EBX® Product Documentation 5.9.20 302

Accessing tables in semantic mode

Architecture and design
In order to improve the speed of operations on tables, indexes are managed by the EBX engine.
EBX advanced features, such as advanced life-cycle (snapshots and dataspaces), dataset inheritance,
and flexible XML Schema modeling, have led to a specialized design for indexing mechanisms. This
design can be summarized as follows:

• Indexes maintain an in-memory data structure on a whole table.

• An index is not persisted, and building it requires loading all table blocks from the database.

Attention
Faster access to tables is ensured if indexes are ready and maintained in memory cache. As mentioned
above, it is important for the Java Virtual Machine to have enough space allocated, so that it does
not release indexes too quickly.

Performance considerations
The request optimizer favors the use of indexes when computing a request result.

Attention

• Only XPath filters are taken into account for index optimization.

• Non-primary-key indexes are not taken into account for child datasets.

Assuming the indexes are already built, the impacts on performance are as follows:

1. If the request does not involve filtering, programmatic rules, or sorting, accessing its first few
rows (these fetched by a paged view) is almost instantaneous.

2. If the request can be resolved without an extra sort step (this is the case if it has no sort criteria, or
if its sort criteria relate to those of the index used for computing the request), accessing the first
few rows of a table should be fast. More precisely, it depends on the cost of the specific filtering
algorithm that is executed when fetching at least 2000 records.

3. Both cases above guarantee an access time that is independent of the size of the table, and provide
a view sorted by the index used. If an extra sort is required, the time taken by the first access
depends on the table size according to an Nlog(N) function, where N is the number of records in
the resolved view.

Note

The paginated requests automatically add the primary key to the end of the specified
criterion, in order to ensure consistent ordering. Thus, the primary key fields should also
be added to the end of any index intended to improve the performance of paginated
requests. These include tabular and hierarchical views, and drop-down menus for table
references.

If indexes are not yet built, or have been unloaded, additional time is required. The build time is
O(Nlog(N)).

Documentation > Reference Manual > Other > Performance guidelines

TIBCO EBX® Product Documentation 5.9.20 303

Accessing the table data blocks is required when the request cannot be computed against a single
index (whether for resolving a rule, filter or sort), as well as for building the index. If the table blocks
are not present in memory, additional time is needed to fetch them from the database.
It is possible to get information through the monitoring [p 299] and request logging categories.

Other operations on tables
The new records creations or record insertions depend on the primary key index. Thus, a creation
becomes almost immediate if this index is already loaded.

REST access to history table
The merge information in history table (the merge_info field) has a potentially high access cost. To
improve performance and if the client code does not need this field, the includeMergeInfo [p 673]

parameter must be set to false.
See History [p 251] for more information.

Accessing tables in relational mode
When computing a request result, the EBX engine delegates the following to the RDBMS:

• Handling of all request sort criteria, by translating them to an ORDER BY clause.

• Whenever possible, handling of the request filters, by translating them to a WHERE clause.

Attention
Only XPath filters are taken into account for index optimization. If the request includes non-
optimizable filters, table rows will be fetched from the database, then filtered in Java memory by
EBX, until the requested page size is reached. This is not as efficient as filtering on the database
side (especially regarding I/O).

Information on the transmitted SQL request is logged to the category persistence. See Configuring
the EBX logs [p 351].

Indexing
In order to improve the speed of operations on tables, indexes may be declared on a table at the data
model level. This will trigger the creation of an index of the corresponding table in the database.
When designing an index aimed at improving the performance of a given request, the same rules apply
as for traditional database index design.

Setting a fetch size
In order to improve performance, a fetch size should be set according to the expected size of the result
of the request on a table. If no fetch size is set, the default value will be used.

• In semantic mode, the default value is 2000.

Documentation > Reference Manual > Other > Performance guidelines

TIBCO EBX® Product Documentation 5.9.20 304

• In mapped mode, the default value is assigned by the JDBC driver: 10 for Oracle and 0 for
PostgreSQL.

Attention
On PostgreSQL, the default value of 0 instructs the JDBC driver to fetch the whole result set
at once, which could lead to an OutOfMemoryError when retrieving large amounts of data. On
the other hand, using fetchSize on PostgreSQL will invalidate server-side cursors at the end of
the transaction. If, in the same thread, you first fetch a result set with a fetchsize, then execute a
procedure that commits the transaction, then, accessing the next result will raise an exception.

See also

Request.setFetchSizeAPI

RequestResultAPI

TIBCO EBX® Product Documentation 5.9.20 305

Administration
Guide

Documentation > Administration Guide > Administration overview

TIBCO EBX® Product Documentation 5.9.20 306

CHAPTER 52
Administration overview

The Administration section in TIBCO EBX is the main point of entry for all administration tasks. In
this overview are listed all the topics that an administrator needs to master. Click on your topic of
interest in order to access the corresponding chapter or paragraph in the documentation.
This chapter contains the following topics:

1. Repository management

2. Disk space management

3. Data model

4. Perspectives

5. Administrative delegation

52.1 Repository management
For storage optimization, it is recommended to maintain a repository (persistence RDBMS) to the
necessary minimum. To this end, it is recommended to regularly perform a purge of snapshots and
obsolete dataspaces and to consider using a backup file system.
See also Cleaning up dataspaces, snapshots, and history [p 377] and Deleting dataspaces, snapshots,
and history [p 378].
It is also possible to archive files of the file system type in order to reduce the storage costs, see EBX
monitoring [p 376].
Administration tasks can be scheduled by means of the task scheduler, using built-in tasks, see Task
scheduler [p 413].

Object cache
EBX maintains an object cache in memory. The object cache size should be managed on a case by case
basis according to specific needs and requirements (pre-load option and pre-validate on the reference
dataspaces, points of reference, and monitoring), while continuously monitoring the repository health
reports (./ebxLog/monitoring.log).
See Memory management [p 298].

Obsolete contents
Keeping obsolete contents in the repository can lead to a slow server startup and slow responsiveness
of the interface. It is strongly recommended to delete obsolete content.

Documentation > Administration Guide > Administration overview

TIBCO EBX® Product Documentation 5.9.20 307

For example: datasets referring to deleted data models or undeployed add-on modules. See Deploying
and registering TIBCO EBX add-ons [p 369].

Workflow

Cleanup
The workflow history and associated execution data have to be cleaned up on a regular basis.
The workflow history stores information on completed workflows, their respective steps and contexts.
This leads to an ever-growing database containing obsolete history and can thus lead to poor
performance of the database if not purged periodically. See Workflow history [p 412] for more
information.

Email configuration
It is required to configure workflow emails beforehand in order to be able to implement workflow
email notifications. See Configuration [p 410] for more information.

52.2 Disk space management

Purge of logs
The log file size will vary according to the log level (and to the selected severity level) and disk space
needs to be accordingly managed.
An automatic purge is provided with EBX, allowing to define how many days should log files be
stored. After the defined period, log files are deleted.
Any customized management of the purge of logs (backup, archiving, etc.) is the user's responsibility.
###
Directory of log files 'ebxFile:'
This property is used by special appender prefixed
by 'ebxFile:' (see log section below)
###
ebx.logs.directory=${ebx.home}/ebxLog

##
Daily rollover threshold of log files 'ebxFile:'
Specifies the maximum number of backup files for daily rollover of 'ebxFile:' appenders.
When set to a negative value, backup log files are never purged.
Default value is -1.
##
ebx.log4j.appender.ebxFile.backup.Threshold=-1

Audit trail
EBX is provided with a default audit trail manager. Any customized management (including purge,
backups, etc.) is the user's responsibility.
If the audit trail is unwanted, it is possible to fully deactivate it. See Activating the XML audit trail
[p 350] and Audit trail [p 419] for more information.

Documentation > Administration Guide > Administration overview

TIBCO EBX® Product Documentation 5.9.20 308

52.3 Data model

Publication management
The management of publications of embedded data models [p 85]. See Data model administration [p

403] for more information on the management of these publications and the administration tasks that
can be performed (delete, import and export).

Refresh data models
It is possible to update the data models that are using XML Schema documents not managed by EBX.
See Data model refresh tool [p 471] for more information.

52.4 Perspectives
EBX offers extensive UI customization options. Simplified interfaces (Recommended perspectives)
[p 395] dedicated to each profile accessing the system can be parameterized by the administrator.
According to the profile of the user logging in, the interface will offer more or less options and menus.
This allows for a streamlined work environment.
See Advanced perspective [p 384] for more information.

52.5 Administrative delegation
EBX is provided with the built-in administrator profile by default. An administrator can delegate
administrative rights to a non-administrator user, either for specific actions or for all activities.
The administrative delegation is defined under 'Administration' in the global permissions [p 383]

profile.
Access to the administration section can be granted to specific profiles via the global permissions in
order to delegate access rights on corresponding administration datasets.
If all necessary administrative rights have been delegated to non-administrator users, it becomes
possible to disable the built-in 'Administrator' role.

See alsoConfiguring the user and roles directory [p 349]

Documentation > Administration Guide

TIBCO EBX® Product Documentation 5.9.20 309

Installation &
configuration

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 5.9.20 310

CHAPTER 53
Supported environments

This chapter contains the following topics:

1. Browsing environment

2. Supported application servers

3. Supported databases

53.1 Browsing environment

Supported web browsers
The TIBCO EBX web interface supports the following browsers:

Microsoft Edge Minimum supported version is 44
Compatibility mode is not supported.

Microsoft Internet Explorer 10,
11

Compatibility mode is not supported.
Performance limitations: page loading with IE10 and IE11
is two times slower. This issue is observed when forms
have many input components, and particularly many multi-
occurrence groups.
Graphical layout: graphical rendering in IE10 and IE11
can slightly differ from other browsers (for example, the
alignment of some labels, icons and other components can
be off by a few pixels).

Mozilla Firefox ESR 68 (see
details)

As Mozilla Firefox is updated frequently,
TIBCO Software Inc. only fully supports version ESR 68.
See Mozilla Firefox ESR for more details.

Google Chrome As Google Chrome is updated frequently and it
is not possible to deactivate automatic updates,
TIBCO Software Inc. only tests and makes the best effort to
support the latest version available.

https://www.mozilla.org/en-US/firefox/organizations/faq/

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 5.9.20 311

Screen resolution
The minimum screen resolution for EBX is 1024x768.

Refreshing pages
Browser page refresh is not supported by EBX. When a page refresh is performed, the last user action
is re-executed, and therefore could cause issues. It is thus imperative to use the action buttons and
links offered by EBX instead of refreshing the page.

'Previous' and 'Next' buttons
The 'previous' and 'next buttons of the browser are not supported by EBX. When navigating through
page history, an obsolete user action is re-executed, and therefore could cause issues. It is thus
imperative to use the action buttons and links offered by EBX rather than the browser buttons.

Zoom troubleshooting
Zooming in or out may cause some minor display issues (for example extra scrollbar or misalignment).
Those issues can be fixed by refreshing the screen using the provided navigation links.

Browser configuration
The following features must be activated in the browser configuration, for the user interface to work
properly:

• JavaScript

• Ajax

• Pop-ups

Attention
Avoid using any browser extensions or plug-ins, as they could interfere with the proper functioning
of EBX.

53.2 Supported application servers
EBX supports the following configurations:

• Java Runtime Environment: JRE 8 or 11, which necessarily includes the limitations specified by
the Java Virtual Machine implementation vendor. For example, for JRE and JDK 8, Oracle states
that they are "not updated with the latest security patches and are not recommended for use in
production". See Oracle Java Archive site.

• Any Java application server that complies with Servlet 3.0 (inclusive) up to 5.0 (exclusive), for
example Tomcat 7.0 (inclusive) up to 10.0 (exclusive), WebSphere Application Server 8.5.R5 or
higher, WebLogic Application Server 12cR2 or higher, JBoss EAP 6.0 or higher. See Java EE
deployment overview [p 325].

• The application server must use UTF-8 encoding for HTTP query strings from EBX. This can
be set at the application server level.

https://www.oracle.com/technetwork/java/archive-139210.html

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 5.9.20 312

For example, on Tomcat, you can set the server to always use the UTF-8 encoding, by setting
URIEncoding to 'UTF-8' on the <Connector> in the server.xml configuration file. Alternatively,
you can instruct the server to use the encoding of the request body by setting the parameter
useBodyEncodingForURI to 'true' in server.xml.

Attention

• Limitations apply regarding clustering and hot deployment/undeployment:
Clustering: EBX does not include a cache synchronization mechanism, thus it cannot be
deployed into a cluster of active instances. See Technical architecture [p 372] for more
information.
Hot deployment/undeployment: EBX does not support hot deployment/undeployment of web
applications registered as EBX modules, or of EBX built-in web applications.

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 5.9.20 313

53.3 Supported databases
The EBX repository supports the relational database management systems listed below, with the
suitable JDBC drivers. It is important to follow the database vendor recommendations and update
policies regarding the database itself, as well as the JDBC driver.

Oracle Database 12c or higher
(but excluding 18c).

The distinction of null values bears certain limitations.
On simple xs:string elements, Oracle does not support
the distinction between empty strings and null values. See
Empty string management [p 527] for more information.
The user with which EBX connects to the database requires
the following privileges:

• CREATE SESSION,

• CREATE TABLE,

• ALTER SESSION,

• CREATE SEQUENCE,

• A non-null quota on its default tablespace.

PostgreSQL 9.6 or higher. When using PostgreSQL as the underlying database, a
request fetch size must be set, otherwise the JDBC driver
will fetch the whole result set at once. This could lead to an
OutOfMemoryError when retrieving large amounts of data.
Also, see this limitation [p 268] regarding the evolution of
datamodels in mapped modes.
See Request.setFetchSizeAPI.
The user with which EBX connects to the database needs
the CONNECT privilege on the database hosting the EBX
repository. Other than this, the default privileges on the
public schema of this database are suitable.

Amazon Aurora PostgreSQL 2.3
(compatible with PostgreSQL
10.7) or higher.

The comments in the above section for PostgreSQL apply.

Google Cloud SQL for
PostgreSQL 9.6 (compatible
with PostgreSQL 9.6.20) or
higher.

The comments in the above section for PostgreSQL apply.

SAP HANA Database 2.0 or
Higher.

When using SAP HANA Database as the underlying
database, certain schema evolutions are not supported. It is,
for example, impossible to reduce the length of a column;
this is a limitation of HANA, as mentioned in the SQL

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 5.9.20 314

reference guide: "For row table, only increasing the size of
VARCHAR and NVARCHAR type column is allowed."
The SAP Hana JDBC driver uses the local timezone of the
JVM to handle timestamp SQL columns. Hence, for the
specific use cases described in the section SQL access to
data in relational mode [p 248], the JVM powering the Hana
JDBC driver - that is the JVM powering EBX - should be
started with the property user.timezone set to UTC. This
configuration is not free of side effects: for example, the
timestamps shown in the EBX logs will be in UTC instead
of the local timezone.

Microsoft SQL Server 2012 SP4
or higher.

When used with Microsoft SQL Server, EBX uses the
default database collation to compare and sort strings stored
in the database. This applies to strings used in the data model
definition, as well as data stored in relational and history
tables. The default database collation can be specified
when the database is created. Otherwise, the collation of
the database server is used. To avoid naming conflicts or
unexpected behaviors, a case- and accent-sensitive collation
must be used as the default database collation (the collation
name is suffixed by "CS_AS" or the collation is binary).
The default setting to enforce transaction isolation on SQL
Server follows a pessimistic model. Rows are locked to
prevent any read/write concurrent accesses. This may cause
liveliness issues for mapped tables (history or relational). To
avoid such issues, it is recommended to activate snapshot
isolation on your SQL Server database.
The user with which EBX connects to the database requires
the following privileges:

• CONNECT, SELECT and CREATE TABLE on the
database hosting the EBX repository,

• ALTER, CONTROL, UPDATE, INSERT, DELETE on
its default schema.

Microsoft Azure SQL Database EBX has been qualified on Microsoft Azure SQL
Database v12 (12.00.700), and is regularly tested to verify
compatibility with the current version of the Azure database
service.
When used with Microsoft Azure SQL, EBX uses the
default database collation to compare and sort strings stored
in the database. This applies to strings used in the data model
definition, as well as data stored in relational and history
tables. The default database collation can be specified when
the database is created. Otherwise, the database engine
server collation is used. To avoid naming conflicts or
unexpected behaviors, a case- and accent-sensitive collation

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 5.9.20 315

must be used as the default database collation (the collation
name is suffixed by "CS_AS" or the collation is binary).
The user with which EBX connects to the database requires
the following privileges:

• CONNECT, SELECT and CREATE TABLE on the
database hosting the EBX repository,

• ALTER, CONTROL, UPDATE, INSERT, DELETE on
its default schema.

H2 v1.3.170 or higher. H2 is not supported for production environments.
The default H2 database settings do not allow consistent
reads when records are modified. Relational tables
are locked following a pessimistic model. To prevent
concurrency issues, it is possible to activate the MVCC
feature. Note, however, that the H2 documentation states
this feature is not yet fully tested.

For other relational databases, please contact the Support team at https://support.tibco.com.

Attention
In order to guarantee the integrity of the EBX repository, it is strictly forbidden to perform direct
modifications to the database (for example, using direct SQL writes), except in the specific use cases
described in the section SQL access to data in relational mode [p 248].

See also

Repository administration [p 372]

Data source of the EBX repository [p 323]

Configuring the EBX repository [p 347]

http://www.h2database.com/html/advanced.html#mvcc
http://www.h2database.com/html/advanced.html#mvcc
https://support.tibco.com

Documentation > Administration Guide > Installation & configuration > Supported environments

TIBCO EBX® Product Documentation 5.9.20 316

Documentation > Administration Guide > Installation & configuration > Java EE deployment

TIBCO EBX® Product Documentation 5.9.20 317

CHAPTER 54
Java EE deployment

This chapter contains the following topics:

1. Introduction

2. Software components

3. Embedded third-party libraries

4. Required third-party libraries

5. Web applications

6. Deployment details

7. Installation notes

54.1 Introduction
This chapter details deployment specifications for TIBCO EBX on a Java application server. For
specific information regarding supported application servers and inherent limitations, see Supported
environments. [p 310]

54.2 Software components
EBX uses the following components:

• Library ebx.jar

• Embedded [p 318] and required [p 318] third-party Java libraries

• EBX built-in web applications [p 321] and optional custom web applications [p 321]

• EBX main configuration file [p 345]

• EBX repository [p 372]

• Default user and roles directory [p 399], integrated within the EBX repository, or a third-party
system (LDAP, RDBMS) for the user authentication

See alsoSupported environments [p 310]

Documentation > Administration Guide > Installation & configuration > Java EE deployment

TIBCO EBX® Product Documentation 5.9.20 318

54.3 Embedded third-party libraries
To increase EBX independence and interoperability, it embeds its own third-party libraries. Even if
some of them have been modified, preventing conflicts, others must remain unchanged since they are
official Java APIs.
The ones that can produce conflicts are:

• Apache Geronimo JSON

• Javax Activation

• Javax Annotations

• Javax JSON Bind

• Javax SAAJ API

• Javax WS RS

• Javax XML Bind

For more information regarding the versions or the details of the Third-Party Library, please refer to
the: TIB_ebx_5.9.20_license.pdf.
Since those libraries are already integrated, custom web applications should not include them anew,
otherwise linkage errors can occur. Furthermore, they should not be deployed aside from the ebx.jar
library for the same reasons.

54.4 Required third-party libraries
EBX requires several third-party Java libraries. These libraries must be deployed and be accessible
from the class-loader of ebx.jar. Depending on the application server and the Java runtime
environment being used, these libraries may already be present or may need to be added manually.

Database drivers
The EBX repository requires a database. Generally, the required driver is configured along with a data
source, if one is used. Depending on the database defined in the main configuration file, one of the

Documentation > Administration Guide > Installation & configuration > Java EE deployment

TIBCO EBX® Product Documentation 5.9.20 319

following drivers is required. Keep in mind that, whichever database you use, the version of the JDBC
client driver must be equal to or higher than the version of the database server.

H2 Version 2.1.210 validated. Note that H2 is not supported in
production environments.
https://www.h2database.com/
If the repository has been created using H2 version 1.x, this
process must be applied, to migrate to the H2 v2 format.

Oracle JDBC Oracle database 12cR2 is validated on their latest patch set
update.
Determine the driver that should be used according to the
database server version and the Java runtime environment
version. Download the ojdbc8.jar certified library with
JDK 8.
Oracle database JDBC drivers download.

SQL Server JDBC SQL Server 2012 SP4 and greater, with all corrective and
maintenance patches applied, are validated.
Remember to use an up-to-date JDBC driver, as some
difficulties have been encountered with older versions.
Include the mssql-jdbc-8.4.1.jre8.jar or mssql-
jdbc-8.4.1.jre11.jar library, depending on the Java
runtime environment version you use.
Download Microsoft JDBC Driver 8.4.1 for SQL Server
(zip).

PostgreSQL PostgreSQL 9.6 and above validated
Include the latest JDBC driver version 4.2 released for your
database server and Java runtime environment.
PostgreSQL JDBC drivers download.

See also

Data source of the EBX repository [p 323]

Configuring the EBX repository [p 347]

SMTP and emails
The library for JavaMail 1.5.6 email management is required.
The following libraries are used by email features in EBX. See Activating and configuring SMTP and
emails [p 354] for details on the configuration.

• javax.mail.jar, version 1.5.6, from August 10, 2016

• smtp.jar, version 1.5.6, from August 10, 2016

• pop3.jar, version 1.5.6, from August 10, 2016

https://www.h2database.com/
http://www.h2database.com/html/migration-to-v2.html
http://www.h2database.com/html/migration-to-v2.html
https://www.oracle.com/technetwork/database/application-development/jdbc/downloads/index.html
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server#available-languages
https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server#available-languages
https://jdbc.postgresql.org/download.html

Documentation > Administration Guide > Installation & configuration > Java EE deployment

TIBCO EBX® Product Documentation 5.9.20 320

See alsoJavaMail

Secure Socket Layer (SSL)
These libraries are required if your web applications use SSL features.

• jsse.jar: https://www.oracle.com/java/technologies/jsse-v103-for-cdc-v102.html

• ibmjsse.jar: https://www.ibm.com/developerworks/java/jdk/security/

See alsoTIBCO EBX main configuration file [p 345]

Java Message Service (JMS)
When using JMS, version 1.1 or higher is required.
Depending on whether a Java EE application server or a Servlet/Java Server Pages (JSP)
implementation is being used, the library required is as follows:

• For an application server based on Java EE (Java Platform Enterprise Edition), the required
JMS provider library is available by default. See http://www.oracle.com/technetwork/java/javaee/
overview for more information.

• For a Servlet/Java Server Pages (JSP) implementation using Java SE (Java Platform Standard
Edition), for example Apache Tomcat, a JMS provider library such as Apache ActiveMQ
may need to be added. See http://www.oracle.com/technetwork/java/javase/overview for more
information.

Note

In EBX, the supported JMS model is exclusively Point-to-Point (PTP). PTP systems
allow working with queues of messages.

See alsoTIBCO EBX main configuration file [p 345]

XML Catalog API
A library holding the XML Catalog API, introduces by the JAVA SE 9, is required if your web
applications are running over a Java Runtime Environment 8 or below, except when a WebLogic 12c
R2 application server is used. To ease the installation steps, the following library has been bundled
aside from ebx.jar, in the EBX CD.

• xml-apis-1.4.01.jar, version 1.4.01, from August 20, 2011

See Installation notes [p 325] for more information.

54.5 Web applications
EBX provides pre-packaged EARs that can be deployed directly if your company has no custom
EBX module web applications to add. If deploying custom web applications as EBX modules, it is

https://www.oracle.com/technetwork/java/javamail/index.html
https://www.oracle.com/java/technologies/jsse-v103-for-cdc-v102.html
https://www.ibm.com/developerworks/java/jdk/security/
https://www.oracle.com/technetwork/java/javaee/overview/index.html
https://www.oracle.com/technetwork/java/javaee/overview/index.html
https://activemq.apache.org
https://www.oracle.com/technetwork/java/javase/overview/index.html

Documentation > Administration Guide > Installation & configuration > Java EE deployment

TIBCO EBX® Product Documentation 5.9.20 321

recommended to rebuild an EAR containing the custom modules packaged at the same level as the
built-in web applications.

Attention
Web application deployment on / path context is no more supported. The path context must not
be empty nor equals to /. Moreover, web applications deployment on paths of different depth is
deprecated. Every web application path context must be set on the same path depth.

For more information, see the note on repackaging the EBX EAR [p 326] at the end of this chapter.

EBX built-in web applications
EBX includes the following built-in web applications.

Web application name Description Required

ebx EBX entry point, which handles the initialization on start up. See Deployment details [p

322] for more information.
Yes

ebx-root-1.0 EBX root web application. Any application that uses EBX requires the root web
application to be deployed.

Yes

ebx-ui EBX user interface web application. Yes

ebx-manager EBX user interface web application. Yes

ebx-dma EBX data model assistant, which helps with the creation of data models through the user
interface.

Note: The data model assistant requires the ebx-manager user interface web application
to be deployed.

Yes

ebx-dataservices EBX data services web application. Data services allow external interactions with
the EBX repository using the SOAP operations [p 615] and Web Services Description
Language WSDL generation [p 607] standards or using the Built-in RESTful services [p

657].

Note: The EBX web service generator requires the deployment of the ebx-manager user
interface web application.

Yes

Custom web applications
It is possible to extend and customize the behavior of EBX by deploying custom web applications
which conform to the EBX module requirements.

See also

Packaging TIBCO EBX modules [p 459]

Declaring modules as undeployed [p 361]

Documentation > Administration Guide > Installation & configuration > Java EE deployment

TIBCO EBX® Product Documentation 5.9.20 322

54.6 Deployment details

Introduction
This section describes the various options available to deploy the 'ebx' web application. These options
are available in its deployment descriptor (WEB-INF/web.xml) and are complemented by the properties
defined in the main configuration file.

Attention
For JBoss application servers, any unused resources must be removed from the WEB-INF/web.xml
deployment descriptor.

See also

TIBCO EBX main configuration file [p 345]

Supported application servers [p 311]

User interface and web access
The web application 'ebx' (packaged as ebx.war) contains the servlet FrontServlet, which handles
the initialization and serves as the sole user interface entry point for the EBX web tools.

Configuring the deployment descriptor for 'FrontServlet'
In the file WEB-INF/web.xml of the web application 'ebx', the following elements must be configured
for FrontServlet:

/web-app/servlet/load-on-
startup

To ensure that FrontServlet initializes upon EBX start up,
the web.xml deployment descriptor must specify the element
<load-on-startup>1</load-on-startup>.

/web-app/servlet-mapping/url-
pattern

FrontServlet must be mapped to the path '/'.

Configuring the application server for 'FrontServlet'
• FrontServlet must be authorized to access other contexts, such as ServletContext.

For example, on Tomcat, this configuration is performed using the attribute crossContext in the
configuration file server.xml, as follows:
<Context path="/ebx" docBase="(...)" crossContext="true"/>

• When several EBX Web Components are to be displayed on the same HTML page, for instance
using iFrames, it may be required to disable the management of cookies due to limitations present
in some Internet browsers.
For example, on Tomcat, this configuration is provided by the attribute cookies in the
configuration file server.xml, as follows:
<Context path="/ebx" docBase="(...)" cookies="false"/>

Documentation > Administration Guide > Installation & configuration > Java EE deployment

TIBCO EBX® Product Documentation 5.9.20 323

Data source of the EBX repository

Note

If the EBX main configuration specifies the property ebx.persistence.url, then the
environment entry below will be ignored by EBX runtime. This option is only provided
for convenience; it is always recommended to use a fully-configurable datasource. See
Configuring the EBX repository [p 347] for more information on this property.

The JDBC datasource for EBX is specified in the deployment descriptor WEB-INF/web.xml of the 'ebx'
web application as follows:

Reserved resource name Default JNDI name Description

jdbc/EBX_REPOSITORY Weblogic: EBX_REPOSITORY

JBoss: java:/
EBX_REPOSITORY

JDBC data source for EBX Repository.

Java type: javax.sql.DataSource

See also

Configuring the EBX repository [p 347]

Rules for the database access and user privileges [p 373]

Mail sessions

Note

If the EBX main configuration does not set ebx.mail.activate to 'true', or if it specifies
the property ebx.mail.smtp.host, then the environment entry below will be ignored by
EBX runtime. See SMTP [p 354] in the EBX main configuration properties for more
information on these properties.

SMTP and email is declared in the deployment descriptor WEB-INF/web.xml of the 'ebx' web
application as follows:

Reserved resource name Default JNDI name Description

mail/EBX_MAIL_SESSION Weblogic:
EBX_MAIL_SESSION

JBoss: java:/
EBX_MAIL_SESSION

Java Mail session used to send emails from EBX.

Java type: javax.mail.Session

Documentation > Administration Guide > Installation & configuration > Java EE deployment

TIBCO EBX® Product Documentation 5.9.20 324

JMS connection factory

Note

If the EBX main configuration does not activate JMS through the property
ebx.jms.activate, the environment entry below will be ignored by the EBX runtime.
See JMS [p 355] in the EBX main configuration properties for more information on this
property.

The JMS connection factory is declared in the deployment descriptor WEB-INF/web.xml of the 'ebx'
web application as follows:

Reserved resource name Default JNDI name Description Required

jms/EBX_JMSConnectionFactory Weblogic:
EBX_JMSConnectionFactory

JBoss: java:/
EBX_JMSConnectionFactory

JMS connection factory used by EBX
to create connections with the JMS
provider configured in the operational
environment of the application server.

Java type:
javax.jms.ConnectionFactory

Yes

Note

For deployment on WildFly, JBoss and WebLogic application servers with JNDI
capabilities, you must update EBX.ear or EBXForWebLogic.ear for additional mappings
of all required resource names to JNDI names.

JMS for data services
To configure data services to use JMS instead of the default HTTP, you must configure the JMS
connection factory [p 324] and the following queues, declared in the WEB-INF/web.xml deployment
descriptor of the 'ebx' web application. This is the only method for configuring JMS for data services.
When a SOAP request is received, the SOAP response is optionally returned if the header field
JMSReplyTo is defined. If so, the fields JMSCorrelationID and JMSType are retained.

Documentation > Administration Guide > Installation & configuration > Java EE deployment

TIBCO EBX® Product Documentation 5.9.20 325

See JMS [p 355] for more information on the associated EBX main configuration properties.

Note

If the EBX main configuration does not activate JMS through the property
ebx.jms.activate, then the environment entries below will be ignored by EBX runtime.
See JMS [p 355] in the EBX main configuration properties for more information on this
property.

Reserved resource name Default JNDI name Description Required

jms/EBX_QueueIn Weblogic: EBX_QueueIn

JBoss: java:/jms/
EBX_QueueIn

JMS queue for incoming SOAP requests
sent to EBX by other applications.

Java type: javax.jms.Queue

No

jms/EBX_QueueFailure Weblogic:
EBX_QueueFailure

JBoss: java:/jms/
EBX_QueueFailure

JMS queue for failures. It contains
incoming SOAP requests for which an
error has occurred. This allows replaying
these messages if necessary.

Java type: javax.jms.Queue

Note: For this property to be read, the
main configuration must also activate the
queue for failures through the property
ebx.jms.activate.queueFailure. See
JMS [p 355] in the EBX main configuration
properties for more information on these
properties.

No

JAR files scanner
To speed up the web applications server startup, the JAR files scanner configuration should be
modified to exclude, at least, the ebx.jar and ebx-addons.jar libraries.
For example, on Tomcat, this should be performed in the
tomcat.util.scan.DefaultJarScanner.jarsToSkip property from the catalina.properties file.

54.7 Installation notes
EBX can be deployed on any Java EE application server that supports Servlet 3.0 up to 5.0 except.
The following documentation on Java EE deployment and installation notes are available:

• Installation note for JBoss EAP 7.1.x [p 327]

• Installation note for Tomcat 8.x [p 331]

• Installation note for WebSphere AS 9 [p 335]

Documentation > Administration Guide > Installation & configuration > Java EE deployment

TIBCO EBX® Product Documentation 5.9.20 326

• Installation note for WebLogic 12c R2 [p 341]

Attention

• The EBX installation notes on Java EE application servers do not replace the native
documentation for each application server.

• These are not general installation recommendations, as the installation process is determined by
architectural decisions, such as the technical environment, application mutualization, delivery
process, and organizational decisions.

• In these examples, no additional EBX modules are deployed. To deploy additional modules, the
best practice is to rebuild an EAR with the module as a web application at the same level as the
other EBX modules. The web application must declare its class path dependency as specified
by the Java™ 2 Platform Enterprise Edition Specification, v1.4:
J2EE.8.2 Optional Package Support

(...)

A JAR format file (such as a JAR file, WAR file, or RAR file) can reference a JAR file by naming the
 referenced JAR file in a Class-Path header in the Manifest file of the referencing JAR file. The
 referenced JAR file is named using a URL relative to the URL of the referencing JAR file. The Manifest
 file is named META-INF/MANIFEST.MF in the JAR file. The Class-Path entry in the Manifest file is of the
 form:

Class-Path: list-of-jar-files-separated-by-spaces

In an "industrialized" process, it is strongly recommended to develop a script that automatically
builds the EAR, with the custom EBX modules, the EBX web applications, as well as all the
required shared libraries.

• In order to avoid unpredictable behavior, the guideline to follow is to avoid any duplicates of
ebx.jar or other libraries in the class-loading system.

• In case of deployment on Oracle WebLogic server, please refer to the Module structure [p 459]

section.

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for JBoss EAP 7.1.x

TIBCO EBX® Product Documentation 5.9.20 327

CHAPTER 55
Installation note for JBoss EAP 7.1.x

This chapter contains the following topics:

1. Overview

2. Requirements

3. Installation

4. Configuration for EBX

5. Updating EBX Enterprise Application aRchive

6. Deploying EBX

7. Start EBX

55.1 Overview

Attention

• This chapter describes a quick installation example of TIBCO EBX on the JBoss Application
Server.

• It does not replace the documentation of this application server.

• These are not general installation recommendations, as the installation process is determined by
architectural decisions such as the technical environment, application mutualization, delivery
process, and organizational decisions.

• The complete description of the components required by EBX is given in the following chapter:
Java EE deployment [p 317].

• In order to avoid unpredictable behavior, the guideline to follow is to avoid any duplicates of
ebx.jar or other libraries in the class-loading system.

• JBoss Application Server installation

• EBX_HOME directory configuration: copy ebx.properties

• Java Virtual Machine properties configuration

• JNDI entries configuration

• Data source and JDBC provider creation

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for JBoss EAP 7.1.x

TIBCO EBX® Product Documentation 5.9.20 328

• EBX.ear application update

• EBX.ear application deployment

• EBX application start

55.2 Requirements
• JBoss Application Server EAP 7.1

• Database and JDBC driver

• EBX CD

• No CDI features in EBX's additional modules (since CDI will be automatically disable)

See alsoSupported environments [p 310]

55.3 Installation
This quick installation example is performed for a Linux operating system.

1. To download JBoss EAP 7.1, please first download Installer jar version 7.1.0 from:
https://developers.redhat.com/products/eap/download/

2. Run the Installer using java -jar command line.
For further installation details, please refer to the documentation .

3. Perform a standard installation:

1. Select the language and click 'OK',

2. Accept the License and click 'Next',

3. Choose the installation path and click 'Next',

4. Keep the 'Component Selection' as it is and click 'Next',

5. Enter 'Admin username', 'Admin password' and click 'Next',

6. On 'Installation Overview' click 'Next',

7. On 'Component Installation' click 'Next',

8. On 'Configure Runtime Environment' leave selection as it is and click 'Next',

9. When 'Processing finished' appear, click 'Next',

10.Uncheck 'Create shortcuts in the start menu' and click 'Next',

11.Generate 'installation script and properties file' at JBoss EAP 7.1 installation root path,

12.Click on 'done'.

55.4 Configuration for EBX

EBX home directory creation and configuration
1. Create the EBX_HOME directory, for example /opt/ebx/home.

https://developers.redhat.com/products/eap/download/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html/installation_guide/index

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for JBoss EAP 7.1.x

TIBCO EBX® Product Documentation 5.9.20 329

2. Copy from the EBX CD the ebx.software/files/ebx.properties file to EBX_HOME. In our
example, we will then have the following text file:
/opt/ebx/home/ebx.properties.

3. Edit the ebx.properties file to override the default database if needed. By default, the standalone
H2 database is defined. The property key ebx.persistence.factory must be uncommented for
other supported database and it is required to comment the h2.standalone one.

Java Virtual Machine properties configuration
1. Open the standalone.conf configuration file, placed in JBOSS_HOME/bin (or jboss-eap.conf file

placed in JBOSS_HOME/bin/init.d for a running server as a service).

2. Add 'ebx.properties' and 'ebx.home' properties to 'JAVA_OPTS' respectively set with
ebx.properties file's path and EBX_HOME directory's path.

JNDI entries configuration
1. Open the standalone-full.xml file placed in JBOSS_HOME/standalone/configuration.

2. Add, at least, the following lines to the server tag in messaging-activemq subsystem:
<connection-factory
 name="jms/EBX_JMSConnectionFactory"
 entries="java:/EBX_JMSConnectionFactory"
 connectors="To Be Defined"/>
<jms-queue
 name="jms/EBX_D3ReplyQueue"
 entries="java:/jms/EBX_D3ReplyQueue"
 durable="true"/>
<jms-queue
 name="jms/EBX_QueueIn"
 entries="java:/jms/EBX_QueueIn"
 durable="true"/>
<jms-queue
 name="jms/EBX_QueueFailure"
 entries="java:/jms/EBX_QueueFailure"
 durable="true"/>
<jms-queue
 name="jms/EBX_D3MasterQueue"
 entries="java:/jms/EBX_D3MasterQueue"
 durable="true"/>
<jms-queue
 name="jms/EBX_D3ArchiveQueue"
 entries="java:/jms/EBX_D3ArchiveQueue"
 durable="true"/>
<jms-queue
 name="jms/EBX_D3CommunicationQueue"
 entries="java:/jms/EBX_D3CommunicationQueue"
 durable="true"/>

Warning: the connectors attribute value, from the connection-factory element, has to be
defined. Since the kind of connectors is strongly reliant on the environment infrastructure, a
default configuration can not be provided.
See configuring messaging for more information.

3. Add, at least, the following line to mail subsystem:
<mail-session name="mail" debug="false" jndi-name="java:/EBX_MAIL_SESSION"/>

Data source and JDBC provider creation
1. After the launch of the JBoss Server, run the management CLI without the use of '--connect' or

'-c' argument.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/configuring_messaging/index

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for JBoss EAP 7.1.x

TIBCO EBX® Product Documentation 5.9.20 330

2. Use the 'module add' management CLI command to add the new core module. Sample for
PostgreSQL configuration:
module add \
 --name=org.postgresql \
 --resources=<PATH_TO_JDBC_JAR> \
 --dependencies=javaee.api,sun.jdk,ibm.jdk,javax.api,javax.transaction.api

3. Use the 'connect' management CLI command to connect to the running instance.

4. Register the JDBC driver. When running in a managed domain, be sure to precede the command
with '/profile=<PROFILE_NAME>'. Sample for PostgreSQL configuration:
/subsystem=\
 datasources/jdbc-driver=\
 postgresql:add(\
 driver-name=postgresql,\
 driver-module-name=org.postgresql,\
 driver-xa-datasource-class-name=org.postgresql.xa.PGXADataSource\
)

5. Define the datasource using the 'data-source add' command, specifying the appropriate argument
values. Sample for PostgreSQL configuration:
data-source add \
 --name=jdbc/EBX_REPOSITORY \
 --jndi-name=java:/EBX_REPOSITORY \
 --driver-name=postgresql \
 --connection-url=jdbc:postgresql://<SERVER_NAME>:<PORT>/<DATABASE_NAME> \
 --user-name=<PERSISTENCE_USER> \
 --password=<PERSISTENCE_PASSWORD>

55.5 Updating EBX Enterprise Application aRchive
1. Copy from EBX CD the ebx.software/webapps/ear-packaging/EBX.ear file to your working

directory.

2. Uncompress the ear archive to add the application's specific required third-party libraries.
Mail: see SMTP and emails [p 319] for more information.
SSL: see Secure Socket Layer (SSL) [p 320] for more information.
JMS: see Java Message Service (JMS) [p 320] for more information.
XML Catalog API: see XML Catalog API [p 320] for more information.

3. Compress anew the ear archive.

55.6 Deploying EBX
1. Copy EBX.ear into JBOSS_HOME/standalone/deployments folder.

55.7 Start EBX
1. After the launch of the JBoss Server, run the EBX web application: http://localhost:8080/ebx/.

2. At first launch, EBX Wizard [p 367] helps you to configure the default properties of your initial
repository.

http://localhost:8080/ebx/

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for Tomcat 8.x

TIBCO EBX® Product Documentation 5.9.20 331

CHAPTER 56
Installation note for Tomcat 8.x

This chapter contains the following topics:

1. Overview

2. Requirements

3. Installation

4. Configuration for EBX

5. Deploying EBX

6. Start EBX

56.1 Overview

Attention

• This chapter describes a quick installation example of TIBCO EBX on Tomcat Application
Server.

• It does not replace the documentation of this application server.

• They are not general installation recommendations, as the installation process is determined by
architectural decisions, such as the technical environment, application mutualization, delivery
process, and organizational decisions.

• Tomcat 10.x is not supported.

• The complete description of the components needed by EBX is given in chapter Java EE
deployment [p 317].

• In order to avoid unpredictable behavior, the guideline to follow is to avoid any duplicates of
ebx.jar or other libraries in the class-loading system.

• The description below uses the variable name $CATALINA_HOME to refer to the directory into
which you have installed Tomcat, and from which most relative paths are resolved. However, if
you have configured Tomcat for multiple instances by setting a $CATALINA_BASE directory, you
should use $CATALINA_BASE instead of $CATALINA_HOME for each of these references.

• Create EBX_HOME directory: copy ebx.properties

• Copy EBX and third-party libraries: add libraries (jar files) to Tomcat lib directory

https://tomcat.apache.org/tomcat-8.5-doc/index.html

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for Tomcat 8.x

TIBCO EBX® Product Documentation 5.9.20 332

• Configure JVM arguments (Java system properties): create the JAVA_OPTS environment variable

• Deploy EBX application: copy all war files to Tomcat webapps directory

56.2 Requirements
• Java SE 8 or 11

• Apache Tomcat 8.x

• Database and JDBC driver

• EBX CD

See alsoSupported environments [p 310]

56.3 Installation
1. To download Tomcat 8.x, choose a core binary distributions from https://tomcat.apache.org/

download-80.cgi

2. Run the installer or extract the archive and perform standard installation with default options

56.4 Configuration for EBX
1. Create EBX_HOME directory, for example C:\EBX\home, or /home/ebx

2. Copy from EBX CD the ebx.software\files\ebx.properties file to EBX_HOME. In our
example, we will then have the following file:
C:\EBX\home\ebx.properties, or /home/ebx/ebx.properties, a text file

3. Edit the ebx.properties file to override the default database if needed, by default the standalone
H2 database is defined. The property key ebx.persistence.factory must be uncommented for
other supported databases and it is required to comment the h2.standalone one.

4. Copy third-party library files to $CATALINA_HOME\lib\ (or $CATALINA_BASE\lib\) directory. In
our example, we will have:
$CATALINA_HOME\lib\mail.jar

$CATALINA_HOME\lib\h2.jar (default persistence factory)
$CATALINA_HOME\lib\xml-apis-1.4.01.jar (coming from the EBX CD directory ebx.software
\lib\lib-xml-apis\)
The exact description of these components is given in chapter Components [p 317]. Obviously,
if those components are already deployed on the class-loading system, they do not have to be
duplicated

5. Modify the $CATALINA_HOME\conf\server.xml (or $CATALINA_BASE\conf\server.xml) file. Add
the following line to the <Host> element
<Context path="/ebx" crossContext="true" docBase="ebx.war"/>

After this modification, we will have:
<Host name=...>

... ...

https://tomcat.apache.org/download-80.cgi
https://tomcat.apache.org/download-80.cgi

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for Tomcat 8.x

TIBCO EBX® Product Documentation 5.9.20 333

<Context path="/ebx" crossContext="true" docBase="ebx.war"/>

... ...

</Host>

6. Modify the $CATALINA_HOME\conf\catalina.properties (or $CATALINA_BASE
\conf\catalina.properties) file. Add the following lines to the
tomcat.util.scan.DefaultJarScanner.jarsToSkip property:
ebx.jar,\

ebx-addons.jar,\

7. Configure the launch properties
If our Tomcat is launched by a command in Windows' Command Prompt or Unix shell, we can
create another launcher file:
For Windows, edit the launcher file %CATALINA_HOME%\bin\startup.bat, and add the following
command lines:
set EBX_HOME="<path_to_the_directory_ebx_home>"
set EBX_OPTS="-Debx.home=%EBX_HOME% -Debx.properties=%EBX_HOME%\ebx.properties"
set JAVA_OPTS="%EBX_OPTS% %JAVA_OPTS%"

or for Linux, edit the launcher file $CATALINA_HOME/bin/startup.sh, and add the following
command lines:
EBX_HOME="<path_to_the_directory_ebx_home>"
EBX_OPTS="-Debx.home=${EBX_HOME} -Debx.properties=${EBX_HOME}/ebx.properties"
export JAVA_OPTS="${EBX_OPTS} ${JAVA_OPTS}"

(!) Accounts used to launch EBX must have create/update/delete rights on EBX_HOME directory.
Windows users that have installed Tomcat as a service may set Java options through the Tomcat
service manager GUI (Java tab).
Be sure to set options on separate lines in the Java Options field of the GUI:
-Debx.home=<path_to_the_directory_ebx_home>
-Debx.properties=<path_to_the_directory_ebx_home>\ebx.properties

where <path_to_the_directory_ebx_home> is the directory where we copied ebx.properties. In
our example, it is C:\EBX\home, or /home/ebx

56.5 Deploying EBX
1. Copy from EBX CD the ebx.software\lib\ebx.jar file to $CATALINA_HOME\lib\ (or

$CATALINA_BASE\lib\) directory. In our example, we will have:
$CATALINA_HOME\lib\ebx.jar

2. Copy from EBX CD the war files in ebx.software\webapps\wars-packaging to the $CATALINA_HOME
\webapps\ (or $CATALINA_BASE\webapps\) directory. In our example, we will have:
$CATALINA_HOME\webapps\ebx.war: Initialization servlet for EBX applications
$CATALINA_HOME\webapps\ebx-root-1.0.war: Provides a common default module for data
models
$CATALINA_HOME\webapps\ebx-manager.war: Master Data Management web application
$CATALINA_HOME\webapps\ebx-dataservices.war: Data Services web application
$CATALINA_HOME\webapps\ebx-dma.war: Data Model Assistant web application

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for Tomcat 8.x

TIBCO EBX® Product Documentation 5.9.20 334

$CATALINA_HOME\webapps\ebx-ui.war: User Interface web application

56.6 Start EBX
1. After Tomcat launch, run EBX web application: http://localhost:8080/ebx/

2. At first launch, EBX Wizard [p 367] helps you to configure the default properties of your initial
repository.

http://localhost:8080/ebx/

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere AS 9

TIBCO EBX® Product Documentation 5.9.20 335

CHAPTER 57
Installation note for WebSphere AS 9

This chapter contains the following topics:

1. Overview

2. Requirements

3. Installation

4. Configuration for EBX

5. Deploying EBX

6. Start EBX

57.1 Overview

Attention

• This chapter describes a quick installation example of TIBCO EBX on the WebSphere
Application Server.

• It does not replace the documentation of this application server.

• These are not general installation recommendations, as the installation process is determined by
architectural decisions such as the technical environment, application mutualization, delivery
process, and organizational decisions.

• The complete description of the components required by EBX is given in the following chapter:
Java EE deployment [p 317].

• In order to avoid unpredictable behavior, the guideline to follow is to avoid any duplicates of
ebx.jar or other libraries in the class-loading system.

• Install the WebSphere Application Server

• Create the EBX_HOME directory: copy ebx.properties

• Create a new profile by using the 'WebSphere Customization Toolbox'

• Create a data source and JDBC provider

• Configure the Java Virtual Machine

• Install the EBX.ear application

https://www.ibm.com/support/knowledgecenter/SSEQTP_9.0.5/as_ditamaps/was9_welcome_base.html

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere AS 9

TIBCO EBX® Product Documentation 5.9.20 336

• Start the EBX application

57.2 Requirements
• WebSphere Application Server 9

• Database and JDBC driver

• EBX CD

• No CDI features in EBX's additional modules (since CDI will be automatically disabled)

See alsoSupported environments [p 310]

57.3 Installation
This quick installation example is performed for a Linux operating system.

1. To download WebSphere AS 9, please first download the latest 'Installation Manager' from
http://www-01.ibm.com/support/docview.wss?uid=swg27025142

2. Run the 'Installation Manager' and add the following repositories:

• WebSphere Application Server V9.0:
http://www.ibm.com/software/repositorymanager/V9WASBase

• WebSphere Application Server Network Deployment V9.0:
http://www.ibm.com/software/repositorymanager/V9WASND

3. Install the 'WebSphere Application Server Network Deployment'
For further installation details, please refer to the documentation.

4. Run the 'WebSphere Customization Toolbox' and perform a standard installation with default
options:

1. Create profile: click 'Create' then select 'Application Server', and click 'Next'

2. Profile Creation Options: select 'Advanced profile creation' and click 'Next'

3. Optional Application Deployment: select those options:

• Deploy the 'Administrative Console'

• Deploy the 'Installation Verification Tool' application

Then click 'Next'

4. Profile Name and Location: enter a profile name (example: 'EbxAppSrvProfile') and directory
/opt/IBM/WebSphere/AppServer/profiles/EbxAppSrvProfile

further correspond to PROFILE_HOME and click 'Next'

5. Node and Host Names: enter the node name (example: 'Node1'), the server name (example:
'EbxServer'), the host name (example: 'localhost'), and then click 'Next'

6. Administrative Security: check 'Enable administrative security' option, enter the user name,
the password, and click 'Next'

7. Security Certificate (part 1): select 'Create a new default personnal certificate' and 'Create a
new root signing certificate', and click 'Next'

http://www-01.ibm.com/support/docview.wss?uid=swg27025142
https://www.ibm.com/support/knowledgecenter/SSEQTP_9.0.5/as_ditamaps/was9_welcome_base.html

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere AS 9

TIBCO EBX® Product Documentation 5.9.20 337

8. Security Certificate (part 2): keep as default and click 'Next'

9. Port Value Assignment: keep as default and click 'Next'

10.Linux Service Definition: check 'Run the application server process as a Linux service'
option, enter the user name (example: 'ebx'), and click 'Next'

11.Web Server Definition: keep as default and click 'Next'

12.Profile Creation Summary: keep as default and click 'Create'

13.Profile Creation Complete: uncheck 'Launch the First steps console' option, and click 'Finish'

57.4 Configuration for EBX
1. Create the EBX_HOME directory, for example /opt/ebx/home

2. Copy from the EBX CD the ebx.software\files\ebx.properties file to EBX_HOME. In our
example, we will then have the following text file:
/opt/ebx/home/ebx.properties.

3. Edit the ebx.properties file to override the default database if needed. By default, the standalone
H2 database is defined. The property key ebx.persistence.factory must be uncommented for
other supported database and it is required to comment the h2.standalone one

4. Create the EBX_LIB directory, for example /opt/ebx/lib

5. Copy third-party library files from the EBX CD, or from other sources, to the <EBX_LIB> directory.
In our example, for a PostgreSQL database, we will have:
postgresql-X.X.X-driver.jar (coming from another source than the EBX CD).
xml-apis-1.4.01.jar (coming from the EBX CD directory ebx.software/lib/lib-xml-apis/).
The exact description of these components is given in the chapter Components [p 317]. If those
components are already deployed on the class-loading system, they do not have to be duplicated
(ex: javax.mail-1.5.6.jar is already present on the WebSphere Application Server, and the database
driver is configured at the data source level).

6. Start the server (for example 'EbxServer'),
sudo <PROFILE_HOME>/bin/startServer.sh <serverName>
cd /opt/IBM/WebSphere/AppServer/profiles/EbxAppSrvProfile

sudo bin/startServer.sh EbxServer.

7. Connect into the 'WebSphere Integrated Solutions Console' using the user name and password
typed during the profile creation (Administrative Security step), enter the following url in the
browser:
https://localhost:9043/ibm/console

8. Create a data source and JDBC provider

1. On the left menu, go to 'Resources > JDBC > Data Sources', to configure your database
access. Choose the jdbc 'Scope' (for example use 'Cell'), and click 'New'

2. Enter basic data source information:

• Data source name: EBX_REPOSITORY

• JNDI name: jdbc/EBX_REPOSITORY

https://localhost:9043/ibm/console

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere AS 9

TIBCO EBX® Product Documentation 5.9.20 338

click on 'Next'

3. Select the JDBC provider: select 'Create new JDBC provider', and click 'Next'

4. Create a new JDBC provider: (example with a PostgreSQL database)

• Database type: User-defined

• Implementation class name: org.postgresql.ds.PGConnectionPoolDataSource

• Name: PostgreSQL

and click 'Next'

5. Enter database class path information: (example with a PostgreSQL database)

• Class path: /opt/ebx/lib/postgresql-X.X.X-driver.jar

and click 'Next'

6. Enter database specific properties for the data source: keep as default and click 'Next'

7. Setup security aliases: keep as default and click 'Next'

8. Summary: click 'Finish'

9. Save the master configuration

9. Configure the data source: jdbc/EBX_REPOSITORY

1. Click on 'Data Sources > EBX_REPOSITORY'

2. On the right in the 'Configure additional properties' section, click on 'Additional Properties'
and define the database account access:

• Define user value to the according user

• Define password value to the according password

3. Save the master configuration

4. Test the connection

10.Configure the Java Virtual Machine

1. Click on 'Application Servers'

2. Click on the server name (for example: 'EbxServer')

3. Click on 'Process definition' under 'Server infrastructure > Java Process Management'

4. Click on 'Java Virtual Machine' under 'Additional Properties'

5. Enter in 'Generic JVM arguments' the value:
-Debx.properties=/opt/ebx/home/ebx.properties -Debx.home=/opt/ebx/home

6. Enter in 'Classpath' the paths to the third-party library files placed in the <EBX_LIB> directory
except for the JDBC driver

7. click 'Ok'

8. Save the master configuration

57.5 Deploying EBX
1. Copy from the EBX CD the ebx.software/webapps/ear-packaging/EBX.ear to the EBX_HOME

directory. In our example, we will have:

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere AS 9

TIBCO EBX® Product Documentation 5.9.20 339

/opt/ebx/ear/EBX.ear

2. Connect into the 'WebSphere Integrated Solutions Console' using the user name and password
typed during the profile creation (Administrative Security step), enter the following url in the
browser:
https://localhost:9043/ibm/console

3. Click on 'WebSphere enterprise applications' under 'Applications > Application Types'

4. Install the EBX application

1. New Application: On the right panel, click on 'New Enterprise Application'

2. Preparing for the application installation: Browse your EBX.ear file, located under /opt/
ebx/ear/EBX.ear, then click 'Next'

3. How do you want to install the application?: Select 'Fast Path...', then click 'Next'

4. Select installation options: keep as default, then click 'Next'

5. Map modules to servers: select all modules, then click 'Next'

6. Map resource references to resources: copy the 'Resource Reference' value and paste it in the
'Target Resource JNDI Name' field, for all modules, then click 'Next'

7. Warnings will appear related to JNDI:mail/EBX_MAIL_SESSION and JNDI:jms/
EBX_JMSConnectorFactory. This behavior is normal since we had not configured these
resources. Click 'Continue'

8. Map resource environment references to resources: Copy the 'Resource Reference' value and
paste it to the 'Target Resource JNDI Name' value, for all modules, then click 'Next'

9. Warnings will appear related to non-available resources. This behavior is normal since we
had not configured these resources, then click 'Continue'

10.Map virtual hosts for Web modules: select all modules and click 'Next'

11.Summary: keep as default, click 'Finish'

12.If installation succeeds, it logs 'Application EBX installed successfully', then click 'Save'

5. On the left menu, go to 'Applications > Enterprise Applications'

6. Change EBX application's class loader policy

1. Click on EBX resource’s name

2. On the 'configuration' pane, under 'Detail Properties', select 'Class loading and update
detection'

3. Under 'General Properties', change 'Class loader order' to 'Classes loaded with local class
loader first (parent last)'

4. Return to 'Applications > Enterprise Applications'

7. Enterprise Applications: select EBX, and then click 'Start'
The EBX 'Application status' will be changed into a green arrow

57.6 Start EBX
1. After the launch of the WebSphere Server, run the EBX web application: http://localhost:9080/

ebx/

https://localhost:9043/ibm/console
http://localhost:9080/ebx/
http://localhost:9080/ebx/

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebSphere AS 9

TIBCO EBX® Product Documentation 5.9.20 340

2. At first launch, EBX Wizard [p 367] helps you to configure the default properties of your initial
repository

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebLogic 12c R2

TIBCO EBX® Product Documentation 5.9.20 341

CHAPTER 58
Installation note for WebLogic 12c R2

This chapter contains the following topics:

1. Overview

2. Requirements

3. Installation

4. Configuration for EBX

5. Deploying EBX

6. Start EBX

58.1 Overview

Attention

• This chapter describes a quick installation example of TIBCO EBX on the WebLogic Server.

• It does not replace the documentation of this application server.

• They are not general installation recommendations, as the installation process is determined by
architectural decisions, such as the technical environment, application mutualization, delivery
process, and organizational decisions.

• The complete description of the components needed by EBX is given in the following chapter:
Java EE deployment [p 317].

• In order to avoid unpredictable behavior, the guideline to follow is to avoid any duplicates of
ebx.jar or other libraries in the class-loading system.

• Install the Java Virtual Machine: Create the JAVA_HOME environment variable

• Install the WebLogic Server

• Create the EBX_HOME directory: copy ebx.properties

• Create a new domain by using the 'Configuration Wizard'

• Configure the domain: Declare EBX JAVA_OPTIONS and copy the database JDBC driver

• Install and configure the JDBC driver

• Deploy the EBX application: install dedicated ear file

https://docs.oracle.com/middleware/1221/wls/index.html

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebLogic 12c R2

TIBCO EBX® Product Documentation 5.9.20 342

58.2 Requirements
• Java SE 8 or 11

• WebLogic Server 12c R2

• Database and JDBC driver

• EBX CD

See alsoSupported environments [p 310]

58.3 Installation
1. To download WebLogic 12c R2, please refer to https://edelivery.oracle.com/osdc/faces/

Home.jspx

2. Run the 'Fusion Middleware Configuration Wizard' (<weblogic_home>/oracle_common/common/
bin/config.sh) and perform a standard installation with default options:

1. Create Domain: choose 'Create a new domain' and specify the domain home folder, then click
'Next'

2. Templates: keep as default and click 'Next'

3. Administrator Account: enter a domain administrator username and password and click 'Next'

4. Domain Mode and JDK: choose the production mode and your jdk installation home and
click 'Next'

5. Advanced configuration: check 'Administration server' and 'Topology'. That way, we create
two independent domain nodes: an administration one and an application one, and click 'Next'

6. Administration Server: enter your administration node name (for example 'AdminServer')
and listen port (by default 7001), then click 'Next'

7. Managed Servers: add the application node name (for example 'EbxServer') and listen port
(for example 7003), then click 'Next'

8. Clusters: keep as default and click 'Next'

9. Machines: keep as default and click 'Next'

10.Virtual Targets: keep as default and click 'Next'

11.Partitions: keep as default and click 'Next'

12.Configuration Summary: click 'Create'

13.Configuration Process: click 'Next'

14.End Of Configuration: click 'Finish'

58.4 Configuration for EBX
1. Create the EBX_HOME directory, for example C:\EBX\home, or /home/ebx

2. Copy from the EBX CD the ebx.software\files\ebx.properties file to EBX_HOME. In our
example, we will then have the following file:

https://edelivery.oracle.com/osdc/faces/Home.jspx
https://edelivery.oracle.com/osdc/faces/Home.jspx

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebLogic 12c R2

TIBCO EBX® Product Documentation 5.9.20 343

C:\EBX\home\ebx.properties, or /home/ebx/ebx.properties, a text file

3. Edit the ebx.properties file to override the default database if needed, by default the standalone
H2 database is defined. The property key ebx.persistence.factory must be uncommented for
other supported databases and it is required to comment the h2.standalone one.

4. Configure the launch properties for the Managed Server (for example 'EbxServer')
Edit the <DOMAIN_HOME>/bin/startManagedWebLogic.sh script file by adding the following lines:
EBX_HOME="<path_to_the_directory_ebx_home>"
EBX_OPTIONS="-Debx.home=${EBX_HOME} -Debx.properties=${EBX_HOME}/ebx.properties"
export JAVA_OPTIONS="${EBX_OPTIONS} ${JAVA_OPTIONS}"

5. Copy third-party library files to the <DOMAIN_HOME>/lib directory. In our example, for an H2
standalone data base, we will have:
h2.jar (default persistence factory)
The exact description of these components is given in chapter Components [p 317]. Obviously,
if those components are already deployed on the class-loading system, they do not have to be
duplicated (ex: mail.jar and xml-apis-1.4.01.jar are already present in the WebLogic Server).

6. Start the 'Administration server' (for example 'AdminServer'), <DOMAIN_HOME>/bin/
startWebLogic.sh

7. Launch the 'WebLogic Server Administration Console', enter the following url in the browser:
http://localhost:7001/console.
Log in with the domain administrator username and password

8. Click on 'Services > Data sources' in the 'Domain Structure' panel, then click on the 'New >
Generic Data Source' button

1. Type Name: EBX_REPOSITORY, JNDI Name: EBX_REPOSITORY Database Type: Your database
type and click 'Next'

2. Choose your database driver type, and click 'Next'

3. Uncheck 'Supports Global Transactions', and click 'Next'

4. Setup your database 'Connection Properties' and click 'Next'

5. Click 'Test Configuration' and then 'Finish'

6. Switch on the 'Targets' tab and select all Servers, then click 'Save'

7. Restart the Administration server (for example 'AdminServer')
<DOMAIN_HOME>/bin/stopWebLogic.sh

<DOMAIN_HOME>/bin/startWebLogic.sh

58.5 Deploying EBX
1. Copy from the EBX CD the ebx.software/webapps/ear-packaging/EBXForWebLogic.ear to the

EBX_HOME directory. In our example, we will have:
C:\EBX\home\EBXForWebLogic.ear, or /home/ebx/EBXForWebLogic.ear

2. Launch the 'WebLogic Server Administration Console', enter the following url in the browser:
http://localhost:7001/console

3. Click on 'Lock and Edit' in the 'Change Center' panel

http://localhost:7001/console
http://localhost:7001/console

Documentation > Administration Guide > Installation & configuration > Installation notes > Installation note for WebLogic 12c R2

TIBCO EBX® Product Documentation 5.9.20 344

4. Click on 'Deployments' in the 'Domain Structure' panel, and click 'Install'

1. Install Application Assistant: Enter in 'Path' the application full path to EBXForWebLogic.ear
file, located on C:\EBX\home\, or /home/ebx/ folder and click 'Next'

2. Choose the installation type and scope: Click on 'Install this deployment as an application'
and 'Global' default scope and click 'Next'

3. Select the deployment targets: Select a node name (for example 'EbxServer') from the
'Servers' list and click 'Next'

4. Optional Settings: keep as default and click 'Finish'

5. Click on 'Activate Changes', on the top left corner. The deployment status will change to 'prepared'

6. Switch to 'Control' tab, select the 'EBXForWebLogic' enterprise application, then click on 'Start'
> 'Servicing all requests'

7. Start the application node name (for example 'EbxServer'),
<DOMAIN_HOME>/bin/startManagedWebLogic.sh EbxServer http://localhost:7001

58.6 Start EBX
1. After WebLogic Server launch, run the EBX web application: http://localhost:7003/ebx/

2. At first launch, EBX Wizard [p 367] helps you to configure the default properties of your initial
repository

http://localhost:7003/ebx/

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 345

CHAPTER 59
TIBCO EBX main configuration file

This chapter contains the following topics:

1. Overview

2. Setting an EBX license key

3. Setting automatic installation on first launch

4. Setting the EBX root directory

5. Configuring the EBX repository

6. Configuring the user and roles directory

7. Configuring EBX localization

8. Setting temporary files directories

9. Activating the XML audit trail

10.Configuring the EBX logs

11.Activating and configuring SMTP and emails

12.Configuring data services

13.Activating and configuring JMS

14.Configuring distributed data delivery (D3)

15.Configuring REST toolkit services

16.Configuring Web access from end-user browsers

17.Configuring failover

18.Tuning the EBX repository

19.Miscellaneous

59.1 Overview
The EBX main configuration file, by default named ebx.properties, contains most of the basic
parameters for running EBX. It is a Java properties file that uses the standard simple line-oriented
format.
The main configuration file complements the Java EE deployment descriptor [p 322]. Administrators
can also perform further configuration through the user interface, which is then stored in the EBX
repository.

https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 346

See also

Deployment details [p 322]

UI administration [p 383]

Location of the file
The access path to the main configuration file can be specified in several ways. In order of descending
priority:

1. By defining the Java system property 'ebx.properties'. For example, this property can be set by
adding the option -Debx.properties=<filePath> to the java command-line command. See Java
documentation.

2. By defining the servlet initialization parameter 'ebx.properties'.
This standard Java EE setting must be specified in the web.xml file of
the web application 'ebx'. EBX accesses this parameter by calling the method
ServletConfig.getInitParameter("ebx.properties") in the servlet FrontServlet.
See getInitParameter in the Oracle ServletConfig documentation.

3. By default, if nothing is specified, the main configuration file is located at WEB-INF/
ebx.properties of the web application 'ebx'.

Note

In addition to specifying properties in the main configuration file, it is also possible to
set the values of properties directly in the system properties. For example, using the -D
argument of the java command-line command.

Custom properties and variable substitution
The value of any property can include one or more variables that use the syntax ${propertyKey},
where propertyKey is either a system property, or a property defined in the main configuration file.
For example, the default configuration file provided with EBX uses the custom property ebx.home to
set a default common directory, which is then included in other properties.

59.2 Setting an EBX license key
See alsoInitialization and first-launch assistant [p 367]

The license key can be retrieved from the TIBCO eDelivery site.
###
EBX® License number
(as specified by your license agreement)
###
ebx.license=paste_here_your_license_key

59.3 Setting automatic installation on first launch
Repository can be automatically installed on first startup.
##
Installation on first launch.
All values are ignored if the repository is already installed.
##

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/ServletConfig.html#getInitParameter-java.lang.String-
https://edelivery.tibco.com

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 347

Enables repository installation on first startup (default is false).
If true, property ebx.license should also be set to a valid license.
ebx.install.enabled=true

Following properties configure the repository. Values are optional and defaults are automatically generated.
ebx.install.repository.id=00275930BB88
ebx.install.repository.label=A Test

Following properties specify the EBX administrator. These are ignored if a custom directory is defined.
ebx.install.admin.login=admin
ebx.install.admin.firstName=admin
ebx.install.admin.lastName=admin
ebx.install.admin.email=adamin@example.com

Following property specifies the none encrypted password used for the EBX administrator.
It is ignored if a custom directory is defined. It cannot be set if property
 ebx.install.admin.password.encrypted is set.
#ebx.install.admin.password=admin

Following property specifies the encrypted password used for the EBX administrator.
It is ignored if a custom directory is defined. It cannot be set if property ebx.install.admin.password is
 set.
Password can be encrypted by using command:
java -cp ebx.jar com.orchestranetworks.service.directory.EncryptPassword password_to_encrypt
ebx.install.admin.password.encrypted=8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918

59.4 Setting the EBX root directory
The EBX root directory contains archives, the XML audit trail and, when the repository is persisted
on H2 standalone mode, the H2 database files.
###
Path for EBX® XML repository
###
ebx.repository.directory=${ebx.home}/ebxRepository

59.5 Configuring the EBX repository
Before configuring the persistence properties of the EBX repository, carefully read the section
Technical architecture [p 372] in the chapter 'Repository administration'.
The required library (driver) for each supported database is described in the chapter Database drivers
[p 318].

See also

Repository administration [p 372]

Rules for the database access and user privileges [p 373]

Supported databases [p 313]

Data source of the EBX repository [p 323]

Database drivers [p 318]

##
The maximum time to set up the database connection,
in milliseconds.
##
ebx.persistence.timeout=10000
##
The prefix to add to all table names of persistence system.
This may be useful for supporting multiple repositories in the relational database.
Default value is 'EBX_'.
##
ebx.persistence.table.prefix=

##
Case EBX® persistence system is H2 'standalone'.
##
ebx.persistence.factory=h2.standalone
ebx.persistence.user=sa

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 348

ebx.persistence.password=

##
Case EBX® persistence system is H2 'server mode',
##
#ebx.persistence.factory=h2.server

Specific properties to be set only only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.persistence.url=jdbc:h2:tcp://127.0.0.1/ebxdb
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

##
Case EBX® persistence system is Oracle database.
##
#ebx.persistence.factory=oracle

Specific properties to be set only only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.persistence.url=jdbc:oracle:thin:@127.0.0.1:1521:ebxDatabase
#ebx.persistence.driver=oracle.jdbc.OracleDriver
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

Activate to use VARCHAR2 instead of NVARCHAR2 on Oracle; never modify on an existing repository.
#ebx.persistence.oracle.useVARCHAR2=false

##
Case EBX® persistence system is SAP Hana
##
#ebx.persistence.factory=hana

Specific properties to be set only only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.persistence.url=jdbc:sap://127.0.0.1:39041
#ebx.persistence.driver=com.sap.db.jdbc.Driver
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

##
Case EBX® persistence system is Microsoft SQL Server.
##
#ebx.persistence.factory=sqlserver

Specific properties to be set only only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.persistence.url= \
#jdbc:sqlserver://127.0.0.1:1036;databasename=ebxDatabase
#ebx.persistence.driver=com.microsoft.sqlserver.jdbc.SQLServerDriver
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

##
Case EBX® persistence system is Microsoft Azure SQL database.
##
#ebx.persistence.factory=azure.sql

Specific properties to be set only only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.persistence.url= \
#jdbc:sqlserver://myhost.database.windows.net:1433;database=ebxDatabase;encrypt=true;\
#trustServerCertificate=false;hostNameInCertificate=*.database.windows.net;
#ebx.persistence.driver=com.microsoft.sqlserver.jdbc.SQLServerDriver
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

##
Case EBX® persistence system is PostgreSQL.
##
#ebx.persistence.factory=postgresql

Specific properties to be set only only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 349

#ebx.persistence.url=jdbc:postgresql://127.0.0.1:5432/ebxDatabase
#ebx.persistence.driver=org.postgresql.Driver
#ebx.persistence.user=xxxxxxxxx
#ebx.persistence.password=yyyyyyyy

59.6 Configuring the user and roles directory
This parameter specifies the Java directory factory class name. It must only be defined if not using
the default EBX directory.

See also

Users and roles directory [p 399]

DirectoryFactoryAPI

###
Specifies the Java directory factory class name.
Value must be the fully qualified name of the Java class.
The class must extend com.orchestranetworks.service.directory.DirectoryFactory.
###
#ebx.directory.factory=xxx.yyy.DirectoryFactoryImpl

It is also possible to disable the built-in role "ADMINISTRATOR".
###
Specifies whether the built-in role ADMINISTRATOR is disabled.
Default value is false.
###
#ebx.directory.disableBuiltInAdministrator=true

59.7 Configuring EBX localization
This parameter is used to configure the locales used at runtime. This list must contain all the locales
that are exposed to the end-user. EBX will not be able to display labels and messages in a language
that is not declared in this list.
The default locale must be the first one in the list.
##
Available locales, separated by a comma.
The first element in the list is considered as the default locale.
If not set, available locales are 'en-US, fr-FR'.
##
##
#ebx.locales.available=en-US, fr-FR

See alsoExtending TIBCO EBX internationalization [p 239]

59.8 Setting temporary files directories
Temporary files are stored as follows:
###
Directories for temporary resources.
###
The property ebx.temp.directory allows to specify a directory for temporary files.
Default value is java.io.tmpdir

ebx.temp.directory = \\${java.io.tmpdir}
#ebx.temp.directory = /tmp/java

The property ebx.temp.cache.directory allows to specify the directory containing temporary files for cache.
Default value is ${ebx.temp.directory}/ebx.platform.
#ebx.temp.cache.directory = ${ebx.temp.directory}/ebx.platform

The property ebx.temp.import.directory allows to specify the directory containing temporary files for import.
Default value is ${ebx.temp.directory}/ebx.platform.

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 350

#ebx.temp.import.directory = ${ebx.temp.directory}/ebx.platform

59.9 Activating the XML audit trail
By default, the XML audit trail is activated. It can be deactivated using the following variable:
##
The XML history has been replaced by an SQL history.
This old XML history can be deactivated using the following variable.
Default is true.
##
ebx.history.xmlaudittrail.activated = true

See alsoAudit trail [p 419]

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 351

59.10 Configuring the EBX logs
The most important logging categories are:

ebx.log4j.category.log.kernel Logs for EBX main features, processes,
exceptions and compilation results of modules
and data models.

ebx.log4j.category.log.workflow Logs for main features, warnings and
exceptions about workflow.

ebx.log4j.category.log.persistence Logs related to communication with the
underlying database.

ebx.log4j.category.log.setup Logs for the compilation results of all EBX
objects, except for modules and data models.

ebx.log4j.category.log.validation Logs for datasets validation results.

ebx.log4j.category.log.mail Logs for the activity related to the emails sent
by the server (see Activating and configuring
SMTP and emails [p 354]).
Note: This category must not use the Custom
SMTP appender [p 352] in order to prevent
infinite loops.

ebx.log4j.category.log.d3 Logs for D3 events on EBX.

ebx.log4j.category.log.dataservices Logs for data service events in EBX.

ebx.log4j.category.log.monitoring Raw logs for monitoring [p 299].

ebx.log4j.category.log.request The optimization strategy for every RequestAPI

issued on a semantic table in the EBX
repository.

ebx.log4j.category.log.restServices Logs for REST services events in EBX,
including those from the REST Toolkit [p 719].

Some of these categories can also be written to through custom code using the LoggingCategoryAPI

interface.
 ###
Log4J properties:
##
We have some specific syntax extensions:
- Appender ebxFile:<aFileName>
Defines a file appender with default settings (threshold=DEBUG)
##

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 352

- property log.defaultConversionPattern is set by Java
###
#ebx.log4j.debug=true
#ebx.log4j.disable=
ebx.log4j.rootCategory= INFO
ebx.log4j.category.log.kernel= INFO, Console, ebxFile:kernel, kernelMail
ebx.log4j.category.log.workflow= INFO, ebxFile:workflow
ebx.log4j.category.log.persistence= INFO, ebxFile:persistence
ebx.log4j.category.log.setup= INFO, Console, ebxFile:kernel
ebx.log4j.category.log.mail= INFO, Console, ebxFile:mail
ebx.log4j.category.log.frontEnd= INFO, Console, ebxFile:kernel
ebx.log4j.category.log.frontEnd.incomingRequest= INFO
ebx.log4j.category.log.frontEnd.requestHistory= INFO
ebx.log4j.category.log.frontEnd.UIComponentInput= INFO
ebx.log4j.category.log.fsm= INFO, Console, ebxFile:fsm
ebx.log4j.category.log.fsm.dispatch= INFO
ebx.log4j.category.log.fsm.pageHistory= INFO
ebx.log4j.category.log.wbp= FATAL, Console
#--
ebx.log4j.appender.Console.Threshold = INFO
ebx.log4j.appender.Console=com.onwbp.org.apache.log4j.ConsoleAppender
ebx.log4j.appender.Console.layout=com.onwbp.org.apache.log4j.PatternLayout
ebx.log4j.appender.Console.layout.ConversionPattern=${log.defaultConversionPattern}
#--
ebx.log4j.appender.kernelMail.Threshold = ERROR
ebx.log4j.appender.kernelMail = com.onwbp.org.apache.log4j.net.SMTPAppender
ebx.log4j.appender.kernelMail.To = admin@domain.com
ebx.log4j.appender.kernelMail.From = admin${ebx.site.name}
ebx.log4j.appender.kernelMail.Subject = EBX® Error on Site ${ebx.site.name} (VM ${ebx.vm.id})
ebx.log4j.appender.kernelMail.layout.ConversionPattern=**Site ${ebx.site.name} (VM${ebx.vm.id})**%n
${log.defaultConversionPattern}
ebx.log4j.appender.kernelMail.layout = com.onwbp.org.apache.log4j.PatternLayout

#--
ebx.log4j.category.log.monitoring= INFO, ebxFile:monitoring
ebx.log4j.category.log.dataServices= INFO, ebxFile:dataServices
ebx.log4j.category.log.d3= INFO, ebxFile:d3
ebx.log4j.category.log.request= INFO, ebxFile:request
ebx.log4j.category.log.restServices= INFO, ebxFile:dataServices

Custom 'ebxFile' appender
The token ebxFile: can be used as a shortcut to define a daily rolling file appender with default
settings. It must be followed by a file name. It then activates an appender that writes to a file located
in the directory ebx.logs.directory.
The property ebx.log4j.appender.ebxFile.backup.Threshold allows defining the maximum
number of backup files for daily rollover.
###
Directory of log files 'ebxFile:'
This property is used by special appender prefixed
by 'ebxFile:' (see log section below)
###
ebx.logs.directory=${ebx.home}/ebxLog

##
Daily rollover threshold of log files 'ebxFile:'
Specifies the maximum number of backup files for daily rollover of 'ebxFile:' appenders.
When set to a negative value, backup log files are never purged.
Default value is -1.
##
ebx.log4j.appender.ebxFile.backup.Threshold=-1

Custom SMTP appender
The appender com.onwbp.org.apache.log4j.net.SMTPAppender provides an asynchronous email
sender.

See alsoActivating and configuring SMTP and emails [p 354]

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 353

Module's appenders configuration
The configurations of module logging categories are declared according to a hierarchical pattern.
Furthermore, every enabled logging request for a given category will be forwarded to all the appenders
defined for that category, as well as to the appenders higher in the hierarchy. This fact means that
appenders are inherited additively.
The root module logging category can be customized by setting the property
ebx.log4j.category.log.wbp. For a given module, if the root module logging category configuration
is the only one applicable, then a DailyRollingFileAppender is automatically added to the module's
appenders list. The log file name will be derived from the module's name and from an optional specific
sub-category.
##
Root module logging category configuration
##
ebx.log4j.category.log.wbp = FATAL, Console

Every module logging category can be customized by setting the property
ebx.log4j.category.log.module.xxxxxx, where xxxxxx corresponds to the module's name. The
explicit configuration of the module logging category will disable the automatic addition of the
DailyRollingFileAppender previously described. However, any other defined appenders will be
inherited additively.
Since the inheritance mechanism may not be suitable for every case, the additivity can be broken by
setting to false the property ebx.log4j.additivity.log.wbp.xxxxxx, where xxxxxx corresponds to
the module's name.
##
Module logging category configuration
##
The module's log messages will only be written to mycompany-module log file
since additivity has been broken
##
ebx.log4j.category.log.module.mycompany-module = INFO, ebxFile:mycompany-module

ebx.log4j.additivity.log.wbp.mycompany-module = false

Module's log threshold
The inheritance mechanism described in Module's appenders configuration [p 353] is applied to the
module log threshold as well. Actually, the inherited level for a given logger, is equal to the first non-
null level in the hierarchy, starting from this logger and proceeding up to the root module logging
category.

Custom module log threshold
There is an exception to the inheritance, for custom module, since the log level threshold of their
logging category, by default, is set to INFO. This threshold can be customized by setting the property
ebx.log4j.category.log.module.xxxxxx, where xxxxxx corresponds to the custom module's name.
Example: ebx.log4j.category.log.module.mycompany-module=DEBUG.

See alsoModuleContextOnRepositoryStartup.getLoggingCategoryAPI

Add-on module log threshold
Like custom module, by default, the log level threshold of any add-on module is set to INFO.

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 354

The log level threshold can be customized by setting the property
ebx.log4j.category.log.addon.xxxxxx where xxxxxx corresponds to the add-on module's name.
Example: ebx.log4j.category.log.addon.daqa=DEBUG

Modules log threshold overrides summary
Thus and considering EBX logging features, the log threshold defined at the root level in the logger
hierarchy may be overridden by (by order from least to most weighted):

• the module logging category explicit configuration,

• the module's log.threshold.xxxx or log.threshold.category.xxxx log configuration
properties, where xxxx corresponds to the sub category,

• the following log configuration properties: ebx.log4j.category.log.module.xxxxxx, where
xxxxxx corresponds to the custom module's name, or ebx.log4j.category.log.addon.xxxxxx,
where xxxxxx corresponds to the add-on module's name.

59.11 Activating and configuring SMTP and emails
The internal mail manager sends emails asynchronously. It is used by the workflow engine and the
custom SMTP appender com.onwbp.org.apache.log4j.net.SMTPAppender.

See alsoMail sessions [p 323]

###
SMTP and emails
###

Activate emails (true or false, default is false).
If activated, the deployer must ensure that the entry 'mail/EBX_MAIL_SESSION' is bound
in the operational environment of the application server (except if a specific email
configuration is used by setting the property ebx.mail.smtp.host below).
#ebx.mail.activate=false

Polling interval is in seconds (default is 10).
#ebx.mail.polling.interval=10

Specific properties to be set only only if you want to ignore the standard
deployment process of 'ebx' web application in the target operational environment
(see the deployment descriptor 'web.xml' of 'ebx' web application).
#ebx.mail.smtp.host = smtp.domain.com
SMTP port default is 25.
#ebx.mail.smtp.port= 25
#ebx.mail.smtp.login=
#ebx.mail.smtp.password=
Activate SSL (true or false, default is false).
If SSL is activated, a SSL factory and a SSL provider are required.
#ebx.mail.smtp.ssl.activate=true
#ebx.mail.smtp.ssl.provider=com.sun.net.ssl.internal.ssl.Provider
#ebx.mail.smtp.ssl.factory=javax.net.ssl.SSLSocketFactory

59.12 Configuring data services
##
Data services
##

Specifies the default value of the data services parameter
'disableRedirectionToLastBroadcast'.
Default is false.
#ebx.dataservices.disableRedirectionToLastBroadcast.default=false

Specifies the default value for deletion at the end of close and
merge operations.
If the parameter is set in the request operation, it overrides
this default setting.

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 355

If unspecified, default is false.
#ebx.dataservices.dataDeletionOnCloseOrMerge.default=false
#ebx.dataservices.historyDeletionOnCloseOrMerge.default=false

Upon WSDL generation, specifies if the target namespace value
corresponds to the content before 5.5.0 'ebx-services'
or 'urn:ebx:ebx-services' in conformity with the URI syntax.
If the parameter is set to true, there is no check of the target
namespace as URI at the WSDL generation.
If unspecified, default is false.
#ebx.dataservices.wsdlTargetNamespace.disabledCheck=false

##
REST configuration
##

If activated, the HTTP request header 'Accept' is used to specify
the accepted content type. If none is supported, an error is
returned to the client with the HTTP code 406 'Not acceptable'.
If deactivated, the header is ignored therefore the best content
type is used.
Default is false.
#ebx.dataservices.rest.request.checkAccept=false

If activated, it tries authentication 'Basic Authentication Scheme'
method and set 'Basic' value in 'WWW-Authenticate' header of HTTP
response.
Default is false.
#ebx.dataservices.rest.auth.tryBasicAuthentication=false

Authorization token timeout is seconds.
Default value is 1800 seconds (30 minutes)
This value is ignored if 'Token Authentication Scheme' is not activated.
#ebx.dataservices.rest.auth.token.timeout=1800

59.13 Activating and configuring JMS
See alsoJMS for data services [p 324]

##
JMS configuration for Data Services
##

Activates JMS (true or false, default is false).
If activated, the deployer must ensure that the entry 'jms/EBX_JMSConnectionFactory'
are bound in the operational environment of the application server.
The entry 'jms/EBX_QueueIn' should also be bound to enable handling Data Services
request using JMS.
#ebx.jms.activate=false

Activates JMS queue for failures (true or false, default is false).
If activated, the deployer must ensure that the entry 'jms/EBX_QueueFailure' is bound
in the operational environment of the application server.
#ebx.jms.activate.queueFailure=false

Number of concurrent listener(s)
Default is 3.
Property is used if ebx.jms.activate is set to true.
#ebx.jms.listeners.count=3

59.14 Configuring distributed data delivery (D3)
See Configuring D3 nodes [p 443] for the main configuration file properties pertaining to D3.

See also

JMS for distributed data delivery (D3) [p 433]

Introduction to D3 [p 424]

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 356

59.15 Configuring REST toolkit services
##
REST configuration
##

Defines the maximum number of bytes that will be extracted
from the REST request body to build some DEBUG log messages.
Default value is 8192 bytes.
This value is ignored if DEBUG level is not activated on the restServices logger.
#ebx.restservices.log.body.content.extract.size=8192

59.16 Configuring Web access from end-user browsers

HTTP Authorization header policy
EBX natively offers three policies to send and receive credentials using HTTP headers:

standard It corresponds to the authentication scheme, using the HTTP
Authorization header, described in the RFC 2617.

ebx To prevent HTTP Authorization header override issues, this
policy acts the same as the standard but the credentials are
stored in an EBX specific HTTP header.

both It is the combination of the two previously described
policies.

###
EBX® authorization header policy for HTTP requests
##
Possible values are: standard, ebx, both.
standard:
the standard HTTP Authorization header holds the credentials
ebx:
an EBX® specific HTTP header holds the credentials
both:
both (standard and specific) HTTP headers hold the credentials
##
Default value is: both.
###
#ebx.http.authorization.header.policy=both

URLs computing
By default, EBX runs in "standalone" mode, where external resources (images, JavaScript, etc.) are
provided by the application server.
Also by default, URL-related parameters in the main configuration file do not have to be set.
In this case, the server name and the port are obtained from the initial request sent to EBX.

See alsoURL policy (deprecated) [p 386]

##
EBX® FrontServlet: default properties for computing servlet address
##
{useLocalUrl}:
If set to true, servlet address is a "local absolute" URL.
(that is, a relative URL consisting of an absolute path: "/path")

https://tools.ietf.org/html/rfc2617

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 357

See RFC 2396, http://www.ietf.org/rfc/rfc2396.txt).
This property is defined once for HTTP and HTTPS.
Default value is false.
##
{host}:
If neither defined nor adapted, retrieves initial request host
{port}:
If neither defined nor adapted, retrieves initial request host
{path}:
Mandatory, may be empty
{ui.path}:
If not defined, defaults to ebx-ui/
{http.useHttpsSettings}:
If true, force the use of SSL security even if the incoming
requests do not. Default value is false.
##
Resulting address will be:
EBX®: protocol://{host}:{port}/{path}
UI: protocol://{host}:{port}/{ui.path}
##
Each property for HTTP (except {port}) may be inherited from HTTPS property,
and reciprocally.
##

ebx.servlet.useLocalUrl=true

#ebx.servlet.http.host=
#ebx.servlet.http.port=
ebx.servlet.http.path=ebx/
#ebx.servlet.http.ui.path=ebx-ui/
#ebx.servlet.http.useHttpsSettings=false

#ebx.servlet.https.host=
#ebx.servlet.https.port=
ebx.servlet.https.path=ebx/
#ebx.servlet.https.ui.path=ebx-ui/

##
External resources: default properties for computing external resources address
##
The same rules apply as EBX® FrontServlet properties (see comments).
##
Each property may be inherited from EBX® FrontServlet.
##

ebx.externalResources.useLocalUrl=true

#ebx.externalResources.http.host=
#ebx.externalResources.http.port=
#ebx.externalResources.http.path=
#ebx.externalResources.http.useHttpsSettings=false

#ebx.externalResources.https.host=
#ebx.externalResources.https.port=
#ebx.externalResources.https.path=

Proxy mode
Proxy mode allows using a front-end HTTP server to provide static resources (images, CSS,
JavaScript, etc.). This architecture reduces the load on the application server for static HTTP requests.
This configuration also allows using SSL security on the front-end server.
The web server sends requests to the application server according to a path in the URL. The
servletAlias and uiServletAlias paths are specified in the main configuration file.
The web server provides all external resources. These resources are stored in a dedicated directory,
accessible using the resourcesAlias path.
EBX must also be able to access external resources from the file system. To do so, the property
ebx.webapps.directory.externalResources must be specified.
To force the use of SSL security even if the incoming requests do not,
ebx.servlet.http.useHttpsSettings and / or ebx.externalResources.http.useHttpsSettings
properties must be set to true. Their default values are false.

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 358

The main configuration file may be configured as follows:
###
Path for external resources if they are not
delivered within web applications
This field is mandatory if in proxy mode.
###
ebx.webapps.directory.externalResources=D:/http/resourcesFolder

###

ebx.servlet.useLocalUrl=true

#ebx.servlet.http.host=
#ebx.servlet.http.port=
ebx.servlet.http.path=servletAlias
ebx.servlet.http.ui.path=uiServletAlias
#ebx.servlet.http.useHttpsSettings=false

#ebx.servlet.https.host=
#ebx.servlet.https.port=
ebx.servlet.https.path=servletAlias
ebx.servlet.https.ui.path=uiServletAlias

###

ebx.externalResources.useLocalUrl=true

#ebx.externalResources.http.host=
#ebx.externalResources.http.port=
ebx.externalResources.http.path=resourcesAlias
#ebx.externalResources.http.useHttpsSettings=false

#ebx.externalResources.https.host=
#ebx.externalResources.https.port=
ebx.externalResources.https.path=resourcesAlias

Attention
When proxy mode is used, the URL to the ebx-dataservices module must be configured through the
lineage administration panel. Note that the provided URL must end its path with /ebx-dataservices.

See alsoPath recommendations

Reverse-proxy mode
If URLs generated by EBX, for requests and external resources, must contain a different protocol than
the one from the incoming request, a specific server name, a specific port number or a specific path
prefix, properties may be configured as follows:
###
#ebx.servlet.useLocalUrl=false

ebx.servlet.http.host=reverseDomain
#ebx.servlet.http.port=
ebx.servlet.http.path=ebx/
#ebx.servlet.http.ui.path=ebx-ui/
#ebx.servlet.http.useHttpsSettings=false

ebx.servlet.https.host=reverseDomain
#ebx.servlet.https.port=
ebx.servlet.https.path=ebx/
#ebx.servlet.https.ui.path=ebx-ui/

###
Web parameters (for external resources)
if nothing is set, values are taken from servlet.
###
#ebx.externalResources.useLocalUrl=false

#ebx.externalResources.http.host=
#ebx.externalResources.http.port=
#ebx.externalResources.http.path=
ebx.externalResources.http.useHttpsSettings=true

#path.recommendations

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 359

ebx.externalResources.https.host=reverseDomain
#ebx.externalResources.https.port=
ebx.externalResources.https.path=

Attention
When reverse-proxy mode is used, the URL to the ebx-dataservices module must be configured
through the lineage administration panel. Note that the provided URL must end its path with /ebx-
dataservices.

See alsoPath recommendations

Path recommendations
It is recommended to deploy webapps of EBX modules on the same path level. For example:

• /module1

• /module2

or:

• /path/module1

• /path/module2

It avoids difficulties when configuring the advanced features of Proxy mode and Reverse-proxy mode.
Consequently, it is not recommended to use the root path "/" as the servlet's HTTP or HTTPS path
in the following properties:

• ebx.servlet.http.path

• ebx.servlet.http.ui.path

• ebx.servlet.https.path

• ebx.servlet.https.ui.path

59.17 Configuring failover
These parameters are used to configure the failover mode and activation key, as well as heartbeat
logging in DEBUG mode.

See alsoFailover with hot-standby [p 373]

###
Mode used to qualify the way in which a server accesses the repository.
Possible values are: unique, failovermain, failoverstandby.
Default value is: unique.
###
#ebx.repository.ownership.mode=unique

Activation key used in case of failover. The backup server must include this
key in the HTTP request used to transfer exclusive ownership of the repository.
The activation key must be an alphanumeric ASCII string longer than 8 characters.
#ebx.repository.ownership.activationkey=

Specifies whether to hide heartbeat logging in DEBUG mode.
Default value is true.
#ebx.repository.ownership.hideHeartBeatLogForDebug=true

#path.recommendations
#proxy.mode
#reverse.proxy.mode

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 360

59.18 Tuning the EBX repository
Some options can be set so as to optimize memory usage.
The properties are configured as follows:
##
Technical parameters for memory and performance tuning
##
Import commit threshold allows to specify the commit threshold
exclusively for the archive import launched directly from Manager.

For more details about the commit threshold,
see the JavaDoc ProcedureContext.setCommitThreshold().
Default value is 0.

ebx.manager.import.commit.threshold=100

A validation messages threshold allows specifying the maximum number of
messages to consider per constraint when performing a validation.
This threshold is considered for each constraint defined in a data model
and for each severity in each dataset validation report.
When the threshold is reached by a constraint and a severity:
- the validation of the constraint is stopped
- an error message indicating that the threshold has been reached
is added to the validation report.
When set to 0 or a negative value, the threshold is not considered.
Default value is 0.

ebx.validation.constraints.messages.threshold = 100

Specifies whether the validation report should be kept in memory,
regardless of the loading strategy of the dataspace.
Default value is true. However, it is recommended to deactivate it
when the repository contains a large number of open dataspaces and
datasets.
#ebx.validation.report.keepInMemory=false

See alsoValidation report page [p 365]

59.19 Miscellaneous

Activating data workflows
This parameter specifies whether data workflows are activated. This parameter is not taken into
account on the fly. The server must be restarted whenever the value changes.
###
Workflow activation.
Default is false.
###
ebx.workflow.activation = true

Disabling user task legacy mode
This parameter specifies whether the creation service of a user task in legacy mode should be offered
in the workflow modeling. The default value is true.
See UserTask.UserTaskMode.LEGACY_MODEAPI for more information.
Disables legacy work item mode(default is true)
Specify if the creation service of user task in legacy mode must be offered
in workflow modeling.
#ebx.manager.workflow.legacy.userTaskMode=false

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 361

Log procedure starts
This parameter specifies whether starts of the procedure execution are logged.
###
Specifies whether transaction starts are logged. Default is false.
###
ebx.logs.logTransactionStart = true

Log validation starts
This parameter specifies whether starts of datasets validation are logged.
###
Specifies whether validation starts are logged. Default is false.
###
ebx.logs.logValidationStart = true

Deployment site identification
This parameter allows specifying the email address to which technical log emails are sent.
###
Unique Site Name
--> used by monitoring emails and by the repository
###
ebx.site.name= name@domain.com

Dynamically reloading the main configuration
Some parameters can be dynamically reloaded, without restarting EBX. The parameter
thisfile.checks.intervalInSeconds indicates how frequently the main configuration file is
checked.
###
Checks if this file has been updated
If value <= 0, no more checks will be done
###
thisfile.checks.intervalInSeconds=1

In development mode, this parameter can be set to as low as one second. On production systems,
where changes are expected to be less frequent, the value can be greater, or set to '0' to disable hot
reloading entirely.
This property is not always supported when the module is deployed as a WAR, as it would then depend
on the application server.

Declaring modules as undeployed
On application server startup, the initialization of deployed web applications / EBX modules and the
initialization of the EBX repository are performed asynchronously. In order to properly initialize the
EBX repository, it is necessary to compile all the data models used by at least a dataset, hence EBX
will wait endlessly for referenced modules to be registered.

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 362

If a module is referenced by a data model but is not deployed (or no longer deployed), it is necessary
to declare this module as undeployed to unlock the wait and continue the startup process.

Note

The kernel logging category indicates which modules are awaited.

Note

A module declared as undeployed cannot be registered into EBX until it is removed from
the property ebx.module.undeployedModules.

Note

Any data model based on an unregistered module will have an "undeployed module"
compilation error.

See also

Module registration [p 460]

Dynamically reloading the main configuration [p 361]

###
Comma-separated list of EBX® modules declared
as undeployed.
If a module is expected by the EBX® repository but is
not deployed, it must be declared in this property.
Caution:
if the "thisfile.checks.intervalInSeconds" property is deactivated,
a restart is mandatory, otherwise it will be hot-reloaded.
###
ebx.module.undeployedModules=

Module public path prefix
EBX modules' public paths are declared in the 'module.xml' file of each module. A context prefix
can be declared for all modules, without having to modify the 'module.xml' content, by specifying
the property that follows.
This prefix will apply to any EBX module, including core, add-on and specific modules.
When proxy and / or reverse-proxy mode are used, the ebx.servlet.http[s].path and
ebx.servlet.http[s].ui.path properties must take into account this module public path prefix
setting. Conversely, the ebx.externalResources.http[s].path property must end its path just before
a potential prefix.
###
ebx.servlet.useLocalUrl=true

#ebx.servlet.http.host=
#ebx.servlet.http.port=
ebx.servlet.http.path=reverse-proxy/prefix/ebx/
ebx.servlet.http.ui.path=reverse-proxy/prefix/ebx-ui/
#ebx.servlet.http.useHttpsSettings=false

#ebx.servlet.https.host=
#ebx.servlet.https.port=
ebx.servlet.https.path=reverse-proxy/prefix/ebx/
ebx.servlet.https.ui.path=reverse-proxy/prefix/ebx-ui/

###
Web parameters (for external resources)
if nothing is set, values are taken from servlet.
###
ebx.externalResources.useLocalUrl=true

#ebx.externalResources.http.host=
#ebx.externalResources.http.port=

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 363

ebx.externalResources.http.path=reverse-proxy/
#ebx.externalResources.http.useHttpsSettings=false

#ebx.externalResources.https.host=
#ebx.externalResources.https.port=
ebx.externalResources.https.path=reverse-proxy/

##
EBX® Module context path prefix
##
If defined, applies to all EBX® modules public paths declared in
any module.xml file (core, add-on and specific).
##
ebx.module.publicPath.prefix=prefix/

See URLs computing [p 356] for more information.

EBX run mode
This property defines how EBX runs. Three run modes are available: development,integration and
production.
When running in development mode, the development tools [p 471] are activated in EBX, some
features thus become fully accessible and more technical information is displayed.

Note

The administrator can always access this information regardless of the mode used.

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 364

The additional features accessible when running in development mode include the following (non-
exhaustive list):

Documentation pane In the case of a computed value, the Java class name is
displayed. A button is displayed giving access to the path
to a node.

Compilation information Module and schema compilation information is displayed
in the dataset validation report.

Java bindings The generation of Java bindings is available if the schema
of the dataset mentions at least one binding.

Web component link generator The Web component link generator is available on datasets
and dataspaces.

Data model assistant Data model configuration and additional options, such
as Services, Business Objects and Rules, Java Bindings,
Toolbars and some advanced properties.

Workflow modeling Declare specific script tasks.

Log The logs include additional technical information intended
for the developer. For example, a warning is written to logs
if a drop-down list is defined on a node which is not an
enumeration in a UI Bean.

Product documentation The product documentation is always the most complete one
(i.e "advanced"), including administration and development
chapters.

###
Server Mode
Value must be one of: development, integration, production
Default is production.
###
backend.mode=integration

Note

There is no difference between the integration and production modes.

Resource filtering
This property allows the filtering of certain files and directories in the resource directory contents
(resource type node, with an associated facet that indicates the directory that contains usable
resources).
###
list (separated by comma) of regexps excluding resource
the regexp must be of type "m:[pattern]:[options]".
the list can be void
###

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 365

ebx.resource.exclude=m:CVS/*:

Validation report page
The validation report page can display a finite number of items for each severity. This number can
be tuned with this property.
Defines the maximum item displayed for each severity in the validation report page.
Default value is 100.
#ebx.validation.report.maxItemDisplayed=100

See alsoTuning the EBX repository [p 360]

Validation report logs
This property allows to specify the number of validation messages to display in the logs when
validating a dataset or a table.
Defines the maximum number of messages displayed in the logs.
Default value is 100.
When set to 0 or a negative value, the limit is not considered.
#ebx.validation.report.maxItemDisplayedInLogs=500

See alsoTuning the EBX repository [p 360]

Documentation > Administration Guide > Installation & configuration > TIBCO EBX main configuration file

TIBCO EBX® Product Documentation 5.9.20 366

Documentation > Administration Guide > Installation & configuration > Initialization and first-launch assistant

TIBCO EBX® Product Documentation 5.9.20 367

CHAPTER 60
Initialization and first-launch

assistant
Deliverables can be found on TIBCO eDelivery(an account is mandatory in order to access eDelivery,
please contact the support team to request one).
The TIBCO EBX Configuration Assistant helps with the initial configuration of the EBX repository.
If EBX does not have a repository installed upon startup and if the automatic installation [p 346] is not
enabled, the configuration assistant is launched automatically.
Before starting the configuration of the repository, make sure that EBX is correctly deployed on the
application server. See Java EE deployment [p 317].

Note

The EBX main configuration file must also be properly configured. See TIBCO EBX
main configuration file [p 345].

This chapter contains the following topics:

1. License key

2. Configuration steps

60.1 License key
When launching EBX, the license key page displays automatically if no valid license key is available,
that is, if there is no license key entered in the EBX main configuration file, or if the current license
key has expired.
The license key can be retrieved from the TIBCO eDelivery site (an account is mandatory in order to
access eDelivery, please contact https://support.tibco.com to request one).
The license key is available in the TIB_ebx_{ebx.version.public}_license_key.pdf file.

60.2 Configuration steps
The EBX configuration assistant guides you through the following steps:

1. Validating the license agreement.

2. Configuring the repository.

https://edelivery.tibco.com
https://support.tibco.com
https://edelivery.tibco.com
mailto:https://support.tibco.com

Documentation > Administration Guide > Installation & configuration > Initialization and first-launch assistant

TIBCO EBX® Product Documentation 5.9.20 368

3. Defining users in the default user and roles directory (if a custom directory is not defined).

4. Validating the information entered.

5. Installing the EBX repository.

Validating the license agreement
In order to proceed with the configuration, you must read and accept the product license agreement.

Configuring the repository
This page displays some of the properties defined in the EBX main configuration file. You also define
several basic properties of the repository in this step.

Id of the repository
(repositoryId)

Must uniquely identify the repository (in the scope of
the enterprise). The identifier is 48 bits (6 bytes) long
and is usually represented as 12 hexadecimal digits. This
information is used for generating the Universally Unique
Identifiers (UUIDs) of entities created in the repository, and
also of transactions logged in the history. This identifier acts
as the "UUID node", as specified by RFC 4122.

Repository label Defines a user-friendly label that indicates the purpose and
context of the repository.

See alsoTIBCO EBX main configuration file [p 345]

Defining users in the default directory
If a custom user and roles directory is not defined in the EBX main configuration file, the configuration
assistant allows to define default users for the default user and roles directory.
An administrator user must be defined. You may optionally create a second user.

See alsoUsers and roles directory [p 399]

Validating the information entered
Before proceeding with the installation of the repository, you can review the configuration of the
repository and the information entered on the 'Configuration Summary' page. If you need to modify
information, you can return to the previous pages using the configuration assistant < Back button.
Once you have verified the configuration, click the button Install the repository > to proceed with
the installation.

Installing the EBX repository
The repository installation is performed using the provided information. When the installation is
complete, you are redirected to the repository login page.

Documentation > Administration Guide > Installation & configuration > Deploying and registering TIBCO EBX add-ons

TIBCO EBX® Product Documentation 5.9.20 369

CHAPTER 61
Deploying and registering TIBCO

EBX add-ons
Note

Refer to the documentation of each add-on for additional installation and configuration
information in conjunction with this documentation.

This chapter contains the following topics:

1. Deploying an add-on module

2. Registering an add-on module

3. Deleting an add-on module

61.1 Deploying an add-on module
Note

Each add-on bundle version is intended to run with a specific EBX version and all
its fix releases. Make sure that the EBX and add-on bundle versions are compatible,
otherwise the add-on registration will abort.

The web application deployment descriptor for the add-on module must specify that class definitions
and resources from the web application are to be loaded in preference to classes from the parent and
server classloaders.
For example, on WebSphere Application Server, this can be done by setting <context-priority-
classloader>true</context-priority-classloader> in the web-app element of the deployment
descriptor.
On WebLogic, include <prefer-web-inf-classes>True</prefer-web-inf-classes> in
weblogic.xml.
See the documentation on class loading of your application server for more information.

Documentation > Administration Guide > Installation & configuration > Deploying and registering TIBCO EBX add-ons

TIBCO EBX® Product Documentation 5.9.20 370

The EBX add-on common JAR file, named lib/ebx-addons.jar, must be copied in the library
directory shared by all web applications.

Note

The add-on log level can be managed in the main configuration file [p 353].

61.2 Registering an add-on module
To register a new EBX add-on in the repository:

1. Navigate to the 'Administration' area.

2. Click the down-arrow in the navigation pane and select Technical configuration > Add-ons
registration.

3. On the Registered add-ons page, click the + button to create a new entry.

4. Select the add-on you are registering, and enter its license key.

Note

If the EBX repository is under a trial license, no license key is required for the add-
on. The add-on will be subject to the same trial period as the EBX repository itself.

The license key can be retrieved from the TIBCO eDelivery site.

5. Click on Save.

61.3 Deleting an add-on module
To delete an add-on module from the EBX repository:

1. Navigate to the 'Administration' area.

2. Click the down-arrow in the navigation pane and select Technical configuration > Add-ons
registration.

3. On the Registered add-ons page, tick the box corresponding to the add-on to be deleted.

4. In the 'Actions' menu, select 'Delete'.

5. Close and purge the Administration datasets related to the previously used add-on, as well as the
including dataspaces.
When an add-on is no longer deployed, a dataspace corresponding to the Administration dataset
will then appear in the list of Reference children under the dataspaces. When an add-on module
is no longer deployed, it is thus necessary to close/delete and purge manually all data/dataspaces
related to the add-on.

https://edelivery.tibco.com

Documentation > Administration Guide

TIBCO EBX® Product Documentation 5.9.20 371

Technical
administration

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 372

CHAPTER 62
Repository administration

This chapter contains the following topics:

1. Technical architecture

2. Auto-increments

3. Repository management

4. Monitoring management

5. Dataspaces

62.1 Technical architecture

Overview
The main principles of the TIBCO EBX technical architecture are the following:

• A Java process (JVM) that runs EBX is limited to a single EBX repository. This repository
is physically persisted in a supported relational database instance [p 313], accessed through a
configured data source [p 347].

• A repository cannot be shared by multiple JVMs at any given time. However, a failover
architecture may be used. These aspects are detailed in the sections Single JVM per repository
[p 373] and Failover with hot-standby [p 373]. Furthermore, to achieve horizontal scalability, an
alternative is to deploy a distributed data delivery (D3) [p 424] environment.

• A single relational database instance can support multiple EBX repositories (used by distinct
JVMs). It is then required that they specify distinct table prefixes using the property
ebx.persistence.table.prefix.

See also

Configuring the EBX repository [p 347]

Supported databases [p 313]

Data source of the EBX repository [p 323]

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 373

Rules for the database access and user privileges

Attention
In order to guarantee the integrity of persisted master data, it is strictly forbidden to perform direct
SQL writes to the database, except for specific use cases described in the section SQL access to
data in relational mode [p 248].

It is required for the database user specified by the configured data source [p 347] to have the 'create/
alter' privileges on tables, indexes and sequences. This allows for automatic repository installation
and upgrades [p 375].

See also

SQL access to history [p 254]

Accessing a replica table using SQL [p 261]

SQL access to data in relational mode [p 248]

Data source of the EBX repository [p 323]

Single JVM per repository
A repository cannot be shared by multiple JVMs. If such a situation was to occur, it would lead to
unpredictable behavior and potentially even corruption of data in the repository.
EBX performs checks to enforce this restriction. Before the repository becomes available, the
repository must first acquire exclusive ownership of the relational database. After starting the
repository, the JVM periodically checks that it still holds ownership of the repository.
These checks are performed by repeatedly tagging a technical table in the relational database. The
shutdown command for the application server ensures that the tag on this technical table is removed.
If the server shuts down unexpectedly, the tag may be left in the table. If this occurs, the server must
wait several additional seconds upon restart to ensure that the table is not being updated by another
live process.

Attention
To avoid an additional wait period at the next start up, it is recommended to always properly shut
down the application server.

Failover with hot-standby
The exclusion mechanism described above is compatible with failover architectures, where only one
server is active at any given time in an active/passive cluster. To ensure that this is the case, the main
server must declare the property ebx.repository.ownership.mode=failovermain. The main server
claims ownership of the repository database, as in the case of a single server.
A backup server can still start up, but it will not have access to the repository. It must declare
the property ebx.repository.ownership.mode=failoverstandby to act as the backup server. Once
started, the backup server is registered in the connection log. Its status can be retrieved using the Java
API or through an HTTP request, as described in the section Repository status information and logs
[p 374] below.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 374

In order to activate the backup server and transfer exclusive ownership of the repository to it, a specific
request must be issued by an HTTP request, or using the Java API:

• Using HTTP, the request must include the parameter activationKeyFromStandbyMode,
and the value of this parameter must be equal to the value declared for the entry
ebx.repository.ownership.activationkey in the EBX main configuration file. See Configuring
failover [p 359].
The format of the request URL must be:
http[s]://<host>[:<port>]/ebx?activationKeyFromStandbyMode={value}

• Using the Java API, call the method RepositoryStatus.wakeFromStandbyAPI.

If the main server is still up and accessing the database, the following applies: the backup server marks
the ownership table in the database, requesting a clean shutdown for the main server (yet allowing
any running transactions to finish). Only after the main server has returned ownership can the backup
server start using the repository.

Repository status information and logs
A log of all attempted Java process connections to the repository is available in the Administration
area under 'History and logs [p 251]' > 'Repository connection log'.
The status of the repository may be retrieved using the methods in the RepositoryStatusAPI API.
It is also possible to get the repository status information using an HTTP request that includes the
parameter repositoryInformationRequest with one of following values:

state The state of the repository in terms of ownership
registration.

• D: Java process is stopped.

• O: Java process has exclusive ownership of the
database.

• S: Java process is started in failover standby mode, but
is not yet allowed to interact with the repository.

• N: Java process has tried to take ownership of the
database but failed because another process is holding
it.

heart_beat_count The number of times that the repository has made contact
since associating with the database.

info Detailed information for the end-user regarding the
repository's registration status. The format of this
information may be subject to modifications in the future
without explicit warning.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 375

62.2 Auto-increments
Several technical tables can be accessed in the 'Administration' area of the EBX user interface. These
tables are for internal use only and their content should not be edited manually, unless removing
obsolete or erroneous data. Among these technical tables are:

Auto-increments Lists all auto-increment fields in the repository.

62.3 Repository management

Installation and upgrades

Automatic installation and upgrades
By complying with the Rules for the database access and user privileges [p 373], the repository
installation or upgrade is done automatically.

Inter-database migration
EBX provides a way to export the full content of a repository to another database. The export includes
all dataspaces, configuration datasets, and mapped tables. To operate this migration, the following
guidelines must be respected:

• The source repository must be shut down: no EBX server process must be accessing it; not
strictly complying with this requirement can lead to a corrupted target repository;

• A new EBX server process must be launched on the target repository, which must be empty. In
addition to the classic Java system property -Debx.properties, this process must also specify
ebx.migration.source.properties: the location of an EBX properties file specifying the source
repository. (It is allowed to provide distinct table prefixes between target and source.)

• The migration process will then take place automatically. Please note, however, that this process
is not transactional: should it fail halfway, it will be necessary to delete the created objects in the
target database, before starting over.

• After the migration is complete, an exception will be thrown, to force restarting the EBX server
process accessing the target repository.

Limitations:

• For technical reasons, migration to an Oracle database is only supported from another Oracle
database.

• The names of the database objects representing the mapped tables (history, replication, relational)
may have to be altered when migrated to the target database, to comply with the limitations of
its database engine (maximum length, reserved words, ...). Such alterations will be logged during
the migration process.

• As a consequence, the names specified for replicated tables in the data model will not be consistent
with the adapted name in the database. The first recompilation of this data model will force to
correct this inconsistency.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 376

• Due to different representations of numeric types, values for xs:decimal types might get rounded
if the target database engine offers a lesser precision than the source. For example, a value of
10000000.1234567890123456789 in Oracle will get rounded to 10000000.123456789012345679 in
SQL Server.

Repository backup
A global backup of the EBX repository must be delegated to the underlying RDBMS. The database
administrator must use the standard backup procedures of the underlying database.

Archives directory
Archives are stored in a sub-directory called archives within the ebx.repository.directory (see
configuration [p 345]). This directory is automatically created during the first export from EBX.

Attention
If manually creating this directory, make sure that the EBX process has read-write access to it.
Furthermore, the administrator is responsible for cleaning this directory, as EBX does not maintain it.

Note

The transfer of files between two EBX environments must be performed using tools such
as FTP or simple file copies by network sharing.

Repository attributes
A repository has the following attributes:

repositoryId Uniquely identifies a repository within the scope of the
company. It is 48 bits (6 bytes) and is usually represented
as 12 hexadecimal digits. This information is used for
generating UUIDs (Universally Unique Identifiers) for
entities created in the repository, as well as transactions
logged in history tables or in the XML audit trail. This
identifier acts as the 'UUID node' part, as specified by RFC
4122.

repository label Provides a user-friendly label that identifies the purpose
and context of the repository. For example: "Production
environment".

store format Identifies the underlying persistence system, including the
current version of its structure.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 377

62.4 Monitoring management

Monitoring and cleanup of the relational database
Some entities accumulate during the execution of EBX.

Attention
It is the administrator's responsibility to monitor and clean up these entities.

Monitoring and reorganization
The persistence data source of the repository must be monitored through RDBMS monitoring.
The EBX tables specified in the default semantic mode [p 245] have their content persisted in a set of
generic database tables:

• The table ${ebx.persistence.table.prefix}HOM, in which each record represents a dataspace or
a snapshot (its name is EBX_HOM if the property ebx.persistence.table.prefix is unset).

• The table ${ebx.persistence.table.prefix}BLK, where the data of EBX tables in semantic mode
are segmented into blocks of at most 100 EBX records (its name is EBX_BLK if the property
ebx.persistence.table.prefix is unset).

• The tables ${ebx.persistence.table.prefix}HTA, ${ebx.persistence.table.prefix}TAR and
${ebx.persistence.table.prefix}ATB, defining which blocks belong to a given EBX table in a
given dataspace or snapshot.

Database statistics
The performance of requests executed by EBX requires that the database has computed up-to-date
statistics on its tables. Since database engines regularly schedule statistics updates, this is usually not
an issue. Yet, it could be necessary to explicitly update the statistics in cases where tables are heavily
modified over a short period of time (e.g. by an import creating many records).

Impact on UI
Some UI components use statistics to adapt their behavior in order to prevent users from executing
costly requests unwillingly.
For example, the combo box will not automatically search on user input if the table contains a large
volume of records. This behavior may also occur if the database's statistics are not up to date, because
a table may be considered as containing a large volume of records even if it is not actually the case.

Cleaning up dataspaces, snapshots, and history
A full cleanup of dataspaces, snapshots, and history from the repository involves several stages:

1. Closing unused dataspaces and snapshots to keep the cache to a minimal size.

2. Deleting dataspaces, snapshots, and history.

3. Purging the remaining entities associated with the deleted dataspaces, snapshots, and history from
the repository.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 378

Closing unused dataspaces and snapshots
In order to keep the cache and the repository to a reasonable size, it is recommended to close any
dataspaces and snapshots that are no longer required. This can be done in the following ways:

• Through the user interface, in the 'Dataspaces' area.

• From the 'Dataspaces / Snapshots' table under 'Dataspaces' in the 'Administration' area, using the
Actions menu in the workspace. The action can be used on a filtered view of the table.

• Through the Java API, using the method Repository.closeHomeAPI.

• Using the data service "close dataspace" and "close snapshot" operations. See Closing a dataspace
or snapshot [p 641] for more information.

Once the dataspaces and snapshots have been closed, the data can be safely removed from the
repository.

Note

Closed dataspaces and snapshots can be reopened in the 'Administration' area, under
'Dataspaces'.

Deleting dataspaces, snapshots, and history
Dataspaces, associated history and snapshots can be permanently deleted from the repository.
However, the deletion of a dataspace does not necessarily imply the deletion of its history. The two
operations are independent and can be performed at different times.

Note

The deletion of a dataspace, a snapshot, or of the history associated with them is
recursive. The deletion operation will be performed on every descendant of the selected
dataspace.

After the deletion of a dataspace or snapshot, some entities will remain until a repository-wide purge
of obsolete data is performed. In particular, the complete history of a dataspace remains visible until
a repository-wide purge is performed. Both steps, the deletion and the repository-wide purge, must be
completed in order to totally remove the data and history. The process has been divided into two steps
for performance issues. As the total clean-up of the repository can be time-intensive, this allows the
purge execution to be initiated during off-peak periods on the server.
The process of deleting the history of a dataspace takes into account all history transactions recorded
up until the deletion is submitted or until a date specified by the user. Any subsequent historized
operations will not be included when the purge operation is executed. To delete new transactions, the
history of the dataspace must be deleted again.

Note

It is not possible to set a deletion date in the future. The specified date will thus be ignored
and the current date will be used instead.

The deletion of dataspaces, snapshots, and history can be performed in a number of different ways:

• From the 'Dataspaces/Snapshots' table under 'Dataspaces' in the 'Administration' area, using the
Actions menu button in the workspace. The action can be used on a filtered view of the table.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 379

• Using the Java API, and more specifically the methods Repository.deleteHomeAPI and
RepositoryPurge.markHomeForHistoryPurgeAPI.

• At the end of the data service "close dataspace" operation, using the parameters
deleteDataOnClose and deleteHistoryOnClose, or at the end of a "merge dataspace" operation,
using the parameters deleteDataOnMerge and deleteHistoryOnMerge.

Purging remaining entities after a dataspace, snapshot, or history deletion
Once items have been deleted, a purge can be executed to clean up remaining data from all deletions
performed until that point. A purge can be initiated in the following ways:

• Through the user interface, by selecting in the 'Administration' area Actions > Execute purge
in the navigation pane.

• Using the Java API, specifically the method RepositoryPurge.purgeAllAPI.

• Using the task scheduler. See Task scheduler [p 413] for more information.

The purge process is logged in the directory ${ebx.repository.directory}/db.purge/.

Cleaning up tables having unreadable records
Some data model evolutions can lead to unreadable data:

• A column containing null values is added to the primary key of a table.

• The type of a column has changed to a different type with no possible conversion.

In these situations, records that do not match the new table definition are no longer visible, but remain
persisted in the table. (This allows retrieving records if switching back to the previous table definition).
When such records are encountered, an informative error is recorded in EBX logs.
EBX provides the option to clean the records that no longer conform to the model, once the new
version of the data model is stabilized. This allows recovering space in the database and getting rid
of error messages. Please proceed carefully, as this operation permanently removes all unreadable
records from the selected table, and cannot be undone.
Cleaning up unreadable records is done by selecting in the 'Administration' area Actions > Clean up
unreadable records in the navigation pane.

Cleaning up other repository entities
It is the administrator's responsibility to monitor and regularly cleanup the following entities.

Purge
A purge can be executed to clean up the remaining data from all deletions, that is, deleted dataspaces,
snapshots and history performed up until that point. A purge can be initiated by selecting in the
'Administration' area Actions > Execute purge in the navigation pane.

Task scheduler execution reports
Task scheduler execution reports are persisted in the 'executions report' table, in the 'Task scheduler'
section of the 'Administration' area. Scheduled tasks constantly add to this table as they are executed.
Even when an execution terminates normally, the records are not automatically deleted. It is thus
recommended to delete old records regularly.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 380

User interactions
User interactions are used by the EBX component as a reliable means for an application to initiate and
get the result of a service execution. They are persisted in the ebx-interactions administration section.
It is recommended to regularly monitor the user interactions table, as well as to clean it, if needed.

Workflow history
The workflow events are persisted in the workflow history table, in the 'Workflow' section of the
'Administration' area. Data workflows constantly add to this table as they are executed. Even when
an execution terminates normally, the records are not automatically deleted. It is thus recommended
to delete old records regularly.
The steps to clean history are the following

• Make sure the process executions are removed (it can be done by selecting in the 'Administration'
area of Workflows Actions > Terminate and clean this workflow or Actions > Clean from a
date in the navigation pane).

• Clean main processes in history (it can be done by selecting in the 'Administration' area of
Workflows history Actions > Clear from a date or Actions > Clean from selected workflows
in the navigation pane).

• Purge remaining entities in workflow history using 'standard EBX purge'

See alsothe standard EBX purge [p 378]

Monitoring and clean up of file system

Attention
In order to guarantee the correct operation of EBX, the disk usage and disk availability of the
following directories must be supervised by the administrator, as EBX does not perform any clean up:

• XML audit trail: ${ebx.repository.directory}/History/

• Archives: ${ebx.repository.directory}/archives/

• Logs: ebx.logs.directory [p 351]

• Temporary directory: ebx.temp.directory [p 349]

Attention
For XML audit trail, if large transactions are executed with full update details activated (default
setting), the required disk space can increase.

Attention
For pagination in the data services getChanges operation, a persistent store is used in the Temporary
directory. Large changes may require a large amount of disk space.

See also

XML audit Trail [p 419]

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 381

Tuning the EBX repository [p 360]

62.5 Dataspaces
Some dataspace administrative tasks can be performed from the 'Administration' area of EBX by
selecting 'Dataspaces'.

Dataspaces/snapshots
This table lists all the existing dataspaces and snapshots in the repository, whether open or closed.
You can view and modify the information of dataspaces included in this table.

See alsoDataspace information [p 96]

From this section, it is also possible to close open dataspaces, reopen previously closed dataspaces,
as well as delete and purge open or closed dataspaces, associated history, and snapshots.

See alsoCleaning up dataspaces, snapshots, and history [p 377]

Dataspace permissions
This table lists all the existing permission rules defined on all the dataspaces in the repository. You
can view the permission rules and modify their information.

See alsoDataspace permissions [p 97]

Repository history
The table 'Deleted dataspaces/snapshots' lists all the dataspaces that have already been purged from
the repository.
From this section, it is also possible to delete the history of purged dataspaces.

Documentation > Administration Guide > Technical administration > Repository administration

TIBCO EBX® Product Documentation 5.9.20 382

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 383

CHAPTER 63
UI administration

TIBCO EBX comes with a full user interface called Advanced perspective [p 384] that includes all
available features. The interface is fully customizable [p 387] (custom logo, colors, field size, default
values, etc.) and available to built-in administrators.
Access to the advanced perspective can be restricted in order to simplify the end-user experience,
through global permissions [p 383], giving the possibility to grant or restrict access to functional
categories. Administrators can create simplified perspectives called recommended perspectives [p

395] for end-users, containing only the features and menus they need for their daily tasks.
This chapter contains the following topics:

1. Global permissions

2. Advanced perspective

3. Recommended perspectives

4. Custom views

5. User session management

63.1 Global permissions
Global permission rules can be created in EBX.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 384

The 'Display area' property allows restricting access to areas of the user interface. To define the access
rules, select 'Global permissions' in the 'Administration' area.

Profile Indicates on which profile the rule will be applied.

Restriction policy Indicates if the permissions defined here restrict the ones
defined for other profiles. See the Restriction policy concept
[p 283] for more information.

Dataspaces Defines permissions for the Dataspaces area.

Data Models Defines permissions for the Data Models area.

Workflow Models Defines permissions for the Workflow Models area.

Data Workflows Defines permissions for the Data Workflows area.

Data Services Defines permissions for the Data Services area.
Independently, it is also possible to:

• Defines permissions for the REST built-in connector
HTTP(S). This setting does not impact the REST
Toolkit applications.

• Defines permissions for the SOAP connector HTTP(S)
and JMS.

• Defines permissions for the WSDL connector
HTTP(S).

Administration Defines permissions for the Administration area.

Note

Permissions can be defined by administrators and by the dataspace or dataset owner.

63.2 Advanced perspective
The advanced perspective and its parameterization are unique. It is the parent perspective from which
any new perspective [p 395] will inherit.
Children perspectives can be created from that main perspective in order to offer a customized,
simplified menu to the end-users. Thanks to dataset inheritance, these simplified perspectives will
receive their parameters from the advanced perspective (the root dataset). These parameters can then
be overridden on the newly created simplified perspectives. Simplified perspectives can be created
underneath an existing simplified perspective, thus inheriting from the parent's parameters.

See alsoInheritance [p 27]

The advanced perspective is available by default to all end-users but access can be restricted.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 385

Note: Administrators can always access the advanced perspective even when it is deactivated.
It is possible to configure which perspective is applied by default when users log in. This 'default
perspective' is based on two criteria: 'recommended perspectives', defined by administrators and
'favorite perspectives', defined by users.

See also

Recommended perspectives [p 395]

Favorite perspectives [p 19]

Perspective creation
To create a perspective, open the 'Select an administration feature' drop-down menu and click on the
+ sign to create a child dataset.

See alsoCreating an inheriting child dataset [p 112]

User interface
Options are available in the Administration area for configuring the web interface, in the 'User
interface' section.

Attention
Be careful when configuring the URL policy (deprecated) [p 386]. If the web interface configuration
is invalid, it can lead to the unusability of EBX. If this occurs, use the "rescue mode" by
setting frontEnd.rescueMode.enable=true in EBX main configuration file [p 345], and accessing the
following URL in your browser as a built-in administrator user: http://.../ebx/?onwbpID=iebx-
manager-rescue.

Session configuration
These parameters configure the user session options:

User session default locale Default session locale

Session time-out (in seconds) Maximum duration of user inactivity before the session
is considered inactive and is terminated. A negative value
indicates that the session should never timeout.

Interface configuration

Entry policy
Describes the URL to access the application.

Login URL If the user is not authenticated, the session is forwarded to
this URL.

The entry policy defines an EBX login page, replacing the default one.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 386

If defined,

• it replaces an authentication URL that may have been defined using a specific user DirectoryAPI,

• it is used to build the permalinks in the user interface,

• if the URL is full, that is, starting with http:// or https://, it replaces the URL of the workflow
email configuration.

URL policy (deprecated)
Describes the URL and proxy policy. Both dynamic (servlet) and static (resources) URLs can be
configured.
This configuration manner is deprecated and must be replaced by URLs computing [p 356]. After
configuring the EBX main configuration file, these configurations must be unset.

HTTP servlet policy Header content of the servlet HTTP request:

• if a field is not set, the default value in the environment
configuration is used,

• if a default value is not set, the value in the initial
request is used.

HTTPS servlet policy Header content of the servlet HTTPS request:

• if a field is not set, the default value is chosen (in an
environment configuration),

• if a default value is not set, the value in the initial
request is used.

HTTP external resources policy Header content of the external resources URL in HTTP:

• if a field is not set, the default value in the environment
configuration is used,

• if a default value is not set, the value in the initial
request is used.

HTTPS external resources
policy

Header content of the external resources URL in HTTPS:

• if a field is not set, the default value in the environment
configuration is used,

• if a default value is not set, the value in the initial
request is used.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 387

Exit policy
Describes how the application is exited.

Normal redirection Specifies the redirection URL used when exiting the session
normally.

Error redirection Specifies the redirection URL used when exiting the session
due to an error.
This feature is now deprecated and may be ignored by EBX.

Redirection restrictions Specifies the list of authorized domains and whether HTTPS
is mandatory for each domain.

Graphical interface configuration

Activation & Allowed profiles
The 'Activated' radio button allows to activate or deactivate the perspective. When deactivated, the
perspective will only be made available to the administrator.
The 'Allowed profiles' feature is used to give access to the perspective to a given profile. Several
profiles can be added to the list of authorized profiles by clicking on the + icon below the numbered list.
The available perspective properties are:

Activated Indicates if the perspective is visible to authorized users.

Allowed profiles The list of authorized user profiles for the perspective.

Allowed devices The list of authorized devices for the perspective.
If not specified, only "EBX Web Application" can display
this perspective.

Default selection The menu item that is selected by default.
This property is not available for the advanced perspective.

Application locking
EBX availability status:

Availability status This application can be closed to users during maintenance
(but still remain open to administrators). Takes effect
immediately.

Unavailability message Message displayed to users when access is restricted to
administrator profiles.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 388

Security policy
EBX access security policy. These parameters only apply to new HTTP sessions.

IP access restriction Restricts access to designated IP addresses (see IP pattern
below).

IP restriction pattern Regular expression representation of IP addresses
authorized to access EBX. For example, ((127\.0\.0\.1) |
(192\.168\.*\.*)) grants access to the local machine and
the network IP range 192.168.*.*.

Unique session control Specifies whether EBX should control the uniqueness of
user sessions. When set to 'Yes', if a user does not log out
before closing the browser, it will not be possible for that
user to log in again until the previous session has timed out.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 389

Ergonomics and layout
EBX ergonomics parameters:

Max table columns to display According to network and browser performance, adjusts the
maximum number of columns to display in a table. This
property is not used when a view is applied on a table.

Maximum auto-width for table
columns

Defines the maximum width to which a table column
can auto-size during table initialization. This is to prevent
columns from being too wide, which could occur for very
long values, such as URLs. Users will still be able to
manually resize columns beyond this value.

Max expanded elements for a
hierarchy

Defines the maximum number of elements that can be
expanded in a hierarchy when using the action "Expand all".
A value less than or equal to '0' disables this parameter.

Default table filter Defines the default table filter to display in the filters list in
tabular views. If modified, users must log out and log in for
the new value to take effect.

Display the message box
automatically

Defines the message severity threshold for displaying the
messages pop-up.

IE compatibility mode Defines whether or not to compensate for Internet Explorer
8+ displaying EBX in compatibility mode.
In order to prevent Internet Explorer browsers from using
compatibility mode when displaying the repository user
interface, the meta-tag http-equiv="X-UA-Compatible"
content="IE=EmulateIE8" is added to the header of pages.
However, in some local environments, this setting may
conflict with existing policies, in which case this header
must be omitted by setting the parameter to 'No'. The default
value is 'Yes'.

See Specifying Document Compatibility Modes for more
information.

Forms: width of labels The width of labels in forms.

Forms: width of inputs The width of form input fields in forms.

Forms: height of text areas The height of text entry fields in forms.

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/compatibility/cc288325(v=vs.85)

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 390

Forms: aggregated lists The number of hidden candidate lines to be generated,
available to create new instances in the list.

Forms: width of HTML editor The width of HTML editors in forms.

Forms: height of HTML editor The height of HTML editors in forms.

Searchable list selection page
size

Maximum number of rows downloaded at each request of
the searchable list selection (used for selecting foreign keys,
enumerations, etc.).

Record form: rendering mode
for nodes

Specifies how to display non-terminal nodes in record
forms. This should be chosen according to network and
browser performance. For impact on page loading, link
mode is light, expanded and collapsed modes are heavier. If
this property is modified, users are required to log out and
log in for the new value to take effect.

Record form: display of
selection and association nodes
in creation mode

If enabled, the selection and association nodes will be
displayed in record creation forms.

Display density Defines the default display density mode for all users. If no
density has been selected by the user yet, this value will be
applied. Conversely, if the user already chose a density, their
choice will prevail.

Avatar displayed in the header This property defines the display mode of avatars in the
header. For example, it is possible to enable or disable the
use of avatars in the header by updating this property. If no
value is defined, the default value is 'Avatar only'. If it is a
relative path, prefix it with "../" to get back to the application
root URL.

Avatar displayed in the history This property defines the display mode of avatars in the
history. For example, it is possible to enable or disable the
use of avatars in the history by updating this property. If no
value is defined, the default value is 'Avatar only'. If it is a
relative path, prefix it with "../" to get back to the application
root URL.

Avatar displayed in the
workflow

This property defines the display mode of avatars in the
workflow. For example, it is possible to enable or disable
the use of avatars in the workflow by updating this property.
If no value is defined, the default value is 'Avatar only'. If

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 391

it is a relative path, prefix it with "../" to get back to the
application root URL.

Default option values
Defines default values for options in the user interface.
Import/Export

CSV file encoding Specifies the default character encoding to use for CSV file
import and export.

CSV : field separator Specifies the default separator character to use for CSV file
import and export.

CSV : list separator Specifies the default list separator character to use for CSV
file import and export.

Import mode Specifies the default import mode.

Missing XML values as 'null' If 'Yes', when updating existing records, if a node is missing
or empty in the imported file, the value is considered as
'null'. If 'No', the value is not modified.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 392

Colors and themes
Customizes EBX colors and themes.

Web site icon URL (favicon) Sets a custom favicon. The recommended format is ICO,
which is compatible with Internet Explorer.

Logo URL (SVG) Specifies the SVG image used for compatible browsers.
Leave this field blank to use the PNG image, if specified.
The user interface will attempt to use the specified PNG
image if the browser is not SVG-compatible. If no PNG
image is specified, the GIF/JPG image will be used. The
logo must have a maximum height of 40px. If the height
exceeds 40px, it will be cropped, not scaled, to a height of
40px. The width of the logo will determine the position of
the buttons in the header. If it is a relative path, prefix it with
"../" to get back to the application root URL.

Logo URL (PNG) Specifies the PNG image used for compatible browsers.
Leave both this field and the SVG image URL field blank to
use the GIF/JPG image. The user interface will use the GIF/
JPG image if the browser is not PNG-compatible. The logo
must have a maximum height of 40px. If the height exceeds
40px, it will be cropped, not scaled, to a height of 40px. The
width of the logo will determine the position of the buttons
in the header. If it is a relative path, prefix it with "../" to get
back to the application root URL.

Logo URL (GIF/JPG) Specifies the GIF/JPG image to use when neither the PNG
nor SVG are defined. The recommended formats are GIF
and JPG. The logo must have a maximum height of 40px.
If the height exceeds 40px, it will be cropped, not scaled, to
a height of 40px. The width of the logo will determine the
position of the buttons in the header. If it is a relative path,
prefix it with "../" to get back to the application root URL.

Main Main user interface theme color, used for selections and
highlights.

Header Background color of the user interface header. By default,
set to the same value as the Main color.

Workflow badge Background and text/outline colors of new workflow task
counters.

Primary buttons Color of buttons selected by default. By default, set to the
same value as the Main color.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 393

Text of link style buttons Text color of some buttons having a link style (the text is
not dark or light, but colored). By default, set to the same
value as the main color.

Selected tab border Border color of the selected tab. By default, set to the same
value as the Main color.

Table history view: technical
data

Background color of technical data cells in the table history
view.

Table history view: creation Background color of cells with the state 'creation' in the
table history view.

Table history view: deletion Background color of cells with the state 'deletion' in the
table history view.

Table history view: update Background color of cells with the state 'update' in the table
history view.

Child perspective menu
An unlimited number of child perspectives can be created. Child perspectives inherit from the
parameters of the 'Advanced perspective'. Some of these parameters can be overridden as detailed
hereafter.

Activation & Allowed profiles
See Activation and Allowed profiles for the Advanced perspective [p 387] for more information.

Note

Any specific parameter set for this perspective will override the default parameters that
have been set in the 'Advanced perspective' configuration.

Perspective Menu
This view displays the perspective menu. It is a hierarchical table view.
From this view, a user can create, delete or reorder menu item records.

See alsoHierarchical table view [p 27]

Section Menu Item This is a top level menu item. It contains other menu items.

Menu group This is a container for other menu items.

Action Menu Item This menu item displays a user service in the workspace
area.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 394

Menu item properties
When creating a record in the 'Perspective' Menu, the available perspective properties are:

Type The menu item type.

See alsoMenu item types [p 393]

Parent The parent of the menu item.
This property is not available for section menu items.

Label The menu item label.
The label is optional for action menu items. If not specified,
the label will be dynamically generated by EBX when the
menu item is displayed.

Allowed devices The list of authorized devices for this item.
If not specified, all devices can display this menu item.
Currently only two devices are supported:"EBX Web
Application" and "EBX GO".

Icon The icon for the menu item.
Icon can be either "standard" (provided by EBX) or an
image, specified by a URL, that can be hosted on any web
server.
Icons size should be 16x16 pixels.
This property is not available for section menu items.

Top separator Indicates that the menu item section has a top separator.
This property is only available for section menu items.

Action The user service to execute when the user clicks on the menu
item.

See alsoUser interface services [p 563]

If an end-user is allowed to view the perspective but not to
execute the user service, an "access denied" message will
be displayed when the user clicks on the menu item.
This property is only available for action menu items.

Selection on close The menu item that will be selected when the service
terminates.
Built-in services use this property when the user clicks on
the 'Close' button.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 395

This property is only available for action menu items.

Ergonomics and layout
See Ergonomics and layout for the Advanced perspective [p 389] for more information.

Note

Any specific parameter set for this perspective will override the default parameters that
have been set in the 'Advanced perspective' configuration.

Colors and themes
See Colors and themes for the Advanced perspective [p 392] for more information.

Note

Any specific parameter set for this perspective will override the default parameters that
have been set in the 'Advanced perspective' configuration.

63.3 Recommended perspectives
It is possible for a perspective administrator to configure recommended perspectives dedicated to a
specific audience. These recommended perspectives are a way to choose which perspective is applied
by default when a user logs in, based on their role.
However, users always have the possibility to switch between the various perspectives that are
available to them and to set one as their favorite. See Favorite perspectives [p 19] for more information.
To configure recommended perspectives, go to User interface > Recommended perspectives >
Manage recommended perspectives.

Managing recommended perspectives
The main screen shows an ordered list of records associating a profile with a perspective. Note that
the order here is important since a user can match more than one record (see Resolution [p 395] for
more information).

• To add an entry, use the 'Create' action.

• To edit an entry, first select it in the list by clicking on it, then click on the 'Edit' action, or simply
double-click on it.

• To remove an entry, first select it in the list, then click on the 'Delete' action.

• To move an entry, first select it in the list, then use the actions in the toolbar to the right of the list.

Resolution
When a user logs in, the following algorithm determines which perspective is selected by default:
// 1) favorite perspective
IF the user has a favorite perspective
AND this perspective is active
AND the user is authorized for this perspective
 SELECT this perspective
 DONE

// 2) recommended perspective
FOR EACH association in the recommended perspectives list, in the declared order
 IF the user is in the declared profile

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 396

 AND the associated perspective is active
 AND the user is authorized for the associated perspective
 SELECT this perspective
 DONE

// 3) advanced perspective
IF the advanced perspective is active
AND the user is authorized for this perspective
 SELECT this perspective
 DONE

// 4) any perspective
SELECT any active perspective for which the user is authorized
DONE

63.4 Custom views
Users can create and manage custom views directly from the 'View' menu on tables. This
administration section is the central point to manage these custom views.

Views
This table contains all custom views defined on any table. Only a subset of fields is editable:

Documentation Localized labels and descriptions.

Owner Defines the user(s) owning and authoring this view
definition.

View group Indicates the menu group in which this view is displayed in
the 'View' menu.

Share with Defines the users allowed to select this view from their
'View' menu.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 397

Views permissions
This table allows to manage permissions relative to custom views, by data model and profile. The
following permissions can be configured (the default value is applied when no permission is set for
a given user):

Permission Description Default value

Recommend views Allows the user to manage recommended
views.

If the user is the dataset owner, the
default value is 'Yes', otherwise it is 'No'.

Manage views Defines the views the user can modify
and delete.

If the user is a built-in administrator,
the default value is 'Owned + shared',
otherwise it is 'Owned'.

Share views Defines the views for which the user can
edit the 'Share with' field.

If the user is a built-in administrator,
the default value is 'Owned + shared',
else if the user is the dataset owner, it is
'Owned', otherwise it is 'None'.

Publish views Allows the user to publish views to make
them available to all users using Web
components, workflow user tasks, or
data services.

If the user is a built-in administrator, the
default value is 'Yes', otherwise it is 'No'.

63.5 User session management
This tool lists all user sessions and allows terminating active sessions when necessary.
For example: it is possible to invalidate and terminate all currently open and active sessions
for maintenance purposes. The access to the user interface can be temporarily closed, with an
unavailability message being displayed, through Application locking [p 387]. After active sessions
are terminated, users will not be able to reconnect and will see the unavailability message. The
maintenance operation can then be performed.

Documentation > Administration Guide > Technical administration > UI administration

TIBCO EBX® Product Documentation 5.9.20 398

Documentation > Administration Guide > Technical administration > Users and roles directory

TIBCO EBX® Product Documentation 5.9.20 399

CHAPTER 64
Users and roles directory

This chapter contains the following topics:

1. Overview

2. Concepts

3. Default directory

4. Custom directory

64.1 Overview
TIBCO EBX uses a directory for user authentication and user role definition.
A default directory is provided and integrated into the EBX repository; the 'Directory' administration
section allows defining which users can connect and what their roles are.
It is also possible to integrate another type of enterprise directory.

See also

Configuring the user and roles directory [p 349]

Custom directory [p 402]

64.2 Concepts
In EBX, a user can be a member of several roles, and a role can be shared by several users. Moreover,
a role can be included into another role. The generic term profile is used to describe either a user or
a role.

Documentation > Administration Guide > Technical administration > Users and roles directory

TIBCO EBX® Product Documentation 5.9.20 400

In addition to the directory-defined roles, EBX provides the following built-in roles:

Role Definition

Profile.ADMINISTRATOR Built-in Administrator role. Allows performing general
administrative tasks.

Profile.READ_ONLY Built-in read-only role. A user associated with the read-only
role can only view the EBX repository, and has no right to
perform modifications in the repository.

Profile.OWNER Dynamic built-in owner role. This role is checked dynamically
depending on the current element. It is only activated if the user
belongs to the profile defined as owner of the current element.

Profile.EVERYONE All users belong to this role.

Information related to profiles is primarily defined in the directory.

Attention
Associations between users and the built-in roles OWNER and EVERYONE are managed
automatically by EBX, and thus must not be modified through the directory.

User permissions are managed separately from the directory. See Permissions [p 275].

See also

profile [p 23]

role [p 24]

user [p 23]

administrator [p 24]

user and roles directory [p 24]

Policy
These properties configure the policies of the user and roles directory, for example, whether or not
users can edit their own profiles.

Users
This table lists all the users defined in the internal directory. New users can be added from there.

Roles
This table lists all the users defined in the internal directory. New roles can be created in this table.

Documentation > Administration Guide > Technical administration > Users and roles directory

TIBCO EBX® Product Documentation 5.9.20 401

64.3 Default directory

Directory content
The default directory is represented by the dataset 'Directory', in the 'Administration' area.
This dataset contains tables for users and roles, as well as users' roles table, roles' inclusions table
and salutations table.

Note

If a role inclusion cycle is detected, the role inclusion is ignored at the permission
resolution. Refresh and check the directory validation report for cycle detection.

Note

Users' roles, roles' inclusions and salutations tables are hidden by default [p 544].

Depending on the policies defined, users can modify information related to their own accounts,
regardless of the permissions defined on the directory dataset.

Note

It is not possible to delete or duplicate the default directory.

Password recovery procedure
In the default directory, passwords are encrypted (by default with a SHA256-like algorithm), and
stored in this state. Consequently, it is impossible to retrieve lost passwords. A new password must
be generated and sent to the user.
There are two options for this procedure:

1. A notification email is sent to the administrator, the administrator manually changes the password
and sends the new password to the user.

2. A procedure automatically generates a new password and sends it to the user.

By default, the first option is used. To activate the second option, specify the property
ebx.password.remind.auto=true in the TIBCO EBX main configuration file [p 345].

Note

For security reasons, the password recovery procedure is not available for administrator
profiles. If required, use the administrator recovery procedure instead.

Administrator recovery procedure
If all the 'login/password' credentials of the administrators are lost, a special procedure must be
followed. A specific directory class redefines an administrator user with login 'admin' and password
'admin'.
To activate this procedure:

• Specify the following property in the TIBCO EBX main configuration file [p 345]:
ebx.directory.factory=
com.orchestranetworks.service.directory.DirectoryDefaultRecoverFactory

Documentation > Administration Guide > Technical administration > Users and roles directory

TIBCO EBX® Product Documentation 5.9.20 402

• Start EBX and wait until the procedure completes.

• Reset the 'ebx.directory.factory' property.

• Restart EBX and connect using the 'admin' account.

Note

While the 'ebx.directory.factory' property is set for the recovery procedure,
authentication of users will be denied.

64.4 Custom directory
As an alternative to the default directory, it is possible to integrate a specific company directory. For
example, an LDAP instance, a relational database or a specific directory model instantiated into EBX.

See alsoDirectoryFactoryAPI

Documentation > Administration Guide > Technical administration > Data model administration

TIBCO EBX® Product Documentation 5.9.20 403

CHAPTER 65
Data model administration

This chapter contains the following topics:

1. Administrating publications and versions

2. Migration of previous data models in the repository

3. Schema evolutions

65.1 Administrating publications and versions
Technical data related to data model publications and versions can be accessed in the Administration
section by an administrator.
Data Modeling contains the following two tables:

• Publications. Stores the publications available in the repository.

• Versions. Stores the versions of the data models available in the repository.

These tables are read-only but it is however possible to delete manually a publication or a version.
Important: If a publication or a version is deleted, then the content of associated datasets will become
unavailable. So this technical data must be deleted with caution.
It is possible to spread this technical data to other TIBCO EBX repositories exporting an archive from
an EBX repository and importing it to another one. It may be useful for propagating the evolutions
of data models to other repositories.

65.2 Migration of previous data models in the repository
In versions before 5.2.0, published data models not depending on a module were generated in the
file system directory ${ebx.repository.directory}/schemas/, with the name of the data model
(product.xsd for example if the data model is named Product). Since the 5.2.0 version, this kind of data
model is now fully managed within EBX through Publications. That is, republishing an existing data
model migrates it as a Publication and redirects linked datasets to the new embedded data model. The
previous XML Schema Document located in ${ebx.repository.directory}/schemas/ is renamed
and suffixed with toDelete, meaning that the document is no longer used and can be safely deleted.

65.3 Schema evolutions
It is crucial to evaluate the impact of data model changes on the administration side. The following
points are to be considered:

Documentation > Administration Guide > Technical administration > Data model administration

TIBCO EBX® Product Documentation 5.9.20 404

Impacts on data persistence
Administration tasks can be related to the database cleanup after a modification of the models. The
following links describe how the evolutions of data models are managed at the persistence level:
Cleaning up tables having unreadable records [p 379] and Purging master tables in the database [p 407].

Impacts on side features
Some components rely heavily on the data models and can be impacted by their evolutions. Some
examples are: the user interface, the WSDL documents, existing archives, etc.
The 'Administration' section offers the possibility to manage some of these components (such as the
views), whereas other components fall out of the administrator's scope, such as archives, WSDL files,
etc.

Documentation > Administration Guide > Technical administration > Database mapping administration

TIBCO EBX® Product Documentation 5.9.20 405

CHAPTER 66
Database mapping administration

This chapter contains the following topics:

1. Overview

2. Renaming columns in the database

3. Purging columns in the database

4. Renaming master tables in the database

5. Renaming auxiliary tables in the database

6. Purging master tables in the database

66.1 Overview
Information and services relative to database mapping can be found in the Administration area.

See also

Mapped modes [p 243]

DatabaseMappingAPI

66.2 Renaming columns in the database
This feature is available on the 'Columns' table records, under the 'Actions' menu. It allows renaming
a column in the database.
The administrator can specify the name of each column of the data model in the database for mapped
modes.
Once the service is selected on a record, a summary screen displays information regarding the selected
column and the administrator is prompted to enter a new name for the column in the database.

Note

It is required that the new identifier begins with a letter.
Besides, the new name must be a valid column identifier, which depends on the naming rules
of the underlying RDBMS.

See alsoDatabaseMappingAPI

Documentation > Administration Guide > Technical administration > Database mapping administration

TIBCO EBX® Product Documentation 5.9.20 406

66.3 Purging columns in the database
This feature is available on the 'Columns' table records, under the 'Actions' menu. It allows purging
columns in mapped structures.
A column can be purged if it has been disabled for mapped modes.
A column is disabled for mapped modes when:

• the corresponding field has been removed from the data model, or

• the corresponding field has been changed in the data model, in a way that is not compatible (for
example: its data type has been modified), or

• the defined mapped modes have been disabled locally on the corresponding fields, using the
elements osd:history and osd:replication.

See also

Disabling history on a specific field or group [p 252]

Disabling replication on a specific field or group [p 261]

Note that this behavior will change for aggregated lists:

• when deactivating a complex aggregated list, its inner fields will still be in the LIVING state,
whereas the list node is disabled. As lists are considered as auxiliary tables in the mapping system,
this information can be checked in the 'Tables' table,

• on the other hand, when the deactivation is just for inner nodes of the list, then the list will remain
LIVING, while its children will be DISABLED IN MODEL.

A column can be purged only if its own state is DISABLED IN MODEL, or if it is an inner field of a
DISABLED IN MODEL list.

66.4 Renaming master tables in the database
This feature allows renaming master tables for both relational and history modes in the database.
However, it is not available for replicated tables since their names are specified in the data model.
Both features are available on the 'Tables' table records, under the 'Actions' menu.
Master tables are database tables used for persisting the tables of the data model.
The administrator can specify in the database the name of each master table corresponding to a table
of the data model.

Documentation > Administration Guide > Technical administration > Database mapping administration

TIBCO EBX® Product Documentation 5.9.20 407

Once the service is selected on a record, a summary screen displays information regarding the selected
master table and the administrator is prompted to enter a new name for the master table in the database.

Note

It is required that the new identifier begins with a letter and with the repository prefix.
For history tables, it is also required that the repository prefix is followed by the history tables
prefix.
For relational tables, it is also required that the repository prefix is followed by the relational
tables prefix.
Besides, the new name must be a valid table identifier, which depends on the naming rules
of the underlying RDBMS.

66.5 Renaming auxiliary tables in the database
This feature allows renaming history auxiliary tables in the database. This feature is neither available
for replicated tables since their names are specified in the data model, nor for the relational mode, as
aggregated lists are never supported in this mode.
This feature is available on the 'Tables' table records, under the 'Actions' menu.
Auxiliary tables are database tables used for persisting aggregated lists.
The administrator can specify in the database the name of each auxiliary table corresponding to an
aggregated list of the data model.
Once the service is selected on a record, a summary screen displays information regarding the selected
auxiliary table and the administrator is prompted to enter a new name for the auxiliary table in the
database.

Note

It is required that the new identifier begins with a letter.
It is required that the new identifier begins with the repository prefix.
It is also required that the repository prefix is followed by the history tables prefix.
Besides, the new name must be a valid table identifier, which depends on the naming rules
of the underlying RDBMS.

66.6 Purging master tables in the database
This feature allows purging history and relational tables in the database if they are no longer used.
It is available on the 'Tables' table records, under the 'Actions' menu, and is only available for master
tables. This feature only applies to master tables. When a master table is purged, all its auxiliary tables
are purged as well.
A mapped table can be purged in the database only if it has been disabled for the corresponding
mapped mode.
To disable the mapped mode for a table, follow the procedure hereafter.
For history mode:

• Deactivate historization of the table in the data model, or

• Remove the table from the data model

Documentation > Administration Guide > Technical administration > Database mapping administration

TIBCO EBX® Product Documentation 5.9.20 408

For relational mode:

• Remove the table from the data model, or

• Deactivate the relational mode on the data model. As data models in semantic mode cannot be
used for relational dataspaces, it is thus necessary to create a dataset on a semantic dataspace using
this modified data model. TIBCO EBX will then detect that the relational mode was previously
used, and will therefore propose the relational table database resources for purge.

Documentation > Administration Guide > Technical administration > Workflow management

TIBCO EBX® Product Documentation 5.9.20 409

CHAPTER 67
Workflow management

This chapter contains the following topics:

1. Workflows

2. Interactions

3. Workflow history

67.1 Workflows
To define general parameters for the execution of data workflows, the management of workflow
publications, or to oversee data workflows in progress, navigate to the 'Administration' area. Click on
the down arrow in the navigation pane and select Workflow management > Workflows.

Note

In cases where unexpected inconsistencies arise in the workflow execution technical tables,
data workflows may encounter errors. It may then be necessary to run the operation 'Clean up
inconsistencies in workflow execution tables' from the 'Actions' menu in the navigation pane
under Administration > Workflow Management > Workflows.

Execution of workflows
Various tables can be used to manage the data workflows that are currently in progress. These tables
are accessible in Workflow management > Workflows in the navigation pane.

See alsoAdministration of data workflows [p 175]

Workflows table
The 'Workflows' table contains instances of all data workflows in the repository, including those
invoked as sub-workflows. A data workflow is a particular execution instance of a workflow model
publication. This table provides access to the data context variables for all data workflows. It can be
used to access the status of advancement of the data workflow in terms of current variable values, and
in case of a data workflow suspension, to modify the variable values.
From the 'Actions' menu of the 'Workflows' table, it is possible to clear the completed data workflows
that are older than a given date, by selecting the 'Clean from a date' service. This service automatically
ignores the active data workflows.

Documentation > Administration Guide > Technical administration > Workflow management

TIBCO EBX® Product Documentation 5.9.20 410

Tokens table
The 'Tokens' table allows managing the progress of data workflows. Each token marks the current
step being executed in a running data workflow, as well as the current state of the data workflow.

See alsotoken [p 31]

Work items table
The 'Work items' table contains all the work items associated with user tasks that currently exist. If
necessary, you can manually allocate a work item to a user from this table in the case of a blockage in
a data workflow. It is preferable, however, to use the buttons in the workspace of the 'Data workflows'
area whenever possible to allocate, reallocate, and deallocate work items.

See alsowork item [p 31]

Waiting workflows table
The 'Waiting workflows' table contains all the workflows waiting for an event. If needed, a service is
available to clean this table: this service deletes all lines associated with a deleted workflow.

See alsowait task [p 30]

Comment table
The 'Comments' table contains the user's comments for main workflows and their sub-workflows.

Workflow publications
The 'Workflow publications' table is a technical table that contains all the workflow model publications
of the repository. This table associates published workflow models with their snapshots. It is not
recommended to directly modify this table, but rather to use the actions available in the workflow
modeling area to make changes to publications.

Configuration

Email configuration
In order for email notifications to be sent during the data workflow execution, the following settings
must be configured under 'Email configuration':

• The URL definition field is used to build links and value mail variables in the workflow.

• The 'From email' field must be completed with the email address that will be used to send email
notifications.

Interface customization

Modeling default values
The default value for some properties can be customized in this section.
The administrator has the possibility to define the default values to be used when a new workflow
model or workflow step is created in the 'Workflow Modeling' section.

Documentation > Administration Guide > Technical administration > Workflow management

TIBCO EBX® Product Documentation 5.9.20 411

Work items views
Specific columns are available in the inbox and in the monitoring work items tables, in the 'Data
workflows' section.
10 specific columns are available. For each specific column, a customized label can be defined.

Priorities configuration
The property 'Default priority' defines how data workflows and their work items across the repository
display if they have no priority level. For example, if this property is set to the value 'Normal', any
workflow and work item with no priority will appear to have the 'Normal' priority.
The 'priorities' table defines all priority levels available to data workflows in the repository. As many
integer priority levels as needed can be added, along with their labels, which will appear when users
hover over the priority icon in the work item tables. The icons that correspond to each priority level
can also be selected, either from the set provided by TIBCO EBX, or by specifying a URL to an icon
image file.

Temporal tasks
Under 'Temporal tasks', the polling interval for time-dependent tasks in the workflow can be set, such
as deadlines and reminders. If no interval value is set, the 'in progress' steps are checked every hour.

Workflow inbox counter configuration
The workflow inbox counter is refreshed asynchronously, even if the end-user does not launch any
action. To adjust it, two parameters need to be set:

Cache expiry (seconds) Expiration time (in seconds) before a new update of the
inbox cache. Please note that this parameter can impact the
CPU load and performance since the computation time can
be costly for a repository with many work items. If no value
is defined, the default value is 600.

User interface refresh
periodicity (seconds)

Refresh time (in seconds) between two updates of the
inbox counter in the user interface. Please note that this
refresh concerns all inbox counters in the user interface:
inbox counters of the custom perspective, header inbox
counter and Data Workflows inbox counter for the advanced
perspective. If no value is defined, default value is 5. If the
value is zero (or negative), the refresh is disabled. Also, the
modification will only be effective after a logout/login from
the user.

Also, please note that some actions can force the inbox counter to refresh:

• access on Data workflows

• access on any subdivision of the Data workflows section

• accept or reject a work item

• launch a workflow

Documentation > Administration Guide > Technical administration > Workflow management

TIBCO EBX® Product Documentation 5.9.20 412

These parameters are accessible in Workflow management > Workflows > Configuration > Temporal
tasks in the navigation pane.

67.2 Interactions
To manage workflow interactions, navigate to the Administration area. Click the down arrow in the
navigation pane and select the entry Workflow management > Interactions.
An interaction is generated automatically for every work item that is created. It is a local data context
of a work item and is accessible from an EBX session. When a work item is executed, the user performs
the assigned actions based upon its interaction, independently of the workflow engine. User tasks
define mappings for their input and output parameters to link interactions with the overall data contexts
of data workflows.
Interactions can be useful for monitoring the current parameters of work items. For example, an
interaction can be updated manually by a trigger or a user service.

67.3 Workflow history
To view the history data workflow execution, browse the 'Administration' area. Click on the down
arrow in the navigation pane and select Workflow management > Workflow history.
The 'Workflows' table contains all actions that have been performed during the execution of
workflows.
This data can be viewed graphically or textually. It is especially useful to view the states of various
objects related to workflows at a given moment. This includes actions on work items, variables in the
data context, as well as tokens. In case of an error, a technical log is available.

Clean history
From the 'Actions' menu of the 'Workflows' table, the history of completed data workflows older than
a given date can be cleared by selecting the 'Clear from a date' service.
Only the history of workflows that have been previously cleaned (e.g. their execution data deleted)
is cleared. This service automatically ignores the history associated with existing workflows. It is
necessary to clear data workflows before clearing the associated history, by using the dedicated service
'Clear from a date' from the 'Workflows' table. Also, a scheduled 'Clear from a date' can be used with
the built-in scheduled task SchedulerPurgeWorkflowMainHistory.
Please note that only main processes are cleaned. In order to remove sub-processes and all related
data, it will be necessary to run a 'standard EBX purge'.

See alsoHow to clean workflow history [p 380]

Note

An API is available to fetch the history of a workflow. Direct
access to the underlying workflow history SQL tables is not
supported. See WorkflowEngine.getProcessInstanceHistory WorkflowEngine.
getProcessInstanceHistoryAPI.

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 5.9.20 413

CHAPTER 68
Task scheduler

This chapter contains the following topics:

1. Overview

2. Configuration from EBX

3. Cron expression

4. Task definition

5. Task configuration

68.1 Overview
TIBCO EBX offers the ability to schedule programmatic tasks.

Note

In order to avoid conflicts and deadlocks, tasks are scheduled in a single queue.

68.2 Configuration from EBX
The declaration of schedules and tasks is done by selecting 'Task scheduler' in the 'Administration'
area.

• Schedules: defines scheduling using "cron expressions".

• Tasks: configures tasks, including parametrizing task instances and user profiles for their
execution.

• Scheduled tasks: current schedule, including task scheduling activation/deactivation.

• Execution reports: reports of each scheduled task run that appear immediately after the task is
triggered. The reports include actions to interrupt, pause, or resume running tasks, when made
available by the task definition.

68.3 Cron expression
(An extract of the Quartz Scheduler documentation)
The task scheduler uses "cron expressions", which can create firing schedules such as: "At 8:00am
every Monday through Friday" or "At 1:30am every last Friday of the month".

http://quartz-scheduler.org/

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 5.9.20 414

Format
A cron expression is a string comprised of 6 or 7 fields separated by a white space. Fields can contain
any of the allowed values, along with various combinations of the allowed special characters for that
field. The fields are as follows:

Field Name Mandatory Allowed Values Allowed Special Characters

Seconds Yes 0-59 , - * /

Minutes Yes 0-59 , - * /

Hours Yes 0-23 , - * /

Day of month Yes 0-31 , - * ? / L W

Month Yes 1-12 or JAN-DEC , - * /

Day of week Yes 1-7 or SUN-SAT , - * ? / L #

Year No empty, 1970-2099 , - * /

A cron expression can be as simple as this: "0 * * * * ?",
or more complex, like this: "0/5 14,18,3-39,52 * ? JAN,MAR,SEP MON-FRI 2002-2010".

Note

The legal characters and the names of months and days of the week are not case sensitive.
MON is the same as mon.

Special characters
A cron expression is a string comprised of 6 or 7 fields separated by a white space. Fields can contain
any of the allowed values, along with various combinations of the allowed special characters for that
field. The fields are as follows:

• * ("all values") - used to select all values within a field. For example, "*" in the Minutes field
means "every minute".

• ? ("no specific value") - useful when you need to specify something in one of the two fields in
which the character is allowed, but not the other. For example, if I want my trigger to fire on a
particular day of the month (say, the 10th), but don't care what day of the week that happens to be,
I would put "10" in the day-of-month field, and "?" in the day-of-week field. See the examples
below for clarification.

• - - used to specify ranges. For example, "10-12" in the hour field means "the hours 10, 11 and 12".

• , - used to specify additional values. For example, "MON,WED,FRI" in the day-of-week field
means "the days Monday, Wednesday, and Friday".

• / - used to specify increments. For example, "0/15" in the seconds field means "the seconds 0, 15,
30, and 45". And "5/15" in the seconds field means "the seconds 5, 20, 35, and 50". You can also

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 5.9.20 415

specify '/' after the '' character - in this case '' is equivalent to having '0' before the '/'. '1/3' in the
day-of-month field means "fire every 3 days starting on the first day of the month".

• L ("last") - has different meaning in each of the two fields in which it is allowed. For example,
the value "L" in the day-of-month field means "the last day of the month" - day 31 for January,
day 28 for February on non-leap years. If used in the day-of-week field by itself, it simply means
"7" or "SAT". But if used in the day-of-week field after another value, it means "the last xxx day
of the month" - for example "6L" means "the last friday of the month". When using the 'L' option,
it is important not to specify lists, or ranges of values, as you'll get confusing results.

• W ("weekday") - used to specify the weekday (Monday-Friday) nearest the given day. As an
example, if you were to specify "15W" as the value for the day-of-month field, the meaning is:
"the nearest weekday to the 15th of the month". So if the 15th is a Saturday, the trigger will fire on
Friday the 14th. If the 15th is a Sunday, the trigger will fire on Monday the 16th. If the 15th is a
Tuesday, then it will fire on Tuesday the 15th. However if you specify "1W" as the value for day-
of-month, and the 1st is a Saturday, the trigger will fire on Monday the 3rd, as it will not 'jump'
over the boundary of a month's days. The 'W' character can only be specified when the day-of-
month is a single day, not a range or list of days.

Note

The 'L' and 'W' characters can also be combined in the day-of-month field to yield
'LW', which translates to "last weekday of the month".

• # - used to specify "the nth" day-of-week day of the month. For example, the value of "6#3" in
the day-of-week field means "the third Friday of the month" (day 6 = Friday and "#3" = the 3rd
one in the month). Other examples: "2#1" = the first Monday of the month and "4#5" = the fifth
Wednesday of the month. Note that if you specify "#5" and there is not 5 of the given day-of-
week in the month, then no firing will occur that month.

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 5.9.20 416

Examples

Expression Meaning

0 0 12 * * ? Fire at 12pm (noon) every day.

0 15 10 ? * * Fire at 10:15am every day.

0 15 10 * * ? Fire at 10:15am every day.

0 15 10 * * ? * Fire at 10:15am every day.

0 15 10 * * ? 2005 Fire at 10:15am every day during the year 2005.

0 * 14 * * ? Fire every minute starting at 2pm and ending at 2:59pm, every
day.

0 0/5 14 * * ? Fire every 5 minutes starting at 2pm and ending at 2:55pm,
every day.

0 0/5 14,18 * * ? Fire every 5 minutes starting at 2pm and ending at 2:55pm,
AND fire every 5 minutes starting at 6pm and ending at
6:55pm, every day.

0 0-5 14 * * ? Fire every minute starting at 2pm and ending at 2:05pm, every
day.

0 10,44 14 ? 3 WED Fire at 2:10pm and at 2:44pm every Wednesday in the month of
March.

0 15 10 ? * MON-FRI Fire at 10:15am every Monday, Tuesday, Wednesday, Thursday
and Friday.

0 15 10 15 * ? Fire at 10:15am on the 15th day of every month.

0 15 10 L * ? Fire at 10:15am on the last day of every month.

0 15 10 ? * 6L Fire at 10:15am on the last Friday of every month.

0 15 10 ? * 6L 2002-2005 Fire at 10:15am on every last friday of every month during the
years 2002, 2003, 2004 and 2005.

0 15 10 ? * 6#3 Fire at 10:15am on the third Friday of every month.

0 0 12 1/5 * ? Fire at 12pm (noon) every 5 days every month, starting on the
first day of the month.

0 11 11 11 11 ? Fire every November 11th at 11:11am.

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 5.9.20 417

Note

Pay attention to the effects of '?' and '*' in the day-of-week and day-of-month fields.
Support for specifying both a day-of-week and a day-of-month value is not complete (you
must currently use the '?' character in one of these fields).
Be careful when setting fire times between the hours of the morning when "daylight savings"
changes occur in your locale (for US locales, this would typically be the hour before and after
2:00 AM - because the time shift can cause a skip or a repeat depending on whether the time
moves back or jumps forward.

68.4 Task definition
EBX scheduler comes with some predefined tasks.
Custom scheduled tasks can be added by the means of scheduler Package
com.orchestranetworks.schedulerAPI Java API.
The declaration of schedules and tasks is done by selecting 'Task scheduler' in the 'Administration'
area.

68.5 Task configuration
A user must be associated with a task definition; this user will be used to generate the session SessionAPI

that will run the task.

Note

The user will not be authenticated, and no password is required. As a consequence, a
user with no password set in the directory can only be used to run scheduled tasks.

A custom task can be parameterized by means of a JavaBean specification (getter and setter).
Supported parameter types are:

• java.lang.boolean

• java.lang.int

• java.lang.Boolean

• java.lang.Integer

• java.math.BigDecimal

• java.lang.String

• java.lang.Date

• java.net.URI

• java.net.URL

Parameter values are set in XML format.

Documentation > Administration Guide > Technical administration > Task scheduler

TIBCO EBX® Product Documentation 5.9.20 418

Documentation > Administration Guide > Technical administration > Audit trail

TIBCO EBX® Product Documentation 5.9.20 419

CHAPTER 69
Audit trail

This chapter contains the following topics:

1. Overview

2. Update details and disk management

3. File organization

69.1 Overview
XML audit trail is a feature that allows logging updates to XML files. An alternative history feature
is also available to record table updates in the relational database; see History [p 251].
Any persistent updates performed in the TIBCO EBX repository are logged to an audit trail XML
file. Procedure executions are also logged, even if they do not perform any updates, as procedures are
always considered to be transactions. The following information is logged:

• Transaction type, such as dataset creation, record modification, record deletion, specific
procedure, etc.

• Dataspace or snapshot on which the transaction is executed.

• Transaction source. If the action was initiated by EBX, this source is described by the user identity,
HTTP session identifier and client IP address. If the action was initiated programmatically, only
the user's identity is logged.

• Optional "trackingInfo" value regarding the session

• Transaction date and time (in milliseconds);

• Transaction UUID (conform to the Leach-Salz variant, version 1);

• Error information; if the transaction has failed.

• Details of the updates performed. If there are updates and if history detail is activated, see next
section.

69.2 Update details and disk management
The audit trail is able to describe all updates made in the EBX repository, at the finest level. Thus, the
XML files can be quite large and the audit trail directory must be carefully supervised. The following
should be taken into account:

Documentation > Administration Guide > Technical administration > Audit trail

TIBCO EBX® Product Documentation 5.9.20 420

1. If an archive import is executed in non-interactive mode (without a change set), the audit trail
does not detail the updates; it only specifies the archive that has been imported. In this case, if it
is important to keep a fine trace of the import-replace, the archive itself must be preserved.

2. If an archive import is executed in interactive mode (with a change set), or if a dataspace is merged
to its parent, the resulting log size will nearly triple the unzipped size of the archive. Furthermore,
for consistency concerns, each transaction is logged to a temporary file (in the audit trail directory)
before being moved to the main file. Therefore, EBX requires at least six times the unzipped size
of the largest archive that may be imported.

3. In the context of a custom procedure that performs many updates not requiring auditing, it is
possible for the developer to disable the detailed history using the method ProcedureContext.
setHistoryActivationAPI.

See alsoEBX monitoring [p 380]

69.3 File organization
All audit trail files are stored in the directory ${ebx.repository.directory}/History.

"Closed" audit files
Each file is named as follows:
<yyyy-mm-dd>-part<nn>.xml

where <yyyy-mm-dd> is the file date and <nn> is the file index for the current day.

Writing to current audit files
When an audit file is being written, the XML structure implies working in an "open mode". The XML
elements of the modifications are added to a text file named:
<yyyy-mm-dd>-part<nn>Content.txt

The standard XML format is still available in an XML file that references the text file. This file is
named:
<yyyy-mm-dd>-part<nn>Ref.xml

These two files are then re-aggregated in a "closed" XML file when the repository has been cleanly
shut down, or if EBX is restarted.

Example of an audit directory

2004-04-05-part00.xml

2004-04-05-part01.xml

2004-04-06-part00.xml

2004-04-06-part01.xml

2004-04-06-part02.xml

2004-04-06-part03.xml

2004-04-07-part00.xml

2004-04-10-part00.xml

2004-04-11-part00Content.txt

2004-04-11-part00Ref.xml

Documentation > Administration Guide > Technical administration > Other

TIBCO EBX® Product Documentation 5.9.20 421

CHAPTER 70
Other

This chapter contains the following topics:

1. Lineage

2. Event broker

70.1 Lineage
To administer lineage, three tables are accessible:

• Authorized profiles: Profiles must be added to this table to be used for data lineage WSDL
generation.

• History: Lists the general data lineage WSDLs and their configuration.

• JMS location: Lists the JMS URL locations.

70.2 Event broker

Overview
TIBCO EBX offers the ability to receive notifications and information related to specific events using
the event broker feature. This feature consists in sending notifications related to EBX core events to
the subscriber according to their chosen topics.

Terminology

Event broker Notification component for loosely-coupled event handling.
Consists of dispatching fired events from EBX core to
concerned subscribers. The event broker is mainly used for
monitoring and statistical purposes.

Topic Corresponds to the EBX event type that contains messages.
The number of subscribers registered to a topic is unlimited.

Subscriber Client implementation in the modules that receive the events
related to the subscribed topic(s).

Documentation > Administration Guide > Technical administration > Other

TIBCO EBX® Product Documentation 5.9.20 422

Topics

Dataspace and snapshot Corresponds to operations in the dataspace and in the
snapshot, such as: create, close, reopen, delete, archive
export and archive import (only for dataspace merge).

Repository Corresponds to operations in the repository, such as: start-
up and purge.

User session Corresponds to the operations related to user authentication,
such as: login and logout.

Administration
The management console is located under 'Event broker' in the 'Administration' area. It contains three
tables: 'Topics', 'Subscribers' and 'Subscriptions'.
All content is read-only, except for the following operations:

• Topics and subscribers can be manually activated or deactivated using dedicated services.

• Subscribers that are no longer registered to the broker can be deleted.

Documentation > Administration Guide

TIBCO EBX® Product Documentation 5.9.20 423

Distributed Data
Delivery (D3)

Documentation > Administration Guide > Distributed Data Delivery (D3) > Introduction to D3

TIBCO EBX® Product Documentation 5.9.20 424

CHAPTER 71
Introduction to D3

This chapter contains the following topics:

1. Overview

2. D3 terminology

3. Known limitations

71.1 Overview
TIBCO EBX offers the ability to send data from an EBX instance to other instances. Using a broadcast
action, it also provides an additional layer of security and control to the other features of EBX.
It is particularly suitable for situations where data governance requires the highest levels of data
consistency, approvals and the ability to rollback.

D3 architecture
A typical D3 installation consists of one primary node and multiple replica nodes. In the primary node,
a Data Steward declares which dataspaces must be broadcast, as well as which user profile is allowed
to broadcast them to the replica nodes. The Data Steward also defines delivery profiles, which are
groups of one or more dataspaces.

Documentation > Administration Guide > Distributed Data Delivery (D3) > Introduction to D3

TIBCO EBX® Product Documentation 5.9.20 425

Each replica node must define from which delivery profile it receives broadcasts.

Involving third-party systems
The features of D3 also allow third-party systems to access the data managed in EBX through
data services. Essentially, when a system consumes the data of a delivery dataspace, the data is
transparently redirected to the last broadcast snapshot. This ensures a more controlled and reliable
view of the managed data.
Third-party systems can either access data directly through the primary node or through a replica node.
Thus, a physical architecture consisting of a primary node and no replica nodes is possible.

Protocols
If JMS is activated, the conversation between a primary node and a replica node is based on SOAP
over JMS, while archive transfer is based on JMS binary messages.
If JMS is not activated, conversation between a primary node and a replica node is based on SOAP
over HTTP(S), while binary archive transfer is based on TCP sockets. If HTTPS is used, make sure
that the target node connector is correctly configured by enabling SSL with a trusted certificate.

Documentation > Administration Guide > Distributed Data Delivery (D3) > Introduction to D3

TIBCO EBX® Product Documentation 5.9.20 426

See alsoJMS for distributed data delivery (D3) [p 433]

Documentation > Administration Guide > Distributed Data Delivery (D3) > Introduction to D3

TIBCO EBX® Product Documentation 5.9.20 427

71.2 D3 terminology

broadcast Send a publication of an official snapshot of data from a
primary node to replica nodes. The broadcast transparently
and transactionally ensures that the data is transferred to the
replica nodes.

delivery dataspace A delivery dataspace is a dataspace that can be broadcast to
authenticated and authorized users using a dedicated action.
By default, when a data service accesses a delivery
dataspace on any node, it is redirected to the last snapshot
that was broadcast. See Data services [p 431].

delivery profile A delivery profile is a logical name that groups one or more
delivery dataspaces. Replica nodes subscribe to one or more
delivery profiles.

cluster delivery mode Synchronization with subscribed replica nodes is performed
in a two-phase commit transactional process. This delivery
mode is designed to respond to a high volume of queries
using load balancing and/or fault tolerance. It ensures the
consistency of data in the cluster between replica nodes and
their primary node delivery dataspaces. Primary and replica
nodes use the same last broadcast snapshots.

federation delivery mode Synchronization is performed in a single phase, and with
each registered replica node independently. This delivery
mode is designed to be used with geographically distributed
and/or heterogeneous architectures where response time and
network availability cannot be guaranteed. At any one time,
replica nodes can be at different last broadcast snapshots.
The synchronization processes are thus independent of one
another and replay of individual replica nodes are performed
for certain broadcast failures.

Primary node An instance of EBX that can define one or more delivery
dataspaces, and to which replica nodes can subscribe. A
primary node can also act as a regular EBX server.

Replica node An instance of EBX attached to a primary node, in order
to receive delivery dataspace broadcasts. Besides update
restrictions on delivery dataspaces, the replica node acts as
a regular EBX server.

Documentation > Administration Guide > Distributed Data Delivery (D3) > Introduction to D3

TIBCO EBX® Product Documentation 5.9.20 428

Hub node An instance of EBX acting as both a primary node and a
replica node. Primary delivery dataspaces and replica node
delivery dataspaces must be disjoint.

71.3 Known limitations

General limitations
• Each replica node must have only one primary node.

• Embedded data models cannot be used in D3 dataspaces. Therefore, it is not possible to create a
dataset based on a publication in a D3 dataspace.

• The compatibility is not assured if at least one replica node product version is different from the
primary node.

Broadcast and delivery dataspace limitations
• Access rights on dataspaces are not broadcast, whereas access rights on datasets are.

• Dataspace information is not broadcast.

• Dataspaces defined in relational mode cannot be broadcast.

• If a dataspace and its parent are broadcast, their parent-child relationship will be lost in the replica
nodes.

• Once a snapshot has been broadcast to a replica, subsequent broadcasts of any snapshot with
the same name will result in restoring the originally broadcast version of that same name on the
replica node. That is, if the original snapshot on the primary node is purged and a new one is
created with the same name and subsequently broadcast, then the content of the replica will be
restored to that of the previously broadcast snapshot, and not to the latest one of the same name.

• To guarantee dataspace consistency between D3 nodes, the data model (embedded or packaged
in a module) on which the broadcast contents are based, must be the same between the primary
node and its replica nodes.

• On a replica delivery dataspace, if several replica nodes are registered, and if replication is enabled
in data models, it will be effective for all nodes. No setting is available to activate/deactivate
replication according to D3 nodes.

• Replication on replica nodes does not take part in the distributed transaction: it is automatically
triggered after commit.

Administration limitations
Technical dataspaces cannot be broadcast, thus the EBX default user directory cannot be synchronized
using D3.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 broadcasts and delivery dataspaces

TIBCO EBX® Product Documentation 5.9.20 429

CHAPTER 72
D3 broadcasts and delivery

dataspaces
This chapter contains the following topics:

1. Broadcast

2. Replica node registration

3. Accessing delivery dataspaces

72.1 Broadcast

Scope and contents of a broadcast
A D3 broadcast occurs at the dataspace or snapshot level. For dataspace broadcasts, D3 first creates
a snapshot to capture the current state, then broadcasts this newly created snapshot.
A broadcast performs one of the following procedures depending on the situation:

• An update of the differences computed between the new broadcast snapshot and the current
'commit' one on the replica node.

• A full synchronization containing all datasets, tables, records, and permissions. This is done on
the first broadcast to a given replica node, if the previous replica node commit is not known to
the primary node, or on demand using the user service in '[D3] Primary node configuration'.

See alsoServices on primary nodes [p 446]

Performing a broadcast
The broadcast can be performed:

• By the end-user, using the Broadcast action available in the dataspace or snapshot (this action is
available only if the dataspace is registered as a delivery dataspace)

• Using custom Java code that uses D3NodeAsMasterAPI.

Conditions
In order to be able to broadcast, the following conditions must be fulfilled:

• The authenticated user profile has permission to broadcast.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 broadcasts and delivery dataspaces

TIBCO EBX® Product Documentation 5.9.20 430

• The dataspace or snapshot to be broadcast has no validation errors.
Note: Although it is not recommended, it is possible to force a broadcast of a delivery
dataspace that contains validation errors. In order to do this, set the maximum severity threshold
allowed in a delivery dataspace validation report under '[D3] Primary node configuration' in the
'Administration' area.

• The D3 primary node configuration has no validation errors on the following scope: the
technical record of the concerned delivery dataspace and all its dependencies (dependent delivery
mappings, delivery profiles and registered replica nodes).

• The dataspace or snapshot does not contain any tables in relational mode.

• There is an associated delivery profile.

• If broadcasting a dataspace, the dataspace is not locked.

• If broadcasting a snapshot, the snapshot belongs to a dataspace declared as delivery dataspace
and is not already the current broadcast snapshot (though a rollback to a previously broadcast
snapshot is possible).

• The dataspace or snapshot contains differences compared to the last broadcast snapshot.

Persistence
When a primary node shuts down, all waiting or in progress broadcast requests abort, then they will
be persisted on a temporary file. On startup, all aborted broadcasts are restarted.

See alsoTemporary files [p 448]

Note

Broadcasts are performed asynchronously. Therefore, no information is displayed in the user
interface about the success or failure of a broadcast. Nevertheless, it is possible to monitor the
broadcast operations inside '[D3] Primary node configuration'. See Supervision [p 447].

Destination
In the target replica or hub node side:

• The ebx-d3-reference dataspace identifier is the common parent of all the delivery dataspaces.

• The delivery dataspace has the same identifier in primary, replica or hub nodes.

• If the delivery dataspace is missing, it will be created on the first or on the full synchronization
broadcast.

• If the delivery dataspace is already existing on the first broadcast or full synchronization it will
be overridden.

• If an existing dataspace with the same identifier of the delivery one is detected outside of the ebx-
d3-reference, An error will be raisen.

See alsoKnown limitations [p 428]

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 broadcasts and delivery dataspaces

TIBCO EBX® Product Documentation 5.9.20 431

72.2 Replica node registration

Scope and contents
An initialization occurs at the replica node level according to the delivery profiles registered in
the TIBCO EBX main configuration file of the replica node. When the primary node receives that
initialization request, it creates or updates the replica node entry, then sends the last broadcast snapshot
of all registered delivery dataspaces.

Note

If the registered replica node repository ID or communication layer already exists, the replica
node entry in the 'Registered replica nodes' technical table is updated, otherwise a new entry
is created.

Performing an initialization
The initialization can be done:

• Automatically at replica node server startup.

• Manually when calling the replica node service 'Register replica node'.

Conditions
To be able to register, the following conditions must be fulfilled:

• The D3 mode must be 'hub' or 'slave'.

• The primary and replica node authentication parameters must correspond to the primary node
administrator and replica node administrator defined in their respective directories.

• The delivery profiles defined on the replica node must exist in the primary node configuration.

• All data models contained in the registered dataspaces must exist in the replica node. If embedded,
the data model names must be the same. If packaged, they must be located at the same module
name and the schema path in the module must be the same in both the primary and replica nodes.

• The D3 primary node configuration has no validation error on the following scope: the technical
record of the registered replica node and all its dependencies (dependent delivery profiles, delivery
mappings and delivery dataspaces).

Note

To set the parameters, see the replica or hub EBX properties in Configuring primary, hub and
replica nodes [p 443].

72.3 Accessing delivery dataspaces

Data services
By default, when a data service accesses a delivery dataspace, it is redirected to the current snapshot,
which is the last broadcast one. However, this default behavior can be modified either at the request
level or in the global configuration.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 broadcasts and delivery dataspaces

TIBCO EBX® Product Documentation 5.9.20 432

See alsoCommon parameter 'disableRedirectionToLastBroadcast' [p 618]

Access restrictions
On the primary node, a delivery dataspace can neither be merged nor closed. Other operations are
available depending on permissions. For example, modifying a delivery dataspace directly, creating
a snapshot independent from a broadcast, or creating and merging a child dataspace.
On the replica node, aside from the broadcast process, no modifications of any kind can be made to
a delivery dataspace, whether by the end-user, data services, or a Java program. Furthermore, any
dataspace-related operations, such as merge, close, etc., are forbidden on the replica node.

D3 broadcast Java API
The last broadcast snapshot may change between two calls if a broadcast has taken place in the
meantime. If a fully stable view is required for several successive calls, these calls need to specifically
refer to the same snapshot.
To get the last broadcast snapshot, see D3Node.getBroadcastVersionAPI.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 5.9.20 433

CHAPTER 73
D3 JMS Configuration

This chapter contains the following topics:

1. JMS for distributed data delivery (D3)

73.1 JMS for distributed data delivery (D3)
To configure D3 to use JMS instead of the default HTTP and TCP protocols, you must configure the
JMS connection factory [p 324] and the following queues declared in the WEB-INF/web.xml deployment
descriptor of the 'ebx' web application.

Note

If the TIBCO EBX main configuration does not activate JMS and D3 ('slave',
'hub' or 'master' node) through the properties ebx.d3.mode, ebx.jms.activate and
ebx.jms.d3.activate, then the environment entries below will be ignored by EBX
runtime. See JMS [p 355] and Distributed data delivery (D3) [p 355] in the EBX main
configuration properties for more information on these properties.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 5.9.20 434

Common declarations on primary and replica nodes (for shared
queues)

Reserved resource name Default JNDI name Description

jms/EBX_D3MasterQueue Weblogic: EBX_D3MasterQueue

JBoss: java:/jms/EBX_D3MasterQueue

D3 primary JMS queue (only for D3
mode 'slave' or 'hub'). It specifies the
queue name used to send SOAP requests
to the D3 primary node. The message
producer sets the primary node repository
ID as a value of the header field JMSType.

Java type: javax.jms.Queue

jms/EBX_D3ReplyQueue Weblogic: EBX_D3ReplyQueue

JBoss: java:/jms/EBX_D3ReplyQueue

D3 Reply JMS queue (for all D3
modes except the 'single' mode). It
specifies the name of the reply queue
for receiving SOAP responses. The
consumption is filtered using the header
field JMSCorrelationID.

Java type: javax.jms.Queue

jms/EBX_D3ArchiveQueue Weblogic: EBX_D3ArchiveQueue

JBoss: java:/jms/
EBX_D3ArchiveQueue

D3 JMS Archive queue (for all D3
modes except the 'single' mode). It
specifies the name of the transfer
archive queue used by the D3 node.
The consumption is filtered using the
header field JMSCorrelationID. If
the archive weight is higher than the
threshold specified in the property
ebx.jms.d3.archiveMaxSizeInKB,
the archive will be divided into several
sequences. Therefore, the consumption
is filtered using the header fields
JMSXGroupID and JMSXGroupSeq instead.

Java type: javax.jms.Queue

jms/EBX_D3CommunicationQueue WebLogic: EBX_D3CommunicationQueue

JBoss: java:/jms/
EBX_D3CommunicationQueue

D3 JMS Communication queue (for
all D3 modes except 'single' mode). It
specifies the name of the communication
queue where the requests are received.
The consumption is filtered using the
header field JMSType which corresponds
to the current repository ID.

Java type: javax.jms.Queue

Note

These JNDI names are set by default, but can be modified inside the web application
archive ebx.war, included in EBXForWebLogic.ear (if using Weblogic) or in EBX.ear (if
using JBoss, Websphere or other application servers).

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 5.9.20 435

Optional declarations on primary nodes (for replica-specific
queues)

Note

Used for ascending compatibility prior to 5.5.0 or for mono-directional queues topology.

The deployment descriptor of the primary node must be manually modified by declaring specific
communication and archive queues for each replica node. It consists in adding resource names in
'web.xml' inside 'ebx.war'. The replica-specific node queues can be used by one or more replica nodes.
Resources can be freely named, but the physical names of their associated queue must
correspond to the definition of replica nodes for resources jms/EBX_D3ArchiveQueue and jms/
EBX_D3CommunicationQueue.

Note

Physical queue names matching: on registration, the replica node sends the
communication and archive physical queue names. These queues are matched by
physical queue name among all resources declared on the primary node. If unmatched,
the registration fails.

Examples of JMS configuration

Shared queues Specific queues

Primary-Replica nodes architecture Between a primary node and two replica
nodes with shared queues [p 436]

Between a primary node and a replica
node with replica-specific queues [p 437]

Hub-Hub architecture Between two hub nodes with shared
queues [p 438]

Between two hub nodes with replica-
specific queues [p 439]

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 5.9.20 436

Between a primary node and two replica nodes with shared queues

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 5.9.20 437

Between a primary node and a replica node with replica-specific queues

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 5.9.20 438

Between two hub nodes with shared queues

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 5.9.20 439

Between two hub nodes with replica-specific queues

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 JMS Configuration

TIBCO EBX® Product Documentation 5.9.20 440

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 5.9.20 441

CHAPTER 74
D3 administration

This chapter contains the following topics:

1. Quick start

2. Configuring D3 nodes

3. Supervision

74.1 Quick start
This section introduces the configuration of a basic D3 architecture with two TIBCO EBX instances.
Before starting, please check that each instance can work properly with its own repository.

Note

Deploy EBX on two different web application containers. If both instances are running on the
same host, ensure that all communication TCP ports are distinct.

Declare an existing dataspace on the primary node
The objective is to configure and broadcast an existing dataspace from a primary node.
This configuration is performed on the entire D3 infrastructure (primary [p 427] and replica [p 427] nodes
included).
Update the ebx.propertiesprimary node configuration file with:

1. Define D3 mode as primary in key ebx.d3.mode.

Note

The primary node can be started after the configuration.

After authenticating as a built-in administrator, navigate within the administration tab:

1. Prerequisite: Check that the node is configured as a primary node (in the 'Actions' menu use
'System information' and check 'D3 mode').

2. Open the '[D3] Primary configuration' administration feature.

3. Add the dataspace to be broadcast to the 'Delivery dataspaces' table, and declare the allowed
profile.

4. Add the delivery profile [p 427] to the 'Delivery profiles' table (it must correspond to a logical name)
and declare the delivery mode. Possible values are: cluster mode [p 427] or federation mode [p 427].

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 5.9.20 442

5. Map the delivery dataspace with the delivery profile into the 'Delivery mapping' table.

Note

The primary node is now ready for the replica node(s) registration on the delivery profile.
Check that the D3 broadcast menu appears in the 'Actions' menu of the dataspace or one of
its snapshots.

Configure replica node for registration
The objective is to configure and register the replica node based on a delivery profile and
communications settings.
Update the ebx.properties replica node configuration file with:

1. Define D3 mode as replica in key ebx.d3.mode.

2. Define the delivery profile [p 427] set on the primary node in key ebx.d3.delivery.profiles
(delivery profiles must be separated by a comma and a space).

3. Define the primary node user authentication (must have the built-in administrator profile) for
node communications in ebx.d3.master.username and ebx.d3.master.password.

4. Define HTTP/TCP protocols [p 444] for primary node communication, by setting a value for the
property key ebx.d3.master.url
(for example http://localhost:8080/ebx-dataservices/connector).

5. Define the replica node user authentication (must have the built-in administrator profile) for node
communications in ebx.d3.slave.username and ebx.d3.slave.password.

6. Define HTTP/TCP protocols [p 444] for replica node communication, by setting a value for the
property key ebx.d3.slave.url
(for example http://localhost:8090/ebx-dataservices/connector).

Note

The replica node can be started after the configuration.

After authenticating as a built-in administrator, navigate inside the administration tab:

1. Prerequisite: Check that the node is configured as the replica node (in the 'Actions' menu use
'System information' and check 'D3 mode').

2. Open the '[D3] Replica configuration' administration feature.

3. Check the information on the 'Primary information' screen: No field should have the 'N/A' value.

Note

Please check that the model is available before broadcast (from data model assistant, it must
be published).
The replica node is then ready for broadcast.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 5.9.20 443

74.2 Configuring D3 nodes

Runtime configuration of primary and hub nodes through the user
interface
The declaration of delivery dataspaces and delivery profiles is done by selecting the '[D3] Primary
configuration' feature from the 'Administration' area, where you will find the following tables:

Delivery dataspaces Declarations of the dataspaces that can be broadcast.

Delivery profiles Profiles to which replica nodes can subscribe. The delivery
mode must be defined for each delivery profile.

Delivery mapping The association between delivery dataspaces and delivery
profiles.

Note

The tables above are read-only while some broadcasts are pending or in progress.

Configuring primary, hub and replica nodes
This section details how to configure a node in its EBX main configuration file.

See alsoOverview [p 345]

Primary node
In order to act as a primary node, an instance of EBX must declare the following property in its main
configuration file.
Sample configuration for ebx.d3.mode=master node:
##
D3 configuration
##
##
Configuration for master, hub and slave
##
Optional property.
Possibles values are single, master, hub, slave
Default is single meaning the server will be a standalone instance.
ebx.d3.mode=master

See alsoprimary node [p 427]

Hub node
In order to act as a hub node (combination of primary and replica node configurations), an instance
of EBX must declare the following property in its main configuration file.
Sample configuration for ebx.d3.mode=hub node:
##
D3 configuration
##
##
Configuration for master, hub and slave

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 5.9.20 444

##
Optional property.
Possibles values are single, master, hub, slave
Default is single meaning the server will be a standalone instance.
ebx.d3.mode=hub

##
Configuration dedicated to hub or slave
##
Profiles to subscribe to
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.delivery.profiles=

User and password to be used to communicate with the master.
Mandatory properties if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.master.username=
ebx.d3.master.password=

User and password to be used by the master to communicate with the hub or slave.
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.slave.username=
ebx.d3.slave.password=

See alsohub node [p 428]

Replica node
In order to act as a replica node, an instance of EBX must declare the following property in its main
configuration file.
Sample configuration for ebx.d3.mode=slave node:
##
D3 configuration
##
##
Configuration for master, hub and slave
##
Optional property.
Possibles values are single, master, hub, slave
Default is single meaning the server will be a standalone instance.
ebx.d3.mode=slave

##
Configuration dedicated to hub or slave
##
Profiles to subscribe to
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.delivery.profiles=

User and password to be used to communicate with the master.
Mandatory properties if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.master.username=
ebx.d3.master.password=

User and password to be used by the master to communicate with the hub or slave.
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave
ebx.d3.slave.username=
ebx.d3.slave.password=

See alsoreplica node [p 427]

Configuring the network protocol of a node
This section details how to configure the network protocol of a node in its EBX main configuration file.

See alsoOverview [p 345]

HTTP(S) and socket TCP protocols
Sample configuration for ebx.d3.mode=hub or ebx.d3.mode=slave node with HTTP(S) network
protocol:
##

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 5.9.20 445

HTTP(S) and TCP socket configuration for D3 hub and slave
##
URL to access the data services connector of the master
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave and JMS for D3 is not activated.
This property will be ignored if JMS for D3 is activated.
The URL must follow this pattern: [protocol]://[master_host]:[master_port]/ebx-dataservices/connector
Where the possible values of 'protocol' are 'http' or 'https'.
ebx.d3.master.url=

URL to access the data services connector of the slave
Mandatory property if ebx.d3.mode=hub or ebx.d3.mode=slave and JMS for D3 is not activated.
This property will be ignored if JMS for D3 is activated.
The URL must follow this pattern: [protocol]://[slave_host]:[slave_port]/ebx-dataservices/connector
Where the possible values of 'protocol' are 'http' or 'https'.
ebx.d3.slave.url=

Minimum port to use to transfer archives on TCP mode.
Must be a positive integer above zero and below 65535.
If not set, a random port will be used.
#ebx.d3.slave.socket.range.min=

Max port to use on TCP mode to transfer archives.
Must be a positive integer above ebx.d3.slave.socket.range.min and below 65535.
Mandatory if ebx.d3.slave.socket.range.min is set.
#ebx.d3.slave.socket.range.max=

JMS protocol
If JMS is activated, the following properties can be defined in order to enable JMS functionalities
for a D3 node.
Sample configuration for all D3 nodes with JMS network protocol:
##
JMS configuration for D3
##
Taken into account only if Data Services JMS is configured properly
##
Configuration for master, hub and slave
##
Default is false, activate JMS for D3
If activated, the deployer must ensure that the entries
'jms/EBX_D3ReplyQueue', 'jms/EBX_D3ArchiveQueue' and 'jms/EBX_D3CommunicationQueue'
are bound in the operational environment of the application server.
On slave or hub mode, the entry 'jms/EBX_D3MasterQueue' must also be bound.
ebx.jms.d3.activate=false

Change the default timeout when using reply queue.
Must be a positive integer that does not exceed 3600000.
Default is 10000 milliseconds.
#ebx.jms.d3.reply.timeout=10000

Time-to-live message value expressed in milliseconds.
This value will be set on each message header 'JMSExpiration' that defines the
countdown before the message deletion managed by the JMS broker.
Must be a positive integer equal to 0 or above the value of 'ebx.jms.d3.reply.timeout'.
The value 0 means that the message does not expire.
Default is 3600000 (one hour).
#ebx.jms.d3.expiration=3600000

Archive maximum size in KB for the JMS body message. If exceeds, the message
is transferred into several sequences messages in a same group, where each one does
not exceed the maximum size defined.
Must be a positive integer equals to 0 or above 100.
Default is 0 that corresponds to unbounded.
#ebx.jms.d3.archiveMaxSizeInKB=

##
Configuration dedicated to hub or slave
##
Master repository ID, used to set a message filter for the concerned master when sending JMS message
Mandatory property if ebx.jms.d3.activate=true and if ebx.d3.mode=hub or ebx.d3.mode=slave
#ebx.jms.d3.master.repositoryId=

See alsoJMS for distributed data delivery (D3) [p 433]

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 5.9.20 446

Services on primary nodes
Services to manage a primary node are available in the 'Administration' area of the replica node under
'[D3] Primary node configuration' and also in the 'Delivery dataspaces' and 'Registered replica nodes'
tables. The services are:

Relaunch replays Immediately relaunch all replays for waiting federation
deliveries.

Delete replica node delivery
dataspace

Delete the delivery dataspace on chosen replica nodes and/
or unregister it from the configuration of the D3 primary
node.
To access the service, select a delivery dataspace from the
'Delivery dataspaces' table on the primary node, then launch
the wizard.

Fully resynchronize Broadcast the full content of the last broadcast snapshot to
the registered replica nodes.

Subscribe a replica node Subscribe a set of selected replica nodes.

Deactivate replica nodes Remove the selected replica nodes from the broadcast scope
and switch their states to 'Unavailable'.

Note

The "in progress" broadcast contexts are rolled
back.

Unregister replica nodes Disconnects the selected replica nodes from the primary
node.

Note

The "in progress" broadcast contexts are rolled
back.

Note

The primary node services above are hidden while some broadcasts are pending or in progress.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 5.9.20 447

Services on replica nodes
Services are available in the 'Administration' area under [D3] Configuration of replica node to manage
its subscription to the primary node and perform other actions:

Register replica node Re-subscribes the replica node to the primary node if it has
been unregistered.

Unregister replica node Disconnects the replica node from the primary node.

Note

The "in progress" broadcast contexts are rolled
back.

Close and delete snapshots Clean up a replica node delivery dataspace.
To access the service, select a delivery dataspace from the
'Delivery dataspaces' table on the replica node, then follow
the wizard to close and delete snapshots based on their
creation dates.
Note: The last broadcast snapshot is automatically excluded
from the selection.

74.3 Supervision
The last broadcast snapshot is highlighted in the snapshot table of the dataspace, it is represented by
an icon displayed in the first column.

Primary node management console
Several tables make up the management console of the primary node, located in the 'Administration'
area of the primary node, under '[D3] Primary node configuration'. They are as follows:

Registered replica nodes Replica nodes registered with the primary node. From this
table, several services are available on each record.

Broadcast history History of broadcast operations that have taken place.

Replica node registration log History of initialization operations that have taken place.

Detailed history History of archive deliveries that have taken place. The list
of associated delivery archives can be accessed from the
tables 'Broadcast history' and 'Initialization history' using
selection nodes.

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 5.9.20 448

Primary node supervision services
Available in the 'Administration' area of the primary node under '[D3] Primary node configuration'.
The services are as follows:

Check replica node information Lists the replica nodes and related information, such as
the replica node's state, associated delivery profiles, and
delivered snapshots.

Clear history content Deletes all records in all history tables, such as 'Broadcast
history', 'Replica node registration log' and 'Detailed
history'.

Replica node monitoring through the Java API
A replica node monitoring class can be created to implement actions that are triggered when the
replica node's status switches to either 'Available' or 'Unavailable'. To do so, it must implement
the NodeMonitoring interface. This class must be outside of any EBX module and accessible from
the class-loader of 'ebx.jar' and its full class name must be specified under '[D3] Replica node
configuration'.

See alsoNodeMonitoringAPI

Primary node notification
A D3 administrator can set up mail notifications to receive broadcast events:

• On broadcast failure,

• On federation broadcast, if replays exceed a given threshold.

The mail contains a table of events with optional links to further details.
To enable notifications, open the '[D3] Primary node configuration' dataspace from the
'Administration' area and configure the 'Notifications' group under 'Global configuration'.
The 'From email' and 'URL definition' options should also be configured by using the 'Email
configuration' link.

Log supervision
The technical supervision can be done through the log category 'ebx.d3', declared in the EBX main
configuration file. For example:
ebx.log4j.category.log.d3= INFO, Console, ebxFile:d3

See alsoConfiguring the EBX logs [p 351]

Temporary files
Some temporary files, such as exchanged archives, SOAP messages, broadcast queue, (...), are created
and written to the EBX temporary directory. This location is defined in the EBX main configuration
file:
###

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 5.9.20 449

Directories for temporary resources.
###
When set, allows specifying a directory for temporary files different from java.io.tmpdir.
Default value is java.io.tmpdir
ebx.temp.directory = \\${java.io.tmpdir}

Allows specifying the directory containing temporary files for cache.
If unset, the used directory is ${ebx.temp.directory}/ebx.platform.
#ebx.temp.cache.directory = ${ebx.temp.directory}/ebx.platform

When set, allows specifying the directory containing temporary files for import.
If unset, the used directory is ${ebx.temp.directory}/ebx.platform.
#ebx.temp.import.directory = ${ebx.temp.directory}/ebx.platform

Documentation > Administration Guide > Distributed Data Delivery (D3) > D3 administration

TIBCO EBX® Product Documentation 5.9.20 450

TIBCO EBX® Product Documentation 5.9.20 451

Security Guide

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 5.9.20 452

CHAPTER 75
Security Best Practices

Here is a list of best practices that are considered useful to enforce a good security level for the EBX
setup. These best practices apply to EBX and to other environments, their configuration, protocols and
policies. These are best practices in general, and may not be relevant to your particular infrastructure
and security policy.
This chapter contains the following topics:

1. Encryption algorithms

2. HTTPS

3. Installation

4. Web Server

5. Application Server

6. Java

7. Database

8. User directory and Administration rights

75.1 Encryption algorithms
Web Server or Application Server may specify encryption algorithms when setting HTTPS
parameters. Some recommendations on these algorithms are provided in section HTTPS [p 452].
Password and fields having osd:password as a type are storing hash of their value with SHA_512 as
algorithm. That includes the password of users of the default directory.

75.2 HTTPS
Using HTTPS for communication with clients (GUI and REST or SOAP) is recommended. All HTTP
traffic should be redirected to HTTPS.
A secure cipher suite and protocols should be used whenever possible. This applies, for example, to
Web Servers, Application Servers, and jdbc connections.
TLS v1.2 should be the main protocol because it's the only version that offers modern authenticated
encryption (also known as AEAD).
Several obsolete cryptographic primitives must be avoided:

• Anonymous Diffie-Hellman (ADH) suites do not provide authentication,

https://en.wikipedia.org/wiki/Cipher_suite

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 5.9.20 453

• NULL cipher suites provide no encryption,

• Export cipher suites are insecure when negotiated in a connection, but they can also be used
against a server that prefers stronger suites (the FREAK attack),

• Suites with weak ciphers (typically of 40 and 56 bits) use encryption that can easily be broken,

• RC4 is insecure,

• 3DES is slow and weak,

On the other hand, getting too restrictive on allowed cyphers may prevent some clients to connect as
they may not be able to negotiate the HTTPS connection.
The following configuration is compatible with browsers supported by EBX.

• Cipher suites: ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-
SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-
POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256

• Versions: TLSv1.2

75.3 Installation
Deployed components as Web Server and Application Server should be installed using a non-root or
unprivileged user, and following the principle of least privilege whenever possible. For example, only
necessary ports and protocols should be opened.

75.4 Web Server
If you have to expose web applications on the Internet, it's a good practice to protect them with a Web
Server in a demilitarized zone while EBX and the database server may be in a production zone. Here
are some best practices for the configuration.
The secure cipher suite and protocols should be set according to the above section HTTPS [p 452].
It is also a best practice not to use the default configuration, and to remove any banner that may also
expose the version and type of web server.
For example, on Apache2, to remove the banner (default page returned at the root), just remove the
folder /var/www/html.
Also, on Apache2, to remove headers identifying the Web Server, the value of ServerTokens and
ServerSignature from the file security.conf should have the following values:
ServerTokens
This directive configures what you return as the Server HTTP response
Header. The default is 'Full' which sends information about the OS-Type
and compiled in modules.
Set to one of: Full | OS | Minimal | Minor | Major | Prod
where Full conveys the most information, and Prod the least.
ServerTokens Prod

Optionally add a line containing the server version and virtual host
name to server-generated pages (internal error documents, FTP directory
listings, mod_status and mod_info output etc., but not CGI generated
documents or custom error documents).
Set to "EMail" to also include a mailto: link to the ServerAdmin.
Set to one of: On | Off | EMail
ServerSignature Off

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/DMZ_(computing)
https://httpd.apache.org/docs/2.4/mod/core.html#servertokens
https://httpd.apache.org/docs/2.4/mod/core.html#serversignature

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 5.9.20 454

The Web Server is the recommended way for setting restrictions with HTTP security headers. Be
aware that headers related to the origin will impact authorized URLs for all resources returned by
EBX. That includes the content of fields of the URL type (example: image of avatar).
Here is a list of security headers and how to set them for EBX. First, EBX should be configured to
not set any HTTP security headers. To do so, the property ebx.security.headers.activated must
be set to 'false'.
X-XSS-Protection
The x-xss-protection header is designed to enable the cross-site scripting (XSS) filter built into
modern web browsers. Here is what the header should look like.
x-xss-protection: 1; mode=block

For version 5.9.4, if the property ebx.security.headers.activated is not set or set to
true, the security header must also be unset beforehand. For version 5.9.4, if the property
ebx.security.headers.activated is set to false, the security header does not need to be unset, so
ignore the first line in following snippets. For previous versions, the security header must be unset
beforehand.
Enable in Nginx
header always unset x-xss-protection
header always set x-xss-protection "1; mode=block"

Enable in Apache2
proxy_hide_header x-xss-protection;
add_header x-xss-protection "1; mode=block" always;

x-Frame-Options
The x-frame-options header provides clickjacking protection by not allowing iframes to load on the
site. Be aware, this may not be compatible with your configuration if EBX is integrated through frames
for example. Here is what the header should look like:
x-frame-options: SAMEORIGIN

Enable in Nginx
 add_header x-frame-options "SAMEORIGIN" always;

Enable in Apache2
 header always sets x-frame-options "SAMEORIGIN"

X-Content-Type-Options
The x-content-type-options header prevents Internet Explorer and Google Chrome from sniffing a
response away from the declared content-type. This helps reduce the danger of drive-by downloads
and helps treat the content properly. Here is what the header looks like.
x-content-type-options: nosniff

Enable in Nginx
 add_header X-Content-Type-Options "nosniff" always;

Enable in Apache2
 header always sets X-Content-Type-Options "nosniff"

Strict-Transport-Security
The strict-transport-security header is a security enhancement that restricts web browsers to
access web servers solely over HTTPS. This ensures the connection cannot be established through

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 5.9.20 455

an insecure HTTP connection which could be vulnerable to attacks. Here is what the header should
look like:
strict-transport-security: max-age=31536000; includeSubDomains

Enable in Nginx
 add_header Strict-Transport-Security "max-age=31536000; includeSubDomains" always;

Enable in Apache2
 header always sets Strict-Transport-Security "max-age=31536000; includeSubDomains"

Content-Security-Policy
The content-security-policy HTTP header provides an additional layer of security. This policy
helps prevent attacks such as Cross Site Scripting (XSS) and other code injection attacks by defining
content sources which are approved and thus allowing the browser to load them. Here is what the
header shuould look like. Make sure to adapt it with your domain name (server.company.com in the
example).
content-security-policy: default-src 'self'; font-src * data: server.company.com; img-
src * data: server.company.com; script-src * 'unsafe-inline' 'unsafe-eval'; style-src
 * 'unsafe-inline';

Enable in Nginx
 add_header Content-Security-Policy "default-src 'self'; font-src * data:
 server.company.com; img-src * data: server.company.com; script-src * 'unsafe-inline'
 'unsafe-eval'; style-src * 'unsafe-inline';" always;

Enable in Apache2
 header always sets Content-Security-Policy "default-src 'self'; font-src * data:
 server.company.com; img-src * data: server.company.com; script-src * 'unsafe-inline'
 'unsafe-eval'; style-src * 'unsafe-inline';"

Referrer-Policy
The Referrer-Policy HTTP header governs which referrer information should be included with
requests made. The Referrer-Policy tells the web browser how to handle referrer information that is
sent when a user clicks on a link that leads to another page. Here is what it should look like:
Referrer-Policy: strict-origin

Enable in Nginx
 add_header Referrer-Policy: "strict-origin" always;

Enable in Apache2
 header always sets Referrer-Policy "strict-origin"

75.5 Application Server
As for Web Servers, the same best practice applies: do not expose technical information on the
Application Server. For example, for Tomcat, it is recommended to fill the attribute server of
connector in server.xml with a generic value as AppServer.
 <Connector port="8080" enableLookups="false" protocol="HTTP/1.1" useBodyEncodingForURI="true"
 server="AppServer"/>

If the Application Server is exposed through HTTPS, the secure cipher suite and Protocols should be
set according to the above section HTTPS [p 452].
If there is a Web Server, it is also recommended to use ports higher than 1024 and let the Web Server
do proxy.
If there is no Web Server, security headers should be set by the Application Server as described above.

Documentation > Security Guide > Security Best Practices

TIBCO EBX® Product Documentation 5.9.20 456

75.6 Java
It is recommended to follow the security best practices from Oracle. Last supported patches should
also be applied as soon as they are available especially when they include security patches. Consider
using the Server JRE for server systems, such as application servers or other long-running back-end
processes. The Server JRE is the same as the regular JRE except that it does not contain the web-
browser plugins.

75.7 Database
Databases should be encrypted at rest and in transit. If there is a private key for encryption, it should not
be stored in the same location as the data files. Regarding the JDBC connection, consider configuring
the JDBC driver to use SSL/TLS. Contact your database administrator for detailed instructions. You
should always use the last supported version or RDBMS including drivers.

75.8 User directory and Administration rights
For production and test platforms, EBX must be integrated with a custom directory [p 402] to enforce the
password policy of your company. The default directory can be used only for development platforms.
According to the Separation of Duties best practice, administrators can manage users and grant access
but should not have any functional rights.

https://www.oracle.com/technetwork/java/javase/overview/security-2043272.html
https://en.wikipedia.org/wiki/Separation_of_duties

TIBCO EBX® Product Documentation 5.9.20 457

Developer
Guide

Documentation > Developer Guide

TIBCO EBX® Product Documentation 5.9.20 458

Introduction

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX modules

TIBCO EBX® Product Documentation 5.9.20 459

CHAPTER 76
Packaging TIBCO EBX modules

An EBX module is a standard Java EE web application, packaging various resources such as XML
Schema documents, Java classes and static resources.
Since EBX modules are web applications they benefit from features such as class-loading isolation,
WAR or EAR packaging, and Web resources exposure.
This chapter contains the following topics:

1. Module structure

2. Module declaration

3. Module registration

4. Packaged resources

76.1 Module structure
An EBX module contains the following files:

/WEB-INF/ebx/module.xml This mandatory document defines the main properties and
services of the module. See Module declaration [p 460].

/WEB-INF/web.xml This is the standard Java EE deployment descriptor. It
can perform the registration of the EBX module when the
application server is launched. See Module registration [p

460].

/META-INF/MANIFEST.MF Optional. If present, EBX reports the 'Implementation-
Title' and 'Implementation-Version' values to
Administration > Technical configuration > Modules and
data models.

/www/ This optional directory contains all packaged resources,
which are accessible via public URL. See Packaged
resources [p 462].

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX modules

TIBCO EBX® Product Documentation 5.9.20 460

Required files for Oracle WebLogic server:

/WEB-INF/weblogic.xml WebLogic deployment descriptor file which activates the
prefer-web-inf-classes policy, such as the following:
<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/
weblogic-web-app">
 <container-descriptor>
 <prefer-web-inf-classes>true</prefer-web-inf-classes>
 </container-descriptor>
</weblogic-web-app>

See weblogic.xml Deployment Descriptor Elements for
more information.

76.2 Module declaration
A module is declared using the document /WEB-INF/ebx/module.xml. For example:
<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:ebx-schemas:module_2.4"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ebx-schemas:module_2.4 http://schema.orchestranetworks.com/module_2.4.xsd">
 <name>moduleTest</name>
</module>

See the associated schema for documentation about each property. The main properties are as follows:

Element Description Required

name Defines the unique identifier of the module in the server
instance. The module name usually corresponds to the name of
the web application (the name of its directory).

Yes.

publicPath Defines a path other than the module's name identifying the
web application in public URLs. This path is added to the URL
of external resources of the module when computing absolute
URLs. If this field is not defined, the public path is the module's
name, defined above.

No.

services Declares user services using the legacy API. See Declaration
and configuration of legacy user services. From the version
5.8.0, it is strongly advised to use the new user services [p 563].

No.

beans Declares reusable Java bean components. See the workflow
package [p 549].

No.

ajaxComponents Declares Ajax components. See Declaring an Ajax component
in a module UIAjaxComponent.declareInModuleAPI in the Java
API.

No.

76.3 Module registration
In order to be identifiable by EBX, a module must be registered at runtime when the application server
is launched. For a web application, every EBX module must:

https://docs.oracle.com/middleware/12213/wls/WBAPP/weblogic_xml.htm#WBAPP571
http://schema.orchestranetworks.com/module_2.4.xsd

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX modules

TIBCO EBX® Product Documentation 5.9.20 461

• contain a Java class with the annotation @WebListener extending the class
ModuleRegistrationListenerAPI.

Attention
When using the @WebListener annotation, ensure that the application server is configured to
activate the servlet 3.0 annotation scanning for the web application. See JSR 315: JavaTM Servlet
3.0 Specification for more information.

or:

• contain a Servlet extending the class ModuleRegistrationServletAPI;

• make a standard declaration of this servlet in the deployment descriptor /WEB-INF/web.xml;

• ensure that this servlet will be registered at server startup by adding the following standard element
to the deployment descriptor: <load-on-startup>1</load-on-startup>.

Additional recommendations and information:

• The method handleRepositoryStartup in ModuleRegistrationServletAPI allows setting the
logger associated with the module and defining additional behavior such as common JavaScript
and CSS resources.

• The specific class extending ModuleRegistrationServlet must be located in the web application
(under /WEB-INF/classes or /WEB-INF/lib; due to the fact that this class is internally used as a
hook to the application's class-loader, to load Java classes used by the data models associated
with the module).

• The application server startup process is asynchronous and web applications / EBX modules are
discovered dynamically. The EBX repository initialization depends on this process and will wait
for the registration of all used modules up to an unlimited amount of time. As a consequence, if
a used module is not deployed for any reason, it must be declared in the EBX main configuration
file. For more information, see the property Declaring modules as undeployed [p 361].

• All module registrations and unregistrations are logged in the log.kernel category.

• If an exception occurs while loading a module, the cause is written in the application server log.

• Once the servlet is out of service, the module is unregistered and the data models and associated
datasets become unavailable. Note that hot deployment/undeployment is not supported [p 311].

Deployment descriptor example
Here is an example of a Java EE deployment descriptor (/WEB-INF/web.xml):
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <servlet>
 <servlet-name>InitEbxServlet</servlet-name>
 <servlet-class>com.foo.RegisterServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
</web-app>

https://www.jcp.org/en/jsr/detail?id=315
https://www.jcp.org/en/jsr/detail?id=315

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX modules

TIBCO EBX® Product Documentation 5.9.20 462

Registration example
Here is an implementation example of the ModuleRegistrationServlet:
package com.foo;
import javax.servlet.*;
import javax.servlet.http.*;
import com.onwbp.base.repository.*;
/**
 */
public class RegisterServlet extends ModuleRegistrationServlet
{

 public void handleRepositoryStartup(ModuleContextOnRepositoryStartup aContext)
 throws OperationException
 {
 // Perform module-specific initializations here
 ...

 // Declare custom resources here
 aContext.addExternalStyleSheetResource(MyCompanyResources.COMMON_STYLESHEET_URL);
 aContext.addExternalJavaScriptResource(MyCompanyResources.COMMON_JAVASCRIPT_URL);

 aContext.addPackagedStyleSheetResource("myModule.css");
 aContext.addPackagedJavaScriptResource("myModule.js");

 }

 public void handleRepositoryShutdown()
 {
 // Release resources of the current module when the repository is shut down here
 ...
 }

 public void destroyBeforeUnregisterModule()
 {
 // Perform operations when this servlet is being taken out of service here
 ...
 }

}

76.4 Packaged resources
The packaged resources are files and documents that can be directly accessed from client browsers and
can be managed and specified either as osd:resource fields or via the Java API. They have various
types and can also be localized.

See also

ResourceTypeAPI

Type osd:resource [p 484]

Directory structure
The packaged resources must be located under the following directory structure:

1. On the first level, the directory /www/ must be located at the root of the module (web application).

2. On the second level, the directory must specify the localization. It can be:

• common/ should contain all the resources to be used by default, either because they are locale-
independent or as the default localization (in EBX, the default localization is en, namely
English);

• {lang}/ when localization is required for the resources located underneath, with {lang} to
be replaced by the actual locale code; it should correspond to the locales supported by EBX;
for more information, see Configuring EBX localization [p 349].

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX modules

TIBCO EBX® Product Documentation 5.9.20 463

3. On the third level, the directory must specify the resource type. It can be:

• jscripts/ for JavaScript resources;

• stylesheets/ for Cascading Style Sheet (CSS) resources;

• html/ for HTML resources;

• icons/ for icon typed resources;

• images/ for image typed resources.

Example
In this example, the image logoWithText.jpg is the only resource that is localized:
/www
 ├── common
 │ ├── images
 │ │ ├── myCompanyLogo.jpg
 │ │ └── logoWithText.jpg
 │ ├── jscripts
 │ │ └── myCompanyCommon.js
 │ └── stylesheets
 │ └── myCompanyCommon.css
 ├── de
 │ └── images
 │ └── logoWithText.jpg
 └── fr
 └── images
 └── logoWithText.jpg

Documentation > Developer Guide > Introduction > Packaging TIBCO EBX modules

TIBCO EBX® Product Documentation 5.9.20 464

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 5.9.20 465

CHAPTER 77
Mapping to Java

This chapter contains the following topics:

1. How to access data from Java?

2. Concurrency and isolation levels

3. Mapping of data types

4. Java bindings

77.1 How to access data from Java?

Read access
Data can be read from various generic Java classes, mainly AdaptationAPI and ValueContextAPI. The
getter methods for these classes return objects that are typed according to the mapping rules described
in the section Mapping of data types [p 466].

Write access
Data updates must be performed in a well-managed context:

• In the context of a procedure execution, by calling the methods setValue... of the interface
ValueContextForUpdateAPI, or

• During the user input validation, by calling the method setNewValue of the class
ValueContextForInputValidationAPI.

Modification of mutable objects
According to the mapping that is described in the Mapping of data types [p 466] section, some accessed
Java objects are mutable objects. These are instances of List ,Date or any JavaBean. Consequently,
these objects can be locally modified by their own methods. However, such modifications will remain
local to the returned object unless one of the above setters is invoked and the current transaction is
successfully committed.

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 5.9.20 466

77.2 Concurrency and isolation levels

Highest isolation level
The highest isolation level in ANSI/ISO SQL is SERIALIZABLE. Three execution methods guarantee
the SERIALIZABLE isolation level within the scope of a dataspace:

• If the client code is run inside a ProcedureAPI container. This is the case for every update, for
exports to XML, CSV or archive, and for data services.

• If the client code accesses a dataspace that has been explicitly locked. See LockSpecAPI.

• If the client code accesses data in a snapshot.

Note

For custom read-only transactions that run on a dataspace, it is recommended to use
ReadOnlyProcedureAPI.

Default isolation level
If the client code is run outside the contexts that enable SERIALIZABLE, its isolation level depends on
the persistence mode:

• In semantic mode, the default isolation level is READ UNCOMMITTED.

• In relational mode, the default isolation level is the database default isolation level.

See alsoOverview of modes [p 245]

Java access specificities
In a Java application, a record is represented by an instance of the Adaptation class. This object is
initially linked to the corresponding persisted record. However, unless the client code is executed
in a context that enables the SERIALIZABLE [p 466] isolation level, the object can become
"disconnected" from the persisted record. If this occurs and concurrent updates have been performed,
they will not be reflected in the Adaptation object.
Therefore, it is important for the client code to either be in a SERIALIZABLE context, or to regularly
look up or refresh the Adaptation object.

See also

AdaptationHome.findAdaptationOrNullAPI

AdaptationTable.lookupAdaptationByPrimaryKeyAPI

Adaptation.getUpToDateInstanceAPI

77.3 Mapping of data types
This section describes how XML Schema type definitions and element declarations are mapped to
Java types.

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 5.9.20 467

Simple data types

Basic rules for simple data types
Each XML Schema simple type corresponds to a Java class, the mapping is documented in the table
XML Schema built-in simple types [p 480].

See alsoSchemaNode.createNewOccurrenceAPI

Multiple cardinality on a simple element
If the attribute maxOccurs is greater than 1, the element is an aggregated list and the corresponding
instance in Java is an instance of java.util.List.
Elements of the list are instances of the Java class that is determined from the mapping of the simple
type (see previous section).

Complex data types

Complex type definitions without a class declaration
By default (no attribute osd:class), a terminal node of a complex type is instantiated using an internal
class. This class provides a generic JavaBean implementation. However, if a custom client Java code
has to access these values, it is recommended to use a custom JavaBean. To do so, use the osd:class
declaration described in the next section.
It is also possible to transparently instantiate, read and modify the mapped Java object, with or without
the attribute osd:class, by invoking the methods SchemaNode.createNewOccurrenceAPI, SchemaNode.
executeReadAPI and SchemaNode.executeWriteAPI.

Mapping of complex types to custom JavaBeans
It is possible to map an XML Schema complex type to a custom Java class. This is done by adding
the attribute osd:class to the complex node definition. Unless the element has xs:maxOccurs > 1,
you must also specify the attribute osd:access for the node to be considered a terminal node. If the
element has xs:maxOccurs > 1, it is automatically considered to be terminal.
The custom Java class must conform to the JavaBean protocol. This means that each child of the
complex type must correspond to a JavaBean property of the class. Additionally, each JavaBean
property must be a read-write property, and its implementation must ensure that the value set by the
setter method is returned, as-is, by the getter method. Contextual computations are not allowed in
these methods.

Example
In this example, the Java class com.carRental.Customer must define the methods getFirstName()
and setFirstName(String).
A JavaBean can have a custom user interface within TIBCO EBX, by using a UIBeanEditorAPI.
<xs:element name="customer" osd:access="RW">
 <xs:complexType name="subscriber" osd:class="com.carRental.Customer">
 <xs:sequence>
 <xs:element name="firstName" type="xs:string"/>
 ...
 </xs:sequence>
 </xs:complexType>
</xs:element>

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 5.9.20 468

Multiple cardinality on a complex element
If the attribute maxOccurs is greater than 1, then the corresponding instance in Java is:

• An instance of java.util.List for an aggregated list, where every element in the list is an instance
of the Java class determined by the mapping of simple types [p 480], or

• An instance of AdaptationTableAPI, if the property osd:table is specified.

77.4 Java bindings
Java bindings allow generating Java types that reflect the structure of the data model. The Java code
generation can be done in the user interface. See Generating Java bindings [p 471].

Benefits
Ensuring the link between XML Schema structure and Java code provides a number of benefits:

• Development assistance: Auto-completion when typing an access path to parameters, if
supported by your IDE.

• Access code verification: All accesses to parameters are verified at code compilation.

• Impact verification: Each modification of the data model impacts the code compilation state.

• Cross-referencing: By using the reference tools of your IDE, it is easy to verify where a
parameter is used.

Consequently, it is strongly recommended to use Java bindings.

XML declaration
The specification of the Java types to be generated from the data model is included in the main schema.
Each binding element defines a generation target. It must be located at, in XPath notation, xs:schema/
xs:annotation/xs:appinfo/ebxbnd:binding, where the prefix ebxbnd is a reference to the namespace
identified by the URI urn:ebx-schemas:binding_1.0. Several binding elements can be defined if you
have different generation targets.
The attribute targetDirectory of the element ebxbnd:binding defines the root directory used for Java
type generation. Generally, it is the directory containing the project source code, src. A relative path
is interpreted based on the current runtime directory of the VM, as opposed to the XML schema.
See bindings XML Schema.

XML bindings example
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ebxbnd="urn:ebx-schemas:binding_1.0">
 <xs:annotation>
 <xs:appinfo>
 <!-- The bindings define how this schema will be represented in Java.
 Several <binding> elements may be defined, one for each target. -->
 <ebxbnd:binding
 targetDirectory="../_ebx-demos/src-creditOnLineStruts-1.0/">
 <javaPathConstants typeName="com.creditonline.RulesPaths">
 <nodes root="/rules" prefix="" />
 </javaPathConstants>
 <javaPathConstants typeName="com.creditonline.StylesheetConstants">
 <nodes root="/stylesheet" prefix="" />
 </javaPathConstants>
 </ebxbnd:binding>
 </xs:appinfo>
 </xs:annotation>
 ...

http://schema.orchestranetworks.com/binding_1.0.xsd

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 5.9.20 469

</xs:schema>

Java constants can be defined for XML schema paths. To do so, generate one or more interfaces from
a schema node, including the root node /. The example generates two Java path constant interfaces,
one from the node /rules and the other from the node /stylesheet in the schema. Interface names
are described by the element javaPathConstants with the attribute typeName. The associated node is
described by the element nodes with the attribute root.

Documentation > Developer Guide > Introduction > Mapping to Java

TIBCO EBX® Product Documentation 5.9.20 470

Documentation > Developer Guide > Introduction > Tools for Java developers

TIBCO EBX® Product Documentation 5.9.20 471

CHAPTER 78
Tools for Java developers

TIBCO EBX provides Java developers with tools to facilitate use of the EBX API, as well as
integration with development environments.
This chapter contains the following topics:

1. Activating the development tools

2. Data model refresh tool

3. Generating Java bindings

4. Path to a node

5. Web component link generator

78.1 Activating the development tools
To activate the development tools, run EBX in development mode. This is specified in the EBX main
configuration file EBX run mode [p 363] using the property backend.mode=development.

78.2 Data model refresh tool
When editing the data model directly as an XML Schema document without using the data-modeling
tool provided by EBX, you can refresh it without restarting the application server.
In the 'Administration' area, select Select > Technical configuration > Development tools > Refresh
updated data models (or Refresh all data models).

Attention
Since the operation is critical regarding data consistency, refreshing the data models acquires a global
exclusive lock on the repository. This means that most other operations (data access and update,
validation, etc.) will wait until the completion of the data model refresh.

78.3 Generating Java bindings
The Java types specified by Java bindings can be generated from a dataset or a data model, by selecting
Actions > Generate Java in the navigation pane.

See alsoJava bindings [p 468]

Documentation > Developer Guide > Introduction > Tools for Java developers

TIBCO EBX® Product Documentation 5.9.20 472

78.4 Path to a node
The field 'Data path' is displayed in the documentation pane of a node. This field indicates the path to
the node, which can be useful when writing XPath formulas.

Note

This field is always available to administrators.

78.5 Web component link generator
The 'Web component link generator' service is a user interface designed to create HTTP requests that
call EBX web components. To launch this service, select Actions > Web component link generator
in the navigation pane.

Documentation > Developer Guide > Introduction > Terminology changes

TIBCO EBX® Product Documentation 5.9.20 473

CHAPTER 79
Terminology changes

A new TIBCO EBX release can introduce new vocabulary for users. To preserve the backward
compatibility, these terminology changes do not usually impact the API. Consequently, Java class
names, method names, data services operation names, etc. still use the older version terminology. This
chapter purpose is to facilitate the correspondence of the old term in the API to the new terms.

See alsoGlossary [p 23]

This chapter contains the following topics:

1. Terminology changes in version 5.9

2. Terminology changes in version 5.0

79.1 Terminology changes in version 5.9

New term Term prior to version 5.9.0

D3 primary node D3 master node

D3 replica node D3 slave node

Documentation > Developer Guide > Introduction > Terminology changes

TIBCO EBX® Product Documentation 5.9.20 474

79.2 Terminology changes in version 5.0
The following table summarizes the mappings between the version 5.0.0 terminology and previous
terminology:

New term Term prior to version 5.0.0

Dataset Adaptation instance

Child dataset Child adaptation instance

Data model Data model

Dataspace Branch

Snapshot Version

Dataspace or snapshot Home

Data Workflow Workflow instance

Workflow model Workflow definition

Workflow publication Workflow

Data services Data services

Field Attribute

Inherited field Inherited attribute

Record Record/occurrence

Validation rule Constraint

Simple/advanced control Simple/advanced constraint

Documentation > Developer Guide

TIBCO EBX® Product Documentation 5.9.20 475

Data model

Documentation > Developer Guide > Data model > Introduction

TIBCO EBX® Product Documentation 5.9.20 476

CHAPTER 80
Introduction

A data model is a structural definition of the data to be managed in the TIBCO EBX repository. Data
models contribute to EBX's ability to guarantee the highest level of data consistency and to facilitate
data management.
Specifically, the data model is a document that conforms to the XML Schema standard (W3C
recommendation). Its main features are as follows:

• A rich library of well-defined simple data types [p 479], such as integer, boolean, decimal, date,
time;

• The ability to define additional simple types [p 481] and complex types [p 481];

• The ability to define simple lists of items, called aggregated lists [p 490];

• Validation constraints [p 513] (facets), for example: enumerations, uniqueness constraints,
minimum/maximum boundaries.

EBX also uses the extensibility features of XML Schema for other useful information, such as:

• Predefined types [p 482], for example: locale, resource, html;

• Definition of tables [p 493] and foreign key constraints [p 498];

• Mapping data in EBX to Java beans;

• Advanced validation constraints [p 513] (extended facets), such as dynamic enumerations;

• Extensive presentation information [p 531], such as labels, descriptions, and error messages.

Note

EBX supports a subset of the W3C recommendations, as some features are not relevant
to Master Data Management.

This chapter contains the following topics:

1. Editing the data model

2. References

3. Relationship between datasets and data models

4. Pre-requisite for XML Schemas

5. Conventions

6. Schemas with reserved names

Documentation > Developer Guide > Data model > Introduction

TIBCO EBX® Product Documentation 5.9.20 477

80.1 Editing the data model
There are two different ways to define a data model:

• The data model can be defined using an XML Schema editor or through the data model assistant.
The data model assistant has the advantage of being integrated into the EBX user interface,
abstracting the verbose underlying XML. For more information, see Introduction to data models
[p 34]. The data model assistant allows using features that are not documented to be used outside
of the DMA; e.g. Toolbars and Widgets.

• By using an external XML Schema document editor.

80.2 References
For an introduction to XML Schema, see the W3Schools XML Schema Tutorial.

See also

XML Schema Part 0: Primer

XML Schema Part 1: Structures

XML Schema Part 2: Datatypes

80.3 Relationship between datasets and data models
Each root dataset is associated with a single data model. At the dataspace creation, an associated data
model is selected, on which to base the dataset.

See alsoCreating a dataset [p 111]

80.4 Pre-requisite for XML Schemas
In order for an XML Schema to be accepted by EBX, it must include a global element declaration
that includes the attribute osd:access="--".
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:osd="urn:ebx-schemas:common_1.0" xmlns:fmt="urn:ebx-schemas:format_1.0">
 <xs:import namespace="urn:ebx-schemas:common_1.0"
 schemaLocation="http://schema.orchestranetworks.com/common_1.0.xsd"/>
 <xs:element name="root" osd:access="--">
 ...
 </xs:element>
</xs:schema>

https://www.w3schools.com/xml/schema_intro.asp
https://www.w3.org/TR/xmlschema-0/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-2/

Documentation > Developer Guide > Data model > Introduction

TIBCO EBX® Product Documentation 5.9.20 478

80.5 Conventions
By convention, namespaces are always defined as follows:

Prefix Namespace

xs: http://www.w3.org/2001/XMLSchema

osd: urn:ebx-schemas:common_1.0

fmt: urn:ebx-schemas:format_1.0

usd: urn:ebx-schemas:userServices_1.0

emd: urn:ebx-schemas:entityMappings_1.0

80.6 Schemas with reserved names
Several data models in EBX have reserved names.
All references to other data models (using the attribute schemaLocation for an import, include or
redefine) that end with one of the following strings are reserved:

• common_1.0.xsd

• org_1.0.xsd

• coreModel_1.0.xsd

• session_1.0.xsd

• userServices_1.0.xsd

• entityMappings_1.0.xsd

These XSD files correspond to the schemas provided for the module ebx-root-1.0, at the path /WEB-
INF/ebx/schemas. The attribute schemaLocation can reference the files at this location or a copy, if the
file names are identical. This is useful if you want to avoid a module dependency on ebx-root-1.0.
For security reasons, EBX uses an internal definition for these schemas to prevent any modification.

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 479

CHAPTER 81
Data types

This chapter details the data types supported by TIBCO EBX.

See alsoTables and relationships [p 493]

This chapter contains the following topics:

1. XML Schema built-in simple types

2. XML Schema named simple types

3. XML Schema complex types

4. Extended simple types defined by EBX

5. Complex types defined by EBX

6. Aggregated lists

7. Including external data models

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 480

81.1 XML Schema built-in simple types
The table below lists all the simple types defined in XML Schema that are supported by EBX, along
with their corresponding Java types.

XML Schema type Java class Notes

xs:string java.lang.String

xs:boolean java.lang.Boolean

xs:decimal java.math.BigDecimal A totalDigits facet with a value equal
to 15 is added by default to decimal
fields that are contained in a mapped
table (relational, historized or replicated
table). However, this facet can be
overwritten with a greater value in the
data model.

xs:dateTime java.util.Date

xs:time java.util.Date The date portion of the returned Date is
always set to '1970/01/01'.

xs:date java.util.Date The time portion of the returned Date is
always the beginning of the day, that is,
'00:00:00'.

xs:anyURI java.net.URI

xs:Name (xs:string restriction) java.lang.String

xs:int (xs:decimal restriction) java.lang.Integer

xs:integer (xs:decimal restriction) java.lang.Integer This mapping does not comply with
the XML Schema recommendation.
Although the XML Schema specification
states that xs:integer has no value
space limitation, this value space is, in
fact, restricted by the Java specifications
of the java.lang.Integer object.

The mapping between XML Schema types and Java types are detailed in the section Mapping of data
types [p 466].

81.2 XML Schema named simple types
Named simple types can be defined when designing a data model for redefining an existing built-in
simple type. A named simple type can be reused in the data model.
Restrictions:

https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#Name
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#int
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#int
https://www.w3.org/TR/xmlschema-2/#decimal

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 481

• In the data model, only the element restriction is allowed in a named simple type, and even
then, only derivation by restriction is supported. Notably, the elements list and union are not
supported.

• Facet definition is not cumulative. That is, if an element and its named type both define the same
kind of facet, then the facet defined in the type is overridden by the local facet definition. However,
this restriction does not apply to programmatic facets defined by the element osd:constraint.
For osd:constraint, if an element and its named type both define a programmatic facet with
different Java classes, the definition of these facets will be cumulative. Contrary to the XML
Schema Specification, EBX is not strict regarding the definition of a facet of the same kind in
an element and its named type. That is, the value of a same kind of facet defined in an element
is not checked according to the one defined in the named type. However, in the case of static
enumerations defined both in an element and its type, the local enumeration will be replaced by
the intersection between these enumerations.

• It is not possible to define different types of enumerations on both an element and its named type.
For instance, you cannot specify a static enumeration in an element and a dynamic enumeration
in its named type.

• It is not possible to simultaneously define a pattern facet in both an element and its named type.

81.3 XML Schema complex types
Complex types can be defined when designing a data model. A named complex type can be reused
in the data model.
Restrictions:

• In the data model, only the element sequence is allowed. Notably, attribute definition is not
supported.

• Type extensions are not supported in the current version of EBX.

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 482

81.4 Extended simple types defined by EBX
EBX provides pre-defined simple data types:

XML Schema type Java class

osd:text (xs:string restriction) java.lang.String

osd:html (xs:string restriction) java.lang.String

osd:email (xs:string restriction) java.lang.String

osd:password (xs:string restriction) java.lang.String

osd:color (xs:string restriction) java.lang.String

osd:resource (xs:anyURI restriction) internal class

osd:locale (xs:string restriction) java.util.Locale

osd:dataspaceKey (xs:string restriction) java.lang.String

osd:datasetName (xs:string restriction) java.lang.String

https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#string

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 483

The above types are defined by the internal schema common-1.0.xsd. They are defined as follows:

osd:text This type represents textual information. For a basic
xs:string, its default user interface in EBX consists of a
dedicated editor with several lines for input and display.
<xs:simpleType name="text">
 <xs:restriction base="xs:string" />
</xs:simpleType>

osd:html This represents a character string with HTML formatting. A
WYSIWYG editor is provided in EBX.
<xs:simpleType name="html">
 <xs:restriction base="xs:string" />
</xs:simpleType>

osd:email This represents an email address as specified by the RFC822
standard.
<xs:simpleType name="email">
 <xs:restriction base="xs:string" />
</xs:simpleType>

osd:password This represents a hashed or encrypted password. A specific
editor is provided in EBX.
<xs:element name="password" type="osd:password" />

The default editor performs a hash computation using
the SHA-512 algorithm. This encryption function is
also available from a Java client using the method
DirectoryDefault.encryptStringAPI.
It is also possible for the default editor to use a
different encryption mechanism by specifying a class that
implements the interface EncryptionAPI.
<xs:element name="password" type="osd:password">
 <xs:annotation>
 <xs:appinfo>
 <osd:uiBean class="com.orchestranetworks.ui.UIPassword">
 <encryptionClass>package.EncryptionClassName</encryptionClass>
 </osd:uiBean>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

It is possible to specify some salt by referencing a path
to another field, and by using a class the implements the
interface HashComputationAPI.
<xs:element name="password" type="osd:password">
 <xs:annotation>
 <xs:appinfo>
 <osd:uiBean class="com.orchestranetworks.ui.UIPassword">
 <encryptionClass>package.HashClassName</encryptionClass>
 <saltPath>../login</saltPath>
 </osd:uiBean>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

https://tools.ietf.org/html/rfc822#section-6

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 484

osd:locale This represents a geographical, political or cultural location.
The locale type is translated into Java by the class
java.util.Locale.
<xs:simpleType name="locale">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ar" osd:label="Arabic" />
 <xs:enumeration value="ar_AE" osd:label="Arabic (United Arab
 Emirates)" />
 <xs:enumeration value="ar_BH" osd:label="Arabic (Bahrain)" />
 <xs:enumeration value="ar_DZ" osd:label="Arabic (Algeria)" />
 <xs:enumeration value="ar_EG" osd:label="Arabic (Egypt)" />
 <xs:enumeration value="ar_IQ" osd:label="Arabic (Iraq)" />
 ...
 <xs:enumeration value="vi_VN" osd:label="Vietnamese (Vietnam)" /
>
 <xs:enumeration value="zh" osd:label="Chinese" />
 <xs:enumeration value="zh_CN" osd:label="Chinese (China)" />
 <xs:enumeration value="zh_HK" osd:label="Chinese (Hong Kong)" />
 <xs:enumeration value="zh_TW" osd:label="Chinese (Taiwan)" />
 </xs:restriction>
</xs:simpleType>

osd:color This represents a character string with hexadecimal RGB
color formatting. A color picker UIComponent is provided in
EBX.
<xs:simpleType name="color">
 <xs:restriction base="xs:string" />
</xs:simpleType>

osd:resource This represents a resource packaged in a module. For
more information, see Packaged resources [p 462]. This type
requires the definition of the facet FacetOResource [p 518].
<xs:simpleType name="resource">
 <xs:restriction base="xs:anyURI" />
</xs:simpleType>

osd:dataspaceKey This type represents a reference to a dataspace.
<xs:element name="dataspaceField" type="osd:dataspaceKey" />

A specific editor is provided in EBX that displays the
dataspaces that can be referenced.
It is possible to specify the dataspaces that can be referenced
using the element osd:dataspaceSet under xs:annotation/
xs:appInfo. If the element osd:dataspaceSet is not
defined, then by default, only open branches can be
referenced.
<xs:element name="dataspaceField" type="osd:dataspaceKey">
 <xs:annotation>
 <xs:appinfo>
 <osd:dataspaceSet>
 <include>
 <pattern>a pattern</pattern>
 <type>all | branch | version</type>
 <includeDescendants>none | allDescendants |
 allBranchDescendants | allSnapshotDescendants | branchChildren |
 snapshotChildren</includeDescendants>
 </include>
 <exclude>
 <pattern>a pattern</pattern>
 <type>all | branch | version</type>

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 485

 <includeDescendants>none | allDescendants |
 allBranchDescendants | allSnapshotDescendants | branchChildren |
 snapshotChildren</includeDescendants>
 </include>
 <filter osd:class="com.foo.MyDataspaceFilter">
 <param1>...</param1>
 <param2>...</param2>
 </filter>
 </osd:dataspaceSet>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

• includes
Specifies the dataspaces that can be referenced by this
field. An include must at least be defined.
pattern: Specifies a pattern that filters dataspaces. The
pattern is checked against the name of the dataspaces.
This property is mandatory.
type: Specifies the type of dataspaces that can be
referenced by this field. If not defined, this restriction is
applied to branches. If all then branches and snapshots
are included. If branch then only branches are included.
If snapshot then only snapshots are included. If not set,
this property is branch by default.
includeDescendants: Specifies if children or
descendants of the dataspaces that match the specified
pattern are included in the set. If none then
neither children nor descendants of the dataspaces
that match the specified pattern are included.
If allDescendants then all descendants of the
dataspaces that match the specified pattern are
included. If allBranchDescendants then all descendant
branches of the dataspaces that match the specified
pattern are included. If allSnapshotDescendants
then all descendant snapshots of the dataspaces
that match the specified pattern are included. If
directBranchChildren then only direct branches of
the dataspaces that match the specified pattern are
included. If directSnapshotChildren then only direct
snapshots of the dataspaces that match the specified
pattern are included. If not set, this property is none by
default.

• excludes
Specifies the dataspaces that cannot be referenced by
this field. Excludes are ignored if no includes are
defined.
pattern: Specifies a pattern that filters dataspaces. The
pattern is checked against the name of the dataspaces.
This property is mandatory.
type: Specifies the type of dataspaces that can be
referenced by this field. If not defined, this restriction
is applied to branches. If all then branches and

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 486

snapshots are excluded. If branch then only branches
are excluded. If snapshot then only snapshots are
excluded. If not set, this property is branch by default.
includeDescendants: Specifies if children or
descendants of the datasets that match the specified
pattern are excluded from the set. If none then
neither children nor descendants of the dataspaces
that match the specified pattern are excluded.
If allDescendants then all descendants of the
dataspaces that match the specified pattern are
excluded. If allBranchDescendants then all descendant
branches of the dataspaces that match the specified
pattern are excluded. If allSnapshotDescendants
then all descendant snapshots of the dataspaces
that match the specified pattern are excluded. If
directBranchChildren then only direct branches of
the dataspaces that match the specified pattern are
excluded. If directSnapshotChildren then only direct
snapshots of the dataspaces that match the specified
pattern are excluded. If not set, this property is none by
default.

• filter

Specifies a filter to accept or reject dataspaces in the
context of a dataset or a record. This filter is only used
in the dedicated input component that is associated to
this field. That is, this filter is not used when validating
this field. A specific constraint can be used to perform
specific controls on this field.
The attribute osd:class specifies a Java bean that
implements the interface DataspaceSetFilterAPI.

It is also possible to customize validation messages and
the control policy associated with this type using the
element validation under xs:annotation/xs:appInfo/
osd:dataspaceSet. See Facet validation message with
severity [p 534] and Control policy [p 522] for more
information.

osd:datasetName This type represents a reference to a dataset.
<xs:element name="dataset" type="osd:datasetName" />

A specific editor provided in EBX displays the datasets that
can be referenced.
It is also possible to specify the datasets that can
be referenced using the element osd:datasetSet under
xs:annotation/xs:appInfo:
<xs:element name="datasetField" type="osd:datasetName">
 <xs:annotation>
 <xs:appinfo>
 <osd:datasetSet>
 <branch>productsBranch</branch>

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 487

 <version>productsVersion</version>
 <dataspaceSelector>../dataspaceField</dataspaceSelector>
 <pattern>a pattern</pattern>
 <filter osd:class="com.foo.MyDatasetFilter">
 <param1>...</param1>
 <param2>...</param2>
 </filter>
 </osd:datasetSet>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

• branch

Specifies the source branch. Only datasets contained in
this branch will be able to be selected by a field of the
type Dataset identifier (osd:datasetName).

• version

Specifies the source snapshot. Only datasets contained
in this snapshot will be able to be selected by a field of
the type Dataset identifier (osd:datasetName).

• dataspaceSelector

Specifies a field in the same data model that defines
the dataspace containing the datasets that can be
referenced. The specified field must be of type
xs:string or osd:dataspaceKey. The value of this field
must comply with the representation of a persistent
identifier of a dataspace or snapshot. See HomeKey.
formatAPI for more information.
The referred node must respect the restrictions existing
for dynamic facets, see Dynamic constraints [p 516].

• includes

Specifies the datasets that can be referenced by this
field.
pattern: Specifies a pattern that filters datasets. The
pattern is checked against the name of the datasets. This
property is mandatory.
includeDescendants: Specifies if children or
descendants of the datasets that match the specified
pattern are included in the set. If none then neither
children nor descendants of the datasets that match
the specified pattern are excluded. If directChildren
then only direct children of the datasets that match the
specified pattern are excluded. If allDescendants then
all descendants of the datasets that match the specified
pattern are excluded. If not set, this property is none by
default.

• excludes

Specifies the datasets that cannot be referenced by this
field. Excludes are ignored if no includes are defined.

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 488

pattern: Specifies a pattern that filters datasets. The
pattern is checked against the name of the datasets. This
property is mandatory.
includeDescendants: Specifies if children or
descendants of the datasets that match the specified
pattern are included in the set. If none then neither
children nor descendants of the datasets that match
the specified pattern are excluded. If directChildren
then only direct children of the datasets that match the
specified pattern are excluded. If allDescendants then
all descendants of the datasets that match the specified
pattern are excluded. If not set, this property is none by
default.

• filter

Specifies a filter to accept or reject datasets in the
context of a dataset or record. This filter is only used
in the dedicated input component that is associated to
this field. That is, this filter is not used when validating
this field. A specific constraint can be used to perform
specific controls on this field.
The attribute osd:class specifies a Java bean that
implements the interface DatasetSetFilterAPI. A
validation message is added to the associated field if an
input dataspace reference does not match this filter.

One of the elements branch, version or dataspaceSelector
must be defined.
It is also possible to customize validation messages and
the control policy associated with this type using the
element validation under xs:annotation/xs:appInfo/
osd:datasetSet. See Facet validation message with
severity [p 534] and Control policy [p 522] for more
information.

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 489

81.5 Complex types defined by EBX
EBX provides pre-defined complex data types:

XML Schema type Description

osd:UDA User Defined Attribute: This type allows any user, according
to their access rights, to define a value associated with an
attribute defined in a dictionary called a UDA Catalog.

osd:UDACatalog Catalog of User Defined Attributes: This type consists of a
table in which attributes can be specified. This catalog is used
by all osd:UDA elements declared in the same data model.

osd:UDA A User Defined Attribute (UDA) supports both the
minOccurs and maxOccurs attributes, as well as the attribute
osd:UDACatalogPath, which specifies the path of the
corresponding catalog.
<xs:element name="firstUDA" type="osd:UDA" minOccurs="0"
 maxOccurs="unbounded" osd:UDACatalogPath="//insuranceCatalog" />
<xs:element name="secondUDA" type="osd:UDA" minOccurs="1"
 maxOccurs="1"
 osd:UDACatalogPath="/root/userCatalog" />
<xs:element name="thirdUDA" type="osd:UDA" minOccurs="0"
 maxOccurs="1"
 osd:UDACatalogPath="//userCatalog" />

In the manager, when working with a UDA, the editor will
adapt itself to the type of the selected attribute.

osd:UDACatalog Internally, a catalog is represented as a table. The parameters
minOccurs and maxOccurs must be specified.
Several catalogs can be defined in the same data model.
<xs:element name="insuranceCatalog" type="osd:UDACatalog"
 minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">Insurance Catalog.</
xs:documentation>
 <xs:documentation xml:lang="fr-FR">Catalog assurance.</
xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="userCatalog" type="osd:UDACatalog" minOccurs="0"
 maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">User catalog.</
xs:documentation>
 <xs:documentation xml:lang="fr-FR">Catalogue utilisateur.</
xs:documentation>
 </xs:annotation>
</xs:element>

Only the following types are available for creating new
attributes:

• xs:string

• xs:boolean

• xs:decimal

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 490

• xs:dateTime

• xs:time

• xs:date

• xs:anyURI

• xs:Name

• xs:int

• osd:html

• osd:email

• osd:password

• osd:locale

• osd:text

Restrictions on User Defined Attributes and Catalogs
The following features are unsupported on UDA elements:

• Facets

• Functions using the osd:function property

• UI bean editors using the osd:uiBean property

• The osd:checkNullInput property

• History features

• Replication

• Inheritance features, using the osd:inheritance property

As UDA catalogs are internally considered to be tables, the restrictions that apply to tables also exist
for UDACatalog elements.

81.6 Aggregated lists
In XML Schema, the maximum number of times an element can occur is determined by the value of
the maxOccurs attribute in its declaration. If this value is strictly greater than 1 or is unbounded, the
data can have multiple occurrences. If no osd:table declaration is included, this element is called an
aggregated list. In Java, it is then represented as an instance of the class java.util.List.
The following is an example of an aggregated list that defines the pricing of a loan product, depending
on the amount borrowed.
<xs:element name="pricing" minOccurs="0" maxOccurs="unbounded"
 osd:access="RW">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Pricing</osd:label>
 <osd:description>Pricing grid </osd:description>
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="amount" type="xs:int">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Amount borrowed</osd:label>
 </xs:documentation>

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 491

 </xs:annotation>
 </xs:element>
 <xs:element name="monthly" type="xs:int">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Monthly payment </osd:label>
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="cost" type="xs:int">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Cost</osd:label>
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Aggregated lists have a dedicated editor in EBX. This editor allows you to add or to delete occurrences.

Attention
The addition of an osd:table declaration to an element with maxOccurs > 1 is a very important
consideration that must be taken into account during the design process. An aggregated list is severely
limited with respect to the many features that are supported by tables. Some features unsupported
on aggregated lists that are supported on tables are:

• Performance and memory optimization;

• Lookups, filters and searches;

• Sorting, view and display in hierarchies;

• Identity constraints (primary keys and uniqueness constraints);

• Detailed permissions for creation, modification, deletion and particular permissions at the record
level;

• Detailed comparison and merge.

Thus, aggregated lists should be used only for small volumes of simple data (one or two dozen
occurrences), with no advanced requirements. For larger volumes of data or more advanced
functionalities, it is strongly advised to use an osd:table declaration.
For more information on table declarations, see Tables and relationships [p 493].

81.7 Including external data models
Including another data model in your current model allows you to use the reusable types that are
defined in that data model. You can thus use the inclusion of external data models to share data types
between multiple XML Schema Documents.
To include another XML Schema Document in your model, thereby including the data types that it
defines, specify the xs:include element as follows:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:osd="urn:ebx-schemas:common_1.0" xmlns:fmt="urn:ebx-schemas:format_1.0">
 <xs:include schemaLocation="./schemaToInclude.xsd"/>
 ...
</xs:schema>

The attribute schemaLocation is mandatory and must specify either an absolute or a relative path to
the XML Schema Document to include.

Documentation > Developer Guide > Data model > Data types

TIBCO EBX® Product Documentation 5.9.20 492

The inclusion of XML Schema Documents is not namespace aware, thus all included data types must
belong to the same namespace. As a consequence, including XML Schema Documents that define
data types of the same name is not supported.
EBX includes extensions with specific URNs for including embedded data models and data models
packaged in modules.
To include an embedded data model in a model, specify the URN defined by EBX. For example:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:osd="urn:ebx-schemas:common_1.0" xmlns:fmt="urn:ebx-schemas:format_1.0">
 <xs:include schemaLocation="urn:ebx:publication:myPublication"/>
 ...
</xs:schema>

To include a data model packaged in a module, specify the specific URN defined by EBX. For
example:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:osd="urn:ebx-schemas:common_1.0" xmlns:fmt="urn:ebx-schemas:format_1.0">
 <xs:include schemaLocation="urn:ebx:module:aModuleName:/WEB-INF/ebx/schema/myDataModel.xsd"/>
 ...
</xs:schema>

See SchemaLocationAPI for more information about specific URNs supported by EBX.

Note

If the packaged data model uses Java resources, the class loader of the module containing
the data model will be used at runtime for resolving these resources.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 493

CHAPTER 82
Tables and relationships

This chapter contains the following topics:

1. Tables

2. Foreign keys

3. Associations

82.1 Tables

Overview
TIBCO EBX supports the features of relational database tables, including the handling of large
volumes of records, and identification by primary key.
Tables provide many benefits that are not offered by aggregated lists [p 490]. Beyond relational
capabilities, some features that tables provide are:

• filters and searches;

• sorting, views and hierarchies;

• identity constraints: primary keys, foreign keys [p 498] and uniqueness constraints [p 515];

• specific permissions for creation, modification, and deletion;

• dynamic and contextual permissions at the individual record level;

• detailed comparison and merge;

• ability to have inheritance at the record level (see dataset inheritance [p 272]);

• performance and memory optimization.

See also

Foreign keys [p 498]

Associations [p 501]

Working with existing datasets [p 123]

Simple tabular views [p 116]

Hierarchical views [p 117]

History [p 251]

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 494

Declaration
A table element, which is an element with maxOccurs > 1, is declared by adding the following
annotation:
<xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>/pathToField1 /pathToField...n</primaryKeys>
 </osd:table>
 </xs:appinfo>
</xs:annotation>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 495

Common properties

Element Description Required

primaryKeys Specifies the primary key fields of the table.

Each field of the primary key must be denoted by its absolute
XPath notation that starts just under the root element of the table. If
there are multiple fields in the primary key, the list is delimited by
whitespace.

Note: Whitespaces in primary keys of type xs:string are handled
differently. See Whitespace handling for primary keys of type string
[p 526].

Yes.

defaultLabel Defines the end-user display of records. Multiple variants can be
specified:

• A static non-localized expression is defined using the
defaultLabel element, for example:

<defaultLabel>Product: ${./productCode}</
defaultLabel>

• Static localized expressions are specified using the
defaultLabel element with the attribute xml:lang, for example:

<defaultLabel xml:lang="fr-FR">Produit : ${./
productCode}</defaultLabel>

<defaultLabel xml:lang="en-US">Product: ${./
productCode}</defaultLabel>

• A JavaBean that implements the interface UILabelRendererAPI

and/or the interface UILabelRendererForHierarchyAPI. The
JavaBean is specified by means of the attribute osd:class, for
example:

<defaultLabel osd:class="com.wombat.MyLabel"></
defaultLabel>

Note: The priority of the tags when displaying the user interface is
the following:

1. defaultLabel tags with a JavaBean (but it is not allowed to
define several renderers of the same type);

2. defaultLabel tags with a static localized expression using the
xml:lang attribute;

3. defaultLabel tags with a static non-localized expression.

Attention: Access rights defined on associated datasets are not
applied when displaying record labels. Fields that are usually hidden
due to access rights restrictions will be displayed in labels.

No.

index Specifies an index for speeding up requests that match this index (see
performances [p 295]).

The attribute name is mandatory. Each field of the index must be
denoted by its absolute XPath notation, which starts just under the
root element of the table. If there are multiple fields in the index, the
list is delimited by whitespace.

Note:

• Indexing only concerns semantic and relational tables. History
and replica tables are not affected.

• It is possible to define multiple indexes on a table.

• It is not possible to define two indexes with the same name.

No.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 496

Element Description Required

• It is not possible to declare two indexes containing the exact
same fields.

• An indexed field must be terminal.

• An indexed field cannot be a list nor under a list.

• A field declared as an inherited field cannot be indexed.

• A field declared as a function cannot be indexed.

For performance purposes, the following nodes are automatically
indexed:

• Primary keys nodes. See primary keys [p 493].

• Nodes defining a foreign key constraint. See foreign key
constraint [p 498].

• Nodes declared as being unique. See uniqueness constraint [p

515].

• Auto-incremented nodes. See auto-incremented values [p 529].

recordForm Defines a specific component for customizing the record form in a
dataset. This component is defined using a JavaBean that extends
UIFormAPI or implements UserServiceRecordFormFactoryAPI.

The JavaBean is specified by means of the attribute osd:class, for
example:

<recordForm osd:class="com.wombat.MyRecordForm"/>

No.

Example
Below is an example of a product catalog:
<xs:element name="Products" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Product Table </osd:label>
 <osd:description>List of products in Catalog </osd:description>
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>./productRange /productCode</primaryKeys>
 <index name="indexProductCode">/productCode</index>
 </osd:table>
 </xs:appinfo>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="productRange" type="xs:string"/><!-- key -->
 <xs:element name="productCode" type="xs:string"/><!-- key -->
 <xs:element name="productLabel" type="xs:string"/>
 <xs:element name="productDescription" type="xs:string"/>
 <xs:element name="productWeight" type="xs:int"/>
 <xs:element name="productType" type="xs:string"/>
 <xs:element name="productCreationDate" type="xs:date"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Catalogs" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Catalog Table</osd:label>
 <osd:description>List of catalogs</osd:description>
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>/catalogId</primaryKeys>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 497

 </osd:table>
 </xs:appinfo>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="catalogId" type="xs:string"/><!-- key -->
 <xs:element name="catalogLabel" type="xs:string"/>
 <xs:element name="catalogDescription" type="xs:string"/>
 <xs:element name="catalogType" type="xs:string"/>
 <xs:element name="catalogPublicationDate" type="xs:date"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Properties related to dataset inheritance
The following properties are only valid in the context of dataset inheritance:

Element Description Required

onDelete-
deleteOccultingChildren

Specifies whether, upon record deletion, child records in occulting
mode are also to be deleted.

Valid values are: never or always.

No, default is
never.

mayCreateRoot Specifies whether root record creation is allowed. The expression
must follow the syntax below. See definition modes [p 272].

No, default is
always.

mayCreateOverwriting Specifies whether records are allowed to be overwritten in child
datasets. The expression must follow the syntax below. See definition
modes [p 272].

No, default is
always.

mayCreateOcculting Specifies whether records are allowed to be occulted in child
datasets. The expression must follow the syntax below. See definition
modes [p 272].

No, default is
always.

mayDuplicate Specifies whether record duplication is allowed. The expression must
follow the syntax below.

No, default is
always.

mayDelete Specifies whether record deletion is allowed. The expression must
follow the syntax below.

No, default is
always.

The may... expressions specify when the action is possible, though the ultimate availability of the
action also depends on the user access rights. The expressions have the following syntax:
expression ::= always | never | <condition>*

condition ::= [root:yes | root:no]

"always": the operation is "always" possible (but user rights may restrict this).

"never": the operation is never possible.

"root:yes": the operation is possible if the record is in a root instance.

"root:no": the operation is not possible if the record is in a root instance.

If the record does not define any specific conditions, the default is used.

See alsoDataset inheritance [p 271]

Using toolbars
It is possible to define the toolbars to display in the user interface using the element defaultView/
toolbars under xs:annotation/appinfo/osd:table. A toolbar allows to customize the buttons and
menus to display when displaying a table view, a hierarchical view, or a record form.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 498

The table below presents the elements that can be defined under defaultView/toolbars.

Element Description Required

tabularViewTop Defines the toolbar to use on top of the default table view. No.

tabularViewRow Defines the toolbar to use on each row of the default table view. No.

recordTop Defines the toolbar to use in the record form. No.

hierarchyViewTop Defines the toolbar to use in the default hierarchy view of the table. No.

See alsoToolbars [p 547]

Example
Below is an example of custom toolbars used by a product catalog:
<xs:element name="Products" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 <osd:label>Product Table </osd:label>
 <osd:description>List of products in Catalog </osd:description>
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>./productRange /productCode</primaryKeys>
 <defaultView>
 <toolbars>
 <tabularViewTop>toolbar_name_for_tabularViewTop</tabularViewTop>
 <tabularViewRow>toolbar_name_for_tabularViewRow</tabularViewRow>
 <recordTop>toolbar_name_for_recordTop</recordTop>
 <hierarchyViewTop>toolbar_name_for_hierarchyViewTop</hierarchyViewTop>
 </toolbars>
 </defaultView>
 </osd:table>
 </xs:appinfo>
 </xs:annotation>
 ...
 </xs:complexType>
</xs:element>

Note

If a toolbar does not exist or is not available for a specific location then no toolbar will
be displayed in the user interface in the corresponding location.

82.2 Foreign keys

Declaration
A reference to a table [p 493] is defined using the extended facet osd:tableRef.
The node holding the osd:tableRef declaration must be of type xs:string. At the instantiation, any
value of the node identifies a record in the target table using its primary key syntax PrimaryKey.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 499

syntaxAPI. This extended facet is also interpreted as an enumeration whose values refer to the records
in the target table.

Element Description Required

tablePath XPath expression that specifies the target table. Yes.

container Reference of the dataset that contains the target table. Only if the dataspace element
is defined. Otherwise, default
is the current dataset.

branch Reference of the dataspace that contains the container dataset. No, default is the current
dataspace or snapshot.

display Custom display for presenting the selected foreign key in
the current record and the sorted list of possible keys. Two
variants can be specified, either pattern-based expressions, or a
JavaBean if the needs are very specific:

• Static expressions are specified using the display and
pattern elements. These static expressions can be
localized using the additional attribute xml:lang on the
pattern element, for example:

<display>

<pattern>Product : ${./productCode}</pattern>

<pattern xml:lang="fr-FR">Produit : ${./
productCode}</pattern>

<pattern xml:lang="en-US">Product: ${./
productCode}</pattern>

</display>

• A JavaBean that implements the interface
TableRefDisplayAPI. It is specified using the attribute
osd:class. For example:

<display osd:class="com.wombat.MyLabel"></
display>

It is not possible to define both variants on the same foreign key
element.

Attention: Access rights defined on associated datasets are not
applied when displaying record labels. Fields that are usually
hidden due to access rights restrictions will be displayed in
labels.

No, if the display property
is not specified, the table's
record rendering [p 495] is
used.

filter Specifies an additional constraint that filters the records of the
target table. Two types of filters are available:

• An XPath filter is an XPath predicate in the target table
context. It is specified using the predicate element. For
example:

<filter><predicate>type = ${../refType}</
predicate></filter>

A localized validation message can be specified using the
element validationMessage, which will be displayed
to the end-user at the validation time if a record is not
accepted by the filter.

A specific severity level can be defined in a nested
severity element. The default severity is 'error'.

Each localized message variant is defined in a nested
message element with its locale in an xml:lang attribute.

No.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 500

Element Description Required

To specify a default message for unsupported locales,
define a message element with no xml:lang attribute.

In the user interface, the XPath filter is applied to filter a
table according to the value of a foreign key field. That
is, if a foreign key field specifies an XPath filter in a data
model, then it will be reused in the filter pane to restrict the
set of values in the associated combo-box displayed in the
filter pane. However, the predicate used by the filter pane
will only take into account the non-contextual parts of the
predicate.

• A programmatic filter is a JavaBean that implements
the interface TableRefFilterAPI. It is specified using the
attribute osd:class. For example:

<filter osd:class="com.wombat.MyFilter"></filter>

Additional validation messages can be specified during the
setup of the programmatic filter.

In the user interface, programmatic filters are not applied
to filter the set of values in the associated combo-box
displayed in the filter pane. However, it is possible
to specify an additional XPath predicate that will be
used in the filter pane of the user interface. This XPath
predicate is specified during the setup of the programmatic
filter using the method TableRefFilterContext.
setFilterForSearchAPI.

Note:

The attributes osd:class and the property predicate cannot be
set simultaneously.

The validation search XPath functions are forbidden on a
tableRef filter.

validation Specifies localized validation messages for the osd:tableRef
and error management policy.

A specific severity level can be defined in a nested severity
element. The default severity is 'error'.

An error management policy can be defined in a nested
blocksCommit element. The error management policy that
blocks all operations does not apply to filters. That is, a foreign
key constraint is not blocking if a referenced record exists but
does not satisfy a foreign key filter. In this case, updates are not
rejected, and a validation error will be reported.

Each localized message variant is defined in a nested message
element with its locale in an xml:lang attribute. To specify
a default message for unsupported locales, define a message
element with no xml:lang attribute.

No.

Attention
You can create a dataset which has a foreign key to a container that does not exist in the repository.
However, the content of this dataset will not be available until the container is created. After the
creation of the container, a data model refresh is required to make the dataset available. When
creating a dataset that refers to a container that does not yet exist, the following limitations apply:

• Triggers defined at the dataset level are not executed.

• Default values for fields that are not contained in tables are not initialized.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 501

• During an archive import, it is not possible to create a dataset that refers to a container that does
not exist.

Example
The example below specifies a foreign key in the 'Products' table to a record of the 'Catalogs' table.
<xs:element name="catalog_ref" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:tableRef>
 <tablePath>/root/Catalogs</tablePath>
 <display>
 <pattern xml:lang="en-US">Catalog: ${./catalogId}</pattern>
 <pattern xml:lang="fr-FR">Catalogue : ${./catalogId}</pattern>
 </display>
 <validation>
 <severity>error</severity>
 <blocksCommit>onInsertUpdateOrDelete</blocksCommit>
 <message>A default error message</message>
 <message xml:lang="en-US">A localized error message</message>
 <message xml:lang="fr-FR">Un message d'erreur localisé</message>
 </validation>
 </osd:tableRef>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

See also

Table definition [p 493]

Primary key syntax PrimaryKey.syntaxAPI

Extraction of foreign keys (XPath predicate syntax) [p 232]

Associations [p 501]

View for advanced selection [p 541]

SchemaNode.getFacetOnTableReferenceAPI

SchemaFacetTableRefAPI

82.3 Associations

Overview
An association provides an abstraction over an existing relationship in the data model, and allows an
easy model-driven integration of associated objects in the user interface and in data services.
Several types of associations are supported:

• 'By foreign key' specifies the inverse relationship of an existing foreign key field [p 498].

• 'Over a link table' specifies a relationship based on an intermediate link table (such tables are often
called "join tables"). This link table has to define two foreign keys, one referring to the 'source'
table (the table holding the association element) and another one referring to the 'target' table.

• 'By an XPath predicate' specifies a relationship based on an XPath predicate.

For an association, it is also possible to:

• Filter associated objects by specifying an additional XPath filter.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 502

• Configure a tabular view to define the fields that must be displayed in the associated table.

• Define how associated objects are to be rendered in forms.

• Hide/show associated objects in the data service 'select' operation. See Hiding a field in Data
Services [p 540].

• Specify the minimum and maximum number of associated objects that are required.

• Add validation constraints using XPath predicates for restricting associated objects.

See also

SchemaNode.getAssociationLinkAPI

SchemaNode.isAssociationNodeAPI

AssociationLinkAPI

Declaration
Associations are defined in the data model using the XML Schema element osd:association under
xs:annotation/appInfo.
Restrictions:

• An association must be a simple element of type xs:string.

• An association can only be defined inside a table.

Note

The "official" cardinality constraints (minOccurs="0" maxOccurs="0") are required
because, from an instance of XML Schema, the corresponding node is absent. In other
words, an association has no value and is considered as a "virtual" element as far as XML
and XML Schema is concerned.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 503

The table below presents the elements that can be defined under xs:annotation/appInfo/
osd:association.

Element Description Required

tableRefInverse Defines the properties of an association that is the
inverse relationship of a foreign key.

Element fieldToSource defines the foreign key
that refers to the source table of the association.
The element fieldToSource is mandatory and
must specify a foreign key field that refers to the
table containing the association.

Yes if the
association
is the inverse
relationship of
a foreign key,
otherwise no.

linkTable Defines the properties of an association over a link
table.

The element table specifies the link table used by
the association. The element table is mandatory
and must refer to an existing table.

Important: In order to be used by an association,
a link table must define a primary key that is
composed of auto-incremented fields and/or the
foreign key to the source or target table of the
association.

The element fieldToSource defines the foreign
key that refers to the source table of the association.
The element fieldToSource is mandatory and
must specify a foreign key field that refers to the
table containing the association.

The element fieldToTarget defines the foreign
key that refers to the target table of the association.
The element fieldToTarget is mandatory and
must specify a foreign key field.

Yes if the
association
is over a
link table,
otherwise no.

xpathLink Defines the properties of an association that is
based on an XPath predicate.

The predicate element specifies the criteria of the
association, relative to the current node.

Examples: /root/Products[catalog_ref =${../
catalogId}] or //Products[catalog_ref =
${../catalogId}] or ../Products[catalog_ref
=${../catalogId}].

The path to the predicate, for example ../
Products, specifies the target table of the
association. This part of the path is resolved with
respect to the current table. It is not possible
to refer to a table using a relative path if the
association targets a table in another dataset.

If the association depends on fields of the source
table, the XPath expression predicate must include
references to the elements on which it depends
using the notation ${<relative-path>} where
relative-path is a path that identifies the element
relative to the association node.

See EBX XPath supported syntax [p 227].

Note

Yes if the
association
is based on
an XPath
predicate,
otherwise no.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 504

Element Description Required

The validation search XPath
functions are forbidden on an
XPath link.

filter Defines an XPath predicate to filter associated
objects using the predicate element. For example:

<filter><predicate>type = ${../refType}</
predicate></filter>

It is only possible to use fields from the source and
the target tables when defining an XPath filter. That
is, if it is an association over a link table, it is not
possible to use fields of the link table in the XPath
filter.

Error message on creation: in the user
interface, the record creation is blocked when
a user submits a new associated record that
does not comply with the filter. The error
message can be customized using the element
checkOnAssociatedRecordCreation/message.
Each localized message variant is defined in
a nested message element with its locale in an
xml:lang attribute. To specify a default message
for unsupported locales, define a message element
with no xml:lang attribute. See Examples [p 510]

for more information on this property.

Note

The validation search XPath
functions are forbidden for
association filter.

No.

xpathFilter Note: Deprecated. This property has been replaced
by the property filter.

Defines an XPath predicate to filter associated
objects.

No.

recordForm Defines a specific component for customizing
the form of an associated record. This component
is defined using a JavaBean that implements
UserServiceAssociationRecordFormFactoryAPI.

The JavaBean is specified by means of the attribute
osd:class, for example:

<recordForm
osd:class="com.wombat.MyRecordFormFactory"/
>

No.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 505

It is possible to refer to another dataset. For that, the following properties must be defined either under
the element tableRefInverse, linkTable or xpathLink depending on the type of the association:

Element Description Required

schemaLocation Defines the data model containing the fields used
by the association. The data model is defined using
a specific URN that allows referring to embedded
data models and data models packaged in modules.

See SchemaLocationAPI for more information about
specific URNs supported by EBX.

Yes.

dataSet Defines the dataset used by the association. This
dataset must use the data model specified by the
element schemaLocation.

Yes.

dataSpace Defines the dataspace containing the dataset used
by the association.

No.

Important: When creating a dataset, you can create a dataset that defines an association to a container
that does not yet exist in the repository. However, the content of this dataset will not be available
immediately upon creation. After the absent container is created, a data model refresh is required in
order to make the dataset available. When creating a dataset that refers to a container that does not
yet exist, the following limitations apply:

• Triggers defined at the dataset level are not executed.

• Default values on fields outside tables are not initialized.

• During an archive import, it is not possible to create a dataset that refers to a container that does
not exist.

User interface integration
It is possible to define how associated objects are to be rendered in forms, using the element
osd:defaultView/displayMode under xs:annotation/appinfo.
Possible values are:

• inline, specifies that associated records are to be rendered in the form at the same position of
the association in the data model.

• tab, specifies that associated records are to be rendered in a specific tab.

• link, specifies that associated records are to be rendered in a modal window.

By default, associated records are rendered inline if this property is not defined.
The following example specifies that associated objects are to be rendered inline in the form:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 <osd:defaultView>
 <displayMode>inline</displayMode>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 506

</xs:element>

The following example specifies that associated objects are to be rendered in a specific tab:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 <osd:defaultView>
 <displayMode>tab</displayMode>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Using toolbars
It is possible to define the toolbars to display in the user interface using the element osd:defaultView/
toolbars under xs:annotation/appinfo. A toolbar allows to customize the buttons and menus to
display when displaying the tabular view of an association.
The table below presents the elements that can be defined under osd:defaultView/toolbars.

Element Description Required

tabularViewTop Defines the toolbar to use in the default table view of this association. No.

tabularViewRow Defines the toolbar to use for each row of the default view of this
association.

No.

The following example shows how to use toolbars from the previous association between a catalog
and its products:
<xs:element name="Products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 <osd:defaultView>
 <toolbars>
 <tabularViewTop>toolbar_name_for_tabularViewTop</tabularViewTop>
 <tabularViewRow>toolbar_name_for_tabularViewRow</tabularViewRow>
 </toolbars>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Note

It is only possible to use the toolbars defined in the data model containing the target table
of the association. That is, if the target table of the association is defined in another data
model, then it is only possible to reference a toolbar defined in this data model and not
in the one holding the association.

See alsoToolbars [p 547]

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 507

Customized view of associated objects
A specific tabular view can be specified to define the fields that must be displayed in the target
table. If a tabular view is not defined, all columns that a user is allowed to view, according to the
granted access rights, are displayed. A tabular view is defined using the element osd:defaultView/
tabularView under xs:annotation/appinfo.
The table below shows the elements that can be defined under osd:defaultView/tabularView.

Element Description Required

column Define a field of the target table to display. The
specified path must be absolute from the target
table and must refer to an existing field. Several
column elements can be defined to specify the
fields that are to be displayed.

No.

sort Define a field that can be used to sort associated
objects. Severalsort elements can be defined to
specify the fields that can be used to sort associated
objects.

The element nodePath defines the path of the field
that can be used to sort associated objects.

The element isAscending specifies whether the
sort order is ascending (true) or descending (false).

No.

The following example shows how to define a tabular view from the previous association between
a catalog and its products:
<xs:element name="Products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 <osd:defaultView>
 <tabularView>
 <column>/productRange</column>
 <column>/productCode</column>
 <column>/productLabel</column>
 <column>/productDescription</column>
 <sort>
 <nodePath>/productLabel</nodePath>
 <isAscending>true</isAscending>
 </sort>
 </tabularView>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Actions in the user interface
In the user interface, it is possible to perform the following actions:

• Create: it allows directly creating an object in the target table of the association. When a new
object is created, it is automatically associated with the current record.

• Duplicate: allows to duplicate an object in the target table of the association. When a new object
is created, it is automatically associated with the current record.

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 508

• Associate: associates an existing object with the current record. In the case of an association over
a link table, a record in the link table is automatically created to materialize the link between the
current record and the existing object.

• Move: associates the selected objects to a different record than the current one. In the case of an
association over a link table, the previous link record is automatically deleted and a new record
in the link table is automatically created to materialize the link between the selected objects and
their new parent record.

• Delete: deletes selected associated objects in the target table of the association.

• Detach: breaks the semantic link between the current record and the selected associated objects.
In the case of an association over a link table, the records in the link table are automatically
deleted, to break the links between the current record and associated objects.

Note

The actions associate and detach are not available when the association is defined using
an XPath predicate (element xpathLink).

Customized view for actions
A published view, tabular or hierarchical, can be specified to define how objects should be displayed
when performing an action through the user interface. A published view is defined using the element
osd:defaultView/associationViews under xs:annotation/appinfo.
The table below shows the elements that can be defined under osd:defaultView/associationViews.

Element Description Required

viewForAssociateAction Define a published view to be used when
displaying the objects in the target table to be
associated with the current record. The specified
view must be published and created upon the target
table of the association.

No.

viewForMoveAction Define a published view to be used when moving
an associated object to another record of the current
table. The specified view must be published and
created upon the current table.

No.

The following example shows how to define views from the previous association between a catalog
and its products:
<xs:element name="Products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 <osd:defaultView>
 <associationViews>
 <viewForAssociateAction>view_name_for_catalogs</viewForAssociateAction>
 <viewForMoveAction>view_name_for_products</viewForMoveAction>
 </associationViews>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 509

Validation
Some controls can be defined on associations, in order to restrict associated objects. These controls
are defined under the element osd:association.
The table below presents the controls that can be defined under xs:annotation/appInfo/osd:association.

Element Description Required

minOccurs Specifies the minimum number of associated
objects that are required for this association. This
minimum number is defined using the element
value and must be a positive integer.

No, by
default the
minimum is
not restricted.

maxOccurs Specifies the maximum number of associated
objects that are allowed for this association. This
maximum number is defined by the element
value and must be either a positive integer or the
raw string unbounded which indicates that this
maximum is not restricted. The maximum number
of associated objects must be greater than the
minimum number of associated objects.

No, by
default the
maximum is
not restricted.

constraint Defines an XPath predicate for restricting
associated records. It is only possible to use fields
from the source and the target table when defining
an XPath predicate. That is, if it is an association
over a link table, it is not possible to use fields of
the link table in the XPath predicate.

In associated datasets, a validation message of
the specified severity is added and displayed
to the end-user at the validation time when an
associated record does not comply with the
specified constraint.

No.

validation A validation message can be defined under the
elements minOccurs, maxOccurs and constraint,
using the element validation. The severity of the
validation message is specified using the element
severity. Possible severities are: error, warning
and info.

If the severity is not specified then, by default, the
severity error is used.

A localized validation message can be specified
using the element message, which will be displayed
to the end-user at the validation time if an
association does not comply with this constraint.
Each localized message variant is defined in
a nested message element with its locale in an
xml:lang attribute. To specify a default message
for unsupported locales, define a message element
with no xml:lang attribute.

No.

Data services integration
It is possible to define whether associated objects must be hidden in the Data service select operation.
For this, the property osd:defaultView/hiddenInDataServices under xs:annotation/xs:appinfo
can be set on the association. Setting the property to 'true' will hide associated objects in the Data

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 510

service select operation. If this property is not defined then, by default, associated objects will be
shown in the Data service select operation.

See also

Hiding a field in Data Services [p 540]

Association field [p 616]

Examples
For example, the product catalog data model defined previously [p 496] specifies that a product
belongs to a catalog (explicitly defined by a foreign key in the 'Products' table). The reverse
relationship (that a catalog has certain products) is not easily represented in XML Schema, unless the
'Catalogs' table includes the following association that is the inverse of a foreign key:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

For an association over a link table, we can consider the previous example and bring some updates.
For instance, the foreign key in the 'Products' table is deleted and the relation between a product and
a catalog is redefined by a link table (named 'Catalogs_Products') that has a primary key composed
of two foreign keys: one that refers to the 'Products' table (named 'productRef') and another to the
'Catalogs' table (named 'catalogRef'). The following example shows how to define an association over
a link table from this new relationship:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <linkTable>
 <table>/root/Catalogs_Products</table>
 <fieldToSource>./catalogRef</fieldToSource>
 <fieldToTarget>./productRef</fieldToTarget>
 </linkTable>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

The following example shows an association that refers to a foreign key in another dataset. In this
example, the 'Products' and 'Catalogs' tables are not in the same dataset:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <schemaLocation>urn:ebx:module:aModuleName:/WEB-INF/ebx/schema/products.xsd</schemaLocation>
 <dataSet>Products</dataSet>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

The following example defines an XPath filter to associate only products of the 'Technology' type:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 511

 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 <filter>
 <predicate>./productType = 'Technology'</predicate>
 <checkOnAssociatedRecordCreation>
 <message>A default message</message>
 <message xml:lang="en-US">A localized message</message>
 <message xml:lang="fr-FR">Un message localisé</message>
 </checkOnAssociatedRecordCreation>
 </filter>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

The following example specifies the minimum number of products that are required for a catalog:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 <minOccurs>
 <value>1</value>
 <validation>
 <severity>warning</severity>
 <message xml:lang="en-US">One product should at least be associated to this catalog.</message>
 <message xml:lang="fr-FR">Un produit doit au moins être associé à ce catalogue.</message>
 </validation>
 </minOccurs>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

The following example specifies that a catalog must contain at most ten products:
<xs:element name="products" minOccurs="0" maxOccurs="0" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:association>
 <tableRefInverse>
 <fieldToSource>/root/Products/catalog_ref</fieldToSource>
 </tableRefInverse>
 <maxOccurs>
 <value>10</value>
 <validation>
 <severity>warning</severity>
 <message xml:lang="en-US">Too much products for this catalog.</message>
 <message xml:lang="fr-FR">Ce catalogue a trop de produits.</message>
 </validation>
 </maxOccurs>
 </osd:association>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Documentation > Developer Guide > Data model > Tables and relationships

TIBCO EBX® Product Documentation 5.9.20 512

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 513

CHAPTER 83
Constraints, triggers and functions

Facets allow you to define data constraints in your data models. TIBCO EBX supports XML Schema
facets and provides extended and programmatic facets for advanced data controls.
This chapter contains the following topics:

1. XML Schema supported facets

2. Extended facets

3. Programmatic facets

4. Control policy

5. Triggers and functions

83.1 XML Schema supported facets
The tables below show the facets that are supported by different data types.
Key:

• X - Supported

• 1 - The whiteSpace facet can be defined, but is not interpreted by EBX

• 2 - In XML Schema, boundary facets are not allowed on the type string. Nevertheless, EBX
allows such facets as extensions.

• 3 - The osd:resource type only supports the facet FacetOResource, which is required. See
Extended Facets [p 516].

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 514

• 4 - osd:dataspaceKey, osd:datasetName and osd:color types do not support facets. Only
Programmatic constraints [p 520] are supported on these types.

length minLength max

Length

pattern enumeration white

Space

xs:string X X X X X 1

xs:boolean X 1

xs:decimal X X 1

xs:dateTime X X 1

xs:time X X 1

xs:date X X 1

xs:anyURI X X X X X 1

xs:Name X X X X X 1

xs:integer X X 1

osd:resource [p 482]3
1

osd:dataspaceKey [p

484]
4

1

osd:datasetName [p

486]
4

1

osd:color [p 484]4
1

fraction

Digits

total

Digits

max

Inclusive

max

Exclusive

min

Inclusive

min

Exclusive

xs:string 2 2 2 2

xs:boolean

xs:decimal X X X X X X

xs:dateTime X X X X

xs:time X X X X

xs:date X X X X

https://www.w3.org/TR/xmlschema-2/#dt-length
https://www.w3.org/TR/xmlschema-2/#dt-minLength
https://www.w3.org/TR/xmlschema-2/#dt-minLength
https://www.w3.org/TR/xmlschema-2/#dt-maxLength
https://www.w3.org/TR/xmlschema-2/#dt-maxLength
https://www.w3.org/TR/xmlschema-2/#dt-pattern
https://www.w3.org/TR/xmlschema-2/#dt-enumeration
https://www.w3.org/TR/xmlschema-2/#dt-whiteSpace
https://www.w3.org/TR/xmlschema-2/#dt-whiteSpace
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#Name
https://www.w3.org/TR/xmlschema-2/#integer
https://www.w3.org/TR/xmlschema-2/#dt-fractionDigits
https://www.w3.org/TR/xmlschema-2/#dt-fractionDigits
https://www.w3.org/TR/xmlschema-2/#dt-totalDigits
https://www.w3.org/TR/xmlschema-2/#dt-totalDigits
https://www.w3.org/TR/xmlschema-2/#dt-maxInclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxInclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxExclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxExclusive
https://www.w3.org/TR/xmlschema-2/#dt-minInclusive
https://www.w3.org/TR/xmlschema-2/#dt-minInclusive
https://www.w3.org/TR/xmlschema-2/#dt-minExclusive
https://www.w3.org/TR/xmlschema-2/#dt-minExclusive
https://www.w3.org/TR/xmlschema-2/#string
https://www.w3.org/TR/xmlschema-2/#boolean
https://www.w3.org/TR/xmlschema-2/#decimal
https://www.w3.org/TR/xmlschema-2/#dateTime
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#date

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 515

fraction

Digits

total

Digits

max

Inclusive

max

Exclusive

min

Inclusive

min

Exclusive

xs:anyURI

xs:Name 2 2 2 2

xs:integer X X X X X X

osd:resource [p 482]3

osd:dataspaceKey [p

484]
4

osd:datasetName [p

486]
4

osd:color [p 484]4

Example:
<xs:element name="loanRate">
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="4.5" />
 <xs:maxExclusive value="17.5" />
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Uniqueness constraint
It is possible to define a uniqueness constraint, using the standard XML Schema element xs:unique.
This constraint indicates that a value or a set of values has to be unique inside a table.
Example:
In the example below, a uniqueness constraint is defined on the 'publisher' table, for the target field
'name'. This means that no two records in the 'publisher' table can have the same name.
<xs:element name="publisher">
 ...
 <xs:complexType>
 <xs:sequence>
 ...
 <xs:element name="name" type="xs:string" />
 ...
 </xs:sequence>
 </xs:complexType>
 <xs:unique name="uniqueName">
 <xs:annotation>
 <xs:appinfo>
 <osd:validation>
 <severity>error</severity>
 <message>Name must be unique in table.</message>
 <message xml:lang="en-US">Name must be unique in table.</message>
 <message xml:lang="fr-FR">Le nom doit être unique dans la table.</message>
 </osd:validation>
 </xs:appinfo>
 </xs:annotation>
 <xs:selector xpath="." />
 <xs:field xpath="name" />
 </xs:unique>
</xs:element>

https://www.w3.org/TR/xmlschema-2/#dt-fractionDigits
https://www.w3.org/TR/xmlschema-2/#dt-fractionDigits
https://www.w3.org/TR/xmlschema-2/#dt-totalDigits
https://www.w3.org/TR/xmlschema-2/#dt-totalDigits
https://www.w3.org/TR/xmlschema-2/#dt-maxInclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxInclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxExclusive
https://www.w3.org/TR/xmlschema-2/#dt-maxExclusive
https://www.w3.org/TR/xmlschema-2/#dt-minInclusive
https://www.w3.org/TR/xmlschema-2/#dt-minInclusive
https://www.w3.org/TR/xmlschema-2/#dt-minExclusive
https://www.w3.org/TR/xmlschema-2/#dt-minExclusive
https://www.w3.org/TR/xmlschema-2/#anyURI
https://www.w3.org/TR/xmlschema-2/#Name
https://www.w3.org/TR/xmlschema-2/#integer
https://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 516

A uniqueness constraint has to be defined within a table and has the following properties:

Property Description Mandatory

name attribute Identifies the constraint in the data model. Yes

xs:selector element Indicates the table to which the uniqueness constraint applies
using a restricted XPath expression ('..' is forbidden). It can
also indicate an element within the table (without changing the
meaning of the constraint).

Yes

xs:field element Indicates the field in the context whose values must be unique,
using a restricted XPath expression.

It is possible to indicate that a set of values must be unique by
defining multiple xs:field elements.

Yes

Note

Undefined values (null values) are ignored on uniqueness constraints applied to single
fields. On multiple fields, undefined values are taken into account. That is, sets of values
are considered as being duplicated if they have the same defined and undefined values.

Additional localized validation messages can be defined using the element osd:validation under the
elements annotation/appinfo. If no custom validation messages are defined, a built-in validation
message will be used.
Limitations:

1. The target of the xs:field element must be in a table.

2. The uniqueness constraint does not apply to fields inside an aggregated list.

3. The uniqueness constraint does not apply to computed fields.

See alsoUniqueness constraint in the Java API UniquenessConstraintAPI

83.2 Extended facets
EBX provides additional constraints that are not specified in XML Schema, but that are useful for
managing master data.
In order to guarantee XML Schema conformance, these extended facets are defined under the element
annotation/appinfo/otherFacets.

Foreign keys
EBX allows to create a reference to an existing table by means of a specific facet. See Foreign keys
[p 498] for more information.

Dynamic constraints
Dynamic constraint facets retain the semantics of XML Schema, but the value attribute is replaced
with a path attribute that allows fetching the value from another element. The available dynamic
constraints are:

• length

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 517

• minLength

• maxLength

• maxInclusive

• maxExclusive

• minInclusive

• minExclusive

Using these facets, the data model can be modified dynamically.
Example:
<xs:element name="amount">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:minInclusive path="/domain/Loan/Pricing/AmountMini/amount" />
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

In this example, the boundary of the facet minInclusive is not statically defined. The value of the
boundary comes from the node /domain/Loan/Pricing/AmountMini/amount.
Restrictions:

• Target field cannot be an aggregated list. That is, it cannot define maxOccurs = 1.

• Data type of the target field must be compatible with the facet. That is, it must be:

• of type integer for facets length, minLength and maxLength.

• compatible with the data type of the field holding the facet for facets maxInclusive,
maxExclusive, minInclusive and minExclusive.

• Target field cannot be in a table if the field holding the facet is not in a table.

• Target field must be in the same table or outside a table if the field holding the facet is in a table.

• If the target field is under one or more aggregated lists, the field holding the facet must also be
under these aggregated lists. That is: the field holding the facet must be in the same list occurrence
as the target field, or in a parent occurrence, so that the target field refers to a single value, from
an XPath perspective.

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 518

FacetOResource constraint
This facet must be defined for every definition using the type osd:resource, to specify the subset
of available packaged resource files as an enumeration. For more information on this type, see
osd:resource type [p 484]. It has the following attributes:

moduleName Indicates, using an alias, the EBX module that contains
the resource. If the resource is contained in the current
module, the alias must be preceded by "wbp". Otherwise,
the alias must be one of the values defined in the element
<dependencies> in the file module.xml.

resourceType Represents the resource type that is one of the following
values: 'Image', 'JavaScript', 'Style sheet', 'HTML'.

relativePath Indicates in which directory the resources will be located.
This directory must be located under the directory that
corresponds to the resource type. For example, for
an "Image" type resource, the directory www/common/
images/, located at the same level as the directory WEB-
INF/ of the target module, will be used and the relative path
will have to be defined from this. Furthermore, if a resource
is defined in a localized directory (www/fr/ for example), it
will only be taken into account if another resource with the
same name is defined in the directory www/common/.

This facet has the same behavior as an enumeration facet: the values are collected by recursively
listing all the files in the local path in the specified resource type directory in the specified module.
Example:
<xs:element name="promotion" type="osd:resource">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:FacetOResource osd:moduleName="wbp"
 osd:resourceType="ext-images" osd:relativePath="promotion/" />
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
</ xs:element>

For an overview of the standard directory structure of an EBX module (Java EE web application),
see Module structure [p 459].

excludeValue constraint
This facet verifies that a value is not the same as the specified excluded value.
In this example, the empty string is excluded from the allowed values.
Example:
<xs:element name="roleName">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:excludeValue value="">
 <osd:validation>

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 519

 <severity>error</severity>
 <message>Please select address role(s).</message>
 </osd:validation>
 </osd:excludeValue>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 <xs:simpleType type="xs:string" />
</xs:element>

excludeSegment constraint
This facet verifies that a value is not included in a range of values. Boundaries are excluded.
Example:
In this example, values between 20000 and 20999 are not allowed.
<xs:element name="zipCode">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:excludeSegment minValue="20000" maxValue="20999">
 <osd:validation>
 <severity>error</severity>
 <message>Postal code not valid.</message>
 </osd:validation>
 </osd:excludeSegment>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 <xs:simpleType type="xs:string" />
</xs:element>

Enumeration facet defined using another node
By default, an enumeration facet is described statically in XML Schema.
The content of an enumeration facet can also be provided dynamically by a list of simple elements
in the data model.
Example:
In this example, the content of an enumeration facet is sourced from the node CountryList.
<xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:enumeration osd:path="../CountryList" />
 </osd:otherFacets>
 </xs:appinfo>
</xs:annotation>

The referred node CountryList:

• Must be an aggregated list, that is, maxOccurs > 1.

• Must be a list of elements of the same type as the node with the enumeration facet.

• Must be a node outside a table if the node with the enumeration facet is not inside a table.

• Must be a node outside a table or in the same table as the node with the enumeration facet if the
node with this enumeration is inside a table.

• If the target field is under one or more aggregated lists, the field holding the facet must also be
under these aggregated lists. That is: the field holding the facet must be in the same list occurrence
as the target field, or in a parent occurrence, so that the target field refers to a single value, from
an XPath perspective.

Example:
<xs:element name="FacetEnumBasedOnList">
 <xs:complexType>

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 520

 <xs:sequence>
 <xs:element name="CountryList" maxOccurs="unbounded">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="DE" osd:label="Germany" />
 <xs:enumeration value="AT" osd:label="Austria" />
 <xs:enumeration value="BE" osd:label="Belgium" />
 <xs:enumeration value="JP" osd:label="Japan" />
 <xs:enumeration value="KR" osd:label="Korea" />
 <xs:enumeration value="CN" osd:label="China" />
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="CountryChoice" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:enumeration osd:path="../CountryList" />
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

83.3 Programmatic facets
A programmatic constraint can be added to any XML element declaration for a simple type.
In order to guarantee XML Schema conformance, programmatic constraints are specified under the
element annotation/appinfo/otherFacets.

Programmatic constraints
A programmatic constraint is defined by a Java class that implements the interface ConstraintAPI.
As additional parameters can be defined, the implemented Java class must conform to the JavaBean
protocol.
Example:
In the example below, the Java class must define the methods: getParam1(), setParam1(String),
getParamX(), setParamX(String), etc.
<xs:element name="amount">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:constraint class="com.foo.CheckAmount">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:constraint>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

See alsoJavaBean specifications Package com.orchestranetworks.schema.JavaBeansAPI

Programmatic enumeration constraints
An enumeration constraint adds an ordered list of values to a basic programmatic constraint. This
facet allows selecting a value from a list. It is defined by a Java class that implements the interface
ConstraintEnumerationAPI.
Example:
<xs:element name="amount">
 <xs:annotation>

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 521

 <xs:appinfo>
 <osd:otherFacets>
 <osd:constraintEnumeration class="com.foo.CheckAmountInEnumeration">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:constraintEnumeration>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

Constraint on 'null' values
In some cases, a value is only mandatory if some conditions are satisfied, for example, if another field
has a given value. In this case, the standard XML Schema attribute minOccurs is insufficient because
it is static.
In order to check if a value is mandatory according to its context, the following requirements must
be satisfied:

1. A programmatic constraint must be defined by a Java class (see above).

2. This class must implement the interface ConstraintOnNullAPI.

3. The XML Schema cardinality attributes must specify that the element is optional (minOccurs="0"
and maxOccurs="1").

Note

By default, constraints on 'null' values are not checked upon user input. In order to enable
a check at the input, the 'checkNullInput' property [p 525] must be set. Also, if the element
is terminal, the dataset must also be activated.

Example:
<xs:element name="amount" minOccurs="0" maxOccurs="1">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:constraint class="com.foo.CheckIfNull">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:constraint>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

Constraints on table
A constraint on table is defined by a Java class that implements the interface ConstraintOnTableAPI.
It can only be defined on table nodes.
As additional parameters can be defined. the implemented Java class must conform to the JavaBean
protocol.
Example:
In the example below, the Java class must define the methods: getParam1(), setParam1(String),
getParamX(), setParamX(String), etc.
<xs:element name="myTable" type="MyTableType" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>/key</primaryKeys>
 </osd:table>

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 522

 <osd:otherFacets>
 <osd:constraint class="com.foo.checkTable">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:constraint>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Attention
For performance reasons, constraints on tables are only checked when getting the validation report
of a dataset or table. This means that these constraints are not checked when updates, such as record
insertions, deletions or modifications, occur on tables. However, the internal incremental validation
framework will optimize the validation cost of these constraints if dependencies are defined. For
more information, see Validation [p 300].

See alsoJavaBeans Specifications Package com.orchestranetworks.schema.JavaBeansAPI

83.4 Control policy

Blocking and non-blocking constraints
When an update in the repository is performed, and this update adds a validation error according to
a given constraint, it is possible to specify whether the new error blocks the update (and cancels the
transaction) or if it is considered as non-blocking (so that the update can be committed and the error

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 523

can be corrected later). The element blocksCommit within the element osd:validation allows this
specification, with the following supported values:

onInsertUpdateOrDelete Specifies that the constraint must always remain valid
after an operation (dataset update, dataset deletion, record
creation, update or deletion). In this case, any operation
that would violate the constraint is rejected and the values
remain unchanged.
This is the default and mandatory policy for primary key
constraints, data type conversion constraints (an integer or
a date must be well-written) and also structural constraints
in mapped tables.
This is also the default policy for foreign key constraints that
are automatically set in blocking mode (because of a table
in relational mode involved in the relationship) and that do
not define a control policy.

onUserSubmit-
checkModifiedValues

Specifies that the constraint must remain valid whenever a
user modifies the associated value and submits a form. In
this case, any form input that would violate the constraint is
rejected and the values remain unchanged.
This is the default policy for all blocking constraints
mentioned in the previous case. For example, a foreign key
constraint is by default not blocking (a record referred to by
other records can be deleted, etc.), except in the context of
a form submit.

never Specifies that the constraint must never block operations. In
this case, any operation that would violate the constraint is
allowed. In the context of the user interface, this constraint
does not block the form submission if the user sets a value
that violates this constraint.

On foreign key constraints, the control policy that blocks all operations does not apply to filtered
records. That is, a foreign key constraint is not blocking if a referenced record exists but does not
satisfy a foreign key filter. In this case, updates are not rejected and a validation error occurs.
It is not possible to specify a control policy on structural constraints that are defined on relational
data models or in mapped tables. That is, this property is not available for fixed length, maximum
length, maximum number of digits, and decimal place constraints due to the validation policy of the
underlying RDBMS blocking constraints.
This property does not apply to archive imports and when merging dataspaces. That is, all blocking
constraints, except structural constraints, are always disabled when importing archives and merging
dataspaces.

See also

Facet validation message with severity [p 534]

Foreign keys [p 498]

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 524

Relational mode [p 245]

XML Schema facet
The control policy is described by the element osd:validation in annotation/appinfo under the
definition of the facet.
Example:
<xs:element name="zipCode">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minInclusive value="1000">
 <xs:annotation>
 <xs:appinfo>
 <osd:validation>
 <blocksCommit>onInsertUpdateOrDelete</blocksCommit>
 </osd:validation>
 </xs:appinfo>
 </xs:annotation>
 </xs:minInclusive>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

XML Schema enumeration facet
The control policy is described by the element osd:enumerationValidation in annotation/appinfo
under the definition of the field.
Example:
<xs:element name="Gender">
 <xs:annotation>
 <xs:appinfo>
 <osd:enumerationValidation>
 <blocksCommit>onInsertUpdateOrDelete</blocksCommit>
 </osd:enumerationValidation>
 </xs:appinfo>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="0" osd:label="male" />
 <xs:enumeration value="1" osd:label="female" />
 </xs:restriction>
 </xs:simpleType>
</xs:element>

EBX facet
The control policy is described by the element osd:validation under the definition of the facet (which
is defined in annotation/appinfo/otherFacets).
The control policy with values onInsertUpdateOrDelete and onUserSubmit-checkModifiedValues is
only available on osd:excludeSegment, osd:excludeValue and osd:tableRef EBX facets.
The control policy with the value never can be defined on all EBX facets. On programmatic
constraints, the control policy with the value never can only be set directly during the
setup of the corresponding constraint. See ConstraintContext.setBlocksCommitToNeverAPI and
ConstraintContextOnTable.setBlocksCommitToNeverAPI in the Java API for more information.
Example:
<xs:element name="price" type="xs:decimal">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:minInclusive path="../priceMin">
 <osd:validation>
 <blocksCommit>onInsertUpdateOrDelete</blocksCommit>
 </osd:validation>
 </osd:minInclusive>

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 525

 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Check 'null' input
According to the EBX default validation policy, in order to allow temporarily incomplete input,
a mandatory element is not checked for completion upon user input. Rather, it is verified at the
dataset validation only. If completion must be checked immediately upon user input, the element must
additionally specify the attribute osd:checkNullInput="true".

Note

A value is mandatory if the data model specifies a mandatory element, either statically,
using minOccurs="1", or dynamically, using a constraint on 'null'. For terminal elements,
mandatory values are only checked for an activated dataset. For non-terminal elements,
the dataset does not need to be activated.

Example:
<xs:element name="amount" osd:checkNullInput="true" minOccurs="1">
 ...
</xs:element>

See also

Constraint on 'null' [p 521]

Whitespace management [p 525]

Empty string management [p 527]

EBX whitespace management for data types
According to XML Schema (see https://www.w3.org/TR/xmlschema-2/#rf-whiteSpace), whitespace
handling must follow one of the procedures preserve, replace or collapse:

preserve No normalization is performed, the value is unchanged.

replace All occurrences of #x9 (tab), #xA (line feed) and #xD
(carriage return) are replaced with #x20 (space).

collapse After the processing according to the replace procedure,
contiguous sequences of #x20 are then collapsed to a single
#x20, and any leading or trailing #x20s are removed.

General whitespace handling
EBX complies with the XML Schema recommendation:

• For fields of type xs:string, whether a primary key element or not, whitespaces are always
preserved and an empty string is never converted to null.

https://www.w3.org/TR/xmlschema-2/#rf-whiteSpace

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 526

• For other fields (non-xs:string type), whitespaces are always collapsed and empty strings are
converted to null.

Attention
Exceptions:

• For fields of type osd:html or osd:password, whitespaces are always preserved and empty
strings are converted to null.

• For fields of type xs:string that define the property osd:checkNullInput="true", an empty
string is interpreted as null at user input by EBX.

Whitespace handling upon user input
The rules described in the previous section are applied in the user interface, but leading and trailing
whitespaces are removed upon user input. That is, in the user interface, whitespaces are by default
always trimmed upon user input. Other input methods (Import XML/CSV, Data services, API updates)
are not trimmed from the user interface.

Attention
Exceptions:

• For fields of type osd:password, whitespaces are not trimmed upon user input.

• For foreign key fields, whitespaces are not trimmed upon user input.

It is possible to indicate in a data model that whitespaces should not be trimmed upon user input.
The attribute osd:trim="disable" can be set on the fields that allow leading and trailing whitespaces
upon user input.
Example:
<xs:element name="field" osd:trim="disable" type="xs:string">
 ...
</xs:element>

Whitespace handling for primary keys of type string
For primary key columns of type xs:string, a default EBX constraint is defined. This constraint
forbids empty strings and non-collapsed whitespace values when creating a record. That is, any record
creation that would violate this constraint is rejected.
However, if the primary key node specifies its own xs:pattern facet, this facet overrides the default
EBX constraint. For example, the specific pattern ".*" would accept any string, although this is not
recommended.
The default constraint allows handling certain ambiguities. For example, it would be difficult for a
user to distinguish between the following strings: "12 34" and "12 34". For generic values, this would
not create conflicts, however, errors would occur for primary keys.

See alsoTables and relationships [p 493]

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 527

Empty string management

Default conversion
For nodes of type xs:string, no distinction is made at user input between an empty string and a null
value. That is, an empty string value is automatically converted to null at user input.

Distinction between empty strings and 'null' value
There are certain cases where the distinction is made between an empty string and the null value,
such as when:

• A primary key defines a pattern that allows empty strings.

• An element defines a foreign key constraint and the target table has a single primary key defining
a pattern that allows empty strings.

• An element defines a static enumeration that contains an empty string.

• An element defines a dynamic enumeration to another element with one of the aforementioned
cases.

If the distinction is made between an empty string and a null value, this implies the following
behaviors:

• An empty string will not be converted to null at user input,

• Input fields for nodes of type xs:string will display an additional button for setting the value
of the node to null,

• At validation time, an empty string will be considered to be a compliant value with regard to the
minOccurs="1" property.

Attention
In relational mode, the Oracle database does not support the distinction between empty strings and
null values, and these specific cases are not supported.

See alsoRelational mode [p 245]

83.5 Triggers and functions

Computed values
By default, data is read and persisted in the XML repository. Nevertheless, data may be the result of
a computation and/or external database access, for example, an RDBMS or a central system.
EBX allows taking into account other data in the current dataset context.
This is made possible by defining functions.
A function is specified in the data model using the osd:function element (see example below).

• The value of the class attribute must be the qualified name of a Java class that implements the
Java interface ValueFunctionAPI.

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 528

• Additional parameters may be specified at the data model level, in which case the JavaBean
convention is applied.

Example:
<xs:element name="computedValue">
 <xs:annotation>
 <xs:appinfo>
 <osd:function class="com.foo.ComputeValue">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:function>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

In some cases, it can be useful to disable the validation of computed values if the execution of a
function is time-consuming. Indeed, if the function is attached to a table with N records, then it will
be called N times when validating this table. The property osd:disableValidation= "true" specified
in the data model allows to disable the validation of a computed value (see example below).
Example:
<xs:element name="computedValue" osd:disableValidation="true">
 <xs:annotation>
 <xs:appinfo>
 <osd:function class="com.foo.ComputeValue">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:function>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

Triggers
Datasets or table records can be associated with methods that are automatically executed when some
operations are performed, such as creations, updates, or deletions.
In the data model, these triggers must be declared under the annotation/appinfo element using the
osd:trigger element.
For dataset triggers, a Java class that extends the abstract class InstanceTriggerAPI must be declared
inside the element osd:trigger.
In the case of dataset triggers, it is advised to define annotation/appinfo/osd:trigger tags just under
the root element of the data model.
Example:
<xs:element name="root" osd:access="--">
 ...
 <xs:annotation>
 <xs:appinfo>
 <osd:trigger class="com.foo.MyInstanceTrigger">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:trigger>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:element>

For the definition of table record triggers, a Java class that extends the abstract class TableTriggerAPI

must be defined inside the osd:trigger element. It is advised to define the annotation/appinfo/
osd:trigger elements just under the element describing the associated table or table type.
Examples:

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 529

On a table element:
<xs:element name="myTable" type="MyTableType" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <osd:table>
 <primaryKeys>/key</primaryKeys>
 </osd:table>
 <osd:trigger class="com.foo.MyTableTrigger" />
 </xs:appinfo>
 </xs:annotation>
</xs:element>

On a table type element:
<xs:complexType name="MyTableType">
 ...
 <xs:annotation>
 <xs:appinfo>
 <osd:trigger class="com.foo.MyTableTrigger">
 <param1>...</param1>
 <param...n>...</param...n>
 </osd:trigger>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:complexType>

As additional parameters can be defined, the implemented Java class must conform to the
JavaBean protocol. In the example above, the Java class must define the methods: getParam1(),
setParam1(String), getParamX(), setParamX(String), etc.

Auto-incremented values
It is possible to define auto-incremented values. Auto-incremented values are only allowed inside
tables, and they must be of the type xs:int or xs:integer.
An auto-increment is specified in the data model using the element osd:autoIncrement under the
element annotation/appinfo.
Example:
<xs:element name="autoIncrementedValue" type="xs:int">
 <xs:annotation>
 <xs:appinfo>
 <osd:autoIncrement />
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Also, there are two optional elements, start and step:

• The start attribute specifies the first value for this auto-increment. If this attribute is not specified,
then the value 1 is set by default.

• The step attribute specifies the step for the next value to be generated by the auto-increment. If
this attribute is not specified, then the value 1 is set by default.

Example:
<xs:element name="autoIncrementedValue" type="xs:int">
 <xs:annotation>
 <xs:appinfo>
 <osd:autoIncrement>
 <start>100</start>
 <step>5</step>
 </osd:autoIncrement>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

A field specifying an osd:autoIncrement has the following behavior:

Documentation > Developer Guide > Data model > Constraints, triggers and functions

TIBCO EBX® Product Documentation 5.9.20 530

• The computation and allocation of the field value are performed whenever a new record is inserted
and the field value is undefined.

• No allocation is performed if a programmatic insertion already specifies a non-null value. For
example, if an archive import or an XML import specifies the value, that value is preserved.
Consequently, the allocation is not performed for a record insertion in occulting or overwriting
modes.

• A newly allocated value is, whenever possible, unique in the scope of the repository. More
precisely, the uniqueness of the allocation spans over all the datasets of the data model, and it
also spans over all the dataspaces. The latter case allows the merge of a dataspace into its parent
with a reasonable guarantee that there will be no conflict if the osd:autoIncrement is part of the
records' primary key.
This principle has a very specific limitation: when a mass update transaction that specifies values
is performed at the same time as a transaction that allocates a value on the same field, it is possible
that the latter transaction will allocate a value that will be set by the first transaction (there is no
locking between different dataspaces).

Internally, the auto-increment value is stored in the 'Auto-increments' table of the repository. In the user
interface, it can be accessed by administrators in the 'Administration' area. This field is automatically
updated so that it defines the greatest value ever set on the associated osd:autoIncrement field, in
any instance or dataspace in the repository. This value is computed, taking into account the max value
found in the table being updated.
In certain cases, for example when multiple environments have to be managed (development, test,
production), each with different auto-increment ranges, it may be required to avoid this "max value"
check. This particular behavior can be achieved using the disableMaxTableCheck property. It is
generally not recommended to enable this property unless it is absolutely necessary, as this could
generate conflicts in the auto-increment values. However, this property can be set in the following
ways:

• Locally, by setting a parameter element in the auto-increment declaration:
<disableMaxTableCheck>true</disableMaxTableCheck>,

• For the whole data model, by setting <osd:autoIncrement disableMaxTableCheck="true"/> in
the element xs:appinfo of the data model declaration, or

• Globally, by setting the property ebx.autoIncrement.disableMaxTableCheck=true in the EBX
main configuration file.
See TIBCO EBX main configuration file [p 345].

Note

When this option is enabled globally, it becomes possible to create records in the table
of auto-increments, for example by importing from XML or CSV. If this option is not
selected, creating records in the table of auto-increments is prohibited to ensure the
integrity of the repository.

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 5.9.20 531

CHAPTER 84
Labels and messages

TIBCO EBX allows to have custom labels and error messages for data models to be displayed in the
interface.
This chapter contains the following topics:

1. Label and description

2. Enumeration labels

3. Mandatory error message (osd:mandatoryErrorMessage)

4. Conversion error message

5. Facet validation message with severity

84.1 Label and description
A label and a description can be added to each node in an adaptation model.
In EBX, each adaptation node is displayed with its label. If no label is defined, the name of the element
is used.
Two different notations can be used:

Full The label and description are defined by the elements
<osd:label> and <osd:description> respectively.

Simple The label is extracted from the text content, ending at the
first period ('.'), with a maximum of 60 characters. The
description uses the remainder of the text.

The description may also have a hyperlink, either a standard HTML href to an external document, or
a link to another node of the adaptation within EBX.

• When using the href notation or any other HTML, it must be properly escaped.

• EBX link notation is not escaped and must specify the path of the target, for example:
<osd:link path="../misc1">Link to another node in the adaptation</osd:link>

Example:
<xs:element name="misc1" type="xs:string">
 <xs:annotation>
 <xs:documentation>

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 5.9.20 532

 Miscellaneous 1. This is the description of miscellaneous element #1.
 Click here
 to learn more.
 </xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="misc2" type="xs:string">
 <xs:annotation>
 <xs:documentation>
 <osd:label>
 Miscellaneous 2
 </osd:label>
 <osd:description>
 This is the miscellaneous element #2 and here is a
 <osd:link path="../misc1"> link to another node in the
 adaptation</osd:link>.
 </osd:description>
 </xs:documentation>
 </xs:annotation>
</xs:element>

If a node points to a named type, then the label of the node replaces the label of the named type. The
same mechanism applies to the description of the node (element osd:description).

Note

Regarding whitespace management, the label of a node is always collapsed when
displayed. That is, contiguous sequences of blanks are collapsed to a single blank,
and leading and trailing blanks are removed. In descriptions, however, whitespaces are
always preserved.

Dynamic labels and descriptions
As an alternative to statically defining the localized labels and descriptions for each node, it is possible
to specify a Java class that programmatically determines the labels and descriptions for the nodes of
the data model. To define the class, include the element osd:documentation, with the attribute class
in the data model. It is possible to pass JavaBean properties using nested parameter elements.
Example:
<xs:schema ...>
 <xs:annotation>
 <xs:appinfo>
 <osd:documentation class="com.foo.MySchemaDocumentation">
 <param1>...</param1>
 <param2>...</param2>
 </osd:documentation>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:schema ...>

The labels and descriptions that are provided programmatically take precedence over the ones defined
locally on individual nodes.

See alsoSchemaDocumentationAPI

84.2 Enumeration labels
In an enumeration, a simple, non-localized label can be added to each enumeration element, using
the attribute osd:label.

Attention
Labels defined for an enumeration element are always collapsed when displayed.

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 5.9.20 533

Example:
<xs:element name="Service" maxOccurs="unbounded">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="1" osd:label="Blue" />
 <xs:enumeration value="2" osd:label="Red" />
 <xs:enumeration value="3" osd:label="White" />
 </xs:restriction>
 </xs:simpleType>
</xs:element>

It is also possible to fully localize the labels using the standard xs:documentation element. If both
non-localized and localized labels are added to an enumeration element, the non-localized label will
be displayed in any locale that does not have a label defined.
Example:
<xs:element name="access" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="readOnly">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">
 read only
 </xs:documentation>
 <xs:documentation xml:lang="fr-FR">
 lecture seule
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="readWrite">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">
 read/write
 </xs:documentation>
 <xs:documentation xml:lang="fr-FR">
 lecture écriture
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 <xs:enumeration value="hidden">
 <xs:annotation>
 <xs:documentation xml:lang="en-US">
 hidden
 </xs:documentation>
 <xs:documentation xml:lang="fr-FR">
 masqué
 </xs:documentation>
 </xs:annotation>
 </xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

84.3 Mandatory error message
(osd:mandatoryErrorMessage)

If the node specifies the attribute minOccurs="1" (default behavior), then an error message, which
must be provided, is displayed if the user does not complete the field. This error message can be
defined specifically for each node using the element osd:mandatoryErrorMessage.
Example:
<xs:element name="birthDate" type="xs:date">
 <xs:annotation>
 <xs:documentation>
 <osd:mandatoryErrorMessage>
 Please give your birth date.
 </osd:mandatoryErrorMessage>
 </xs:documentation>
 </xs:annotation>
</xs:element>

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 5.9.20 534

The mandatory error message can be localized:
<xs:documentation>
 <osd:mandatoryErrorMessage xml:lang="en-US">
 Name is mandatory
 </osd:mandatoryErrorMessage>
 <osd:mandatoryErrorMessage xml:lang="fr-FR">
 Nom est obligatoire
 </osd:mandatoryErrorMessage>
</xs:documentation>

Note

Regarding whitespace management, the enumeration labels are always collapsed when
displayed.

84.4 Conversion error message
For each predefined XML Schema element, it is possible to define a specific error message if the user
entry has an incorrect format.
Example:
<xs:element name="email" type="xs:string">
 <xs:annotation>
 <xs:documentation>
 <osd:ConversionErrorMessage xml:lang="en-US">
 Please enter a valid email address.
 </osd:ConversionErrorMessage>
 <osd:ConversionErrorMessage xml:lang="fr-FR">
 Saisissez un e-mail valide.
 </osd:ConversionErrorMessage>
 </xs:documentation>
 </xs:annotation>
</xs:element>

84.5 Facet validation message with severity
The validation message that is displayed when the value of a field does not comply with a constraint
can define a custom severity, a default non-localized message, and localized message variants. If no
severity is specified, the default level is error. Blocking constraints must have the severity error.

XML Schema facet (osd:validation)
The validation message is described by the element osd:validation in annotation/appinfo under
the definition of the facet.
Example:
<xs:element name="zipCode">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <!--facet is not localized, but validation message is localized-->
 <xs:minInclusive value="01000">
 <xs:annotation>
 <xs:appinfo>
 <osd:validation>
 <severity>error</severity>
 <message>Non-localized message.</message>
 <message xml:lang="en-US">English error message.</message>
 <message xml:lang="fr-FR">Message d'erreur en français.</message>
 </osd:validation>
 </xs:appinfo>
 </xs:annotation>
 </xs:minInclusive>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 5.9.20 535

XML Schema enumeration facet (osd:enumerationValidation)
The validation message is described by the element osd:enumerationValidation in annotation/
appinfo under the definition of the field.
Example:
<xs:element name="Gender">
 <xs:annotation>
 <xs:appinfo>
 <osd:enumerationValidation>
 <severity>error</severity>
 <message>Non-localized message.</message>
 <message xml:lang="en-US">English error message.</message>
 <message xml:lang="fr-FR">Message d'erreur en français.</message>
 </osd:enumerationValidation>
 </xs:appinfo>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="0" osd:label="male" />
 <xs:enumeration value="1" osd:label="female" />
 </xs:restriction>
 </xs:simpleType>
</xs:element>

EBX facet (osd:validation)
The validation message is described by the element osd:validation under the definition of the facet
(which is defined in annotation/appinfo/otherFacets).
Example:
<xs:element name="price" type="xs:decimal">
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:minInclusive path="../priceMin">
 <osd:validation>
 <severity>error</severity>
 <message>Non-localized message.</message>
 <message xml:lang="en-US">English error message.</message>
 <message xml:lang="fr-FR">Message d'erreur en français.</message>
 </osd:validation>
 </osd:minInclusive>
 </osd:otherFacets>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Documentation > Developer Guide > Data model > Labels and messages

TIBCO EBX® Product Documentation 5.9.20 536

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 5.9.20 537

CHAPTER 85
Additional properties

This chapter contains the following topics:

1. Default values

2. Access properties

3. Information

4. Default view

5. Comparison mode

6. Apply last modifications policy

7. Categories

85.1 Default values
In a data model, it is possible to specify a default value for a field using the attribute default. This
property is used to assign a default value if no value is defined for a field.
The default value is displayed in the user input field at the creation time. That is, the default value will
be displayed when creating a new record or adding a new occurrence to an aggregated list.
Example:
In this example, the element specifies a default string value.
<xs:element name="fieldWithDefaultValue" type="xs:string" default="aDefaultValue" />

85.2 Access properties
The attribute osd:access defines the access mode, that is, whether the data of a particular data model
node can be read and/or written. This attribute must have one of the following values: RW, R-, CC or --.
For each XML Schema node, three types of adaptation are possible:

1. Adaptation terminal node
This node is displayed with an associated value in TIBCO EBX. When accessed using the method
Adaptation.get(), it uses the adaptation search algorithm.

2. Adaptation non-terminal node

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 5.9.20 538

This node is a complex type that is only displayed in EBX if it has one child node that is
also an adaptation terminal node. It has no value of its own. When accessed using the method
Adaptation.get(), it returns null.

3. Non-adaptable node
This node is not an adaptation terminal node and has no child adaptation terminal nodes. This
node is never displayed in EBX. When accessing using the method Adaptation.get(), it returns
the node default value if one is defined, otherwise it returns null.

See alsoAdaptationAPI

Access mode Behavior

RW Adaptation terminal node: value can be read and written in
EBX.

R- Adaptation terminal node: value can only be read in EBX.

CC Cut: This is not an adaptation terminal node and none of its
children are adaptation terminal nodes. This "instruction" has
priority over any child node regardless of the value of their
access attribute.

-- If the node is a simple type, it is not adaptable. If the node is a
complex type, it is not an adaptation terminal node and does not
define any child nodes.

The root node of a data model must specify this access mode.

Default If the access attribute is not defined:

• If the node is a computed value, it is considered to be R-

• If the node is a simple type and its value is not computed, it
is considered to be RW

• If the node is an aggregated list, it is then a terminal value
and is considered to be RW

• Otherwise, it is not an adaptation terminal node and it does
not define anything about its child nodes.

Example:
In this example, the element is adaptable because it is an adaptation terminal node.
<xs:element name="proxyIpAddress" type="xs:string" osd:access="RW"/>

85.3 Information
The element osd:information allows specifying additional information. This information can then be
used by the integration code, for any purpose, by calling the method SchemaNode.getInformationAPI.
Example:
<xs:element name="misc" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <osd:information>
 This is the text information of miscellaneous element.
 </osd:information>
 </xs:appinfo>

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 5.9.20 539

 </xs:annotation>
</xs:element>

85.4 Default view

Hiding a field or a table in the default view
It is possible for a table or field inside a table to be hidden by default in EBX by using the element
osd:defaultView/hidden. This property is used to hide elements from the default view of a dataset
without defining specific access permissions. That is, elements hidden by default will not be visible
in any default forms and views, whether tabular or hierarchical, generated from the structure of the
associated data model.

Attention

• If an element is configured to be hidden in the default view of a dataset, then the access
permissions associated with this field will not be evaluated.

• It is possible to display a field that is hidden in the default view of a dataset by defining a view.
Only in this case will the access permissions associated with this field be evaluated to determine
whether the field will be displayed or not.

• It is not possible to display a table that is hidden in the default view of a dataset (in the navigation
pane).

Example:
In this example, the element is hidden in the default view of a dataset.
<xs:element name="hiddenField" type="xs:string" minOccurs="0"/>
 <xs:annotation>
 <xs:appinfo>
 <osd:defaultView>
 <hidden>true</hidden>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

Hiding groups and fields in views
It is possible for a field or a group to be hidden in all views of a table by using the element
osd:defaultView/hiddenInViews. This property is used to hide elements from the tabular (including
the default tabular view) and hierarchical views of a dataset without defining specific access
permissions. That is, hidden elements will not be visible in any views, whether tabular or hierarchical,
created from the structure of the associated data model. However, hidden elements in views will be
displayed in forms.
To specify whether or not to hide an element in all views, use the osd:defaultView/
hiddenInViews="true|false" element.
If this property is set to true, then the element will not be selectable when creating a custom view. As
a consequence, the element will not be displayed in all views of a table in a dataset.
If a group is configured as hidden in views, then all the fields nested under this group will not be
displayed respectively in the views of the table.

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 5.9.20 540

Hiding a field in search tools
To specify whether or not to hide an element in search tools, use the element osd:defaultView/
hiddenInSearch="true|false|textSearchOnly".
If this property is set to true, then the field will not be selectable in the text and typed search tools
of a dataset.
If this property is set to textSearchOnly, then the field will not be selectable only in the text search
of a dataset but will be selectable in the typed search.

Note

If a group is configured as hidden in search tools or only in the text search, then all the fields
nested under this group will not be displayed respectively in the search tools or only in the
text search.

Example:
<xs:element name="hiddenFieldInSearch" type="xs:string" minOccurs="0"/>
 <xs:annotation>
 <xs:appinfo>
 <osd:defaultView>
 <hiddenInSearch>true</hiddenInSearch>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

In this example, the element is hidden in the text and typed search tools of a dataset.
<xs:element name="hiddenFieldOnlyInTextSearch" type="xs:string" minOccurs="0"/>
 <xs:annotation>
 <xs:appinfo>
 <osd:defaultView>
 <hiddenInSearch>textSearchOnly</hiddenInSearch>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

In this example, the element is hidden only in the text search tool of a dataset.

Hiding a field in Data Services
To specify whether or not to hide an element in data services, use the element osd:defaultView/
hiddenInDataServices. For more information, see Disabling fields from data model [p 615].

Note

• If a group is configured as being hidden, then all the fields nested under this group will
be considered as hidden by data services.

Example:
<xs:element name="hiddenFieldInDataService" type="xs:string" minOccurs="0"/>
 <xs:annotation>
 <xs:appinfo>
 <osd:defaultView>
 <hiddenInDataServices>true</hiddenInDataServices>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

In this example, the element is hidden in the Data Service select operation.

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 5.9.20 541

Defining a view for the combo box selector of a foreign key
It is possible to specify a published view that will be used to display the target table or the hierarchical
view of a foreign key for a smoother selection. If a view has been defined, the selector will be displayed
in the user interface in the combo box of this foreign key. The definition of a view can be done by
using the XML Schema element osd:defaultView/widget/viewForAdvancedSelection.

Note

• This property can only be defined on foreign key fields.

• The published view must be associated with the target table of the foreign key.

• If the published view does not exist, then the advanced selection is not available in the
foreign key field.

Example:
In this example, the name of a published view is defined to display the target table of a foreign key
in the advanced selection.
<xs:element name="catalog_ref" type="xs:string" minOccurs="0"/>
 <xs:annotation>
 <xs:appinfo>
 <osd:otherFacets>
 <osd:tableRef>
 <tablePath>/root/Catalogs</tablePath>
 </osd:tableRef>
 </osd:otherFacets>
 <osd:defaultView>
 <widget>
 <viewForAdvancedSelection>catalogView</viewForAdvancedSelection>
 </widget>
 </osd:defaultView>
 </xs:appinfo>
 </xs:annotation>
</xs:element>

See Combo-box selector [p 57] for more information.

Customizing a default widget
A widget can be defined using the data model assistant. See Default view > Widget [p 57] for more
information.

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 5.9.20 542

85.5 Comparison mode
The attribute osd:comparison can be included on a terminal node element in order to set its comparison
mode. This mode controls how differences are detected for the element during comparisons. The
possible values for the attribute are:

default Element is visible during comparisons of its data.

ignored No changes will be detected when comparing two versions
of the content in records or datasets.
During a merge, the data values of an ignored element are
not merged when contents are updated, even if the values are
different. For new content, the values of ignored elements
are merged.
During an archive import, values of ignored elements are
not imported when contents are updated. For new content,
the values of ignored elements are imported.

Note

• If a group is configured as being ignored during comparisons, then all the fields nested
under this group will also be ignored.

• If a terminal field does not include the attribute osd:comparison, then it will be included
by default during comparisons.

Restrictions:

• This property cannot be defined on non-terminal fields.

• Primary key fields cannot be ignored during comparison.

Example:
In this example, the first element is explicitly ignored during comparison, the second element is
explicitly included.
<xs:element name="fieldExplicitlyIgnoredInComparison"
 type="xs:string" minOccurs="0" osd:comparison="ignored"/>
<xs:element name="fieldExplicitlyNotIgnoredInComparison"
 type="xs:string" minOccurs="0" osd:comparison="default"/>

85.6 Apply last modifications policy
The attribute osd:applyLastModification can be defined on a terminal node element in order to
specify if this element must be included or not in the 'apply last modifications' service that can be
executed in a table of a dataset.

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 5.9.20 543

The possible values for the attribute are:

default Last modifications can be applied to this element.

ignored This element is ignored from the apply last modifications
service. That is, the last modification that has been
performed on this element cannot be applied to other
records.

Note

• If a group is configured as being ignored by the 'apply last modifications' service, then all
fields nested under this group will also be ignored.

• If a terminal field does not include the attribute osd:applyLastModification, then it will
be included by default in the apply last modifications service.

Restriction:

• This property cannot be defined on non-terminal fields.

Example:
In this example, the first element is explicitly ignored in the 'apply last modifications' service, the
second element is explicitly included.
<xs:element name="fieldExplicitlyIgnoredInApplyLastModification"
 type="xs:string" minOccurs="0" osd:applyLastModification="ignored"/>
<xs:element name="fieldExplicitlyNotIgnoredApplyLastModification"
 type="xs:string" minOccurs="0" osd:applyLastModification="default"/>

85.7 Categories
Categories can be used for "filtering", by restricting the display of data model elements.
To create a category, add the attribute osd:category to a table node in the data model XSD.

Filters on data
In the example below, the attribute osd:category is added to the node in order to create a category
named mycategory.
<xs:element name="rebate" osd:category="mycategory">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="beginDate" type="xs:date"/>
 <xs:element name="endDate" type="xs:date"/>
 <xs:element name="rate" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

To activate a defined category filter on a dataset in the user interface, select Actions > Categories >
<category name> from the navigation pane.

Predefined categories
Two categories with localized labels are predefined:

Documentation > Developer Guide > Data model > Additional properties

TIBCO EBX® Product Documentation 5.9.20 544

• Hidden
An instance node, including a table node itself, is hidden in the default view, but can be revealed
by selecting Actions > Categories > [hidden nodes] from the navigation pane.
A table record node is always hidden.

• Constraint (deprecated)

Restriction
Categories do not apply to table record nodes, except the category 'Hidden'.

Documentation > Developer Guide > Data model > Data services

TIBCO EBX® Product Documentation 5.9.20 545

CHAPTER 86
Data services

This chapter details how WSDL operations' names related to a table are defined and managed by
TIBCO EBX.
This chapter contains the following topics:

1. Definition

2. Configuration

3. Publication

4. WSDL and table operations

5. Limitations

86.1 Definition
EBX generates a WSDL that complies with the W3C Web Services Description Language 1.1
standard. By default, WSDL operations refer to a table using the last element of the table path. A
WSDL operation name is composed of the action name (prefix) and the table name (suffix). It is
possible to refer to tables in WSDL operations using unique names instead of the last element of their
paths by overriding the suffix operations' names.

See alsoData services using the Data Model Assistant [p 43]

86.2 Configuration

Embedded data model
WSDL suffix operations' names are embedded in EBX's repository and linked to a publication. That is,
when publishing an embedded data model, the list of WSDL suffix operations' names can be defined
in the data model definition, under the 'Configuration > Data services' table and managed by EBX.

Packaged data model
WSDL suffix operations' names are defined in a dedicated XML document file and must be named as the
data model and end with the keyword _entities. For instance, if a data model is named catalog.xsd,
then the XML document containing the configuration of the WSDL operations' names overrided will
be named catalog_entities.xml. This XML document must also be located in the same location as the

https://www.w3.org/TR/2001/NOTE-wsdl-20010315

Documentation > Developer Guide > Data model > Data services

TIBCO EBX® Product Documentation 5.9.20 546

data model. The XML document is automatically loaded by EBX if a file that matches this pattern is
found when compiling a data model.

86.3 Publication
The suffix operations' names are validated at compilation time and contain a list of couples containing
Path with a unique table name. Checked validation rules are:

• The path is not unique,

• The table name contains a syntax error,

• The table name is not unique in the XML document.

86.4 WSDL and table operations

WSDL Generator
An additional validation rule has been added: a unicity check is systematically applied to table names.
The SOAP operation name is composed of the operation type as a prefix and, by default, of the table
name (last step of the table path) as a suffix. A dataset can contain several identical table names but
with different paths. It is possible to override table names that are not unique in order to guarantee
the unicity.

SOAP operations
When an operation request on table has been invoked from the SOAP connector, the target table is
retrieved by priority, the name corresponds to:

1. an overridden table name,

2. the last step of the table path.

See alsoData services [p 596]

86.5 Limitations
WSDL operations' names are not available with external data models.

Documentation > Developer Guide > Data model > Toolbars

TIBCO EBX® Product Documentation 5.9.20 547

CHAPTER 87
Toolbars

This chapter details how toolbars are defined and managed by TIBCO EBX.
This chapter contains the following topics:

1. Definition

2. Using toolbars

87.1 Definition
Toolbars allow to customize the buttons and menus to display when accessing a table view, a
hierarchical view, or a record form.
Toolbars can only be created and published using the Data Model Assistant and are available only on
embedded and packaged data models.
For embedded data models, toolbars are embedded in EBX's repository and linked to a publication.
That is, when publishing an embedded data model, the toolbars defined in the data model are embedded
with the publication of the data model and managed by EBX.
For packaged data models, toolbars are defined in a dedicated XML document and must be named
as the data model and end with the keyword _toolbars. For instance, if a data model is named
catalog.xsd then the XML document containing the definition of the toolbars must be named
catalog_toolbars.xml. This XML document must also be placed in the same location as the data model.
The toolbar document is automatically loaded by EBX if a file complying with this pattern is found
when compiling a data model.

See also

Configuring toolbars using the Data Model Assistant [p 75]

Using toolbars in data models [p 497]

Toolbar API ToolbarFactoryAPI

87.2 Using toolbars
Toolbars can be used on tables and associations.
On tables, it is possible to specify the toolbar to display:

• On the top of a tabular view

• On each row of a tabular view

Documentation > Developer Guide > Data model > Toolbars

TIBCO EBX® Product Documentation 5.9.20 548

• On the top of a record form

• On the top of a hierarchical view.

On associations, it is possible to specify the toolbar to display:

• On top of the tabular view of the association

• On each row of the tabular view of the association

See also

Using toolbars [p 497]

Associations [p 501]

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 5.9.20 549

CHAPTER 88
Workflow model

The workflow offers two types of steps: 'library' or 'specific'.
'Library' is a bean defined in module.xml and is reusable. Using the 'library' bean improves the
ergonomics: parameters are dynamically displayed in the definition screens.
A 'specific' object is a bean defined only by its class name. In this case, the display is not dynamic.
This chapter contains the following topics:

1. Bean categories

2. Sample of ScriptTask

3. Sample of ScriptTaskBean

4. Samples of UserTask

5. Samples of Condition

6. Sample of ConditionBean

7. Sample of SubWorkflowsInvocationBean

8. Sample of WaitTaskBean

9. Sample of ActionPermissionsOnWorkflow

10.Sample of WorkflowTriggerBean

11.Sample of trigger starting a process instance

88.1 Bean categories

Step Library Specific

Scripts ScriptTaskBean ScriptTask

Conditions ConditionBean Condition

User task UserTask

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 5.9.20 550

88.2 Sample of ScriptTask

Java Code
A script task has to override the method execute as in the following example:
public class NppScriptTask_CreateWorkingBranch extends ScriptTask
{
 public void executeScript(ScriptTaskContext aContext) throws OperationException
 {
 Repository repository = aContext.getRepository();
 String initialBranchString = aContext.getVariableString("initialBranch");
 AdaptationHome initialBranch = repository.lookupHome(HomeKey.forBranchName(initialBranchString));
 if (initialBranch == null)
 throw OperationException.createError("Null value for initialBranch");

 HomeCreationSpec spec = new HomeCreationSpec();
 spec.setParent(initialBranch);
 spec.setKey(HomeKey.forBranchName("Name"));
 spec.setOwner(Profile.EVERYONE);
 spec.setHomeToCopyPermissionsFrom(initialBranch);
 AdaptationHome newHome = repository.createHome(spec, aContext.getSession());
 //feeds dataContext
 aContext.setVariableString("workingBranch", newHome.getKey().getName());
 }
}

See alsocom.orchestranetworks.workflow.ScriptTask ScriptTaskAPI

88.3 Sample of ScriptTaskBean

Java Code
A script task bean has to override the method executeScript as in the following example:
public class ScriptTaskBean_CreateBranch extends ScriptTaskBean
{
 private String initialBranchName;

 private String newBranch;

 public String getInitialBranchName()
 {
 return this.initialBranchName;
 }

 public void setInitialBranchName(String initialBranchName)
 {
 this.initialBranchName = initialBranchName;
 }

 public String getNewBranch()
 {
 return this.newBranch;
 }

 public void setNewBranch(String newBranch)
 {
 this.newBranch = newBranch;
 }

 public void executeScript(ScriptTaskBeanContext aContext) throws OperationException
 {
 final Repository repository = aContext.getRepository();

 String initialBranchName = this.getInitialBranchName();
 final AdaptationHome initialBranch = repository.lookupHome(HomeKey.forBranchName(initialBranchName));
 final HomeCreationSpec spec = new HomeCreationSpec();
 spec.setParent(initialBranch);
 spec.setKey(HomeKey.forBranchName(XsFormats.SINGLETON.formatDateTime(new Date())));
 spec.setOwner(Profile.EVERYONE);
 spec.setHomeToCopyPermissionsFrom(initialBranch);
 final AdaptationHome branchCreate = repository.createHome(spec, aContext.getSession());

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 5.9.20 551

 this.setNewBranch(branchCreate.getKey().getName());
 }
}

See alsocom.orchestranetworks.workflow.ScriptTaskBean ScriptTaskBeanAPI

Configuration through module.xml
A script task bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.genericScriptTask.ScriptTaskBean_CreateBranch">
 <documentation xml:lang="fr-FR">
 <label>Créer une branche</label>
 <description>
 Ce script permet de créer une branche
 </description>
 </documentation>
 <documentation xml:lang="en-US">
 <label>Create a branch</label>
 <description>
 This script creates a branch
 </description>
 </documentation>
 <properties>
 <property name="initialBranchName" input="true">
 <documentation xml:lang="fr-FR">
 <label>Branche initiale</label>
 <description>
 Nom de la branche initiale.
 </description>
 </documentation>
 <documentation xml:lang="en-US">
 <label>Initial branch</label>
 <description>
 Initial branch name.
 </description>
 </documentation>
 </property>
 <property name="newBranch" output="true">
 <documentation xml:lang="fr-FR">
 <label>Nouvelle branche</label>
 <description>
 Nom de la branche créée
 </description>
 </documentation>
 <documentation xml:lang="en-US">
 <label>New branch</label>
 <description>
 Created branch name.
 </description>
 </documentation>
 </property>
 </properties>
 </bean>
 </beans>
</module>

88.4 Samples of UserTask

Service declaration via module.xml
A built-in service can be declared in module.xml to be used in the user task definition.
 <services>
 <service name="ServiceModule">
 <resourcePath>/service.jsp</resourcePath>
 <type>branch</type>
 <documentation xml:lang="fr-FR">
 <label>Workflow service</label>
 <description>
 Ce service permet de ...
 </description>
 </documentation>
 <documentation xml:lang="en-US">

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 5.9.20 552

 <label>Service workflow</label>
 <description>
 The purpose of this service is ...
 </description>
 </documentation>
 <properties>
 <property name="param1" input="true">
 <documentation xml:lang="fr-FR">
 <label>Param1</label>
 <description>Param1 ...</description>
 </documentation>
 </property>
 <property name="param2" output="true">
 </property>
 </properties>
 </service>
 <serviceLink serviceName="adaptationService">
 <importFromSchema>
 /WEB-INF/ebx/schema/schema.xsd
 </importFromSchema>
 </serviceLink>
</services>

A more complex UserTask
The GUI is quite similar as the example above. The field 'Rule' must be filled to define the class
extending the 'UserTask' to invoke.
public class NppUserTask_ValidateProduct extends UserTask
{
 public void handleWorkItemCompletion(UserTaskWorkItemCompletionContext context)
 throws OperationException
 {
 if (context.getCompletedWorkItem().isRejected())
 {
 context.setVariableString(NppConstants.VAR_VALIDATION, "KO");
 context.completeUserTask();
 }
 else if (context.checkAllWorkItemMatchStrategy())
 {
 context.setVariableString(NppConstants.VAR_VALIDATION, "OK");
 context.completeUserTask();
 }
 }

 public void handleCreate(UserTaskCreationContext context) throws OperationException
 {
 CreationWorkItemSpec spec = CreationWorkItemSpec.forOfferring(NppConstants.ROLE_PVALIDATOR);
 spec.setNotificationMail("1");
 context.createWorkItem(spec);
 context.setVariableString(NppConstants.VAR_VALIDATION, "validating");
 }
}

See alsocom.orchestranetworks.workflow.UserTask UserTaskAPI

88.5 Samples of Condition

Java Code
The method evaluate has to be overridden:
public class NppCondition_IsValidationOK extends Condition
{
 public boolean evaluateCondition(ConditionContext context) throws OperationException
 {
 String validation = context.getVariableString("validationResult");
 boolean hasError = "KO".equals(validation);
 return !hasError;
 }
}

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 5.9.20 553

See alsocom.orchestranetworks.workflow.Condition ConditionAPI

88.6 Sample of ConditionBean

Java Code
The method evaluateCondition has to be overridden as in the following sample:
public class ConditionBean_IsBranchValid extends ConditionBean
{
 private String branchName;

 public String getBranchName()
 {
 return this.branchName;
 }

 public void setBranchName(String branchName)
 {
 this.branchName = branchName;
 }

 public boolean evaluateCondition(ConditionBeanContext aContext) throws OperationException
 {
 final Repository repository = aContext.getRepository();
 Severity severityForValidation = Severity.ERROR;
 String branchToTestName = this.getBranchName();
 final AdaptationHome branchToTest = repository.lookupHome(HomeKey.forBranchName(branchToTestName));
 if (branchToTest.getValidationReportsMap(severityForValidation) != null
 && branchToTest.getValidationReportsMap(severityForValidation).size() > 0)
 {
 return false;
 }
 return true;
 }
}

See alsocom.orchestranetworks.workflow.ConditionBean ConditionBeanAPI

Configuration through module.xml
The condition bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.genericScriptTask.ConditionBean_IsBranchValid">
 <documentation xml:lang="fr-FR">
 <label>Branche valide ?</label>
 <description>
 Ce script permet de tester si une branche est valide.
 </description>
 </documentation>
 <documentation xml:lang="en-US">
 <label>Branch valid ?</label>
 <description>
 This script allows to check if a branch is valid.
 </description>
 </documentation>
 <properties>
 <property name="branchName" input="true">
 <documentation xml:lang="fr-FR">
 <label>Branche à contrôler</label>
 <description>
 Nom de la branche à valider.
 </description>
 </documentation>
 <documentation xml:lang="en-US">
 <label>Branch to check</label>
 <description>
 Branch name to check.
 </description>
 </documentation>
 </property>
 </properties>
 </bean>

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 5.9.20 554

 </beans>
</module>

88.7 Sample of SubWorkflowsInvocationBean

Java Code
public class MySubWorkflowsInvocationBean extends SubWorkflowsInvocationBean
{
 @Override
 public void handleCreateSubWorkflows(SubWorkflowsCreationContext aContext)
 throws OperationException
 {
 final ProcessLauncher subWorkflow1 = aContext.registerSubWorkflow(
 AdaptationName.forName("validateProduct"),
 "validateProduct1");
 subWorkflow1.setLabel(UserMessage.createInfo("Validate the new product by marketing"));
 subWorkflow1.setInputParameter("workingBranch", aContext.getVariableString("workingBranch"));
 subWorkflow1.setInputParameter("code", aContext.getVariableString("code"));
 subWorkflow1.setInputParameter("service", aContext.getVariableString("marketing"));

 final ProcessLauncher subWorkflow2 = aContext.registerSubWorkflow(
 AdaptationName.forName("validateProduct"),
 "validateProduct2");
 subWorkflow2.setLabel(UserMessage.createInfo("Validate the new product by direction"));
 subWorkflow2.setInputParameter("workingBranch", aContext.getVariableString("workingBranch"));
 subWorkflow2.setInputParameter("code", aContext.getVariableString("code"));
 subWorkflow2.setInputParameter("service", aContext.getVariableString("direction"));

 // Conditional launching.
 if (aContext.getVariableString("productType").equals("book"))
 {
 final ProcessLauncher subWorkflow3 = aContext.registerSubWorkflow(
 AdaptationName.forName("generateISBN"),
 "generateISBN");
 subWorkflow3.setLabel(UserMessage.createInfo("Generate ISBN"));
 subWorkflow3.setInputParameter(
 "workingBranch",
 aContext.getVariableString("workingBranch"));
 subWorkflow3.setInputParameter("code", aContext.getVariableString("code"));
 }

 aContext.launchSubWorkflows();
 }
 @Override
 public void handleCompleteAllSubWorkflows(SubWorkflowsCompletionContext aContext)
 throws OperationException
 {
 aContext.getCompletedSubWorkflows();
 final ProcessInstance validateProductMarketing = aContext.getCompletedSubWorkflow("validateProduct1");
 final ProcessInstance validateProductDirection = aContext.getCompletedSubWorkflow("validateProduct2");
 if (aContext.getVariableString("productType").equals("book"))
 {
 final ProcessInstance generateISBN = aContext.getCompletedSubWorkflow("generateISBN");
 aContext.setVariableString("isbn", generateISBN.getDataContext().getVariableString(
 "newCode"));
 }

 if (validateProductMarketing.getDataContext().getVariableString("Accepted").equals("true")
 && validateProductDirection.getDataContext().getVariableString("Accepted").equals(
 "true"))
 aContext.setVariableString("validation", "ok");
 }
}

See alsocom.orchestranetworks.workflow.SubWorkflowsInvocationBean
SubWorkflowsInvocationBeanAPI

Configuration through module.xml
SubWorkflowsInvocationBean bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.test.MySubWorkflowsInvocationBean"/>
 </beans>

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 5.9.20 555

</module>

88.8 Sample of WaitTaskBean

Java Code
public class MyWaitTaskBean extends WaitTaskBean
{
 @Override
 public void onStart(WaitTaskOnStartContext aContext)
 {
 Map<String, String> params = new HashMap<String, String>();
 params.put("resumeId", aContext.getResumeId());
 myMethod.callWebService(params);
 }

 @Override
 public void onResume(WaitTaskOnResumeContext aContext) throws OperationException
 {
 // Defines a specific mapping.
 aContext.setVariableString("code", aContext.getOutputParameters().get("isbn"));
 aContext.setVariableString("comment", aContext.getOutputParameters().get("isbnComment"));
 }
}

See alsocom.orchestranetworks.workflow.WaitTaskBean WaitTaskBeanAPI

Configuration through module.xml
WaitTaskBean bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.test.MyWaitTaskBean"/>
 </beans>
</module>

88.9 Sample of ActionPermissionsOnWorkflow

Java Code
package com.orchestranetworks.workflow.test;

import com.orchestranetworks.service.*;
import com.orchestranetworks.workflow.*;
import com.orchestranetworks.workflow.ProcessExecutionContext.*;

/**
 */
public class MyDynamicPermissions extends ActionPermissionsOnWorkflow
{

 public ActionPermission getActionPermission(
 WorkflowPermission aWorkflowAction,
 ActionPermissionsOnWorkflowContext aContext)
 {
 if (WorkflowPermission.VIEW.equals(aWorkflowAction)
 || WorkflowPermission.CREATE_PROCESS.equals(aWorkflowAction))
 return ActionPermission.getEnabled();
 return ActionPermission.getDisabled();
 }

}

See alsocom.orchestranetworks.workflow.ActionPermissionsOnWorkflow
ActionPermissionsOnWorkflowAPI

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 5.9.20 556

Configuration through module.xml
ActionPermissionsOnWorkflow bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.test.MyDynamicPermissions"/>
 </beans>
</module>

88.10 Sample of WorkflowTriggerBean

Java Code
public class MyWorkflowTriggerBean extends WorkflowTriggerBean
{
 @Override
 public void handleAfterProcessInstanceStart(
 WorkflowTriggerAfterProcessInstanceStartContext aContext) throws OperationException
 {
 final DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());
 final MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] After process instance start");
 spec.setBody("The workflow '"
 + policy.formatUserMessage(aContext.getProcessInstance().getLabel())
 + "' has been created.");

 spec.sendMail(Locale.US);
 }

 @Override
 public void handleBeforeProcessInstanceTermination(
 WorkflowTriggerBeforeProcessInstanceTerminationContext aContext) throws OperationException
 {
 final DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 final MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before process instance termination");
 spec.setBody("The workflow '"
 + policy.formatUserMessage(aContext.getProcessInstance().getLabel())
 + "' has been completed. The created product is: '"
 + aContext.getVariableString(NppConstants.VAR_CODE) + "'.");

 spec.sendMail(Locale.US);
 }

 @Override
 public void handleAfterWorkItemCreation(WorkflowTriggerAfterWorkItemCreationContext aContext)
 throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] After work item creation");
 WorkItem workItem = aContext.getWorkItem();
 State state = workItem.getState();
 String body = "The work item '" + policy.formatUserMessage(workItem.getLabel())
 + "' has been created. \n The step id is : " + aContext.getCurrentStepId()
 + ". \n The work item is in state : " + policy.formatUserMessage(state.getLabel());

 if (workItem.getOfferedTo() != null)
 body += "\n The role is :" + workItem.getOfferedTo().format();
 if (workItem.getUserReference() != null)
 body += "\n The user is :" + workItem.getUserReference().format();

 spec.setBody(body);

 spec.sendMail(Locale.US);
 }

 @Override

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 5.9.20 557

 public void handleBeforeWorkItemStart(WorkflowTriggerBeforeWorkItemStartContext aContext)
 throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before work item start");
 spec.setBody("The work item '"
 + policy.formatUserMessage(aContext.getWorkItem().getLabel())
 + "' has been started. \n The current step id is : "
 + aContext.getCurrentStepId()
 + ". \n The work item user is: '"
 + DirectoryHandler.getInstance(aContext.getRepository()).displayUser(
 aContext.getWorkItem().getUserReference(),
 aContext.getSession().getLocale()) + "'.");

 spec.sendMail(Locale.US);
 }

 @Override
 public void handleBeforeWorkItemAllocation(
 WorkflowTriggerBeforeWorkItemAllocationContext aContext) throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before work item allocation");
 spec.setBody("The work item '"
 + policy.formatUserMessage(aContext.getWorkItem().getLabel())
 + "' has been allocated. \n The current step id is: "
 + aContext.getCurrentStepId()
 + ". \n The work item user is: '"
 + DirectoryHandler.getInstance(aContext.getRepository()).displayUser(
 aContext.getUserReference(),
 aContext.getSession().getLocale()) + "'.");

 spec.sendMail(Locale.US);
 }

 @Override
 public void handleBeforeWorkItemDeallocation(
 WorkflowTriggerBeforeWorkItemDeallocationContext aContext) throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before work item deallocation");
 spec.setBody("The work item '"
 + policy.formatUserMessage(aContext.getWorkItem().getLabel())
 + "' has been deallocated. \n The current step id is: "
 + aContext.getCurrentStepId()
 + ". \n The old work item user is: '"
 + DirectoryHandler.getInstance(aContext.getRepository()).displayUser(
 aContext.getWorkItem().getUserReference(),
 aContext.getSession().getLocale()) + ".");

 spec.sendMail(Locale.US);

 }

 @Override
 public void handleBeforeWorkItemReallocation(
 WorkflowTriggerBeforeWorkItemReallocationContext aContext) throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before work item reallocation");
 spec.setBody("The work item '"
 + policy.formatUserMessage(aContext.getWorkItem().getLabel())
 + "' has been reallocated. \n The current step id is: "
 + aContext.getCurrentStepId()
 + ". \n The work item user is: '"
 + DirectoryHandler.getInstance(aContext.getRepository()).displayUser(
 aContext.getUserReference(),
 aContext.getSession().getLocale())
 + "'. The old work item user is: '"

Documentation > Developer Guide > Workflow model

TIBCO EBX® Product Documentation 5.9.20 558

 + DirectoryHandler.getInstance(aContext.getRepository()).displayUser(
 aContext.getWorkItem().getUserReference(),
 aContext.getSession().getLocale()) + "'.");

 spec.sendMail(Locale.US);

 }
 @Override
 public void handleBeforeWorkItemTermination(
 WorkflowTriggerBeforeWorkItemTerminationContext aContext) throws OperationException
 {
 DisplayPolicy policy = DisplayPolicyFactory.getPolicyForSession(aContext.getSession());

 MailSpec spec = aContext.createMailSpec();
 spec.notify(NotificationType.TO, "supervisor@mail.com");

 spec.setSubject("[TRIGGER] Before work item termination");
 spec.setBody("The work item '"
 + policy.formatUserMessage(aContext.getWorkItem().getLabel())
 + "' has been terminated. \n The current step id is: " + aContext.getCurrentStepId()
 + ". \n The work item has been accepted ? " + aContext.isAccepted());

 spec.sendMail(Locale.US);
 }
}

See alsocom.orchestranetworks.workflow.WorkflowTriggerBean WorkflowTriggerBeanAPI

Configuration through module.xml
WorkflowTriggerBean bean must be declared in module.xml:
<module>
 <beans>
 <bean className="com.orchestranetworks.workflow.test.MyWorkflowTriggerBean"/>
 </beans>
</module>

88.11 Sample of trigger starting a process instance

Sample
public class TriggerWorkflow extends TableTrigger
{
 public void handleAfterModify(AfterModifyOccurrenceContext aContext) throws OperationException
 {
 ValueContext currentRecord = aContext.getOccurrenceContext();
 String code = (String) currentRecord.getValue(Path.parse("/code"));

 //Get published process
 PublishedProcessKey processPublishedKey = PublishedProcessKey.forName("productProcess");
 //Defines process instance
 ProcessLauncher launcher = ProcessLauncherHelper.createLauncher(
 processPublishedKey,
 aContext.getProcedureContext());
 //initialize Data Context
 launcher.setInputParameter("code", "/root/Client[./code=\"" + code + "\"]");
 launcher.setInputParameter("workingBranch", aContext.getAdaptationHome().getKey().getName());

 //Starts process
 launcher.launchProcess();

 }
 //...
}

Documentation > Developer Guide

TIBCO EBX® Product Documentation 5.9.20 559

User interface

Documentation > Developer Guide > User interface > Interface customization

TIBCO EBX® Product Documentation 5.9.20 560

CHAPTER 89
Interface customization

The TIBCO EBX graphical interface can be customized through various EBX APIs.
This chapter contains the following topics:

1. How to embed a Web Component

2. User services

3. Form layout

4. Custom widgets

5. Table filter

6. Record label

7. CSS and JavaScript

89.1 How to embed a Web Component
EBX can be integrated into any application that is accessible through a supported web browser, thanks
to the Web Component API.
To embed all or part of EBX in a web page, the HTML tag <iframe> should be used by indicating the
URL to EBX. This URL can be specified either manually or by using the UIHttpManagerComponent
API. A single web page may include several iframes that integrate EBX. It is then possible to create
a portal made of tables, forms, hierarchical views, etc., from EBX.

See alsoUsing TIBCO EBX as a Web Component [p 193]

89.2 User services
A user service is an extension of EBX that provides a graphical user interface (GUI) that allows users
to access specific or advanced functions.
Powerful custom user services can be developed using the same visual components and data validation
mechanisms as standard EBX user interfaces.

See alsoUser service overview [p 563]

Documentation > Developer Guide > User interface > Interface customization

TIBCO EBX® Product Documentation 5.9.20 561

89.3 Form layout
It is possible to override the default layout of forms in the user interface by highly customizing it
with the UIForm API. This API provides the standard input components from EBX, which give the
possibility to customize the layout of a form, while having the same components and standard behavior
as record forms using the default layout.

See also

UIFormAPI

UIFormPaneWriterAPI

UIWidgetAPI

UIFormHeaderAPI

UIFormBottomBarAPI

89.4 Custom widgets
Custom widgets are included in the Java API to allow the development of user interface components
for fields or groups of fields. A custom widget (UICustomWidget) allows, for a given node, to control
the area where the input or display component is located. This allows having an input and display
component that is fully customizable in HTML. The standard components (UIWidgets) are available
and can be used. The custom widget can implement several display aspects: input component in the
form, display in the form, display in a table cell. If a custom widget writes its own HTML components,
it has the possibility to save the value in the database when submitting the form.

See alsoUICustomWidgetAPI

89.5 Table filter
A table filter allows, for a given table, to create a criteria input form in order to apply a filter to the table
view. The UITableFilter API is used to implement a table filter with a custom UI. It provides methods
to create a UI that automatically adapts to the underlying data format (for example, by displaying a
combo box when applicable).

See also

UITableFilterAPI

Properties of data model elements [p 53]

UILabelRendererForHierarchyAPI

89.6 Record label
EBX uses a label to display a reference to a given record (for example a foreign key). Labels are also
used in the title of a record form and in hierarchical views. This label can be customized in the model
using expressions. It is also possible to customize labels using the UILabelRenderer API.

See alsoUILabelRendererAPI

Documentation > Developer Guide > User interface > Interface customization

TIBCO EBX® Product Documentation 5.9.20 562

89.7 CSS and JavaScript
It is possible to integrate CSS and JavaScript files in each EBX page by declaring them in
the registration module. The inclusion of JavaScript files can be subject to conditions through
development depending on the context.

See also

Module registration [p 460]

Development recommendations [p 591]

UIDependencyRegistererAPI

Documentation > Developer Guide > User interface > User services > Overview

TIBCO EBX® Product Documentation 5.9.20 563

CHAPTER 90
Overview

A user service is an extension to TIBCO EBX that provides a graphical user interface (GUI) allowing
users to access specific or advanced functionalities.
An API is available allowing the development of powerful custom user services using the same visual
components and data validation mechanisms as standard EBX user interfaces.
This chapter contains the following topics:

1. Nature

2. Declaration

3. Display

4. Legacy user services

Documentation > Developer Guide > User interface > User services > Overview

TIBCO EBX® Product Documentation 5.9.20 564

90.1 Nature
User services exist in different types called natures. The nature defines the minimal elements
(dataspace, dataset, table, record...) that need to be selected to execute the service. The following table
lists the available natures.

Nature Description

Dataspace The nature of a user service that can be launched from the actions menu of a dataspace (branch or
snapshot) or from any context where the current selection implies selecting a dataspace.

Dataset The nature of a user service that can be launched from the actions menu of a dataset or from any context
where the current selection implies selecting a dataset.

TableView The nature of a user service that can be launched from the toolbar of a table, regardless of the selected
view, or from any context where the current selection implies selecting a table.

Record The nature of a user service that can be launched from the toolbar of a record form or from any context
where the current selection implies selecting a single record.

Hierarchy The nature of a user service that can be launched from the toolbar of a table when a hierarchy view is
selected.

HierarchyNode The nature of a user service that can be launched from the menu of a table hierarchy view node.
Currently, only record hierarchy nodes are supported.

Association The nature of a user service that can be launched from the target table view of an association or for any
context where the current selection implies selecting the target table view of an association.

AssociationRecord The nature of a user service that can be launched from the form of a target record of an association node
or from any context where the current selection implies selecting a single association target record.

90.2 Declaration
A user service can be declared at two levels:

• Module,

• Data model.

A service declared by a data model can only be launched when the current selection includes a dataset
of this model. The user service cannot be of the Dataspace nature.
A service declared by a module may be launched for any dataspace or dataset.
The declaration can add restrictions on selections that are valid for the user service.

Documentation > Developer Guide > User interface > User services > Overview

TIBCO EBX® Product Documentation 5.9.20 565

90.3 Display
On the following figure are displayed the functional areas of a user service.

A. Header

B. Form
1. Breadcrumb

2. Message box button

3. Top toolbar

4. Navigation buttons

5. Help button

6. Close button (pop-ups only)

7. Tabs

8. Form pane (one per tab)

9. Bottom buttons

Most areas are optional and customizable. Refer to Quick start [p 567], Implementing a user service
[p 571] and Declaring a user service [p 585] for more details.

90.4 Legacy user services
Before the 5.8.0 version, user services were declared in XML and based on Servlet/JSP. Although this
type of declaration should no longer be used, the legacy documentation is still available.

Documentation > Developer Guide > User interface > User services > Overview

TIBCO EBX® Product Documentation 5.9.20 566

Documentation > Developer Guide > User interface > User services > Quick start

TIBCO EBX® Product Documentation 5.9.20 567

CHAPTER 91
Quick start

This chapter contains the following topics:

1. Main classes

2. Hello world

91.1 Main classes
The minimum requirement is to implement two classes, one for the service declaration and one for
the implementation itself.

Documentation > Developer Guide > User interface > User services > Quick start

TIBCO EBX® Product Documentation 5.9.20 568

91.2 Hello world
The sample is a dataset user service that simply displays a "hello" message, it can be launched from
the action menu of a dataset:

The service implementation class must implement the interface
UserService<DatasetEntitySelection>:
/**
 * This service displays hello world!
 */
public class HelloWordService implements UserService<DatasetEntitySelection>
{
 public HelloWordService()
 {
 }

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DatasetEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 // Set bottom bar
 UIButtonSpecNavigation closeButton = aConfigurator.newCloseButton();
 closeButton.setDefaultButton(true);
 aConfigurator.setLeftButtons(closeButton);

 // Set content callback
 aConfigurator.setContent(this::writeHelloWorld);
 }

 private void writeHelloWorld(
 UserServicePaneContext aPaneContext,

Documentation > Developer Guide > User interface > User services > Quick start

TIBCO EBX® Product Documentation 5.9.20 569

 UserServicePaneWriter aWriter)
 {
 // Display Hello World!

 aWriter.add("<div ");
 aWriter.addSafeAttribute("class", UICSSClasses.CONTAINER_WITH_TEXT_PADDING);
 aWriter.add(">");
 aWriter.add("Hello World!");
 aWriter.add("</div>");
 }

 @Override
 public void setupObjectContext(
 UserServiceSetupObjectContext<DatasetEntitySelection> aContext,
 UserServiceObjectContextBuilder aBuilder)
 {
 // No context yet.
 }

 @Override
 public void validate(UserServiceValidateContext<DatasetEntitySelection> aContext)
 {
 // No custom validation is necessary.
 }

 @Override
 public UserServiceEventOutcome processEventOutcome(
 UserServiceProcessEventOutcomeContext<DatasetEntitySelection> aContext,
 UserServiceEventOutcome anEventOutcome)
 {
 // By default do not modify the outcome.
 return anEventOutcome;
 }
}

The declaration class must implement the interface UserServiceDeclaration.OnDataset:
/**
 * Declaration for service hello world!
 */
public class HelloWorldServiceDeclaration implements UserServiceDeclaration.OnDataset
{
 // The service key identifies the user service.
 private static final ServiceKey serviceKey = ServiceKey.forName("HelloWorld");

 public HelloWorldServiceDeclaration()
 {
 }

 @Override
 public ServiceKey getServiceKey()
 {
 return serviceKey;
 }

 @Override
 public UserService<DatasetEntitySelection> createUserService()
 {
 // Creates an instance of the user service.
 return new HelloWordService();
 }

 @Override
 public void defineActivation(ActivationContextOnDataset aContext)
 {
 // The service is activated for all datasets instanciated with
 // the associated data model (see next example).
 }

 @Override
 public void defineProperties(UserServicePropertiesDefinitionContext aContext)
 {
 // This label is displayed in menus that can execute the user service.
 aContext.setLabel("Hello World Service");
 }

 @Override
 public void declareWebComponent(WebComponentDeclarationContext aContext)
 {
 }
}

Documentation > Developer Guide > User interface > User services > Quick start

TIBCO EBX® Product Documentation 5.9.20 570

In this sample, the user service is registered by a data model. The data model needs to define a schema
extension that implements the following code:
public class CustomSchemaExtensions implements SchemaExtensions
{
 @Override
 public void defineExtensions(SchemaExtensionsContext aContext)
 {
 // Register the service.
 aContext.registerUserService(new HelloWorldServiceDeclaration());
 }
}

For details on the declaration of schema extensions, see SchemaExtensionsAPI.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 571

CHAPTER 92
Implementing a user service

This chapter contains the following topics:

1. Implementation interface

2. Life cycle and threading model

3. Object Context

4. Display setup

5. Database updates

6. Ajax

7. REST data services

8. File upload

9. File download

10.User service without display

92.1 Implementation interface
The following table lists, per nature, the interface to implement:

Nature Interface

Dataspace UserService<DataspaceEntitySelection>

Dataset UserService<DatasetEntitySelection>

TableView UserService<TableViewEntitySelection>

Record UserService<RecordEntitySelection>

Hierarchy UserService<HierarchyEntitySelection>

HierarchyNode UserService<HierarchyNodeEntitySelection>

Association UserService<AssociationEntitySelection>

AssociationRecord UserService<AssociationRecordEntitySelection>

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 572

92.2 Life cycle and threading model
The user service implementation class is:

• Instantiated at the first HTTP request by a call to its declaration createUserService()
UserServiceDeclaration.createUserServiceAPI method.

• Discarded when the current page goes out of scope or when the session times out.

Access to this class is synchronized by TIBCO EBX to make sure that only one HTTP request is
processed at a time. Therefore, the class does not need to be thread-safe.
The user service may have attributes. The state of these attributes will be preserved between HTTP
requests. However, developers must be aware that these attributes should have moderate use of
resources, such as memory, not to overload the EBX server.

92.3 Object Context
The object context is a container for objects managed by the user service. This context is initialized and
modified by the user service's implementation of the method UserService.setupObjectContextAPI.
An object of the object context is identified by an object key:
ObjectKey customerKey = ObjectKey.forName("customer");

An object can be:

• A record,

• A dataset,

• A new record not yet persisted,

• A dynamic object.

The object context is maintained between HTTP requests and usually only needs to be set up upon
the first request.
Once persisted, a new record object is automatically changed to a plain record object.
As with adaptations AdaptationAPI, path PathAPI expressions are used to reference a sub-element of
an object.
In the following sample, a pane writer adds a form input mapped to the attribute of an object:
// Add an input field for customer's last name.
aWriter.setCurrentObject(customerKey);
aWriter.addFormRow(Path.parse("lastName"));

In the following sample, an event callback gets the value of the attribute of an object:
// Get value of customer's last name.
ValueContext customerValueContext = aValueContext.getValueContext(customerKey);
String lastName = customerValueContext.getValue(Path.parse("lastName"));

A dynamic object is an object whose schema is defined by the user service itself. An API is provided
to define the schema programmatically. This API allows defining only instance elements (instance
nodes). Defining tables is not supported. It supports most other features available with standard
EBX data models, such as types, labels, custom widgets, enumerations and constraints, including
programmatic ones.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 573

The following sample defines two objects having the same schema:
public class SampleService implements UserService<TableViewEntitySelection>
{
 // Define an object key per object:
 private final static ObjectKey _PersonObjectKey = ObjectKey.forName("person");
 private final static ObjectKey _PartnerObjectKey = ObjectKey.forName("partner");

 // Define a path for each property:
 private final static Path _FirstName = Path.parse("firstName");
 private final static Path _LastName = Path.parse("lastName");
 private final static Path _BirthDate = Path.parse("birthDate");

 ...

 // Define and register objects:
 @Override
 public void setupObjectContext(
 UserServiceSetupObjectContext<DataspaceEntitySelection> aContext,
 UserServiceObjectContextBuilder aBuilder)
 {
 if (aContext.isInitialDisplay())
 {
 BeanDefinition def = aBuilder.createBeanDefinition();

 BeanElement firstName = def.createElement(_FirstName, SchemaTypeName.XS_STRING);
 firstName.setLabel("First name");
 firstName.setDescription("This is the given name");
 firstName.setMinOccurs(1);

 BeanElement lastName = def.createElement(_LastName, SchemaTypeName.XS_STRING);
 lastName.setLabel("Last name");
 lastName.setDescription("This is the familly name");
 lastName.setMinOccurs(1);

 BeanElement birthDate = def.createElement(_BirthDate, SchemaTypeName.XS_DATE);
 birthDate.setLabel("Birth date");
 birthDate.addFacetMax(new Date(), false);

 aBuilder.registerBean(_PersonObjectKey, def);
 aBuilder.registerBean(_PartnerObjectKey, def);
 }

 ...
 }

92.4 Display setup
The display is set up by the user service's implementation of the method UserService.setupDisplayAPI.
This method is called at each request and can set the following:

• The title (the default is the label specified by the user service declaration),

• The contextual help URL,

• The breadcrumbs,

• The toolbar,

• The bottom buttons.

If necessary, the header and the bottom buttons can be hidden.
The display setup is not persisted and, at each HTTP request, is reset to default before calling the
method UserService.setupDisplayAPI.
Bottom buttons
Buttons may be of two types: action and submit.
An action button triggers an action event without submitting the form. By default, the user needs to
acknowledge that, by leaving the page, the last changes will be lost. This behavior can be customized.
A submit button triggers a submit event that always submits the form.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 574

More information on events can be found in the following sections.
Content callback
This callback usually implements the interface UserServicePaneAPI to render a plain EBX form. The
callback can also be an instance of UserServiceRootTabbedPaneAPI to render an EBX form with tabs.
For specific cases, the callback can implement UserServiceRawPaneAPI. This interface has restrictions
but is useful when one wants to implement an HTML form that is not managed by EBX.
Toolbars
Toolbars are optional and come in two flavors.
The form style:

The table view style:

The style is automatically selected: toolbars defined for a record are of the form style and toolbars
defined for a table are of the table view style.
Samples
The following sample implements a button that closes the current user service and redirects the user
back to the current selection, only if saving the data was successful:
public class SampleService implements UserService<...>
{
 private final static ObjectKey _RecordObjectKey = ObjectKey.forName("record");

 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<RecordEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 ...
 // Define a "save and close" button with callback onSave().
 aConfigurator.setLeftButtons(aConfigurator.newSaveCloseButton(this::onSave));
 }

 private UserServiceEventOutcome onSave(UserServiceEventContext anEventContext)

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 575

 {
 ProcedureResult result = anEventContext.save(_RecordObjectKey);
 if (result.hasFailed())
 {
 // Save has failed. Redisplay the user message.
 return null;
 }

 // Save has succeded.Close the service.
 return UserServiceNext.nextClose();
 }
}

The following sample is compatible with the Java 6 syntax. Only differences with the previous code
are shown:
public class SampleService implements UserService<...>
{
 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<RecordEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 ...
 // Define a "save and close" button with callback onSave().
 aConfigurator.setLeftButtons(aConfigurator.newSaveCloseButton(new UserServiceEvent() {
 @Override
 public UserServiceEventOutcome processEvent(UserServiceEventContext anEventContext)
 {
 return onSave(anEventContext);
 }
 }));
 }
}

The following sample implements a URL that closes the service and redirects the current user to
another user service:
public class SampleService implements UserService<...>
{
 ...
 private void writePane(UserServicePaneContext aPaneContext, UserServicePaneWriter aWriter)
 {
 // Displays an ULR that redirect current user.
 String url = aWriter.getURLForAction(this::goElsewhere);
 aWriter.add("<a ");
 aWriter.addSafeAttribute("href", url);
 aWriter.add(">Go elsewhere</a");
 }

 private UserServiceEventOutcome goElsewhere(UserServiceEventContext anEventContext)
 {
 // Redirects current user to another user service.
 ServiceKey serviceKey = ServiceKey.forModuleServiceName("CustomerModule", "CustomService");
 return UserServiceNext.nextService(serviceKey);
 }
}

The following code is an implementation of the method UserService.processEventOutcomeAPI,
sufficient for simple user services:
public class HelloWordService implements UserService<...>
{
 @Override
 public UserServiceEventOutcome processEventOutcome(
 UserServiceProcessEventOutcomeContext<DatasetEntitySelection> aContext,
 UserServiceEventOutcome anEventOutcome)
 {
 // By default do not modify the outcome.
 return anEventOutcome;
 }
}

The following sample is a more complex "wizard" service that includes three steps, each having its
own UserService.setupDisplayAPI method:
// Custom outcome values.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 576

public enum CustomOutcome implements UserServiceEventOutcome {
 displayStep1, displayStep2, displayStep3
};

// All steps of the wizard service implement this interface.
public interface WizardStep
{
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator);
}

// The user service implementation.
public class WizardService implements UserService<...>
{
 // Attribute for current step.
 private WizardStep step = new WizardStep1();

 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 ...

 // Display current step.
 this.step.setupDisplay(aContext, aConfigurator);
 }

 @Override
 public UserServiceEventOutcome processEventOutcome(
 UserServiceProcessEventOutcomeContext<DataspaceEntitySelection> aContext,
 UserServiceEventOutcome anEventOutcome)
 {
 // Custom outcome value processing.

 if (anEventOutcome instanceof CustomOutcome)
 {
 CustomOutcome action = (CustomOutcome) anEventOutcome;
 switch (action)
 {
 case displayStep1:
 this.step = new WizardStep1();
 break;

 case displayStep2:
 this.step = new WizardStep2();
 break;

 case displayStep3:
 this.step = new WizardStep3();
 break;
 }

 // Redisplay the user service.
 return null;
 }

 // Let EBX® process the event outcome.
 return anEventOutcome;
 }
}

92.5 Database updates
An event callback may update the database.
The following sample saves two objects using a single transaction:
public class MultipleObjectsSampleService implements UserService<...>
{
 // This service defines a two objects having same schema.
 private final static ObjectKey _Person1_ObjectKey = ObjectKey.forName("person1");
 private final static ObjectKey _Person2_ObjectKey = ObjectKey.forName("person2");

 ...

 // Save button callback.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 577

 private UserServiceEventOutcome onSave(UserServiceEventContext aContext)
 {
 ProcedureResult result = aContext.save(_Person1_ObjectKey, _Person2_ObjectKey);
 if (result.hasFailed())
 {
 //Save failed. Redisplay the service.
 //The user interface will automatically report error messages.
 return null;
 }

 // Save succeeded. Close the service.
 return UserServiceNext.nextClose();
 }
}

The following sample updates the database using a procedure ProcedureAPI:
import com.orchestranetworks.service.*;
import com.orchestranetworks.userservice.*;

public class MultipleObjectsSampleService implements UserService<...>
{
 ...

 // Event callback.
 private UserServiceEventOutcome onUpdateSomething(UserServiceEventContext aContext)
 {
 Procedure procedure = new Procedure()
 {
 public void execute(ProcedureContext aContext) throws Exception
 {
 // Code that updates database should be here.
 ...
 }
 };

 UserServiceTransaction transaction = aContext.createTransaction();
 transaction.add(procedure);

 ProcedureResult result = transaction.execute();
 if (result.hasFailed())
 {
 aContext.addError("Procedure failed");
 }
 else
 {
 aContext.addInfo("Procedure succeeded");
 }

 return null;
}

92.6 Ajax
A user service can implement Ajax callbacks. An Ajax callback must implement the interface
UserServiceAjaxRequestAPI.
The client calls an Ajax callback using the URL generated by: UserServiceResourceLocator.
getURLForAjaxRequestAPI.
To facilitate the use of Ajax components, EBX provides the JavaScript prototype
EBX_AJAXResponseHandler for sending the request and handling the response. For more information
on EBX_AJAXResponseHandler see UserServiceAjaxRequestAPI.
The following sample implements an Ajax callback that returns partial HTML:
public class AjaxSampleService implements UserService<DataspaceEntitySelection>
{
 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 aConfigurator.setLeftButtons(aConfigurator.newCloseButton());
 aConfigurator.setContent(this::writePane);

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 578

 }

 /**
 * Displays an URL that will execute the callback
 * and display the returned partial HTML inside a <div> tag.
 */
 private void writePane(UserServicePaneContext aPaneContext, UserServicePaneWriter aWriter)
 {
 // Generate the URL of the Ajax callback.
 String url = aWriter.getURLForAjaxRequest(this::ajaxCallback);

 // The id of the <div> that will display the partial HTML returned by the Ajax callback.
 String divId = "sampleId";

 aWriter.add("<div ");
 aWriter.addSafeAttribute("class", UICSSClasses.CONTAINER_WITH_TEXT_PADDING);
 aWriter.add(">");

 // Display the URL that will execute the callback.
 aWriter.add("<a ");
 aWriter.addSafeAttribute("href", "javascript:sample_sendAjaxRequest('" + url + "', '"
 + divId + "')");
 aWriter.add(">");
 aWriter.add("Click to call a user service Ajax callback");
 aWriter.add("");

 // Output the <div> tag that will display the partial HTML returned by the callback.
 aWriter.add("<div ");
 aWriter.addSafeAttribute("id", divId);
 aWriter.add("></div>");

 aWriter.add("</div>");

 // JavaScript method that will send the Java request.
 aWriter.addJS_cr();
 aWriter.addJS_cr("function sample_sendAjaxRequest(url, targetDivId) {");
 aWriter.addJS_cr(" var ajaxHandler = new EBX_AJAXResponseHandler();");

 aWriter.addJS_cr(" ajaxHandler.handleAjaxResponseSuccess = function(responseContent) {");
 aWriter.addJS_cr(" var element = document.getElementById(targetDivId);");
 aWriter.addJS_cr(" element.innerHTML = responseContent;");
 aWriter.addJS_cr(" };");

 aWriter.addJS_cr(" ajaxHandler.handleAjaxResponseFailed = function(responseContent) {");
 aWriter.addJS_cr(" var element = document.getElementById(targetDivId);");
 aWriter.addJS_cr(" element.innerHTML = \"<span class='" + UICSSClasses.TEXT.ERROR
 + "'>Ajax call failed\";");
 aWriter.addJS_cr(" }");

 aWriter.addJS_cr(" ajaxHandler.sendRequest(url);");
 aWriter.addJS_cr("}");
 }

 /**
 * The Ajax callback that returns partial HTML.
 */
 private void ajaxCallback(
 UserServiceAjaxContext anAjaxContext,
 UserServiceAjaxResponse anAjaxResponse)
 {
 UserServiceWriter writer = anAjaxResponse.getWriter();
 writer.add("<p style=\"color:green\">Ajax callback succeeded!</p>");
 writer.add("<p>Current data and time is: ");

 DateFormat format = DateFormat.getDateTimeInstance(
 DateFormat.FULL,
 DateFormat.FULL,
 Locale.US);
 writer.addSafeInnerHTML(format.format(new Date()));

 writer.add("</p>");
 }
}

92.7 REST data services
A user service can access REST data services through HTTP requests.
The client should use the URL generated by: UIResourceLocator.getURLForRestAPI. This URL
includes required information for the user authentication.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 579

For more information on REST data services see the Built-in RESTful services [p 657].
The following sample implements a REST data service call whose response is printed in a textarea:
public class RestCallSampleService implements UserService<DataspaceEntitySelection>
{
 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 aConfigurator.setLeftButtons(aConfigurator.newCloseButton());
 aConfigurator.setContent(this::writePane);
 }

 private void writePane(UserServicePaneContext aPaneContext, UserServicePaneWriter aWriter)
 {
 // Generates the URL for REST data service call without additional parameters
 final String url = aWriter.getURLForRest("/ebx-dataservices/rest/{specificPath}", null);

 final String resultAreaId = "restResult";

 // Displays a link for REST data service call
 aWriter.add("<div ");
 aWriter.addSafeAttribute("class", UICSSClasses.CONTAINER_WITH_TEXT_PADDING);
 aWriter.add(">");
 aWriter.add("<p>This link will display the response after making a REST call</p>");
 aWriter.add("<a ");
 aWriter.addSafeAttribute("href",
 "javascript:sendRestRequest('" + url + "', '" + resultAreaId + "')");
 aWriter.add(">");
 aWriter.add("Make the call.");
 aWriter.add("");
 aWriter.add("<textarea ");
 aWriter.addSafeAttribute("id", resultAreaId);
 aWriter.add(" readonly=\"readonly\" style=\"width: 100%;\" ></textarea>");
 aWriter.add("</div>");

 // JavaScript method that will send the HTTP REST request
 aWriter.addJS_cr("function sendRestRequest(url, targetId) {");
 aWriter.addJS_cr(" var xhttp = new XMLHttpRequest();");
 aWriter.addJS_cr(" xhttp.open('GET', url, true);");
 aWriter.addJS_cr(" xhttp.setRequestHeader('Content-type', 'application/json');");
 aWriter.addJS_cr(" xhttp.send();");
 aWriter.addJS_cr(" var element = document.getElementById(targetId);");
 aWriter.addJS_cr(" xhttp.onreadystatechange = function() {");
 aWriter.addJS_cr(" if (xhttp.readyState == 4)");
 aWriter.addJS_cr(" element.innerHTML = xhttp.responseText;");
 aWriter.addJS_cr(" }");
 aWriter.addJS_cr("}");
 }
}

92.8 File upload
A user service can display forms with file input fields.
The following sample displays a form with two input fields, a title and a file:
public class FileUploadService implements UserService<...>
{
 // This service defines a single object named "file".
 private final static ObjectKey _File_ObjectKey = ObjectKey.forName("file");

 // Paths for the "file" object.
 public final static Path _Title = Path.parse("title");
 public final static Path _File = Path.parse("file");

 ...

 @Override
 public void setupObjectContext(
 UserServiceSetupObjectContext<DataspaceEntitySelection> aContext,
 UserServiceObjectContextBuilder aBuilder)
 {
 if (aContext.isInitialDisplay())
 {
 // Create a definition for the "model" object.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 580

 BeanDefinition def = aBuilder.createBeanDefinition();
 aBuilder.registerBean(_File_ObjectKey, def);

 BeanElement element;

 element = def.createElement(_Title, SchemaTypeName.XS_STRING);
 element.setLabel("Title");
 element.setMinOccurs(1);

 // Type for a file must be BeanDefinition.OSD_FILE_UPLOAD.
 element = def.createElement(_File, BeanDefinition.OSD_FILE_UPLOAD);
 element.setLabel("File");
 element.setMinOccurs(1);
 }
 }

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 aConfigurator.setTitle("File upload service");
 aConfigurator.setLeftButtons(aConfigurator.newSubmitButton("Upload", this::onUpload),
 aConfigurator.newCancelButton());

 // IMPORTANT: Following method must be called to enable file upload.
 // This will set form encryption type to "multipart/form-data".
 aConfigurator.setFileUploadEnabled(true);

 aConfigurator.setContent(this::writePane);
 }

 private void writePane(UserServicePaneContext aContext, UserServicePaneWriter aWriter)
 {
 final UIWidgetFileUploadFactory fileUploadFactory = new UIWidgetFileUploadFactory();

 aWriter.setCurrentObject(_File_ObjectKey);

 aWriter.startTableFormRow();

 // Title input.
 aWriter.addFormRow(_Title);

 // File upload input.
 UIWidgetFileUpload widget = aWriter.newCustomWidget(_File, fileUploadFactory);
 // Default filter for file names.
 widget.setAccept(".txt");
 aWriter.addFormRow(widget);

 aWriter.endTableFormRow();
 }

 private UserServiceEventOutcome onUpload(UserServiceEventContext anEventContext)
 {
 ValueContextForInputValidation valueContext = anEventContext.getValueContext(_File_ObjectKey);

 String title = (String) valueContext.getValue(_Title);
 UploadedFile file = (UploadedFile) valueContext.getValue(_File);

 InputStream in;
 try
 {
 in = file.getInputStream();
 }
 catch (IOException e)
 {
 // Should not happen.
 anEventContext.addError("Cannot read file.");
 return null;
 }

 // Do something with title and the input stream.
 return UserServiceNext.nextClose();
 }
}

For more information, see UIWidgetFileUploadAPI.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 581

92.9 File download
A user service can display URLs or buttons to download files. The actual downloading of a file is
under the control of the user service.
The following sample displays a URL to download a file:
public class FileDownloadService implements UserService<DataspaceEntitySelection>
{
 ...

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<DataspaceEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 aConfigurator.setLeftButtons(aConfigurator.newCloseButton());
 aConfigurator.setContent(this::writePane);
 }

 private void writePane(UserServicePaneContext aContext, UserServicePaneWriter aWriter)
 {
 aWriter.add("<div ");
 aWriter.addSafeAttribute("class", UICSSClasses.CONTAINER_WITH_TEXT_PADDING);
 aWriter.add(">");

 // Generate and display the URL for the download.
 String downloadURL = aWriter.getURLForGetRequest(this::processDownloadRequest);

 aWriter.add("<a ");
 aWriter.addSafeAttribute("href", downloadURL);
 aWriter.add(">Click here to download a sample file");

 aWriter.add("</div>");
 }

 private void processDownloadRequest(
 UserServiceGetContext aContext,
 UserServiceGetResponse aResponse)
 {
 // The file is plain text.
 aResponse.setContentType("text/plain;charset=UTF-8");
 // Remove the following statement to display the file directly in the browser.
 aResponse.setHeader("Content-Disposition", "attachment; filename=\"sample.txt\"");

 // Write a text file using UTF-8 encoding.
 PrintWriter out;
 try
 {
 out = new PrintWriter(new OutputStreamWriter(aResponse.getOutputStream(), "UTF-8"));
 }
 catch (IOException ex)
 {
 throw new RuntimeException(ex);
 }

 DateFormat format = DateFormat.getDateTimeInstance(
 DateFormat.FULL,
 DateFormat.MEDIUM,
 Locale.US);
 Date now = new Date();

 out.println("Hello !");
 out.println("This is a sample text file downloaded on " + format.format(now)
 + ", from EBX®.");

 out.close();
 }
}

92.10 User service without display
A user service may be designed to execute a task without display and return to the previous screen
or redirect the user to another screen.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 582

This type of service must implement the interface UserServiceExtended UserServiceExtendedAPI and
method UserServiceExtended.initializeAPI.
The following sample deletes selected records in the current table view:
public class DeleteRecordsService implements UserServiceExtended<TableViewEntitySelection>
{
 ...

 @Override
 public UserServiceEventOutcome initialize(
 UserServiceInitializeContext<TableViewEntitySelection> aContext)
 {
 final List<AdaptationName> records = new ArrayList<>();

 // Deletes all selected rows in a single transaction.
 RequestResult requestResult = aContext.getEntitySelection().getSelectedRecords().execute();
 try
 {
 for (Adaptation record = requestResult.nextAdaptation(); record != null; record =
 requestResult.nextAdaptation())
 {
 records.add(record.getAdaptationName());
 }
 }
 finally
 {
 requestResult.close();
 }

 Procedure deleteProcedure = new Procedure()
 {
 @Override
 public void execute(ProcedureContext aContext) throws Exception
 {
 for (AdaptationName record : records)
 {
 aContext.doDelete(record, false);
 }
 }
 };

 UserServiceTransaction transaction = aContext.createTransaction();
 transaction.add(deleteProcedure);

 // Adds an information messages for current user.
 ProcedureResult procedureResult = transaction.execute(true);
 if (!procedureResult.hasFailed())
 {
 if (records.size() <= 1)
 {
 aContext.addInfo(records.size() + " record was deleted.");
 }
 else
 {
 aContext.addInfo(records.size() + " records were deleted.");
 }
 }

 // Do not display the user service and return to current view.
 return UserServiceNext.nextClose();
 }

 @Override
 public void setupObjectContext(
 UserServiceSetupObjectContext<TableViewEntitySelection> aContext,
 UserServiceObjectContextBuilder aBuilder)
 {
 //Do nothing.
 }

 @Override
 public void setupDisplay(
 UserServiceSetupDisplayContext<TableViewEntitySelection> aContext,
 UserServiceDisplayConfigurator aConfigurator)
 {
 //Do nothing.
 }

 @Override
 public void validate(UserServiceValidateContext<TableViewEntitySelection> aContext)
 {
 //Do nothing.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 583

 }

 @Override
 public UserServiceEventOutcome processEventOutcome(
 UserServiceProcessEventOutcomeContext<TableViewEntitySelection> aContext,
 UserServiceEventOutcome anEventOutcome)
 {
 return anEventOutcome;
 }
}

Known limitation
If such service is called in the context of a Web component, an association, a perspective action or
a hierarchy node, The service will be launched, initialized and closed, but the service's target entity
will still be displayed.

Documentation > Developer Guide > User interface > User services > Implementing a user service

TIBCO EBX® Product Documentation 5.9.20 584

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 5.9.20 585

CHAPTER 93
Declaring a user service

This chapter contains the following topics:

1. Declaration interface

2. Life cycle and threading model

3. Registration

4. Service properties

5. Service activation scope

6. Web component declaration

7. User service groups

93.1 Declaration interface
The following table lists, per nature, the interface that the declaration class of a user service must
implement:

Nature Declaration Interface

Dataspace UserServiceDeclaration.OnDataspace

Dataset UserServiceDeclaration.OnDataset

TableView UserServiceDeclaration.OnTableView

Record UserServiceDeclaration.OnRecord

Hierarchy UserServiceDeclaration.OnHierarchy

HierarchyNode UserServiceDeclaration.OnHierarchyNode

Association UserServiceDeclaration.OnAssociation

AssociationRecord UserServiceDeclaration.OnAssociationRecord

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 5.9.20 586

93.2 Life cycle and threading model
The user service declaration class is instantiated at the TIBCO EBX startup and must be coded to be
thread-safe. This is usually not an issue as most implementations should be immutable classes.

93.3 Registration
A user service declaration must be registered by a module or a data model.
Registration by a module is achieved by the module registration servlet by a code similar to:
public class CustomRegistrationServlet extends ModuleRegistrationServlet
{
 @Override
 public void handleServiceRegistration(ModuleServiceRegistrationContext aContext)
 {
 // Register custom user service declaration.
 aContext.registerUserService(new CustomServiceDeclaration());
 }
}

For more information on the module registration servlet, see module registration [p 460] and
ModuleRegistrationServletAPI.
Registration by a data model is achieved by a code similar to:
public class CustomSchemaExtensions implements SchemaExtensions
{
 @Override
 public void defineExtensions(SchemaExtensionsContext aContext)
 {
 // Register custom user service declaration.
 aContext.registerUserService(new CustomServiceDeclaration());
 }
}

For more information on data model extensions, see SchemaExtensionsAPI.

93.4 Service properties
The properties of a user service include its label, description, confirmation message and the group
that owns the service. All are optional but it is a good practice to at least define the label.
For more information, see UserServiceDeclaration.definePropertiesAPI.

93.5 Service activation scope
The activation scope defines on which selection the service is available.
Example of a service activation definition:
public class CustomServiceDeclaration implements UserServiceDeclaration.OnTableView
{
 ...

 @Override
 public void defineActivation(ActivationContextOnTableView aContext)
 {
 // activates the service in all dataspaces except the "Reference" branch.
 aContext.includeAllDataspaces(DataspaceType.BRANCH);
 aContext.excludeDataspacesMatching(Repository.REFERENCE, DataspaceChildrenPolicy.NONE);

 // activates the service only on tables "table01" and "table03".
 aContext.includeSchemaNodesMatching(
 CustomDataModelPath._Root_Table01.getPathInSchema(),
 CustomDataModelPath._Root_Table03.getPathInSchema());

 // service will be enabled only when at least one record is selected.

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 5.9.20 587

 aContext.forbidEmptyRecordSelection();

 // service will not be displayed in hierarchical views (neither in the
 // top toolbar, nor in the hierarchy nodes' menu).
 aContext.setDisplayForLocations(
 ActionDisplaySpec.HIDDEN,
 ToolbarLocation.HIERARCHICAL_VIEW_TOP,
 ToolbarLocation.HIERARCHICAL_VIEW_NODE);

 // service will be considered as disabled if not explicitly enabled
 // via the UI.
 aContext.setDefaultPermission(UserServicePermission.getDisabled());
 }
}

For more information about declaring the activation scope, see UserServiceDeclaration.
defineActivationAPI.
For more information about the resolution of the user service availability, see Resolving permissions
on services [p 287].

93.6 Web component declaration

Parameters declaration and availability in workflows and
perspectives
User services are automatically available as web components with a set of built-in parameters
depending on the service's nature. To define custom parameters and/or set the service web component
as available when configuring a workflow user task, a perspective menu action or a toolbar web
component action, UserServiceDeclaration.declareWebComponentAPI must be used.
Example of a web component declaration:
public class CustomServiceDeclaration implements UserServiceDeclaration.OnDataset
{
 ...

 @Override
 public void declareWebComponent(WebComponentDeclarationContext aContext)
 {
 // makes this web component available when configuring a workflow user task.
 aContext.setAvailableAsWorkflowUserTask(true);

 // adds a custom input parameter.
 aContext.addInputParameter(
 "source",
 UserMessage.createInfo("Source"),
 UserMessage.createInfo("Source of the imported data."));

 // modifies the built-in "instance" parameter to be "input/output" instead of "input".
 aContext.getBuiltInParameterForOverride("instance").setOutput(true);
 }
}

See Using TIBCO EBX as a Web Component [p 193] for more information.

User service extension
It is possible to extend existing user services (built-in or custom) in order to add input/output
parameters when using these services as web components.
In order to do so, a user service extension must first be registered by a module or a data model.
Registration by a module is achieved by the module registration servlet by code similar to:
public class CustomRegistrationServlet extends ModuleRegistrationServlet
{
 ...

 @Override
 public void handleServiceRegistration(ModuleServiceRegistrationContext aContext)

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 5.9.20 588

 {
 // Register user service extension declaration.
 aContext.registerUserServiceExtension(new ServiceExtensionDeclaration());
 }
}

For more information on the module registration servlet, see module registration [p 460] and
ModuleRegistrationServletAPI.
Registration by a data model is achieved by a code similar to:
public class CustomSchemaExtensions implements SchemaExtensions
{
 ...

 @Override
 public void defineExtensions(SchemaExtensionsContext aContext)
 {
 // Register user service extension declaration.
 aContext.registerUserServiceExtension(new ServiceExtensionDeclaration());
 }
}

For more information on the data model extension, see SchemaExtensionsAPI.

93.7 User service groups
User service groups are used to organize the display of user services in menus and permission
management screens.
The following types of service groups are available:

• Built-in User Service Groups [p 588] provided by EBX,

• Custom User Service Groups [p 589] declared in a module.

The link between groups and services is made upon service declaration. See Associating a service
to a group [p 589].

Built-in User Service Groups
Available built-in service groups:

Service Group Key Description

@ebx-importExport Group containing all built-in import and export services
provided by EBX. In the default menus, these services are
displayed in an "Import / Export" sub-menu.

@ebx-views Group containing services to display in the 'Views' menu.
Unlike other service groups, services associated with this
group are not displayed in the default menus, but only in the
'Views' menu displayed in the non-customizable part of the
table top toolbar. These services can still be added manually
to a custom toolbar.

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 5.9.20 589

Declaring a User Service Group
User Service Groups must be declared while registering the module, using the method
ModuleServiceRegistrationContext.registerServiceGroupAPI:
public class CustomRegistrationServlet extends ModuleRegistrationServlet
{
 ...

 @Override
 public void handleServiceRegistration(ModuleServiceRegistrationContext aContext)
 {
 // In CustomModuleConstants,
 // CUSTOM_SERVICE_GROUP_KEY = ServiceGroupKey.forServiceGroupInModule("customModule", "customGroup")

 // registers CUSTOM_SERVICE_GROUP_KEY service group
 aContext.registerServiceGroup(
 CustomModuleConstants.CUSTOM_SERVICE_GROUP_KEY,
 UserMessage.createInfo("Custom group"),
 UserMessage.createInfo("This group contains services related to..."));
 }
}

Associating a service to a group
The association of a service with a group is made at its declaration UserServiceDeclarationAPI, using
the method UserServicePropertiesDefinitionContext.setGroupAPI:
public class CustomServiceDeclaration implements UserServiceDeclaration.OnDataset
{
 ...

 @Override
 public void defineProperties(UserServicePropertiesDefinitionContext aContext)
 {
 // associates the current service to the CUSTOM_SERVICE_GROUP_KEY group
 aContext.setGroup(CustomModuleConstants.CUSTOM_SERVICE_GROUP_KEY);
 }
}

A service can be associated with either a built-in or a custom service group. In the latter case, this
service will be displayed in this built-in group, just like other built-in services belonging to this group.

Documentation > Developer Guide > User interface > User services > Declaring a user service

TIBCO EBX® Product Documentation 5.9.20 590

Documentation > Developer Guide > User interface > Development recommendations

TIBCO EBX® Product Documentation 5.9.20 591

CHAPTER 94
Development recommendations

This chapter contains the following topics:

1. HTML

2. CSS

3. JavaScript

94.1 HTML
It is recommended to minimize the inclusion of specific HTML styles and tags to allow the default
styles of TIBCO EBX to apply to custom interfaces. The approach of the API is to automatically apply
a standardized style to all elements on HTML pages, while simplifying the implementation process
for the developer.

XHTML
EBX is a Rich Internet Application developed in XHTML 1.0 Transitional. It means that the structure
of the HTML is strict XML file and that all tags must be closed, including "br" tags. This structure
allows for greater control over CSS rules, with fewer differences in browser rendering.

iFrames
Using iFrame is allowed in EBX, especially in collaboration with a URL of a
UIHttpManagerComponentAPI. For technical reasons, it is advised to set the src attribute of an iFrame
using JavaScript only. In this way, the iFrame will be loaded once the page is fully rendered and when
all the built-in HTML components are ready.

Example
The following example, developed from any UIComponentWriterAPI, uses a UIHttpManagerComponentAPI

to build the URL of an iFrame, and set it in the right way:
// using iFrame in the current page requires a sub session component
UIHttpManagerComponent managerComponent = writer.createWebComponentForSubSession();

// [...] managerComponent configuration

String iFrameURL = managerComponent.getURIWithParameters();

String iFrameId = "mySweetIFrame";

// place the iFrame in the page, with an empty src attribute
writer.add("<iframe id=\"").add(iFrameId).add("\" src=\"\" >").add("</iframe>");

// launch the iFrame from JavaScript

Documentation > Developer Guide > User interface > Development recommendations

TIBCO EBX® Product Documentation 5.9.20 592

writer.addJS("document.getElementById(\"").addJS(iFrameId).addJS("\").src = \"").addJS(iFrameURL).addJS("\";");

94.2 CSS

Public CSS classes
The constant catalog UICSSClassesAPI offers the main CSS classes used in the software to style the
components. These CSS classes ensure a proper long-term integration into the software, because they
follow the background colors, borders, customizable text in the administration; the floating margins
and paddings fluctuate according to the variable density; to the style of the icons, etc.

See alsoUICSSUtilsAPI

Advanced CSS
EBX allows to integrate to all its pages one or more external Cascading Style Sheet. These external
CSS, considered as resources, need to be declared in the Module registration [p 460].
In order to ensure the proper functioning of your CSS rules and properties without altering the
software, the following recommendations should be respected. Failure to respect these rules could
lead to:

• Improper functioning of the software, both aesthetically and functionally: risk of losing the
display of some of the data and some input components may stop working.

• Improper functioning of your CSS rules and properties, since the native CSS rules will impact
the CSS implementation.

Reserved prefixes for CSS identifiers and class names
The following prefixes should not be used to create CSS #ids and .classes.

ebx_ Internal built-in

yui Yahoo User Interface global

ygtv Yahoo User Interface tree view

layout-doc Yahoo User Interface layout

cke_ CK editor (used by HTML editor widget)

fa Font Awesome (icons used by perspectives and toolbars)

CSS classes used internally by EBX
The following CSS classes should never be included in a ruleset that has no contextual selector.

Documentation > Developer Guide > User interface > Development recommendations

TIBCO EBX® Product Documentation 5.9.20 593

If you do not prefix your CSS selector using one of the CSS classes below, it will cause conflicts and
corrupt the UI of EBX.

selected YUI selected tree node

hd YUI floating pane header

bd YUI floating pane body

ft YUI floating pane footer

container-close YUI inner popup close button

underlay YUI inner popup shadow

hastitle YUI menu group with title

topscrollbar YUI menu top scroll zone

bottomscrollbar YUI menu bottom scroll zone

withtitle YUI calendar

link-close YUI calendar close button

collapse YUI layout closed pane indicator

pull-right Font Awesome parameter

pull-left Font Awesome parameter

Examples to avoid conflicts
Don't
.selected {
 background-color: red;
}

Do
#myCustomComponent li.selected {
 background-color: red;
}

Documentation > Developer Guide > User interface > Development recommendations

TIBCO EBX® Product Documentation 5.9.20 594

94.3 JavaScript

Public JS functions
The catalog of JavaScript functions JavaScriptCatalogAPI offers a list of functions to use directly
(through copy-paste) in the JS files.

JavaScript call during page generation in Java
When generating the HTML of a Java component, it is possible to add specific JavaScript code with
the API UIJavaScriptWriterAPI.
This JavaScript is executed once the whole page is loaded. It is possible to instantly manage the
HTML elements written with UIBodyWriter.addAPI. Setting on-load functions (such as window.onload
= myFunctionToCallOnload;) is not supported because the execution context comes after the on-load
event.

Advanced JavaScript
EBX allows to include one or more external JavaScript files. These external JavaScript files,
considered as resources, need to be declared in the Module registration [p 460]. For performance reasons,
it is recommended to include the JavaScript resource only when necessary (in a User service or a
specific form, for example). The API UIDependencyRegistererAPI allows a developer to specify the
conditions for which the JavaScript resources will be integrated into a given page according to its
context.
In order to ensure the proper functioning of your JavaScript resources without altering the software,
the following recommendations should be respected. Failure to respect them could lead to:

• Improper functioning of the software: if functions or global variables of the software were to be
erased, some input or display components (including the whole screen) may stop working.

• Improper functioning of your JavaScript instructions, since global variables or function names
could be erased.

Reserved JS prefixes
The following prefixes are reserved and should not be used to create variables, functions, methods,
classes, etc.

ebx_ Internal built-in API

EBX_ Internal built-in API

YAHOO Yahoo User Interface API

Documentation > Developer Guide

TIBCO EBX® Product Documentation 5.9.20 595

SOAP data services

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 596

CHAPTER 95
Introduction

This chapter contains the following topics:

1. Overview

2. Activation and configuration

3. Interactions

4. Security

5. Monitoring

6. SOAP and REST comparative

7. Limitations

95.1 Overview
Data services allow external systems to interact with the data governed in the TIBCO EBX repository
using the SOAP/Web Services Description Language (WSDL) standards.
In order to invoke SOAP operations [p 615], for an integration use case, a WSDL [p 607] must be
generated from a data model. It will be possible to perform operations such as:

• Selecting, inserting, updating, deleting, or counting records

• Selecting dataset values

• Getting the differences on a table between dataspaces or snapshots, or between two datasets based
on the same data model

• Getting the credentials of records

Other generic WSDLs can be generated and allow performing operations such as:

• Creating, merging, or closing a dataspace

• Creating or closing a snapshot

• Validating a dataset, dataspace, or a snapshot

• Starting, resuming or ending a data workflow

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 597

• Administrative operations to manage access to the UI or to system information

Note

See SOAP and REST comparative [p 604].

95.2 Activation and configuration
Data services are enabled by deploying the ebx-dataservices web application along with the other
EBX modules. See Java EE deployment overview [p 317] for more information.
In case of specific deployment, for example using reverse-proxy mode, see URLs computing [p 356]

for more information.
The default method for accessing data services is over HTTP, although it is also possible to use JMS
for the SOAP operations. See JMS configuration [p 355] and Using JMS [p 598] for more information.

95.3 Interactions

Input and output message encoding
All input messages must be exclusively in UTF-8. All output messages are in UTF-8.

Tracking information
Depending on the data services operation being called, it may be possible to specify session tracking
information.

• Example for a SOAP operation, the request header contains:
<SOAP-ENV:Header>
 <!-- optional security header here -->
 <m:session xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <trackingInformation>String</trackingInformation>
 </m:session>
</SOAP-ENV:Header>

For more information, see Session.getTrackingInfoAPI in the Java API.

Session parameters
Depending on the data services operation being called, it is possible to specify session input
parameters. They are defined in the request body.
Input parameters are available on custom Java components with a session object, such as: triggers,
access rules, custom web services. They are also available on data workflow operations.

• Example for a SOAP operation, the optional request header contains:
<SOAP-ENV:Header>
 <!-- optional security header here -->
 <m:session xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <!-- optional trackingInformation header here -->
 <inputParameters>
 <parameter>
 <name>String</name>
 <value>String</value>
 </parameter>
 <!-- for some other parameters, copy complex
 element 'parameter' -->
 </inputParameters>
 </m:session>
</SOAP-ENV:Header>

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 598

For more information, see Session.getInputParameterValueAPI in the Java API.

Exception handling
In case of unexpected server error upon execution of:

• A SOAP operation, a SOAP exception response is returned to the caller via the soap:Fault
element. For example:
<soapenv:Fault>
 <faultcode>soapenv:java.lang.IllegalArgumentException</faultcode>
 <faultstring />
 <faultactor>admin</faultactor>
 <detail>
 <m:StandardException xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <code>java.lang.IllegalArgumentException</code>
 <label/>
 <description>java.lang.IllegalArgumentException:
 Parent home not found at
 com.orchestranetworks.XX.YY.ZZ.AA.BB(AA.java:44) at
 com.orchestranetworks.XX.YY.ZZ.CC.DD(CC.java:40) ...
 </description>
 </m:StandardException>
 </detail>
</soapenv:Fault>

Using JMS
It is possible to access SOAP operations using JMS instead of HTTP. The JMS architecture relies
on one JMS request queue (mandatory), on one JMS failure queue (optional), and on JMS response
queues, see configuration JMS [p 355]. The mandatory queue is the input queue. Request messages
must be put in the input queue, and response messages are put by EBX in the replyTo queue of the
JMS request. The optional queue is the failure queue which allows you to replay an input message
if necessary. If the queue is set and activated in the configuration file and an exception occurs while
handling a request message, this input message will be copied in the failure queue.
The relationship between a request and a response is made by copying the messageId message
identifier field of the JMS request into the correlId correlation identifier field of the response.
JMS location points must be defined in the Lineage administration in order to specialize the generated
WSDL. If no specific location point is given, the default value will be jms:queue:jms/EBX_QueueIn.

95.4 Security

Authentication
Authentication is mandatory to access to data. Several authentication methods are available and
described below. The descriptions are ordered by priority (EBX applies the highest priority
authentication method first).

• 'Basic Authentication Scheme' method is based on the HTTP-Header Authorization in base 64
encoding, as described in RFC 2617 (Basic Authentication Scheme).
If the user agent wishes to send the userid "Alibaba" and password "open sesame",
it will use the following header field:
> Authorization: Basic QWxpYmFiYTpvcGVuIHNlc2FtZQ==

• 'Standard Authentication Scheme' is based on the HTTP Request. User and password are extracted
from request parameters. For more information on request parameters, see Parameters [p 610]

section.

https://tools.ietf.org/html/rfc2617#section-2

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 599

For more information on this authentication scheme, see Directory.
authenticateUserFromLoginPasswordAPI.

• The 'SOAP Security Header Authentication Scheme' method is based on the Web Services
Security UsernameToken Profile 1.0 specification.
By default, the type PasswordText is supported. This is done with the following SOAP-Header
defined in the WSDL:
<SOAP-ENV:Header>
 <wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
 <wsse:UsernameToken>
 <wsse:Username>String</wsse:Username>
 <wsse:Password Type="wsse:PasswordText">String</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
</SOAP-ENV:Header>

Note

Only available for SOAP operations [p 615].

• 'Specific authentication Scheme' is based on the HTTP Request. An implementation of this
method can, for example, extract a password-digest or a ticket from the HTTP request. See
Directory.authenticateUserFromHttpRequestAPI for more information.

• The 'SOAP Specific Header Authentication Scheme'.
For more information, see Overriding the SOAP security header [p 599].

Global permissions
Global access permissions can be independently defined for the SOAP and WSDL connector accesses.
For more information see Global permissions [p 383].

Overriding the SOAP security header
It is possible to override the default WSS header in order to define another security authentication
mechanism. Such an override is taken into account for both HTTP and JMS. To define and override,

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 600

use the 'SOAP Header Security declaration' configuration settings under Administration > Lineage,
which includes the following fields:

Schema location The URI of the Security XML Schema to import into the
WSDL.

Target namespace The target namespace of elements in the schema.

Namespace prefix The prefix for the target namespace.

Message name The message name to use in the WSDL.

Root element name The root element name of the security header. The name
must be the same as the one declared in the schema.

wsdl:part element name The name of the wsdl:part of the message.

The purpose of overriding the default security header is to change the declaration of the WSDL
message matching the security header so that it contains the following:
<wsdl:definitions ... xmlns:MyPrefix="MyTargetNameSpace" ...
 ...
 <xs:schema ...>
 <xs:import namespace="MyTargetNameSpace" schemaLocation="MySchemaURI"/>
 ...
 </xs:schema>
 ...
 <wsdl:message name="MySecurityMessage">
 <wsdl:part name="MyPartElementName" element="MyPrefix:MySecurityRootElement"/>
 </wsdl:message>
 ...
 <wsdl:operation name="...">
 <soap:operation soapAction="..." style="document"/>
 <wsdl:input>
 <soap:body use="literal"/>
 <soap:header message="impl:MySecurityMessage" part="MyPartElementName" use="literal"/>
 ...
 </wsdl:operation>
</wsdl:definitions>

The corresponding XML Schema header declaration would be as follows:
<schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="MyNameSpace"
 xmlns:MyPrefix="MyNameSpace">
 <element name="MySecurityRootElement" type="MyPrefix:SpecificSecurity"/>
 <complexType name="SpecificSecurity">
 <sequence>
 <element name="AuthToken" type="string"/>
 </sequence>
 </complexType>
</schema>

A SOAP message using the XML schema and configuration above would have the following header:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Header>
 <m:MySecurityRootElement xmlns:m="MyNameSpace">
 <AuthToken>String</AuthToken>
 </m:MySecurityRootElement>
 ...
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 ...
 </SOAP-ENV:Body>

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 601

</SOAP-ENV:Envelope>

To handle this non-default header, you must implement the method: Directory.
authenticateUserFromSOAPHeaderAPI.

Note

Only available for SOAP operations [p 615].

Lookup mechanism
Because EBX offers several authentication methods, a lookup mechanism based on conditions was set
to know which method should be applied for a given request. The method application conditions are
evaluated according to the authentication scheme priority. If the conditions are not satisfied, the server
evaluates the next method. The following table presents the available authentication methods for each

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 602

supported protocol and their application conditions. They are ordered from the highest priority to the
lowest.

Operation / Protocol Authentication methods and application conditions

SOAP / JMS SOAP Security Header [p 599]

• The SOAP request is received over the JMS protocol.

• The SOAP header content must contains a Security element.

SOAP Specific Header [p 599]

• The SOAP request is received over the JMS protocol.

• The SOAP header content must not contain a Security element.

SOAP / HTTP Basic [p 598]

• The HTTP request must hold an Authorization header.

• Authorization header value must start with the word Basic.

• No login is provided in the URL parameters.

Standard [p 598]

• The HTTP request must not hold an Authorization header.

• A login and a password are provided in the URL parameters.

SOAP Security Header [p 599]

• The SOAP header content must contain a Security element.

• The HTTP request must not hold an Authorization header.

• No login is provided in the URL parameters.

Specific [p 599]

• The HTTP request must not satisfy the conditions of the previous authentication methods.

SOAP Specific Header [p 599]

• The SOAP header content must not contain a Security element.

• The HTTP request must not hold an Authorization header.

• No login is provided in the URL parameters.

WSDL / HTTP Basic [p 598]

• The HTTP request must not hold an Authorization header.

• Authorization header value must start with the word Basic.

• No login is provided in the URL parameters.

Standard [p 598]

• The HTTP request must not hold an Authorization header.

• A login and a password are provided in the URL parameters.

Specific [p 599]

• The HTTP request must not satisfy the conditions of the previous authentication methods.

In case of multiple authentication methods present in the same request, EBX will return an HTTP
code 401 Unauthorized.

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 603

95.5 Monitoring
Data service events can be monitored through the log category ebx.dataServices, as declared in
the EBX main configuration file. For example, ebx.log4j.category.log.dataServices= INFO,
ebxFile:dataservices.

See also

Configuring the EBX logs [p 351]

TIBCO EBX main configuration file [p 345]

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 604

95.6 SOAP and REST comparative

Operations SOAP REST

Data

Select or count records (with filter and/or view publication) X X

Selector for possible enumeration values (with filter) X

Insert, update or delete records X X

Select or count history records (with filter and/or view publication) X

Select node values from dataset X X

Update node value from dataset X

Get table or dataset changes between dataspaces or snapshots X

Refresh a replication unit X

Get credentials for records X

Dataspaces

Create, close, merge a dataspace X

Create, close a snapshot X

Validate a dataspace or a snapshot X

Validate a dataset X

Locking a dataspace X

Workflow

Start, resume or end a workflow X

Administration

Manage the default directory content 'Users', 'Roles'... tables. X X

Open, close the user interface X X

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 605

Operations SOAP REST

Select, insert, update, delete operations for administration dataset X

Select the system information X X

Other

Develop web services from the Java API X (*)

(*) See REST Toolkit [p 719] for more information.

95.7 Limitations

Date, time & dateTime format
Data services only support the following date and time formats:

Type Format Example

xs:date yyyy-MM-dd 2007-12-31

xs:time HH:mm:ss or HH:mm:ss.SSS 11:55:00

xs:dateTime yyyy-MM-ddTHH:mm:ss or yyyy-MM-ddTHH:mm:ss.SSS 2007-12-31T11:55:00

SOAP naming convention
Due to the naming convention of the data service operations, each table defined within a data model
must have a unique name for the WSDL generation.

Documentation > Developer Guide > SOAP data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 606

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 5.9.20 607

CHAPTER 96
WSDL generation

This chapter contains the following topics:

1. Supported standard

2. Operation types

3. WSDL download methods

4. HTTP examples

96.1 Supported standard
TIBCO EBX generates a WSDL that complies with the W3C Web Services Description Language
1.1 standard.

https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/TR/2001/NOTE-wsdl-20010315

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 5.9.20 608

96.2 Operation types
A WSDL can be generated for different types of operations:

Operation type WSDL description

custom WSDL for EBX add-ons.

dataset WSDL for dataset and replication operations.

directory WSDL for default EBX directory operations. It is also possible to filter data using the tablePaths [p
611] or operations [p 611] parameters.

repository WSDL for dataspace or snapshot management operations.

tables WSDL for operations on the tables of a specific dataset.

userInterface Deprecated since version 5.8.1. This operation type has been replaced by administration. While
the user interface management operations are still available for backward compatibility reasons, it is
recommended to no longer use this type.

WSDL for user interface management operations (these operations can only be accessed by
administrators).

administration WSDL for administration operations like:

• user interface management

• system information retrieval

These operations can only be accessed by administrators.

workflow WSDL for EBX workflow management operations.

96.3 WSDL download methods
EBX supports the following methods:

• from the user interface

• from HTTP protocol

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 5.9.20 609

A WSDL can only be downloaded by authorized profiles:

Operation type Access right permissions

custom All profiles, if at least one web service is registered.

dataset All profiles.

directory All profiles, if the following conditions are valid:

• No specific directory implementation is used. (The built-in Administrator role is only subject to this
condition).

• Global access permissions are defined for the administration.

• 'Directory' dataset permissions have writing access for the current profile.

repository All profiles.

tables All profiles.

userInterface Deprecated since version 5.8.1. This operation type has been replaced by administration. While
the user interface management operations are still available for backward compatibility reasons, it is
recommended to no longer use this type.

Built-in administrator role or delegated administrator profiles, if all conditions are valid:

• Global access permissions are defined for the administration.

• 'User interface' dataset permissions have writing access for the current profile.

administration Built-in administrator role or delegated administrator profiles, if all conditions are valid:

• Global access permissions are defined for the administration.

• 'Administration' dataset permissions have write access for the current profile.

workflow All profiles.

WSDL download from the user interface
An authorized user can download an EBX WSDL from the data services administration area.

Note

See Generating a WSDL for dataspace operations [p 184] in the user guide for more
information.

WSDL download from HTTP protocol
An application can download an EBX WSDL using GET or POST HTTP method. The application has
to be authenticated using a profile with appropriate rights.

URL format
http[s]://<host>[:<port>]/<ebx-dataservices>/{type}[/{dataspace}[/{dataset}]]?
{queryParameters}

Where:

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 5.9.20 610

• <ebx-dataservices> corresponds to the 'ebx-dataservices.war' web application's path. The path
is composed by multiple, or none, URI segments followed by the web application's name.

• {type} corresponds to the operation type [p 608].

• {dataspace} corresponds to the dataspace or snapshot identifier.

• {dataset} corresponds to the dataset name.

• {queryParameters} corresponds to common or dedicated operation parameters passed through
the URL.

Parameters
A request parameter can be specified by one of the following methods:

• a PathParam which corresponds to a path segment from the URL (recommended)

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 5.9.20 611

• a QueryParam which corresponds to a standard HTTP parameter with value.

Parameter name PathParam QueryParam Required Description

WSDL no yes yes Specifies the WSDL download operation.

Empty value.

login no yes no Specifies the user identifier.

Required when the standard authentication method is
used.

String type value.

password no yes no Specifies the user password.

Required when the standard authentication method is
used.

String type value.

type yes no yes Specifies the operation type [p 608].

Possible values are: custom, dataset, directory,
administration, userInterface, repository,
tables or workflow.

String type value.

branch

version

yes yes (*) Specifies the dataspace or the snapshot identifier.

(*) required for tables and dataset types, ignored
otherwise.

String type value.

instance yes yes (*) Specifies the dataset name.

String type value.

tablePaths no yes no Specifies the list of table paths.

Optional for tables or directory types, ignored
otherwise.

If not defined, all tables are selected.

Each table path is separated by a comma character.

String type value.

operations no yes no Allows generating a WSDL for an operations subset.

Optional for tables or directory operation types,
ignored otherwise. If not defined, all operations for
the given type are generated.

This parameter's value is a concatenation of one or
more of the following characters:

• C = Count record(s)

• D = Delete record(s)

• E = Get credentials

• G = Get changes

• I = Insert record(s)

• U = Update record(s)

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 5.9.20 612

Parameter name PathParam QueryParam Required Description

• R = Read operations (equivalent to CEGS)

• S = Select record(s)

• W = Write operations (equivalent to DIU)

String type value.

namespaceURI yes yes (**) Specifies the unique name space URI of the custom
web service.

(**)Is required when type parameter is set to custom,
ignored otherwise.

URI type value.

attachmentFilename no yes (***) Specifies the attachment file name.

(***) optional if isContentInAttachment parameter
is defined and set to true, ignored otherwise.

String type value.

isContentInAttachment no yes no Specifies if the WSDL is downloaded as an
attachment.

Boolean type value.

Default value is false.

targetNamespace no yes no Overrides the target namespace URI of the WSDL.

URI type value.

Default value is urn:ebx:ebx-dataservices.

Message body
No message body is required.

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 5.9.20 613

HTTP codes
An HTTP code is always returned. Errors are indicated by a code above 400.

Status code Information

200 (OK) The WSDL content was successfully generated and is returned by the request (optionally in an
attachment [p 612]).

400 (Bad request) The request is incorrect. This occurs when:

• A request element is incorrect.

• The unicity check on table names contains at least one error.

Note

See WSDL and table operations [p 546] for more information.

401 (Unauthorized) Request requires an authenticated user.

403 (Forbidden) Request is not allowed for the authenticated user.

405 (Method not
allowed)

Request is not allowed in this configuration.

500 (Internal error) Request generates an error (a stack trace and a detailed error message are returned).

Response body
The response body depends on the returned status code and on the requested WSDL content.

• 200 (OK): the HTTP header Content-Type is set to text/xml;charset=UTF-8.
If the content is in attachment, the HTTP header Content-Disposition is set to attachment;
filename*=UTF-8''<filename.wsdl>.

• 4xx: A detailed message is returned in the body. The HTTP header Content-Type is set to text/
html;charset=utf-8.

96.4 HTTP examples
Some of the following examples are displayed in two methods: PathParam and QueryParam.

• The WSDL will contain all repository operations, using standard authentication method.
http[s]://<host>[:<port>]/<ebx-dataservices>/repository?
WSDL&login=<login>&password=<password>

• The WSDL will contain all workflow operations.
http[s]://<host>[:<port>]/<ebx-dataservices>/workflow?WSDL

• The WSDL will contain all tables operations for the 'dataset1' dataset in 'dataspace1'
dataspace.
PathParam

Documentation > Developer Guide > SOAP data services > WSDL generation

TIBCO EBX® Product Documentation 5.9.20 614

http[s]://<host>[:<port>]/<ebx-dataservices>/tables/dataspace1/dataset1?WSDL

QueryParam

http[s]://<host>[:<port>]/<ebx-dataservices>/tables?
WSDL&branch=<dataspace1>&instance=<dataset1>

• The WSDL will contain all tables with only read operations for the 'dataset1' dataset in
'dataspace1' dataspace.
PathParam

http[s]://<host>[:<port>]/<ebx-dataservices>/tables/dataspace1/dataset1?
WSDL&operations=R

QueryParam

http[s]://<host>[:<port>]/<ebx-dataservices>/tables?
WSDL&branch=dataspace1&instance=dataset1&operations=R

• The WSDL will contain the two selected tables operations for the 'dataset1' dataset in
'dataspace1' dataspace.
PathParam

http[s]://<host>[:<port>]/<ebx-dataservices>/tables/dataspace1/dataset1?
WSDL&tablePaths=/root/table1,/root/table2

QueryParam

http[s]://<host>[:<port>]/<ebx-dataservices>/tables?
WSDL&branch=dataspace1&instance=dataset1&tablePaths=/root/table1,/root/table2

• The WSDL will contain custom web service operations for the dedicated URI.
PathParam

http[s]://<host>[:<port>]/<ebx-dataservices>/custom/urn:ebx-
test:com.orchestranetworks.dataservices.WSDemo?WSDL

QueryParam

http[s]://<host>[:<port>]/<ebx-dataservices>/custom?WSDL&namespaceURI=urn:ebx-
test:com.orchestranetworks.dataservices.WSDemo

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 615

CHAPTER 97
SOAP operations

This chapter contains the following topics:

1. Operations generated from a data model

2. Operations on datasets and dataspaces

3. Operations on data workflows

4. Administrative services

97.1 Operations generated from a data model
For a data model used in an TIBCO EBX repository, it is possible to dynamically generate a
corresponding WSDL, that defines its operations. When using this WSDL, it will be possible
to read and/or write in the EBX repository. For example, for a table located at the path /
root/XX/exampleTable, the generated requests would follow the structure of its underlying data
model and include the name of the table <m:{operation}_exampleTable xmlns:m="urn:ebx-
schemas:dataservices_1.0">.

Attention
Since the WSDL and the SOAP operations tightly depend on the data model structure, it is important
to redistribute the up-to-date WSDL after any data model change.

Content policy
Access to the content of records, the presence or absence of XML elements, depend on the resolved
permissions [p 275] of the authenticated user session. Additional aspects, detailed below, can impact
the content.

Disabling fields from data model
The hiddenInDataServices property, defined in the data model, allows always hiding fields in data
services, regardless of the user profile. This parameter has an impact on the generated WSDL: any
hidden field or group will be absent from the request and response structure.
Modifying the hiddenInDataServices parameter value has the following impact on a client which
would still use the former WSDL:

• On request, if the data model property has been changed to true, and if the concerned field is
present in the WSDL request, an exception will be thrown.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 616

• On response, if the schema property has been changed to false, WSDL validation will return an
error if it is activated.

This setting of "Default view" is defined inside data model.

See also

Hiding a field in Data Services [p 540]

Permissions [p 275]

Association field
Read-access on table records can export the association fields as displayed in UI Manager. This feature
can be coupled with the 'hiddenInDataServices' model parameter.

Note

Limitations: change and update operations do not manage association fields. Also, the
select operation only exports the first level of association elements (the content of
associated objects cannot contain association elements).

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 617

Common request parameters
Several parameters are common to several operations and are detailed below.

Element Description Required

branch The identifier of the dataspace to which the dataset belongs. Either this
parameter or
the 'version'
parameter must
be defined.
Required for the
'insert', 'update'
and 'delete'
operations.

version The identifier of the snapshot to which the dataset belongs. Either this
parameter or
the 'branch'
parameter must
be defined

instance The unique name of the dataset which contains the table to query. Yes

predicate XPath predicate [p 227] defines the records on which the request is applied.
If empty, all records will be retrieved, except for the 'delete' operation
where this field is mandatory.

Only required
for the 'delete'
operation

data Contains the records to be modified, represented within the structure of
their data model. The whole operation is equivalent to an XML import.
The details of the operations performed on data content are specified in
the section Import [p 215].

Only required
for the insert
and update
operations

viewPublication This parameter can be combined with the predicate [p 617] parameter as a
logical AND operation.

The behavior of this parameter is described in the section EBX as a Web
Component [p 196].

It cannot be used if the 'viewId' parameter is used, and cannot be used on
hierarchical views.

No

viewId Deprecated since version 5.2.3. This parameter has been replaced by the
parameter 'viewPublication'. While it remains available for backward
compatibility, it will eventually be removed in a future version.

This parameter cannot be used if the 'viewPublication' parameter is used.

No

blockingConstraintsDisabled This property is available for all table updates data service operations.

If true, the validation process disables blocking constraints defined in
the data model.

If this parameter is not present, the default is false.

See Blocking and non-blocking constraints [p 522] for more information.

No

details The details element specifies the following option:

The optional attribute locale (default 'en-US') defines the language of
the blockingConstraintsDisabled [p 617] parameter in which the validation
messages must be returned.

No

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 618

Element Description Required

disableRedirectionToLastBroadcast This property is available for all data service operations.

If true, access to a delivery dataspace on a D3 primary node is not
redirected to the last broadcast snapshot. Otherwise, access to such a
dataspace is always redirected to the last snapshot broadcast.

If this parameter is not present, the default is false (redirection
on a D3 master enabled), unless the configuration property
ebx.dataservices.disableRedirectionToLastBroadcast.default [p 354] has
been set.

If the specified dataspace is not a delivery dataspace on a D3 primary
node, this parameter is ignored.

No

Select operations

Select request on table
<m:select_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
 <viewPublication>String</viewPublication>
 <exportCredentials>boolean</exportCredentials>
 <pagination>
 <previousPageLastRecordPredicate>String</previousPageLastRecordPredicate>
 <pageSize>Integer</pageSize>
 </pagination>
</m:select_{TableName}>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 619

with:

Element Description Required

branch See the description under Common parameters [p 617].

version See the description under Common parameters [p 617].

instance See the description under Common parameters [p 617].

predicate See the description under Common parameters [p 617].

This parameter can be combined with the viewPublication [p 617]

parameter as a logical AND operation.

viewPublication See the description under Common parameters [p 617].

includesTechnicalData The response will contain technical data if true. See also the optimistic
locking [p 634] section.

Each returned record will contain additional attributes for this technical
information, for instance:

...<table
ebxd:lastTime="2010-06-28T10:10:31.046"
 ebxd:lastUser="Uadmin"
ebxd:uuid="9E7D0530-828C-11DF-B733-0012D01B6E76">... .

No

exportCredentials If true the select will also return the credentials for each record. No

pagination Enables pagination, see child elements below. No

pageSize (nested under the
pagination element)

When pagination is enabled, defines the number of records to retrieve. When
pagination is
enabled, yes

previousPageLastRecordPredicate
(nested under the pagination
element)

When pagination is enabled, XPath predicate that defines the record
after which the page must fetched, this value is provided by the previous
response, as the element lastRecordPredicate. If the passed record is
not found, the first page will be returned.

No

disableRedirectionToLastBroadcast See the description under Common parameters [p 618].

Select response on table
<ns1:select_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <data>
 <XX>
 <TableName>
 <a>key1
 valueb
 <c>1</c>
 <d>1</d>
 </TableName>
 </XX>
 </data>
 <credentials>
 <XX>
 <TableName predicate="./a='key1'">
 <a>W
 W

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 620

 <c>W</c>
 <d>W</d>
 </TableName>
 </XX>
 </credentials>
 <lastRecordPredicate>./a='key1'</lastRecordPredicate>
</ns1:select_{TableName}Response>

with:

Element Description

data Content of records that are displayed following the table path.

credentials Contains the access right for each node of each record.

lastRecordPredicate Only returned if the pagination is enabled, this defines the last
records in order to be used on the next request in the element
previousPageLastRecordPredicated.

See also the optimistic locking [p 634] section.

Select request on dataset
This operation returns dataset content without table.
<m:selectInstance xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
</m:selectInstance>

with:

Element Description Required

branch See the description under Common parameters [p 617].

version See the description under Common parameters [p 617].

instance See the description under Common parameters [p 617].

disableRedirectionToLastBroadcast See the description under Common parameters [p 618].

Select response on dataset
<ns1:selectInstanceResponse xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <data>
 <settings>
 <XX>
 <a>key1
 valueb
 <c>1</c>
 <d>true</d>
 </XX>
 </settings>
 </data>
</ns1:selectInstanceResponse>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 621

with:

Element Description

data Dataset content without table.

Delete operation
Deletes records or, for a child dataset, defines the record state as "occulting" or "inherited" according
to the record context. Records are selected by the predicate parameter.

Delete request
<m:delete_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
 <includeOcculting>boolean</includeOcculting>
 <inheritIfInOccultingMode>boolean</inheritIfInOccultingMode>
 <checkNotChangedSinceLastTime>dateTime</checkNotChangedSinceLastTime>
 <blockingConstraintsDisabled>boolean</blockingConstraintsDisabled>
 <details locale="Locale"/>
</m:delete_{TableName}>

with:

Element Description Required

branch See the description under Common parameters [p 617].

instance See the description under Common parameters [p 617].

predicate See the description under Common parameters [p 617].

includeOcculting Includes the records in occulting mode.

Default value is false.

No

inheritIfInOccultingMode Inherits the record from its parent if it is in occulting mode.

Default value is false.

No

occultIfInherit Deprecated since version 5.7.0 Occults the record if it is in inherit mode.

Default value is false.

No

checkNotChangedSinceLastTime Timestamp used to ensure that the record has not been modified since the
last read. Also see the optimistic locking [p 634] section.

No

blockingConstraintsDisabled See the description under Common parameters [p 617].

details See the description under Common parameters [p 617].

disableRedirectionToLastBroadcast See the description under Common parameters [p 618].

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 622

Delete response
If one of the provided parameters is illegal, if a required parameter is missing, if the action is not
authorized or if no record is selected, an exception is returned. Otherwise, the specific response is
returned:
<ns1:delete_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <blockingConstraintMessage>String</blockingConstraintMessage>
</ns1:delete_{TableName}Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

'95' indicates that at least one operation has violated a blocking
constraint, resulting in the overall operation being aborted.

blockingConstraintMessage This element is present if the status is equal to '95' with a
localized message. The locale of the message is retrieved from
the request parameter or from the user session.

Count operation

Count request
<m:count_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
</m:count_{TableName}>

with:

Element Description

branch See the description under Common parameters [p 617].

version See the description under Common parameters [p 617].

instance See the description under Common parameters [p 617].

predicate See the description under Common parameters [p 617].

disableRedirectionToLastBroadcast See the description under Common parameters [p 618].

Count response
<ns1:count_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <count>Integer</count>
</ns1:count_{TableName}Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 623

with:

Element Description

count The number of records that correspond to the predicate in the
request.

Update operation

Update request
<m:update_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <updateOrInsert>boolean</updateOrInsert>
 <byDelta>boolean</byDelta>
 <blockingConstraintsDisabled>boolean</blockingConstraintsDisabled>
 <details locale="Locale"/>
 <data>
 <XX>
 <TableName>
 <a>String
 String
 <c>String</c>
 <d>String</d>
 ...
 </TableName>
 </XX>
 </data>
</m:update_{TableName}>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 624

with:

Element Description Required

branch See the description under Common parameters [p 617].

instance See the description under Common parameters [p 617].

updateOrInsert If true and the record does not currently exist, the operation creates the
record.

boolean type, the default value is false.

No

byDelta If true and an element does not currently exist in the incoming message,
the target value is not changed.

If false and node is declared hiddenInDataServices, the target value is
not changed.

The complete behavior is described in the sections Insert and update
operations [p 216].

No

blockingConstraintsDisabled See the description under Common parameters [p 617].

details See the description under Common parameters [p 617].

disableRedirectionToLastBroadcast See the description under Common parameters [p 618].

data See the description under Common parameters [p 617].

See alsoOptimistic locking [p 634]

Update response
<ns1:update_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <blockingConstraintMessage>String</blockingConstraintMessage>
</ns1:update_{TableName}Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

'95' indicates that at least one operation has violated a blocking
constraint, resulting in the overall operation being aborted.

blockingConstraintMessage This element is present if the status is equal to '95' with a
localized message. The locale of the message is retrieved from
the request parameter or from the user session.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 625

Insert operation

Insert request
<m:insert_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <byDelta>boolean</byDelta>
 <blockingConstraintsDisabled>boolean</blockingConstraintsDisabled>
 <details locale="Locale"/>
 <data>
 <XX>
 <TableName>
 <a>String
 String
 <c>String</c>
 <d>String</d>
 ...
 </TableName>
 </XX>
 </data>
</m:insert_{TableName}>

with:

Element Description Required

branch See the description under Common parameters [p 617].

instance See the description under Common parameters [p 617].

byDelta If true and an element does not currently exist in the incoming message,
the target value is not changed.

If false and node is declared hiddenInDataServices, the target value is
not changed.

The complete behavior is described in the sections Insert and update
operations [p 216].

No

blockingConstraintsDisabled See the description under Common parameters [p 617].

details See the description under Common parameters [p 617].

disableRedirectionToLastBroadcast See the description under Common parameters [p 618].

data See the description under Common parameters [p 617].

Insert response
<ns1:insert_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <blockingConstraintMessage>String</blockingConstraintMessage>
 <inserted>
 <predicate>./a='String'</predicate>
 </inserted>
</ns1:insert_{TableName}Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 626

with:

Element Description

status '00' indicates that the operation has been executed successfully.

'95' indicates that at least one operation has violated a blocking
constraint, resulting in the overall operation being aborted.

blockingConstraintMessage This element is present if the status is equal to '95' with a localized
message. The locale of the message is retrieved from the request
parameter or from the user session.

predicate A predicate matching the primary key of the inserted record. When
several records are inserted, the predicates follow the declaration order of
the records in the input message.

Get changes operations
Returns changes according to the Content policy [p 615].

Get changes requests
Changes between two datasets:
<m:getChangesOnDataSet_{schemaName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <compareWithBranch>String</compareWithBranch>
 <compareWithVersion>String</compareWithVersion>
 <compareWithInstance>String</compareWithInstance>
 <resolvedMode>boolean</resolvedMode>
 <includeInstanceUpdates>boolean</includeInstanceUpdates>
</m:getChangesOnDataSet_{schemaName}>

Changes between two tables:
<m:getChanges_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <compareWithBranch>String</compareWithBranch>
 <compareWithVersion>String</compareWithVersion>
 <resolvedMode>boolean</resolvedMode>
</m:getChanges_{TableName}>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 627

with:

Element Description Required

branch See the description under Common parameters [p 617].

version See the description under Common parameters [p 617].

instance See the description under Common parameters [p 617].

compareWithBranch The identifier of the dataspace with which to compare. One of either this
parameter or the
'compareWithVersion
[p 627]' parameter
must be defined.

compareWithVersion The identifier of the snapshot with which to compare. One of either this
parameter or the
'compareWithBranch
[p 627]' parameter
must be defined.

compareWithInstance The identifier of the dataset with which to compare. If it is
undefined, instance [p 627] parameter is used.

No

resolvedMode Defines whether or not the difference is calculated in resolved
mode. Default is true.

See Resolved mode DifferenceHelper.resolvedModeAPI for more
information.

No

includeInstanceUpdates Defines if the content updates of the dataset are included. Default is
false.

No

pagination Enables pagination context for the operations getChanges and
getChangesOnDataSet.

Allows client to define pagination context size. Each page contains
a collection of inserted, updated and/or deleted records of tables
according to the maximum size.

Get changes persisted context is built at first call according to the
page size parameter in request.

The pagination context is persisted on the server file system [p 380]

and allows invoking the next page until last page or when a timeout
is reached.

For creation: Defines pageSize parameter.

For next: Defines context element with identifier from previous
response.

Enables pagination, see child elements below.

No

pageSize (nested under
pagination element)

Defines maximum number of records in each page. Minimal size is
50.

No (Only for
creation)

context (nested under
pagination element)

Defines content of pagination context. No (Only for next)

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 628

Element Description Required

identifier (nested under context
element)

Pagination context identifier. Yes

disableRedirectionToLastBroadcast See the description under Common parameters [p 618].

Note

If none of the compareWithBranch or compareWithVersion parameters are specified, the
comparison will be made with their parent:

• if the current dataspace or snapshot is a dataspace, the comparison is made with its initial
snapshot (includes all changes made in the dataspace);

• if the current dataspace or snapshot is a snapshot, the comparison is made with its parent
dataspace (includes all changes made in the parent dataspace since the current snapshot
was created);

• returns an exception if the current dataspace is the 'Reference' dataspace.

See alsoDifferenceHelperAPI

Get changes responses
Changes between two datasets:
<ns1:getChangesOnDataSet_{schemaName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <updated>
 <changes>
 <path>... Path of changed terminal value ...</path>
 <path>...</path>
 </changes>
 <data>
 ... see the whole content of dataset values (without table) ...
 </data>
 </updated>
 <getChanges_{TableName1}>
 ... see the getChanges between tables response example ...
 </getChanges_{TableName1}>
 <getChanges_{TableName2}>
 ... see the getChanges between tables response example ...
 </getChanges_{TableName2}>
 ...
</ns1:getChangesOnDataSet_{schemaName}Response>

Changes between two tables:
<ns1:getChanges_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <inserted>
 <XX>
 <TableName>
 <a>AVALUE3
 BVALUE3
 <c>CVALUE3</c>
 <d>DVALUE3</d>
 </TableName>
 </XX>
 </inserted>
 <updated>
 <changes>
 <change predicate="./a='AVALUE2'">
 <path>/b</path>
 <path>/c</path>
 </change>
 </changes>
 <data>
 <XX>
 <TableName>
 <a>AVALUE2

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 629

 BVALUE2.1
 <c>CVALUE2.1</c>
 <d>DVALUE2</d>
 </TableName>
 </XX>
 </data>
 </updated>
 <deleted>
 <predicate>./a='AVALUE1'</predicate>
 </deleted>
</ns1:getChanges_{TableName}Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 630

with:

Element Description Required

inserted Contains inserted record(s) from choice compareWithBranch or
compareWithVersion.

Content under this element corresponding to an XML export of inserted
records.

No

updated Contains updated record(s) or dataset content. No

changes (nested under updated
element)

Only the group of field have been updated. Yes

change (nested under changes
element)

Group of fields have been updated with own XPath predicate attribute
of the record.

Yes

path (nested under change
element)

Path in the record. Yes

path (nested under changes
element)

Path in the dataset. Yes

data (nested under updated
element)

Content under this element corresponding to an XML export of dataset or
updated records.

No

deleted Records have been deleted from context of request.

Content corresponding to a list of predicate element who contains the
XPath predicate of record.

No

pagination When pagination is enabled on request.

Get changes persisted context allows invoking the next page until last
page or when the context timeout is reached.

Contains a next page: Defines context element with identifier.

Is the last page: Defines context element without identifier.

Enables pagination, see child elements below.

No

context (nested under
pagination element)

Defines content of pagination context. Yes (Only for
next and last)

identifier (nested under context
element)

Pagination context identifier. Not defined at last returned page. No

pageNumber (nested under
context element)

Current page number in pagination context. Yes

totalPages (nested under context
element)

Total pages in pagination context. Yes

Get changes operation with pagination enabled
Only pagination element and sub elements have been described.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 631

For creation:
Extract of request:
...
 <pagination>
 <!-- on first request for creation -->
 <pageSize>Integer</pageSize>
 </pagination>
...

Extract of response:
...
 <pagination>
 <!-- on next request to continue -->
 <context>
 <identifier>String</identifier>
 <pageNumber>Integer</pageNumber>
 <totalPages>Integer</totalPages>
 </context>
 </pagination>
...

For next:
Extract of request:
...
 <pagination>
 <context>
 <identifier>String</identifier>
 </context>
 </pagination>
...

Extract of response:
...
 <pagination>
 <!-- on next request to continue -->
 <context>
 <identifier>String</identifier>
 <pageNumber>Integer</pageNumber>
 <totalPages>Integer</totalPages>
 </context>
 </pagination>
...

For last:
Extract of request:
...
 <pagination>
 <context>
 <identifier>String</identifier>
 </context>
 </pagination>
...

Extract of response:
...
 <pagination>
 <context>
 <pageNumber>Integer</pageNumber>
 <totalPages>Integer</totalPages>
 </context>
 </pagination>
...

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 632

Get credentials operation

Get credentials request
<m:getCredentials_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
 <viewPublication>String</viewPublication>
</m:getCredentials_{TableName}>

with:

Element Description Required

branch See the description under Common parameters [p 617].

version See the description under Common parameters [p 617].

instance See the description under Common parameters [p 617].

predicate See the description under Common parameters [p 617].

viewPublication See the description under Common parameters [p 617].

Get credentials response
<ns1:getCredentials_{TableName}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <XX>
 <TableName>
 <a>R
 W
 <c>H</c>
 <d>W</d>
 ...
 </TableName>
 </XX>
</ns1:getCredentials_{TableName}Response>

With the following possible values:

• R: for read-only

• W: for read-write

• H: for hidden

Multiple chained operations

Multiple operations request
It is possible to run multiple operations across tables in the dataset, while ensuring a consistent
response. The operations are executed sequentially, according to the order defined on the client side.
All operations are executed in a single transaction with a SERIALIZABLE isolation level. If all requests
in the multiple operation are read-only, they are allowed to run fully concurrently along with other
read-only transactions, even in the same dataspace.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 633

When an error occurs during one operation in the sequence, all updates are rolled back and the client
receives a StandardException error message with details.
See Concurrency and isolation levels [p 466].
<m:multi_ xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <blockingConstraintsDisabled>boolean</blockingConstraintsDisabled>
 <details locale="Locale"/>
 <request id="id1">
 <{operation}_{TableName}>
 ...
 </{operation}_{TableName}>
 </request>
 <request id="id2">
 <{operation}_{TableName}>
 ...
 </{operation}_{TableName}>
 </request>
</m:multi_>

with:

Element Description Required

branch See the description under Common parameters [p 617].

version See the description under Common parameters [p 617].

instance See the description under Common parameters [p 617].

blockingConstraintsDisabled See the description under Common parameters [p 617].

details See the description under Common parameters [p 617].

disableRedirectionToLastBroadcast See the description under Common parameters [p 618].

request This element contains one operation, like a single operation without
branch, version and instance parameters. This element can be repeated
multiple times for additional operations. Each request can be identified
by an 'id' attribute. In a response, this 'id' attribute is returned for
identification purposes.

Operations such as count, select, getChanges, getCredentials,
insert, delete or update.

Yes

Note:

• Does not accept a limit on the number of request elements.

• The request id attribute must be unique in multi-operation requests.

• If all operations are read only (count, select, getChanges, or getCredentials) then the whole
transaction is set as read-only for performance considerations.

Limitation:

• The multi operation applies to one model and one dataset (parameter instance).

• The select operation cannot use the pagination parameter.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 634

See also

ProcedureAPI

RepositoryAPI

Multiple operations response
See each response operation for details.
<ns1:multi_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <response id="id1">
 <{operation}_{TableName}Response>
 ...
 </{operation}_{TableName}Response>
 </response>
 <response id="id2">
 <{operation}_{TableName}Response>
 ...
 </{operation}_{TableName}Response>
 </response>
</ns1:multi_Response>

with:

Element Description

response This element contains the response of one operation. It is be repeated
multiple times for additional operations. Each response is identified by an
'id' attribute set in the request or automatically generated.

The content of the element corresponds to the response of a single
operation, such as count, select, getChanges, getCredentials,
insert, delete or update.

Optimistic locking
To prevent an update or a delete operation on a record that was read earlier but may have changed in
the meantime, an optimistic locking mechanism is provided.
A select request can include technical information by adding the element includesTechnicalData:
<m:select_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
 <includesTechnicalData>boolean</includesTechnicalData>
</m:select_{TableName}>

The value of the lastTime attribute can then be used in the following update request. If the record has
been changed since the specified time, the update will be cancelled. The attribute lastTime has to be
added on the record to prevent the update of a modified record.
<m:update_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <updateOrInsert>true</updateOrInsert>
 <data>
 <XX>
 <TableName ebxd:lastTime="2010-06-28T10:10:31.046">
 <a>String
 String
 <c>String</c>
 <d>String</d>
 ...
 </TableName>
 </XX>
 </data>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 635

</m:update_{TableName}>

The value of the lastTime attribute can also be used to prevent deletion on a modified record:
<m:delete_{TableName} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <predicate>String</predicate>
 <checkNotChangedSinceLastTime>2010-06-28T10:10:31.046</checkNotChangedSinceLastTime>
</m:delete_{TableName}>

Note

The element checkNotChangedSinceLastTime may be used more than once but only for
the same record. This implies that if the predicate element returns more than one record,
the request will fail.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 636

97.2 Operations on datasets and dataspaces
Parameters for operations on dataspaces and snapshots are as follows:

Element Description Required

branch Identifier of the target dataspace on
which the operation is applied. When
not specified, the 'Reference' dataspace
is used except for the merge dataspace
operation where it is required.

One of either this parameter or the
'version' parameter must be defined.
Required for the dataspace merge,
locking, unlocking and replication
refresh operations.

version Identifier of the target snapshot on which
the operation is applied.

One of either this parameter or the
'branch' parameter must be defined

versionName Identifier of the snapshot to create. If
empty, it will be defined on the server
side.

No

childBranchName Identifier of the dataspace child to create.
If empty, it will be defined on the server
side.

No

instance The unique name of the dataset on which
the operation is applied.

Required for the replication refresh
operation.

ensureActivation Defines if validation must also check
whether this instance is activated.

Yes

details Defines if validation returns details.

The optional attribute
severityThreshold defines the lowest
severity level of message to return. The
possible values are, in descending order
of severity, 'fatal', 'error', 'warning', or
'info'. For example, setting the value
to 'error' will return error and fatal
validation messages. If this attribute is
not defined, all levels of messages are
returned by default.

The optional attribute locale (default
'en-US') defines the language in which
the validation messages are to be
returned.

No. If not specified, no details are
returned.

owner Defines the owner.

Must respect the inner format as returned
by Profile.formatAPI.

No

branchToCopyPermissionFrom Defines the identifier of the dataspace
from which to copy the permissions.

No

documentation Documentation for a dedicated language. No

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 637

Element Description Required

Multiple documentation elements may
be used for several languages.

locale (nested under the documentation
element)

Locale of the documentation. Only required when the documentation
element is used

label (nested under the documentation
element)

Label for the language. No

description (nested under the
documentation element)

Description for the language. No

Validate a dataspace

Validate dataspace request
<m:validate xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
</m:validate>

Validate dataspace response
<ns1:validate_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <validationReport>
 <instanceName>String</instanceName>
 <fatals>boolean</fatals>
 <errors>boolean</errors>
 <infos>boolean</infos>
 <warnings>boolean</warnings>
 </validationReport>
</ns1:validate_Response>

Validate a dataset

Validate dataset request
<m:validateInstance xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <version>String</version>
 <instance>String</instance>
 <ensureActivation>boolean</ensureActivation>
 <details severityThreshold="fatal|error|warning|info" locale="Locale"/>
</m:validateInstance>

Validate dataset response
<ns1:validateInstance_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <validationReport>
 <instanceName>String</instanceName>
 <fatals>boolean</fatals>
 <errors>boolean</errors>
 <infos>boolean</infos>
 <warnings>boolean</warnings>
 <details>
 <reportItem>
 <severity>{fatal|error|warning|info}</severity>
 <message>
 <internalId />
 <text>String</text>
 </message>
 <subject>
 <table>Path</table>
 <predicate>String</predicate>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 638

 <path>Path</path>
 </subject>
 </reportItem>
 </details>
 </validationReport>
</ns1:validateInstance_Response>

Create a dataspace

Create dataspace request
<m:createBranch xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <owner>String</owner>
 <branchToCopyPermissionFrom>String</branchToCopyPermissionFrom>
 <documentation>
 <locale>Locale</locale>
 <label>String</label>
 <description>String</description>
 </documentation>
 <childBranchName>String</childBranchName>
</m:createBranch>

Create dataspace response
<ns1:createBranch_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <childBranchName>String</childBranchName>
</ns1:createBranch_Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

Create a snapshot

Create snapshot request
<m:createVersion xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <versionName>String</versionName>
 <owner>String</owner>
 <documentation>
 <locale>Locale</locale>
 <label>String</label>
 <description>String</description>
 </documentation>
</m:createVersion>

Create snapshot response
<ns1:createVersion_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <versionName>String</versionName>
</ns1:createVersion_Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 639

Locking a dataspace

Lock dataspace request
<m:lockBranch xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <durationToWaitForLock>Integer</durationToWaitForLock>
 <message>
 <locale>Locale</locale>
 <label>String</label>
 </message>
</m:lockBranch>

with:

Element Description Required

durationToWaitForLock This parameter defines the maximum duration (in seconds) that the operation waits
for a lock before aborting.

No,
does not
wait by
default

message User message of the lock. Multiple message elements may be used. No

locale (nested under the
message element)

Locale of the user message. Only
required
when the
message
element
is used

label (nested under the
message element)

The user message. No

Lock dataspace response
<ns1:lockBranch_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:lockBranch_Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

'94' indicates that the dataspace has been already locked by
another user.

Otherwise, a SOAP exception is thrown.

Unlocking a dataspace

Unlock dataspace request
<m:unlockBranch xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
</m:unlockBranch>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 640

Unlock dataspace response
<ns1:unlockBranch_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:unlockBranch_Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

Otherwise, a SOAP exception is thrown.

Merge a dataspace

Merge dataspace request
<m:mergeBranch xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <deleteDataOnMerge>boolean</deleteDataOnMerge>
 <deleteHistoryOnMerge>boolean</deleteHistoryOnMerge>
</m:mergeBranch>

with:

Element Description Required

deleteDataOnMerge This parameter is available for the merge dataspace operation. Sets whether the
specified dataspace and its associated snapshots will be deleted upon merge.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine the default value by specifying the property
ebx.dataservices.dataDeletionOnCloseOrMerge.default in the EBX main
configuration file [p 354].

See Deleting data and history [p 378] for more information.

No

deleteHistoryOnMerge This parameter is available for the merge dataspace operation. Sets whether the
history associated with the specified dataspace will be deleted upon merge. Default
value is false.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine the default value by specifying the property
ebx.dataservices.historyDeletionOnCloseOrMerge.default in the EBX main
configuration file [p 354].

See Deleting data and history [p 378] for more information.

No

Note

The merge decision step is bypassed during merges performed through data services. In
such cases, the data in the child dataspace automatically overrides the data in the parent
dataspace.

Merge dataspace response
<ns1:mergeBranch_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:mergeBranch_Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 641

with:

Element Description

status '00' indicates that the operation has been executed successfully.

Close a dataspace or snapshot

Close dataspace or snapshot request
Close dataspace request:
<m:closeBranch xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <deleteDataOnClose>boolean</deleteDataOnClose>
 <deleteHistoryOnClose>boolean</deleteHistoryOnClose>
</m:closeBranch>

Close snapshot request:
<m:closeVersion xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <version>String</version>
 <deleteDataOnClose>boolean</deleteDataOnClose>
</m:closeVersion>

with:

Element Description Required

deleteDataOnClose This parameter is available for the close dataspace and close snapshot operations.
Sets whether the specified snapshot, or dataspace and its associated snapshots, will
be deleted upon closure.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine this default value by specifying the property
ebx.dataservices.dataDeletionOnCloseOrMerge.default in the EBX main
configuration file [p 354].

See Deleting data and history [p 378] for more information.

No

deleteHistoryOnClose This parameter is available for the close dataspace operation. Sets whether the
history associated with the specified dataspace will be deleted upon closure. Default
value is false.

When this parameter is not specified in the request, the default value is
false. It is possible to redefine the default value by specifying the property
ebx.dataservices.historyDeletionOnCloseOrMerge.default in the EBX main
configuration file [p 354].

See Deleting data and history [p 378] for more information.

No

Close dataspace or snapshot response
Close dataspace response:
<ns1:closeBranch_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:closeBranch_Response>

Close snapshot request:
<ns1:closeVersion_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:closeVersion_Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 642

Replication refresh

Replication refresh request
<m:replicationRefresh_${schema} xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>String</branch>
 <instance>String</instance>
 <unitName>String</unitName>
</m:replicationRefresh_${schema}>

with:

Element Description Required

branch See the description under Common parameters [p 636]. Yes

instance See the description under Common parameters [p 636]. Yes

unitName Name of the replication unit.

See alsoReplication refresh information [p 260]

Yes

Replication refresh response
<ns1:replicationRefresh_${schema}Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:replicationRefresh_${schema}Response>

with:

Element Description

status '00' indicates that the operation has been executed successfully.

97.3 Operations on data workflows
Parameters for data workflows operations are retrieved from the SOAP header in the session.
Deprecated since version 5.7.0 to define parameters in the SOAP message body.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 643

See session parameters [p 597] for more information.

Element Description Required

parameters Deprecated since version 5.7.0 While it remains available for backward
compatibility, it will eventually be removed in a future major version.

Note

The parameters element is ignored if at least one
session parameter has been defined.

No

parameter (nested under the
parameters element). Multiple
parameter elements may be used.

An input parameter for the workflow. No

name (nested under the
parameter element)

Name of the parameter. Yes

value (nested under the
parameter element)

Value of the parameter. No

Start a workflow
Start a workflow from a workflow launcher. It is possible to start a workflow with localized
documentation and specific input parameters (with name and optional value).

Note

The workflow creator is initialized from the session and the workflow priority is retrieved
from the last published version.

Sample request:
<m:workflowProcessInstanceStart xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <publishedProcessKey>String</publishedProcessKey>
 <documentation>
 <locale>Locale</locale>
 <label>String</label>
 <description>String</description>
 </documentation>
</m:workflowProcessInstanceStart>

with:

Element Description Required

publishedProcessKey Identifier of the workflow launcher. Yes

documentation See the description under Common parameters [p 636]. No

parameters Deprecated since version 5.7.0 See the description under Common
parameters [p 643].

No

Sample response:
<m:workflowProcessInstanceStart_Response xmlns:m="urn:ebx-schemas:dataservices_1.0">

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 644

 <processInstanceKey>String</processInstanceKey>
</m:workflowProcessInstanceStart_Response>

with:

Element Description Required

processInstanceId Deprecated since version 5.6.1 This parameter has been replaced by the
'processInstanceKey' parameter. While it remains available for backward
compatibility, it will eventually be removed in a future major version.

No

processInstanceKey Workflow identifier. No

Resume a workflow
Resume a workflow in a wait step from a resume identifier. It is possible to define specific input
parameters (with name and optional value).
Sample request:
<m:workflowProcessInstanceResume xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <resumeId>String</resumeId>
</m:workflowProcessInstanceResume>

with:

Element Description Required

resumeId Resume identifier of the waiting task. Yes

parameters Deprecated since version 5.7.0 See the description under Common
parameters [p 643].

No

Sample response:
<m:workflowProcessInstanceResume_Response xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
 <processInstanceKey>String</processInstanceKey>
</m:workflowProcessInstanceResume_Response>

with:

Element Description Required

status '00' indicates that the operation has been executed successfully.

'20' indicates that the workflow has not been found.

'21' indicates that the event has already been received.

Yes

processInstanceKey Identifier of the workflow. This parameter is returned if the operation has
been executed successfully.

No

End a workflow
End a workflow from its identifier.
Sample request:
<m:workflowProcessInstanceEnd xmlns:m="urn:ebx-schemas:dataservices_1.0">

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 645

 <processInstanceKey>String</processInstanceKey>
</m:workflowProcessInstanceEnd>

with:

Element Description Required

processInstanceKey Identifier of the workflow. Either this
parameter or
'publishedProcessKey'
and
'processInstanceId'
parameters must be
defined.

publishedProcessKey Deprecated since version 5.6.1 Due to a limitation this parameter
has been replaced by the 'processInstanceKey' parameter. While it
remains available for backward compatibility, it will eventually be
removed in a future major version.

No

processInstanceId Deprecated since version 5.6.1 Due to a limitation this parameter
has been replaced by the 'processInstanceKey' parameter. While it
remains available for backward compatibility, it will eventually be
removed in a future major version.

No

Sample response:
<m:workflowProcessInstanceEnd_Response xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</m:workflowProcessInstanceEnd_Response>

with:

Element Description Required

status '00' indicates that the operation has been executed successfully. Yes

97.4 Administrative services

Directory services
The services on directory provide operations on the 'Users' and 'Roles' tables of the default directory.
To execute an operation related to these services, the authenticated user must be a member of the built-
in role 'Administrator'.
The technical dataspace and dataset must be set to ebx-directory. For all SOAP operation syntaxes,
see Operations generated from a data model [p 615] for more information.

Create a user in the directory
This example of a SOAP insert request adds a user to the EBX directory.
<m:insert_user xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <branch>ebx-directory</branch>
 <instance>ebx-directory</instance>
 <data>
 <directory>
 <users>
 <login>login</login>
 <lastName>lastname</lastName>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 646

 <firstName>firstname</firstName>
 <email>firstname.lastname@email.com</email>
 <password>***</password>
 <passwordMustChange>true</passwordMustChange>
 <builtInRoles>
 <administrator>false</administrator>
 <readOnly>false</readOnly>
 </builtInRoles>
 <comments>a comment</comments>
 </users>
 </directory>
 </data>
</m:insert_user>

For the insert SOAP response syntax, see insert response [p 625] for more information.

User interface operations
See Application locking [p 387] for more information.
Parameters for operations on the user interface are as follows:

Element Description Required

closedMessage Message to be displayed to users when the user interface is closed to
access.

No

Close user interface request
The close operation removes all user sessions that are not acceptable in this mode.
<m:close xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <closedMessage>Access is temporarily forbidden.</closedMessage>
</m:close>

Close user interface response
<ns1:close_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:close_Response>

Open user interface request
<m:open xmlns:m="urn:ebx-schemas:dataservices_1.0"/>

Open user interface response
<ns1:open_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <status>String</status>
</ns1:open_Response>

System information operation
This operation returns the EBX system information. The information returned is the same as the
information contained in the log header kernel.log or in the UI tab 'Administration' > 'System
Information'. The response contains several keys, labels, and values representing the configuration
and status of EBX. To execute this operation, the authenticated user must be a member of the built-
in role 'Administrator'.

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 647

Parameters
The following parameter is applicable.

Parameter Description Required

details Defines attributes that must be applied to response
messages.

The attribute locale (default: EBX default locale)
defines the language in which the system item messages
must be returned.

No, but if specified,
the locale attribute
must be provided.

System information request
This SOAP request will return all EBX instance's system information and format them using "en_US"
locale.
<m:systemInformation xmlns:m="urn:ebx-schemas:dataservices_1.0">
 <details locale="en_US" />
</m:systemInformation>

System information response
<ns1:systemInformation_Response xmlns:ns1="urn:ebx-schemas:dataservices_1.0">
 <bootInfoEBX>
 <label>String</label>
 <infoItem>
 <key>String</key>
 <label>String</label>
 <content>String</content>
 <content>String</content>
 ...
 </infoItem>
 ...
 </bootInfoEBX>
 <repositoryInfo>
 <label>String</label>
 <infoItem>
 <key>String</key>
 <label>String</label>
 <content>String</content>
 <content>String</content>
 ...
 </infoItem>
 ...
 </repositoryInfo>
 <bootInfoVM>
 <label>String</label>
 <infoItem>
 <key>String</key>
 <label>String</label>
 <content>String</content>
 ...
 </infoItem>
 ...
 </bootInfoVM>
</ns1:systemInformation_Response>

Documentation > Developer Guide > SOAP data services > SOAP operations

TIBCO EBX® Product Documentation 5.9.20 648

Documentation > Developer Guide

TIBCO EBX® Product Documentation 5.9.20 649

REST data services

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 650

CHAPTER 98
Introduction

This chapter contains the following topics:

1. Overview

2. Activation and configuration

3. Interactions

4. Security

5. Monitoring

6. SOAP and REST comparative

7. Limitations

98.1 Overview
REST data services allow external systems to interact with data governed in the TIBCO EBX
repository using the RESTful built-in services.
The request and response syntax for built-in services are described in the chapter Built-in RESTful
services [p 657].
Built-in REST data services allow to perform operations such as:

• Selecting, inserting, updating, deleting, or counting records

• Selecting or counting history records

• Selecting, updating, or counting dataset values

• Administrative operations to manage access to the UI or to system information

Note

See SOAP and REST comparative [p 655].

98.2 Activation and configuration
REST and SOAP Data services are activated by deploying the ebx-dataservices web application
along with the other EBX modules. See Java EE deployment overview [p 317] for more information.
In case of specific deployment, for example using reverse-proxy mode, see URLs computing [p 356]

for more information.

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 651

Currently only protocol HTTP(S) is supported.

98.3 Interactions

Input and output message encoding
All input and output messages must be exclusively in UTF-8 for REST built-in.

Tracking information
Depending on the data services operation being called, it may be possible to specify session tracking
information.

• Example for a RESTful operation, the JSON request contains:
{
 "procedureContext": // JSON Object (optional)
 {
 "trackingInformation": "String" // JSON String (optional)
 }, ...
}

For more information, see Session.getTrackingInfoAPI in the Java API.

Session parameters
Depending on the data services operation being called, it is possible to specify session input
parameters. They are defined in the request body.
Input parameters are available on custom Java components with a session object, such as: triggers,
access rules, custom web services. They are also available on data workflow operations.

• Example for a RESTful operation, the JSON request contains:
{
 "procedureContext": // JSON Object (optional)
 {
 "trackingInformation": "String", // JSON String (optional)
 "inputParameters": // JSON Array (optional)
 [
 // JSON Object for each parameter
 {
 "name" : "String" // JSON String (required)
 "value" : "String" // JSON String (optional)
 },
 ...
]
 }, ...
}

For more information, see Session.getInputParameterValueAPI in the Java API.

Exception handling
When an error occurs, a JSON exception response is returned to the caller. For example:
{
 "code": 999, // JSON Number, HTTP status code
 "errors": [
 {
 "severity": "...", // JSON String, severity (optional)
 "rowIndex": 999, // JSON Number, request row index (optional)
 "userCode": "...", // JSON String, user code (optional)
 "message": "...", // JSON String, message
 "details": "...", // JSON String, URL (optional)
 "pathInRecord": "...", // JSON String, Path in record (optional)
 "pathInDataset": "..." // JSON String, Path in dataset (optional)
 }
]

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 652

}

The response contains an HTTP status code and a table of errors. The severity of each error is specified
by a character, with one of the possible values (F: fatal, E: error, W: warning, I: information).
The HTTP error 422 (Unprocessable entity) corresponds to a functional error. It contains a user code
under the userCode key and is a JSON String type.

See alsoHTTP codes [p 663]

See alsoSeverity.toParsableStringAPI

98.4 Security

Authentication
Authentication is mandatory to access built-in services. Several authentication methods are available
and described below. The descriptions are ordered by priority (EBX applies the highest priority
authentication method first).

• 'Token Authentication Scheme' method is based on the HTTP-Header Authorization, as
described in RFC 2617.
> Authorization: <tokenType> <accessToken>

For more information on this authentication scheme, see Token authentication operations [p 666].

See alsoHTTP Authorization header policy [p 356]

• 'Basic Authentication Scheme' method is based on the HTTP-Header Authorization in base 64
encoding, as described in RFC 2617 (Basic Authentication Scheme).
If the user agent wishes to send the userid "Alibaba" and password "open sesame",
it will use the following header field:
> Authorization: Basic QWxpYmFiYTpvcGVuIHNlc2FtZQ==

Note

The WWW-Authenticate [p 662] header can be valued with this method.

See alsoHTTP Authorization header policy [p 356]

• 'Standard Authentication Scheme' is based on the HTTP Request. User and password are extracted
from request parameters. For more information on request parameters, see Parameters [p 610]

section.
For more information on this authentication scheme, see Directory.
authenticateUserFromLoginPasswordAPI.

• The 'REST Forward Authentication Scheme' is used only when calling a REST service from a
user service [p 560], that reuses the current authenticated session.
For more information, see Implementing a user service [p 571] making a call to REST data services
[p 578].

• 'Specific authentication Scheme' is based on the HTTP Request. For example, an implementation
can extract a password-digest or a ticket from the HTTP Request. See Directory.
authenticateUserFromHttpRequestAPI for more information.

https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc2617#section-2

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 653

• 'Anonymous authentication Scheme' is used only to access the REST services handling the
authentication operations. The credentials acquisition, password changes, etc. imply that the user
cannot be known yet.

Global permissions
Global access permissions can be independently defined for the REST built-in services access. For
more information see Global permissions [p 383].

Lookup mechanism
Because EBX offers several authentication methods, a lookup mechanism based on conditions was set
to know which method should be applied for a given request. The method application conditions are
evaluated according to the authentication scheme priority. If the conditions are not satisfied, the server
evaluates the next method. The following table presents the available authentication methods for each
supported protocol and their application conditions. They are ordered from the highest priority to the
lowest.

Operation / Protocol Authentication methods and application conditions

REST / HTTP Token [p 652]

• The HTTP request must hold an Authorization header.

• Authorization header value must start with the word EBX.

• No login is provided in the URL parameters.

Basic [p 652]

• The HTTP request must hold an Authorization header.

• Authorization header value must start with the word Basic.

• No login is provided in the URL parameters.

Standard [p 652]

• The HTTP request must not hold an Authorization header.

• A login and a password are provided in the URL parameters.

Rest forward [p 652]

• The HTTP request must not contain an Authorization header.

• No login is provided in the URL parameters.

Specific [p 652]

• The HTTP request must not satisfy the conditions of the previous authentication methods.

Anonymous [p 653]

• None of the previous authentication methods can be applied.

• The requested REST service is handling an authentication operation.

In case of multiple authentication methods present in the same request, EBX will return an HTTP
code 401 Unauthorized.

98.5 Monitoring
Data service events can be monitored through the log category ebx.dataServices, as declared in
the EBX main configuration file. For example, ebx.log4j.category.log.dataServices= INFO,
ebxFile:dataservices.

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 654

See also

Configuring the EBX logs [p 351]

TIBCO EBX main configuration file [p 345]

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 655

98.6 SOAP and REST comparative

Operations SOAP REST

Data

Select or count records (with filter and/or view publication) X X

Selector for possible enumeration values (with filter) X

Insert, update or delete records X X

Select or count history records (with filter and/or view publication) X

Select node values from dataset X X

Update node value from dataset X

Get table or dataset changes between dataspaces or snapshots X

Refresh a replication unit X

Get credentials for records X

Dataspaces

Create, close, merge a dataspace X

Create, close a snapshot X

Validate a dataspace or a snapshot X

Validate a dataset X

Locking a dataspace X

Workflow

Start, resume or end a workflow X

Administration

Manage the default directory content 'Users', 'Roles'... tables. X X

Open, close the user interface X X

Documentation > Developer Guide > REST data services > Introduction

TIBCO EBX® Product Documentation 5.9.20 656

Operations SOAP REST

Select, insert, update, delete operations for administration dataset X

Select the system information X X

Other

Develop web services from the Java API X (*)

(*) See REST Toolkit [p 719] for more information.

98.7 Limitations

Date, time & dateTime format
Data services only support the following date and time formats:

Type Format Example

xs:date yyyy-MM-dd 2007-12-31

xs:time HH:mm:ss or HH:mm:ss.SSS 11:55:00

xs:dateTime yyyy-MM-ddTHH:mm:ss or yyyy-MM-ddTHH:mm:ss.SSS 2007-12-31T11:55:00

JMS
• JMS protocol is not supported.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 657

CHAPTER 99
Built-in RESTful services

This chapter contains the following topics:

1. Introduction

2. Request

3. Response

4. Administration operations

5. Token authentication operations

6. Data operations

7. Limitations

99.1 Introduction
The architecture used is called ROA (Resource-Oriented Architecture), it can be an alternative to
SOA (Service-Oriented Architecture). The chosen resources are readable and/or writable by third-
party systems, according to the request content.
The HATEOAS approach of the built-in RESTful services also allows to experience an intuitive and
straightforward navigation, which implies that the data details could be obtained through a link.

Note

All operations are stateless.

99.2 Request
This chapter describes the elements to use in order to build a conform REST request, such as: the
HTTP method, the URL format, the header fields and the message body.

See also

Interactions [p 651]

Security [p 652]

HTTP method
Considered HTTP methods for built-in RESTful services, are:

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 658

• GET: used to select master data defined in the URL (the URL size limit depends on the application
server or on the browser, that must be lower than or equal to 2KB).

• POST: used to insert one or more records in a table or to select the master data defined in the URL
(the size limit is 2MB or more depending on the application server. Each parameter is limited to
a value containing 1024 characters).

• PUT: used to update the master data defined in the URL.

• DELETE: used to delete either the record defined in the URL or multiple records defined with the
table URL and the record table in the message body.

URL
REST URL contains:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/{categoryVersion}/
{specificPath}[:{extendedAction}]?{queryParameters}

Where:

• <ebx-dataservices> corresponds to the 'ebx-dataservices.war' web application's path. The path
is composed by multiple, or none, URI segments followed by the web application's name.

• {category} corresponds to the operation category [p 659].

• {categoryVersion} corresponds to the category version: current value is v1.

• {specificPath} corresponds to a specific path inside the category.

• {extendedAction} corresponds to the extended action name (optional).

• {queryParameters} corresponds to common [p 661] or dedicated operation parameters passed
by the URL.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 659

Operation category
It specializes the operation, it is added in the path of the URL in {category} and it takes one of the
following values:

admin Administration operations reserved to administrators.
For more information, see: Administration operations [p

664].

auth Manage token authentication method.
For more information, see: Token authentication operations
[p 666] and Token Authentication Scheme [p 652].

data Lists dataset content, requests a table, a record or a field
record content, including modified operations on dataset
node, table, record and record field.
For more information, see: Data operations [p 669].

history Lists history dataset content, requests a history table, a
history of a record or a history record.
For more information, see: Data operations [p 669].

See alsoHistory [p 251]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 660

Header fields
These header field definitions are used by TIBCO EBX.

Accept Used to specify content types by order of preference to
be used in the response, the first supported one will be
chosen and specified in the response header Content-
Type. Currently, the only supported one is application/
json. If none is supported, the result depends on the
ebx.dataservices.rest.request.checkAccept property:

• If true, an HTTP error response is returned with code
406.

• If false, the response is returned with the default
content type, that is application/json.

See alsoConfiguring data services [p 354]

Accept-Language Used for specifying the preferred locale for the response.
The supported locales are defined in the schema model.
If none of the preferred locale are supported, the default
locale for the current model is used.

Authorization Used for 'Basic Authentication Scheme' and 'Token
Authentication Scheme' methods, otherwise the request is
rejected.

See alsoAuthentication [p 652]

Content-Type Used to specify the request body media type. The supported
types are application/json and application/x-www-form-
urlencoded. The request value is checked and if it is not
supported, then an HTTP error message is returned with the
code 415 (Unsupported media type).

See alsoConfiguring data services [p 354]

X-Requested-With If present and in case of authentication failure, prevents the
addition of the WWW-Authenticate header in the response.

See alsoResponse header WWW-Authenticate [p 662]

See RFC2616 for more information about HTTP Header Field Definitions.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 661

Common parameters
These optional parameters are available for all data service operations.

Parameter Description

disableRedirectionToLastBroadcast This parameter only has impact on a D3 architecture.

If true, access to a delivery dataspace on a D3 primary node is not redirected to the
last broadcast snapshot. Otherwise, access to such a dataspace is always redirected
to the last broadcast snapshot.

If the specified dataspace is not a delivery dataspace on a D3 primary node, this
parameter is ignored.

Boolean type value. If this parameter is not present, the default is false
(redirection to a D3 master enabled), unless the configuration property
ebx.dataservices.disableRedirectionToLastBroadcast.default [p 354] has been set.

See alsoPrimary node [p 427]

indent Specifies if the response should be indented, to be easier to read for a human.

Boolean type, default value is false.

Message body
It contains the request data using the JSON format, see JSON Request body [p 694].

Note

Requests may define a message body only when using POST or PUT HTTP methods.

99.3 Response
This chapter describes the responses returned by built-in RESTful services.

• See Exception handling [p 651] for details on standard error handling (where the HTTP code is
greater than or equal to 300).

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 662

Header fields
These header field definitions are used by EBX.

Content-Language Indicates the locale used in the response for labels and
descriptions.

Content-Type Indicates the response body content type.

Location If a new record has been successfully inserted, the query
URL for this record is returned by this field.

WWW-Authenticate This header field is added to the HTTP response when
authentication fails with the 401 (Unauthorized) HTTP
code. Its value consists of a list with at least one
authentication method applicable to the request URI. It is
present if and only if the following conditions are verified:

• the 'Basic Authentication Scheme' method is enabled
and

• the X-Requested-With HTTP header is not present.

If the client is able to interpret the authentication method, it
is possible to resubmit the request providing the appropriate
credentials.
The administration property
ebx.dataservices.rest.auth.tryBasicAuthentication [p 354]

must be set to true.

See also

Request header X-Requested-With [p 660]

Authentication [p 652]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 663

HTTP codes

HTTP code Description

200 (OK) The request has been successfully handled.

201 (Created) A new record has been created, in this case, the header field Location is returned
with its resource URL.

204 (No content) The request has been successfully handled but no response body is returned.

400 (Bad request) the request URL or body is not well-formed or contains invalid content.

401 (Unauthorized) Authentication has failed.

403 (Forbidden) Permission was denied to read or modify the specified resource for the authenticated
user.

This error is also returned when the user:

• is not allowed to modify a field mentioned in the request message body.

• is not allowed to access the REST connector.

For more details, see Global permissions [p 653].

404 (Not found) The resource specified in the URL cannot be found.

406 (Not acceptable) Content type defined in the request's Accept parameter is not supported. This error
can be returned only if the EBX property ebx.rest.request.checkAccept is set to
true.

409 (Conflict) A concurrent modification has occurred.

See alsoOptimistic locking [p 689]

415 (Unsupported media type) The request content is not supported, the request header value Content-Type is not
supported by the operation.

422 (Unprocessable entity) The new resource's content cannot be accepted for semantic reasons.

500 (Internal error) Unexpected error thrown by the application. Error details can usually be found in
EBX logs.

Message body
The response body content's format depends on the HTTP code value:

• HTTP codes from 200 included to 300 excluded: the content format depends on the associated
request (JSON [p 697] samples).
With the exception of code 204 (No content).

• HTTP codes greater than or equal to 300: the content describes the error. See JSON [p 651] for
details on the format.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 664

99.4 Administration operations
Administration operations are related to:

• the administration category.

• the administration dataspaces accessible through the data category.

Note

administration category and administration dataspaces can only be used by
administrators.

Directory operations
The EBX default directory configuration is manageable with built-in RESTful services. The users and
roles tables, the mailing lists and other objects are concerned. For more information, see Users and
roles directory [p 399].

Note

Triggers are present on the directory's tables, ensuring the data consistency.

The URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/Bebx-directory/ebx-directory

Directory configuration operations
The EBX default directory configuration is manageable like dataset nodes. It can be accessed
and modified through the data category operations. Each field is self-described when metadata is
requested.
See select [p 669] and update [p 682] operations for more information.

Mailing lists operations
There are two default mailing lists that can be configured in the EBX directory: one for everybody
and one for administrators. These lists can be handled like dataset nodes through the data category
operations.
See select [p 669] and update [p 682] operations for more information.

Directory users operations
Users can be manipulated like records of the data category using the operations of the latter. For
security purposes, an administrator cannot delete himself. The user's salutation must be chosen among
the ones available in the 'salutations' table.
See select [p 669], update [p 682], insert [p 677] and delete [p 684] operations for more information.

Directory roles operations
Roles are records of the data category and can be managed with its operations. EBX roles are assigned
to users through the 'usersRoles' association table. 'usersRoles' is automatically fed when the directory
is administered through the user interface. However, it is not the case through data services and
role assignments require manual operations. Roles inclusions are specified in the 'rolesInclusions'

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 665

association table. As for the 'usersRoles' table, the management of roles inclusions requires manual
operations. Each table is self-descriptive when metadata is requested.
See select [p 669], update [p 682], insert [p 677] and delete [p 684] operations for more information.

User interface operations
The EBX user interface can be opened or closed to users for maintenance needs. Handled information
is similar to what is contained in the UI tab 'Administration' > 'User interface configuration' >
'Advanced perspective' > 'Graphical interface configuration' > 'Application locking'.
URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/Bebx-manager/ebx-manager/
domain/toolStatus

See alsoApplication locking [p 387]

Retrieve user interface state
User interface status and the unavailability message are accessible like dataset nodes.
See Select operation [p 669] and the JSON [p 704] example, for more information.

Open or close user interface
User interface status and the unavailability message can be modified like dataset nodes using the
update operation. To open the user interface set the content of toolStatus to true, or to false to
close it.
See Update operation [p 682] and the JSON [p 697] examples, for more information.

System information operation
This operation returns system information on the EBX server. This is accepted for GET and POST
HTTP methods. Warning: no update will be possible in the POST HTTP method because the request
body is ignored. The information returned is the same as the information contained in the log header
kernel.log or in the UI tab 'Administration' > 'System Information'. The response contains several
keys, labels, and values representing the configuration and status of EBX. The mode of representation
of the response may be flat or hierarchical.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/admin/v1/systemInformation

See also

TIBCO EBX main configuration file [p 345]

Repository administration [p 372]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 666

Parameters
The following parameter is applicable.

Parameter Description

systemInformationMode Specifies the returned mode:

• flat: A flat representation under the following information groups:
bootInfoEBX, repositoryInfo and bootInfoVM.

• hierarchical: A hierarchical representation.

String type, default value is flat.

HTTP codes

HTTP code Description

200 (OK) The system information was successfully returned.

400 (Bad request) The request is not correct, it contains one of the following errors:

• the HTTP method is not GET nor POST,

• the HTTP parameter systemInformationMode is not correct,

• the operation is not supported.

• the request path is invalid.

403 (Forbidden) The user is not an administrator.

Response body
It is returned, if and only if, the HTTP code is 200 (OK). The content structure depends on the provided
parameter systemInformationMode or its default value.
See the JSON [p 698] example of the flat representation.
See the JSON [p 698] example of the hierarchical representation.

99.5 Token authentication operations
These operations allow to create or revoke an authentication token. Authentication tokens have a
timeout period. If a token is not used to access the EBX server within this period, it will automatically
be revoked. This timeout period is refreshed on each access to EBX server.

Note

The token timeout is modifiable through the administration property
ebx.dataservices.rest.auth.token.timeout [p 354] (the default value is 30 minutes).

Create token operation
This operation requires using the POST HTTP method with a request containing the user's credentials
and, optionally, session parameters [p 651].

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 667

URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/auth/v1/token:create

Message body
A message body must be defined in the HTTP request. It necessarily contains one of the following
set of data:

• A login and a password value. Both JSON attributes are mandatory and of String types.
See Directory.authenticateUserFromLoginPasswordAPI for more information.

• The specific JSON attribute set to true. When activated, this flag allows to performed a
user authentication against the whole HTTP request. Warning, even if login and password
attributes are defined in the JSON request's body, setting specific to true lead to a specific user
authentication.
See Directory.authenticateUserFromHttpRequestAPI for more information.

See the JSON [p 694] examples of a token creation request.

HTTP codes

HTTP code Description

200 (OK) The token was successfully created.

400 (Bad request) For one of the following reasons:

• the syntax is not correct,

• the HTTP method is not POST,

• the operation is not supported.

401 (Unauthorized) For one of the following reasons:

• The login and/or password is/are incorrect.

• Authentication data for other methods is defined.

422 (Unprocessable entity) For one of the following reasons:

• PasswordMustChange: The password must be changed (only available with the
default directory). See Change password operation [p 668].

• RestrictedAccess: User access is closed for maintenance or other actions
(reserved to administrators).

Response body
If the HTTP code is 200 (OK), the body holds the token value and its type.
See the JSON [p 699] example of a token creation response.
The token can later be used to authenticate a user by setting the HTTP-Header Authorization
accordingly.

See also'Token authentication Scheme' method [p 652]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 668

Change password operation
This operation modifies the password of an existing user account. It can be used in an authenticated
context: login parameter, if present, is checked against the current session or taken from it, if absent.
It could also be used in an unauthenticated context, for example when the Create token operation [p

666] aborts with the HTTP code 422 (Unprocessable entity) with reason: PasswordMustChange.
It requires the use of:

• the EBX default directory

• the POST HTTP method

• the message body containing the structure specified below

URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/auth/v1/user:changePassword

Message body
The message body must be defined in the request. It necessarily contains a password and a
passwordNew, the login is optional (all are String).
See the JSON [p 694] example of a password change and token creation request.

HTTP codes

HTTP code Description

204 (No content) The password has been changed.

400 (Bad request) For one of the following reasons:

• the EBX default directory is required,

• the syntax is not correct,

• the HTTP method is not POST,

• the provided login and the user's session one mismatch

• the operation is not supported.

401 (Unauthorized) For the following reason:

• The login and/or password is/are incorrect.

422 (Unprocessable entity) For one of the following reasons:

• PasswordChangeAbort: passwordNew is empty.

• PasswordChangeAbort: passwordNew is equal to password.

• PasswordChangeAbort: password is incorrect.

• RestrictedAccess: User access is closed for maintenance or other actions
(reserved to administrators).

Response body
If HTTP code 204 (No content) is returned, then the password has been modified.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 669

Revoke token operation
This operation requires using the POST HTTP method. No message body is needed.
URL format is:
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/auth/v1/token:revoke

Header fields

Authorization This field is required, tokenType and accessToken fields
must have the values returned from the "token create"
operation.
> Authorization: <tokenType> <accessToken>

HTTP codes

HTTP code Description

204 (No content) The token has been revoked successfully.

400 (Bad request) For one of the following reasons:

• the configuration is not activated,

• the syntax is incorrect,

• the HTTP method is not POST,

• the operation is not supported.

401 (Unauthorized) Authentication has failed.

99.6 Data operations
Operations from the data operation category concern the datasets, the dataset fields, tables, records
or record fields.
Operations from the history category and concern historized content from datasets, tables, records
or the record fields.

Select operation
Select operation may use one of the following methods:

• GET HTTP method,

• POST HTTP method without message body or

• POST HTTP method with message body and optionally session parameters [p 651].

URL formats are:

• Dataset tree, depending on operation category [p 659]:
The data category returns the hierarchy of the selected dataset, this includes group and table
nodes.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 670

The history category returns the hierarchy of the selected history dataset, this includes the pruned
groups for history table nodes only.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}

Note

Terminal nodes and sub-nodes are not included.

• Dataset node: the data category returns the terminal nodes contained in the selected node.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/{dataspace}/{dataset}/
{pathInDataset}

Note

Not applicable with the history category.

• Table, depending on operation category [p 659]:
the data category returns the table content and/or metadata, current page records and URLs for
pagination.
The history category returns the history table content and/or metadata, current page records and
URLs for pagination.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}

See alsoCount operation [p 686]

• Record, depending on operation category [p 659]:
the data category returns the record content and/or metadata.
The history category returns history record content and/or metadata.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}/{encodedPrimaryKey}
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}?primaryKey={xpathExpression}

Note

The record access by the primary key (primaryKey parameter) is limited to its root
node. It is recommended to use the encoded primary key, available in the details
field in order to override this limitation. Similarly, for a history record, use the
encoded primary key, available in the historyDetails field.

• Field, depending on operation category [p 659]:
the data category returns the field record content where structure depends on its type.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 671

The history category returns the field history record content where structure depends on its type.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}/{encodedPrimaryKey}/{pathInRecord}

Note

The field must be either an association node, a selection node, a terminal node or
above.

Where:

• {category} corresponds to the operation category [p 659].

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the dataset node, that can be a group node or a table
node.

• {encodedPrimaryKey} corresponds to the encoded representation of the primary key.

See alsoRESTEncodingHelperAPI

• {xpathExpression} corresponds to the record primary key, using the XPath expression.

• {pathInRecord} corresponds to the path starting from the table node.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 672

Parameters
The following parameters are applicable to the select operation.

Parameter Description

includeContent Includes the content field with the content corresponding to the selection.

Boolean type, default value is true.

includeDetails Includes the details field in the metadata and the response, for each indirect
reachable resource. The returned value corresponds to its URL resource.

Type Boolean, default value is true.

See alsoincludeMeta [p 672]

includeHistory Includes those fields for a historized content:

• The history property in the metadata. The returned value corresponds to a
boolean value.

• The historyDetails property in the content and for each indirectly reachable
resource. This point is coupled to the includeDetails [p 672] parameter. The
returned value corresponds to its URL resource.

Boolean type, default value is false.

Note

The includeHistory parameter is ignored in the history
category, the default value is true.

See also

includeMeta [p 672]

includeDetails [p 672]

AdaptationTable.getHistoryAPI

includeLabel Includes the label field associated with each simple type content.

Possible values are:

• yes: the label is included for the foreign key, enumeration, record and selector
values.

• all: the label field is included, as for the yes value and also for the Content of
simple type [p 711].

See alsoSchemaNode.displayOccurrenceAPI

• no: the label field is not included (integration use case).

String type, default value is yes.

Note

The label field is not included if it is equal to the content field.

includeMeta Includes the meta field corresponding to the description of the structure returned in
the content field.

Boolean type, default value is false.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 673

Parameter Description

See also

includeHistory [p 672]

includeDetails [p 672]

includeMergeInfo Includes the merge_info corresponding to a field of the technical data of an history
transaction and has a potentially high access cost.

Boolean type, default value is true.

Note

This parameter is ignored with the data category.

See alsoREST access to history table [p 303]

includeSelector Includes the selector field in the response, for each indirect reachable resource.
The returned value corresponds to its URL resource.

Type Boolean, default value is true.

See alsoselector [p 676]

includeSortCriteria Includes the sortCriteria field corresponding to the list of sort criteria applied.

The sort criteria parameters are added by using:

• sort [p 675]

• sortOnLabel [p 675]

• viewPublication [p 676]

Boolean type, default value is false.

Example JSON [p 707]

includeTechnicals Includes the internal technical data.

Boolean type, default value is false.

See alsoTechnical data [p 716]

Note

This parameter is ignored with the history category.

includeValidation Includes the validation report corresponding to the selection.

Boolean type, default value is false.

Note

This parameter is ignored with the history category.

See alsoincludeDetails [p 672]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 674

Table parameters
The following parameters are applicable to tables, associations and selection nodes.

Parameter Description

filter XPath predicate [p 227] expression defines the field values to which the request is
applied. If empty, all records will be retrieved.

String type value.

Note

The history code operation value is usable with ebx-
operationCode path field from the meta section associated with
this field.

historyMode Specifies the filter context applied on table.

String type, possible values are:

• CurrentDataSpaceOnly: history in current dataspace

• CurrentDataSpaceAndAncestors: history in current dataspace and ancestors

• CurrentDataSpaceAndMergedChildren: history in current dataspace and
merged children

• AllDataSpaces: history in all dataspaces

The default value is CurrentDataSpaceOnly.

See alsohistory [p 659]

Note

This parameter is ignored with the data category.

includeOcculting Includes the records in occulting mode.

Boolean type, default value is false.

primaryKey Search a record by a primary key, using the XPath expression. The XPath predicate
[p 227] expression should only contain field(s) of the primary key and all of them.
Fields are separated by the operator and. A field is represented by one of the
following possibilities according to its simple type:

• For the date, time or dateTime types: use the date-equal(path, value)

• For other types: indicate the path, the = operator and the value.

Example with a composed primary key: ./pk1i=1 and date-equal(./
pk2d,'2015-11-13')

The response will only contain the corresponding record, otherwise an error is
returned. Consequently, the other table parameters are ignored (as filter [p 674],
viewPublication [p 676], sort [p 675], etc.)

String type value.

pageFirstRecordFilter Deprecated since version 5.9.0, replaced by pageRecordFilter

pageRecordFilter Specifies the record XPath predicate [p 227] expression filter of the page.

String type value.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 675

Parameter Description

pageAction Specifies the pagination action to perform from page defined by
pageRecordFilter.

String type, possible values are:

• first

• previous

• next

• last

See alsoRequestPaginationAPI

pageSize Specifies the number of records per page.

Integer type, default value is based on the user preferences.

String type, the unbounded value can be defined to return all records. Only for this
case, no pagination context is returned.

sort Specifies that the operation result will be sorted according to the specified criteria.
The criteria are composed of one or more criteria, the result will be sorted by
priority from the left. A criterion is composed of the field path and, optionally, the
sorting order (ascending or descending, on value or on label). This parameter can be
combined with:

1. the sortOnLabel [p 675] parameter as a new criteria added after the sort.

2. the viewPublication [p 676] parameter as a new criteria added after the sort.

The value structure is as follows:
<path1>:<order>;...;<pathN>:<order>

Where:

• <path1> corresponds to the field path in priority 1.

• <order> corresponds to the sorting order, with one of the following values:

• asc: ascending order on value (default),

• desc: descending order on value,

• lasc: ascending order on label,

• ldesc: descending order on label.

String type, the default value orders according to the primary key fields (ascending
order on value).

Note

The history code operation value is usable with the ebx-
operationCode path field from the meta section associated with
this field.

See alsoRequest.setSortCriteriaAPI

sortOnLabel Specifies that the operation result will be sorted according to the record label. This
parameter can be combined with:

1. the sort [p 675] parameter as a new criteria added before the sortOnLabel.

2. the viewPublication [p 676] parameter as a new criteria added after the
sortOnLabel.

The value structure is as follows:
<order>

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 676

Parameter Description

Where:

• <order> corresponds to the sorting order, with one of the following values:

• lasc: ascending order on label,

• ldesc: descending order on label.

The behavior of this parameter is described in the section defaultLabel [p 495].

String type value.

See alsoLimitation [p 692]

viewPublication Specifies the name of the published view. This parameter can be combined with:

1. the filter [p 674] parameter as the logical and operation.

2. the sort [p 675] parameter as a new criteria added before the viewPublication.

3. the sortOnLabel [p 675] parameter as new criteria added before the
viewPublication.

The behavior of this parameter is described in the section EBX as a Web Component
[p 196].

String type value.

Selector parameters
The following parameters are only applicable to fields that return an enumeration, foreign key or
osd:resource (Example JSON [p 714]). By default, a pagination mechanism is enabled.

Parameter Description

selector Specifies whether:

• true: returns all possible values (includes their labels)

• false: returns the current values for the current field.

Boolean type, default value is false.

Note

This parameter is ignored with the history category.

firstElementIndex Specifies the index of the first element returned by the selector. Must be an integer
higher than or equal to 0.

Integer type, default value is 0.

pageSize Specifies the number of elements per page.

Integer type, default value is based on the user preferences.

String type, the unbounded value can be defined to return all values. Only for this
case, no pagination context is returned.

selectorFilter Specifies the filter of the selector.

String type value, the syntax complies with the Text search [p 114].

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 677

HTTP codes

HTTP code Description

200 (OK) The selected resource is successfully retrieved.

400 (Bad request) The request is incorrect. This occurs when:

• The selected field in a record or a dataset is sub-terminal,

• The XPath predicate of the filter parameter is malformed or contains
unfilterable nodes.

• The XPath predicate of the primaryKey parameter is malformed or is not a
record primary key.

• The sort criteria of the sort parameter have an invalid syntax or contain
unsortable nodes.

• pageAction parameter value is not included in allowed values, or
pageRecordFilter is malformed or non-existent when selecting next or
previous page.

• pageSize parameter value is below 2, or is a string different from unbounded.

• The table view for the viewPublication parameter is either hierarchical, non-
existent or non-published.

• The selector parameter is used for a non-enumerated node, or the
firstElementIndex is negative, higher than or equal to the number of values.

403 (Forbidden) The selected resource is hidden for the authenticated user.

404 (Not found) The selected resource is not found.

Response body
After a successful dataset, table, record or field selection, the result is returned in the response body.
The content depends on the provided parameters and selected data.
Example: JSON [p 699].

Insert operation
Insert operation uses the POST HTTP method. A body message is required to specify data. This
operation supports the insertion of one or more records in a single transaction. Moreover, it is also
possible to update record(s) through parameterization.

• Record: insert a new record or modify an existing one in the selected table.

• Record table: insert or modify one or more records in the selected table, while securing a
consistent answer. Operations are executed sequentially, in the order defined on the client side.
When an error occurs during a table operation, all updates are cancelled and the client receives
an error message with detailed information.

http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/{dataspace}/{dataset}/
{pathInDataset}

Where:

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 678

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the table node.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 679

Parameters
The following parameters are applicable with the insert operation.

Parameter Description

includeDetails Includes the details field in the answer for access to the details of the data. The
returned value corresponds to its URL resources.

Type Boolean, the default value is false.

Note

Only applicable on the record table.

includeForeignKey Includes the foreignKey field in the answer for each record. The returned value
corresponds to the value of a foreign key field that was referencing this record.

Boolean type, the default value is false.

Note

Only applicable on the record table.

includeLabel Includes the label field in the answer for each record.

Possible values are:

• yes: the label field is included.

• no: the label field is not included (use case: integration).

String type, the default value is no.

Note

Only applicable on the record table.

updateOrInsert Specifies the behavior when the record to insert already exists:

• If true: the existing record is updated with new data.

For a request on a record table, the code field is added to the report in order to
specify if this is an insert 201 or an update 204.

• If false (default value): a client error is returned and the operation is aborted.

Boolean type value.

byDelta Specifies the behavior for setting value of nodes that are not defined in the request
body. This is described in the Update modes [p 716] section.

Boolean type, the default value is true.

Note

Applicable on record in update mode and if the updateOrInsert [p

679] parameter is true.

blockingConstraintsDisabled Specifies whether blocking constraints are ignored, if so, the operation is committed
regardless of the validation error created, otherwise, the operation would be aborted.

Boolean type, default value is false.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 680

Parameter Description

See Blocking and non-blocking constraints [p 522] for more information.

Message body
The request must define a message body. The format depends on the inserted object type:

• Record: similar to the select operation of a record but without the record's header (example JSON
[p 695]).

• Record table: Similar to the select operation on a table but without the pagination information
(example JSON [p 696]).

See alsoInheritance [p 690]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 681

HTTP codes

HTTP code Description

200(OK) If the request relates to a record table.

The insert request was applied successfully, an optional report is returned in the
response body.

201 (Created) If the request relates to a record.

A new record has been created, in this case, the header field Location is returned
with its resource URL.

204 (No content) If the request relates to a record.

Only available if updateOrInsert is true, an existing record has been successfully
updated, in this case, the header field Location is returned with its resource URL.

400 (Bad request) The request is incorrect. This occurs when the body message structure does not
comply with what was mentioned in Message body [p 680].

403 (Forbidden) Authenticated user is not allowed to create a record or the request body contains a
read-only field.

404 (Not found) The selected resource is not found.

409 (Conflict) Concurrent modification, only available if updateOrInsert is true, the Optimistic
locking [p 689] is activated and the content has changed in the meantime, it must be
reloaded before update.

422 (Unprocessable entity) The request cannot be processed. This occurs when:

• A blocking validation error occurs (only available if
blockingConstraintsDisabled is false).

• The record cannot be inserted because a record with the same primary key
already exists (only available if updateOrInsert is false).

• The record cannot be inserted because the definition of the primary key is either
non-existent or incomplete.

• The record cannot be updated because the value of the primary key cannot be
modified.

Response body
The response body format depends on the inserted object type:

• Record: is empty if the operation was executed successfully. The header field Location is returned
with its URL resource.

• Record table: (optional) contains a table of element(s), corresponding to the insert operation
report (example JSON [p 714]). This report is automatically included in the response body, if at
least one of the following options is set:

• includeForeignKey

• includeLabel

• includeDetails

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 682

See alsoInheritance [p 690]

Update operation
This operation allows the modification of a single dataset or record. The PUT HTTP method must be
used. Available URL formats are:

• Dataset node: modifies the values of terminal nodes contained in the selected node.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/{dataspace}/{dataset}/
{pathInDataset}

• Record: modifies the content of selected record.

Note

Also available for POST HTTP methods. In this case, the URL must correspond to
the table by setting the parameter updateOrInsert to true.

• Field: modifies the field content.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/{dataspace}/{dataset}/
{pathInDataset}/{encodedPrimaryKey}/{pathInRecord}

Note

The field must be either a terminal node or above.

Where:

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the dataset node:

• For dataset node operations, this must be any terminal node or above except table node,

• For record and field operations, this corresponds to the table node.

• {encodedPrimaryKey} corresponds to the encoded representation of the primary key.

See alsoRESTEncodingHelperAPI

• {pathInRecord} corresponds to the path starting from the table node.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 683

Parameters
Here are the parameters applicable with the update operation.

Parameter Description

blockingConstraintsDisabled Specifies whether blocking constraints are ignored, if so, the operation is committed
regardless of the validation error created, otherwise, the operation would be aborted.

Boolean type, default value is false.

See Blocking and non-blocking constraints [p 522] for more information.

byDelta Specifies the behavior for setting value of nodes that are not defined in the request
body. This is described in the Update modes [p 716] section.

Boolean type, the default value is true.

checkNotChangedSinceLastUpdateDate Timestamp in datetime format used to ensure that the record has not been modified
since the last read. Also see the Optimistic locking [p 689] section.

DateTime type value.

Message body
The request must define a message body.
The structure is the same as for:

• the dataset node (sample JSON [p 694]),

• the record (sample JSON [p 695]),

• the record fields (sample JSON [p 695]),

depending on the updated scope, by only keeping the content entry.

See alsoInheritance [p 690]

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 684

HTTP codes

HTTP code Description

204 (No content) The record, field or dataset node has been successfully updated.

400 (Bad request) The request is incorrect. This occurs when the body request structure does not
comply.

403 (Forbidden) Authenticated user is not allowed to update the specified resource or the request
body contains a read-only field.

404 (Not found) The selected resource is not found.

409 (Conflict) Concurrent modification, the Optimistic locking [p 689] is activated and the content
has changed in the meantime, it must be reloaded before the update.

422 (Unprocessable entity) The request cannot be processed. This occurs when:

• A blocking validation error occurs (only available if
blockingConstraintsDisabled is false).

• The record cannot be updated because the value of the primary key cannot be
modified.

Delete operation
The operation uses the DELETE HTTP method.
Two URL formats are available:

• Record: delete a record specified in the URL.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/{dataspace}/{dataset}/
{pathInDataset}/{encodedPrimaryKey}

• Record table: deletes several records in the specified table, while providing a consistent answer.
This mode requires a body message containing a record table. The deletions are executed
sequentially, according to the order defined in the table. When an error occurs during a table
operation, all deletions are cancelled and an error message is displayed with detailed information.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/{dataspace}/{dataset}/
{pathInDataset}

Where:

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the table node.

• {encodedPrimaryKey} corresponds to the encoded representation of the primary key.

See alsoRESTEncodingHelperAPI

In a child dataset context, this operation modifies the inheritanceMode property value of the record
as follows:

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 685

• A record with inheritance mode set to inherit or overwrite becomes occult.

• A record with inheritance mode set to occult becomes inherit if the inheritIfInOccultingMode
operation parameter is set to true or is undefined, otherwise there is no change.

• A record with inheritance mode set to root is simply deleted.

See alsoInheritance [p 690]

Parameters
Here are the following parameters applicable with delete operation.

Parameter Description

includeOcculting Includes occulted records.

Boolean type, the default value is false.

inheritIfInOccultingMode Deprecated since version 5.8.1 While it remains available for backward
compatibility reasons, it will eventually be removed in a future version.

Inherits the record if it is in occulting mode.

Boolean type, the default value is true.

checkNotChangedSinceLastUpdateDate Timestamp in datetime format used to ensure that the record has not been modified
since the last read. Also see the Optimistic locking [p 689] section.

DateTime type value.

blockingConstraintsDisabled Specifies whether blocking constraints are ignored, if so, the operation is committed
regardless of the validation error created, otherwise, the operation would be aborted.

Boolean type, default value is false.

See Blocking and non-blocking constraints [p 522] for more information.

Message body
The request must define a message body only when deleting several records:

• Record table: The message contains a table of elements related to a record, with for each element
one of the following properties:

• details: corresponds to the record URL, it is returned by the select operation.

• primaryKey: corresponds to the primary key of the record, using the XPath expression.

• foreignKey: corresponds to the value that a foreign key would have if it referred to a record.

See alsoPrimaryKeyAPI

Example JSON [p 696].

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 686

HTTP codes

HTTP code Description

200 (OK) The operation has been executed successfully. A report is returned in the response
body.

400(Bad request) The request is incorrect. This occurs when:

• the structure of the message body does not comply with Message body [p 685].

• the message body contains a record table while the URL specifies a record.

403 (Forbidden) Authenticated user is not allowed to delete or occult the specified record.

404 (Not found) The selected record is not found. In the child dataset context, it should be necessary
to use the includeOcculting parameter.

409 (Conflict) Concurrent modification, The Optimistic locking [p 689] is activated and the content
has changed in the meantime, it must be reloaded before deleting the record.

The parameter value checkNotChangedSinceLastUpdateDate exists but does not
correspond to the actual last update date of the record.

422 (Unprocessable entity) Only available if blockingConstraintsDisabled is false, the operation fails
because of a blocking validation error.

Response body
After a successful record deletion or occulting, a report is returned in the response body. It contains
the number of deleted, occulted and inherited record(s).
Example JSON [p 715].

Count operation
Count operation may use one of the following methods:

• GET HTTP method,

• POST HTTP method without message body or

• POST HTTP method with message body but without content field on root.

The URL formats are:

• Dataset node: the data category returns the number of terminal nodes contained in the selected
node.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/data/v1/{dataspace}/{dataset}/
{pathInDataset}?count=true

Note

Not applicable with the history category.

• Table depending on the operation category [p 659]:
the data category returns the number of table records.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 687

The history category returns the number of table history records.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}?count=true

• Field depending on the operation category [p 659]:
the data category counts the record fields.
The history category counts the history record field.
http[s]://<host>[:<port>]/<ebx-dataservices>/rest/{category}/v1/{dataspace}/
{dataset}/{pathInDataset}/{encodedPrimaryKey}/{pathInRecord}?count=true

Note

The field must be either an association node, a selection node, a terminal node or
above.

Where:

• {category} corresponds to the operation category [p 659].

• {dataspace} corresponds to B followed by the dataspace identifier or to V followed by the snapshot
identifier.

• {dataset} corresponds to the dataset identifier.

• {pathInDataset} corresponds to the path of the dataset node, that can be a group node or a table
node.

• {encodedPrimaryKey} corresponds to the encoded representation of the primary key.

See alsoRESTEncodingHelperAPI

• {pathInRecord} corresponds to the path starting from the table node.

Parameters
The following parameters are applicable to the count operation.

Parameter Description

count This parameter is used to specify whether this is a count operation or a selection
operation.

Boolean type, default value is false.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 688

Table parameters
The following parameters are applicable to tables, associations and selection nodes.

Parameter Description

filter XPath predicate [p 227] expression defines the field values to which the request is
applied. If empty, all records will be considered.

String type value.

Note

The history code operation value is usable with the ebx-
operationCode path field from the meta section associated with
this field.

historyMode Specifies the filter context applied on table.

String type, possible values are:

• CurrentDataSpaceOnly: history in current dataspace

• CurrentDataSpaceAndAncestors: history in current dataspace and ancestors

• CurrentDataSpaceAndMergedChildren: history in current dataspace and
merged children

• AllDataSpaces: history in all dataspaces

The default value is CurrentDataSpaceOnly.

See alsohistory [p 659]

Note

This parameter is ignored with the data category.

includeOcculting Includes the records in occulting mode.

Boolean type, default value is false.

viewPublication Specifies the name of the published view to be considered during the count
execution. This parameter can be combined with:

• the filter [p 688] parameter as the logical and operation.

The behavior of this parameter is described in the section EBX as a Web Component
[p 196].

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 689

Selector parameters
The following parameters are only applicable to fields that return an enumeration, foreign key or
osd:resource.

Parameter Description

selector Specifies whether:

• true: returns the number of all possible values

• false: returns the number of possible values for the current field.

Boolean type, default value is false.

Note

This parameter is ignored with the history category.

selectorFilter Specifies the filter of the selector.

String type value, the syntax complies with the Text search [p 114].

HTTP codes

HTTP code Description

200 (OK) The selected resource is successfully counted.

400 (Bad request) The request is incorrect. This occurs when:

• The selected field in a record or a dataset is sub-terminal.

• The selected dataset field is a dataset tree.

• The XPath predicate of the filter parameter is malformed or contains
unfilterable nodes.

• The table view for the viewPublication parameter is either hierarchical, non-
existent or non-published.

• The selector parameter is used for a non-enumerated node, or the
firstElementIndex is negative, higher than or equal to the number of values.

403 (Forbidden) The selected resource is hidden for the authenticated user.

404 (Not found) The selected resource is not found.

Optimistic locking
To prevent an update or a delete operation on a record that was previously read but may have changed
in the meantime, an optimistic locking mechanism is provided.
To enable optimistic locking, a select request must set the parameter includeTechnicals to true.
See Technical data [p 716] for more information.
The value of the lastUpdateDate property must be included in the following update request. If the
record has been changed since the specified time, the update or delete will be cancelled.

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 690

• Record: update whole or partial content of the selected record.
The property lastUpdateDate should be added to the request body to prevent update of a modified
record.
See the JSON [p 695] example of a record.

• Field: update of a single field of the selected record.
The property value lastUpdateDate must be declared in the request URL by the
checkNotChangedSinceLastUpdateDate parameter to prevent the update of a modified record.

The property value lastUpdateDate can also be used in the request URL
checkNotChangedSinceLastUpdateDate parameter to prevent deletion on a modified record.

Note

The checkNotChangedSinceLastUpdateDate parameter may be used more than once but
only on the same record. This implies that if the request URL returns more than one
record, the request will fail.

Inheritance
EBX inheritance features are supported by built-in RESTful services using specific properties and
automatic behaviors. In most cases, the inheritance state will be automatically computed by the server
according to the record and field definition or content. Every action that modifies a record or a
field may have an indirect impact on those states. In order to fully handle the inheritance life cycle,
direct modifications of the state are allowed under certain conditions. Forbidden or incoherent explicit
alteration attempts are ignored.

See alsoInheritance and value resolution [p 270]

Record inheritance life cycle in built-in RESTful services

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 691

Inheritance properties
The following table describes properties related to the EBX inheritance features.

Property Location Description

inheritance record or table metadata Specifies if dataset inheritance is activated for the table. The
value is computed from the data model and cannot be modified
through built-in RESTful services.

See alsoinheritance property in metadata. [p 705]

inheritedField field metadata Specifies the field's value source. The source data are directly
taken from the data model and cannot be modified through
built-in RESTful services.

See alsoinheritedField property in metadata. [p 706]

record in child dataset Specifies the record's inheritance state. To set a record's
inheritance from overwrite to inherit, its inheritanceMode
value must be explicitly provided in the request. In this specific
case, the content property will be ignored if present. occult
and root explicit values are always ignored. An overwrite
explicit value without a content property is ignored.

Note

Inherited record's fields are necessarily
inherit.

Note

Root records in child dataset will always be
root.

Possible values are: root, inherit, overwrite, occult. For
more information, see Record lookup mechanism [p 272].

inheritanceMode

field in overwrite record Specifies the field's inheritance state. To set a field's inheritance
to inherit, its inheritanceMode value must be explicitly
provided in the request. The content property will be ignored
in this case. overwrite explicit value without a content
property is ignored.

Note

inheritanceMode at field level does not
appear for root, inherit and occult records.

Note

inheritedFieldMode and inheritanceMode
properties cannot be both set on the same
field.

Possible values are: inherit, overwrite. For more
information, see Inheritance and value resolution [p 270].

inheritedFieldMode inherited field Specifies the inherited field's inheritance state. To set a field's
inheritance to inherit, its inheritedFieldMode value must be

Documentation > Developer Guide > REST data services > Built-in RESTful services

TIBCO EBX® Product Documentation 5.9.20 692

Property Location Description

explicitly provided in the request. The content property will
be ignored in this case. overwrite explicit values without a
content property are ignored.

Note

inheritedFieldMode and inheritanceMode
properties cannot be both set on the same
field.

Note

inheritedFieldMode has priority over the
inheritanceMode property.

Possible values are: inherit, overwrite. For more
information, see Value lookup mechanism [p 273].

99.7 Limitations

General limitations
• Indexes, in the request URL {pathInDataset} or {pathInRecord}, are not supported.

• Nested aggregated lists are not supported.

• Dataset nodes and field operations applied to nodes that are sub-terminal are not supported.
See Access properties [p 537] for more information about terminal nodes.

Read operations
• Within the selector, the pagination context is limited to the nextPage property.

• Within the viewPublication parameter, the hierarchical view is not supported.

• The sortOnLabel parameter ignores programmatic labels.

• The system information response's properties cannot be browsed through the REST URL with
the hierarchical representation.
See System information operation [p 665] for more information.

Write operations
• Association fields cannot be updated, therefore, the list of associated records cannot be modified

directly.

• Control policy onUserSubmit-checkModifiedValues of the user interface is not supported.
To retrieve validation errors, invoke the select operation on the resource by including the
includeValidation parameter.
See Blocking and non-blocking constraints [p 522] for more information.

Directory operations
• Changing or resetting a password for a user is not supported.

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 693

CHAPTER 100
JSON format

This chapter contains the following topics:

1. Introduction

2. Global structure

3. Meta-data

4. Sort criteria information

5. Validation

6. Content

7. Update modes

8. Known limitations

100.1 Introduction
The JSON (JavaScript Object Notation) is the data-interchange format used by TIBCO EBX RESTful
operations [p 657].
This format is lightweight, self-describing and can be used to design UIs or to integrate EBX in a
company's information system.

• The data context is exhaustive, except for association fields and selection nodes that are not
directly returned. However, these fields are included in the response with a URL link named
details included by default. It can be indirectly used to get the fields content.

• The volume of data is limited by a pagination mechanism activated by default, it can be configured
or disabled.

URL formatted links allow retrieving:

• Tables, records, dataset non-terminal nodes, foreign keys, resource fields (property details).

• Possible values for foreign keys or enumerations (selector parameter).

See alsoActivation and configuration [p 650]

Note

JSON data are always encoded in UTF-8.

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 694

100.2 Global structure

JSON Request body
Request body is represented by a JSON Object whose content varies according to the operation and
its category.

Auth category
The request body holds several properties directly placed in the root JSON Object.

• Token creation
Specifies the login and password to use for an authentication token creation attempt.
{
 "login": "...", // JSON String
 "password": "..." // JSON String
}

Specifies the specific attribute, to activate the user authentication against the HTTP request, for
an authentication token creation attempt.
{
 "specific": true // JSON Boolean
}

See alsoCreate token operation [p 666]

• Password change
Specifies the login, password and passwordNew to use for the password change.
{
 "login": "...", // JSON String
 "password": "...", // JSON String
 "passwordNew": "..." // JSON String
}

See alsoChange password operation [p 668]

Data category
The request body contains at least a content property where master data values will be defined.

• Dataset node
Specifies the target values of terminal nodes under the specified node. This request is used on the
dataset node update operation.
{
 "content": {
 "nodeName1": {
 "content": true
 },
 "nodeName2": {
 "content": 2
 },
 "nodeName3": {
 "content": "Hello"
 }
 }
}

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 695

See alsoUpdate operation [p 682]

• Record
Specifies the target record content by setting the value for each field. For missing fields, the
behavior depends on the request parameter byDelta. This structure is used on table record insert
or on record update.

See alsoInheritance [p 690]

Some technical data can be added beside the content property such as lastUpdateDate.

See alsoOptimistic locking [p 689]

{
 ...
 "lastUpdateDate": "2015-12-25T00:00:00.001",
 ...
 "content": {
 "gender": {
 "content": "Mr."
 },
 "lastName": {
 "content": "Chopin"
 },
 "lastName-en": {
 "content": "Chopin",
 "inheritedFieldMode": "inherit"
 },
 "firstName": {
 "content": "Fryderyk"
 },
 "firstName-en": {
 "content": "Frdric",
 "inheritedFieldMode": "overwrite"
 },
 "birthDate": {
 "content": "1810-03-01"
 },
 "deathDate": {
 "content": "1849-10-17"
 },
 "jobs": {
 "content": [
 {
 "content": "CM"
 },
 {
 "content": "PI"
 }
]
 },
 "infos": {
 "content": [
 {
 "content": "https://en.wikipedia.org/wiki/Chopin"
 }
]
 }
 }
}

See also

Insert operation [p 677]

Update operation [p 682]

• Record fields

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 696

Specifies the target values of fields under the record terminal node by setting the value of each
field. For missing fields, the behavior depends on the request parameter byDelta. This structure
is only used for table record updates.

See alsoInheritance [p 690]

{
 "content": [
 {
 "content": "CM"
 },
 {
 "content": "PI"
 }
]
}

See alsoUpdate operation [p 682]

• Record table
Defines the content of one or more records by indicating the value of each field. For missing
fields, the behavior depends on the parameter of the request byDelta. This structure is used upon
insert or update of records in the table.
{
 "rows": [
 {
 "content": {
 "gender": {
 "content": "M"
 },
 "lastName": {
 "content": "Saint-Sans"
 },
 "firstName": {
 "content": "Camille"
 },
 "birthDate": {
 "content": "1835-10-09"
 },
 ...
 }
 },
 {
 "content": {
 "gender": {
 "content": "M"
 },
 "lastName": {
 "content": "Debussy"
 },
 "firstName": {
 "content": "Claude"
 },
 "birthDate": {
 "content": "1862-10-22"
 },
 ...
 }
 }
]
}

See also

Insert operation [p 677]

Update operation [p 682]

• Record table to be deleted

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 697

Defines one or more records. This structure is used upon deleting several records from the same
table.
{
 "rows": [
 {
 "details": "http://.../root/table/1"
 },
 {
 "details": "http://.../root/table/2"
 },
 {
 "primaryKey": "./oid=3"
 },
 {
 "foreignKey": "4"
 },
 ...
]
}

See alsoDelete operation [p 684]

• Field
Specifies the target field content. This request is used on the field update.
The request has the same structure as defined in node value [p 709] by only keeping the content
entry. Other entries are simply ignored.

See alsoUpdate operation [p 682]

• Open or close user interface
Specifies whether the user interface is open or close and the unavailability message.
{
 "content": {
 "toolStatus": {
 "content": true // or false
 },
 "toolStatusCloseMessage": {
 "content": "Access is temporarily forbidden for maintenance."
 }
 }
}

See alsoUser interface operations [p 665]

Only writable fields can be mentioned in the request, this excludes the following cases:

• Association node,

• Selection node,

• Value function,

• JavaBean field that does not have a setter,

• Unwritable permission on node for authenticated user.

JSON Response body
The response body is represented by a JSON Object whose content depends on the operation and
its category.

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 698

Admin category
The selection operation for this category only provides the values corresponding to the request under
a content property.

• System information
Contains EBX instance's system information. The representation of these data can be flat or
hierarchical.
Flat representation:
{
 "content": {
 "bootInfoEBX": {
 "label": "EBX® configuration",
 "content": {
 "product.version": {
 "label": "EBX® product version",
 "content": "5.8.1 [...] Enterprise Edition"
 },
 "product.configuration.file": {
 "label": "EBX® main configuration file",
 "content": "System property [ebx.properties=./ebx.properties]"
 }
 // others keys
 }
 },
 "repositoryInfo": {
 "label": "Repository information",
 "content": {
 "repository.identity": {
 "label": "Repository identity",
 "content": "00905A5753FD"
 },
 "repository.label": {
 "label": "Repository label",
 "content": "My repository"
 }
 // others keys
 }
 },
 "bootInfoVM": {
 "label": "System information",
 "content": {
 "java.home": {
 "label": "Java installation directory",
 "content": "C:\\JTools\\jdk1.8.0\\jre"
 },
 "java.vendor": {
 "label": "Java vendor",
 "content": "Oracle Corporation"
 }
 // others keys
 }
 }
 }
}

Hierarchical representation:
{
 "content": {
 "bootInfoEBX": {
 "label": "EBX® configuration",
 "content": {
 "product": {
 "content": {
 "version": {
 "label": "EBX® product version",
 "content": "5.8.1 [...] Enterprise Edition"
 },
 "configuration": {
 "content": {
 "file": {
 "label": "EBX® main configuration file",
 "content": "System property [ebx.properties=./ebx.properties]"
 }
 }
 }

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 699

 }
 },
 "vm": {
 "content": {
 "startTime": {
 "label": "VM start time",
 "content": "2017/09/11-10:04:17-0729 CEST"
 },
 "identifier": {
 "label": "VM identifier",
 "content": "1"
 }
 }
 }
 // other hierarchical keys
 }
 }
 }
}

See alsoSystem information operation [p 665]

Auth category
The response body contains several properties directly placed in its root JSON object.

• Token creation
Contains the token value and its type.
{
 "accessToken": "...", // JSON String
 "tokenType": "..." // JSON String
}

See alsoCreate token operation [p 666]

Data category
The selection operation contains two different parts.
The first one named meta contains the exhaustive structure of the response.
The other, regrouping content, rows, pagination...etc, contains the values corresponding to the
request.

• Dataset tree
Contains the hierarchy of table and non-terminal group nodes.
{
 "meta": {
 "fields": [
 {
 "name": "rootName",
 "label": "Localized label",
 "description": "Localized description",
 "type": "group",
 "pathInDataset": "/rootName",
 "fields": [
 {
 "name": "settings",
 "label": "Settings",
 "type": "group",
 "pathInDataset": "/rootName/settings",
 "fields": [
 {
 "name": "settingA",
 "label": "A settings label",
 "type": "group",
 "pathInDataset": "/rootName/settings/settingA"
 },
 {
 "name": "settingB",

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 700

 "label": "B settings label",
 "type": "group",
 "pathInDataset": "/rootName/settings/settingB"
 }
]
 },
 {
 "name": "table1",
 "label": "Table1 localized label",
 "type": "table",
 "minOccurs": 0,
 "maxOccurs": "unbounded",
 "pathInDataset": "/rootName/table1"
 },
 {
 "name": "table2",
 "label": "Table2 localized label",
 "type": "table",
 "minOccurs": 0,
 "maxOccurs": "unbounded",
 "pathInDataset": "/rootName/table2"
 }
]
 }
]
 },
 "validation": [
 {
 "level": "error",
 "message": "Value must be greater than or equal to 0.",
 "details": "http://.../rootName/settings/settingA/settingA1?includeValidation=true"
 },
 {
 "level": "error",
 "message": "Field 'Settings A2' is mandatory.",
 "details": "http://.../rootName/settings/settingA/settingA2?includeValidation=true"
 }
],
 "content": {
 "rootName": {
 "details": "http://.../rootName",
 "content": {
 "settings": {
 "details": "http://.../rootName/settings",
 "content": {
 "weekTimeSheet": {
 "details": "http://.../rootName/settings/settingA"
 },
 "vacationRequest": {
 "details": "http://.../rootName/settings/settingB"
 }
 }
 },
 "table1": {
 "details": "http://.../rootName/table1"
 },
 "table2": {
 "details": "http://.../rootName/table2"
 }
 }
 }
 }
}

The meta and validation properties are optional.

See also

Meta-data [p 704]

Validation [p 708]

Select operation [p 669]

• Dataset node
Contains the list of terminal nodes under the specified node.
{
 "meta": {
 "fields": [
 {

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 701

 "name": "nodeName1",
 "label": "Localized label of the field node 1",
 "description": "Localized description",
 "type": "boolean",
 "minOccurs": 1,
 "maxOccurs": 1,
 "pathInDataset": "/rootName/.../nodeName1"
 },
 {
 "name": "nodeName2",
 "label": "Localized label of the field node 2",
 "type": "int",
 "minOccurs": 1,
 "maxOccurs": 1,
 "pathInDataset": "/rootName/.../nodeName2"
 }
]
 },
 "content": {
 "nodeName1": {
 "content": true
 },
 "nodeName2": {
 "content": -5,
 "validation": [
 {
 "level": "error",
 "message": "Value must be greater than or equal to 0."
 }
]
 }
 }
}

See alsoSelect operation [p 669]

• Table
JSON Object containing the properties:

• (Optional) The table meta data [p 704],

• (Optional) The sort criteria applied,

• (Optional) The table validation report,

• rows containing a table of selected records. Each record is represented by an object, if no
record is selected then the table is empty.

• (Optional) pagination containing pagination [p 713] information if activated.
{
 "rows": [
 {
 "label": "Claude Levi-Strauss",
 "details": "http://.../root/individu/1",
 "content": {
 "id": {
 "content": 1
 },
 ...
 }
 },
 {
 "label": "Sigmoud Freud",
 "details": "http://.../root/individu/5",
 "content": {
 "id": {
 "content": 2
 },
 ...
 }
 },
 ...
 {
 "label": "Alfred Dreyfus",
 "details": "http://.../root/individu/10",
 "content": {
 "id": {

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 702

 "content": 30
 },
 ...
 }
 }
],
 "sortCriteria": [
 {
 "path": "/name",
 "order": "lasc"
 },
 ...
],
 "pagination": {
 "firstPage": null,
 "previousPage": null,
 "nextPage": "http://.../root/individu?pageRecordFilter=./id=9&pageSize=9&pageAction=next",
 "lastPage": "http://.../root/individu?pageSize=9&pageAction=last"
 }
}

See alsoSelect operation [p 669]

• Record
JSON object containing:

• The label,

• (Optional) The record URL,

• (Optional) The technical data [p 716],

• (Optional) The table metadata [p 704],

• (Optional) The record validation report,

• (Optional) The inheritance mode of the record is: root, inherit, overwrite or occult. This
value is available for a child dataset,

See also

Record lookup mechanism [p 272]

Inheritance [p 690]

• The record content.
{
 "label": "Name1",
 "details": "http://.../rootName/table1/pk1",
 "creationDate": "2015-02-02T19:00:53.142",
 "creationUser": "admin",
 "lastUpdateDate": "2015-09-01T17:22:24.684",
 "lastUpdateUser": "admin",
 "inheritanceMode": "root",
 "meta": {
 "name": "table1",
 "label": "Table1 localized label",
 "type": "table",
 "minOccurs": 0,
 "maxOccurs": "unbounded",
 "primaryKeys": [
 "/pk"
],
 "inheritance": "true",
 "fields": [
 {
 "name": "pk",
 "label": "Identifier",
 "type": "string",
 "minOccurs": 1,
 "maxOccurs": 1,
 "pathInRecord": "pk",
 "filterable": true,
 "sortable": true
 },

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 703

 {
 "name": "name",
 "label": "Name",
 "type": "string",
 "minOccurs": 1,
 "maxOccurs": 1,
 "pathInRecord": "name",
 "filterable": true,
 "sortable": true
 },
 {
 "name": "name-fr",
 "label": "Nom",
 "type": "string",
 "minOccurs": 1,
 "maxOccurs": 1,
 "inheritedField": {
 "sourceNode": "./name"
 },
 "pathInRecord": "name-fr",
 "filterable": true,
 "sortable": true
 },
 {
 "name": "parent",
 "label": "Parent",
 "description": "Localized description.",
 "type": "foreignKey",
 "minOccurs": 1,
 "maxOccurs": 1,
 "foreignKey": {
 "tablePath": "/rootName/table1",
 "details": "http://.../rootName/table1"
 },
 "enumeration": "foreignKey",
 "pathInRecord": "parent",
 "filterable": true,
 "sortable": true
 }
]
 },
 "content": {
 "pk": {
 "content": "pk1"
 },
 "name": {
 "content": "Name1"
 },
 "name-fr": {
 "content": "Name1",
 "inheritedFieldMode": "inherit"
 },
 "parent": {
 "content": null,
 "validation":
 [
 {
 "level": "error",
 "message": "Field 'Parent' is mandatory."
 }
]
 }
 },
 "validation": {
 ...
 }
}

See alsoSelect operation [p 669]

• Fields
For association or selection nodes, contains the target table with associated records if, and only
if, the includeDetails parameter is set to true.
For other kinds of nodes, contains the current node value [p 709], by adding meta entry if enabled.

See alsoSelect operation [p 669]

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 704

• Retrieve the user interface state
Contains the user interface status and the unavailability message.
{
 "content": {
 "toolStatus": {
 "content": true,
 "label": "Open",
 "selector": "http://.../domain/toolStatus/toolStatus?selector=true",
 },
 "toolStatusCloseMessage": {
 "content": "Access is temporarily forbidden for maintenance.",
 }
 }
}

See alsoUser interface operations [p 665]

Note

Node, records and field in meta, rows and content may be hidden depending on their
resolved permissions (see permissions [p 275]).

100.3 Meta-data
This section can be activated on demand with the includeMeta [p 672] parameter. It describes the
structure and the JSON typing of the content section.
This section is deactivated by default for selection operations.

See alsoSelect operation [p 669]

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 705

Structure of table
Table meta-data is represented by a JSON object with the following properties:

JSON property JSON format Description Required

name String Name of the table defined in schema. Yes

label String Table label. If undefined, the name of the schema node is
returned.

Yes

description String Table description. No

type String Always equal to: table. Yes

minOccurs Number Number of minimum authorized record(s). Yes

maxOccurs Number or String Number of maximum authorized record(s) or unbounded. Yes

history Boolean Specifies if the table content is historized. Its value is true if
history is activated, false otherwise.

See alsoHistory [p 251]

No

primaryKeyFields Array Array of the paths corresponding to the primary key. Yes

inheritance Boolean Specifies whether the dataset inheritance is activated for
the table. Its value is true if inheritance is activated, false
otherwise.

See alsoInheritance and value resolution [p 270]

No

fields Array Array of fields, that are direct children of the record node. Each
field may also recursively contain sub-fields.

Yes

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 706

Structure of field
Each authorized field is represented by a JSON object with the following properties:

JSON property JSON format Description Required

name String Name of the current authorized schema node. Yes

label String Node label. If undefined, the name of the schema node is
returned.

Yes

description String Node description. No

type String Node type: simple type [p 711], group, table, foreignKey, etc. Yes

minOccurs Number Number of minimum authorized occurrence(s). Yes

maxOccurs Number or String Number of maximum authorized occurrence(s) or unbounded. Yes

inheritedField Object Holds information related to the inherited field's value source.

"inheritedField": {
 "sourceRecord": "/path/to/record", // (optional)
 "sourceNode": "./path/to/Node"
}

See alsoInheritance and value resolution [p 270]

No

foreignKey Object Contains information related to the target table.

{
 "dataspace": "BAuthors",
 "dataset": "Authors",
 "tablePath": "/root/Authors",
 "details": "http://.../BAuthors/Authors/root/
Authors"
}

No (*)

dataspace String Target dataspace or snapshot identifier.

This property is placed under the foreignKey property.

No (*)

dataset String Target dataset identifier.

This property is placed under the foreignKey property.

No (*)

tablePath String Target table path.

This property is placed under the foreignKey property.

Yes

details String Target table URL.

This property is placed under the foreignKey property and is
included by default.

No

enumeration String Specifies if the field is an enumeration value. Possible values are:

• foreignKey

No

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 707

JSON property JSON format Description Required

• static

• dynamic

• programmatic

• nomenclature

• resource

See alsoSchemaFacetEnumerationAPI

Specifies whether the field can be used for retrieving possible
values by using the selector request parameter.

valueFunction Boolean Specifies if the field is a computed value.

See alsoComputed values [p 527]

No

pathInDataset String Relative field path starting from the schema node. No (**)

pathInRecord String Relative field path starting from the table node. No (*)

filterable Boolean Specifies whether the field can be used for filtering record using
filter request parameter.

No (*)

sortable Boolean Specifies whether the field can be used in sort criteria using sort
request parameter.

No (*)

fields Array of Object
elements

Contains the structure and typing of each group field. No

(*) Only available for table, record and record field operations.
(**) Only available for dataset tree operations.

100.4 Sort criteria information
The sort criteria applied to the request can be returned on demand, by using the includeSortCriteria
[p 673] parameter (deactivated by default). If it is activated, a sortCriteria property is directly added
to the response root node.
A sortCriteria property contains a JSON Array that contains ordered sort criteria, and for each sort
criterion, a JSON Object is added with the following properties:

JSON property JSON format Description Required

path String Field path. Yes

order String Possible values are: asc, lasc, desc or ldesc. Yes

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 708

100.5 Validation
The validation can be activated on demand with the includeValidation [p 673] parameter (deactivated
by default). If it is activated, validation properties are directly added on target nodes with one or
several messages. For messages without a target node path, a validation property is added on the
root node.
A validation property contains a JSON Array and for each message, corresponding to a validation
item, a JSON Object with properties:

JSON property JSON format Description Required

level String Severity of the validation item, the possible values
are: info, warn, error.

Yes

message String Description of the validation item. Yes

details String

corresponding to an absolute
URL.

URL of the resource associated with the validation
item.

Only available on the table and dataset scopes, if
associated resources exist and if it is included.

See alsoincludeDetails parameter [p 672]

No

100.6 Content
This section can be deactivated on demand with the includeContent [p 672] parameter (activated by
default). It provides the content of the record values, dataset, or field of one of the content fields for
an authorized user. It also has additional information, including labels, technical information, URLs...
The content is represented by a JSON Object with a property set for each sub-node.

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 709

Node value

JSON property JSON format Description Required

content Content of simple type [p 711]

Content of group and list [p

713]

Contains the node value. Available for all nodes
except association and selection. However,
their content can be retrieved by invoking the URL
provided in details.

No

details String

corresponding to an absolute
URL.

By invocation, the node details are returned.

Response type after invocation depending on the meta
type.

• foreignKey: target record (available on table,
record and field operation).

• resource: target resource [p 518] (available on
dataset node, table, record and field operations).

• association: target table containing associated
records (available on table and record operations).

• selection: target table containing associated
records (available on table and record operations).

• group: target dataset group node (available on
dataset tree operation).

• table: target table (available on dataset tree
operation).

Example:

http://.../BReference/dataset/root/table/pk/
associationField

No

label String Contains the foreign key or enumeration label in the
current locale.

The default label is returned if the current locale is not
supported.

No

inheritanceMode String Contains the node's inheritance state, considering
only dataset inheritance. inheritedFieldMode and
inheritanceMode properties cannot be both defined
on the same node.

See also

inheritedFieldMode [p 709]

Record lookup mechanism [p 272]

No

inheritedFieldMode String Contains the node's field inheritance state, considering
dataset and field inheritance. When both inheritances
are used, field inheritance has priority over the dataset
one. inheritedFieldMode and inheritanceMode
properties cannot be both defined on the same node.

See also

inheritanceMode [p 709]

Value lookup mechanism [p 273]

No

selector String Correspond to the URL for selector [p 714] operation. No

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 710

JSON property JSON format Description Required

corresponding to an absolute
URL.

Example:

http://.../BReference/dataset/root/table/pk/
enumField?selector=true

validation Array Contains the validation report that concerns the
current node context.

No

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 711

Content of simple type
A simple field value is stored in a JSON object and the content is the value of the content property.

XML Schema JSON format Examples Meta type

xs:string

xs:Name

osd:html

osd:email

osd:text

String (Unicode characters, cf.
RFC4627)

"A text"

"The escape of \"special character\" is preceded by a
backslash."

"<p>An HTML tag can thus be written without
trouble</p>"

"employee@mycompany.com"

null

string

name

html

email

text

osd:locale String (Language tag, cf.
RFC1766)

"en-US" locale

xs:string

(Foreign key)

String

contains the value of the
formatted foreign key.

"0"

"true|99"

foreignKey

xs:boolean Boolean true

false

null

boolean

xs:decimal Number or null -10.5

20.001

15

-1e-13

decimal

xs:date String with format: "yyyy-MM-
dd"

"2015-04-13" date

xs:time String with format:

• "HH:mm:ss"

• "HH:mm:ss.SSS"

"11:55:00"

"11:55:00.000"

time

xs:dateTime String with format:

• "yyyy-MM-ddTHH:mm:ss"

• "yyyy-MM-
ddTHH:mm:ss.SSS"

"2015-04-13T11:55:00"

"2015-04-13T11:55:00.000"

dateTime

xs:anyURI String (Uniform Resource
Identifier, cf. RFC3986)

"https://fr.wikipedia.org/wiki/Ren_Descartes" anyURI

xs:int

xs:integer

Number or null 1596 int

osd:resource String "ebx-tutorial:ext-images:frontpages/Ajax for
Dummies.jpg"

resource

https://www.ietf.org/rfc/rfc4627.txt
https://www.ietf.org/rfc/rfc1766.txt
https://tools.ietf.org/html/rfc3986

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 712

XML Schema JSON format Examples Meta type

contains the resource formatted
value.

osd:color String with format: "#[A-Fa-
f0-9]{6}"

contains the formatted value for
the color.

"#F6E0E0" color

osd:datasetName String with format: "[a-zA-Z_][-
a-zA-Z0-9_.]*" and 64 characters
max.

contains the formatted value of
the dataset name.

"ebx-tutorial" dataset

osd:dataspaceKey String with format: "[BV][a-zA-
Z0-9_:.\\-\\|]*" and 33 characters
max.

contains the formatted key value
of the dataspace.

"Bebx-tutorial" dataspace

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 713

Content of group and list

XML Schema JSON format Examples Meta type

Group

xs:complexType

Object

Contains a property per sub-node.

Example for a simple-occurrence group.

{
 "road" : {"content" : "11 rue scribe"},
 "zipcode" : {"content" : "75009"},
 "country" : {"content" : "France"}
}

group

List

maxOccurs > 1

Array

Contains an array of all field
occurrences represented by a
JSON Object.

Each object is represented as a
node value [p 709].

Example for a multi-occurrence field of the xs:int
type.

[
 {"content": 0},
 {"content": 1},
 {"content": 2},
 {"content": 3}
]

Example for a multi-occurrence group.

[
 {
 "content":
 {
 "road": {"content": "11 rue
 scribe"},
 "zipcode": {"content": "75009"},
 "country": {"content": "France"}
 }
 },
 {
 "content":
 {
 "road": {"content": "711 Atlantic
 Ave"},
 "zipcode": {"content": "MA 02111"},
 "country": {"content": "United
 States"}
 }
 }
]

Meta of
simple type
[p 711],

or

group

Pagination
This feature allows returning a limited and parameterizable number of data. Pagination can be applied
to data of the following types: records, association values, selection node values and selectors. A
context named pagination is returned only if it has been activated. This context allows browsing data
similarly to the UI.
Pagination is activated by default.

See alsoSelect operation [p 669]

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 714

Detailed information related to this context can be found hereafter:

JSON property JSON format Description Required

firstPage String or null (*) URL to access the first page. Yes (**)

previousPage String or null (*) URL to access the previous page. Yes (**)

nextPage String or null (*) URL to access the next page. Yes

lastPage String or null (*) URL to access the last page. Yes (**)

Note

(*) Only defines if data is available in this context and not in the response.

Note

(**) Not present on selector.

Selector
By invoking the URL represented by the property selector on a field that provides an enumeration,
this returns a JSON Object containing the properties:

• rows containing an Array of JSON Object where each one contains two entries, such as the
returned content that can be persisted and the corresponding label. The list of possible items is
established depending on the current context.

• (Optional) pagination containing pagination [p 713] information (activated by default).
{
 "rows": [
 {
 "content": "F",
 "label": "feminine"
 },
 {
 "content": "M",
 "label": "masculine"
 }
],
 "pagination": {
 "nextPage": null
 }
}

See alsoincludeSelector [p 673]

Insert operation report
When invoking the insert operation with a record table, it can optionally return a report. The report
includes a JSON Object that contains the following properties:

• rows contains a JSON ObjectArray, where each element corresponds to the result of a request
element.

• code contains an int of the JSON Number type, and allows to know whether the record has been
inserted or updated. This property is included if, and only if, the updateOrInsert parameter is
set to true.

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 715

• foreignKey contains a string of the JSON String type, corresponding to the content to be
used as a foreign key for this record. This property is included if, and only if, the parameter
includeForeignKey is set to true.

• label contains a string of the JSON String type, and allows to retrieve the record label. This
property is included if, and only if, the parameter includeLabel is set to yes.

• details containing a string of the JSON String type, corresponding to the resource URL. This
property is included if, and only if, the parameter includeDetails is set to true.

{
 "rows": [
 {
 "code": 204,
 "foreignKey": "62",
 "label": "Claude Debussy",
 "details": "http://.../root/individu/62"
 },
 {
 "code": 201,
 "foreignKey": "195",
 "label": "Camille Saint-Sans",
 "details": "http://.../root/individu/195"
 }
]
}

See alsoInsert operation [p 677]

Delete operation report
When invoking the delete operation, a report is returned. The report includes a JSON Object that
contains the following properties:

• deletedCount containing an integer of the JSON Number type, corresponds to the number of
deleted records.

• occultedCount containing an integer of the JSON Number type, corresponds to the number of
occulted records.

• inheritedCount containing an integer of the JSON Number type, corresponds to the number of
inherited records.

{
 "deletedCount": 1,
 "occultedCount": 0,
 "inheritedCount": 0
}

See alsoDelete operation [p 684]

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 716

Technical data
Each returned record is completed with the properties corresponding to its technical data, containing:

JSON property JSON format Description Required

creationDate String Creation date. Yes

creationUser String Creation user identifier. Yes

lastUpdateDate String Last update date. Yes

lastUpdateUser String Last update user identifier. Yes

{
 ...
 "creationDate": "2015-12-24T19:00:53.158",
 "creationUser": "admin",
 "lastUpdateDate": "2015-12-25T00:00:00.001",
 "lastUpdateUser": "admin",
 ...
}

100.7 Update modes
The byDelta mode allows to ignore data model elements that are missing from the JSON source
document. This mode is enabled (by default) through RESTful operations. The following table
summarizes the behavior of insert and update operations when elements are not included in the source
document.

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 717

See the RESTful data services operations update [p 682] and insert [p 677], as well as ImportSpec.
setByDeltaAPI in the Java API for more information.

State in the JSON source document Behavior

The property does not exist in the source document If the byDelta mode is activated (default):

• For the update operation, the field value remains
unchanged.

• For the insert operation, the behavior is the same as when
the byDelta mode is disabled.

If the byDelta mode is disabled through the RESTful
operation parameter:

The target field is set to one of the following values:

• If the element defines a default value, the target field is set
to that default value.

• If the element is of a type other than a string or list, the
target field value is set to null.

• If the element is an aggregated list, the target field value is
set to an empty list value.

• If the element is a string that differentiates null from an
empty string, the target field value is set to null. If it is a
string that does not differentiate the two, an empty string.

• If the element (simple or complex) is hidden in the data
services, the target value remains unchanged.

See alsoHiding a field in Data Services [p 540]

Note

The user performing the import must have the
required permissions to create or change the
target field value. Otherwise, the operation
will be aborted.

The element is present and its value is null (for example,
"content": null)

The target field is always set to null except for lists, in which
case it is not supported.

100.8 Known limitations

Field values
The value of fields xs:date, xs:time and xs:dateTime does not contain a time zone associated with
the JSON-primitive type.

Documentation > Developer Guide > REST data services > JSON format

TIBCO EBX® Product Documentation 5.9.20 718

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 5.9.20 719

CHAPTER 101
REST Toolkit

This chapter contains the following topics:

1. Introduction

2. Application definitions

3. Service and operation definitions

4. Authentication and lookup mechanism

5. REST authentication and permissions

6. URI builders

7. Exception handling

8. Monitoring

9. Packaging and registration

101.1 Introduction
TIBCO EBX offers the possibility to develop custom REST services using the REST Toolkit. The
REST Toolkit supports JAX-RS 2.1 (JSR-370) and JSON-B (JSR-367).
A REST service is implemented by a Java class and its operations are implemented by Java methods.
The response can be generated by serializing POJO objects. The request input can be unserialized
to POJOs. Various input and output formats, including JSON, are supported. For more details on
supported formats, see media types [p 721].
Rest Toolkit supports the following:

• Injectable objects
EBX provides injectable objects useful to authenticate the request's user, to access the EBX
repository or to built URIs without worrying about the configuration (for example reverse-proxy
[p 650] or REST forward [p 578] modes);
JAX-RS injectable objects are also supported.

• Annotations
EBX provides annotations to describe resources, grant anonymous access or add restrictions to
a method.
JAX-RS ans JSON-B annotations are also supported.

• logging and debugging utilities.

https://jcp.org/en/jsr/detail?id=370
https://jcp.org/en/jsr/detail?id=367

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 5.9.20 720

See also JAX-RS: JavaTM API for RESTful Web Services 2.1

101.2 Application definitions
An EBX module, that includes custom REST services, must provide at least one REST Toolkit
application class. A REST Toolkit application class extends the EBX RESTApplicationAbstractAPI

class. The minimum requirement is to define the base URL, using the @ApplicationPath annotation
and the set of packages to scan for REST service classes.

Note

Only packages accessible from the web application's classloader can be scanned.

Note

It is possible to register REST resource classes or singletons,
packaged inside or outside the web application archive, through the
ApplicationConfigurator.register(java.lang.Class) ApplicationConfigurator.
registerAPI or ApplicationConfigurator.register(java.lang.Object)
ApplicationConfigurator.registerAPI methods.

Note

If no packages scope is defined, then every class reachable from the web application's
classloader will be scanned.

The application path cannot be "/" and must not collide with an existing
resource from the module. It is recommended to use "/rest" (the value of the
RESTApplicationAbstract.REST_DEFAULT_APPLICATION_PATH constant).
EBX DocumentationAPI annotation is optional. It is displayed to administrators in 'Technical
configuration' > 'Modules and data models' or when logging and debugging.
import javax.ws.rs.*;

import com.orchestranetworks.rest.*;
import com.orchestranetworks.rest.annotation.*;

@ApplicationPath(RESTApplicationAbstract.REST_DEFAULT_APPLICATION_PATH)
@Documentation("My REST sample application")
public final class RESTApplication extends RESTApplicationAbstract
{
 public RESTApplication()
 {
 // Adds one or more package names which will be used to scan for components.
 super((cfg) -> cfg.addPackages(RESTApplication.class.getPackage()));
 }
}

101.3 Service and operation definitions
A REST Toolkit service is implemented by a Java class and its operations are implemented by its
methods.
Class and methods can be annotated by @Path to specify the access path. The @Path annotation
value defined at the class level will prepend the ones defined on methods. Warning, only one @Path
annotation is allowed per class or method.

https://download.oracle.com/otndocs/jcp/jaxrs-2_1-final-spec/index.html

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 5.9.20 721

Media types accepted and produced by a resource are respectively defined by the @Consumes and
@Produces JAX-RS annotations. The supported media types are:

• application/json (MediaType.APPLICATION_JSON_TYPE)

• application/octet-stream (MediaType.APPLICATION_OCTET_STREAM_TYPE)

• application/x-www-form-urlencoded (
MediaType.APPLICATION_FORM_URLENCODED_TYPE)

• multipart/form-data (MediaType.MULTIPART_FORM_DATA_TYPE)

• text/css

• text/html (MediaType.TEXT_HTML_TYPE)

• text/plain (MediaType.TEXT_PLAIN_TYPE)

Valid HTTP(S) methods are specified by JAX-RS annotations @GET, @POST, @PUT, etc. Only one of
these annotations can be set on each Java method (this means that a Java method can support only
one HTTP method).
Warning: URL parameters with a name prefixed with ebx- are reserved by REST Toolkit and should
not be defined by custom REST services, unless explicitly authorized by the EBX documentation.

URL and sample
The REST URL to access the description service for the sample is defined below:
http[s]://<host>[:<port>]/<path to webapp>/rest/track/v1/description

Where:

• <path to webapp> corresponds to the web application's path holding the REST Toolkit
application, itself serving the sample service. The path is composed by multiple, or none, URI
segments followed by the web application's name.

Note

Please note that /rest/track/v1/description corresponds to the concatenation of the
application's @ApplicationPath and service's @Path annotations.

The following REST Toolkit service sample provides methods to query and manage track data:
import java.net.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.regex.*;
import java.util.stream.*;

import javax.servlet.http.*;
import javax.ws.rs.*;
import javax.ws.rs.container.*;
import javax.ws.rs.core.*;

import com.orchestranetworks.rest.annotation.*;
import com.orchestranetworks.rest.inject.*;

/**
 * The REST Toolkit Track service v1.
 */
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
@Path("/track/v1")
@Documentation("Track service")
public final class TrackService
{
 @Context
 private ResourceInfo resourceInfo;

https://javaee.github.io/javaee-spec/javadocs/javax/ws/rs/core/MediaType.html#APPLICATION_JSON_TYPE
https://javaee.github.io/javaee-spec/javadocs/javax/ws/rs/core/MediaType.html#APPLICATION_OCTET_STREAM_TYPE
https://javaee.github.io/javaee-spec/javadocs/javax/ws/rs/core/MediaType.html#APPLICATION_FORM_URLENCODED_TYPE
https://javaee.github.io/javaee-spec/javadocs/javax/ws/rs/core/MediaType.html#MULTIPART_FORM_DATA_TYPE
https://javaee.github.io/javaee-spec/javadocs/javax/ws/rs/core/MediaType.html#TEXT_HTML_TYPE
https://javaee.github.io/javaee-spec/javadocs/javax/ws/rs/core/MediaType.html#TEXT_PLAIN_TYPE

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 5.9.20 722

 @Context
 private SessionContext sessionContext;

 private static final Map<Integer, TrackDTO> TRACKS = new ConcurrentHashMap<>();

 /**
 * Gets service description
 */
 @GET
 @Path("/description")
 @Documentation("Gets service description")
 @Produces({ MediaType.TEXT_PLAIN, MediaType.APPLICATION_JSON })
 @AnonymousAccessEnabled
 public String handleServiceDescription()
 {
 return this.resourceInfo.getResourceMethod().getAnnotation(Documentation.class).value();
 }

 /**
 * Selects tracks.
 */
 @GET
 @Path("/tracks")
 @Documentation("Selects tracks")
 public Collection<TrackDTO> handleSelectTracks(
 @QueryParam("singerFilter") final String singerFilter, // a URL parameter holding a Java regular expression
 @QueryParam("titleFilter") final String titleFilter) // a URL parameter holding a Java regular expression
 {
 final Pattern singerPattern = TrackService.compilePattern(singerFilter);
 final Pattern titlePattern = TrackService.compilePattern(titleFilter);

 return TRACKS.values()
 .parallelStream()
 .filter(Objects::nonNull)
 .filter(track -> singerPattern == null || singerPattern.matcher(track.singer).matches())
 .filter(track -> titlePattern == null || titlePattern.matcher(track.title).matches())
 .collect(Collectors.toList());
 }

 private static Pattern compilePattern(final String aPattern)
 {
 if (aPattern == null || aPattern.isEmpty())
 return null;

 try
 {
 return Pattern.compile(aPattern);
 }
 catch (final PatternSyntaxException ignore)
 {
 // ignore invalid pattern
 return null;
 }
 }

 /**
 * Counts all tracks.
 */
 @GET
 @Path("/tracks:count")
 @Documentation("Counts all tracks")
 public int handleCountTracks()
 {
 return TRACKS.size();
 }

 /**
 * Selects a track by id.
 */
 @GET
 @Path("/tracks/{id}")
 @Documentation("Selects a track by id")
 public TrackDTO handleSelectTrackById(@PathParam("id") Integer id)
 {
 final TrackDTO track = TRACKS.get(id);
 if (track == null)
 throw new NotFoundException("Track id [" + id + "] does not found.");
 return track;
 }

 /**
 * Deletes a track by id.
 */
 @DELETE
 @Path("/tracks/{id}")

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 5.9.20 723

 @Documentation("Deletes a track by id")
 public void handleDeleteTrackById(@PathParam("id") Integer id)
 {
 if (!TRACKS.containsKey(id))
 throw new NotFoundException("Track id [" + id + "] does not found.");
 TRACKS.remove(id);
 }

 /**
 * Inserts or updates one or several tracks.
 * <p>
 * The complex response structure corresponds to one of:
 *
 * An empty content with the <code>location<code> HTTP header defined
 * to the access URI.
 * A JSON array of {@link ResultDetailsDTO} objects.
 *
 */
 @POST
 @Path("/tracks")
 @Documentation("Inserts or updates one or several tracks")
 public Response handleInsertOrUpdateTracks(List<TrackDTO> tracks)
 {
 int inserted = 0;
 int updated = 0;

 final ResultDetailsDTO[] resultDetails = new ResultDetailsDTO[tracks.size()];
 int resultIndex = 0;

 final URI base = this.sessionContext.getURIInfoUtility()
 .createBuilderForRESTApplication()
 .path(this.getClass())
 .segment("tracks")
 .build();

 for (final TrackDTO track : tracks)
 {
 final String id = String.valueOf(track.id);
 final URI uri = UriBuilder.fromUri(base).segment(id).build();

 final int code;
 if (TRACKS.containsKey(track.id))
 {
 code = HttpServletResponse.SC_NO_CONTENT;
 updated++;
 }
 else
 {
 code = HttpServletResponse.SC_CREATED;
 inserted++;
 }

 TRACKS.put(track.id, track);

 resultDetails[resultIndex++] = ResultDetailsDTO.create(
 code,
 null,
 String.valueOf(track.id),
 uri);
 }

 if (inserted == 1 && updated == 0)
 return Response.created(resultDetails[0].details).build();

 return Response.ok().entity(resultDetails).build();
 }

 /**
 * Updates one track.
 */
 @PUT
 @Path("/tracks/{id}")
 @Documentation("Update one track")
 public void handleUpdateOneTrack(@PathParam("id") Integer id, TrackDTO aTrack)
 {
 final TrackDTO track = TRACKS.get(id);
 if (track == null)
 throw new NotFoundException("Track id [" + id + "] does not found.");

 if (aTrack.id != null && !aTrack.id.equals(track.id))
 throw new BadRequestException("Selected track id [" + id
 + "] is not equals to body track id.");

 TRACKS.put(aTrack.id, aTrack);
 }

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 5.9.20 724

}

This REST service uses the following Java classes, which represent a Data Transfer Objects (DTO),
to serialize and deserialize data:
/**
 * DTO for a track.
 */
public final class TrackDTO
{
 public Integer id;
 public String singer;
 public String title;
}

import java.net.*;

/**
 * DTO for result details.
 */
@JsonbPropertyOrder({ "code", "label", "foreignKey", "details" })
public final class ResultDetailsDTO
{
 public int code;
 public String label;
 public String foreignKey;
 public URI details;

 public static ResultDetailsDTO create(
 final int aCode,
 final String aForeignKey,
 final URI aDetails)
 {
 return ResultDetailsDTO.create(aCode, null, aForeignKey, aDetails);
 }

 public static ResultDetailsDTO create(
 final int aCode,
 final String aLabel,
 final String aForeignKey,
 final URI aDetails)
 {
 final ResultDetailsDTO result = new ResultDetailsDTO();
 result.code = aCode;
 result.label = aLabel;
 result.foreignKey = aForeignKey;
 result.details = aDetails;
 return result;
 }
}

101.4 Authentication and lookup mechanism
A custom REST service developed with REST Toolkit supports the same authentication methods
and lookup mechanism as the built-in REST data services. However, there is a slight difference
concerning the 'Anonymous authentication Scheme' since its scope can be wider by using the
AnonymousAccessEnabledAPI. See REST authentication and permissions [p 724] for more information.

See also

Authentication [p 652]

Lookup mechanism [p 653]

101.5 REST authentication and permissions
By default, every REST resource Java method requires users to be authenticated.
However, some methods may need to be accessible anonymously. These methods must be annotated
by AnonymousAccessEnabledAPI.

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 5.9.20 725

Some methods may need to be restricted to given profiles. These methods may be annotated by
AuthorizationAPI to specify an authorization rule. An authorization rule is a Java class that implements
the AuthorizationRuleAPI interface.
import javax.ws.rs.*;

import com.orchestranetworks.rest.annotation.*;

/**
 * The REST Toolkit service v1.
 */
@Path("/service/v1")
@Documentation("Service")
public final class Service
{
 ...

 /**
 * Gets service description
 */
 @GET
 @AnonymousAccessEnabled
 public String handleServiceDescription()
 {
 ...
 }

 /**
 * Gets restricted service
 */
 @GET
 @Authorization(IsUserAuthorized.class)
 public RestrictedServiceDTO handleRestrictedService()
 {
 ...
 }
}

101.6 URI builders
REST Toolkit provides an utility interface URIInfoUtilityAPI to generate URIs. An instance of this
interface is accessible through the injectable built-in object SessionContextAPI.

101.7 Exception handling
A REST Toolkit Java method can produce a standard HTTP error response by throwing a Java
exception that extends the JAX-RS class javax.ws.rs.WebApplicationException. JAX-RS defines
exceptions for various HTTP status codes. EBX defines UnprocessableEntityExceptionAPI that adds
support for the HTTP 422(Unprocessable entity) code.
Plain Java exceptions are mapped to the HTTP status code 500 (Internal server error).
{
 "userMessage": "...", // Mandatory localized message
 "errorCode": "999", // EBX® error code (optional, used mainly for HTTP error 422)
 "errors": [// Internal messages useful when debugging (optional).
 // Usually not displayed to the user and not localized.
 "Message 1", "Message 2" }
]
}

101.8 Monitoring
REST Toolkit events monitoring is similar to the data services log configuration. The difference is the
property key which must be ebx.log4j.category.log.restServices.

Documentation > Developer Guide > REST Toolkit

TIBCO EBX® Product Documentation 5.9.20 726

See also

Monitoring [p 653]

Configuring the EBX logs [p 351]

Some additional properties are available to configure the log messages. See Configuring REST toolkit
services [p 356] for further information.

101.9 Packaging and registration
All applications and components are required to be packaged into the module's Web Application (war
file).
The JAX-RS libraries, except the JAX-RS client API, are already included in ebx.jar and must not
be packaged in the war file.
See Java EE deployment [p 317] for more information.
The registration of a REST Toolkit application is integrated into the EBX module registration process.
The registration class must extend ModuleRegistrationListenerAPI, declare the Servlet 3.0 annotation
@WebListener and override the handleContextInitialized method.
See Module registration [p 460] for more information.
import javax.servlet.annotation.*;

import com.orchestranetworks.module.*;

@WebListener
public final class RegistrationModule extends ModuleRegistrationListener
{
 @Override
 public void handleContextInitialized(final ModuleInitializedContext aContext)
 {
 // Registers dynamically a REST Toolkit application.
 aContext.registerRESTApplication(RESTApplication.class);
 }
}

	Table of contents
	User Guide
	Introduction
	1. How TIBCO EBX works
	2. Using the user interface
	3. Glossary

	Data models
	4. Introduction to data models
	Implementing data models
	5. Creating a data model
	6. Configuring the data model
	7. Implementing the data model structure
	8. Properties of data model elements
	9. Data validation controls on elements
	10. Toolbars
	11. Working with an existing data model

	Publishing and versioning data models
	12. Publishing a data model
	13. Versioning an embedded data model

	Dataspaces
	14. Introduction to dataspaces
	15. Creating a dataspace
	16. Working with existing dataspaces
	17. Snapshots

	Datasets
	18. Introduction to datasets
	19. Creating a dataset
	20. Viewing table data
	21. Editing data
	22. Working with existing datasets
	23. Dataset inheritance

	Workflow models
	24. Introduction to workflow models
	25. Creating and implementing a workflow model
	26. Configuring the workflow model
	27. Publishing workflow models

	Data workflows
	28. Introduction to data workflows
	29. Using the Data Workflows area user interface
	30. Work items
	Managing data workflows
	31. Launching and monitoring data workflows
	32. Administration of data workflows

	Data services
	33. Introduction to data services
	34. Generating data service WSDLs

	Reference Manual
	Integration
	35. Overview of integration and extension
	36. Using TIBCO EBX as a Web Component
	37. Built-in user services
	File import and export services
	38. XML import and export
	39. CSV import and export

	40. Supported XPath syntax

	Localization
	41. Labeling and localization
	42. Extending TIBCO EBX internationalization

	Persistence
	43. Overview of persistence
	44. Relational mode
	45. History
	46. Replication
	47. Data model evolutions

	Other
	48. Inheritance and value resolution
	49. Permissions
	50. Criteria editor
	51. Performance guidelines

	Administration Guide
	52. Administration overview
	Installation & configuration
	53. Supported environments
	54. Java EE deployment
	Installation notes
	55. Installation note for JBoss EAP 7.1.x
	56. Installation note for Tomcat 8.x
	57. Installation note for WebSphere AS 9
	58. Installation note for WebLogic 12c R2

	59. TIBCO EBX main configuration file
	60. Initialization and first-launch assistant
	61. Deploying and registering TIBCO EBX add-ons

	Technical administration
	62. Repository administration
	63. UI administration
	64. Users and roles directory
	65. Data model administration
	66. Database mapping administration
	67. Workflow management
	68. Task scheduler
	69. Audit trail
	70. Other

	Distributed Data Delivery (D3)
	71. Introduction to D3
	72. D3 broadcasts and delivery dataspaces
	73. D3 JMS Configuration
	74. D3 administration

	Security Guide
	75. Security Best Practices

	Developer Guide
	Introduction
	76. Packaging TIBCO EBX modules
	77. Mapping to Java
	78. Tools for Java developers
	79. Terminology changes

	Data model
	80. Introduction
	81. Data types
	82. Tables and relationships
	83. Constraints, triggers and functions
	84. Labels and messages
	85. Additional properties
	86. Data services
	87. Toolbars

	88. Workflow model
	User interface
	89. Interface customization
	User services
	90. Overview
	91. Quick start
	92. Implementing a user service
	93. Declaring a user service

	94. Development recommendations

	SOAP data services
	95. Introduction
	96. WSDL generation
	97. SOAP operations

	REST data services
	98. Introduction
	99. Built-in RESTful services
	100. JSON format

	101. REST Toolkit

